
Discovering new alternatives to the standard

Higgs boson at the Large Hadron Collider

by

Sandeepan Gupta

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2012

Doctoral Committee:

Professor James D Wells, Chair
Professor Charles Doering
Professor Gordon L Kane
Assistant Professor Junjie Zhu
Assistant Professor Kathryn Zurek



There is a tingling in the spine, a catch in the voice, a faint sensation, as if a distant memory, of
falling from a height. We know we are approaching the greatest of mysteries...

Carl Sagan, Cosmos



c� Sandeepan Gupta 2012
All Rights Reserved



To my father, Alok Gupta, but for whose efforts I would never have been a physicist
and my mother, Chhaya Gupta, for her constant love and support.

ii



ACKNOWLEDGEMENTS

I would like to thank, first of all, my two mentors: James D Wells, my thesis

adviser, and Christophe Grojean who was my supervisor at CERN. From elucidating

theoretical subtleties and advice on making plots to helping me get the big picture in

Higgs physics, my mentors have contributed to every aspect of my research outlook,

whether conceptual, technical or practical.

My development as a researcher has been deeply influenced by many physicists

at Michigan and CERN but especially by conversations with Gia Dvali and Gian

Giudice. I would also like to thank my committee members, Charles Doering, Gor-

don Kane, Junjie Zhu and Kathryn Zurek for their valuable suggestions for improv-

ing my thesis. For my different projects I have greatly benefitted from discussions

with Aaron Armbuster, Oldrich Kepka, Christophe Royon, Slava Rychkov and Alex

Vikman.

I am also indebted to my fellow PhD students at CERN and Michigan many

of whom have become much more than colleagues. I thank, in particular, Adish,

Adrian, Ahmad, Alessandra, Andrei, Andrea, Dani, Duccio, Ennio, Ionnais, Javi,

Julien, Kentaro, Marius, Nishita, Norberto, Somnath, Stefan and Sunghoon. The

five years of my PhD were a formative period in my life and the time spent with

these friends has been crucial in shaping me as a physicist and as a person. I am

also grateful to my brother for his constant encouragement. Finally, I would like

to express my special appreciation for Aalo, whose presence made thesis writing an

iii



inspired activity.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The problem of vector boson masses . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Higgselss Standard Model as a non-linear sigma model . . . . . . . . . . 4
1.3 The Higgs mechanism and the hierarchy problem . . . . . . . . . . . . . . . 7
1.4 Experimental searches and the case for a light Higgs . . . . . . . . . . . . . . 11

1.4.1 Experimental constraints on the Higgs mass . . . . . . . . . . . . . 11
1.4.2 Higgs searches at the LHC . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II. Classicalization, a Higgsless alternative . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Classicalon statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Geometry of wave-packets . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Density of states function . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Number of N particle decays for 1 � N � Nmax . . . . . . . . . . 32
2.2.4 Classicalons as Bose-Einstein systems . . . . . . . . . . . . . . . . . 34

2.3 Classicalons at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Classicalization of longitudinal W s and Zs . . . . . . . . . . . . . . 40
2.3.2 Higgs as the classicalizer . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III. Higgs generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Generations of Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Overcoming Tree-Level Flavor Changing Neutral Currents . . . . . . . . . . 65
3.3 Next Generation Higgs bosons of Supersymmetry . . . . . . . . . . . . . . . 70

3.3.1 General Higgs Potential . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Electroweak symmetry breaking and scalar mass matrices . . . . . 74
3.3.3 Upper bound on the mass of the lightest CP even Higgs . . . . . . 77

3.4 Next Generation Higgs boson of Standard Model . . . . . . . . . . . . . . . . 82

v



3.4.1 Electroweak symmetry breaking and scalar mass matrices . . . . . 82
3.4.2 Indirect Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.3 Collider Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Yukawa Coupling Perturbativity . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.6 Signatures at the Large Hadron Collider . . . . . . . . . . . . . . . . . . . . 100

3.6.1 Dominant decay modes . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6.2 The pp → Zh(bb̄)h(bb̄) signal and choice of input parameters . . . . 101
3.6.3 Signal and Background cross section at LHC . . . . . . . . . . . . . 104

3.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

IV. Higgs boson significance plot deformations due to mixed-in scalars . . . . 112

4.1 Mixed-in singlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 LHC Sensitivity Projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Significance with mixed-in Higgs bosons. . . . . . . . . . . . . . . . . . . . . 116
4.4 Example with one extra mixed-in Higgs boson. . . . . . . . . . . . . . . . . . 118
4.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

V. Probing Quartic Neutral Gauge Couplings by diffractive photon fusion
at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Operators that give rise to Quartic Neutral Gauge Boson Couplings . . . . . 129

5.2.1 Light Higgs case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2 Higgsless case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.3 Graviton exchange in extra-dimensional theories as a source of

QNGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4 High energy behavior of amplitudes and violation of unitarity at tree-level . 138
5.5 The Equivalent Photon Approximation and the proton level cross-section for

pp(γγ → ZZ)pp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.6 Theoretical cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.7 LHC signal search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.1 pp(γγ → ZZ)pp process . . . . . . . . . . . . . . . . . . . . . . . . 152
5.7.2 pp(γγ → γγ)pp process . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.8 LHC sensitivity to QNGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

vi



LIST OF FIGURES

Figure

2.1 (a) Different ways of forming classicalons. Any scattering process with 2,3 ... N

initial particles would form a classicalon if the total energy of these particles.
√
ŝ,
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CHAPTER I

Introduction

One of the great achievements of modern science is the discovery of the elemen-

tary particles that constitute seemingly everything. Laws governing the behavior of

these elementary constituents are the laws that underlie all natural phenomena. At

present high energy experiments have uncovered laws that are valid up to length

scales as small as an attometer (10−18 m). Given the complexity and variety of nat-

ural phenomena, it is remarkable how simple and elegant these laws are. All the

information contained in these laws can be summarized in a single expression,

L = i
�

k

ψ̄kγ
µDµψk −

1

4
W µν

I W I µν − 1

4
BµνBµν − 1

4
GµνGµν

+ m2
WW+W− +

m2
Z

2
Z2 −

�

ij

mijψ̄iψj + h.c.(1.1)

where,

W± =
W 1 ±W 2

√
2

,

Z =
−g�B + gW 3

�
g2 + g�2

(1.2)

The equations above give the lagrangian that defines the quantum field theory (QFT)

of the known elementary particles1. Ignoring the mass terms this is a Yang Mills
1Note that we have not mentioned gravity because the quantum effects of gravity are negligible at these length

scales.

1
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theory with a local SU(3)×SU(2)×U(1) gauge symmetry. The ψi are the fermionic

matter fields,W I , B andG are the gauge fields, Dµ = ∂µ−igT IW I
µ−ig�(Y/2)Bµ is the

covariant derivative, the T I are the SU(2) generators and Y/2, the hypercharge, is the

charge under the U(1) group. The form of the interactions is completely determined

by the gauge symmetry. The matter fields come in three copies or generations.

The charge assignments of the matter fields in a generation are fixed by anomaly

cancellation requirements.

The mass terms for the vector bosons, W± and Z, and the fermions, however,

break the electroweak SU(2)×U(1) invariance. Not only are the masses undesirable

from an aesthetic point of view, as we will soon describe, they also lead to serious

theoretical problems. The most popular solution to these problems requires the

introduction of the yet undiscovered Higgs boson with a mass close to the mass of

the weak bosons. While this solution is the one most favored by present experimental

data, it is not the only theoretical possibility. This thesis deals with the physics of

the Higgs boson and its alternatives and how these different scenarios can be tested

at the Large Hadron collider (LHC). In this introductory chapter we will first explain

why vector boson masses are problematic and thus motivate the Higgs boson and

its alternatives. We will then discuss the latest indirect and direct experimental

constraints that favor a light Higgs boson and discuss how the Higgs boson can be

detected at the LHC. Finally we will give an outline of the rest of the thesis in the

final section.

1.1 The problem of vector boson masses

There are well-know problems associated with high energy scattering amplitudes

in a QFT of spin-1 particles. The scattering amplitudes involving the longitudinal
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components of vector bosons grow with energy because of the longitudinal polariza-

tion vectors,

(1.3) �L =
1

mW
(k, 0, 0, E) =

pµ

mW
+O(mW/E)

that must be included in the amplitude for each external vector boson leg in a

scattering process. In the above expression E is the energy and k the magnitude of

the momentum of the vector boson. For E � mW , the WLWL scattering amplitude

is,

A(W+
L W−

L → W+
L W−

L ) =
g2

4m2
W

(s+ t).(1.4)

Thus the amplitudes have a E2/m2
W dependance. One might naively expect a

E4/m4
W ∼ s2/m4

W dependance because there are four external longitudinal vector

bosons. There is however a cancellation in the O(E4/m4
W ) term between different

diagrams contributing to A(WLWL → WLWL). As we will see in the next section this

cancellation is not accidental and is in fact expected. The growth of the above am-

plitudes violates unitarity which is the requirement that the probability for different

possibile final states must add up to unity. This is because, as shown in Appendix F,

unitarity requires that each partial wave amplitude al must satisfy,

(1.5) |Re(al)| <
1

2

where,

(1.6) al =
1

32π

� 1

−1

A Pl(cos θ)d cos θ.

In this case from Eq. 1.6 we get,

(1.7) a0 =
g2E2

16πm2
W
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This implies a violation of unitarity for
√
s ≥ Λ = 1.2 TeV [4].

Note that care should be taken to interpret the above result. What the above

analysis shows is that tree-level amplitudes are unreliable at high energies. This

might indicate the presence of new states before these energies are reached or it

might mean that higher order and non-perturbative effects can no longer be ignored.

In either case it shows the inadequacy of the perturbative description. The fact

that higher order corrections become important, also shows that the above tree level

number, Λ = 1.2 TeV, is only a rough estimate and the precise value should not

be taken seriously. What the above analysis does show is that, whatever is the

mechanism for unitarization of these amplitudes, it is likely to be discovered at the

LHC2 which has a proton-proton center of mass energy equal to 14 TeV.

1.2 The Higgselss Standard Model as a non-linear sigma model

We will now rewrite the theory of the massive vector bosons in a different but

equivalent way that makes many of their properties mentioned in the last section

more transparent. We introduce some new unphysical degrees of freedom χ1, χ2 and

χ3 and define the matrix,

(1.8) Σ = exp(iχiτi/v).

where v = 2mW/g = 246 GeV. We now write the mass terms for the gauge bosons

and fermions as follows [6],

Lm =
v2

4
Tr(DµΣ

†DµΣ)−
v√
2

�

ij

�
ūLi d̄Li

�
Σ




yuijuRj

ydijdRj



+ h.c.(1.9)

where we have omitted the lepton masses for simplicity and,

(1.10) DµΣ = ∂µΣ− ig
τ I

2
W I

µΣ + ig�Σ
τ3
2
Bµ

2As shown in Ref. [5], however, some resonances that can unitarize WW scattering amplitudes may escape
detection at the LHC.
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The matrix Σ transforms under SU(2)×U(1) as,

(1.11) Σ → ULΣU
†
Y

where, UL = exp(iαiτi/2) and UR = exp(iβτ3/2). The equivalence of the lagrangian

in Eq. 1.9 and the mass terms in Eq. 1.1 can be made explicit in the unitary gauge

where Σ → 1. Note that rewriting the mass terms in Eq. 1.1 as in Eq. 1.9 makes the

full lagrangian in Eq. 1.1 invariant under the SU(2)×U(1) gauge symmetry.

The introduction of the fields, χi, makes many of the properties discusses in the

last section transparent. These scalar modes correspond to the longitudinal polar-

ization modes of the W and Z. Thus we can now clearly focus on the problematic

modes by studying the behavior of the χi. The above statement can be elevated to a

theorem, the so-called equivalence theorem, which says that the absorption and emis-

sion amplitudes of the scalars χi is equal to the absorption and emission amplitudes

of the corresponding gauge bosons up to O(m2
V /s) terms where mV = mW , mZ [7].

Using the equivalence theorem the E2/m2
W dependance of the W+

L W−
L → W+

L W−
L

amplitude discussed in the last section becomes clear. The χ+χ− → χ+χ− amplitude

gets a tree level contribution from the χ+χ−χ+χ− vertex that can be obtained by

expanding the exponential in Eq. 1.9. Clearly we expect a E2/m2
W dependance for

the amplitude because the (v2/4)Tr(DµΣDµΣ) term has two derivatives hence by

the equivalence theorem,

(1.12) A(W+
L W−

L → W+
L W−

L ) = A(χ+χ− → χ+χ−) +O(m2
W/E2) ∼ E2

v2
.

Thus in this approach we easily obtain the E2/m2
W dependance and no seemingly

miraculous cancellations occur.

The theory described by the lagrangian in Eq. 1.9 is clearly non-renormalizable as

the exponential when expanded gives gives higher dimension terms. Thus the growth
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of the amplitude we found in Section 1.1 is no different from the usual growth of

amplitudes due to non-renormalizable operators. To find the cut-off of the above

theory note that the amplitude will also get a loop contribution because of the

diagram χ+χ− → (χ+χ−)loop → χ+χ−. The loop contribution can be estimated to

be of order,

(1.13) A(χ+χ− → χ+χ−)tree ∼
1

16π2

E4

v4
.

Thus the loop contribution becomes of the order of the tree level contribution for,

(1.14) E = Λ ≈ 4πv.

Thus at this scale the higher order contributions can no longer be ignored. This

estimate gives us a cut-off Λ ≈ 4πv = 3.1 TeV, which should be compared with

the value Λ ≈ 1.2 TeV in the previous section. As we stated then these are only

rough estimates, i.e. different ways of estimating the cut-off would give us different

numbers, but all would be within the same order of magnitude.

To summarize, we introduced a redundancy into our massive gauge boson la-

grangian by introducing the unphysical scalar degrees of freedom, χi. We also dis-

covered that with the introduction of these scalar fields, the whole lagrangian in

Eq. 1.1, including the mass terms, can be rewritten such that it is invariant under

the SU(2)×U(1) gauge symmetry. Using this symmetry the unphysical scalar modes

can be gauged away. We thus found that the problem with the high energy ampli-

tudes in Section 1.1 arises out of the non-renormalizability of the underlying theory

described by Eq. 1.1. In the next section we discuss possible UV-completions of the

theory described by Eq. 1.1.
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1.3 The Higgs mechanism and the hierarchy problem

We will see in this section that the scalar degrees of freedom, χi, from the last

section can be identified with the goldstone bosons that arise upon spontaneous

breaking of the SU(2)×U(1) invariance. If the SU(2)×U(1) were a global symmetry

these goldstone bosons would be massless modes in accordance with the equivalence

theorem. The fact that the invariance is a local symmetry, however, means that the

χi can be gauged away, and absorbed as longitudinal modes by the gauge bosons W

and Z which now become massive. We will see that this gives us a UV completion

of the theory described by the lagrangian in Eq. 1.1, that has been discussed in

Sections 1.1, 1.2.

To show this in detail we replace the mass terms in Eq. 1.1 with the Higgs la-

grangian. We introduce the Higgs field Φ, an SU(2) doublet having hypercharge

Y = 1, and has the lagrangian,

(1.15) LHiggs = (DµΦ)
†DµΦ− V (Φ)

and a potential,

(1.16) V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2.

With the mass terms in Eq. 1.1 replaced by the Higgs lagrangian we get the la-

grangian of the Standard Model (SM) which is SU(2)×U(1) invariant. The Higgs

field, however, gets a vacuum expectation value (VEV) which breaks this invariance.

The potential above has the shape of a mexican hat and after electroweak symmetry

breaking (EWSB) the Higgs doublet can be parametrized as,

(1.17) Φ = exp(iχiτi/v)




0

(v +H)/
√
2




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where v =
�

−µ2/λ is the VEV. The prefactor, exp(iχiτi/v), can be identified with

the matrix Σ defined in Eq. 1.8. We can make a gauge transformation and set χi = 0.

Note that this step would not be possible if SU(2)×U(1)were a global symmetry and

the χi would remain in the spectrum as massless modes. Also notice that the U(1)em

group having the generator,

(1.18) Q = T3 +
Y

2

remains unbroken, as one can explicitly check that the vacuum in Eq. 1.17 does not

break this group. The radial mode H, is the Higgs boson and it gets a mass,

(1.19) m2
H = 2λv2.

As a consequence of the Higgs vacuum expectation value (VEV) the Higgs kinetic

term gives masses to the gauge bosons as follows,

(DµΦ)
†DµΦ → 1

8

�������




g�B + gW 3 g(W 1 − iW 2)

g(W 1 + iW 2) g�B − gW 3








0

v





�������

2

=
g2v2

4
W+W− +

(g2 + g
�2)v2/4

2
Z2.(1.20)

Comparing with Eq. 1.1 we find,

(1.21) mW =
gv

2
and mZ =

�
g2 + g�2

2
v.

The linear combination,

(1.22) A =
gB + g�W 3

�
g2 + g�2

is the photon and it gets no mass. This is the gauge boson of the unbroken U(1)em

gauge group.

We will now see how the theory described above is a satisfactory UV completion

of theory described by Eq. 1.1. Compared to the Sections 1.1, 1.2 we now have an
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additional degree of freedom, the Higgs boson H. In the limit of heavy Higgs mass,

the Higgs boson decouples and we obtain exactly the theory described in Section 1.1.

It can be shown explicitly that the Higgs contribution exactly cancels the growth of

W+
L W−

L → W+
L W−

L scattering. Instead of evaluating all the diagrams we will use the

equivalence theorem again but we will now parametrize the goldstone bosons in a

different way,

(1.23) Φ =
1√
2




φ1 + iφ2

(v +H) + iφ3



 .

In this linear parametrization, φ± = 1√
2
(φ1± iφ2) correspond to the goldstone bosons

absorbed by the longitudinal W± bosons. Thus according to the equivalence theorem

in order to compute the W+
L W−

L → W+
L W−

L scattering amplitude we must compute

the φ+φ− → φ+φ− amplitude. There are two contributions to the amplitude: (1)

from the contact interaction φ+φ−φ+φ− and (2) the Higgs mediated process φ+φ− →

H → φ+φ− where the vertex Hφ+φ− comes into play. Both the vertices involved are

derived from the quartic term λ(Φ†Φ)2. A simple evaluation gives [4],

(1.24) A(W+
L W−

L → W+
L W−

L ) ≈ A(φ+φ− → φ+φ−) ≈ −4λ = −2m2
H

v2
.

in the limit s � m2
h. Using the constraint from Eq. F.3 we obtain in this case,

(1.25) mH < 870 GeV

Amore stringent bound of 710 GeV [8,9] can be derived by considering theW+
L W−

L →

ZLZL process. Again the order of magnitude and not the precise value of these

numbers is important. Thus the amplitude does not grow with energy, and provided

the Higgs boson is light, we have a consistent QFT up to arbitrarily high energies.

For a heavy Higgs the theory would become strongly coupled. This is not surprising
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as a heavy Higgs means a large quartic coupling, λ � 1, which makes the theory

strongly coupled3.

Thus we see the introduction of a light Higgs is an economical and elegant way

to unitarize WLWL scattering. There is, however, still a conceptual problem, the

so-called hierarchy problem. There are many reasons to extend the SM like the

presence of dark matter, the observed matter antimatter symmetry of the universe,

and the most unavoidable reason of all: presence of gravity, which becomes a strong

force at the Planck scale. It is hard to embed the SM with a light Higgs in a more

fundamental theory with higher mass scales. This is because the Higgs mass term

being a relevant operator would be sensitive to these high energy thresholds unless

it is protected by a symmetry. Let us consider the case where the Planck scale Mpl

is the cut-off of the SM. A light Higgs can be obtained only if there is a cancellation

between the bare Higgs mass mh(Mpl) and the Planck scale quantum corrections,

(1.26) m2
H phy = m2

H(Mpl) +
�

i

ciM
2
pl.

Thus it is natural to have m2
H phy ≈ M2

pl and to obtain a light Higgs with mass

m2
H phy ≈ m2

W a fine-tuning of order m2
W/M2

pl is required. The most popular solution

to this issue is the introduction of Supersymmetry (SUSY) which protects scalar

masses. SUSY relates the scalars to chiral fermions. As the masses of chiral fermions

are protected by chiral symmetry even the scalar masses in SUSY are protected.

While, the introduction of a light Higgs boson is the most economical way to

unitarize WLWL scattering it is not the only way. There are theories called Techni-

color models that have been developed in analogy with Quantum Chromodynamics
3Note that even lighter Higgs masses indicate the presence of a strong sector. This is because even if the Higgs

quartic coupling is perturbative at the scale mH it runs to larger values at higher energies and thus the theory becomes
strongly coupled at higher energy scales. For mH ≈ 400 GeV, for instance, the SM becomes strongly coupled at a
scale Λ ≈ 10 TeV [10]. Even lighter Higgs bosons can emerge from a strong sector, if there is a symmetry protecting
their mass from corrections of the order of the strong scale. One such possibility is that the Higgs boson is a pseudo
Goldstone boson of an approximate global symmetry of the strong sector [6].



11

(QCD). In QCD pions are pseudo goldstone bosons of chiral symmetry breaking.

Low energy pion -pion scattering is also governed by a lagrangian similar to Eq. 1.9

with χi → πi and v → f , the pion decay constant. Thus even in this case there is a

violation of perturbative unitarity near the cut-off 4πf . There is however, no scalar

resonance analogous to the Higgs in this case. Pion-pion scattering is unitarized

by the exchange of an infinite series of resonances. In Technicolor models EWSB

takes place when a scalar condensate of techniquarks gets a VEV. In analogy with

pion-pion scattering no Higgs boson is required; instead resonances are expected to

be produced in longitudinal WW scattering.

In strong EWSB models there is no hierarchy problem as there is no elementary

Higgs boson. Furthermore, the electroweak scale is generated dynamically in such

theories. Just as the QCD scale, ΛQCD ≈ 1 GeV, is the scale at which the running

QCD coupling becomes large, in theories with strong EWSB the electroweak scale is

the scale at which the coupling of the underlying theory becomes large.

1.4 Experimental searches and the case for a light Higgs

In the previous sections we have seen that there are two different paradigms for

electroweak symmetry breaking (EWSB): higgsless or heavy Higgs scenarios with

strongly coupled EWSB, and the perturbative light Higgs scenario. Theoretically,

each scenario is plausible but experimental data seems to favor the light Higgs sce-

nario. In this section we will review these experimental results and discuss the

ongoing LHC searches for the Higgs.

1.4.1 Experimental constraints on the Higgs mass

The most important constraints on the Higgs boson come from direct searches at

the LEP, Tevatron and LHC. For low Higgs masses, the ee → ZH process at LEP-2
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is the most sensitive process. For a SM Higgs this process puts constraint [11],

(1.27) mH > 114.4 GeV

at 95% confidence level (CL). The combined Tevatron data puts the following con-

straint at 95% CL [12],

108 GeV < mH < 147 GeV

or mH > 179 GeV.(1.28)

The lower limit comes mainly from the associated production processes, WH/ZH

followed by the decay H → bb, and the upper bound comes mainly from H → WW

the decay channel.

The strongest constraints at least for high masses comes from the latest LHC

searches. We will discuss the LHC searches in more detail in the next section but we

summarize the constraints here. The Higgs boson mass ranges from 110-117.5 GeV,

118.5-122.5 GeV, and 129 GeV-539 GeV are excluded at 95 % CL by the ATLAS

collaboration [13]. The CMS collaboration excludes the mass range 127.5-600 GeV

at 95 % CL [14]. Together these constraints imply for the allowed range of Higgs

masses,

117.5 GeV < mH < 118.5 GeV

122.5 GeV < mH < 127.5 GeV

or mH > 600 GeV.(1.29)

All three experiments also see very interesting excesses in their Higgs searches. The

Tevatron finds a 2.2 sigma excess that can be interpreted to be coming from a Higgs

boson with mass in the range in the 115-135 GeV mass range [12]. An excess of

events is observed around mH ∼126 GeV with a local significance of 2.5 standard
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deviations by the ATLAS collaboration [13] and an excess, with a local significance

of 2.8 standard deviations, is observed for mH ∼125 GeV by CMS [14].

The above results seem to favor either a Higgs in the window 115.5 GeV <

mH < 127 GeV, or a higgsless/heavy Higgs scenario which would necessarily point

to strongly coupled EWSB. There is, however, indirect evidence that favors the for-

mer possibility over the latter. The LEP-2 experiment carried out highly precise

measurements of observables like the W mass, the weak mixing angle and the par-

tial decay width of the Z boson to leptons. These measurements were sensitive to

quantum effects from scales much higher than those LEP-2 could directly probe,

and are thus very useful in constraining new physics scenarios. In particular, new

states that contribute to vector boson self energies through loops, also change the

theoretical predictions for the above observables. The Higgs boson is an example of

a new state that modifies vector boson self energies and thus the theoretical values

of the electroweak observables are functions of the Higgs mass. To find the Higgs

mass value preferred by these measurements a χ2-fit can be performed where,

(1.30) χ2 =
�

i

(Otheory
i (mH , ...)−Oexpt

i )2

(∆Oexpt
i )2

Here Oexpt
i is the experimentally measured value of the observable, ∆Oexpt

i is the

experimental error and Otheory
i (mH , ...) is the theory prediction which is a function

of the Higgs mass mH and other known parameters. The best fit value for the Higgs

mass ignoring direct search constraints is [15],

(1.31) mbest
H = 94+25[+59]

−22[−41] GeV,

where the subscript and superscript are the one and two sigma deviations (the value

within square brackets being the two sigma deviation) from the central value. Note

that the above constraint assumes a SM Higgs. In BSM scenarios the Higgs mass
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can be much higher [16].

1.4.2 Higgs searches at the LHC

Now we shall consider in more detail the Higgs searches at the LHC. There are

four production mechanisms for the Higgs at the LHC: (i) gluon fusion, i.e. gg → H,

(ii)vector boson fusion (VBF), i.e. qq → Hqq, (iii) associated production with gauge

bosons, i.e. qq → WH,ZH and (iv) associated production with a top pair, i.e

qq → tt̄H. The last production channel (tt̄H) is kinematically suppressed at the 7

TeV LHC. The gluon fusion process is by far the most important process with cross

sections an order of magnitude higher than the cross-section of other channels. The

ggH coupling in the standard model gets its dominant contribution from top loops.

Though VBF and associated production channels (WH/ZH) have a smaller cross-

section, these are also very important. This is because one can imagine a situation

where the Higgs coupling to the top quark, or fermions in general, is suppressed.

In this case VBF and associated production would be the primary Higgs production

channels. The associated production channels (WH/ZH) are also important because

with high luminosity they can access the predominant decay channel of the Higgs at

low masses, the H → bb channel, through the process qq → WH(bb)/ZH(bb).

Now we come to the important decay channels. The decay channels being studied

by CMS and ATLAS are H → γγ, H → ττ , WH(bb)/ZH(bb), H → ZZ → 4l,

H → ZZ → 2l2ν, H → ZZ → 2l2b and H → WW → lνlν. We now discuss the

three most important channels, the H → ZZ → 2l2ν channel, the H → γγ channel

and the H → γγ channel.

The H → WW → lνlν channel is the most sensitive channel for exclusion in the

important mass range 125 − 190 GeV. This channel is, however, not the ideal for

discovery of the Higgs boson. This is because, the presence of missing energy means
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that this channel has very poor mass resolution. The only sensitivity of the search

to the Higgs mass comes from studying the transverse mass (mT ) distribution. The

transverse mass, mT , is defined by [17],

(1.32) mT =
�

(Ell
T + Emiss

T )2 − (Pll
T + Emiss

T )2

where the transverse momentum of the lepton pair, Pll
T = Pl1

T+Pl2
T , E

ll
T =

�
P ll 2
T +m2

ll,

Emiss
T is the missing transverse energy and mll is the invariant mass of the leptons.

This kinematic variable is important because for a Higgs decaying to lνlν, mT is

always less than the Higgs mass.

The other important channel, especially for high mass ranges, is the H → ZZ →

4l channel. While the cross-section for this channel is not so high, this is a particularly

clean channel with low background. Thus even the presence (absence) of a few excess

events can lead to a discovery (exclusion) with high significance (confidence level).

Unlike the H → WW → lνlν channel, this channel has good mass resolution. The

high Higgs mass exclusion in Eq. 1.29 is mainly due to the the H → WW → lνlν

and H → ZZ → 4l channels.

Finally we discuss the H → γγ channel which is the most important discovery

channel for a low mass Higgs boson in the region not yet excluded by experiments.

The Hγγ coupling in the SM gets contributions from W and fermion (mainly top)

loops with opposite signs, the W loop having the larger contribution. A Higgs with

reduced coupling to fermions is thus expected to have a higher cross-section in this

channel. This channel has a high mass resolution, about 1.1 % of the Higgs mass. As

we mentioned in Section 1.4.1 there are hints of a Higgs boson in the 123-127 GeV

mass range in both ATLAS and CMS data. The dominant contribution to these

excesses is from the H → γγ channel.
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1.5 Thesis outline

As we have discussed in Sections 1.1, 1.2 of this introduction, electroweak sym-

metry breaking (EWSB) requires only the goldstone modes of the Higgs doublet

field and not the radial mode, the Higgs boson. The quantum field theory of the

goldstone modes with the Higgs boson decoupled is, however, non-renormalizable

and violates perturbative unitarity near its cut-off, around the TeV scale, where it

becomes strongly coupled. The usual approach in such a situation is to find a Wilso-

nian UV completion, like Technicolor, with no fundamental Higgs boson and thus no

hierarchy problem.

In Chapter II we describe an alternative, non-Wilsonian approach called classical-

ization. This approach is inspired by gravity where it can be argued that perturbative

unitarity in 2 →2 scattering amplitudes is never violated at transplanckian energies,

because of formation of classical black holes that decay to many (and not two) parti-

cles. This leads to a suppression of 2 →2 scattering amplitudes. It has been proposed

by Dvali et al. [18] that similar classical configurations, called classicalons, can be

produced in non-gravitational theories also, if a bosonic field is sourced by deriva-

tively coupled operators that grow with energy. One possibility for this bosonic

field is the longitudinal scalar modes of the W/Z fields. We have already seen in

Section 1.2, 1.3 that interactions involving these modes grow with energy. It has

thus been proposed that longitudinal WW (ZZ) scattering can be unitarized by the

formation of classical configurations that decay to multiple W s and Zs. In order to

make collider predictions for such a scenario one needs to have a way to estimate

the number of W/Zs that would be produced at a certain energy. In Chapter II we

will compute the final decay multiplicity of classicalons by arguing that, like black
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holes, they have analogs of thermodynamic properties. By labeling the microstates

of a classicalon by the set of four momenta of the decaying particles, we will carry

out a statistical mechanical analysis of classicalon decays. We will thus be able to

compute the number of decay products and then extract concrete collider predictions

for classicalization. We will see that at the LHC classicalons can be produced in the

Vector Boson Fusion channel and the collider signals are spectacular multi-W/Z fi-

nal states that lead to leptons, missing energy and such a high multiplicity of jets

that there is virtually no background. This chapter is based on an article written in

collaboration with Christophe Grojean that has been submitted to Journal of High

Energy Physics [19].

An alternative to such non-perturbative physics is of course to have a light, weakly

coupled, Higgs sector that unitarizes longitudinal WW scattering at energies much

lower than the perturbative unitarity bound. As we discussed in Section 1.4.1, such a

scenario is, in fact, favored by the high precision LEP-2 measurements of electroweak

observables. The question then is: Is the Higgs sector realized as the most minimal

possibility, a single doublet as in the Standard Model (SM), or is it more complicated?

Minimality after all is hardly a convincing requirement for a low energy theory at the

TeV scale. Also, non minimal Higgs sectors are generic in many motivated extensions

of the SM.

In Chapter III we consider the possibility of adding new Higgs doublets in both

supersymmetric and non supersymmetric scenarios. In the supersymmetric case

anomaly cancellation requirements dictate that we add these Higgs in generations of

up and down pairs. Flavor constraints can be satisfied if the new doublets do not

couple to fermions which can be achieved by giving the new doublets a charge under a

discrete symmetry. The discrete symmetry is, however, spontaneously broken which
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causes problems with flavor constraints at the loop level, in particular the charged

Higgs contribution to the b → sγ process can be large. We will show that a simple

way to avoid all the constraints is if the new doublets get small vacuum expectation

values. This would, however, suppress the ggH and V V H (V = W+/−, Z) couplings

making the discovery of these new states difficult at colliders. The ZAh coupling

(A being the pseudoscalar and h being the non SM-like CP-even Higgs boson) is

however not suppressed even in this limit, so that, as we will show that a process like

pp → Z → A(Zh)h → Z + 4b would be a possible signature. This chapter is based

on an article written in collaboration with James D Wells that has been published

in the journal, Physical Review D [20].

In Chapter IV we consider a model with a singlet scalar added to the SM. In this

case we get two Higgs bosons which share the SM couplings according to the strength

of their wave-function overlap. The most sensitive search channel for masses in the

range 130-180 GeV is the H → WW → lνlν channel. As discussed in Section 1.4.2,

because of the presence of missing energy in this channel, the mass resolution is poor

and it is hard to distinguish two such Higgs states if the masses are close to each

other. We will see that in such a scenario it becomes crucial to analyze the shape

of the significance vs mH profile and that deviations in the shape may be the first

sign of the second Higgs. The results of this study were published in Physics letters

B with James D Wells as a co-author [21].

One may also take the view that a generic non-minimal Higgs sector violates

existing constraints in general. Not only are there problems with flavor constraints,

if one is not careful in choosing the parameters of the scalar potential, it might lead

to other complications like the photon getting a mass (discussed in Chapter III). A

single light Higgs doublet, as in the SM, is not only the most minimal option but
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also the easiest way to satisfy all existing constraints. In such a scenario, flavor and

precision constraints favor a mass gap between the light Higgs doublet and the new

physics that stabilizes its mass. A general model independent description can be

achieved in this case by supplementing the SM with higher dimensional operators

suppressed by the scale of new physics. In Chapter V we will use such an approach

to study quartic couplings involving the neutral gauge bosons, i.e. the photon and

the Z boson, by listing all possible operators contributing to these couplings both

in the light Higgs case and the higgsless case where electroweak symmetry is non-

linearly realized. A particularly clean way of experimentally probing these couplings

is through the diffractive photon fusion process, pp(γγ → γγ/ZZ)pp, where the

intact protons in the final state can be detected by forward proton detectors that

would be installed by ATLAS and CMS. While measurements like these would not

lead to the first discovery of new physics, many such complementary measurements

would be necessary for understanding the nature and details of the new physics

discovered. This study was published in the journal Physical Review D [22].

The text of each chapter is mainly that of the corresponding research publication

cited above. Although some publications were written in collaboration with my

co-authors, my contributions to the technical work were always primary, and my

contributions to the writing were substantial and infused throughout the entire text

of the articles. It is for this reason the text of the chapters closely resemble that of

the research publications.



CHAPTER II

Classicalization, a Higgsless alternative

2.1 Introduction and motivation

As explained in Chapter I, to find out how longitudinal WW -scattering is unita-

rized is the raison d’être for the LHC. If the LHC keeps delivering data at the present

rate we may know the ultimate fate of the most popular candidate, the Higgs boson,

very soon. With the 2012 LHC data, the SM Higgs would be either discovered or

conclusively excluded. As we discussed in Chapter I an elementary Higgs boson has

its own problems if it exists as one must then explain the hierarchy between its mass

and the cut-off scale. This suggests the existence of new TeV-scale physics even if

the Higgs boson exists. Thus, whether or not a Higgs exists, the standard argument

goes that that a Wisonian UV completion is required with new states needing to be

integrated in at the TeV scale.

A non-Wilsonian alternative has been proposed in Ref. [18]. For this the authors

have taken inspiration from the other major problem of high energy physics, that of

finding a UV-completion for quantum gravity. It has been argued in Refs. [18,23–26]

that in transplanckian 2→2 scattering in gravity there is no violation of perturbative

unitarity because of black hole formation. Black holes are classical objects that

decay to many particles and decays to two particles are suppressed leading to a

20
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suppression of the 2→2 scattering amplitudes. As we go to higher energies we get

larger black holes and the amplitudes are even more suppressed. In Refs. [18,23–26] it

has been proposed that formation of classical objects, called classicalons, is possible

in high energy scattering also in non-gravitational theories. This happens if there

is a bosonic field (the classicalizer field) which is sourced by derivatively coupled

operators that grow with energy. At high enough center of mass energy
√
ŝ, the

source leads to formation of classical configurations of the classicalizer field. As

the classicalon would in general decay into many particles, the usual problem of

perturbative unitarity violation in 2→2 scattering in non-renormalizable theories is

thus avoided without a usual Wilsonian UV completion.

In the case of WW -scattering the bosonic field can be the longitudinal goldstone

modes of the W . As is well known interactions involving these modes grow with en-

ergy so that an appropriate non-linear interaction can be used for self-sourcing these

modes. This way of unitarizing WW -scattering is thus arguably even more econom-

ical than having a single Higgs. As we will discuss in more detail later, around the

classicalization scale the classicalons should be thought of as a tower of quantum

resonances and only at energies much higher than this scale do they become truly

classical. Thus, whereas around the classicalization scale, such a theory would resem-

ble standard Wilsonian UV completions, like technicolor, with resonances appearing

at this scale, a theory with classicalization would be very different in the deep UV.

For instance, the inclusive cross-section in classicalizing theories would grow geomet-

rically as the squared classicalon radius, r2∗, at energies above the classicalization

scale, unlike any Wilsonian UV-completion where the cross-section eventually de-

creases with energy. Classicalization can have an application even if the Higgs boson

exists provided appropriate classicalizing interactions are also present. Classical con-
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figurations of the Higgs field itself, called Higgsions, can be sourced by the energy

of the other SM particles in high energy scattering. The classicalization scale where

Higgsion formation starts would then become the scale at which the loop contri-

butions to the Higgs mass get screened, thus solving the hierarchy problem. The

collider signals for these models would be the spectacular production of multiple W s

and Zs in the first case of goldstone classicalization and multi-Higgs final states from

Higgsion decays in the second case.

In this work we want to tackle the important question of classicalon decays. We

want to address questions like: How many particles does a classicalon decay to?

What is the energy distribution of these decay products? These questions are im-

portant for understanding both the theory and phenomenology of classicalons. From

the theoretical point of view, the most important feature for unitarization of the am-

plitudes is that a classicalon decays, in general, to many particles and decays to a few

particles are suppressed. Thus understanding classicalon decays is very important.

From the experimental point of view this is the important ingredient that will allow

us to make LHC predictions. This is because while the production cross-section can

be estimated from geometric arguments to be πr2∗, a collider analysis is impossible

without knowledge of the multiplicity of the classicalon decay products. We will ar-

gue, as was already pointed out in Ref. [25], that classicalons, like black holes, have

properties analogous to entropy and temperature and they decay thermally. This

will give us completely model independent predictions about how classicalons should

decay. Before giving the broad argument that tells us why classicalons should have

thermodynamic properties we will briefly describe how classicalization takes place.

We take the simple example of a massless scalar theory with a single non-linear,
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non-renormalizable interaction,

(2.1) L = ∂µφ∂
µφ+

(∂µφ∂µφ)2

M4
∗

.

A non-linear interaction of a similar form will be used for classicalization of longitu-

dinal W s and Zs later. We know that the non-renormalizable term (∂µφ∂µφ)2/M4
∗

above would become important at length scales smaller than the quantum length

cut-off, L∗ = 1/M∗. This term can actually become important at even larger length

scales, as shown in Refs. [18, 23], if φ takes a large classical value. An analysis in

Ref. [23] shows that this is precisely what happens in a scattering process with initial

energy bigger than the cut off, i.e.
√
ŝ > M∗.1 The authors solve classical equations

of motion to show that if we start with free spherical wave-packet φ0 there would be

a correction due to the non-linear term,

(2.2) φ = φ0 + φ1

that becomes important (i.e φ1 ∼ φ0) at a length scale,

(2.3) r∗ =

√
ŝ

α

M1+α
∗

where α (always ≤ 1) is a positive number that depends on the choice of non-linear

term, and is 1/3 in this example. We can see from the expression above that for
√
ŝ > M∗ we get r∗ > L∗ = 1/M∗ so that r∗ is in fact a classical length. At distances

smaller than r∗ the non-linear term becomes important leading to a formation of a

classical configuration of radius r∗. As is clear from Eq.(2.3) with increasing energy

the source due to the non-linear term becomes bigger and bigger in magnitude and

the radius r∗ of the classical object increases. This means that with higher energy

we do not probe shorter distances in these theories. Black holes are seen as a special
1For recent work on the dynamics of classicalization see Refs. [27, 28].
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Figure 2.1: (a) Different ways of forming classicalons. Any scattering process with 2,3 ... N initial
particles would form a classicalon if the total energy of these particles.

√
ŝ, is larger than M∗. (b)

We show the time reverse of the processes shown in Fig. 1 (a). By time reversal symmetry, all
these processes should also be allowed decays.

case of classicalization where r∗ is the Schwarzschild radius, M∗ is Mpl, the planck

mass, and α = 1. As shown in Ref. [18] the phenomenon is insensitive to higher

order terms in the Lagrangian as these operators give a smaller r∗.

We will now motivate why classicalons must have analogs of thermodynamic prop-

erties. One way to see how an effective notion of entropy can arise for a classicalon is

by noting that there are many ways of forming a classicalon. Any scattering process

with 2,3 ... N initial particles shown in Fig. 2.1(a) would form a classicalon if the

total energy of these particles,
√
ŝ, is larger than M∗. There is, however, an upper

limit on the number of initial particles. This is because we want the wavelength of

the particles λ to be smaller than r∗, so that the energy of the particles can be lo-

calized within the classicalon radius. Assuming massless quanta, the energy of each

particle, 1/λ, must be then at least 1/r∗. This puts an upper bound on the number
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N in Fig. 2.1(a) which is given by,

(2.4) Nmax ∼ M/(1/r∗) ∼ Mr∗.

where M is the mass of the classicalon. The only restriction on the initial state

is the conservation of energy and momentum and ensuring that all the energy of

the particles is localized inside the radius r∗. We expect from combinatorics that

there would be many more ways of distributing the required energy among many

particles than among a few particles, implying that there should be many more ways

of forming a classicalon with many particles in the initial state than with a few

particles. Assuming classical time reversal symmetry (t → −t) we can now argue

that the time reverse of each of the possible processes shown in Fig. 2.1(a) is an

allowed decay as shown in Fig. 2.1(b). Thus it follows that a classicalon would

in general decay to many particles just because of combinatorics. It is also true,

however, that just as a classicalon can be formed from two initial particles it can

also decay to only two particles but this would be combinatorially suppressed.

In this chapter we will find a quantitative formulation of the above picture which

will lead to an evaluation of the analogs of thermodynamic properties of a classicalon

like entropy and temperature and also a computation of the number of its decay

products. We will then use these results to make predictions for signals at the LHC.

As we will see, like black holes, classicalons decay to give high multiplicity final

states. Unlike black holes, however, the classicalons do not couple universally to

all SM particles. In particular, there is no direct coupling to light quarks so that

classicalons have a much lower production cross-section than black holes of the same

energy. For the same reason, classicalon production, unlike black hole, production is

not the dominant scattering process at energies above the classicalization scale with

other SM scattering processes having a higher cross section. In Section 2, we carry
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out the statistical mechanical analysis of classicalon decays and use the results we

find to make LHC predictions in Section 3. Finally we make concluding remarks in

Section 4.

2.2 Classicalon statistical mechanics

We will now describe a more precise formulation of the intuitive picture in Fig. 2.1

and obtain quantitative results. In theories that exhibit classicalization, in addition

to the free lagrangian there are non-linear self-sourcing terms which are important

only if the energy
√
ŝ gets localized in a radius r∗ given by Eq.(2.3). This leads to

the formation of a classical configuration of mass M =
√
ŝ which decays into many

particles.

We will assume that the only requirements for forming a classicalon are

• conservation of energy and momentum, that is,

|�k1|+ |�k2|....+ | �kN | = M(2.5)

�k1 + �k2....+ �kN = 0(2.6)

where ki are the four-momenta of the incoming particles,

• localization of the energy of the incoming particles inside the classical radius r∗.

As we will see later, the conservation of the 3-momentum does not lead to any con-

straint as it is automatically satisfied for N � 1. As the time reverse of every

classicalon formation process is a classicalon decay process, this implies that every

possible way of choosing a final state respecting the above conditions gives us an

allowed classicalon decay. We will think of the set of four momenta of the incom-

ing/outgoing particles in a particular formation/decay process of a classicalon of a

given mass, M , as a microstate. The combinatoric exercise of counting the number
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of ways of choosing these four vectors such that the energy adds up to the classicalon

mass would be very similar to the statistical mechanical analysis of ideal Bose gasses

or blackbody radiation. As we will see, however, unlike the case of an ideal gas or

blackbody radiation, the particles here are not in general represented by waves con-

fined to a box. The wave-packets must have a size and shape such that the second

condition is satisfied and this leads to a density of states function different from the

blackbody radiation case. The statistical mechanics of classicalons will thus be very

different from blackbody radiation resulting in different thermodynamic relations.

We will now see what the condition for localization of the energy inside the radius

r∗ tells us about the geometry of the incoming wave-packets.

2.2.1 Geometry of wave-packets

We will see in this section that in order to localize most of their energy inside

the classicalon radius, r∗, the incoming wave-packets in a classicalon formation pro-

cess (and thus the outgoing wave-packets in a classicalon decay process) can have

a longitudinal width at most of the order of r∗, but are allowed to have a much

bigger transverse length,
√
Nr∗, where N is the number of incoming particles. We

will consider a massless classicalizer field φ and discuss later how our results can be

generalized to the massive case. We will not have to take into account the effect of

the classicalizing interaction as we will assume that if the wave-packets are able to

localize their energy inside the radius r∗, in the absence of a classicalizing interaction,

they would form a classicalon in the presence of one.

We consider the formation of a classicalon from N incoming particles where

1 � N ≤ Nmax as shown in Fig. 2.2 (left), propagating freely such that they all

reach the origin at the same time, t = 0. As N � 1 we can think of these wave-

packets to be distributed approximately isotropically in all directions, giving rise to
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r∗

√
N r∗

                                                                                                
                                                                                               2

                           *r

√ N r*

Figure 2.2: Classicalon formation from many incoming wave-packets which superpose to give an
incoming spherically symmetric disturbance. We show the situation at t ≤ 0 (left) and at t = 0
(right) when the wave-packets reach the origin. We show that at the moment t = 0 when all the
wave-packets reach the origin, a field exists outside the classicalon radius because the wave-packets
have transverse length bigger than r∗. The field outside, however, drops off as φ ∼ 1/r so that
most of the energy is still localized inside r∗. As we discuss in the text, these wave-packets have
transverse length,

√
Nr∗ so that the φ ∼ 1/r tail exists as far as r =

√
Nr∗, that is, as far as the

dashed circle shown above.

a spherically symmetric incoming disturbance (for t < 0) when they are superposed

with each other. In Ref. [23] it has been discussed how classicalons can be formed

from the collapse of a spherical wave-packet of finite width. The spherical wave-

packet collapses according to the free wave equation when its radius r > r∗. As the

wave-packet collapses to a radius smaller than r∗, the non-linear classicalizing term

in the lagrangian becomes important and it does not allow the energy to be localized

at distances shorter than r∗. This leads to the formation of a classical configuration

of radius r∗ even if the original width of the wave-packet is much smaller. Clearly

the spherical wave-packet cannot have width bigger than the classicalon diameter

2r∗ otherwise its energy cannot be localized within the radius r∗ and a classicalon

would not be formed.

In our picture, such a spherical disturbance corresponds to a superposition of

many incoming ‘plane’ wave-packets of longitudinal width 2r∗ as shown in Fig. 2.2

(left). Hence we will take for each wave-packet the boundary conditions for modes
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confined in a one dimensional box of size 2r∗. For an incoming wave-packet with a

definite squared energy, ω2 = k2, we, therefore, take the following functional form in

the longitudinal coordinate l,

(2.7) φ(l) = sin k(l + r∗)

with the k quantized as,

(2.8) k = nπ/2r∗.

Here l is the longitudinal displacement from the center of the wave-packet and we

are not writing the time dependance. Note that the above function satisfies φ(l =

−r∗) = φ(l = r∗) = 0. As any function with compact support in the width of the

wave-packet can be decomposed as a superposition of the above modes, this means

that we are considering all possible wave-packet profiles which go to zero outside the

width of the wave-packet. In particular we are considering wave-packets with widths

smaller than 2r∗.

What about the transverse length of the wave-packets? In the transverse direction

the wave-packets can actually have a length much bigger than r∗. This leads to the

existence of a field outside the classicalon radius r∗ when the wave-packets superpose

at the origin at t = 0, as is clear from Fig. 2.2(right), but, as we show in Appendix A,

the field outside the classicalon radius drops off as φ ∼ 1/r so that most of the energy

is still inside the classicalon radius r∗. The 1/r behavior is expected because we are

superposing solutions of the free wave equation which becomes Poisson’s equation

in the static limit. For t > 0, the classicalon decays and it is clear that the field at

any point outside r∗ remains unchanged from its t = 0 value until the information of

the classicalon decay reaches it. Hence if there is a φ ∼ 1/r tail at t = 0, we expect

such a tail to remain at points outside the spherical wave-packet which it has not
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yet reached. Similarly there exists a φ ∼ 1/r tail outside the incoming wave-packets

for t < 0. The appearance of the φ ∼ 1/r tail outside the classicalon is interesting

because such a tail in fact exists in the static solutions discussed in Ref. [18]. It is

necessary because it leads to the flux of the gradient ∇φ that must exist because of

the source. We will show in Appendix A that φ ∼ Q/r, where Q =
√
N matches

with the ‘charge’ of the classicalizing source at the parametric level.

So far we have been assuming that the wave-packets are infinitely large in the

transverse direction. This would, however, create a problem unless we have a super-

position of an infinite number of wave-packets. This is because, as it is clear from

Fig. 2.2(right), if there are a finite number of wave-packets, at large distances the

wave-packets will not overlap anymore and thus we would not get the superposition

leading to the 1/r fall off of the field. For a finite number of wave-packets with

infinite transverse dimensions most of the energy of the wave-packets would be local-

ized at large distances where there is no overlap between the different wave-packets.

Thus our wave-packets must have large but finite transverse dimensions. We show

in Appendix A that the distance at which the wave-packets stop overlapping is given

by,

(2.9) L =
√
Nr∗.

Thus we see that the incoming/outgoing particles in a classicalon formation/decay

process, can be represented by wave-packets of size 2r∗ in the longitudinal direction

and size
√
Nr∗ in the transverse direction.

Before going into our quantitative derivations, we will describe what happens

qualitatively. At times t < 0 and distances from the origin much larger than r∗,

the wave-packets travel freely and the number of quanta is conserved. As the wave-

packets approach distances closer than r∗, the non-linear classicalizing term becomes
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important, the number of particles is no longer conserved and can increase or decrease

from the initial number. As we said earlier, we will think of the set of four-momenta in

a particular formation/decay process of a classicalon of a given radius as a microstate.

Whereas the initial number of particles and their momenta can be arranged to be

anything by us, we would expect the classicalon to decay to a number of particles and

with an energy distribution for the decay particles that corresponds to the maximum

number of microstates. We want to find this distribution function which corresponds

to maximum number of microstates. The first ingredient we need is the density of

states function.

2.2.2 Density of states function

We want to find out the density of states for the wave-packets we described, that

is the number of wave-packets of the kind described above that have energy in the

range ω to ω+dω. We will obtain such wave-packets by superposing free wave modes

confined in a box of volume V = L3 where L is given by Eq.(2.9). To get a wave-

packet with momentum �k and width 2r∗ we would have to superpose many waves

with momentum in the same direction as �k and magnitude around |�k|.2 For waves

confined in a box all values of (kx, ky, kz) are not allowed, instead only a lattice of

points in k-space is allowed. Another way of saying this is that in a shell in k-space

between the radii ω and ω + dω all possible directions are not allowed. We want to

find the number of states that lie within this shell. For the modes confined in the

box we know that the density of states is given by,

(2.10) g�kd
3k =

V

8π3
d3k.

2Note that this way of constructing our wave-packets ensures that any two wave-packets traveling in different
directions are linearly independent. The functional form in Eq.(2.7) ensures that two wave-packets in the same
direction, but with different ω = k, are also linearly independent.
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Going to spherical coordinates, d3k → 4πk2dk = 4πω2dω, this gives,

(2.11) gωdω =
V ω2

2π2
dω =

1

8π3
Ldω × L2(4πω2)

Up to factors of π the first term here is the number of box modes in a particular

direction having energy in the range ω to ω+ dω and the second term is the number

of allowed directions. As we are considering wave-packets of width 2r∗ and not L in

the longitudinal direction, the number of wave-packets in a particular direction with

energy in the range ω to ω + dω will be smaller by a factor 2r∗/L so that we get,

(2.12) gωdω =
1

8π3
(2r∗)dω × (

√
Nr∗)

2(4πω2) =
Nr3∗ω

2

π2
dω

where we have substitutes L from Eq.(2.9). One must also keep in mind that there

are no wave-packets with energy less than π/2r∗ (see Eq.(2.8)). It is useful to write

the density of states function also in cartesian coordinates,

(2.13) g�k d3k =
Nr3∗
4π3

d3k.

Note that the existence of the extra factor of N in Eqs.(2.12) and (2.13), as compared

to the case of a particle confined in a box, is crucial and leads to thermodynamic

relations for a classicalon different from ideal Bose gasses or blackbody radiation.

2.2.3 Number of N particle decays for 1 � N � Nmax

We want to count the number of ways a classicalon of mass M can decay to N

particles which is the same as the number of ways of forming a classicalon from N

particles. We want to show that the number of ways is higher for larger N , thus

proving that a classicalon prefers to decay to many particles. We will now evaluate

Γ(M,N), the number of ways in which N incoming particles, where 1 � N � Nmax,

can form a classicalon of a given mass, M . Note that for our derivation here we will
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assume that in each energy state there is at most one particle which is a very good

approximation for N � Nmax. The total number of ways of forming a classicalon

would be,

(2.14) Ω(M) =
Nmax�

N=2

Γ(M,N).

We try to find all possible set of four vectors of the N outgoing wave-packets with

the only constraint that energy and momentum are conserved,

|�k1|+ |�k2|....+ | �kN | = M(2.15)

�k1 + �k2....+ �kN = 0(2.16)

For large N , the momentum conservation constraint is not important simply because

the sum �k1 + �k2.... + �kN−1 is completely unconstrained as we can always fix �kN to

ensure that the sum �k1 + �k2.... + �kN = 0. For N � 1, | �kN |, which is the energy

of a single particle is negligible compared to M , so that the two conditions above

can be reduced to a single energy conservation condition |�k1|+ |�k2|....+ | �kN−1| = M

on the N − 1 particles. For large N , however we can always replace N − 1 by N .

Using Eq.(2.13) we thus get the following phase space integral with only the energy

conservation constraint,

(2.17) Γ(M,N) =
((N/4)(r∗/π)3)N

N !

�
d3k1d

3k2...d
3kNδ(|�k1|+ |�k2|..+ | �kN | = M).

The N ! in the denominator appears because the particles are indistinguishable and

all possible permutations result in the same state. The integral above is a well-known

integral in statistical mechanics that appears in the evaluation of entropy of an ideal

ultra-relativistic gas. For N � 1, the result is (see for instance Pg. 153 of Ref. [29]),

(2.18) Γ(M,N) =
2N(

√
3)3NNN(r∗M/π)3N

N !(3N)!
=

2N(
√
3)3NNNN3N

max

π3NN !(3N)!
.
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It is easy to check that Γ(M,N) is an increasing function of N , which shows that a

classicalon would prefer to decay to many particles and not a few.

2.2.4 Classicalons as Bose-Einstein systems

In this subsection we will try to find the most probable energy distribution of the

particles a classicalon decays to. In other words we will try to find the distribution

with the maximum number of microstates, Ω̃(M). As is usually assumed in statistical

mechanics we will assume that the total number of ways of forming the classicalon,

Ω(M) in Eq.(2.14), is approximately equal to the total number of ways of forming

the most probable distribution, that is,

(2.19) Ω(M) ≈ Ω̃(M).

Parts of the discussion here will be very similar to the standard derivation of the Bose-

Einstein distribution for a massless system although the density of states function

here is different.

We want to find the most probable value of Nω, the number of particles in the

energy state with energy ω. In the continuum limit, Nω becomes N(ω), the distri-

bution function. As explained in the previous subsection, the only constraint is the

energy conservation constraint in Eq.(2.15) which we rewrite as,

(2.20)
�

ω

Nωgωω dω = M.

We first need to find Ω(M), the number of ways of choosing the four momenta of

the decaying particles while satisfying the constraint in Eq.(2.20). As we review in

Appendix B, this is given by the well known expression,

(2.21) Ω(M) = Πω
(Nω + gω)!

Nω!gω!



35

We can define the entropy of the system as,

(2.22) S = log(Ω(M)).

We want to maximize S respecting the constraints in Eq.(2.20). As shown in Ap-

pendix B, using the method of Langrange multipliers, this leads to the Bose-Einstein

distribution,

(2.23) Nω =
gω

eβω − 1
.

Here β is the Lagrange multiplier related to the constraint in Eq.(2.20) and effectively

plays the role of inverse temperature. To obtain β and the number of particles in

the most probable distribution, N∗, we now go to the continuum limit replacing the

summations above by integrals and solve the equations,

N∗ =

�

ω=π/2r∗

g(ω)dω =
N∗r3∗
π2

�

ω=π/2r∗

ω2dω

eβω − 1
(2.24)

M =

�

ω=π/2r∗

ωg(ω)dω =
N∗r3∗
π2

�

ω=π/2r∗

ω3dω

eβω − 1
.(2.25)

Note that the lower limit in the integral is not zero but the minimum allowed fre-

quency for our wave-packets π/2r∗ (see Eq.(2.8)). To obtain β make the substitutions

βω = x in Eq.(2.24) to obtain,

(2.26)

�

x=βπ/2r∗

x2dx

ex − 1
= (1/π)(βπ/r∗)

3.

Both the LHS and RHS of the above equation depend on βπ/r∗. While the RHS

obviously increases with βπ/r∗ the integral in the LHS decreases as the lower limit is

raised so it decreases with βπ/r∗ and we find a unique solution at βπ/r∗ ≈ 1.9. The

precise numerical coefficients should not be taken seriously and only the parametric

relationships are important. We get,

(2.27) β ∼ r∗ ⇒ T ∼ 1

r∗
.
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Now to find N∗ we use Eq.(2.25), again substituting βω = x, to get,

(2.28)
N∗r3∗
π2

β−4

�

x=βπ/2r∗

x3dx

ex − 1
= M.

Now substituting the solution of Eq.(2.26), β ∼ r∗, we get,

(2.29) N∗ ∼ Mr∗ ∼ Nmax.

The above expression shows that the typical energy of a quanta is M/N∗ ∼ 1/r∗,

so that the typical wavelength is r∗. This is what we expect from the dynamics

of classicalization as r∗ is the length scale at which classicalization takes place [25].

Now we can also evaluate the entropy,

S =

�
βdM ∼

�
r∗dM ∼

�
M α

M1+α
∗

dM ∼
�
M

M∗

�1+α

∼ Mr∗

⇒ S ∼ N∗ ∼ Nmax(2.30)

where we have substituted r∗ using Eq.(2.3) taking
√
ŝ = M . Thus we have found

that the classicalon decays to the maximum number of particles it can, Nmax, with

a blackbody spectrum having T ∼ 1/r∗. We see that the total number of decays is

Ω(M) = eS, so that probability of decays to a few particles, which is a small number

compared to eS, would be exponentially suppressed,

(2.31) P (Classicalon → few) ∼ 1

Ω(M)
∼ e−S ∼ e−N∗ .

in accordance with Ref [25] .

We now consider the special case of a black hole for which α = 1, M∗ = Mpl

and r∗ is the Schwarzschild radius. As a black hole does not decay classically, the

above analysis for the distribution of the decay products cannot be applied to a

black hole. As argued in Ref. [25], however, classicalization is the first step to the

formation of a black hole and this takes place before the horizon emerges. Thus
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our calculation of the entropy which is basically a counting of the number of ways

in which a classicalon can be formed should give us the correct black hole entropy.

Indeed, we find for α = 1,

(2.32) S ∼ N∗ ∼ Mr∗ ∼ M2
plr

2
∗

in agreement with the Bekenstein-Hawking formula.

We want to emphasize that obtaining the parametric relationships above is far

from assured based only on dimensional grounds. For instance if we had taken wave-

packets of size 2r∗ in both the longitudinal and transverse directions we would have

found the usual density of states for an ideal gas, g(ω)dω ∼ r3∗ω
2dω without the

factor N . This would lead to the usual relationships M ∼ r3∗T
4 and S ∼ r3∗T

3

for blackbody radiation. The fact that the wave-packets are of size
√
Nr∗ in the

transverse direction is thus crucial in obtaining the final result we have derived. As

we discussed earlier in Section 2.2.1 (and show in detail in Appendix A) a transverse

length much greater than r∗ is in fact necessary for generating the φ ∼ 1/r tail of

the field outside the classicalon.

We want to mention some modifications that we will make in our expressions

before using them for experimental predictions The first issue is regarding the lower

limit ω = π/2r∗ in the integrals. It is not true that energies smaller than ω = π/2r∗,

or larger wavelengths, λ � r∗, are not present. This is because the distribution func-

tion we have derived is for wave-packets of size of the order of r∗ in the longitudinal

direction. A detector, however, would detect plane waves much larger in size and the

wave-packets of size r∗ are themselves composed of plane waves of much have larger

wavelengths. Note that this does not have any effect on the distribution function

for higher energies (smaller wavelengths). We will not attempt to find the correct

distribution at lower energies (longer wavelengths) as our assumption that the dis-
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tribution function suddenly drops to zero for wave-packets with width larger than r∗

is a simplifying approximation and is not accurate. It is reasonable to expect that

a more precise analysis would yield the Planck distribution over the whole energy

range. Even in this case the lower frequencies would be suppressed due to the phase

space factor ω2dω. Therefore from here onwards we will get rid off the lower limit

ω = π/2r∗ in the integrals and take the lower limit to be the lowest kinematically

allowed value, ω = m, m being the mass of the φ-quanta. We need to make a sec-

ond modification because we have been assuming so far, a classicalizer field that is

massless, whereas it is massive in the models we are going to consider. While deriv-

ing our density of states function we made in Eqs.(2.11) and (2.12) the substitution

k2dk = ω2dω which assumes that the φ-quanta are massless. Using k2 = (ω2 −m2)

instead, m being the mass, we get the correct density of states expression in the

massive case,

(2.33) g(ω)dω ∼ Nr3∗k
2dk ∼ Nr3∗ω

√
ω2 −m2 dω.

Finally, in order to make experimental predictions, we will fix the unknown numerical

coefficients in the parametric form of the density of states function above by using

the black hole example where the exact expressions are well known. We will describe

this in more detail in the next section.

2.3 Classicalons at the LHC

Now that we know how to compute the number of decay products in a classicalon

decay, we are ready to perform a collider study of classicalization in the phenomeno-

logical models introduced in the Section 2.1. Along with the decay multiplicity

expression, the other important fact that we will use for our study is that classicalon

production has a geometric cross-section πr2∗. The two models we are going to con-
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sider are the classicalization of longitudinal W s and Zs and the classicalization of

Higgs bosons. The LHC signal would be multi-W/Z production in the first case and

multi-Higgs production in the second case. As in the case of black hole production in

TeV-scale quantum gravity models [30–33], this would finally lead to production of

leptons and many jets. Unlike black holes, though, classicalon production would not

be a universal phenomenon in hard scattering processes at energies above the cut-off

scale.3 This is because the light quarks and gluons would not have a strong coupling

to the classicalon in both the cases we will consider. This is the main difference of

classicalization signals from black hole signals. Thus even at energies higher than the

classicalization scale, normal SM 2 → 2 hard scattering processes would continue in

other channels with cross-sections larger than classicalon production. Another result

of the absence of any direct coupling between classicalons and light quarks or gluons

is that classicalon production would have a much smaller cross-section compared to

black hole production at the same scale, so that classicalons would be harder to

discover/exclude at colliders.

Before going into the details, there is a caveat that must be emphasized. The phe-

nomenon of classicalization is well understood only for energies much higher than the

classicalization scale. In particular the quantitative expressions that we will use, for

instance, the expressions for the radius, cross-section and decay multiplicity, strictly

hold only in the limit of large number of quanta, i.e. for N∗ � 1 or equivalently for

energies much higher than the cut-off,
√
ŝ � M∗. This is the classical limit as well as

the thermodynamic limit where our statistical assumptions are true. As the energies

accessible at the LHC are not so high, we will be forced to consider processes where
3In gravitational high energy scattering above the Planck scale, black hole formation is expected for impact

parameters smaller than the Schwarzschild radius or equivalently for large scattering angles. For impact parameters
much larger than the Schwarzschild radius and transplanckian energies elastic 2→2 scattering should take place
which is well described by the eikonal approximation (t/s � 1) [34,35].
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N∗ ∼ 6. Many would consider these energies to be still part of the ‘quantum regime’

around the classicalization scale. The same problem exists in collider analyses of

black hole formation and decays in TeV-scale quantum gravity scenarios [36]. Black

holes can be reliably tackled by theory only at energies much higher than the Planck

scale. In the regime around the classicalization (Planck) scale, it is more appropriate

to think of classicalons (black holes) as a tower of quantum resonances than as clas-

sical objects [37]. There is, however, no theoretical model for this quantum regime

that can be used to make reliable experimental predictions. Thus in the absence of

a better alternative the only choice we have is to use the expressions for the clas-

sical regime, as has been done in studies of black holes so far. We will, however,

incorporate in our analysis the fact that classicalon masses are quantized.

2.3.1 Classicalization of longitudinal W s and Zs

As is well known, in the absence of the Higgs boson the scattering of the longitu-

dinal components of W and Z bosons violates tree-level unitarity at energies of the

order of a TeV [4]. In Ref. [18] it was proposed that classicalization can unitarize

these amplitudes. In this proposal the longitudinal (goldstone) modes of the vector

bosons classicalize and form a configuration of W s and Zs that finally decay into

many W s and Zs.

For our anlysis we will take the classicalizing interaction proposed in Ref. [18],

(2.34)
c

2
(Tr

�
DµUDµU

†�)2

where U is the SU(2) matrix exp(iπaτa/v) containing the goldstones πa. Here v = 246

GeV is the Higgs vacuum expectation value (VEV) and τa are the Pauli matrices.

The covariant derivative above is defined as follows,

(2.35) DµU = ∂µU + ig
τa
2
W aU − ig�UBY

τ3
2
.
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When expanded the operator in Eq.(2.35) gives the following classicalizing interac-

tion,

(2.36)
c

v4
(∂µχa∂

µχa)2

For this particular operator the classicalon radius is given by [18,23],

(2.37) r∗ ∼ c1/3
M1/3

v4/3
∼ M1/3

M4/3
∗

,

where, M∗ = v/c1/4, is the classicalizing scale. Note that the above relationship

is valid only until r∗ reaches the Compton wavelength of the Z-boson, 1/mZ . Be-

yond this point the radius would freeze at the value 1/mZ [18]. The experimental

constraints on the coupling c come from electroweak precision measurements. Only

the T parameter gets a contribution from this operator and the other electroweak

parameters (the S parameter and the six electroweak parameters U -Z as defined in

Ref. [38] for instance) get no contribution. The contribution to the T parameter is

given by [39],

(2.38) ∆T =
−c

4π2αem

�
3g2g�2

2
+

3g�4

4

�
log

M∗
mZ

.

As c = (v/M∗)4, we see that the ∆T contribution is small for M∗ � 500 GeV. For

M∗ = 246 GeV the contribution is appreciable and, as we are considering a higgs-

less theory, we see that a negative c is preferred. From Eq.(2.38) we see that for

c = −1(and hence M∗ = v) we get ∆T = 0.3 which is acceptable in a higgsless the-

ory. For higher values of M∗ the contribution to ∆T would be much smaller. There

would, however, be additional contributions to electroweak precision observables from

the quantum resonances that exist in such a theory around the classicalizing scale,

M∗. These contributions are unfortunately not calculable without a knowledge of
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the precise dynamics at the classicalizing scale. All we can do is make the gen-

eral statement that a higher classicalization scale will mean smaller contributions to

electroweak precision observables from these resonances.

We will absorb the unknown numerical coefficient in Eq.(2.37) in a redefinition of

the coupling c to obtain,

(2.39) r∗ = c1/3
M1/3

v4/3
=

M1/3

M4/3
∗

.

Note that the classicalization scale, M∗ = v/c1/4, cannot be much higher than the

TeV scale as WW -scattering needs to be unitarized before these energies are reached.

We will make computations for the three choices of the classicalization scale, M∗ =

246 GeV, M∗ = 600 GeV and M∗ = 1 TeV.

Multiplicity of gauge bosons in the final state

We want to find the total number of W/Zs a classicalon of a given mass, M , would

finally decay into. We are not allowed to use the massless limit of the expressions

we derived (Eqs.(2.24) and (2.25)) in this case. One way of seeing that the massless

approximation is not valid here is that the expression for multiplicity in the massless

limit would give us multiplicity greater than the kinematic bound M/mW/Z . The

reason we need to consider the mass is that, in this case, the kinetic energy k ∼ 1/r∗

does not dominate the energy of the individual quanta as the mass of the quanta is

comparable, that is mW/Z ∼ 1/r∗. This is in turn because of the small separation

between the mass mW/Z and the classicalization scale M∗ = v/c1/4. Thus we use the

the density of states for the massive case given previously in Eq.(5.39),

(2.40) g(ω)dω = γN∗r
3
∗ω

√
ω2 −m2dω,

where γ is an unknown numerical coefficient that we will fix by demanding that we

get the exact result in the black hole case. We will not consider here the effects of
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the difference in W and Z mass which is small compared to the classicalon mass.

To be conservative we will take the mass of all the quanta forming the classicalon,

m = 91.2 GeV the Z-mass. We find the number of decay particles by solving for β

and N∗, the Eqs.(2.24) and (2.25) but with the modified density of states function

in Eq.(5.39) and a different lower limit,

γN∗r
3
∗

� M

m

ω
√
ω2 −m2dω

eβω − 1
= N∗(2.41)

γN∗r
3
∗

� M

m

ω2
√
ω2 −m2dω

eβω − 1
= M.(2.42)

We have explained at the end of Section 2.2.4 why the lower limit in the integrations

above has been changed from the lower limit in Eqs.(2.24) and (2.25). We fix the

factor γ above by requiring that for m = 0 we get from Eq.(2.41), the exact black

hole result,

(2.43) β−1 = T =
1

4πr∗
.

This gives4,

(2.44) γ =
(4π)3

2ζ(3)
≈ 825,

where ζ(n) is the Riemann zeta function.

The results of our evaluation are shown in Table 2.1 and Fig. 2.4 (left) for our three

choices, M∗ = 246 GeV, M∗ = 600 GeV and M∗ = 1 TeV. We see that instead of the

dependence N∗ ∼ Mr∗ ∼ M 4/3 expected in the massless limit, we find an almost

linear dependence N∗ ∼ M (the dependence is not exactly linear as can be seen from

the values in Table 2.1). For comparison we also show the N∗ vs M dependence for

extra-dimensional black holes in Fig. 2.4 (left). We have used the expression for N∗
4Note that the analytical expression strictly holds only in the limit that the upper limit (after the substitution

βω = x) of the integration in Eq.(?2.41) , βM → ∞. We, however, find it to be a very good approximation in the
examples we consider.
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Figure 2.3: In the model of classicalization of longitudinal W s and Zs we show the number of
quanta N∗ as a function of the classicalon mass M in the figure on the left. In the figure on the
left, we also show the N∗ vs M curves for some black hole examples. Classicalon states exist only
at the points where values of N are integers. In the figure on the right, we show the typical energy,
M/2N∗, of a lepton or parton emerging from one of the W/Zs produced in the classicalon decay,
in the rest frame of the classicalon.

in Ref. [33],

(2.45) NBH
∗ =

2
√
π

n+ 1

�
M

Mpl

�n+2
n+1

�
8Γ(n+3

2 )

n+ 2

� 1
n+1

.

Here n is the number of extra dimensions and Mpl is the fundamental Planck scale in

the 4+n dimensional space-time. We have taken n = 2, 3 and Mpl = 400 GeV. Note

that the value Mpl = 400 GeV has been chosen close to the classicalization scale only

for comparison and such low values of Mpl have already been ruled out [40]. Higher

values of Mpl will give much lower N∗ values. As one can see in the figure, for the

n = 2 case, the N∗ vs M curve is clearly not linear whereas for the n = 3 case the

non-linearity due to the N∗ ∼ M
n+2
n+1 dependence is not noticeable. As n is increased

(note that larger n values are preferred because of astrophysical bounds [41]) the

curve would become more and more linear and N∗ would decrease. Note that whereas

N∗ is the final decay multiplicity in the case of black holes, in the case of classicalons

the multiplicity of final decay products is actually bigger than (about twice) N∗,

because N∗ is just the number of the primary decay products, the W s and Zs, which

decay further giving rise to more leptons and jets. Keeping this in mind one can

from see from Fig. 2.4 (left) that the multiplicity of final decay products is larger
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Figure 2.4: In the model of classicalization of longitudinal W s and Zs we also show the branching
fractions for a neutral classicalon (top left) and for classicalons with electric charge, Q = ±2 (top
right/bottom left). In the figure on the bottom right, we show the classicalon branching ratio to nl

leptons for a neutral classicalon. In the decay channels shown above we require exactly (and not at
least) the number of leptons mentioned.

for these classicalons when compared to black holes of the same mass even for such

small values of n and Mpl as n = 2 and Mpl = 400 GeV. In the figure on the right,

we show the typical energy, M/2N∗, of a lepton or partonic jet emerging from one

of the W/Zs produced in the classicalon decay, in the rest frame of the classicalon.

An experimental measurement of the typical energy would tell us about the N∗ vs

M dependance for the classicalon. We will discuss this measurement in more detail

later.

It is important to note that classicalons must have a discrete mass spectrum as

was shown in Ref. [37]. The allowed masses are precisely the points marked in Fig. 2.4

(left), that is masses that give an integer value for N∗. At intermediate energies in

between two allowed masses, a classicalon with a lower mass would be formed along
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with some SM particle(s) [37] that carries the rest of the energy and momentum. We

will assume in our analysis that at these intermediate energies the closest classicalon

with a lower mass, say MN∗ , is formed with the cross-section πr2∗(MN∗). As the

spacing between the masses that we have found is greater than the Z-mass, the

additional SM particle emitted can even be a W/Z boson. This would mean that

we may be able to get (N∗ + 1) W/Zs in the final state even at energies lower than

MN∗+1. We will avoid this complication as by ignoring this effect, which enhances

the signal, we are only being conservative.

Branching ratios

In order to derive the classicalon branching ratio to a particular number of W+,

W− and Zs, we will assume that a classicalon decays democratically and randomly to

the three Goldstone components π+, π− and π3, the only constraint being electrical

charge conservation. By the Goldstone boson equivalence principle, we will thus

get in the unitary gauge a number of longitudinal W+, W− and Zs equal to the

number of π+, π− and π3s in the final state. Thus the unnormalized probability of a

particular N∗-particle classicalon composition with number of W+ bosons equal to

NW+ , number of W− bosons equal to NW− and number of Z bosons equal to NZ ,

must be proportional to the number of possible ways of exchanging the identical

particles amongst themselves to give the same final state, that is,

(2.46) P �(NW+ , NW− , NZ) =
N∗!

NW+ !NW− !NZ !
.

So for instance for a neutral classicalon with energy and radius such that we get

N∗ = 5 using Eqs.(2.41) and (2.42), the possible compositions are: ZW+W−W+W−,

ZZZW+W− and ZZZZZ. Computing probabilities as described above we get for
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these different possibilities,

P �(ZW+W−W+W−) =
5!

2!2!1!

P �(ZZZW+W−) =
5!

1!1!3!

P �(ZZZZZ) =
5!

0!0!5!
.(2.47)

Finally these probabilities must be normalized,

(2.48) P (NW+ , NW− , NZ) =
P �(NW+ , NW− , NZ)�
P �(NW+ , NW− , NZ)

.

The sum in the above equation runs over all NW+ , NW− and NZ respecting NW+ +

NW−+NZ = N∗ and NW+−NW− = Q, Q being the electric charge of the classicalon.

To find the branching fraction to leptons, jets and missing energy that the Ws/Zs

decay to, we need to consider still more combinatoric possibilities. We discuss this in

detail in Appendix C, where we provide expressions for the branching ratio to final

states with varying number of leptons.

In Fig. 2.4 we show the branching ratio of classicalons with charge, +2, 0 and

−2. Note that the branching ratio for decay channels with higher number of leptons

rise with N∗ whereas the branching ratio of the single lepton channel falls. This is

so because classicalons with higher N∗ decay to more leptons. This is clear from

Fig. 2.4 (bottom right) where we show the classicalon branching ratio to nl leptons.

We see that an N∗-particle classicalon decays with maximum branching ratio to

nl ∼ N∗/5 leptons. Note that the branching ratios in Fig. 2.4 have been computed

at the theoretical level and do not include any experimental effects.

Signals at the LHC

At the LHC these classicalons can be produced in the vector boson fusion (VBF)

process, pp → jj(WLWL → Cl) (see Fig. 2.5). To compute the cross section for
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Figure 2.5: Production of a classicalon by weak boson fusion in the model with goldstone classical-
ization.

their production we use the effective W approximation. In this approximation the

luminosity of longitudinal W bosons is given by [42],

(2.49)
dL

dτ
=

�
g2

16π2

�2 1

τ
[(1 + τ) ln(1/τ) + 2(τ − 1)]

where τ = ŝ/sq is the ratio of the squared center of mass energy of the W -pair, ŝ,

to the squared center of mass energy of the initial quarks, sq. The cross-section for

production of an N∗-particle classicalon is found by convoluting the geometric cross-

section with this luminosity function and the parton density functions as follows,

(2.50) σN =
�

ij

� M2
N∗+1/s

M2
N∗/s

dτ πr2∗(MN∗)

� 1

τ

dτ �

τ �

� 1

τ �

dx

x
fi(x, q

2)fj(τ
�/x, q2)

dL

dξ

where now τ = ŝ/s, s being the proton-proton center of mass energy squared,

τ � = sq/s and ξ = τ/τ �. We have taken the factorization scale q2 = m2
W . As we

stated already, we have assumed that for energies MN∗ < ŝ < MN∗+1, an N∗-particle

classicalon is formed along with other SM particles with a cross-section πr2∗(MN).

For our computations we have used the MSTW parton density functions (PDF) [43].

In the summation above both i and j run over all positively charged quarks for

W+W+ fusion which leads to production of classicalons with charge +2, and run

over all negatively charged quarks for W−W− fusion which leads to production of
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classicalons with charge −2. For production of neutral clasicalons from W+W− fu-

sion i and j run over quarks with opposite electric charge. As we are considering

only W± in the initial state, the classicalons produced can have charge only −2, 0

and +2. The contribution of initial states with a Z boson has been neglected here

as the Z boson luminosity is much smaller compared to the W boson luminosity.

For instance, the ZZ luminosity is an order of magnitude smaller than the W+W−

luminosity [42].

The final states that would be seen in colliders are leptons plus multijets and

missing energy. We will provide cross-sections for the final states, l+ �ET + jets,

l+l++ �ET + jets, 3l+ �ET + jets and 3l++ �ET + jets where l can be an electron,

muon or leptonically decaying τ and we consider hadronically decaying τs as jets.

In the final states above we require exactly (and not at least) the number of leptons

mentioned. While the l+ �ET + jets channel would be the discovery mode with

the highest cross-section a simultaneous observation of a signal in the other more

striking channels, l+l++ �ET +jets, 3l+ �ET +jets and 3l++ �ET +jets, would provide

confirmation that the phenomenon is indeed classicalization. The fact that missing

energy must be present in these channels is an important difference from the black

hole case where the probability of neutrino emission is small (< 5%) and one can

have final states with leptons and jets but no missing energy (this is the final state

discussed in Ref. [33] for instance). As we said earlier, when we go to higher N∗

values channels with even more leptons will become important.

The production cross-section for classicalons, however, decreases as N∗ increases

because of the falling longitudinal W luminosity in Eq.(2.50).5 We will, therefore,not

study channels with larger number of leptons. The production cross-section for
5As we will soon see, another issue for channels with greater number of leptons is that there is a greater reduction

in cross-section for these channels when experimental requirements like lepton isolation are taken into account.
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classicalons is given in Table 2.1 for M∗ = 246 GeV and M∗ = 600 GeV and LHC

energies 7 and 14 TeV. We have provided contributions only for N∗ ≥ 6.6 Using the

branching ratios evaluated in the previous section, we give in Table 2.1 the cross-

sections of the four channels, l, l+l+, 3l and 3l+, that we are interested in. For the

3l channel there are two different ways in which three leptons can be produced, from

three W s or from the decay of a W and Z. In Table 2.1 we provide the individual

contribution from both these channels as these two modes can be experimentally

distinguished by checking if a lepton pair reconstructs the Z-mass. Also, the number

of partonic jets is higher for the WZ → 3l mode than the 3W → 3l mode. The

number of partonic jets in an event is maximum if all the Zs that do not decay

leptonically, decay hadronically (and not invisibly) and all the W s decay to quarks

pairs and not to τ -jets. In Table 2.1 we have given in square brackets for N∗ = 6

and N∗ = 7, the cross-section values assuming the maximum possible number of jets

are produced. As one can see from these values for N∗ = 6 and N∗ = 7 about half of

the time the classicalon does decay to the maximum number of jets possible.

The number of jets produced is very large and this ensures that the background

is negligible. Including the two forward jets produced in the WBF process, for

N∗ = 6(10) as many as 12 (20) partonic jets in the single lepton channel, 10 (18)

partonic jets in the l+l+ and 3l channels, and 8 (16) partonic jets in the 3l+ channel,

can be produced. In Fig. 5.6 we add up contribution from classicalons with N∗ ≥ 6

and show the inclusive cross-section for l plus at least 12 partonic jets, l+l+ plus at

least 10 partonic jets, 3l plus at least 10 partonic jets and the cross-section for the

3l++ �ET + jets channel. We do not require a minimum number of jets in the last

6The energy regime close to the classicalization scale that we have not considered, that is
√
ŝ ∼ M∗ and N < 6,

would phenomenologically resemble strong electroweak symmetry breaking (EWSB) theories like technicolor with
the appearance of quantum resonances at this scale. Final states with as many as five final W/Zs have already been
mentioned in the literature as signatures for strong EWSB [44].
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case as the background is absent even without this requirement.7 Whereas the 3l+

channel is virtually background free (the background cross-section is of the order of

0.01 fb at 14 TeV LHC [45]) the other channels also have negligible background if we

require so many jets. The l+ �ET + jets background gets its major contribution from

the tt̄+ jets production and for more than 10 jets the background, with appropriate

cuts, is negligible [46]. The l+l++ �ET + jets background has been discussed in detail

in Ref. [47] and Ref. [48] and again cuts can be applied to reduce this background

to a negligible value for high jet multiplicities (8 or more jets). As all the major SM

processes that contribute 3l+ �ET + jets background, like the WZ + jets process,

would also contribute to the single lepton channel, if the l+ �ET + jets background

is negligible, this background can also be neglected at high jet multiplicities.

It should be noted that the cross-section values in Table 2.1 and Fig. 5.6 do not

include any effect of parton showering, experimental cuts or detector acceptances.

Let us discuss the important experimental effects not taken into account here. The

experimental cut that is expected to have a substantial effect in the presence of

so many jets is the requirement for lepton isolation. For instance if we consider

15 partonic jets having a cone radius ∆R =
�

∆η2 +∆φ2 = 0.4, we can roughly

estimate the fraction of times an isotropically emitted lepton would remain isolated

by finding the fraction of area of in η − φ space that is still unoccupied by the

jets assuming conservatively that the jets do not overlap. To take into account

the fact that the leptons and jets are produced centrally we limit their η-range to

−1.5 < η < 1.5, which gives a total allowed area ∆η∆φ = 6π. This estimate gives

us about 60% probability that a lepton would be isolated for 15 non-overlapping
7For evaluation of the exclusive contribution to the cross-section of l + 12 jets from N∗ = 6 classicalon decays,

l+l+ + 10 jets from N∗ = 6 classicalon decays, (WZ → 3l) + 10 jets from N∗ = 6 classicalon decays and (3W →
3l) + 10 jets from N∗ = 7 classicalon decays we have to use the cross-section values allowing no invisible decays of
the Z boson and no tau decays of W bosons, as such decays would lead to fewer jets than the required number.
Decay of two or more Zs invisibly is relatively unlikely and has been ignored here.
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Figure 2.6: Cross-section for production of a lepton plus at least 12 partonic jets, two same sign
leptons plus at least 10 partonic jets, three leptons plus at least 10 partonic jets and for three same
sign leptons from the decay of classicalons formed by longitudinal W s and Zs. Missing transverse
energy is present in all the cases mentioned above and the number of leptons mentioned in each case
is the exact number of leptons in the final state. Note that the number of jets mentioned above
is at the partonic level and no effect of showering, hadronization, experimental cuts or detector
acceptances has been included here. For a discussion of these effects see the text.

jets. It should also be kept in mind that that the lepton identification rate is about

90% [49]. Thus, this estimate tells us, due to the requirement of all the leptons

being isolated and getting identified, the cross-section would be reduced to about

54% of the theoretical value in the l+ �ET + jets channel, to about 29% of the

theoretical value in the l+l++ �ET + jets channel and to about 16% of the theoretical

value in the channels with three leptons. At the same time, the 3l ( l+l+) channel

would contribute about 35%(50%) of the time to the single lepton channel when not

all but only two (one) of the leptons are lost due to lepton isolation/identification

requirements. A similar contribution from the 3l channel to the l+l+ channel would

be relatively small. As the leptons are produced isotropically, pT and η cuts are not

expected to have a big effect. Now we come to the experimental cuts related to the
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jets. A limitation of our analysis that it has been carried out at the partonic level

only. Whereas the number of jets would increase from the number at the partonic

level because of parton showering, other experimental effects like pT and η cuts and

most importantly the jet isolation cut requiring a minimum ∆R separation between

any two jets, would decrease the number of jets from the partonic level. The ∆R cut

is important because if the number of jets is very large and it is likely for two or more

partonic jets to merge thus reducing the number of jets experimentally observed. The

number of jets produced in a classicalon decay is so large, however, that even after a

possible reduction due to the above factors we would expect many jets. Finally, an

experimental cut requiring a minimum missing transverse energy should not reduce

the signal cross-section appreciably.

Keeping these issues in mind we see from Fig. 5.6 that whereas for M∗ = 246

GeV, classicalization should be seen in the l+ �ET + jets channel (with hints seen

in the other channels also) in the present run of the LHC with about 10 fb−1 data,

a thorough confirmation with observation in all the channels would require data at

14 TeV. On the other hand for M∗ = 600 GeV about 10 fb−1 data at 14 TeV would

be needed for both discovery and confirmation in the different channels. The cross-

section for M∗ = 1 TeV is about ten times smaller than that for M∗ = 600 GeV and

this is the maximum classicalization scale that can be probed with about 100 fb−1

LHC data at 14 TeV.

Another important measurement would be the dependence of N∗ on the total

energy of the decay products shown in Fig. 2.4 (left). It is theoretically equivalent

to measure the average energy of a lepton/partonic jet, M/(2N∗), in the classicalon

rest frame8 as a function of the total invariant mass. Experimentally, however, the
8The typical energy measured in the lab frame would not be so different from the typical energy in the classicalon

rest frame because we expect, as is the case in black hole production [32], that the classicalons produced would not
be highly boosted.
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average energy of a lepton/partonic jet is a more tractable quantity than the total

multiplicity as it is not affected even if there is missing energy. We plot the average

energy of a lepton/partonic jet as a function of the mass in Fig. 2.4 (right). We see

that the average energy decreases very gradually. As far as leptons are concerned it

should be straightforward to measure the typical energy. An interesting feature to be

checked would be that the typical lepton energy should be same in all the different

channels l+ �ET +jets, l+l+ �ET +jets, 3l+ �ET +jets and 3l++ �ET +jets. To find the

typical energy of a jet in an event as a function of the total energy and confirming

that this is same as the typical lepton energy would be much more complicated.

This is again because the energy of a jet at the partonic level is not the same as

the final energy measured in the detector. The typical jet energy would decrease

due to parton showering and increase if two jets get merged. Another error in the

measurement would come from the fact that two of the jets in the event would be the

WBF jets which would not have the typical energy in Fig. 2.4, but this would not

be a large effect because of the large number of jets present. Simulations including

parton showers, hadronization and jet algorithms are needed in order to trace back

the energy at the partonic level from the final energy measured in the detectors.

2.3.2 Higgs as the classicalizer

The second application of classicalization we want to consider is a model where

the classicalizing field is the Higgs itself and the classicalons (called Higssions in this

case) are configurations of the Higgs field. The motivation for this model comes from

the hierarchy problem. Indeed, the radiative corrections to the Higgs mass in this

model are screened by the classization scale itself and not by the highest possible

UV scale. In other words, the loop contributions to the Higgs mass get classicalized

and cut-off at the classicalization scale M∗. As the biggest contribution to the Higgs
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mass comes from the top, the top loop must get classicalized at the lowest scale, that

is for the Higgs mass to be natural we must have,

(2.51)
yt

16π2
M2

∗ ∼ m2
h

where M∗ is the classicalization scale. This gives the condition M∗ � 4πmh. We will

consider the case where only the right handed top has a classicalizing interaction of

the form,

(2.52)
κ

M2
∗
(Φ†Φ)t̄R �∂µtR,

Φ being the SM Higgs doublet. It is reasonable to consider the possibility of a

universal classicalization scale for all SM particles, in which case Higgsions would be

produced at low scales directly from the light quarks. This scenario, however, would

be far more constrained by existing flavor and LHC data. Here we will consider the

minimal case required for naturalness with only the right handed top having a low

scale classicalizing interaction. In this case the radius of the classicalon is given by

the expression [18],

r∗ ∼
κvM

M3
∗

for κ > 0(2.53)

r∗ ∼
κM

M2
∗

for κ < 0(2.54)

where v is the Higgs VEV. Again the above relationships is valid only until r∗ reaches

the compton wavelength of the Higgs, 1/mh and beyond this point the radius freezes

at the value 1/mh [18]. Again we will absorb any numerical coefficient present in the

above expressions for r∗ and also the numerical value of κ in a redefinition of M∗ to

obtain,

r∗ =
vM

M3
∗
for κ > 0(2.55)

r∗ =
M

M2
∗
for κ < 0.(2.56)
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Figure 2.7: In the model with Higgs as the classicalizer we plot the number of Higgs bosons
produced, N∗, in a classicalon decay as a function of the classicalon mass and compare it with the
multiplicity curve for a black hole in n = 3 extra dimensions with Mpl = 400 GeV.

Again, experimental constraints due to quantum resonances around M∗ are unfortu-

nately incalculable.

The number of quanta is again found using Eqs.(2.41) and (2.42) using the same

value for the normalization factor, γ, given in Eq.(2.44). We take mH = 130 GeV

here and in the rest of this section. We plot the number of quanta as a function

of the classicalon mass in Fig. 2.7 for the two different choices, M∗ = 500 GeV and

M∗ = 1 TeV for both positive and negative κ. The curves are again almost linear as

in the previous case of goldstone classicalization. We also show for comparison the

N∗ vs M curve for a black hole in n = 3 extra dimensions with Mpl = 400 GeV. Once

again, for comparison with the black hole multiplicity, it must be kept in mind that

the final decay multiplicity, in the classicalon case, is bigger than N∗, the number of

Higgs bosons, as the Higgs bosons decay further to leptons and jets.

We will consider the possibility of producing Higgsions in the top fusion process

gg → (tt̄ → Cl)tt̄ (see Fig. 2.8). To find the cross-section for classicalon produc-

tion form top fusion we introduce a dimension-5 tthh operator in CALCHEP [50],
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Figure 2.8: Production of a classicalon by weak boson fusion process in the model with goldstone
classicalization.

(t̄tH†H/Λ) and find the cross-section for the top fusion process pp → gg → tt̄hh.

At high energies the tt → hh cross-section due to this operator is a constant as a

function of the tt̄-energy; this is also true for production of N∗-particle classicalons

(tt → Cl) the cross-section in this case being fixed at πr2∗(MN∗). Thus we find the

cross-section of the top fusion process pp → gg → tt̄hh (taking into account only

the contribution of the tthh operator and not other SM processes) and rescale this

cross-section by the ratio of the tt̄ → Cl cross-section to the tt → hh cross-section to

obtain the pp → gg → tt̄+Cl cross-section. Finally we would have to multiply by a

factor of 1/2 as the tt → Cl process would take place only if both the tops are right

handed whereas for the tt → hh process to take place the tops need to have opposite

chiralities. Note that we are assuming that the total cross-section can be factorized

into a hard part and (tt̄ → Cl) and a ‘top parton density function (PDF)’ and this

is not expected to be accurate unless the partonic center of mass energy
√
ŝ � mt.

For this reason our cross-section estimates would be approximate.

We show the results for the cross-sections for M∗ = 500 GeV and M∗ = 1 TeV

in Table 2.2. We also give branching ratios and cross-sections for the l+ �ET + jets

channel (again requiring exactly, and not at least, one lepton) where the lepton comes

from a real or virtual W boson emerging form either a Higgs or one of the final
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tops (decay channels with greater number of leptons have a much smaller branching

fraction in this case). Again, unlike black holes, missing energy must necessarily be

present in this channel. The number of jets is even larger here and a classicalon with

N∗ = 6 would give rise to about 16 jets including the jets from the top decays, so

that the background is again negligible [46]. A similar estimate to the one done in

the previous subsection tells us that for 16 jets at least about 50% of the theoretical

cross-section should survive after the lepton identification and isolation requirements

are taken into account. It is clear from Table 2.2 that discovery would not be possible

in the 7 TeV run of the LHC. For M∗ = 500 GeV discovery should be possible with

about 10 fb−1 at 14 TeV LHC energy for both the κ < 0 and κ > 0 cases. Much

higher integrated luminosities, about 100 fb−1, would be required for M∗ = 1 TeV

and κ < 0 whereas the κ > 0 case would be out of reach even with high luminosities.

2.4 Conclusions

In this chapter we have argued that classicalons must have analogs of thermody-

namic properties and we have carried out a model-independent statistical mechanical

analysis of classicalons. By taking the set of four momenta of the incoming (outgo-

ing) particles that form a classicalon (that a classicalon decays to) as a microstate of

the classicalon, we count the number of such microstates imposing only the condition

of energy-momentum conservation and the condition that the incoming wave-packets

should be able to localize their energy inside the classicalon radius, r∗. We find that

the particles a classicalon decays to will have a Planck distribution with an effective

temperature T ∼ 1/r∗ in the case of a massless classicalizer field. The final ther-

modynamic relations obeyed by a classicalon are different from those obeyed by an

ideal relativistic Bose gas in spite of the fact that both have the same distribution
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function. This is because incoming/outgoing wave-packets in a classicalon forma-

tion/decay process have a different density of states than the particles in an ideal

gas. Our results confirm the expectations of Ref. [25] and we find the entropy scales

like, S ∼ N∗ ∼ Mr∗, when the classicalizer field is massless. This implies that clas-

sicalon decays to a few particles should be combinatorially suppressed by a factor

e−S ∼ e−N∗ . For the specific case of a black hole, the classicalon radius is propor-

tional to its mass, and the well known proportionality of the black hole entropy to

its area follows from the general scaling of the classicalon entropy.

We use our results, in particular the computation of the number of classicalon

decay products, N∗, to make LHC predictions. For computing the rate of production,

we use the fact that classicalons are expected to be produced with a geometric cross-

section, πr2∗. The important difference from black hole production is that even at

energies higher than the classicalization scale, other SM processes involving particles

without a strong classicalizing interaction go on unaffected with a larger cross-section

than classicalon production. In the models we consider, light quarks have no direct

classicalizing interactions and, as a result, the classicalon production cross-sections

are much smaller than black hole production cross-sections at the same energy. On

the other hand, we find the multiplicity of final decay products of the classicalons to

be larger than the decay multiplicity of extra-dimensional black holes, in the cases

we consider.

The first model we look at is a model where longitudinal WW scattering is uni-

tarized in the absence of a Higgs by classicalization of longitudinal W s and Zs. The

classicalon in this model decays to multiple W s and Zs which lead to signals in var-

ious channels like l+ �ET + jets, l+l++ �ET + jets, 3l+ �ET + jets and 3l++ �ET + jets

where the number of partonic jets is typically larger than ten. Our results for the
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different channels are well summarized in Fig. 5.6. We find that, for this model,

discovery would be imminent in the l+ jets channel in the present 7 TeV run of the

LHC, if the classicalization scale is as low as M∗ = v = 246 GeV and that we would

have to wait for about 10 fb−1 integrated lumiosity at 14 TeV, if the scale is higher,

around M∗ = 600 GeV. The maximum classicalization scale that can be probed with

100 fb−1 data at 14 TeV is about M∗ = 1 TeV.

For the model to address the hierarchy problem with the Higgs itself as the clas-

sicalizer, we consider the minimal case where only the right handed top has a clas-

sicalizing interaction. The classicalon radius in this case depends on the sign of the

non-renormalizable coupling κ. We explore the prospect of discovery of such clas-

sicalons in the top fusion process gg → (tt̄ → Cl)tt̄ by looking at the l+ �ET + jets

final state where the number of partonic jets is very high (at least 15). We find that

for M∗ = 500 GeV, discovery should be possible with about 10 fb−1 at 14 TeV LHC

for both the κ < 0 and κ > 0 cases. For M∗ = 1 TeV and κ < 0 much higher

integrated luminosities, about 100 fb−1, would be required whereas the κ > 0 case

would be out of reach even with high luminosities if M∗ = 1 TeV.



CHAPTER III

Higgs generations

3.1 Generations of Higgs Bosons

Chiral matter comes in three generations. The simplest hypotheses of electroweak

symmetry breaking and fermion mass generation assumes the existence of one Higgs

boson in the case of the Standard Model and a pair of Higgs bosons in the case of

supersymmetry. We ask here what the consequences are of having more generations

of Higgs bosons in analogy to fermion matter content. We are not the first to ask this

question and investigate answers (see for eg. Refs. [51], [52] and [53]). Some of our

discussion will be known to readers, but that is only to set the stage for describing

further material we have developed and in particular detailing Large Hadron Collider

(LHC) implications for next generation Higgs boson ideas that survive scrutiny.

The question is of increased interest of late for two reasons. One, the LHC has

entered the prime real estate of Higgs boson phenomenology, and we should be pre-

pared to discover all reasonable and viable ideas. The physical particle spectrum of

the Higgs sector, if it exists, is speculation at present. Investigating various scenarios

that may yield phenomenology that is different from the simplest Standard Model

(SM) approach is needed in order to develop more interpretive power over the data

when it comes.

63
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A second reason to consider a next generation of Higgs bosons is from recent

developments in string phenomenology. Some approaches to particle physics model

building from string theory suggest that further copies of Higgs bosons may be generic

among solutions. For example, in the work of [51] a second Higgs generation is generic

among the heterotic vacua, and may even be more copious than single generation

Higgs boson theories. It is also typical in this approach that there is a selection rule

that allows only the first generation of Higgs bosons to couple to the fermions. We

will review later why this aspect is very helpful for the viability of a next generation

of Higgs bosons.

Next generation Higgs bosons are motivated in other theories as well. For exam-

ple, in theories with branes at singularities bifundamental states come from the same

quivers, and multiplicities of Higgs pairs are generic just like multiplicities of other

representations. In intersecting D-brane theories, the chiral content is constrained

by topological intersection numbers, but the vector-like states can be many-fold.

Usually only our self-imposed restrictions in seeking solutions results in one genera-

tion. In heterotic orbifold models exotics are generic. Restrictions to three families

of fermions rarely necessarily restricts Higgs bosons to one pair. Some approaches,

such as Z3 orbifolds with two Wilson lines [52], naturally provide three generations

of Higgs bosons, for example.

Most physicists nowadays carry the vague suspicions that additional Higgs bosons

are disastrous unless introduced into very restricted frameworks. They give the

photon a mass, or result in unacceptable tree-level flavor changing neutral currents.

This is to a large degree correct, but there are interesting viable limiting cases,

touched on above, that are supported by theory model building. We set out to

elucidate some general conditions for the viability of next generation Higgs bosons.
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We detail a formalism for the analysis, including determining the mass matrices and

mixing angles in both the SM and Supersymmetry. This culminates in a study of a

key process at the LHC that is signal for next generation Higgs bosons.

3.2 Overcoming Tree-Level Flavor Changing Neutral Currents

Let us begin by considering an extra Higgs doublet Φextra that is added to the SM

Higgs doublet Φsm. The vacuum expectation values (VEV) of each are �Φ� = vsm

and �Φextra� = vextra, subject to the condition that v2 = v2sm + v2extra = (246GeV)2.

We assume that both Higgs doublets couple to the SM fermions. From these two

doublets, three degrees of freedom are eaten and become longitudinal components of

W±
L and Z0

L, and five degrees of freedom are left: the scalar mass eigenstates {H, h},

the pseudoscalar A, and the charged Higgs bosons H±.

It is always possible to write the Yukawa Lagrangian terms as,

LY =

√
2mU

i

v
δijQ̄iLΦ̃V EV UjR +

√
2mD

i

v
δijQ̄iLΦV EVDjR +

√
2mE

i

v
δijL̄iLΦV EVEjR

+
√
2 ξUijQ̄iLΦ̃⊥UjR +

√
2 ξDij Q̄iLΦ⊥DjR +

√
2 ξEij L̄iLΦ⊥EjR + c.c.(3.1)

where Ei, Ui and Di are mass eigenstates of leptons, up type and down type quarks

and ξU,Dij are a priori arbitrary. The definition of ΦV EV is the linear combination

that contains the full VEV,

(3.2) ΦV EV =
vextra
v

Φextra +
vsm
v

Φsm, and

(3.3) Φ⊥ =
vextra
v

Φsm − vsm
v

Φextra

is the perpendicular state with no VEV associated to it. In general, there is nothing

to forbid the off-diagonal elements of ξU,D,E
ij from being O(1). This is the origin of the

tree-level Flavor Changing Neutral Curent (FCNC) problem of extra Higgs bosons.
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Figure 3.1: Flavor changing neutral current contributions to B
0
d
− B̄

0
d
mixing from (a) Higgs ex-

change diagrams in an arbitrary 2HDM (there are also t-channel diagrams that we have not shown
here), and (b) SM gauge contributions. Note that the SM diagrams are one-loop whereas the com-
peting Higgs exchange is tree-level. Experiment is consistent with SM results, which implies severe
constraints on the Higgs flavor-changing neutral current couplings ξF

ij
� 1.

To estimate the experimental upper bound on the off diagonal elements of ξU,Dij

let us assume that the matrices ξU,D are real and symmetric. We then obtain the

following Feynman rules for the scalar and pseudoscalar mass eigenstates (the vertex

factor being −i times the expressions below),

HŪiUj, HD̄iDj = cα�
mU,D

i

v
δij + sα�ξU,Dij(3.4)

hŪiUj, hD̄iDj = −sα�
mU,D

i

v
δij + cα�ξU,Dij(3.5)

AŪiUj, AD̄iDj = iγ5ξ
U,D
ij .(3.6)

Here the mixing angle α� is the one that rotates from {ΦV EV ,Φ⊥} to the mass

eigenstates {H, h}. The most stringent constraints on ξU,Dij come from F 0−F̄ 0 mixing

(where F = K,Bd, D,Bs). In a two-Higgs doublet model (2HDM) with arbitrary

Yukawa couplings there is a tree-level contribution to the F 0 − F̄ 0 mass splitting

because of diagrams like Fig. 3.1(a). For α
�
= 0 using the expressions derived in [54]
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Meson (quarks) BF fF (GeV) ∆M
expt
F

(GeV)
K

0 (ds̄) 0.79± 0.04± 0.08 0.159 (3.476± 0.006)× 10−15 [55]
D

0 (ūc) 0.82± 0.01 0.165 (0.95± 0.37)× 10−14

B
0
d
(db̄) 1.28± 0.05± 0.09 [56] 0.216± 0.022 (3.337± 0.033)× 10−13 [55]

B
0
s
(sb̄) − 0.281± 0.021 (117.0± 0.8)× 10−13 [55]

Table 3.1: Data associated with the neutral mesons K
0, B0

d
and D

0. Values have been obtained
from [3] unless mentioned otherwise. The value in the last row and third column is actually the
value of the product fBs

�
BBs .

we get in the vacuum insertion approximation,

(3.7) MF∆MF = ξU,Dij

2
�
s2α�

SF

m2
H

+ c2α�
SF

m2
h

− PF

m2
A

�

where,

SF =
BFf 2

FM
2
F

6

�
1 +

M2
F

(mi +mj)2

�
(3.8)

PF = −BFf 2
FM

2
F

6

�
1 +

11M2
F

(mi +mj)2

�
.(3.9)

Here MF is the mass of the meson, mH ,mh and mA are the masses of H, h and A,

fF is the pseudoscalar decay constant and BF is the B-parameter of the vacuum

insertion approximation defined in [54]. We present the values of these parameters

and the experimental values for ∆MF in Table 3.1.

The Cheng-Sher ansatz [57] is sometimes assumed for the flavor changing cou-

plings,

(3.10) ξU,D,E
ij = λU,D,E

ij

√
mimj

v
,

as many approaches to flavor model building would give rise to it. Let us now

find the maximum allowed value of ξU/D
ij consistent with the experimental data

and simultaneously determine the corresponding λU/D
ij . For B0

d and B0
s we use

the SM predictions from lattice QCD, ∆MSM
Bd

= (4.5 ± 1.0) × 10−13 GeV [58] and

∆MSM
Bs

= (135 ± 20) × 10−13 GeV [3] and add the theoretical error in quadrature

to the experimental error. To find the upper bound on ξDdb and ξDsb we demand that
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the sum of the SM value and the 2HDM contribution from Eq. (3.7) does not exceed

the experimental value in Table 3.1 by more than two standard deviations. In ob-

taining the upper bounds on ξDds and ξUuc we require that just the 2HDM contribution

from Eq. (3.7) does not exceed the experimetal value in Table 3.1 by more than two

standard deviations. Taking mH = mh = mA = 120 GeV we find,

ξDds � 1× 10−5 λD
ds � 0.1(3.11)

ξDuc � 3× 10−5 λD
uc � 0.2(3.12)

ξDdb � 4× 10−5 λD
db � 0.06(3.13)

ξDsb � 2× 10−4 λD
sb � 0.06.(3.14)

The upper bounds stated above have an uncertainty due to the uncertainty in the

value of fF
√
BF . From Eq. (3.7) we can see that a 10% uncertainty in fF

√
BF would

translate to a 10% uncertainty in the upper bound. Greater precision in lattice

estimates of the SM values is required for more stringent constraints on ξU/D
ij from

F 0 − F̄ 0 mixing.

Future measurement of branching ratios of rare B decay modes such as B(B̄s →

µ+µ−) at LHCb is another way effects of the flavor changing couplings ξDbs and ξDsb

may be discovered. Expressions for this branching ratio in the SM, and the Higgs

contribution in a 2HDM with arbitray Yukawa couplings, can be found in Ref. [59].

The SM value is (3.51± 0.50)× 10−9 [59] and the current Tevatron upper bound at

95% CL is 5.8× 10−8 [60]. As LHCb would reach the sensitivity to measure the SM

value [61], we can estimate the kind of upper bounds LHCb experiments would put

on ξDbs and ξDsb by demanding that the Higgs contribution to this braching ratio is

less than the SM value. Assuming again that ξDbs and ξDsb are real and equal to each
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other, and that ξij = λij
√
mimj/v, we obtain

λD
sb � 2

(mA/120 GeV)2

λE
µµ

(Tevatron inferred bound)(3.15)

λD
sb � 0.6

(mA/120 GeV)2

λE
µµ

(LHCb expected sensitivity).(3.16)

Although this limit from Tevatron and future sensitivity expectations at LHCb do

not appear to be as powerful as meson-meson mixing constraints, the uncertainty

in what λE
µµ might be in the presence of next generation Higgs bosons suggests that

it should stay under consideration. For a more thorough discussion of B0
s − B̄0

s

mixing constraints and the processes B̄s → µ+µ−, B̄d → K̄µ+µ− see Ref. [59]. For a

discussion on the constraints on the diagonal couplings ξFii see Ref. [62].

We have seen above that the off-diagonal couplings ξFij are required to be extremely

small in order to satisfy FCNC constraints. There is a general class of solutions to

this problem [9] while admitting the existence of extra Higgs bosons in the spectrum.

Tree-level FCNCs do not arise if Higgs boson interactions with the fermions take the

form

∆Lf = yDij Q̄
�
iL Fd({Φk})D�

jR + yUijQ̄
�
iL Fu({Φk})U �

jR + yEij L̄
�
iL Fe({Φk})E �

jR + c.c.

(3.17)

where all the quark fields are gauge eigenstates. Fu,d,e({Φk}) are functions of Higgs

fields {Φk}, constrained only by the requirements that they are independent of the

fermionic flavor indices i, j and that Fu transforms like an SU(2)L doublet with

hypercharge −1/2, and Fd and Fe transform like SU(2)L doublets with hypercharge

1/2.

The generalized form of Eq. (3.17) subsumes many ideas already present in the

literature. For example, the SM Higgs sector is Fu = Hc
SM and Fd = Fe = HSM .
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The type II [63] 2HDM [8] is Fu = Hu and Fd = Fe = Hd. The type I 2HDM [8] is

Fu = Φc
1 and Fd = Fe = Φ1 with an additional Φ2 that does not couple to fermions.

The leptophilic Higgs model of Ref. [64] is Fu = φc
q, Fd = φq and Fe = φl.

There are an infinite variety of models that can satisfy Eq. (3.17). However,

principles are expected to be at work to fall into this class if there is more than

one Higgs boson. In the case of supersymmetry, the type II structure follows from

holomorphy of the superpotential. In the case of type I theories, it is usually assumed

that the second Higgs has, for example, a discrete Z2 symmetry Φ2 = −Φ2 that

forbids its direct coupling to fermions whereas Φ1 does not.

The summary point is that a next generation Higgs boson is unlikely to satisfy

FCNC currents due to tree-level mediated interactions unless a principle is invoked

the ensures that it will satisfy the condition of Eq. (3.17). The most straightforward

principle that we can invoke, and one that has been nicely illustrated recently in the

model of [51], is a selection rule that forbids the next generation Higgs boson from

coupling to fermions.

3.3 Next Generation Higgs bosons of Supersymmetry

We begin with a discussion of next generation Higgs bosons in supersymmetry.

In minimal supersymmetry there are already two Higgs doublets present in the spec-

trum. In unrestricted field theory, two Higgs doublets with arbitrary couplings are

a disaster for flavor changing neutral currents. However, as mentioned above, super-

symmetric theories have the special property that all superpotential operators must

be holomorphic in the superfields. Thus, it is impossible to employ one Higgs field

to give masses to both up-type fermions and down-type fermions. The introduction

of the second Higgs doublet solves this problem, and holomorphy is the principle by
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which tree-level FCNC’s are held under control. The interaction lagrangian takes the

form of the type II 2HDM in the form of Eq. (3.17). Of course, when supersymme-

try is broken, non-holomorphic interactions can induce additional couplings leading

ultimately to potentially interesting flavor changing neutral currents [65], but those

are naturally small over much of parameter space.

If we wish to add more Higgs doublets to supersymmetry, we must do it in up- and

down-Higgs boson pairs. This is in sympathy with adding a new generation – a new

copy – of the {Hu, Hd} pair. More importantly, it is required to straightforwardly

satisfy anomaly constraints due to the presence of new fermions that are the super-

partners of the Higgs bosons. When a next generation of Higgs doublets is added

to the spectrum, holomorphy is no longer powerful enough to save us from tree-level

FCNC. Additional Yukawa couplings generally create FCNC challenges [52, 62]. In

Ref. [53] supersymmetric three generation Higgs models have been considered where

an exact symmetry prevents the next generation Higgs Bosons from coupling to the

fermions. They show that these next generation Higgs bosons would not couple to

the standard Higgs bosons and under the assumption of equal scalar masses at unifi-

cation scale they would not get VEVs, thus avoiding FCNC problems. In general the

simplest way out of the FCNC challenge is to assume that the extra Higgs doublet

pairs couple very weakly, or not at all, to the fermions. This is the assumption we

shall adopt for now.

The result of the discussion above is that we are overlaying a type I Higgs structure

to our type II supersymmetric theory. In other words, we are adding a Higgs boson

pair that does not couple to the fermions on top of a Higgs pair that does. Our

emphasis in this study is on the type I aspect (i.e., the next generation), and as such

the supersymmetric type II feature is of less immediacy. Thus, we shall postpone
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a detailed discussion of additional constraints to later, to the less complex model

of adding one Higgs boson to the SM. Nevertheless, we wish to present the mass

eigenstates and mixing, and in particular highlight what effect multiple Higgs bosons

have on the mass of the lightest Higgs boson scalar of supersymmetry.

3.3.1 General Higgs Potential

For the supersymmetric two Higgs generation model (SUSY 2HGM), we consider

two additional Higgs superfields Hu2 and Hd2 charged under SU(2)L × U(1)Y just

as Hu1, Hd1 respectively. The terms in the superpotential involving these superfields

are,

(3.18) W = µ11Hu1Hd1 + µ12Hu1Hd2 + µ21Hu2Hd1 + µ22Hu2Hd2.

From now on by Hu1, Hd1, Hu2, Hd2 we will denote only the scalar part of the super-

fields which have the components,

(3.19) Hui =




H+

ui

H0
ui



 Hdi =




H0

di

H−
di



 .

The D-terms are given by,

(3.20) Da = −g
�

i

(H†
uiT

aHui +H†
diT

aHdi).

The D-term contribution to the potential is given by,

VD =
1

2

�

a

DaDa

= λ[
�

i

(|Hui|2 − |Hdi|2)]2 +
g2

2
(
�

i

|(H+∗
ui H

0
ui +H0∗

di H
−
di)|2

−
�

i

(|H0
ui|2 − |H0

di|2)
�

j

(|H+
uj|2 − |H−

dj |2)).(3.21)
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where λ = g2+g�2

8 . Using the form of the superpotential in Eq. (3.18) we get the

F -term contribution,

VF = (|µ11|2 + |µ12|2)|Hu1|2 + (|µ22|2 + |µ21|2)|Hu2|2 + (|µ11|2 + |µ21|2)|Hd1|2

+(|µ22|2 + |µ12|2)|Hd2|2 + (auH
†
u1Hu2 + adH

†
d1Hd2 + c.c.)(3.22)

where,

ad = µ∗
11µ12 + µ∗

21µ22(3.23)

au = µ∗
11µ21 + µ∗

12µ22.(3.24)

In addition to the D-terms and F -terms there are the soft SUSY breaking terms,

Vsoft = m
�2
u1|Hu1|2 +m

�2
u2|Hu2|2 +m

�2
d1|Hd1|2 +m

�2
d2|Hd2|2 + (b11Hu1Hd1 +

b12Hu1Hd2 + b21Hu2Hd1 + b22Hu2Hd2 + c.c.)(3.25)

where HuiHdj = H+
uiH

−
dj −H0

uiH
0
dj.

Adding all the terms from Eq. (3.21), (3.22) and (3.25) we get finally,

V = VD + VF + Vsoft

= m2
u1|Hu1|2 +m2

u2|Hu2|2 +m2
d1|Hd1|2 +m2

d2|Hd2|2

+(auH
†
u1Hu2 + adH

†
d1Hd2 + c.c.)

+(b11Hu1Hd1 + b12Hu1Hd2 + b21Hu2Hd1 + b22Hu2Hd2 + c.c.)

+λ[
�

i

(|Hui|2 − |Hdi|2)]2 +
g2

2
(
�

i

|(H+∗
ui H

0
ui +H0∗

di H
−
di)|2

−
�

i

(|H0
ui|2 − |H0

di|2)
�

j

(|H+
uj|2 − |H−

dj |2)).

(3.26)

Here m2
i is the sum of m

�2
i and the F -term contribution from Eq. (3.22). All the

couplings are required to be real by hermiticity with the exception of the bilinear
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couplings bij and ai which are in general complex. By redefining the phases of the

doublets Hu1, Hd2 and Hu2 only three of these six couplings can be chosen to be real

so that the theory is in general CP violating.

Note that we are allowing Hu1,d1 to mix arbitrarily with Hu2,d2 in the Higgs poten-

tial only. Some mixing between the two generations is necessary as we do not want

to have a global symmetry under which the next generation Higgs bosons can be

rotated with respect to the first generation because this would lead to the presence

of a massless Goldstone boson. When it comes to interacting with the fermions,

as discussed before and emphasized again later, next generation Higgs bosons are

generally barred from having couplings unlike the first generation Higgs bosons.

3.3.2 Electroweak symmetry breaking and scalar mass matrices

We put �H+
ui� = �H−

di� = 0, �H0
i � = 1√

2
vi and demand that the first derivatives of

the potential with respect to the fields H0
i vanish to obtain,

(3.27) m2
d1 − b̃11

vu1
vd1

− b̃21
vu2
vd1

+ ãd
vd2
vd1

+ λ(
�

j

v2dj −
�

j

v2uj) = 0

(3.28) m2
u1 − b̃11

vd1
vu1

− b̃12
vd2
vu1

+ ãu
vu2
vu1

− λ(
�

j

v2dj −
�

j

v2uj) = 0

(3.29) m2
d2 − b̃22

vu2
vd2

− b̃12
vu1
vd2

+ ãd
vd1
vd2

+ λ(
�

j

v2dj −
�

j

v2uj) = 0

(3.30) m2
u2 − b̃22

vd2
vu2

− b̃21
vd1
vu2

+ ãu
vu1
vu2

− λ(
�

j

v2dj −
�

j

v2uj) = 0.

Here b̃ij = Re bij and ãi = Re ai. It is necessary that �H+
ui� = �H−

di� = 0 for elec-

tromagnetism to remain unbroken. We can always choose one of the charged fields,

say H−
d1 to have an expectation value �H−

d1� = 0 using the SU(2)L gauge freedom.
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To ensure that �H+
u1� = �H−

d2� = �H+
u2� = 0 is consistent with the minimization con-

ditions, however, we must demand that in addition to eqs. (3.27)-(3.30) the second

derivatives of the potential with respect to the charged fields at this point are posi-

tive. This is equivalent to demanding that the masses of the three physical charged

Higgs bosons are positive.

Also note that we have assumed the VEV of the neutral components vui, vdi to

be real and positive. One of the VEVs say, vd1, can be chosen to be real and

positive using the U(1)Y gauge freedom. As we discussed earlier this theory is in

general CP violating therefore we can choose the other VEVs vu1, vu2 and vd1 to be

real and positive simply by a convenient choice of phases of the respective doublet

fields. These phases can then be absorbed in the bilinear couplings bij and ai and a

redefinition of the quark fields. If the underlying theory ensures that all the bilinear

couplings bij and ai are real so that the Lagrangian conserves CP, in order to avoid

spontaneous CP violation vu1, vu2 and vd1 must be real too. Therefore the point

�Au1� = �Ad2� = �Au2� = 0 must be a minima where Ai =
√
2 Im (H0

i ). For this,

in addition to eqs. (3.27)-(3.30) the second derivatives of the potential with respect

to the pseudoscalar fields Ai must be positive also at this point. This is equivalent

to demanding that the three physical pseudoscalars in the theory must have positive

masses. Once vu1, vu2 and vd1 are known to be real they can always be chosen to be

positive by a convenient choice of signs of the respective doublet fields, which can then

be absorbed in the the bilinear couplings bij and ai and a redefinition of the quark

fields. If bij and ai are complex the CP even states mix with the pseudoscalar states.

To avoid this unnecessary complication to our present purposes we will present below

the mass matrices assuming that the bij and ai are real.

Using eqs. (3.27)-(3.30) we can eliminate the m2
i . We can find the mass matrix of
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the four CP-even scalars and the four pseudoscalars by substituting H0
i = 1√

2
(vi +

hi+ iAi). The mass matrix for the CP-even scalars, M2
H , in the {d1, u1, d2, u2} basis

is,





m2
H11 −b11 − 2λvu1vd1 ad + 2λvd1vd2 −b21 − 2λvu2vd1

−b11 − 2λvu1vd1 m2
H22 −b12 − 2λvu1vd2 au + 2λvu1vu2

ad + 2λvd1vd2 −b12 − 2λvu1vd2 m2
H33 −b22 − 2λvu2vd2

−b21 − 2λvu2vd1 au + 2λvu1vu2 −b22 − 2λvu2vd2 m2
H44





where,

m2
H11 = b11

vu1
vd1

+ b21
vu2
vd1

− ad
vd2
vd1

+ 2λv2d1

m2
H22 = b11

vd1
vu1

+ b12
vd2
vu1

− au
vu2
vu1

+ 2λv2u1

m2
H33 = b12

vu1
vd2

+ b22
vu2
vd2

− ad
vd1
vd2

+ 2λv2d2

m2
H44 = b21

vd1
vu2

+ b22
vd2
vu2

− au
vu1
vu2

+ 2λv2u2.

The pseudoscalar mass matrix, M2
A, in the {d1, u1, d2, u2} basis is,





m2
A11 b11 ad b21

b11 m2
A22 b12 au

ad b12 m2
A33 b22

b21 au b22 m2
A44





where,

m2
A11 = b11

vu1
vd1

+ b21
vu2
vd1

− ad
vd2
vd1

m2
A22 = b11

vd1
vu1

+ b12
vd2
vu1

− au
vu2
vu1

m2
A33 = b12

vu1
vd2

+ b22
vu2
vd2

− ad
vd1
vd2

m2
A44 = b21

vd1
vu2

+ b22
vd2
vu2

− au
vu1
vu2

.
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The charged Higgs mass matrix differs from the pseudoscalar mass matrix only due

to the last term in the potential in Eq. (3.26). In the basis
�
H−∗

d1 , H
+
u1, H

−∗
d2 , H

+
u2

�
,

M2
+ = M2

A+
g2

4





v2u1 + v2u2 − v2d2 vd1vu1 vd1vd2 vd1vu2

vu1vd1 v2d1 + v2d2 − v2u2 vu1vd2 vu1vu2

vd2vd1 vd2vu1 v2u1 + v2u2 − v2d1 vd2vu2

vu2vd1 vu2vu1 vu2vd2 v2d1 + v2d2 − v2u1





.

3.3.3 Upper bound on the mass of the lightest CP even Higgs

We want to transform the mass matrices above to the Runge basis which is defined

as follows. One of the basis vectors in the Runge basis is,

(3.31) �V1 = vd1/v Hc
d1 + vu1/v Hu1 + vd2/v Hc

d2 + vu2/v Hu2.

Here v =
�

v2u1 + v2d1 + v2u2 + v2d2. H
c
di is in the SU(2)L conjugate representation and

is given by,

(3.32) Hc
di =




−H−

di

H0∗
di



 .

We choose the other basis vectors so that they are orthogonal to this vector and to

each other. The simplest choices for two of the basis vectors are,

�V2 = vu1/v1 Hc
d1 − vd1/v1 Hu1

�V3 = vu2/v2 Hc
d2 − vd2/v2 Hu2(3.33)

where v1 =
�

v2u1 + v2d1 and v2 =
�

v2u2 + v2d2. We can find the fourth basis vector

which is orthogonal to the first three by the expression,

�V �
4 = (�V1.�U)�V1 + (�V2.�U)�V2 + (�V3.�U)�V3 − �U

�V4 =
�V �

4�
�V �

4. �V �
4

(3.34)
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Figure 3.2: Contours of the upper bound on the mass of the lightest Higgs (in MZ units) in the
SUSY 2HGM taking cos 2β2 = −1. We have also shown contours of equal ΛSC (in GeV), the energy
scale at which the top Yukawa coupling λt becomes larger than 4π. Details about the calculation
of ΛSC appear in Section 3.5.

where �U can be any arbitrary vector. The transformation matrix is an SO(4) rotation

matrix,

(3.35) R = ( �V1
�V2

�V3
�V4).

In the Runge basis, the mass matrices of the pseudoscalar, charged Higgs and

CP-even scalar Higgs boson masses take on special form. For the pseudoscalar and

charged Higgs mass matrix, the first row and first column contain all zeros, which is

expected since the first basis vector V1 is the “electroweak VEV multiplet” which has

all the VEV. Thus, the CP-odd and charged components of the first basis vector in

the Runge basis are the spin-zero Goldstone boson states absorbed by the Z0
L,W

+
L ,

and W−
L vector bosons. What remains is one more component of a full doublet,

namely the CP-even part. We shall write the full CP-even mass matrix below and

identify the matrix element corresponding to the mass of this CP even scalar and
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comment on its meaning.

The CP even mass matrix in the Runge basis is,

(3.36) M�2
H = RTM2

HR.

We get M�2
H =





2λ(
�

i(v
2
di−v2

ui))
2

v2
4λvd1vu1

�
i(v

2
di−v2

ui)

v1v

4λvd2vu2
�

i(v
2
di−v2

ui)

v2v

4λ(v2
u2v

2
d1−v2

u1v
2
d2)

�
i(v

2
di−v2

ui)

v1v2v2

4λvd1vu1
�

i(v
2
di−v2

ui)

v1v
m

�2
H22 m

�2
H23 m

�2
H24

4λvd2vu2
�

i(v
2
di−v2

ui)

v2v
m

�2
H23 m

�2
H33 m

�2
H34

4λ(v2
u2v

2
d1−v2

u1v
2
d2)

�
i(v

2
di−v2

ui)

v1v2v2 m
�2
H24 m

�2
H34 m

�2
H44





where,

m
�2
H22 =

8λ(vu1vd1)
3 + b11v

4
1 + b21v

3
u1vu2 − auv

3
d1vu1 − adv

3
u1vd2 + b12v

3
d1vd2

v21vu1vd1

m
�2
H23 =

advu1vu2 + b12vd1vu2 + b21vu1vd2 + auvd1vd2 + 8λvu1vu2vd2
v1v2

m
�2
H24 =

v2(b21vu1vu2 + auvd1vu2 − advu1vd2 − b12vd1vd2) + 8λ(vu1v
3
d1v

2
u2 − v3u1vd1v

2
d2)

vv21v2

m
�2
H33 =

8λ(vu2vd2)
3 + b22v

4
2 + b21vd1v

3
d2 − auvu1v

3
d2 − advd1v

3
u2 + b12vu1v

3
u2

v22vu2vd2

m
�2
H34 =

v2(b21vd1vd2 − auvu1vd2 + advd1vu2 − b12vu1vu2) + 8λ(v2d1v
3
u2vd2 − v2u1vu2v

3
d2)

vv1v22

m
�2
H44 =

v4(b21vd1vu2 − auvu1vu2 + b12vu1vd2 − advd1vd2) + 8λ(v2d1v
2
u2 − v2u1v

2
d2)

2

v2v21v
2
2

.

The Runge basis helps us see what the lightest Higgs boson mass becomes in the

limit that supersymmetry breaking masses are large, m̃ � MZ . In that case, the

{11} element of the CP even Higgs boson mass matrix is the only diagonal element

that stays small. A theorem of linear algebra tells us that the smallest eigenvalue of

a positive definite matrix is smaller than the smallest diagonal element. Therefore,

at tree-level we know from this {11} element the upper bound on the mass of the
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lightest CP even Higgs h, which is1

m2
h ≤ 2λ(

�
i(v

2
di − v2ui))

2

v2

⇒ mh ≤ MZ | cos2 ω cos 2β1 + sin2 ω cos 2β2|,(3.37)

where tan βi ≡ vui/vdi and tanω ≡ v2/v1.

The leading supersymmetry breaking corrections to this expression are from top

squark loops in the same manner as found in the Minimal Supersymmetric Standard

Model (MSSM). Thus, the controlling difference between our theory and the MSSM

prediction for the Higgs mass is the tree-level expression of Eq. (3.37) compared to

that of the MSSM, which is

(3.38) mh ≤ MZ | cos 2β|.

One sees that if we set tanβ1 = tan β, which becomes in both theories the fixed value

for the ratio of VEVs of the two Higgs doublets that couple to the fermions, a small

additional contribution can be made to the Higgs boson mass in our next generation

Higgs theory compared to the MSSM by allowing for larger tan β2 > tan β1 = tan β.

The available gain to the Higgs boson mass in this manner is tiny if tan β1
>∼ 5.

For lower values of tanβ1 the additional Higgs doublet pair contributions can be sig-

nificant if the mixing angle ω is larger. This may be useful since it is a challenge in

the MSSM to obtain a Higgs boson mass above the 114GeV experimental limit with-

out having too-high superpartner masses that induce fine-tuning in the electroweak

sector potential.

In Fig. 3.2 we plot contours of the tree-level Higgs boson mass in units of MZ in

the plane of tan β1 vs. sinω, assuming that cos 2β2 = −1, which is a good approx-
1Note that such an upper bound would exist even if our assumption that bij and ai are real is not true. For

complex bij and ai the CP even and pseudoscalar states mix. There are again seven neutral scalars and a Goldstone

boson. The 7×7 mass matrix of the physical scalars would again have
2λ(

�
i(v

2
di−v2

ui))
2

v2 as the {11} element in the
seven dimensional basis in which V1 is the Runge vector. Here the Runge vector in the original eight dimensional
space is V T

1 = 1
v (v1, v2, v3, v4, 0, 0, 0, 0).
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sinω m̃t (TeV) ΛSC (GeV)
0 2.7 2× 1016

0.5 2.0 5× 108

0.7 1.4 3× 105

0.9 0.8 2× 103

Table 3.2: For various values of sinω we show the value of m̃t needed to raise the Higgs boson mass
above the experimental limit of 114GeV and also the scale ΛSC where the top Yukawa coupling
diverges. The tree-level contribution is obtained by assuming tanβ1 = 1.5 and cos 2β2 = −1.

imation if tan β2
>∼ 5. One sees that as sinω increases, the second Higgs doublet is

more responsible for electroweak symmetry breaking and therefore the Higgs mass

increases due to larger tanβ2. The drawback is that the Higgs bosons that couple to

the fermions get smaller VEVs, leading to larger Yukawa couplings. The larger top

Yukawa coupling could diverge at a low scale. We describe this effect in more detail

in Section 3.5. In Fig. 3.2 we have also plotted, therefore, the contours of the scale

ΛSC at which the top Yukawa coupling becomes strongly interacting (i.e., diverges).

In Table 3.2 we show that with increasing sinω mixing angle, it is possible to have

a smaller value of the stop masses so that that the Higgs boson mass is greater than

114GeV. The quoted values of m̃t ≡
√
m̃t1m̃t2 are obtained by assuming that the

tree-level contributions are derived from tan β1 = 1.5 and cos 2β2 = −1, and that

only the leading order radiative correction is contributing to the Higgs boson mass,

(3.39) ∆m2
h =

3

2π2

m4
t

v2
log

�
m̃t1m̃t2

m2
t

�
.

For higher values of sinω, the tree-level contribution increases, thereby putting less

pressure on the stop masses to raise the Higgs boson mass above 114GeV. This is

clear from the values in the table, where for higher sinω the needed m̃t values are

lower.

We also show in Table 3.2 the scale ΛSC at which the top Yukawa coupling diverges

for the various values of sinω. As is expected, the larger the value of sinω for

some given tan β1, the lower the ΛSC scale. This is the tradeoff one has between
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a larger Higgs mass prediction and a lower scale of top quark Yukawa coupling

divergence. This is reminiscent of the Next-to-Minimal Supersymmetric Standard

model (NMSSM) which can have an arbitrarily large Higgs boson mass by adjusting

the parameter λ in the superpotential interaction λNHuHd; however, large values of

λ imply divergences well below a putative unification scale. This is a common feature

in many attempts to solve the Higgs mass bound challenge of supersymmetry.

3.4 Next Generation Higgs boson of Standard Model

3.4.1 Electroweak symmetry breaking and scalar mass matrices

To add a next generation Higgs boson to the SM is equivalent to postulating

a 2HDM with two scalar doublets Φ1 and Φ2 having hypercharge 1/2. Earlier we

discussed the many ways that a second Higgs boson can be added to the spectrum

without being incompatible with experiment. There are many options, including type

I models and type II models and variants on that theme. The type II structure is

most naturally incorporated within supersymmetry using holomorphy as the guiding

principle, as we discussed in the previous section. Going beyond that, the most

straightforward way to incorporate extra Higgs doublets is to implement a type I

structure. In other words, the second Higgs boson (or next full generation) induces

no tree-level FCNC by virtue of it having no Yukawa couplings with the SM fermions.

To ensure no couplings of the second Higgs boson to fermions, the discrete sym-

metry,

(3.40) Φ2 → −Φ2.

can be imposed, for example. If we allow a soft violation of this symmetry by

dimension-two terms we can still avoid tree level FCNC bounds. The most general

renormalizable potential for the scalars in which the discrete symmetry is softly
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broken only by dimension-two terms is,

V (Φ1,Φ2) = µ2
1|Φ1|2 + µ2|Φ2|2 + b(Φ†

1Φ2 + c.c.) + λ1|Φ1|4 + λ2|Φ2|4

+λ3|Φ1|2|Φ2|2 + λ4(Φ
†
2Φ1)(Φ

†
1Φ2) +

�
λ5

2
(Φ†

1Φ2)
2 + c.c.

�
.(3.41)

The potential above is the potential in the toy model of [51] once the singlet in

their theory gets a VEV. Hermiticity requires all the coupling constants in the above

potential to be real with the exception of b and λ5. A convenient choice of the phase

of Φ2 will allow only one of the two couplings to be real so that the theory is CP

violating in general. Note that if both b and λ5 vanish the potential is invariant under

a global U(1) symmetry for Φ2. Thus either b or λ5 must be non-zero to prevent the

pseudoscalar from being a massless Goldstone boson.

Two CP conserving limits of this potential have been considered in the litera-

ture [66]. The limit in which b = 0 has been called potential A (VA) and the limit in

which λ5 = 0 has been called potential B (VB). Let us now analyze in some detail

the electroweak symmetry breaking (EWSB) pattern in these two limits2.

Potential A: b = 0, λ5 �= 0

Potential A can be obtained by strictly imposing the discrete symmetry Φ2 → −Φ2

which requires b = 0 in eq. (3.42),

VA(Φ1,Φ2) = µ2
1|Φ1|2 + µ2|Φ2|2 + λ1|Φ1|4 + λ2|Φ2|4 + λ3|Φ1|2|Φ2|2

+λ4(Φ
†
2Φ1)(Φ

†
1Φ2) +

�
λ5

2
(Φ†

1Φ2)
2 + c.c.

�
.(3.42)

Without loss of generality all the λi couplings are real. Hermiticity demands it for

all λi except λ5, which can always be rotated to real and chosen to be either positive

or negative by making Φ2 absorb its phase. For definiteness we choose λ5 ≤ 0 here.
2For a discussion about the vacuum structure and the possibility of spontaneous violation of CP and electromag-

netism in more general 2HDMs see Ref. [67].
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The potential must be bounded from below in all field directions. One can test

for dangerous runaway directions by parameterizing field excursions arbitrarily large

in value. The following field directions give us all the unbounded from below (UFB)

constraints (see, e.g., [68]):

(3.43)

ΦT
1 ,Φ

T
2 direction UFB constraint

(0, a), (0, 0) λ1 > 0

(0, 0), (0, a) λ2 > 0

(0, λ1/4
2 a), (λ1/4

1 a, 0) λ3 + 2
√
λ1λ2 > 0

(0, λ1/4
2 a), (0, λ1/4

1 a) λ3 + λ4 + λ5 + 2
√
λ1λ2 > 0.

The most general vacuum expectations values for the two Φ1,2 Higgs fields can be

expressed as (see, e.g., [69])

(3.44) Φ1 =




0

v1/
√
2



 , and Φ2 =




u2/

√
2

v2eiξ/
√
2



 .

A non-zero u2 would indicate the full breaking of SU(2)L×U(1)Y , and in particular

the photon would obtain mass. For electromagnetism to remain unbroken when Φ1

and Φ2 get VEVs the following condition must hold (see for instance [9, 69]),

(3.45) λ4 + λ5 < 0.

The minimization conditions obtained by setting dV/dφi = 0 for all real fields φi

defined in

(3.46) Φ1 =




φ1 + iφ2

φ3 + iφ4



 , and Φ2 =




φ5 + iφ6

φ7 + iφ8



 ,

then ensure that EWSB is proper and the doublets get the VEVs,

(3.47) Φ1 =




0

v1/
√
2



 , and Φ2 =




0

v2/
√
2




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where v1 ≥ 0 and we can always choose v2 ≥ 0 by a convenient choice of sign of the

doublet field Φ2. The minimization conditions dV/dφ3 = 0 and dV/dφ7 = 0 given

by [9, 69],

(3.48)
φ3 : µ2

1 +
λ3+λ4+λ5

2 v22 + λ1v21 = 0

φ7 : µ2
2 +

λ3+λ4+λ5
2 v21 + λ2v22 = 0

can be used to eliminate the parameters µ1 and µ2 [70].

We need to check if this solution is stable. To do that we require that the second

derivative of the potential, i.e. the mass matrix, be positive definite. We can find the

mass eigenvalues are by solving four 2×2 matrices. These matrices arise from φkφk+4

mixing for k = 1, 2, 3, 4. We simplify the entries in these matrices by substituting µ2
1

and µ2
2 from Eq. (3.48). To begin with, we look at the φ1φ5 and φ2φ6 mixings, which

have the same 2× 2 mass matrix:

(3.49) M2
φ1φ5

= M2
φ2φ6

=




−λ4+λ5

2 v22
λ4+λ5

2 v1v2

λ4+λ5
2 v1v2 −λ4+λ5

2 v21





which leads to four eigenstates

m2
G± = 0 (charged Goldstone bosons)(3.50)

m2
H± = −λ4 + λ5

2
(v21 + v22) (charged Higgs bosons).(3.51)

The mixing angle is,

(3.52) tanω =
v2
v1
.

Now let us look at φ4φ8 mixing:

M2
φ4φ8

=




−λ5v22 λ5v1v2

λ5v1v2 −λ5v21



 .(3.53)
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λ4

ξ = 0 ⇒ λ5 < 0

λ5

λ4 + λ5 = 0

Massive Photon

Massless Photon

(0,0)

1

Figure 3.3: Parameter space for massive and massless photon in a type I 2HDM with potential A.

This leads to two eigenstates

m2
G = 0 (neutral Goldstone bosons)(3.54)

m2
A = −λ5(v

2
1 + v22) (neutral pseudoscalar boson).(3.55)

The mixing angle is again tanω = v2/v1. Finally, there is φ3φ7 mixing:

(3.56) M2
φ3φ7

=




2λ1v21 (λ3 + λ4 + λ5)v1v2

(λ3 + λ4 + λ5)v1v2 2λ2v22



 .

This is the 2× 2 mass matrix for the two physical neutral scalar Higgs bosons of the

theory, h and H. The mixing angle to rotate from {φ3, φ7} basis to {H, h} basis is

usually called α, which is defined by convention to satisfy

(3.57)




H

h



 =




cosα sinα

− sinα cosα








φ3

φ7



 .

The solutions are obtained by simple eigenvalue, eigenvector analysis of the 2 × 2

matrix, and one obtains

(3.58) tan 2α =
λ345v1v2

λ1v21 − λ2v22
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where λ345 = λ3 + λ4 + λ5. We will use the convention that H is the ‘SM-like’ Higgs

and hence we will always take α < π/4. The masses of the CP-even scalars are,

(3.59) m2
h,H = λ1v

2
1 + λ2v

2
2 ±

�
(λ1v21 − λ2v22)

2 + λ345v1v22.

.

We require that the mass matrix be positive definite, which puts important con-

straints on the parameters of the theory. For example, from the charged Higgs and

pseudo-scalar Higgs boson masses we know that

(3.60) λ4 + λ5 < 0, and λ5 < 0

is required. Note that the first condition is the same as Eq. (3.45), the condition

that ensures that the photon remains massless. Fig. 3.3 plots the parameter space

in the λ4 vs. λ5 plane that corresponds to massive photon and massless photon cases

in agreement with Ref. [69].

Potential B: λ5 = 0, b �= 0

Potential B can be obtained by imposing a global U(1) symmetry for Φ2 and

allowing it to be broken only softly by dimension-two terms like bΦ†
1Φ2,

V (Φ1,Φ2) = µ2
1|Φ1|2 + µ2|Φ2|2 + b(Φ†

1Φ2 + c.c.) + λ1|Φ1|4 + λ2|Φ2|4 + λ3|Φ1|2|Φ2|2

+λ4(Φ
†
2Φ1)(Φ

†
1Φ2).(3.61)

Without loss of generality all the λi couplings are real due to hermiticity. The

coupling b can be rotated to real by Φ2 absorbing its phase.

The conditions for the potential to be bounded from below in all field directions

are the same as Eq. (3.43) with λ5 = 0 as these conditions are determined by the

quartic couplings so that the additional bilinear term does not affect them. The
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most general vacuum expectations values for the two Φ1,2 Higgs fields can again be

expressed by Eq. (3.44).

The minimization condition dV/dφ1 = 0 [69] in this case is given by,

(3.62) bu2 +
λ4

2
u2v1v2 cos ξ = 0

It is clear that for

(3.63) b+
λ4

2
v1v2 cos ξ �= 0

it is required that u2 = 0 from the φ1 minimization condition in Eq. (3.62). This

ensures that electromagnetism is not broken and the photon remains massless as

the doublets get VEVs. This condition and the other minimization conditions then

ensure that the doublets get VEVs of the form,

(3.64) Φ1 =




0

v1/
√
2



 , and Φ2 =




0

v2/
√
2





where v1 ≥ 0 and we can always choose v2 ≥ 0 by a convenient choice of sign of the

doublet field Φ2, which can then be absorbed in a redefinition of the coupling b. The

minimization conditions dV/dφ3 = 0 and dV/dφ7 = 0 given by [69],

(3.65)
φ3 : µ2

1 + b(v2/v1) +
λ3+λ4

2 v22 + λ1v21 = 0

φ7 : µ2
2 + b(v1/v2) +

λ3+λ4
2 v21 + λ2v22 = 0

can be used to eliminate the parameters µ1 and µ2 [70].

Let us now look at the mass matrix after substituting µ2
1 and µ2

2 from Eq. (3.65).

Let us first look at the φ1φ5 and φ2φ6 mixings, which have the same 2 × 2 mass

matrix:

(3.66) M2
φ1φ5

= M2
φ2φ6

=




−λ4

2 v
2
2 − bv2/v1

λ4
2 v1v2 + b

λ4
2 v1v2 + b −λ4

2 v
2
1 − bv1/v2




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which leads to four eigenstates

m2
G± = 0 (charged Goldstone bosons)(3.67)

m2
H± = −v21 + v22

2

�
λ4 +

2b

v1v2

�
(charged Higgs bosons),(3.68)

the mixing angle being,

(3.69) tanω =
v2
v1
.

Now let us look at φ4φ8 mixing:

M2
φ4φ8

=




−bv2/v1 b

b −bv1/v2



 .(3.70)

This leads to two eigenstates

m2
G0 = 0 (neutral Goldstone boson)(3.71)

m2
A = − b

v1v2
(v21 + v22) (neutral pseudoscalar boson),(3.72)

where the mixing angle is again given by tanω = v2/v1. Finally, there is φ3φ7 mixing:

(3.73) M2
φ3φ7

=




2λ1v2 − bv2/v1 (λ3 + λ4)v1v2 + b

(λ3 + λ4)v1v2 + b 2λ2v22 − bv1/v2



 .

We have again,

(3.74)




H

h



 =




cosα sinα

− sinα cosα








φ3

φ7



 .

The masses and mixing angle are,

(3.75) tan 2α =
λ34v1v2 + b

λ1v21 − λ2v22 + bv
2
1−v22
2v1v2

where λ34 = λ3 + λ4, and

(3.76)

m2
h,H = λ1v

2
1 + λ2v

2
2 − b

v21 + v22
2v1v2

±

��
λ1v21 − λ2v22 + b

v21 − v22
2v1v2

�2

+ (λ34v1v2 + b)2.
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λ4

2b
v1v2

ξ = 0 ⇒ 2b
v1v2

< 0

λ4 +
2b
v1v2

= 0
(Massive Photon allowed)

Unstable Vacuum

Massless Photon

(0,0)

1
Figure 3.4: Parameter space for the different patterns of EWSB in the type I 2HDM with potential
B.

Requiring the charged and pseudoscalar Higgs mass to be positive gives us,

(3.77) λ4 +
2b

v1v2
< 0

2b

v1v2
< 0.

Fig. 3.4 shows the the regions in the parameter space which lead to the different

patterns of EWSB for potential B.

An analysis of the general potential in Eq. (3.41) is complicated by the fact that

both b and λ5 cannot be chosen to be real by redefining the phase of Φ2. This leads to

a mixing between the pseudoscalar and CP even states. If both b and λ5 are assumed

to be real, however, the masses and mixing angles for the general potential in Eq.

(3.41), assuming that the vacuum is invariant under CP and electromagnetism, are,

(3.78) m2
H± = −v21 + v22

2

�
λ4 + λ5 +

2b

v1v2

�

(3.79) m2
A = −(v21 + v22)

�
λ5 +

b

v1v2

�

(3.80) m2
h,H = λ1v

2
1 + λ2v

2
2 − b

v21 + v22
2v1v2

±

��
λ1v21 − λ2v22 + b

v21 − v22
2v1v2

�2

+ λ345v1v22

(3.81) tanω =
v2
v1
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Figure 3.5: The solid lines show contours of constant r, the fractional deviation of the type I 2HDM
value of the b → sγ width from the SM value. The dashed lines are the boundaries of the region
in the mH+ -tanω plane excluded by constraints from the b → sγ branching rate at two standard
deviations. As one can see from Eq. (3.84) there are two different ways of satisfying the constraint:
(1) if tanω is small the type I 2HDM width is close to the SM value, or (2) tan2 ω can be tuned

to a higher value so that
���
�

i=c,t
λiC7i(mb)

��� in Eq. (3.84) is close to the SM value (C7i � −C
SM

7i ).

Thus there are two disconnected allowed regions in Fig. 3.5. The star shows our choice of mH+ and
tanω that we use for collider simulations later.

(3.82) tan 2α =
λ345v1v2 + b

λ1v21 − λ2v22 + bv
2
1−v22
2v1v2

where λ345 = λ3+λ4+λ5. Thus in 2HDMs from the original eight degrees of freedom

we get three Goldstone bosons and five physical scalars. The Goldstone bosons are

absorbed as longitudinal modes by W+/− and Z. The tree level masses of the W+/−

and Z are,

(3.83) MW = MZ cos θW =
g

2

�
v21 + v22.

We now give some of the constraints that this model experiences when requiring

compatibility with all past experiment.

3.4.2 Indirect Constraints

Constraints due to virtual H+/− effects
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In the type I 2HDM the coupling of H+/− to the fermions is proportional to tanω.

Thus in the type I 2HDM, unlike the type II 2HDM, all the constraints coming from

processes involving virtual H+/− can be met for small enough tanω. The strongest

such constraint comes from the b → sγ branching rate. An expression for the width

of the process in type I 2HDMs is [71],

Γb→sγ =
αG2

Fm
2
b

128π4

�����
�

i=c,t

λiC7i(mb)

�����

2

C7i(mb) = η−16/23[C7i(MW )− 116

135
(η10/23 − 1)− 116

378
(η28/23 − 1)]

C7i(MW ) = AW (m2
i /M

2
W ) + tan2 ω AHi(m

2
i /m

2
H+).(3.84)

Here λi = V ∗
isVib, η = αs(mb)/αs(MW ), AW is the SM contribution due to W+/−

loops and AH is the additional contribution due to triangle diagrams involving the

charged Higgs. For expressions of AW and AH see for instance [71]. The SM value

for the width can be obtained by simply putting ω = 0 or taking the limit mH+ → ∞

in the above equation.

Let the fractional deviation of the type I 2HDM value from the SM value be,

(3.85) r =
Γ2HDM−I
b→sγ − ΓSM

b→sγ

ΓSM
b→sγ

.

Fig. 3.5 shows the contours of constant r in themH+-tanω plane. The dashed lines in

Fig. 3.5 show the region excluded by experiments at 2σ level. To obtain the dashed

curves we have used the world average for the experimental value of the branching

fraction [72],

B(B̄ → Xsγ) = (3.55± 0.24+0.09
−0.10 ± 0.03)× 10−4.

We have rescaled the theoretical value obtained using Eq. (3.84) to reproduce the

NNLO SM prediction [73],

B(B̄ → Xsγ) = (3.15± 0.23)× 10−4
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in themH+ → ∞ limit and added the error associated with this value in quadrature to

the experimental error. From Eq. (3.84) one can see that there are two different ways

of satisfying the constraint: (1) if tanω is small the type I 2HDM width is close to

the SM value, or (2) tan2 ω can be tuned to a higher value so that
���
�

i=c,t λiC7i(mb)
���

in Eq. (3.84) is close to its SM value (C7i � −CSM
7i ). Thus there are two disconnected

allowed regions in Fig. 3.5. We can see from Fig. 3.5 that the constraint is satisfied

for all values of mH+ if,

(3.86) tanω < 0.32

which translates to,

(3.87) v2 < 75 GeV.

For mH+ = 200 GeV we obtain the constraint tanω < 0.47 (v2 < 105 GeV). Another

constraint due to virtualH+/− effects comes from B0
d−B̄0

d oscillations. This, however,

puts a weaker constraint than the b → sγ process at the 2σ level [74].

It is important to note that a small v2 not only implies a small ω but also suggests

a small α for a 2HDM with the general potential in Eq. (3.41). This can be seen

from the expression for tan 2α in Eq. (3.82). Using Eq. (3.79) we can obtain the

expression for tan 2α for tanω = v2/v1 � 1,

(3.88) tan 2α ≈ λ3 + λ4 − (m2
A/v

2
1)

λ1 − 1
2(m

2
A/v

2
1 + λ5)

tanω

which shows that a small v2 suggests that α should be small too.

The ρ parameter

In the 2HDM the ρ-parameter gets additional contributions from corrections to

MW and MZ due to loops of the scalars. With respect to the SM theory with a

Higgs boson mass of mh = 120GeV, the range of ∆ρ that can be tolerated [55] by
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Figure 3.6: Upper bounds on sin2 δ as a function of mh derived from searches for the Higgsstrahlung
process e

+
e
− → Zh at LEP with center of mass energy

√
s = 91-209 GeV. It has been assumed

that h decays entirely to bb. We also plot the three parameter sets A, B and C that we have chosen
for simulations (Table 3.3) on the sin2 δ - mh plane. The curve has been reproduced from Ref. [2].

replacing the single SM Higgs boson with the 2HDM is 0.0000 <∼ ∆ρ <∼ 0.0012 at the

68% CL, where ∆ρ = ρ(2HDM)−ρ(mSM
h ). The 2HDM computation needed for this

can be found in Ref. [75]. One finds that it is easy to satisfy precision electroweak

constraints for a 2HDM with masses in the neighborhood of 50−300GeV, as we shall

see later in our example benchmark points that we use to study collider signatures.

3.4.3 Collider Constraints

The fact that none of the scalars h,H or A were seen at LEP puts constraints on

their masses mh,mH ,mA and δ = |α − ω|. We are especially interested in the cases

when the decay modes A → Zh or H → hh/AA are kinematically allowed, i.e. when

the conditions |mA −mh| > mZ or mH > 2mh/A hold respectively.
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The major constraint on the mass of the non SM-like CP-even Higgs, mh comes

from the non-discovery of h produced by the Higgstrahlung process e+e− → hZ at

LEP. The cross section of the Higgstrahlung process in the 2HDM is suppressed by a

factor of sin2 δ with respect to the cross section of the same process in the SM. It is

therefore possible to have h as light as we wish by choosing a sufficiently small value

of δ. Upper bounds on the cross section for this process for a particular value of mh

therefore give upper bounds on sin2 δ. Fig. 3.6 shows the LEP2 upper bounds [2] on

sin2 δ vs mh assuming h decays entirely to bb̄. As one can see from the figure there

are no constraints on mh at all, if sin δ < 0.1, and no constraints on sin δ if mh > 114

GeV. If we take sin δ < 0.2, mh ≈ 100 GeV is safely within allowed limits.

Another important process that could have been potentially seen at LEP is the

associated production process e+e− → hA . The cross section for this process is

proportional to cos2 δ in the 2HDM. Analysis of LEP2 data, assuming |mA −mh| >

mZ so that A predominantly decays as A → Zh, has been done by the DELPHI

collaboration [76] and the process has been found to be unconstrained. Even if this

condition does not hold there are no constraints on δ if we have mA + mh > 200

GeV [2].

The constraints on the pseudoscalar mass mA are much weaker. The cross section

of associated production process, e+e− → HA, is proportional to sin2 δ. The results

of LEP analyses motivated by this process put upper limits on sin2 δ for a given mA

and mH (see Ref. [2] for details). If the dominant decay mode is H → AA there are

no constraints at all if mH > 120 GeV and mA > 50 GeV [2].

As far as the charged Higgs is concerned, the LEP2 direct search constraints from

the process e+e− → Z∗ → H+H− place a lower limit of 76.7 GeV on m+
H [77]. The

Tevatron search for t → H+b puts a 95% CL upper bound on B(t → H+b) at 0.1−0.3
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in the mass range 90 GeV< mH+ < 150 GeV assuming B(H+ → cs̄) to be 100% [78].

For almost the entire mass range B(t → H+b) < 0.1 is allowed. In the type I 2HDM

this branching ratio is proportional to tan2 ω, so that we obtain tanω (≈ sω) < 0.3

for mH+ = 90 GeV and tanω < 0.8 (sω < 0.6) for mH+ = 150 GeV by requiring

B(t → H+b) < 0.1. The limit on tanω is actually too conservative for mH+ = 90

GeV as the upper bound on the branching fraction for this mass is about 0.3.

Finally let us consider the SM-like Higgs boson H. If mH < 2mh/A, H would

predominantly decay into quarks with branching ratios very similar to that in SM.

In this case the process e+e− → HZ puts a weaker lower bound on mH in 2HDMs

than the SM value 114 GeV because the 2HDM cross section of this process is smaller

than the SM cross section by a factor cos2 δ. If H → hh/AA is allowed there are

of course no constraints on δ if mH > 115 GeV, and for δ > 0, mH can be even

smaller [2]. We will take mH = 120 GeV for all the parameter sets we use in our

simulations in section 3.6.

3.5 Yukawa Coupling Perturbativity

If there exists at least one Higgs boson with a VEV that does not couple to a

fermion f , the Yukawa coupling of that fermion λf must necessarily be greater than

its corresponding would-be SM value. Larger Yukawa couplings in the theory run

the risk of renormalizing to strong coupling at a lower scale than desired. In our

study this is a consideration that must be explored, since our emphasis is on next

generation Higgs bosons that do not couple to the fermions. Therefore, in this section

we quantify where Yukawa couplings blow up in renormalization group evolution as

a function of the VEV of fermiophobic Higgs doublets in the theory. The effect is

particularly pronounced for the top quark Yukawa coupling, since it is associated
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with the highest mass fermion in the theory.

The one loop Renormalization Group Equations (RGEs) for the Yukawa (λf ) [79]

and gauge couplings (see for eg. [80]) in an extension of the SM with nd extra Higgs

doublets is,

dλt

d(lnµ)
=

λt

16π2

�
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2
λ2
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3

2
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dg�

d(lnµ)
=

41+nd
6 g�3

16π2
,

dg2
d(lnµ)

=
−19+nd

6 g32
16π2

,
dg3

d(lnµ)
= − 7g33

16π2
,(3.92)

where S = 3
�

U λ2
U + 3

�
D λ2

D +
�

E λ2
E. U,D and E denote the up-type quarks,

the down-type quarks and the leptons while g�, g2 and g3 are the U(1)Y , SU(2)L

and SU(3) gauge couplings. Note that the summation over U,D does not include

a summation over colors. There are similar equations for the other up-type quarks

(t → U in Eq. (3.89)), the other down-type quarks (b → D in Eq. (3.90) and the

other leptons (τ → E in Eq. (3.91)). For the type I 2HDM nd = 1.

For supersymmetric models with ng extra generations of Higgs doublet pairs than
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Figure 3.7: ΛSC , the energy scale at which either one of the three large Yukawa couplings λt, λb or
λτ becomes larger than 4π, as a function of cω. We show curves for the type I 2HDM case as well as
the the SUSY 2HGM with different values of tanβ1. For the tanβ1 = 50 and tanβ1 = 65 cases we
show two dashed curves corresponding to the minimum (left) and maximum (right) allowed value
of mb(MZ) in Eq. (3.102). For the mean value mb(MZ) = 2.85 GeV in Eq. (3.102), for tanβ1 ≥ 55
it is the bottom Yukawa which becomes strong (> 4π). We have used the Renormalization Group
Equations at one loop level.

MSSM the one loop RGEs for Yukawa [79] and gauge couplings (see for eg. [81]) are,
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For the supersymmetric two Higgs generation Model (SUSY 2HGM) of Section 3.3.1

ng = 1. There are similar equations for the other up-type quarks (t → U in Eq.

(3.93)), the other down-type quarks (b → D in Eq. (3.94)) and the other leptons
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(τ → E in Eq. (3.95)).

The Yukawa couplings in type I 2HDM are given by,

λf (mf ) =
√
2
mf (mf )

vcω
(3.97)

where cω = v1/v (with v = 2MW/g). In the SUSY 2HGM the Yukawa couplings are

given by,

λU(mU) =
√
2
mU(mU)

vcωsβ1

(3.98)

λD(mD) =
√
2
mD(mD)

vcωcβ1

(3.99)

λE(mE) =
√
2
mE(mE)

vcωcβ1

(3.100)

where tan β1 = vu1/vd1.

In the type I 2HDM all the Yukawa couplings except for the top Yukawa coupling

can be ignored. In the SUSY 2HGM in addition to the top Yukawa, the tau and

bottom Yukawa couplings also become important at high values of β1. We have

solved the RGE with the boundary conditions,

mt(pole) = mt(mt)

�
1 +

4αs(mt)

3π

�
= 171.3 GeV(3.101)

mb(MZ) = 2.7− 3.0 GeV(3.102)

mτ (MZ) = 1.75 GeV(3.103)

[82] and αs(MZ) = 0.1182. In Eq. (3.102) the allowed range corresponds to the

Particle Data Group (PDG) range for mb(mb) = 4.03 − 4.37 GeV [55]. Let ΛSC be

the strong coupling scale, i.e the energy scale at which either one of the three large

Yukawa couplings λt, λb or λτ becomes larger than 4π. In Fig. 3.7 we show how ΛSC

varies as a function of cω. We show the curve for the type I 2HDM case as well as

the curves for the SUSY 2HGM for various values of tan β1. In the SUSY 2HGM at
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Set Input Parameters ∆ρ

A mH = 120 GeV, mh = 50 GeV, mA = 150 GeV, 0.0010
mH+ = 200 GeV,sω = 0.1, sα = 0.2 (sin δ = 0.10)

B mH = 120 GeV, mh = 70 GeV, mA = 180 GeV, 0.0003
mH+ = 200 GeV,sω = 0.1, sα = 0.2 (sin δ = 0.10)

C mH = 120 GeV, mh = 100 GeV, mA = 200 GeV, < 0.0001
mH+ = 200 GeV,sω = 0.1, sα = 0.3 (sin δ = 0.20)

Table 3.3: Example parameter sets. The values of ∆ρ are computed in these 2HDMs with respect
to the SM value with Higgs mass of 120GeV.

high values of tan β1
>∼ 50 the bottom Yukawa coupling becomes strong at a lower

energy scale than the top Yukawa coupling.

We see from the results of this section that if we allow the fermiophobic next

generation Higgs doublet too large of a VEV, the enhanced Yukawa couplings that

are required to make up for the smaller VEV of the Higgs boson that the fermions

couple to may diverge at a lower scale than desired. For example, if one wishes to

preserved supersymmetric gauge coupling unification up to the scale of ∼ 1016 GeV

there are critical values of cosω that cannot be crossed depending on tan β1, which

leads to maximum values of the next generation Higgs boson VEV.

3.6 Signatures at the Large Hadron Collider

In this section we identify processes that can provide signatures of next generation

Higgs bosons at the LHC. While our numerical results have been obtained for the

type I 2HDM our basic conclusions are true for next generation Higgs bosons in

general.

3.6.1 Dominant decay modes

We will now compute the branching ratios of the various decay modes of the

neutral Higgs bosons in the type I 2HDM. The relevant Feynman rules can be found

in Ref. [66].
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Fig. 3.8(a) shows the branching ratios for decay of the pseudoscalar A (see Eq.

(3.42)). The decay modes A → hh, A → HH, A → WW and A → ZZ are not

allowed by symmetry as A is a pseudoscalar. As shown in the figure, when allowed

kinematically, the branching ratio for A → Zh is nearly unity.

The SM-like Higgs H decays mainly via the modes H → hh/AA even if modes like

H → WW and H → ZZ are kinematically allowed. Fig. 3.8(b) shows the branching

ratios of H in potential A with a light h.

The branching ratios of h are very similar to that of a SM Higgs for small values

of mh when decay modes like h → ZA and h → AA are not kinematically allowed.

For mh > 2mA, the decay mode h → AA overwhelms all other modes including

h → ZA, h → WW and h → ZZ. A very interesting limit is α → 0, ω → 0. In this

limit h becomes both fermiophobic and bosophobic (the tree level coupling of h to

fermions is proportional to −sα/cω and the coupling to vector bosons is proportional

to sin δ) and the dominant decay mode becomes h → γγ. This case has been dealt

with in detail in Ref. [66] and [83].

3.6.2 The pp → Zh(bb̄)h(bb̄) signal and choice of input parameters

As we noted in Section 3.4.2 indirect constraints put an upper bound on v2 in

the type I 2HDM and this not only implies a small ω but also suggests a small α

and hence suggests a small δ = |α − ω|. A small VEV for the fermiophobic Higgs

doublets is also required for high scale perturbativity as we saw in the last section.

If δ is small a light h can satisfy the constraints due to the e+e− → hZ at LEP

(Fig. 3.6). The pseudoscalar A must then be chosen sufficiently heavy to satisfy the

LEP constraints from e+e− → hA (see Section 3.4.3).

Another implication of a small δ is that unlike the process pp → hZ, which is

highly suppressed (by sin2 δ in 2HDMs), the processes pp → Ah and pp → ZH are
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Figure 3.8: (a) Branching ratios of the various decay modes of the pseudoscalar A with mH = 120
GeV, mh = 70 GeV, mH+ = 150 GeV, sα = 0.2 and sω = 0.1 in any 2HDM and (b) branching
ratios of the SM-like Higgs H in potential A with mA = 180 GeV, mh = 70 GeV, mH+ = 150 GeV,
sα = 0.2 and sω = 0.1.

only mildly suppressed (by cos2 δ in 2HDMs). In the first case, if allowed kinemat-

ically, A predominantly decays as A → Zh (Fig. 3.8(a)) and in the second case H

predominantly decays as H → hh/AA (Fig. 3.8(b)) if allowed to kinematically so

that both processes can lead to the same final state Zh(bb̄)h(bb̄).3

Table 3.3 shows three different sets of input parameters for which we perform

simulations to compute the pp → Zh(bb̄)h(bb̄) signal. Set A receives contributions

from both the pp → Ah and pp → ZH processes whereas all the other sets receive

contributions from the pp → Ah process only. We have also computed ∆ρ for all

the data sets in Table 3.3 to show that this constraint is met. As for the other

constraints, we have marked these parameter sets in Fig. 3.5 and Fig. 3.6 to show

that our parameter sets satisfy the b → sγ constraint and the e+e− → hZ constraint

respectively.

As mentioned in Section 3.4.3 a light A is experimentally less constrained than

a light h. Although we will not perform simulations for the process pp → A(bb̄)h
3Note, however, that in a 2HDM with potential B, in the limit α, ω → 0 we get m2

h → m2
A (see Eq. (3.72) and

Eq. (3.76)) so that A → Zh would not be kinematically allowed in this limit. This issue does not arise for potential
A or the general potential in Eq. (3.41).
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Figure 3.9: The 2b invariant mass spectrum Mbb for the signal on top of the SM background for
the input parameters in Set A (see Table 3.3), showing a peak at mh = 50 GeV. Two processes
contribute to the signal (1) pp → A(Zh)h → Z(l+l−)Zbb̄bb̄ and (2) pp → ZH(hh) → Z(l+l−)Zbb̄bb̄

. The cuts applied are those in eqs. (3.104)-(3.107) and the center of mass energy has been taken
to be 14 TeV. The branching ratio B(H → hh) ≈ 1. The reconstruction efficiency of the lepton
pair and the jets and the b-tagging efficiency have all been taken to be unity at this stage.

followed by h → ZA(bb̄) the analysis of the process would be very similar to the

process we will consider. This process would be important if h → ZA is kinematically

allowed but h → AA is not kinematically allowed. If mH > 2mA the process pp →

ZH(AA) → Zbb̄bb̄ will be a very important signature. Although we will not perform

a simulation for such a scenario, we will compute the contribution to the cross section

of the process pp → ZH(hh) → Zbb̄bb̄ for Set A (this will be a part of the net cross

section). This is again expected be very similar to the case when A, rather than h,

is the lighter scalar that H decays into.

It should be clear that all the arguments that have led us to the pp → A(Zh)h →

Zh(bb̄)h(bb̄) signal are valid not only for the type I 2HDM but for any multi-Higgs

theory having scalar doublets that do not couple to fermions. It is easiest to satisfy

the constraints from charged Higgs loop contributions (as in the b → sγ process) and

high scale perturbativity if the VEVs of these fermiophobic doublets are small. Let
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Figure 3.10: The 4b invariant mass spectrum M4b for the signal on top of the SM background
for the input parameters in Set A (see Table 3.3). Two processes contribute to the signal (1)
pp → A(Zh)h → Z(l+l−)Zbb̄bb̄ and (2) pp → ZH(hh) → Z(l+l−)Zbb̄bb̄ . The pp → ZH(hh)
mode gives rise to a peak at mH = 120 GeV. We have smeared the 4b invariant mass assuming
an experimental resolution of 20% of mH (24 GeV in this case) for the reconstructed peak. The
cuts applied are those in eqs. (3.104)-(3.107) and the center of mass energy has been taken to be
14 TeV. The branching ratio B(H → hh) ≈ 1. The reconstruction efficiency of the lepton pair and
the jets and the b-tagging efficiency have all been taken to be unity at this stage.

h and A be mass eigenstates that contain mostly the CP-even and CP-odd neutral

components of such a doublet respectively. A small VEV of this doublet would imply

that the ZZh coupling strength is small, but the ZAh coupling strength would not

get suppressed.

3.6.3 Signal and Background cross section at LHC

We now present the results of the simulations we performed for the pp → Zh(bb̄)h(bb̄)

signal. The analyses we present are new; however, there are related studies that we

will point out to the reader in our Set A analysis. All our results are independent of

the choice of 2HDM potential except for the H → hh contribution to the signal in pa-

rameter set A that depends on B(H → hh) which is model dependent. B(H → hh)

has been taken to be equal to its value in potential A which is nearly 1. We used
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Figure 3.11: Invariant mass spectrum Mbb for the signal on top of the SM background for the
input parameters in Set B (see Table 3.3), showing a peak at mh = 70 GeV. The signal process is
pp → A(Zh)h → Z(l+l−)Zbb̄bb̄ . The cuts applied are those in eqs. (3.104)-(3.107) and the center
of mass energy has been taken to be 14 TeV. The reconstruction efficiency of the lepton pair and
the jets and the b-tagging efficiency have all been taken to be unity at this stage.

MADGRAPH [84] to generate signal and background events at 14 TeV center of

mass energy for the process pp → Zh(bb̄)h(bb̄) for the different parameter sets in

Table 3.3. We then decayed the Z to l+l− (l = e, µ) using the DECAY software in

the MADGRAPH package. Note that we have ignored any contribution to the SM

background from final states with lepton pairs not produced in Z decay that have

invariant mass close to MZ nevertheless. The following basic selection cuts have been

applied using MadAnalysis,

pT (b, l) > 15 GeV(3.104)

|ηb,l| < 2.5(3.105)

∆Rbp > 0.4.(3.106)

where ∆R =
�

(∆η)2 + (∆φ)2 and p is any parton (i.e. quark or lepton) in the

process. The background cross section with these cuts is 9.9 fb. To reduce the
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Figure 3.12: Invariant mass spectrum Mbb for the signal on top of the SM background for the
input parameters in Set C (see Table 3.3), showing a peak at mh = 100 GeV. The signal process is
pp → A(Zh)h → Z(l+l−)Zbb̄bb̄. The cuts applied are those in eqs. (3.104)-(3.107) and the center
of mass energy has been taken to be 14 TeV. The reconstruction efficiency of the lepton pair and
the jets and the b-tagging efficiency have all been taken to be unity at this stage.

background further we use the fact that two bb̄ pairs have the same invariant mass

in the signal up to experimental resolution. Detector simulations of scalars decaying

into b-pairs [85] find that because of detector effects like calorimeter energy resolution,

electronic noise, and physics effects like final state radiation, energy loss outside cone

and semi leptonic decays, only about 85% of the events register di-b-jet invariant

masses within 20% of the true value. To simulate this effect we smear the invariant

masses according to a Gaussian distribution such that 85% of the events lie within

20% of the mean. There are three ways to divide the four b-quarks (say abcd) into

two pairs (ab cd, ac bd and ad bc). The combination that gives the invariant masses

of the two pairs (after smearing) closest to each other has been considered (note that

in reality the experimental uncertainties in the invariant masses of the six possible
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Cross Section Cross Section Detector level Cross-
Set with the cuts with the cuts Section

in eqs. (3.104)-(3.106) (fb) in eqs. (3.104)-(3.107) (fb) with the cuts in
Eqs.(3.104)-(3.107)

Set A
pp → Ah 1.2 0.8 0.1
pp → ZH 3.6 2.7 0.4
Total 4.8 3.5 0.5

Set B
pp → Ah 0.9 0.6 0.09

Set C
pp → Ah 0.6 0.4 0.06

SM Background 9.9 2.6 0.4

Table 3.4: Signal and background cross sections for pp → Zh(bb̄)h(bb̄) at LHC. The center of mass
energy has been taken to be 14 TeV and the acceptance cuts are those mentioned in the top row.

b-pairs are not uncorrelated as assumed here). Let Mbb1 and Mbb2 be the smeared

invariant masses of the two b pairs thus selected, and let Mbb be the mean of these

two numbers. We impose the following cut in addition to those in Eq. (3.104),

|Mbb1 −Mbb2| < 0.2 Mbb.(3.107)

With this additional cut the background is reduced from 9.9 fb to 2.6 fb whereas the

signal is only reduced to about 70% of the value with only the cuts in eqs. (3.104)-

(3.106). We provide the cross sections for the different parameter sets and the back-

ground in Table 3.4. Note that the background cross section can be further reduced

by requiring Mbb to be in a certain mass window around mH

In Fig. 3.9 we plot the 2b invariant mass spectrum for Set A obtained for the

events passing the cuts in eqs. (3.104)-(3.107). For Set A the contribution to the cross

section of pp → Zh(bb̄)h(bb̄) comes from two different processes pp → A(Zh)h →

Zbb̄bb̄ and pp → ZH(hh) → Zbb̄bb̄. The branching ratio B(H → hh) has been

taken to be equal to its potential A value which is nearly 1. As shown in Fig. 3.9 the
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contribution from pp → ZH(hh) mode is quite large. This contribution also gives rise

to a peak in the 4b invariant mass spectrum as shown in Fig. 3.10. We have smeared

the 4b invariant mass assuming an experimental resolution of 20% of mH (24 GeV in

this case) for the reconstructed peak. We expect very similar results if A rather than

h is the scalar H decays to. The signal from pp → ZH(AA) → Zbb̄bb̄ will be a very

promising signature for the type I 2HDM, especially because the constraints on a light

A are rather weak as discussed in section 3.4.3. Similar analyses for H → AA have

been done before (in Ref. [86] the final state lA(bb̄)A(bb̄) has been considered while

in Ref. [87] the final state W (Emiss
T l)A(bb̄)A(bb̄) has been considered). These papers,

however, do not apply the cut in Eq. (3.107) which leads to improved significance of

the signal.

Fig. 3.11, 3.12 shows the 2b invariant mass spectrum for the other parameter sets.

Only the process pp → A(Zh)h → Zbb̄bb̄ contributes to the cross section in these

cases.

To get the cross section we expect the detectors to effectively measure we must

multiply by the efficiency of reconstruction of a lepton pair and that of four jets.

These efficiencies depend on kinematical quantities like pT and η. We take an average

value 0.8 for lepton pair reconstruction efficiency (see pgs. 72-92, pgs. 210-223 in

Ref. [49]) and 0.9 for reconstruction efficiency of a jet (see pgs. 286-287 in Ref. [49]).

We also require that at least three of the jets are b-tagged which gives an overall

b-tagging efficiency equal to
�
4
3

�
�3b(1− �b)+ �4b where the b-tagging efficiency for single

jet �b ≈ 0.5 [49]. Putting it all together we get,

σeff = 0.16 σ.(3.108)

This equation is applicable for both the cross section and the background. The

effective signal and background cross sections also appear in Table 3.4.
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We have not computed the contribution due to mistagging of c-jets or other light

jets. This will decrease the signal significance somewhat as mistagging is expected

to have an appreciable contribution only to the SM background and not the signal.

This is because the signal cross section is proportional to the square of the branching

ratio of h to the mistagged quarks but the branching ratio of h to quarks other

than b-quarks is much smaller. In Ref. [87] the signal and background cross sections

for the process pp → WH → W (Emiss
T l)A(bb̄)A(bb̄) have been computed including

mistagging effects. A rough estimate of the cross sections they obtain can be made

from Fig. 5 in their paper. Such an estimate shows that the background cross section

they obtain due to mistagged quarks is about a third of the contribution due to

correctly tagged b quarks. This mistag background is highly dependent upon the

details of detector performance issues that will be sorted out in the course of the

LHC runs. We do not expect the addition of these backgrounds to substantively

change the discovery capability that we have presented, especially since they are

unlikely to peak at the Higgs mass mh in the di-jet invariant mass spectrum.

3.7 Conclusion and Discussion

In conclusion, we have argued that next generation Higgs bosons should be viewed

as generic possibilities in string theory model building, and illustrated this viewpoint

with recent developments in string phenomenology. We presented a generalized the-

orem for the structure of Higgs couplings to SM fermions that automatically avoids

problematic tree-level flavor changing neutral currents that are induced by new Higgs

boson exchanges. Our viewpoint is that the interaction rules of this theorem are too

restrictive to be satisfied without a principle. In the case of the two-Higgs dou-

blet model of supersymmetry, the principle is holomorphy. Additional Higgs bosons
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added in any other context, such as more Higgs doublet pairs in supersymmetry

or simply another Higgs boson in the SM, requires a strong discrete symmetry or

selection rule. This can be contemplated within effective field theories, for example

by Φ → −Φ Z2 symmetry, or within string theory by algebraic selection rules that

may not totally forbid the unwanted couplings but can approximate zero, as was the

case in the work of [51].

Next we considered various constraints that these theories must face. For exam-

ple, although tree-level flavor changing neutral currents induced by neutral Higgs

exchanges may be satisfied, loop-level ones induced by the charged Higgs boson may

not be. The b → sγ transition is quite constraining to exotic Higgses that get large

vacuum expectation values, since they steal VEV from the Higgs that couples to

fermions, thereby raising those fermion Yukawa coupling magnitudes to dangerous

levels. Even normal Cabibbo-Kobayashi-Maskawa (CKM) mixings can create too-

large amplitude shift in that case compared to what experiment allows, and therefore

the parameter space is not completely open and limits are derived on the exotic Higgs

VEV as a function of the charged Higgs boson mass.

We computed the spectrum of Higgs boson states with a next generation in the su-

persymmetric and non-supersymmetric context. Within supersymmetry we showed

that there is the prospect of slightly raising the tree-level CP even Higgs boson mass

with respect to the MSSM in the smaller tan β region. The effects are largest when

the next generation Higgs boson has a large vacuum expectation value. The large

Yukawa couplings that are present when an exotic, fermiophobic Higgs doublet takes

a large VEV can alter the domain of perturbativity of the theory. We showed both in

the SM context and the supersymmetry context that the top quark Yukawa coupling

could develop a Landau pole well below the Planck scale. A low-scale Landau pole
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would preclude the existence of a perturbative theory description of unification at

the high scale, and these results must be taken into account when considering a next

generation of Higgs bosons.

Finally, we investigated the phenomenology of the exotic Higgs sectors at the

LHC. Multi-Higgs boson phenomenology within supersymmetry is a mature topic;

however, the fermiophobic next generation Higgs boson layer to the theory has not

been considered in depth. The salient new features are similar to SM phenomenology

with an additional fermiophobic Higgs doublet. Thus, we discussed collider physics

possibilities within that less complex framework.

A particularly interesting possibility is the production of hA at the LHC, followed

by A → hZ. Assuming h is rather light, say less than ∼ 150GeV, we can expect

the largest branching fraction of h decays to be to bb̄. For good distinction from

background we can also demand the Z decay to leptons l+l−. Thus, the signal

becomes 4b+ 2l. Background becomes particularly limited when we require at least

three b-quark tags and that the four jets reconstruct two equal mass resonances.

We propose that as a search strategy for this case, and show that there are good

prospects for the LHC to find this signal. Discovery would be an indication of next

generation Higgs bosons.



CHAPTER IV

Higgs boson significance plot deformations due to mixed-in
scalars

4.1 Mixed-in singlets

Most of the research related to LHC phenomnology has been directed at different

approaches to electroweak symmetry breaking (EWSB) and the hierarchy problem.

The possibility of new physics at the TeV scale that is not directly related to EWSB

and the hierarchy problem, however, cannot be ruled out. Such new physics will

also be accessible to the LHC and one should be prepared for it. The LHC should

improve our understanding of what the TeV scale lagrangian of our world is and we

should be open to all possibilities not just those that address the questions that we

think, with our limited understanding, to be important. We can, for instance, think

of new, hidden forces under which the SM is not charged. String theory landscape

studies, suggest, for instance that many such hidden sectors might exist. While such

new physics may not have any conceptual link with EWSB, as we will see in this

chapter, it can still affect Higgs physics at the LHC in very interesting ways.

How would such hidden gauge groups affect us? One possibility is that there

are heavy ‘messenger’ states charged under both SM and hidden sector groups. Such

models are called hidden valley models [88]. Another possibility is that relevant gauge

invariant hidden sector operators can directly couple to relevant gauge invariant
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operators in the SM via renormalizable couplings. The only relevant gauge invariant

SM operators are |ΦSM |2, ΦSM being the SM like Higgs and the hypercharge field

strength Bµν . Thus we can think of the following couplings,

(4.1) |ΦSM |2|Φ�|2 and BµνX
µν

where Φ is a hidden sector scalar that is a singlet under the SM and Xµν is the field

strength of an abelian hidden sector gauge field. The former case is very generic

because any scalar field not charged under SM groups is a possible candidate for Φ�.

Such an operator would cause a mixing of the mass eigenstates,

(4.2)




H

h



 =




cosα sinα

− sinα cosα








φ

φ�



 .

where φ and φ� are the neutral CP-even components of the scalars. The couplings of

both the Higgs scalars, h and H will be proportional to the SM Higgs couplings and

the production cross-section times branching ratio of these Higgs bosons is suppressed

as follows,

σH = ξσSM(mH)

σh = (1− ξ)σSM(mh),(4.3)

where ξ = cos2 α. A more complete discussion of the theory can be found in [89,90].

While complex scalars charged under new hidden gauge groups are of more interest

to us, our analysis holds also for a real scalar, φ. In this case the interaction term

|ΦSM |2φ will also contribute to the mixing between the scalars. 1

1Such sharing of couplings can also arise from the mixing of the SM neutral Higgs component with the neutral
components of an exotic doublet, H�, or a triplet with no hypercharge, Σ, provided H� or Σ get a vanishing or small
VEV. A triplet is, of course, required to have no VEV as it would otherwise give tree-level contributions to the
ρ-parameter. As discussed in Ref. [20], vanishing or small VEVs are favored by experimental constraints for exotic
doublets too. As the exotic VEV, v2 → 0, and hence β = tan−1(v2/v1) → 0, the mixing angle, α, between the mass
eigenstates h and H, which is proportional to β in this limit, also vanishes, i.e. α = cβ → 0. However, depending on
the parameters of the potential, we can still, have α/β relatively large (for the case of the doublets, see Eq. (3.88))
so that we can have a non-negligible mixing angle α even if β is much smaller.
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In this letter we wish to show how the standard significance searches for the SM

Higgs boson are affected by the existence of these mixed-in states. Careful inspection

of the H → WW → lνlν “significance plots” could reveal the existence of two more

more Higgs bosons, even before the resonance of the second Higgs boson has been

found in another search channel with better mass resolution.

We will first describe the method of making significance projections for the SM

Higgs boson. For illustration we will proceed along the lines of the ATLAS analysis

which has a similar sensitivity to the CMS study but is much easier to reproduce. We

will comment on the CMS study at the end. We will then describe how the existence

of an extra mixed-in scalar state would alter the significance plots, showing that new

physics could be revealed through that shape first. And finally we will make some

concluding comments.

4.2 LHC Sensitivity Projections.

We will first reproduce the ATLAS sensitivity projections for Higgs searches at

the LHC for 7 TeV center of mass energy that were made in Ref. [1]. We concentrate

on the H → WW → lνlν (l = e, µ) channel as this is the most sensitive channel in

the range 125 − 190 GeV. In the range 130 − 180 GeV this is by far the dominant

channel and sensitivity limits obtained from just this channel alone are very close

to limits obtained by combining all channels. For mH � 130 GeV the H → γγ

channel starts to become competitive with the H → WW → lνlν channel and for

mH � 190 GeV the H → ZZ → 4l channel becomes important so that considering

theH → WW → lνlν channel alone for these masses would give us weaker sensitivity

estimates compared to estimates evaluated by combining all channels.

For our computations we will use the expected Standard Model (SM) signal (SSM)
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and background (B) values for L = 1 fb−1 integrated luminosity given in Ref. [1].

The values for SSM and B for the H → WW → lνlν channel have been given in

Ref. [1] as a function of the putative mass of the Higgs mH used for the search. The

only mH-dependent cut that has been applied in Ref. [1] is,

(4.4) mT ≤ mH

where the transverse mass mT is defined by mT =
�
(Ell

T + Emiss
T )2 − (Pll

T + Emiss
T )2,

the transverse momentum of the lepton pair, Pll
T = Pl1

T + Pl2
T , E

ll
T =

�
P ll 2
T +m2

ll,

Emiss
T is the missing transverse energy andmll is the invariant mass of the leptons [17].

This cut utilizes the fact that for a Higgs decaying to lνlν, mT is always less than

the Higgs mass. The other cuts used in Ref. [1] have been described in more detail

in Ref. [91] .

For evaluating exclusion confidence levels and discovery significances we use simple

event counting estimates assuming a Gaussian distribution for the expected number

of events. We review the procedure for setting exclusion limits and finding signifi-

cances in detail in the Appendix D. For the exclusion estimates we use the fact that

a signal value S still allowed after applying 95% confidence level exclusion bounds

must satisfy,

(4.5)
S�

S +B + (∆B)2
≤ 1.64.

Here ∆B is the systematic error. As far as significance estimates are considered we

use the significance estimator (defined as Sc12 in [92]),

(4.6) Z0 = 2(
√
S +B −

√
B)

�
B

B + (∆B)2
.

Taking ∆B/B = 0.15 we find projections for the 95% upper limit on S/SSM that

can be put with L = 1 fb−1. As values of the signal and background have been
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Figure 4.1: The multiple of the cross-section of a Standard Model Higgs boson which can be excluded
at 95% confidence level using 1 fb−1 LHC data at 7 TeV by the h → WW → lνlν channel. For
comparison we also show the ATLAS projections that appear in Ref. [1] for the h → WW → lνlν

channel (red dots) and after combining all channels (“+” signs).

given only for a discrete set of masses in Ref. [1], for intermediate masses we have

linearly interpolated. The results, shown in Fig.4.1, agree very well with ATLAS

projections for the reach of the H → WW → lνlν channel (red dots in Fig.4.1).

We also show in Fig.4.1 the projected ATLAS limits obtained in Ref. [1] after com-

bining all the channels. The numerical value ∆B/B = 0.15 has been chosen to get

maximum agreement with the ATLAS projections in Ref. [1]. As mentioned earlier

after combining all the channels stronger limits can be obtained although the lim-

its from the H → WW → lνlν channel alone are close to the combined limits for

130 GeV < mH < 190 GeV.

4.3 Significance with mixed-in Higgs bosons.

As can be seen from Fig.4.1 even if the SM Higgs is excluded at a certain mass it is

still possible to have a Higgs boson at that mass if the production cross-section times

branching ratio is suppressed by ξ compared to the SM. We want to consider the
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scenario where there are two Higgs scalars, H and h, and the production cross-section

times branching ratio of these Higgs bosons is suppressed according to Eq. (4.3).

We will always take ξ > 0.5 so that H will always be the SM-like Higgs. For a

sufficiently large ξ it would be hard to detect the scalar H. In a situation where

only H is detected, deviations from SM can still be detected if the cross-section for

production of H, which would be smaller than the SM expectation, can be measured.

As we will see, however, it may not always be easy to detect such a deviation in the

cross-section.

We will now describe how the H → WW → lνlν significance plots are distorted

for the scenario mentioned above. An important difference from the last section is

that instead of using the cut in Eq. (4.4) for the search we use the sliding mass

window,

(4.7) 0.75 mH < mT < mH .

This is the cut being used by ATLAS in their present searches [93–95]. The back-

ground B after applying the above cut can be easily calculated from the background

values given in Ref. [1] where the cut in Eq. (4.4) has been applied, by using 2

B(0.75 mH < mT < mH) =

B(mT < mH)− B(mT < 0.75 mH).(4.8)

We show in Fig.4.2 the background obtained by applying the cut in Eq. (4.7). One

can similarly reconstruct the background mT -distribution. For a particular mH-bin,

we will get a cross-section equal to,

B(mT < mH)− B(mT < mH − 10GeV).(4.9)
2In Ref. [1] background values for B(mT < mH) for mH < 120 GeV have not been provided; for mH < 120 GeV

we use the shape of the mT -distribution curves for the background provided in [93] keeping the normalization of
Ref. [1]. Note that [93] considers the signal and background only for the H + 0 jet and H + 1 jet analyses whereas
Ref. [1] also consider the subdominant H + 2 jet contribution.
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There is a subtlety which must be kept in mind if this cut is used for discovery

searches and not just for setting exclusion limits. If a Higgs boson does exist at

a certain mass mtrue
h/H , we will obtain a significance after applying the sliding mass

cut above, even for Higgs masses different from mtrue
h/H . Thus instead of a sharp

peak in significance at mtrue
h/H a broad excess would be seen around mtrue

h/H , and the

peak significance would not necessarily be obtained at mtrue
h/H if the background after

applying the above cut is not flat with respect to mH . As shown in Fig.4.2 the

background rises for mH � 135 GeV and falls for mH � 150 GeV. Consider the case

of a Higgs boson with mtrue
H = 125 GeV. Although the signal is maximum if one

takes mH = 125 GeV in the sliding window in Eq. (4.7), the background is smaller

for lower values of mH , as shown in Fig.4.2, so that the maximum significance is

obtained at a mass lower than the 125 GeV. This can be seen from ξ = 1 curve in

Fig.4.4 that shows the significance vs. mH curve peaking below 125 GeV. Note, the

plot was made for ξ = 1 but it would have the same shape (i.e., same peak position)

for any ξ value. On the other hand, the significance curve for a 170 GeV Higgs would

peak at values higher than 170 GeV because the background falls for mH > 170 GeV.

Before discussing an example we mention how the significances scale with inte-

grated luminosity. Because of systematic effects the significances do not scale as L0.5

but as Lα where α varies between 0.3 and 0.6 [1]. In this work we take α = 0.4

throughout.

4.4 Example with one extra mixed-in Higgs boson.

We want to illustrate the distortions in the significance plots that arise if there

are two Higgs bosons with cross-sections given by Eq. (4.3) but the standard single

Higgs search strategy is used. In order to better understand the significance profiles
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Figure 4.2: The signal cross-section for H and h with m

true

H
= 125 GeV, mtrue

h
= 170 GeV and

ξ = 0.8 and the SM background cross-section after applying the cut in Eq. (4.7).

we need to look at the underlying mT -distributions for the signal and background

first. We take mtrue
H = 125 GeV and mtrue

h = 170 GeV and consider two cases with

ξ = 1 and ξ = 0.8. For the mT -distribution of the signal we take the shape from

Ref. [96] and Ref. [94] for H and h respectively and we use the signal cross-section

values provided in Ref. [1] for the normalization. We show the mT -distributions for

the signal plus background taking ξ = 1 and ξ = 0.8 in Fig.5.6. As one can see

even though the production cross-section for h is smaller in the ξ = 0.8 case, the

mT distribution hardly changes from the ξ = 1 case (the SM limit) in the mH < 125

GeV region of the plot. The reason is that for the ξ = 0.8 case, there are extra

events from the decay of the scalar h having mT < 125 GeV. As the SM cross-

section in this channel at 170 GeV is much higher than the cross-section at 125

GeV this leakage of H-decay events into the mH < 125 GeV region is substantial.

For mH > 125 GeV there is a noticeable difference in the ξ = 0.8 case as there is

now an excess in this region which is not expected for ξ = 1. Such an excess can,
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Figure 4.3: We show the mT -distributions for the background (black) and the signal plus back-
ground with ξ = 1 (grey) and ξ = 0.8 (white). We have taken m

true

H
= 125 GeV and m

true

h
= 170

GeV. In the ξ = 0.8 case the effect of the 170 GeV Higgs can be seen in the presence of the excess
for mH > 125 GeV.

however, easily be misinterpreted as an error in background modeling or a background

fluctuation. If such an excess persists, to ascertain whether it is due to a mixed-in

scalar or a background modeling error, would require more effort in reanalyzing and

understanding the different backgrounds. To quantify the significance of this excess

we need to look at the significance plots shown in Fig.4.4 and Fig.4.5. As can be

seen from Fig.4.4 and Fig.4.5 there is no noticeable feature at 170 GeV. Also the

significance at 125 GeV does not decrease (in-fact it marginally increases) when we

go from ξ = 1 to ξ = 0.8. This is again because of the above mentioned extra events

from the decay of the scalar H having mT < 125 GeV that leak into the “125 GeV

signal”.

The Higgs boson at 125 GeV would also be seen in the H → ZZ → 4l and

H → γγ channels with much better mass resolution. The cross-section can, however,

not be measured accurately with 15 fb−1 data because of statistical uncertainties.

This is because a 20 % reduction in the cross-section would be less than even a one
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Figure 4.4: The significance vs mH curve for 5 fb−1 data after applying the sliding mass cut in
Eq. (4.7) on the signal and background assuming m

true

H
= 125 GeV and m

true

h
= 170 GeV. We

show the curve for ξ = 0.8 and ξ = 1. The dashed line shows the 2-sigma band around the ξ = 1
line.

sigma downward fluctuation. As far as the 170 GeV Higgs is concerned neither the

H → ZZ → 4l channel nor the H → γγ channel is sensitive to it with 15 fb data for

(1− ξ) = 0.2.

Thus we see that in the scenario mentioned none of the measurements discussed

so far would give any clear indication of the presence of the 170 GeV scalar. The only

difference between the ξ = 1 and ξ = 0.8 case would be in the shape of the significance

vs mH curve, which is due to a difference in the underlying mT -distribution. As can

be seen from Fig.4.4 and Fig.4.5 the significance falls off much more sharply in the

ξ = 1 case. The ξ = 0.8 curve lies within the two-sigma bands around the median

ξ = 1 expectation for low luminosities (see Fig.4.4) and the difference in shape

becomes significant only at higher luminosities (see Fig.4.5).

To disentangle the signal for h one can treat signal due to a supposed SM Higgs

at 125 GeV as part of the background. The mass of the lighter Higgs can be inferred

from excesses that would exist in other channels like H → ZZ → 4l and H → γγ.
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Figure 4.5: The significance vs mH curve for 15 fb−1 data after applying the sliding mass cut in
Eq. (4.7) on the signal and background assuming m

true

H
= 125 GeV and m

true

h
= 170 GeV. We

show the curve for ξ = 0.8 and ξ = 1. The dashed line shows the 2-sigma band around the ξ = 1
line.

This leads to a curve (Fig.4.6 ) which peaks in the high mass region. For 10 fb−1

luminosity we get almost a three-sigma excess which indicates the presence of a

heavier Higgs boson in addition to the Higgs at 125 GeV. Note that we are subtracting

the SM contribution for a 125 GeV Higgs whereas in reality the Higgs boson H at 125

GeV has a reduced cross-section with ξ = 0.8, and so the subtraction is unwittingly

too large. The dashed curve in Fig.4.6 shows the significance curve if the correct

light Higgs contribution with ξ = 0.8 is subtracted from the signal and included in

the background. Note that the peak position, even for the dashed curve is somewhat

displaced to masses higher than 170 GeV. This is because of the falling background

at 170 GeV as discussed below Eq. (4.9).

Finally let us comment on the CMS Higgs search analysis. Although both the

ATLAS and CMS analyses have similar sensitivities, the CMS analysis is more in-

volved as the cuts have been optimized individually for each Higgs boson mass [97].

The basic qualitative features that we have highlighted here, however, should still
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Figure 4.6: The significance vs mH curve for 15 fb−1 data after applying the sliding mass cut in
Eq. (4.7) on the signal and background, assuming m

true

H
= 125 GeV, mtrue

h
= 170 GeV, ξ = 0.8 and

treating the contribution of a SM Higgs at 125 GeV as background. The dashed curve shows the
significance curve if the correct light Higgs contribution with ξ = 0.8 is subtracted from the signal
and included in the background.

be true for the CMS analysis. Even in the CMS study Higgs bosons would show

up as broad resonances in the h/H → WW → 2l2ν channel, in most of the mass

region considered here, before they are discovered in other channels with better mass

resolution. Thus even in the CMS study the shape of the significance plots would

be crucial for distinguishing an SM Higgs scenario from the case where there is an

additional mixed-in scalar state. For the specific example we have considered even

in the CMS study one expects that a heavier Higgs at 170 GeV, even with smaller

couplings, would have substantial leakage of events to the signal window of a Higgs

with lower mass and that the significance plot would have a longer tail if there is an

additional heavier Higgs. To see how our results still hold for the CMS study as far

as the details are concerned, however, a thorough analysis needs to be done with the

CMS cuts.
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4.5 Conclusions.

In this letter we have considered two mixed-in scalars having masses in the range

where h/H → WW → 2l2ν channel is sensitive. We find no dilution of significance

of the ‘SM-like’ Higgs boson expected because of the mixing, because of leakage of

events from the other scalar into its signal region. Nevertheless, with one extra mixed-

in exotic Higgs boson, the shape of the significance plot for Higgs boson discovery

in the WW → 2l2ν channel – even while performing search for one SM Higgs –

gets altered in a way that might reveal the existence of this other Higgs boson. The

presence of the other scalar leads to a broadening of the excess over a larger mass

range relative to the minimal SM Higgs case. In such a situation we propose that

the second scalar can be more clearly identified by subtracting the contribution due

to the ‘SM-like’ Higgs

Of course, the total production rate for the ‘SM-like’ Higgs, which could be mea-

sured in other channels like H → γγ and H → ZZ → 4l, would be off compared to

the SM in the event that the Higgs boson is mixed-in with a scalar. The QCD uncer-

tainties of production rate, and the statistical uncertainties that would be present in

the initial phase of discovery would, however, be large enough that distortions in the

H → WW → 2l2ν significance plot may be more revealing than simple accounting

for the total rate.



CHAPTER V

Probing Quartic Neutral Gauge Couplings by diffractive
photon fusion at the LHC

5.1 Introduction

The Standard Model has been tested very accurately by experiments. There are,

however, many theoretical reasons to believe that there is physics beyond the SM.

Some of these motivations, like the hierarchy problem and the existence of dark

matter, point to the existence of new physics at the TeV scale. LEP-2 precision data

and flavor constraints seem to favor a scenario with a mass gap between a light Higgs

(mH � 200 GeV) and new physics at the scale of a few TeV. A model independent

way of parametrizing the effects of new physics in such a scenario is to use the

effective field theory approach. All possible operators allowed by the symmetries of

the theory are included, suppressed by appropriate powers of the cut-off Λ. If Λ

is the order of a few TeV, these operators can be directly measured at the Large

Hadron Collider.

These operators are expected to give rise to anomalous triple and quartic gauge

couplings. In this chapter we discuss a special class of these couplings: the Quartic

Neutral Gauge Boson Couplings (QNGC), that is, quartic vertices involving only the

neutral gauge bosons, γ and Z. QNGCs are special because as we will show they

do not exist in the SM and receive their lowest order contributions from dimension
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8 operators. Thus the measurement of these couplings would indicate directly the

presence of dimension 8 operators1 in a scenario where a light Higgs is present. This

is not true, for example, in the case of γγW+W− and ZZW+W− couplings which

get contributions from the SM lagrangian and its dimension 6 extension [98]. Thus

QNGCs can be very useful in probing new physics scenarios with a light Higgs that

exclusively generate dimension 8 operators. One such example that generates only

dimension 8 operators at tree-level is the exchange of the spin 2 Kaluza-Klein exci-

tations of the graviton in models with large extra dimensions. We will see how inte-

grating out these massive modes generates QNGCs and how probing these couplings

would allow us to probe the fundamental Planck scale in these extra dimensional

theories.

We also consider the higgsless case where electroweak symmetry is non-linearly

realized. In this case, with the exception of the ZZZZ coupling, QNGCs do not ap-

pear at the dimension 4 level and the lowest order contribution comes from dimension

6 operators. This is unlike quartic gauge couplings having W+/− bosons which al-

ways appear first at the dimension 4 level. Thus in this case also, unlike processes

involving quartic gauge couplings with W+/− bosons, processes involving QNGCs

can directly probe higher order operators (in this case dimension 6 operators).

In this chapter we will explore the possibility of measuring the γγγγ and γγZZ

couplings in the diffractive photon fusion processes, pp(γγ → γγ)pp and pp(γγ →

ZZ)pp (see Fig. 5.1) respectively. There are plans to install very forward detectors

by the ATLAS and CMS collaborations [99] which can detect protons that scatter

diffractively at small angles and thus can identify such processes. To the best of our

knowledge, this is the first study on the LHC sensitivity of the measurement of the
1In the case of the γγZZ coupling there is a non-local contribution from the γγ → H∗ → ZZ process which is of

an order lower than dimension 8 contributions. However, as we discuss later, this contribution can be subtracted if
the H → γγ partial width is known.
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p

p

where v = 246 GeV and,

a0 = c2wb1 + s2wb2 − cwswb3. (11)

Note that heavy particles that interact with the Higgs boson and photons generally induce

this operator when integrated out. Fortunately, the coupling a0 can be accurately measured

at the LHC by measuring the h → γγ partial width. Thus the effect of the only dimension 6

operator that contributes to the cross section can be subtracted.

We have not identified couplings for γγX orXZZ, that arise from dimension > 6 operators

and contribute to this process by an X exchange, because these contributions would have the

dependance ∼ 1/Λn with n > 4 which would be of higher order than dimension 8 which is the

lowest order at which the QNGCs get a contribution.

2.2 Higgsless case

Note that our treatment in the previous subsection differs from that in Refs. [5–8] where only
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Figure 5.1: The diffractive photon fusion processes pp(γγ → γγ)pp and pp(γγ → ZZ)pp. The out-
going protons can be detected by very forward detectors to be installed by ATLAS and CMS. In the
figure above Oi represents operators contributing to Quartic Neutral Gauge Couplings (QNGCs).

γγγγ coupling. There have been previous studies for the γγZZ coupling, but these

studies focussed only on the higgsless case. In Refs. [100, 101] probing the γγZZ

coupling by inelastic processes like pp → γγγ, pp → γγZ and pp → jj(ZZ → γγ) →

jjγγ has been studied, whereas, in Refs. [102–104] measurement of this coupling in

the diffractive process pp(γγ → ZZ)pp, that we will study in this work too, has been

explored. In this work, however, we consider both the light Higgs and the higgsless

cases. As we will see, in the higgsless case considered in the previous studies only a

subset of all the operators relevant to the light Higgs case are important.

Let us now see what are the advantages of diffractive photon fusion processes

in measuring these couplings. Even if a process can be traced back to a definite

set of operators as is the case here, it is rarely the case that a particular collider

signature can be traced back to a unique process. For this reason many different,

complementary measurements are usually required to uncover the underlying new

physics processes. For example consider the inelastic counterpart of the signature

we are considering for the γγZZ coupling, the pp → jj(γγ → ZZ) → jjZZ process
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or the similar vector boson fusion (VBF) process pp → jj(ZZ → γγ) → jjγγ.

Although these signatures would have a much larger cross-section than the diffractive

signature we are considering, if an excess is observed in the jjZZ or jjγγ final

states it would be hard to reconstruct the exact process responsible for it because

of the many different new physics processes in addition to QNGCs that can have

this signature2. The triple gauge boson production processes pp → γγZ (studied

previously in Ref. [100,101]) and pp → γγγ are somewhat better in this respect but,

again, because the intermediate state in pp → γγZ(γγγ) cannot be known, it would

not be possible to conclude with certainty that QNGCs are responsible, if an excess

is seen. The diffractive signals we study in this work are interesting because exclusive

final states where two protons have been detected in the forward detectors can arise

only from diffractive photon fusion or exclusive pomeron fusion. In the latter case

the underlying subprocess would be gg → γγ/ZZ. Thus the inverse problem of

pinning down the new physics responsible for an excess in the ppγγ and ppZZ final

states is relatively less ambiguous as there are only two new physics possibilities

namely the enhancement of the γγ → γγ/ZZ processes and/or the enhancement

of the gg → γγ/ZZ processes. As we will discuss later, exclusive pomeron fusion

processes are, however, expected to have a much smaller cross-section as compared

to photon fusion processes.
2The pp → jj(γγ → ZZ) → jjZZ process is experimentally challenging for a separate reason too which is that

the two jets would not have the special properties of VBF jets. VBF jets have a large rapidity gap between them
and have high pT (see for example pg. 1271-1305 of [49]). For reasons mentioned in Section 5.5 the pT of the jets
in the process pp → jj(γγ → ZZ) → jjZZ is approximately equal to the photon virtuality and thus expected to be
very small. So while the photon fusion jets would have a large rapidity gap too, they will have very low pT
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5.2 Operators that give rise to Quartic Neutral Gauge Boson Couplings

5.2.1 Light Higgs case

We want to write down the lowest order contribution form higher dimensional op-

erators to QNGCs, that is, quartic vertices involving only the neutral gauge bosons

γ and Z. We will consider only CP conserving operators here hence we will not

use the dual field strength tensors like B̃µν . In gauge invariant operators the elec-

troweak vector boson fields can appear either from the field strengths Bµν and W I
µν

or covariant derivatives acting on the Higgs field, that is factors like,

(5.1) DµΦ = ∂µΦ− ig
τI
2
W I

µΦ− i
g�

2
BµΦ,

provided the Higgs field, Φ, gets a vacuum expectation value (VEV). In the above

equation τI are the Pauli matrices. Note that the �IJKWJWK part of W I
µν cannot

contribute to quartic neutral gauge boson couplings as we must have I = J = 3

to get photons or Z fields unlike for instance in the case of the γγW+W− coupling,

where two gauge boson fields can come from the same field strength tensorW I
µν . This

has the important implication that the lowest order contribution to quartic neutral

gauge boson couplings comes from dimension 8 operators3 because we need either a

field strength or DµΦ factor, both dimension 2 operators, for each of the four gauge

bosons. There must be an even number of DµΦ factors along with the field strength

tensors in these operators because otherwise there are an odd number of Lorentz

indices in total and it is impossible to contract all of them. Thus we see that the

operators we are interested in can have either four covariant derivatives, two field

strengths and two covariant derivatives or four field strengths. We thus obtain the
3This fact is also true for ggγγ and ggZZ couplings (g being the gluon).
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following lagrangian of dimension 8 operators,

LQNGC =
c1
Λ4

DµΦ
†DµΦDνΦ

†DνΦ +
c2
Λ4

DµΦ
†DνΦD

µΦ†DνΦ +
c3
Λ4

DρΦ
†DρΦBµνB

µν

+
c4
Λ4

DρΦ
†DρΦW I

µνW
Iµν +

c5
Λ4

DρΦ
†σIDρΦBµνW

Iµν +
c6
Λ4

DρΦ
†DνΦBµνB

µρ

+
c7
Λ4

DρΦ
†DνΦW I

µνW
Iµρ +

c8
Λ4

BρσB
ρσBµνB

µν +
c9
Λ4

W I
ρσW

IρσW J
µνW

Jµν

+
c10
Λ4

W I
ρσW

JρσW I
µνW

Jµν +
c11
Λ4

BρσB
ρσW I

µνW
Iµν +

c12
Λ4

BρσW
IρσBµνW

Iµν

+
c13
Λ4

BρσB
σνBµνB

µρ +
c14
Λ4

W I
ρσW

IσνW J
µνW

Jµρ +
c15
Λ4

W I
ρσW

JσνW I
µνW

Jµρ

+
c16
Λ4

BρσB
σνW I

µνW
Iµρ +

c17
Λ4

BρσW
IσνBµνW

Iµρ.

(5.2)

Thus we obtain seventeen independent operators. Note that, in the above list,

Bµν�IJKW IµνW J
ρσW

Kρσ, Bµν�IJK(Φ†σIΦ)W J
ρσW

Kρσ and Bµν�IJKW IµρW JνσWK
ρσ are

absent because they are all equal to zero. In the first two cases �IJK is antisymmetric

in J and K whereas the rest of the operator is symmetric in J and K and in the third

case Bµν is antisymmetric in µ and ν whereas the rest of the operator is symmetric

in µ and ν. Operators with two σIs do not appear above as these can be reduced

to operators in our list using the identity, σIσJ = δIJ + i�IJKσK . Also notice that

there are no operators like Φ†DµDνΦBµρBνρ. This is because such operators can

be expressed as linear combinations of total derivatives, operators already in the list

and operators that do not contribute to QNGCs, as follows,

Φ†DµDνΦBµρB
νρ = ∂µ(Φ†DνΦBµρB

νρ)−DµΦ†DνΦBµρB
νρ

−Φ†DνΦ∂
µ(BµρB

νρ)(5.3)

where we have used ∂µ(Φ†DνΦ) = DµΦ†DνΦ+Φ†(DµDνΦ). Finally, operators with

two Levi Civita tensors,like �µνρσ�αβγδBµαBνβBργBσδ, which corresponds to taking
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two dual field strength tensors, are not in the list. This is because using the identity,

(5.4) �i1i2i3i4�j1j2j3j4 = 24 gjikigj2k2gj3k3gj4k4δ
k1
[ii
....δk4i4]

we can express such operators in terms of operators contracted using metric tensors

which are already in our list.

If we rewrite these operators in terms of the fields A and Z defined by,




B

W3



 =




cw −sw

sw cw








A

Z



(5.5)

and the field strengths,

Fµν = ∂µAν − ∂νAµ

Zµν = ∂µZν − ∂νZµ.(5.6)

we will get ZZZZ, γZZZ, γγZZ, γγγZ and γγγγ couplings. In this work we will

explore the possibility of measuring these vertices by diffractive processes involving

photon exchange, that is processes like pp(γγ → X)pp. Such processes can measure

the γγZZ, γγγZ and γγγγ vertices but we will focus only on the γγZZ and γγγγ

vertices here (we give the complete list of the γγγZ, γZZZ and ZZZZ couplings

in Appendix A). Expressing the operators above in terms of A and Z fields and the

respective field strengths using Eq. (5.5) and Eq. (5.6) we get,

Lγγγγ
QNGC =

aγγ1
Λ4

FµνF
µνFρσF

ρσ +
aγγ2
Λ4

FµνF
µρFρσF

σν

LγγZZ
QNGC =

aZZ
1

Λ4

m2
Z

2
FµνF

µνZρZ
ρ +

aZZ
2

Λ4

m2
Z

2
FµνF

µρZρZ
ν +

aZZ
3

Λ4
FµνF

µνZρσZ
ρσ

+
aZZ
4

Λ4
FµνZ

µνFρσZ
ρσ +

aZZ
5

Λ4
FµνF

µρZρσZ
σν +

aZZ
6

Λ4
FµνZ

µρFρσZ
σν(5.7)
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where,

aγγ1 = c4wc8 + s4wc9 + c2ws
2
w(c10 + c11)

aγγ2 = c4wc13 + s4wc14 + c2ws
2
w(c15 + c16)

aZZ
1 = c2wc3 + s2wc4 − cwswc5

aZZ
2 = c2wc6 + s2wc7

aZZ
3 = 2c2ws

2
w(c8 + c9 + c10) + (s4w + c4w)c11 − 2c2ws

2
wc12

aZZ
4 = (c2w − s2w)

2c12 + 4c2ws
2
w(c8 + c9 + c10)− 4c2ws

2
wc11

aZZ
5 = 4c2ws

2
w(c13 + c14 + c15) + (s4w + c4w − 2c2ws

2
w)c16 − 4c2ws

2
wc17

aZZ
6 = (c4w + s4w)c17 + 2c2ws

2
w(c13 + c14 + c15)− 2c2ws

2
wc16.(5.8)

We have thus listed all operators that contribute to the γγγγ and γγZZ vertices.

Note that c1 and c2 do not appear in the RHS in Eq. (5.8) because the corresponding

operators contribute only to the ZZZZ coupling. As we want to measure these cou-

plings by the γγ → γγ and γγ → ZZ processes respectively, let us also list operators

that might enhance non-local background contributions through the processes like

γγ → X∗ → γγ/ZZ at the same order, where X is some SM field. We find that the

only dimension 6 operators giving such non-local contributions at the same order are

those that contribute via the γγ → H∗ → ZZ processes due to the anomalous Hγγ

couplings they introduce. These operators (already listed in Ref. [98]) are,

(5.9) L6 =
b1
Λ2

|Φ|2BµνB
µν +

b2
Λ2

|Φ|2W I
µνW

Iµν +
b3
Λ2

(Φ†σIΦ)BµνW
Iµν .

which give the following dimension 5 operator once the Higgs field, Φ, gets a VEV,

a0v

Λ2
HFµνF

µν(5.10)

where v = 246 GeV and,

(5.11) a0 = c2wb1 + s2wb2 − cwswb3.
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Note that heavy particles that interact with the Higgs boson and photons generally

induce this operator when integrated out. Fortunately, the coupling a0 can be ac-

curately measured at the LHC by measuring the H → γγ partial width. Thus the

effect of the only dimension 6 operator that contributes to the cross section can be

subtracted.

We have not identified couplings for γγX or XZZ, that arise from dimension > 6

operators and contribute to this process by an X exchange, because these contribu-

tions would have the dependance ∼ 1/Λn with n > 4 which would be of higher order

than dimension 8 which is the lowest order at which the QNGCs get a contribution.

5.2.2 Higgsless case

Note that our treatment in the previous subsection differs from that in Refs. [100–

102] where only the γγ → ZZ process has been discussed. Among all the terms in

Eq. (5.7) the authors consider only the operators OZZ
1 and OZZ

2 (i.e., the operators

that have the coefficients aZZ
1 and aZZ

2 respectively). This can be justified if there is

no light Higgs and electroweak symmetry breaking (EWSB) is non-linearly realized

at low energies. Let us see why this is so. We follow the construction of Burgess et

al. (Ref. [105]), use the matrix,

Σ = exp(2iXiπi/v)(5.12)

and the covariant derivative,

(5.13) DµΣ = Σ†∂µΣ− iΣ†[gW a
µTa + g�BµY ]Σ.
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to define the following fields,

eAµ = 2i Tr[XemDµΣ]

g

2cw
Zµ = i Tr[X3DµΣ]

gW±
µ = i

√
2 Tr[T±DµΣ].(5.14)

Here Y is the hypercharge generator, T± = T1 ± T2, where Ti are the SU(2)L gener-

ators. Xem and X3 are orthogonal linear combinations of Y and T3, Xem being the

unbroken generator of U(1)em. We have kept the unconventional normalization of

Ref. [105], viz Tr[Ta, Tb] =
1
2δab, Tr[Ta, Y ] = 0 and Tr[Y 2] = 1

2 .

As shown in Ref. [105], the fields A, Z and W± in Eq. (5.14) transform purely

electromagnetically and exactly like A, Z and W± respectively. In the unitary gauge,

Σ → 1 so that A → A, Z → Z and W± → W±. It is thus easy to construct

gauge invariant operators we are interested in if EWSB is non linearly realized. In

the unitary gauge these are just all possible operators constructed from the A, Z

and W± fields that respect the U(1)em symmetry. We get therefore for the γγZZ

coupling,

(5.15) LHiggsless
QNGC =

(g/2cw)2ahl1
Λ2

FµνF
µνZρZ

ρ +
(g/2cw)2ahl2

Λ2
FµνF

µρZρZ
ν

Note that in this case we get as the lowest order contributions to QNGCs two di-

mension 6 operators, which are same as as OZZ
1 and OZZ

2 in Eq. (5.7), and none of

the other operators in Eq. (5.7) are present above. Thus, unlike in the case with

the light Higgs boson, these operators are indeed more important here, and this is

why they are the only ones that appear in the analyses of Refs. [100–102]. The γγγγ

coupling does not get any contribution at this order.

Another way to understand the above fact is by using the goldstone boson equiva-

lence theorem which states that at high energies longitudinal gauge boson production
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processes should have the same amplitude as processes in which the corresponding

goldstone bosons are produced. The operators in Eq. (5.15) arise from operators

like c Tr[(DµΣ)†DµΣ]FµνF µν . This can be expanded to give the terms involving the

goldstones like, ((c/Λ2)(∂ρ�π∂ρ�π/v2))FµνF µν , which tells us that the A(γγ → ZLZL)

amplitude will be O(cŝ2/(v2Λ2)), ignoring the dimensionless electroweak couplings.

This is larger than the amplitude due to an operator like ((c/Λ4)ZρσZρσ)FµνF µν , not

included in Eq. (5.14), which will give A(γγ → ZZ) = O(cŝ2/Λ4). The crucial dif-

ference is that, unlike the light Higgs case, the goldstones here are strongly coupled

and suppressed by factors of 1/v and not 1/Λ.

5.2.3 Graviton exchange in extra-dimensional theories as a source of QNGCs

In extra-dimensional theories where the fundamental gravity scale can be a few

TeV, the graviton is accompanied by Kaluza-Klein (KK) partners in the 4D effective

theory. Exchange of the (4 + δ)-dimensional graviton, δ being the number of extra

dimensions, can be thought of as the excahnge of the 4D graviton and its massive

KK partners. The effective operator induced by tree-level graviton exchange is given

by [106],

(5.16) OT =
4π

Λ4
T

�
TµνT µν

2
− 1

δ + 2

T µ
µ T

ν
ν

2

�

where T µν is the energy-momentum tensor. At tree level only dimension 8 operators

are induced (at loop level only one dimension 6 operator operator is induced by

virtual graviton exchange but this is a four fermion operator not involving the gauge

bosons or the Higgs [107]).

Almost all the operators in Eq. (5.2) can be obtained by expanding T µν in

Eq. (5.16). To show this let us write down the energy-momentum tensor for the
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Bµ and W I
µ gauge bosons and the Higgs boson,

T µν
B = −BµρBν

ρ +
1

4
gµνBρσBρσ

T µν
W = −W IµρW Iν

ρ +
1

4
gµνW IρσW I

ρσ

T µν
Φ = DµΦ†DνΦ +DνΦ†DµΦ− gµν(DµΦ†DµΦ−m2Φ†Φ).(5.17)

Note that virtual graviton exchange will also generate operators involving the

gluon field strength, GI
µν , like GI

µνG
IµνBρσBρσ, GI

µνG
IµνDρΦ†DρΦ etc. Such opera-

tors would enhance the signal by contributing to the central exclusive pomeron fusion

process (CEP), pp(CEP → γγ/ZZ)pp. The luminosity of photons produced by the

protons is however higher than the luminosity of the pomerons produced that un-

dergo exclusive fusion (by exclusive we mean that the pomerons do not disintegrate

into fragments) by a few orders of magnitude at the high energies where these oper-

ators become important (see Fig. 2 in Ref. [108]). Thus the pp(CEP → γγ/ZZ)pp

contribution is expected to be negligible compared to the pp(γγ → γγ/ZZ)pp con-

tribution. In any case any contribution form this channel would only enhance the

signal and thus improve the experimental potential of observing effects of virtual

graviton exchange.

5.3 Constraints

QNGCs are very weakly constrained by existing data. There are no constraints on

γγγγ couplings and the only constraints are on γγZZ couplings. We first consider

the light Higgs case discussed in Section 5.2.1. A LEP analysis [109] based on the

e+e− → Zγγ process puts the following constraints on the operators O1 and O2 in

Eq. (5.7),

(5.18) − 1

(69GeV)4
<

aZZ
1

Λ4
<

1

(93GeV)4
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and,

(5.19) − 1

(65GeV)4
<

aZZ
2

Λ4
<

1

(65GeV)4
.

While the authors of Ref. [109] did not carry out their analysis for the other operators

in Eq. (5.7), as these are also dimension 8 operators we expect their contribution to

these processes to be of a similar magnitude. Thus the constraints on these couplings

are also expected to be very weak. Somewhat stronger constraints can be derived

from electroweak precision data. In Ref. [101] precision constraints on the operators

are derived and they find the bounds, |aZZ
1,2 /Λ

4| � 1/(270 GeV)−4, which, as we shall

see later, are still far too weak compared to the expected LHC sensitivity.

As the operators in the higgsless case discussed in Section 5.2.2 are exactly the

two operators discussed above, the only difference being that we use a different

parametrization for the couplings, the same constraints can be translated to the

couplings in Eq. (5.15) in the higgsless case,

(5.20) − 1

(27GeV)2
<

ahl1
Λ2

<
1

(50GeV)2

and,

(5.21) − 1

(24GeV)2
<

ahl2
Λ2

<
1

(24GeV)2
,

whereas the precision constraints in Ref. [101] imply |ahl1,2/Λ2| � 1/(420 GeV)−2.

Now we discuss the constraints on the scale, ΛT , for virtual graviton exchange,

which appears in Eq. (5.16). The strongest constraints on ΛT come from LHC data at

7 TeV. With 36 pb−1 CMS data at 7 TeV the pp → jj process can be used to derive

the constraint ΛT > 3.8 TeV [110] at 95 % confidence level. The same process puts

the constraint ΛT > 3.6 TeV [110] with 36 pb−1 ATLAS data at 95 % confidence

level. With 1.1 fb−1 CMS data, the pp → γγ process puts the weaker constraint
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ΛT > 3.1 TeV at 95 % confidence level [111], but this process is eventually expected

to probe scales up to about ΛT = 6 TeV [106].

Finally, consider the operators in Eq. (5.9). At tree level the couplings b1 and b2

in Eq. (5.9) renormalize the coefficient of the kinetic terms for the gauge bosons Bµ

and W I
µ which is equivalent to a renormalization of the couplings g� and g. Thus

all tree level effects due to the b1 and b2 can be absorbed in a redefinition of the

couplings and hence these couplings are unconstrained. The coupling b3 is related to

the S-parameter by [112],

(5.22)
b3
Λ2

=
αem

4swcwv2
∆S

Here αem is the fine structure constant v = 246 GeV and sw, cw are the sine and

cosine of the weak mixing angle. The bound on the S-parameter for mh = 113 GeV

and with no restrictions on the T parameter is |∆S| � 0.3 [112] at 90% confidence

level. This translates to the following bound on b3,

(5.23)

����
b3
Λ2

���� <
1

(6.6TeV)2
.

This coupling is also constrained by measurements of the triple gauge couplings but

these constraints are far weaker [39].

5.4 High energy behavior of amplitudes and violation of unitarity at
tree-level

First let us look at the γγ → γγ process. We can find out the high energy behavior

by dimensional analysis. The high energy behavior of the contribution from the local

operators in Eq. (5.7) differs from the contribution from the non-local process, where
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the Hγγ vertex is derived from the operator O0, as follows,

Oγγ
1 ,Oγγ

2 : A(γγ → γγ) ∼ ai
ŝ2

Λ4

O0 : A(γγ → H∗ → γγ) ∼ a0
vŝ

Λ2

1

ŝ
× a0

vŝ

Λ2
∼ a20

v2ŝ

Λ4

(5.24)

where ŝ is the photon-photon center of mass energy squared. The local contribution

is thus expected to dominate over the non-local contribution at high energies.

For the γγ → ZZ process the operators in the light Higgs case in Eq. (5.7)can

be divided into into two categories according to the final polarization of the Zs.

At high energies the operators OZZ
1 , OZZ

2 contribute mainly to the production of

longitudinally polarized Z-bosons through the process γγ → ZLZL while the opera-

tors OZZ
3 −OZZ

6 contribute mainly to transverse Z production through the process

γγ → ZTZT . This can be understood by using the goldstone boson equivalence

theorem. The operators like OZZ
3 −OZZ

6 do not arise from dimension 8 operators in-

volving the Higgs field (see Eq. (5.8)) and so they do not introduce new couplings to

the Goldstone bosons (that are eaten by the gauge bosons in the unitary gauge). New

contributions to the process γγ → ZLZL they introduce are, therefore, suppressed.

Let us now see the energy dependance of the γγ → ZZ amplitude of the dominant

Z-polarization modes for the different operators using dimensional analysis in the
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high energy limit,

OZZ
3 −OZZ

6 : A(γγ → ZTZT ) ∼ ai
ŝ2

Λ4

OZZ
1 ,OZZ

2 : A(γγ → ZLZL) ∼ ai
m2

Z ŝ

Λ4

ŝ

m2
Z

∼ ai
ŝ2

Λ4

O0 : A(γγ → H∗ → ZTZT ) ∼ a0
vŝ

Λ2

1

ŝ

gmZ

cw
∼ a0

m2
Z

Λ2

O0 : A(γγ → H∗ → ZLZL) ∼ a0
vŝ

Λ2

1

ŝ

gmZ

cw

ŝ

m2
Z

∼ a0
ŝ

Λ2
.

(5.25)

where the the ŝ/m2
Z factor for the longitudinal modes comes from the longitudinal

polarization vectors and gmZ/cw is the SM HZZ coupling. Note that according to

Eq. (5.25) the γγ → H∗ → ZZ process would mainly produce longitudinal Zs. As

discussed earlier the contribution of the operator O0 can be subtracted by measuring

the H → γγ partial decay width. For the operators in the higgsless case in Sec-

tion 5.2.2, the dominant mode will be γγ → ZLZL and the energy dependence would

be,

(5.26) A(γγ → ZLZL) ∼ (g/2cw)
2ahli

ŝ

Λ2

ŝ

m2
Z

∼ ahli
ŝ2

Λ2v2
.

As all the amplitudes above grow with energy they would all violate partial wave

unitarity for some value of ŝ. We obtain the perturbative unitarity bound for the

processes in Appendix B. The condition that perturbative unitarity is not violated

is,

(Re(bl))
2 + β

�

�3,�4

|al|2 + δl <
1

4
,(5.27)

where al (bl) is the l-th partial wave amplitude for the γγ → ZZ(γγ) process,

β =
�

1− 4m2
Z

ŝ2 , ŝ is the photon-photon center of mass energy, δl is the positive

contribution from other processes and �3 and �4 are the polarizations of the Z bosons
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Figure 1: Here we plot the left hand side of eq. 25 vs the photon-photon center of
mass energy for l = 0 and δl = 0 with and without the form factor in eq. 26 taking
bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4. For the upper solid line we have not used any

form factor. For the other curves we use m = 1, n = 1,Λγγ/ZZ
f = Λγγ/ZZ

UB (small dashes),

m = 2, n = 1,Λγγ/ZZ
f = Λγγ/ZZ

UB (big dashes), m = 1, n = 2,Λγγ/ZZ
f = Λγγ/ZZ

UB (dash-dot) and
jjjjjjjjjjjjjjjjjjjjjnmnnnnnnnnnnnnnnnnnnnnn m = 2, n = 1,Λf = 0.9 ΛUB (lower solid).

5 The Equivalent Photon Approximation and the pro-
ton level cross-section for pp(γγ → ZZ)pp

Consider a general process pp(γγ → X)pp. To find the amplitude for this process we need to

know the ppγ vertex. From gauge invariance the most general form for this vertex is [20],

−ie
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2mp
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2)iσµνqν
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. (30)

Here eµp/2mp is the proton magnetic moment with µ2
p = 7.78. The functions F1(Q2) and

F2(Q2) in the vertex can be expressed in terms of the the emperically determined elastic
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5 The Equivalent Photon Approximation and the pro-
ton level cross-section for pp(γγ → ZZ)pp

Consider a general process pp(γγ → X)pp. To find the amplitude for this process we need to

know the ppγ vertex. From gauge invariance the most general form for this vertex is [20],

−ie

�
F1(Q

2)γµ +
µp − 1

2mp
F2(Q

2)iσµνqν

�
. (30)

Here eµp/2mp is the proton magnetic moment with µ2
p = 7.78. The functions F1(Q2) and

F2(Q2) in the vertex can be expressed in terms of the the emperically determined elastic

14

Figure 5.2: Here we plot
�
(Re(bl))2 + β

�
�3,�4

|al|2
�
in Eq. (5.27) vs the photon-photon center of

mass energy for l = 0 with and without the form factor in Eq. (5.28) taking bi/Λ2 = 1 TeV−2 and

ci/Λ4 = 1 TeV−4. We take Λγγ/ZZ

f
= Λγγ/ZZ

UB
in the form factor for all the different cases other

than the lower solid line where we take Λγγ/ZZ

f
= 0.9 Λγγ/ZZ

UB
.

produced. For the first term the final polarizations are same as the initial. The

initial polarizations of the photons must be chosen to maximize the LHS to get the

most stringent possible bound. We find the most stringent bounds from the l = 0

mode.

To ameliorate the growth of the amplitude with energy we can use form factors

as follows,

(5.28) A → A
�

1

1 + (ŝ/Λ2
f )

m

�n

.

By Taylor expanding the modified amplitude we see that by introducing a form

factor we effectively introduce higher order contributions, such as those expected

from loop effects and higher dimensional operators, to cancel the tree-level growth

of the amplitude. For example if A = kŝ2/Λ4 the for the choice m = 2 and n = 1
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the modified amplitude is ,

(5.29)
kŝ2/Λ4

1 + (ŝ/Λ2
f )

2
= (kŝ2/Λ4)

�
1− (ŝ/Λ2

f )
2 + (ŝ/Λ2

f )
4 − (ŝ/Λ2

f )
6...

�
.

In order that the Eq. (5.27) is obeyed we would require that,

(Re(bl))
2 < 0.1(5.30)

β
�

�3,�4

|al|2 < 0.1.(5.31)

The RHS in the two equations above do not add up to the RHS of Eq. (5.27) because

we have made some allowance for other contributions to δl. To ensure that these

conditions are obeyed we use form factors for both the γγ → γγ and the γγ → ZZ

amplitudes.

Fig. 5.2 shows the growth of
�
(Re(bl))2 + β

�
�3,�4

|al|2
�
in Eq. (5.27) for l = 0

with energy, for different choices of the form factor parameters. We consider the light

Higgs case in Section 5.2.1, taking the couplings bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1

TeV−4. Let Λγγ
UB and ΛZZ

UB be the values of ŝ where the conditions in Eq. (5.30) and

Eq. (5.31) are respectively violated when no form factor is applied. We can see that

the amplitude keeps growing for m = n = 1 and Λγγ/ZZ
f = Λγγ/ZZ

UB , thus violating

the perturbative unitarity bound. However, the amplitude is suppressed below the

bound for m = 1, n = 2 and m = 2, n = 1 for the same values of Λγγ/ZZ
f . We see that

in the latter case the amplitude saturates the bounds in Eq. (5.30) and Eq. (5.31)

at high energies. We also show a curve with m = 2, n = 1 but Λγγ/ZZ
f = 0.9 Λγγ/ZZ

UB

which coincides with the Λγγ/ZZ
f = Λγγ/ZZ

UB curve at low energies but deviates from it

for ŝ close to Λ2
UB. Unless otherwise mentioned from now on we will use form factors

with m = 2, n = 1 and Λγγ/ZZ
f = Λγγ/ZZ

UB . While our final results will depend on this

specific choice of form factor a different form factor would result in a cross-section

with a different numerical value but the same order of magnitude. Thus there will be
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Figure 5.3: The Luminosity function dL/dW in Eq. (5.36) taking q
2
max

= 2 GeV2.

a relatively small difference in our final sensitivity results on Λ as the cross-section

goes as σ ∼ Λ−8 (σ ∼ Λ−4) for the dimension 8 (dimension 6) operators in the light

Higgs (higgsless) case.

5.5 The Equivalent Photon Approximation and the proton level cross-
section for pp(γγ → ZZ)pp

Consider a general process pp(γγ → X)pp. To find the amplitude for this process

we need to know the ppγ vertex. From gauge invariance the most general form for

this vertex is [113],

(5.32) −ie

�
F1(q

2)γµ +
µp − 1

2mp
F2(q

2)iσµνqν

�
.

Here eµp/2mp is the proton magnetic moment with µ2
p = 7.78, q2i , the invariant

mass of one of the photons is, as shown in Appendix C, always space-like in such a

process and thus it is negative. The functions F1(q2) and F2(q2) in the vertex can

be expressed in terms of the the empirically determined elastic electric and magnetic
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form factors for the proton, GE(q2) and GM(q2) respectively, as follows,

F1(q
2) =

GE + τGM

1 + τ
F2(q

2) =
GM −GE

κ(1 + τ)

GE = GM/µp = (1− q2/q20)
−2.(5.33)

Here GE(q2) and GM(q2) have been written in the dipole approximation with q20 =

0.71 GeV2 and τ = (−q2)/4m2
p. By a change of variables the final phase space

integration for the process pp(γγ → X)pp can be done over d(−q21)d(−q22)dω1dω2,

instead of the usual variables [114], ωi being the energy of the photons. The cross

section thus obtained would receive most of the contribution from the region in phase

space where the |q2i | are small (this also corresponds to small scattreing angles for the

proton) because of the 1/q2i factors from the photon propagator. Note that, there is

a kinematic lower bound on |q2i |,

(5.34) q2i � − m2ω2
i

E(E − ωi)

where E is the energy of the proton in the center of mass frame and mp its mass (see

Appendix C for the derivation).

The fact that most of the contribution to the cross section comes from the small

|q2i | region means that we can evaluate the contribution to the amplitude from the

γγ → X part of the diagram in the |q2i | → 0 limit. This is the so-called Equivalent

Photon Approximation (EPA). This amounts to treating the photons as real with

only transverse polarizations while doing the the γγ → X part of the calculation so

that the total cross section can be written in the factorized form,

(5.35) σ = S2
QED

� Wmax

2mZ

dL

dW
σγγdW.

Here W =
√
ŝ is the photon-photon center of mass energy and σγγ is the photon

level cross section. S2
QED, the survival probability for diffractive photon exchange
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processes, is the probability that the proton remains intact and is not broken due to

subsequent inelastic QCD interactions. We take S2
QED = 0.9 following the theoretical

calculation in Ref. [108]. The function dL/dW contains all the details of the proton

electromagnetic form factors and also the integral over 1/q2i factors of the photon

propagators. A detailed calculation of dL/dW using EPA leads to the following

expressions (see Appendix D in Ref. [114]),

dL

dW
=

� 1

0

2Wf(x)f

�
W 2

xs

�
dx

xs

f(x) =
α

π

E

ω

� q2max

q2min

d(−q2)

|q2|

��
1− ω

E

��
1−

����
q2min

q2

����

�
D +

ω2

2E2
C

�

C = G2
M D = (4m2

pG
2
E − q2G2

M)/(4m2
p − q2)(5.36)

Here x = ω
E and s = 4E2. While the lower limit of the integration is set by kinematics

(see Eq. (5.34)) we take the upper limit to be q2max = 2 GeV. Beyond q2max = 2 GeV,

the form factors in Eq. (5.33) become very small so that the contribution to the

integral is negligible.

To understand the physical meaning of dL/dW we can multiply both sides of

Eq. (5.35) by Lp, the proton luminosity. Then we find that the luminosity function

is the ratio of the differential photon luminosity dLγ/dW and the proton luminosity,

(5.37) dL/dW =
dLγ/dW

Lp
.

Note that here L is unitless and Lγ,p has the usual units m−2s−1. We plot the photon

luminosity function in Fig. 5.3. We find that,

(5.38) S2
QED

� 2E

2mZ

dL

dW
dW ∼ 1.3× 10−3.

For a particular process γγ → X this number gives an upper bound on the ratio,

σγγ (pp(γγ → X)pp)

σ(γγ → X)
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My training and interests lie in the theoretical and experimental aspects of Higgs physics.
The different projects that I have done have taught me different approaches to address the
basic questions in Higgs physics.

1 Higgsless models and classicalization

The first question to ask is of course: Why have a Higgs boson at all? Electroweak symmetry
breaking (EWSB) requires, after all only the goldstone modes and not the physical real Higgs
scalar. The quantum field theory of the goldstone modes with the Higgs boson decoupled is,
however, non-renormalizable with a cut off at the TeV scale. As in any non-renormalizable
theory some new weakly coupled degrees of freedoms, like the Higgs boson itself, need to
be integrated in before reaching these energies or the theory becomes strongly coupled. In
the latter scenario, the onset of the strongly coupled regime can be seen in the scattering
amplitudes becoming too large and violating perturbative unitarity. The usual approach in
such a situation is to find a Wilsonian UV completion, like Technicolor. ***hierarch***

In Ref. I worked on an alternative, non-Wilsonian approach called classicalization. This
approach is inspired from quantum gravity where it can be argued that perturbative unitarity
in 2 →2 scattering amplitudes is never violated at transplanckian energies, because of black
hole formation. Black holes are classical objects that decay to many particles and their decays
to two particles are exponentially suppressed leading to a suppression of 2 →2 scattering am-
plitudes without integrating in any new degrees of freedom. It has been proposed that such
classical configurations, called classicalons, can also be produced in non gravitational theories
also, if non-renormalizable operators exist where a bosonic field is sourced by derivatively cou-
pled operators that grow with energy. The goldstone modes, eaten by the longitudinal gague
bosons, in the standard model can easily be used to construct such classicalizing operators
and thus the high energy scattering of these modes can be unitarized by formation of classical
configurations of longitudinal W s and Zs. Although this idea seems theoretically plausible in
order to make collider predictions for such a scenario one needs to have a way to estimate the
number of W/Zs that would be produced at a certain energy. In Ref, we were able to compute
the final decay multiplicity of classicalons by arguing that, like black holes, they have analogs
of thermodynamic properties. Like black holes, classicalons can be formed in multiple ways,
not just from two initial particles but also from multiple initial particles as long as they can
deposit the required energy in the classicalon radius and this results in classicalons having
an entropy given by the logarithm of the number of ways in which it can be formed. By
considering every possible initial (or final) scattering state as a microstate of the classicalon
we were able to carry out a statistical mechanical analysis of classicalon decays compute the
number of decay products and thus extract concrete collider prediction. The collider signals
are spectacular multi-W/Z final states that lead to leptons, missing energy and such a high
multiplicity of jets (at least 10 at the partonic level) that there is virtually no background.

1

Figure 5.4: The pp(γγ → γγ)pp cross section we obtain as a function of Wmax with and without

a form factor. For the form factor we use in Eq. (5.28) with m = 2, n = 1 and Λγγ/ZZ

f
= Λγγ/ZZ

UB
.

We have taken bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4in Eq. (5.8), the Higgs mass mh = 120 GeV
and the proton-proton center of mass energy equal to 14 TeV.

if σγγ is a constant or decreasing function ofW as is the case usually for SM processes.

Thus from a knowledge of σγγ(γγ → X) one can estimate σ (pp(γγ → X)pp) using

Eq. (5.38)

5.6 Theoretical cross sections

In this section we present the cross section for pp(γγ → γγ)pp and pp(γγ → ZZ)pp

(see Fig. 5.1) with the proton-proton center of mass energy equal to 14 TeV. We will

consider only the light higgs case in Section 5.2.1 taking all bi/Λ2 = 1 TeV−2 and all

ci/Λ4 = 1 TeV−4 in Eqs. (5.9) and (5.2). With these values for the couplings and

using Eq. (5.30) and (5.31) for l = 0, we get the unitarity bound Λγγ
UB = 1220 GeV

and ΛZZ
UB = 1260 GeV respectively.

We have evaluated the cross section with and without the form factor in Eq. (5.28).
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My training and interests lie in the theoretical and experimental aspects of Higgs physics.
The different projects that I have done have taught me different approaches to address the
basic questions in Higgs physics.

1 Higgsless models and classicalization

The first question to ask is of course: Why have a Higgs boson at all? Electroweak symmetry
breaking (EWSB) requires, after all only the goldstone modes and not the physical real Higgs
scalar. The quantum field theory of the goldstone modes with the Higgs boson decoupled is,
however, non-renormalizable with a cut off at the TeV scale. As in any non-renormalizable
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Figure 5.5: The pp(γγ → ZZ)pp cross section we obtain as a function of Wmax with and without a

form factor. For the the form factor we use in Eq (5.28) with m = 2, n = 1 and Λγγ/ZZ

f
= Λγγ/ZZ

UB
.

We have taken bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4 in Eq. (5.8), the Higgs mass mh = 120 GeV
and the proton-proton center of mass energy equal to 14 TeV.

For the form factor we have taken Λγγ/ZZ
f = Λγγ/ZZ

UB , m = 2 and n = 1. We have

taken the Higgs mass mh = 120 GeV. We have evaluated the cross section with the

cut W < Wmax and varied Wmax. This cut is important as the ambiguities due to

the choice of form factor become more important for large values of Wmax. For the

pp(γγ → γγ)pp process we show the results with and without the form factor in

Fig. 5.4. We have checked that the contribution from the γγ → H∗ → γγ process

due to the presence of the operator O0 is small compared to the total cross-section

as is expected from the arguments in Section 5.4.

We show the results for the pp(γγ → ZZ)pp process with and without the form

factor in Fig. 5.5. In Fig. 5.6(left) we show the γγ → ZZ cross section we obtain

as a function of Wmax without any form factor. We show separately in the same

figure the contribution due to the operator O0 through the process γγ → H∗ →



148

!"!#$

!"#$

#$

#!$

!$ %!!$ &!!$ '!!$ (!!$ #!!!$ #%!!$ #&!!$ #'!!$

!
"#
$$
%$
&'
(
#
)
%*
+
,%

!-./*0&1,%

C
ro

ss
-s

ec
tio

n(
fb

)  
 

Wmax(GeV)

ZTZT
ZLZL

Total 

!"!#$

!"#$

#$

#!$

!$ %!!$ &!!$ '!!$ (!!$ #!!!$ #%!!$ #&!!$ #'!!$

!
"#
$$
%$
&'
(
#
)
%*
+
,%

!-./*0&1,%

Figure 4: The pp(γγ → ZZ)pp cross section we obtain as a function of Wmax without any
form factor. We have taken bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4in eq. 8, the Higgs mass
mh = 120 GeV and the proton-proton center of mass energy equal to 14 TeV. We show
the total cross section (solid), the ZTZT production cross section (big dashes), the ZLZL

production cross section (small dashes) and the total cross section only due to the operator
O0 (dotted) through the γγ → h∗ → ZZ process.

To understand the physical meaning of dL/dW we can multiply both sides of eq. 33 by Lp,

the proton luminosity. Then we find that the luminosity function is the ratio of the differential

photon luminosity dLγ/dW and the proton luminosity,

dL/dW =
dLγ/dW

Lp
. (35)

Note that here L is unitless and Lγ,p have the usual units m−2s−1. We plot the photon

luminosity function in Fig. 2. We find that,
� 2E

2MZ

dL

dW
dW ∼ 1.4× 10−3. (36)

For a particular process γγ → X this number gives an upper bound on the ratio,

σγγ (pp(γγ → X)pp)

σ(γγ → X)

if σγγ is a constant or decreasing function of W as is the case usually for SM processes. Thus

from a knowledge of σγγ(γγ → X) one can estimate σ (pp(γγ → X)pp) using eq. 36
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number of W/Zs that would be produced at a certain energy. In Ref, we were able to compute
the final decay multiplicity of classicalons by arguing that, like black holes, they have analogs
of thermodynamic properties. Like black holes, classicalons can be formed in multiple ways,
not just from two initial particles but also from multiple initial particles as long as they can
deposit the required energy in the classicalon radius and this results in classicalons having
an entropy given by the logarithm of the number of ways in which it can be formed. By
considering every possible initial (or final) scattering state as a microstate of the classicalon
we were able to carry out a statistical mechanical analysis of classicalon decays compute the
number of decay products and thus extract concrete collider prediction. The collider signals
are spectacular multi-W/Z final states that lead to leptons, missing energy and such a high
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Figure 4: The pp(γγ → ZZ)pp cross section we obtain as a function of Wmax without any
form factor. We have taken bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4in eq. 8, the Higgs mass
mh = 120 GeV and the proton-proton center of mass energy equal to 14 TeV. We show
the total cross section (solid), the ZTZT production cross section (big dashes), the ZLZL

production cross section (small dashes) and the total cross section only due to the operator
O0 (dotted) through the γγ → h∗ → ZZ process.

To understand the physical meaning of dL/dW we can multiply both sides of eq. 33 by Lp,

the proton luminosity. Then we find that the luminosity function is the ratio of the differential

photon luminosity dLγ/dW and the proton luminosity,

dL/dW =
dLγ/dW

Lp
. (35)

Note that here L is unitless and Lγ,p have the usual units m−2s−1. We plot the photon

luminosity function in Fig. 2. We find that,
� 2E

2MZ

dL

dW
dW ∼ 1.4× 10−3. (36)

For a particular process γγ → X this number gives an upper bound on the ratio,

σγγ (pp(γγ → X)pp)

σ(γγ → X)

if σγγ is a constant or decreasing function of W as is the case usually for SM processes. Thus

from a knowledge of σγγ(γγ → X) one can estimate σ (pp(γγ → X)pp) using eq. 36
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however, non-renormalizable with a cut off at the TeV scale. As in any non-renormalizable
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be integrated in before reaching these energies or the theory becomes strongly coupled. In
the latter scenario, the onset of the strongly coupled regime can be seen in the scattering
amplitudes becoming too large and violating perturbative unitarity. The usual approach in
such a situation is to find a Wilsonian UV completion, like Technicolor. ***hierarch***

In Ref. I worked on an alternative, non-Wilsonian approach called classicalization. This
approach is inspired from quantum gravity where it can be argued that perturbative unitarity
in 2 →2 scattering amplitudes is never violated at transplanckian energies, because of black
hole formation. Black holes are classical objects that decay to many particles and their decays
to two particles are exponentially suppressed leading to a suppression of 2 →2 scattering am-
plitudes without integrating in any new degrees of freedom. It has been proposed that such
classical configurations, called classicalons, can also be produced in non gravitational theories
also, if non-renormalizable operators exist where a bosonic field is sourced by derivatively cou-
pled operators that grow with energy. The goldstone modes, eaten by the longitudinal gague
bosons, in the standard model can easily be used to construct such classicalizing operators
and thus the high energy scattering of these modes can be unitarized by formation of classical
configurations of longitudinal W s and Zs. Although this idea seems theoretically plausible in
order to make collider predictions for such a scenario one needs to have a way to estimate the
number of W/Zs that would be produced at a certain energy. In Ref, we were able to compute
the final decay multiplicity of classicalons by arguing that, like black holes, they have analogs
of thermodynamic properties. Like black holes, classicalons can be formed in multiple ways,
not just from two initial particles but also from multiple initial particles as long as they can
deposit the required energy in the classicalon radius and this results in classicalons having
an entropy given by the logarithm of the number of ways in which it can be formed. By
considering every possible initial (or final) scattering state as a microstate of the classicalon
we were able to carry out a statistical mechanical analysis of classicalon decays compute the
number of decay products and thus extract concrete collider prediction. The collider signals
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1

Figure 5.6: The pp(γγ → ZZ)pp cross section we obtain as a function of Wmax without any form
factor. We have taken bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4in Eq. (5.8), the Higgs mass mh = 120
GeV and the proton-proton center of mass energy equal to 14 TeV. We show the total cross section
(solid), the ZTZT production cross section (big dashes), the ZLZL production cross section (small
dashes) and the total cross section only due to the operator O0 (dotted) through the γγ → h

∗ → ZZ

process.

ZZ. We see that the non-local contribution due to O0 dominates at low energies.

The contribution to the cross section due to the other operators, however, grows

more rapidly with ŝ (as σγγ ∼ ŝ3) compared to the O0 contribution. At higher

energiesOZZ
3 contributes most to the cross-section. As mentioned earlier the coupling

a0 can be accurately measured by measuring the H → γγ partial width so any

deviation would indicate the presence of higher dimensional operators. We also show

in Fig. 5.6(left), the γγ → ZLZL and γγ → ZTZT contributions to the cross section.

As explained before, for longitudinal Z production, the main contribution comes

from the operators O0,OZZ
1,2 with O0 contributing dominantly at low energies and

OZZ
1 contributing dominantly at higher energies. For transverse Z production only

the operators O0, OZZ
3,4,5,6 contribute significantly with the dominant contribution

coming from OZZ
3 .

In Fig. 5.6(right) we have the signal cross section curves as in Fig. 5.6(right) but

with form factors. The contribution due to O0 is shown without any form factor

suppression. This is because we want to show the pure contribution of the operator
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O0 so that any deviation can be interpreted as the presence of higher order effects

in ŝ/Λ2 (as explained in Section 5.4, using a form factor would amount to assuming

such higher order corrections).

Finally let us state how the contributions of the different γγZZ operators in

Eq. (5.7) can, in principle, be resolved. We have already seen how looking at the

final polarization of the Zs can be used to distinguish the contribution of OZZ
1 and

OZZ
2 from the other γγZZ operators. Another fact that can be used is that only

for the operators OZZ
1 and OZZ

3 are the amplitudes spherically symmetric. Thus the

γγZZ operators in Eq. (5.7) can be divided into four categories: those that contribute

mainly to the ZLZL mode and give spherically symmetric amplitudes (only OZZ
1 ),

those that contribute mainly to the ZLZL mode but do not give spherically symmetric

amplitudes (only OZZ
2 ), those that contribute mainly to the ZTZT mode and give

spherically symmetric amplitudes (only OZZ
3 ), and those that contribute mainly to

the ZTZT mode but do not give spherically symmetric amplitudes ( OZZ
4 − OZZ

6 ).

Note that resolving the contributions of the different operators would require higher

luminosity than just detecting the presence of QNGCs, but we will not go into the

experimental feasibility of such studies.

5.7 LHC signal search strategy

As explained in Section 5.5 the final state protons in diffractive processes are

scattered at small angles. To detect such protons very forward detectors have been

proposed both for the ATLAS and CMS detectors (see Ref [99]). It has been proposed

that such detectors should be placed at distances of 220 m and 420 m from the

interaction point where the distance is along the circular beam line. To give an

idea about these distances, at 220 m the beam line curves away from the tangential
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direction at the interaction point by about 6 meters. The protons lose a small fraction

of their energy in the diffractive process and experience a small deflection from the

beam axis. As the deflection is very small, the LHC magnets continue to curve the

protons along the beam pipe but they do move away form the beam axis and out of

the beam envelope because of the deflection. Thus detectors close to the beam axis

(a few millimeters away) would be able to detect the protons. It is also important to

note that particles other than protons would never be detected in these detectors as

they have a different cyclotron radius. Thus these detectors effectively use the LHC

magnets as a spectrometer.

As the detectors need to be close to the beam axis radiation hardness is a require-

ment that the detector must fulfill. This along with resolution requirements makes

3D silicon detectors ideal as proton detectors. From the measurement of the position

and track direction at the detectors the momentum four vector of the proton can

be reconstructed by inverting the transport of the proton due to the LHC magnet

optics. Thus it is possible to measure the fraction of energy lost by each proton, ξi

and thus measure the invariant mass of the central system (also called the proton

missing mass),

(5.39) W =
�
ξ1ξ2s,

where s = (14 TeV)2 for the 14 TeV LHC. The 220 m detectors detect protons with

smaller deflection, and thus smaller ξ, than the 220 m detectors. As higher invariant

masses would correspond to higher ξs, the 420 m detector is sensitive in the low mass

region whereas the 220 m detector is sensitive in the high mass region. The 220 m

detector is thus crucial for the kind of study we are doing in this work where most of

the signal contribution comes from events with high W . Mass resolution between 2

GeV and 3 GeV for low energies and about 5-6 GeV for the highest photon energies
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can be achieved by these detectors [115].

As only events with two intact protons are accepted, the only background pro-

cesses can be those in which the proton emits a light particle with no electromag-

netic or color charge and remains intact. Thus the proton can emit a photon or

a pomeron. In pomeron fusion processes, also called ‘Double Pomeron Exchange’

(DPE) processes, the pomeron, in general, breaks into fragments. Thus whenever

we would write down a process pp(DPE → X)pp, X being a particular final state,

it would be implicit that this is an inclusive process where other particles (pomeron

fragments) are also present. These detectors can be used to test if an event is ex-

clusive or inclusive, where by an exclusive event we mean an event where no other

particle in addition to the final state particles is produced. This can be done by

matching the invariant mass measured by the proton detectors (using Eq. (5.39))

with the invariant mass measured by the central detectors. Also, in exclusive events

the pT of all the final state particles excluding the protons (which carry very little

pT ) must add up to nearly zero. Thus if only such exclusive events are accepted

the underlying process can only be a an exclusive pomeron fusion process, usually

called ‘Central Exclusive Production’ (CEP) and the inclusive DPE background can

be reduced. Including both the 220 m and 420 m the acceptance range for ξi is [115],

(5.40) 0.0015 < ξi < 0.15

Using Eq. (5.40) we see that only events with 21 GeV< W < 2100 GeV are accepted

by the detector.

A potentially important background contribution is from overlap events. If the

signal event is pp → pXp, an overlap event would be defined as the coincidence

of an event where the central system X is produced with one or more diffractive

events in the same bunch crossing. Processes like [p][Xp], where one of the protons
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is produced in an interaction different from the central process (the square brackets

grouping the final particles produced in the same scattering process) or processes like

[pp][X] and [p][X][p] where both the protons are produced in an interaction different

from the central system, can fake signal events. To reject such background events

the forward detectors would be equipped with timing detectors which would have a

resolution of the order of 10 ps [99] (note that the LHC bunch length is about 250

ps at 1-sigma). These detectors would be able to reconstruct the vertex position of

the two protons assuming they are produced at the same interaction point. This

vertex would not match the vertex for the central system, X, for the fake events and

thus such background events can be rejected. Another way to reduce the overlap

background is by matching the net invariant mass of the central system measured

by the central detectors with the values obtained by the forward detectors. We have

already discussed how this can be done in the context of testing whether an event

is exclusive or not. Overlap backgrounds are of great importance when the inelastic

production cross-section for the central system X is large as is the case for the dijet

background to diffractive H → bb production [116](where the jets are misidentified

as b-jets) but is of much lesser importance in our case. Let us now discuss the search

strategy for the pp(γγ → ZZ)pp and the pp(γγ → γγ)pp processes.

5.7.1 pp(γγ → ZZ)pp process

As we do not perform a detailed detector simulation and wish to make only an

estimate of the detector level cross-section, we will look at the p + (ZZ → 4l) + p

final state (l = e, µ) that is most free from experimental complications. Other final

states involving hadronic Z decay modes may well turn out to be more sensitive

to our observable but ascertaining this would require a more rigorous experimental

analysis.
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The most important background process is pp(DPE → ZZ)pp in the SM. As

mentioned before this is an inclusive process where the final state has pomeron

remnants in addition to the Z pair. The DPE background has been computed using

the Forward Physics Monte Carlo (FPMC) [117] which uses the Ingelman-Schlein (IS)

model [118] for inclusive diffraction. In this model the cross-section of a process like

pp(DPE → X)pp is computed by convoluting the cross-section of the partonic hard

process ij → X (i, j being the partons) with diffractive parton density functions

(DPDF) measured at HERA. The DPDF describes the probability of extracting

a certain parton with a given longitudinal momentum fraction from the proton.

The DPDF itself can be expressed as a product of the pomeron flux, measured in

other diffractive processes, and the probability of extraction of the parton from the

pomeron which breaks into fragments. Whereas the IS model describes diffractive

data at the Hadron-Electron Ring Accelerator (HERA) very well its theory prediction

for diffractive dijet production at the Tevatron is larger by a factor of 10 [119]. This

is usually attributed to the fact that there is some probability for the protons in

a DPE process to have a subsequent inelastic interaction which breaks the proton.

Thus the cross-section computed in this model must finally be multiplied by the

survival probability, S2
DPE, which is the probability that there is no further inelastic

interaction between the protons. The maximum value of the survival probability

reported in the literature is about S2
DPE = 0.06 [120].

For the pp(DPE → ZZ)pp process that we are interested in, there are two possible

partonic sub-processes, the qq → ZZ sub-process via t-channel quark exchange of a

quark q and the gg → ZZ sub-process that is induced by fermion loops4. The quark

component of the DPDF gives the dominant contribution in processes involving
4For the computaion of the partonic cross-section of the gg → ZZ sub-process, the gg → H∗ → ZZ process has

not been included. This contribution is known to interfere negatively and decrease the total cross-section [121] so
the background cross-section would have been lower had this contribution been incorporated.
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diffractive vector boson production like the one we are interested in [122]. We apply

the following cuts to the signal and background [115],

0.0015 < ξi < 0.15(5.41)

W > 300 GeV.(5.42)

The first cut above is just the ξ-acceptance cut for the forward detectors, and the

second cut has been applied mainly to suppress the SM loop background discussed

later. As explained in Section 5.6, most of the contribution to the signal cross-section

comes from high energies so that the second cut hardly affects the signal. With these

cuts the cross-section we thus obtain for pp(DPE → ZZ)pp from FPMC including

all Z decay modes is 1.4 fb. Applying the above cut the signal cross-section (with

form factor) is reduced from 8 fb to 3 fb in the light Higgs case for bi/Λ2 = 1 TeV−2

and ci/Λ2 = 1 TeV−4, where the ξ-acceptance cut is responsible for most of the

reduction.

As the DPE background discussed above is inclusive unlike the signal it can be

further reduced by testing if the events are exclusive. This can be done by matching

the four-lepton invariant mass measured by the central detector with the invariant

mass measured using Eq. (5.39). Also the net pT of the four leptons must add up

to nearly zero (as the protons carry hardly any transverse momentum) for exclusive

events.

Now let us consider the background contribution from the SM loop process pp(γγ →

ZZ)pp. The cross section σγγ(γγ → ZZ) has been evaluated in Ref. [123] to be

roughly constant, around 300 fb in the range 300 GeV < τ < 2100 GeV, where the

upper limit is equal to the upper limit obtained by applying the ξ-acceptance cut in
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Eq. (5.46). Thus we find for the proton level cross section,

σ = S2
QED

� 2100

2mZ

dL

dτ
σγγdτ ≈ 0.9× 300

� 2100

2mZ

dL

dτ
dτ ≈ 0.1 fb,(5.43)

where we have imposed the cut 0.0015 < ξi < 0.15. We find therefore that this

background is negligible compared to the signal.

So far in all the instances where we have considered signal or background cross-

sections we have not taken into account the branching ratio of the Z to leptons and

detector efficiencies. Taking the lepton identification rate to be 90% [49] and the

proton detection efficiency in the forward detectors to be 85% [99] we obtain for the

effective cross-section we expect the detectors to measure,

(5.44) σeff = 0.56 B(Z → ll)2σth,

where σth is the theoretical cross-section including all Z decay modes.

Finally, let us mention a possible complication that may arise because of the fact

that the high energy Zs we are considering would be boosted in the lab frame. This

would cause the leptons to be collimated along the direction of motion of the parent

Z. This may give rise to complications in detection of some electron pairs for which

the two electrons are not well separated from each other (there is no such issue

with muonic decays as muon separation is always efficient for the energies we are

considering). We will not try to estimate this effect (see for example for a [124] more

detailed discussion) but in our estimates of sensitivity in the next section, to give a

conservative estimate, we will provide results considering only muonic decay of the

Zs in addition to results considering decay of the Zs into both electrons and muons.

5.7.2 pp(γγ → γγ)pp process

For the pp(γγ → γγ)pp process we require the presence of two photons and two

protons in the final state. Again the main background is from the pp(DPE → γγ)pp
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process. The pp(DPE → γγ)pp cross-section can be estimated from the pp(DPE →

ZZ)pp cross-section by using the fact that the t-channel quark exchange sub-process

qq → ZZ/γγ is the dominant partonic sub-process [122]. As the diagrams for this

partonic sub-processes in both the cases are the same except for the two outgoing

vertices and external legs in the limit of massless quarks we get,

σ(pp(DPE → γγ)pp)

σ(pp(DPE → ZZ)pp)
= (1− 4m2

Z/ŝ)
−1/2 e4

(g/2cw)4

� �
u,d,s Q

4

�
u,d,s(v

2
q + a2q)

2

�
(5.45)

where vq and aq are the vector-like and axial vector-like couplings of the quarks to

the Z boson and Q is their electric charge. The sum is over the three light quarks

for which the probability of diffractive extraction from the proton is significant and

we assume that the diffractive PDFs for three light quarks are equal. The kinematic

factor on the RHS, which is almost unity at high energies, arises because the Z-boson

unlike the photon is massive. Taking vd,s = −0.35, vu = 0.20, au = 1/2, ad = −1/2

and ŝ = (500 GeV)2, we find this ratio to be 0.3. We apply the same cuts as in the

case of the pp(γγ → ZZ)pp process, that is,

0.0015 < ξi < 0.15(5.46)

W > 300 GeV(5.47)

and using the above ratio we obtain this background cross-section to be 0.4 fb.

Again this inclusive DPE background can be further reduced by requiring the two

photon invariant mass to match the missing mass evaluated using Eq. (5.39) and by

demanding that pTγ1 = −pTγ2 within experimental resolution.

The SM loop induced pp(γγ → γγ) process in this case has a cross-section that is

O(0.01) fb and can be ignored [125,126]. An experimental background contribution

can come from mis-identification of jets as photons in the pp(γγ → jj)pp process.

The total inclusive diffractive dijet cross-section at the LHC has been computed by
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the diffractive Monte Carlo generator DPEMC [127] to be 4×107 fb [128] in the IS

model with the cut ET > 25 GeV for the jets. Taking the rejection factor of jets for

photon identification to be 5000 [49] we get a background cross section of about 2

fb which is already smaller than the signal cross-section (with form factor) of 17 fb

in the light higgs case for bi/Λ2 = 1 TeV−2 and ci/Λ4 = 1 TeV−4. Further cuts like

the W -cut in Eq. (5.47) and requiring pTγ1 = −pTγ2 within experimental accuracy

should completely remove this background.

The effective detector level cross-section is again smaller than the values men-

tioned so far. Taking the photon identification rate to be 90% [49] and proton

detection efficiency in the forward detector to be 85% [99] we get,

(5.48) σeff = 0.69 σth

Note that for both the pp(γγ → γγ)pp and pp(γγ → γγ)ZZ processes we have

ignored above the effects of the basic detector acceptance cuts pT > 10 GeV and

η < 2.5 for the leptons and photons. As the dominant contribution to the signal

cross-section is central and from high energies, these cuts are expected to have a

very small effect.

5.8 LHC sensitivity to QNGCs

Using the LHC search strategy for pp(γγ → γγ)pp and pp(γγ → γγ)ZZ sig-

nals outlined in the previous section we can now report the expected sensitivity of

diffractive photon fusion at LHC to QNGCs. Table 5.1 shows the expected number of

observed events Nobs and the signal significance for both the processes with different

integrated luminosities. The expected number of signal, background and observed
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Couplings Process Integrated Nobs Nb Confidence
Luminosity(fb−1) Level(sigma)

Case 1: (850 GeV)−4
γγ → γγ 1 12.1 0.3 >10

Case 1: (1.8 TeV)−4
γγ → γγ 300 133.1 82.8 5.2

Case 1: (850 GeV)−4
γγ → ZZ 300 7.4(1.9) 1.1(0.3) 4.3(2.1)

Case 1: (750 GeV)−4
γγ → ZZ 300 11.4(2.8) 1.1(0.3) 6.0(2.9)

Case 1:(500 GeV)−4
γγ → ZZ 300 46.8(11.7) 1.1(0.3) >10(8.1)

Case 2:(700 GeV)−4
γγ → ZZ 300 14.8(3.7) 2.1(0.5) 5.8(3.1)

Case 2:(500 GeV)−4
γγ → ZZ 300 51.3(12.8) 2.1(0.5) 8.2(7.7)

Case 3: ΛT = 1.0 TeV γγ → γγ 1 13.5 0.3 >10
Case 3: ΛT = 2.4 TeV γγ → γγ 300 118.2 82.8 3.9
Case 3: ΛT = 900 GeV γγ → ZZ 300 12.6(3.2) 1.1(0.3) 6.4(3.6)
Case 3: ΛT = 700 GeV γγ → ZZ 300 39.6(9.9) 1.1(0.3) >10(7.1)
Case 4:(1.9 TeV)−2

γγ → ZZ 300 5.3(1.3) 1.1(0.3) 3.3(2.1)
Case 4:(2.2 TeV)−2

γγ → ZZ 300 3.9(1.0) 1.1(0.3) 2.2(1.1)

Table 5.1: The expected number of observed events Nobs and the signal significance for both the
processes for different integrated luminosities. The expected number of observed events is evaluated
using Nobs = σ

signal

eff
L where L is the integrated luminosity, and to evaluate the signal significance

the background is assumed to follow a Poisson distribution with mean Nb = σ
bgr

eff
L. The signal

contribution has been evaluated with a form factor as in Eq. (5.28) taking m = 2, n = 1 and

Λγγ/ZZ

f
= Λγγ/ZZ

UB
. For the γγ → ZZ process the values in the parentheses show the results if only

muonic decays of Z are considered.

events are evaluated using,

NS = σsignal
eff Lint

NB = σbgr
effLint

Nobs = NS +NB(5.49)

where Lint is the integrated luminosity and σeff is the effective cross-section defined

by Eq. (5.44) and Eq. (5.48), after taking into account detector efficiencies. The

signal contribution has been evaluated with a form factor as in Eq. (5.28) taking

m = 2, n = 1 and Λγγ/ZZ
f = Λγγ/ZZ

UB . We can simply add the signal and background

events to get the total number of events expected to be observed in Eq. (5.49) be-

cause the interference with the background is very small. The interference with

the DPE background is small because the interference between DPE and photon

exchange diffractive processes is in general small and the interference with the SM
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loop background is small because unlike the signal this background gets most of the

contribution from the low-W region. In order to quantify the signal significance we

evaluate the probability, α, that the background has not fluctuated to give a number

of events greater than or equal to Nobs assuming that it follows a Poisson distribution

with Nb as its mean. The confidence level expressed as a particular number of sigma

deviations is given by
√
2 erf−1(α) where erf() is the error function. We find the

sensitivity for four different physically interesting ways of choosing the relative value

of the QNGCs.

CASE I: bi/Λ2 = 1/Λ2 , ci/Λ4 = 1/Λ4

We find that the γγ production process is by far the more promising of the two

processes for probing QNGCs. As we can see from Table 5.1 even with integrated

luminosities as low as Lint = 1 fb−1,couplings as small as 1/(850 GeV)4 can be

probed with large significance. With high integrated luminosity (300 fb−1) couplings

as small as 1/(1.8 TeV)4 can be detected with more than 5 sigma significance. There

are possible cuts that can remove inclusive events as discussed in the previous sec-

tion, which may substantially reduce the DPE background. If this is possible the

γγ → γγ process can be sensitive to even smaller couplings. Note that a coupling

with value 1/(1.8 TeV)4 does not necessarily mean that the energy scale of new

physics is 1.8 TeV. If dimensionless couplings less than unity or loop factors are

present, for instance, the scale of new physics would be lower.

The ZZ production process requires very high integrated luminosity. For this

process we give in addition to the results assuming Z decays to both electrons and

muons, the results considering only the muonic decays in parentheses. For Lint = 300
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fb−1 as one can see from Table 5.1 the smallest couplings that can be detected with

more than 95 % confidence level are about 1/(850 GeV)4. If we require the detec-

tion of at least 10 signal events these values are 1/(750 GeV)4 and 1/(500 GeV)4

considering respectively decays to both electrons and muons and only muonic decays.

CASE 2: Resolving contribution to ZZ production from the contribution due to O0

As mentioned before the dimension-6 operator O0 contributes to the signal through

the γγ → H∗ → ZZ process. The value of this coupling can be obtained from the

H → γγ partial width measurement. For this case we consider this contribution

to be part of the background and take all the bi/Λ2 = 1/(850 GeV)4and all the ci

equal. We then try to find the smallest QNGC couplings ci that can be detected. As

we want to separate the O0 contribution from higher dimensional contributions, we

do not use any form factor for the evaluation of the γγ → H∗ → ZZ cross-section

due to this operator as using the form factor is equivalent to including higher di-

mensional corrections (see Section 5.4). We find that the smallest couplings that

can be detected for this case with 300 fb−1 data to be 1/(700 GeV)4 (1/(500 GeV)4)

considering Z-decays to both electrons and muons (to only muons).

CASE 3: Graviton exchange in extra-dimensional model

For this case we assume that the QNGCs arise from the effective dimension-8 op-

erator due to virtual graviton exchange in extra-dimensional theories described in

Section 5.2.3. The relative couplings of the QNGCs are thus fixed by expanding the

operator in Eq. (5.16) and the only adjustable parameter is ΛT .
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As one can see from Table 5.1 we find that the γγ → γγ process can detect this

operator with only 1 fb−1 data for ΛT = 1.0 TeV. For high luminosities (300 fb−1)

the maximum value of ΛT that can be probed by this process in the DPE background

is about ΛT = 2.4 TeV. Note that our results differ from and are less optimistic than

the results of Sahin et al [126] who do not consider the DPE background and more

importantly use a far less restrictive ξ-acceptance cut. As explained after Eq. (5.40)

because of the ξ < 0.15 acceptance cut only events with W < 2.1 TeV are accepted.

In Ref. [126], on the other hand, events with ξ as high as 0.5 are accepted which

corresponds to W as high as 7 TeV and most of the contribution to their signal

comes from the high ξ events; protons with ξ > 0.15 can, however, not be detected

by the forward detectors [115]. For the γγ → ZZ process ΛT as high as 900 GeV

(700 GeV) can be probed with 300 fb−1 data considering Z-decays to both electrons

and muons (to only muons). As already mentioned in Section 5.2.3 the ggγγ/ggZZ

operators (g being a gluon) that arise from expanding the operator in Eq. (5.16) are

expected to give a contribution to the exclusive ppγγ/ppZZ final states via central

exclusive pomeron fusion but this contribution is expected to be negligible relative

to the diffractive photon fusion contribution.

Establishing the presence of QNGCs would give very important complementary

evidence for virtual graviton exchange because it is possible in this case to uniquely

trace back to the underlying dimension 8 operator involved. Our final sensitivity

results show, however, that for the particular diffractive processes we have studied

for probing QNGCs the largest ΛT that can possibly be probed (2.4 TeV) has already

been ruled out by dijet constraints from the 36 pb−1 CMS data in Ref. [110] where

the constraint ΛT > 3.8 TeV has been derived. Thus diffractive photon fusion will

not be able to probe ΛT values still allowed by experimental data.
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CASE 4: Higgsless case

As we discussed in Section 5.2.2 in the higgsless case we expect only the follow-

ing two operators to be important,

(5.50) LHiggsless
QNGC =

(g/2cw)2ahl1
Λ2

FµνF
µνZρZ

ρ +
(g/2cw)2ahl2

Λ2
FµνF

µρZρZ
ν .

We take ahl1 = ahl2 in Eq. (5.15) and find that the pp(γγ → ZZ)pp process is sensitive

up to couplings as small as 1/(1.9 TeV)2 if we require more than 95% confidence level,

a huge improvement over existing limits. Our sensitivity estimates agree well with

those obtained by Chapon et al. in Ref. [103], once we translate to their convention

for parametrization of these couplings.

Higgsless models are usually associated with strong electroweak symmetry break-

ing (EWSB) scenarios. The operator coefficients in such theories can be estimated by

Naive Dimensional Analysis (NDA) (see Refs [129,130]). In our case, using NDA, we

find ahli /Λ
2 = e2/(16π2Λ2

s), Λs being the scale of the strongly coupled sector.5 The

above mentioned estimates tell us that our process is sensitive to Λs < 100 GeV. As

a strong sector at such low energies is already ruled out by experiments, our process,

unfortunately, cannot probe realistic scales for strong EWSB.

5.9 Conclusions

We have listed all possible operators contributing, at the lowest order, to Quartic

Neutral Gauge Couplings, quartic gauge couplings involving only the photon and

the Z boson and have studied the sensitivity of measurement of these couplings

in diffractive photon fusion processes at the LHC. These couplings are interesting
5Note that the ZZZZ coupling which appears at the dimension 4 level in the chiral lagrangian, from operators

like c (Tr[(DµΣ)†DµΣ])2, is less suppressed (c ∼ v2/Λ2
s ≈ 1/(16π2)) than other QNGCs.
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because the lowest order contribution they receive is from dimension 8 operators in

scenarios with a light Higgs and, in higgsless scenarios, from dimension 6 operators

(with the exception of the ZZZZ coupling which receives dimension 4 contributions

in this scenario but we have not focussed on this coupling in this work in any case).

Thus new physics processes which do not contribute through operators of the lowest

possible dimension can be probed by measuring these couplings. One specific example

that we have considered is virtual graviton exchange in extra dimensional theories

where the lowest dimension operators generated are of dimension 8, and these include

operators contributing to QNGCs.

Thus measurement of QNGCs in any experimental process would be interesting,

but in this work we have studied their measurement in diffractive photon fusion

processes like pp(γγ → γγ)pp and pp(γγ → ZZ)pp. The protons in these processes

remain intact and scatter diffractively with very small scattering angles. These can

be detected by very forward proton detectors that have been proposed for both the

ATLAS and CMS experiments. As we argue the detection of the two γ/Zs in the

central detectors along with the detection of the protons in these forward detectors

would indicate the existence of QNGCs like the γγγγ and γγZZ couplings, as this

is the only feasible new physics possibility that can lead to such a final state. The

only other possibility is pp(CEP → ZZ)pp, where CEP stands for Central Exclusive

Production, is a process that takes place when pomerons fuse exclusively (that is

without breaking into fragments) to give the ZZ/γγ final state. Such processes are,

however, expected to have a much smaller cross-section when compared to photon

fusion processes. To calculate the cross-section for the pp(γγ → γγ)pp and pp(γγ →

ZZ)pp processes we convolute the cross-section of the γγ → γγ/ZZ sub-process with

the γγ luminosity function obtained using the Equivalent Photon Approximation.
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The amplitude of the γγ → γγ/ZZ sub-process grows with energy because of the

non-renormalizable couplings involved and we unitarize this using appropriate form

factors. We have argued that our final sensitivity results for Λ will not change much

for a different choice of form factor than ours.

Before we summarize our results on the sensitivities, note that QNGCs are very

weakly constrained by existing data. Whereas no constraints exist on γγγγ couplings,

the γγZZ couplings are constrained by direct search results from LEP to be smaller

than about 1/(100 GeV)4 (1/(50 GeV)2) and by precision measurements to be

smaller than about 1/(270 GeV)4 (1/(420 GeV)2) in the light Higgs (higgsless) case.

We have found in this study that diffractive photon fusion at LHC can improve

these sensitivities by many orders of magnitude for the γγZZ coupling, and can

probe couplings as small as 1/(850 GeV)4 (1/(1.9 TeV)2) with 300 fb−1 integrated

luminosity for the light Higgs case (higgsless case). We find, however, using an NDA

estimate, that the values in the higgsless case correspond to a scale lower than 100

GeV for the strong sector which is already excluded by experiments. The γγγγ

coupling can be probed even more sensitively and values as small as 1/(1.8 TeV)4

can be measured with the same integrated luminosity for the light Higgs case. For the

specific case of virtual graviton exchange in theories with large extra dimensions we

find that the highest scale that can be possibly probed (about ΛT = 2.4 TeV by the

pp(γγ → γγ)pp process with 300 fb−1 data) has, unfortunately, already been ruled

out by the latest constraint from CMS dijet data which puts the bound ΛT > 3.8

TeV.
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APPENDIX A

Transverse length of wave-packets forming a classicalon

We want to show in this Appendix that the wave-packets forming a classicalon

have a transverse length equal to
√
Nr∗, where N is the number of incoming wave-

packets. We will show, first of all, that when all the incoming wave-packets reach

the origin at t = 0 (see Fig. 2.2(right)), as described in Section 2.2.1, the field φ

goes as φ ∼ 1/r outside the classicalon radius r∗. To prove this, let us think for

the moment, although as we will soon see this cannot be the case, that the wave-

packets are infinitely extended in the transverse direction. If the number of these

wave-packets is very large we can approximate the summation in the superposition

of these wave-packets by an integral over a spherically symmetric distribution of

these wave-packets with the direction of the momenta �k varying continuously. Let

θ be the angle the momentum of a particular wave-packet makes with the x-axis

(see Fig. A.1). For a point P on the x-axis outside the sphere, at a distance r

from the origin, only wave-packets with direction of momentum in a certain θ range,

− cos−1(r∗/r) < θ < cos−1(r∗/r), contribute to the field φ (see Fig. A.1) if r > r∗.

On the other hand, for a point inside the classicalon, there are contributions from

all the wave-packets without a restriction on θ. The total contribution to the field φ

at P , at a distance r from the origin, from wave-packets with energy |�k| is,
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φ(r) ∼
� π

−π

sin k(r cos θ + r∗)dθ for r < r∗,

φ(r) ∼
� cos−1(r∗/r)

− cos−1(r∗/r)

sin k(r cos θ + r∗)dθ ∼ 1

r
for r � r∗,(A.1)

where we have used the functional form in Eq. (2.7) and substituted l = r cos θ.

The exact form of the function inside the radius r∗ is not important as it would

change anyway in the presence of a classicalizing interaction. What is important is

the φ ∼ 1/r drop off outside the radius r∗ which shows that most of the the energy

does get localized inside r∗ for these wave-packets (note that the energy density

goes as (∂φ)2 ∼ 1/r4). We can also obtain the normalization Q of the field, in

φ ∼ Q/r, at the parametric level. For this note that our wavepackets must have

the usual normalization 1/
√
ωV ∼ 1/

�
ωNr3∗. Keeping in mind that the number of

wave-packets giving a contribution in Eq. (A.1) in the interval between (θ, φ) and

(θ + dθ, φ+ dφ) is (N/4π)dθdφ we get,

(A.2) φ(r) =
N

4π

1�
ωNr3∗

� cos−1(r∗/r)

− cos−1(r∗/r)

sin k(r cos θ + r∗)dθ ∼
√
N

r
for r � r∗.

where we have used the typical value, ω = k = 1/r∗. The numerator
√
N =

√
Mr∗

is actually the correct charge in any classicalizing theory [18]. For instance in the

special case of black holes it correctly reduces to the mass M of the black hole.

As we argued in Section 2.2.1, in order that they always overlap, our wave-

packets must have a finite transverse length. Let us calculate this length for N

incoming/outgoing particles. For N particles at a radius L/2 from the origin,

each particle can be thought to occupy an area πL2/N where no other particle

is present. Assuming this area occupied by the particle to be circular we find that

on an average the angle between the momenta of two neighboring particles would be
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Figure A.1: Here we show that at t = 0 when all the wave-packets reach the origin, only wave-
packets with direction of momentum in the θ range − cos−1(r∗/r) < θ < cos−1(r∗/r) contribute
to the field at a point P on the x-axis at a distance r from the origin. Here �k1 and �k2 are the
momentum vectors of the two wave-packets shown

       
   

L/2
 2r *

4 /√N

4 /√N

Figure A.2: The distance L/2 at which two neighboring wave-packets stop overlapping.

(2L/
√
N)/(L/2) = 4/

√
N . As one can see from Fig. A.2 this would mean that two

neighboring wave-packets would stop overlapping at a distance L/2 given by,

(A.3)
L

2
× 4√

N
= 2r∗ ⇒ L =

√
Nr∗.
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APPENDIX B

Derivation of the Bose-Einstein distribution function

In this Appendix we review the standard textbook derivation of the Bose-Einstein

distribution function (for a more detailed treatment see, for instance, Sections 87-89

Ref. [131]). We want to find the distribution function Nω that maximizes Ω(M)

while respecting the energy conservation constraint,

(B.1)

�
Nωgωω dω = M.

Remember that Nω is the number of particles in the energy state with energy ω, and

gω is the degeneracy of this energy state. Let us represent an arbitrary configuration

of a particular energy level as, × × | × |...× where the crosses represent the indis-

tinguishable φ quanta and the space between two bars is a quantum state. Thus we

should have Nω crosses and gω − 1 bars and the number of ways of arranging these

crosses and bars would give us the number of ways of arranging the particles in a

particular energy level. Considering all energy levels, this leads to the well known

expression,

(B.2) Ω(M) = Πω
(Nω + gω)!

Nω!gω!

where we have approximated (Nω+gω−1)! ≈ (Nω+gω)! and (gω−1)! ≈ gω!. We want

to maximize the entropy, S = log(Ω(M)), respecting the constraints in Eq. (B.1).
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We must have,

dS =
�

log
Nω + gω

gω
dNω = 0(B.3)

dM =
�

ωdNω = 0.(B.4)

where we have used Stirling’s approximation, logN ! = N logN −N . Now we maxi-

mize S by using the method of Lagrange multipliers,

dS − βdM = 0(B.5)

⇒ log

�
1 +

gω
Nω

�
− βω = 0,(B.6)

where we have used Eqs. (B.3) and (B.4) and β is the Lagrange multiplier. This

leads to the Bose-Einstein distribution,

(B.7) N(ω)dω =
g(ω)dω

eβω − 1
.
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APPENDIX C

Branching ratios in goldstone classicalization

In this Appendix we will provide formulae for the branching ratios of a classicalon

to final states with varying number of leptons in the goldstone classicalization model.

In the expressions below, wl is the branching ratio of a W to leptons (e, µ and lepton-

ically decaying τs), wj is the branching ratio of a W to jets (including hadronically

decaying τs ), zl is the branching ratio of a Z to two leptons and zj is the branching

ratio of a Z to two jets. In general we include invisible decays of the Z in zj. This

gives wl = 0.25, wj = 0.75, zl = 0.91 and zj = 0.07. To compute branching ratios

to final states with maximum possible number of jets in association with a given

number of leptons, we do not include W s decaying to hadronically decaying τs in

wj and invisibly decaying Zs in zj, which changes the values of wj and zj above to

wj = 0.68 and zj = 0.71. The branching ratios depend on the electric charge, Q, of

the classicalon. Let us first consider neutral classicalons, i.e. the Q = 0 case.

Classicalons with Q = 0

In a general configuration for a neutral classicalon there are k W+W− pairs and

(N∗ − 2k) Z-bosons where 0 ≤ k ≤ [N∗/2], [N∗/2] being the largest integer smaller

than N∗/2. As explained in Section 2.3.1 the probability of having such a configura-
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tion is given by,

P �
k =

N∗!

(N∗ − k)!(k!)2
,

Pk =
P �
k�n

k=0 P
�
k

.(C.1)

In order to obtain the single lepton final state one of the W s needs to decay lepton-

ically which gives the following branching ratio for a N∗-particle classicalon,

(C.2) BR(Cl → l) =
[N∗/2]�

k=1

�
2k

1

�
wlw

2k−1
j zN∗−2k

j Pk.

Similarly to obtain two(three) positive leptons, two (three) W+s need to decay lep-

tonically which leads to the expressions,

BR(Cl → l+l+) =
[N∗/2]�

k=2

�
k

2

�
w2

l w
2k−2
j zN∗−2k

j Pk,(C.3)

BR(Cl → 3l+) =
[N∗/2]�

k=3

�
k

3

�
w3

l w
2k−3
j zN∗−2k

j Pk.(C.4)

For the branching ratio to 3 leptons either 3 W s need to decay leptonically or 2 W s

and a Z need to decay leptonically which gives us two terms in the branching ratio

of a classicalon to 3 leptons,

BR(Cl → 3l) =
[N∗/2]�

k=2

�
2k

3

�
w3

l w
2k−3
j zN∗−2k

j Pk

+
[N∗/2]�

k=1

�
2k

1

�
wlw

2k−1
j

�
N∗ − 2k

1

�
zlz

N∗−2k−1
j Pk.(C.5)

Now let us generalize this to a classicalon decay to an arbitrary number of leptons,

nl where 0 ≤ nl ≤ 2N∗. For nl = 2p, an even number, we can get nl leptons from

the decay of an even number, 2q, of W decays and (p− q), Z decays. This gives us,

(C.6) BR(Cl → 2p l) =
p�

q=0

[N∗/2]�

k=q

�
2k

2q

�
w2q

l w2k−2q
j

�
N∗ − 2k

p− q

�
zp−q
l zN∗−2k−p+q

j Pk.
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If nl = (2p + 1), is an odd number, we can get nl leptons from the decay of an odd

number, (2q + 1), of W decays and (p− q), Z decays. This gives us,

(C.7)

BR(Cl → (2p+1)l) =
p�

q=0

[N∗/2]�

k=q

�
2k

2q + 1

�
w2q+1

l w2k−2q−1
j

�
N∗ − 2k

p− q

�
zp−q
l zN∗−2k−p+q

j Pk.

Classicalons with Q = +2

For classicalons with charge Q = +2, there are in general (k + 2) W+ bosons, k

W− bosons and (N∗ − 2k − 2) Z-bosons, where 0 ≤ k ≤ [(N∗ − 2)/2], [(N∗ − 2)/2]

being the largest integer smaller than (N∗−2)/2. Proceeding as in the previous case

we obtain the expressions,

P �
k =

N∗!

(N∗ − 2k − 2)!k!(k + 2)!
,

Pk =
P �
k�[(N∗−2)/2]

k=0 P �
k

,(C.8)

BR(Cl → l) =
[(N∗−2)/2]�

k=0

�
2k + 2

1

�
wlw

2k+1
j zN∗−2k−2

j Pk,(C.9)

BR(Cl → l+l+) =
[(N∗−2)/2]�

k=0

�
k + 2

2

�
w2

l w
2k
j zN∗−2k−2

j Pk,(C.10)

BR(Cl → 3l+) =
[(N∗−2)/2]�

k=1

�
k + 2

3

�
w3

l w
2k−1
j zN∗−2k−2

j Pk,(C.11)
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BR(Cl → 3l) =
[(N∗−2)/2]�

k=1

�
2k + 2

3

�
w3

l w
2k−1
j zN∗−2k−2

j Pk

+
[(N∗−2)/2]�

k=0

�
2k + 2

1

�
wlw

2k+1
j

�
N∗ − 2k − 2

1

�
zlz

N∗−2k−3
j Pk,(C.12)

BR(Cl → 2p ?l) =
p�

q=0

[(N∗−2)/2]�

k=q−1

�
2k + 2

2q

�
w2q

l w2k−2q+2
j ×

�
N∗ − 2k − 2

p− q

�
zp−q
l zN∗−2k−2−p+q

j Pk,(C.13)

BR(Cl → (2p+ 1)l) =
p�

q=0

[(N∗−2)/2]�

k=q−1

�
2k + 2

2q + 1

�
w2q+1

l w2k−2q+1
j ×

�
N∗ − 2k − 2

p− q

�
zp−q
l zN∗−2k−2−p+q

j Pk.(C.14)

Classicalons with Q = −2

For classicalons with charge Q = +2, there are in general (k + 2) W− bosons, k

W+ bosons and (N∗ − 2k − 2) Z-bosons, where 0 ≤ k ≤ [(N∗ − 2)/2], [(N∗ − 2)/2]

being the largest integer smaller than (N∗ − 2)/2. In this case we obtain,

P �
k =

N∗!

(N∗ − 2k − 2)!k!(k + 2)!
,

Pk =
P �
k�[(N∗−2)/2]

k=0 P �
k

,(C.15)

BR(Cl → l) =
[(N∗−2)/2]�

k=0

�
2k + 2

1

�
wlw

2k+1
j zN∗−2k−2

j Pk,(C.16)

BR(Cl → l+l+) =
[(N∗−2)/2]�

k=2

�
k

2

�
w2

l w
2k
j zN∗−2k−2

j Pk,(C.17)

BR(Cl → 3l+) =
[(N∗−2)/2]�

k=3

�
k

3

�
w3

l w
2k−1
j zN∗−2k−2

j Pk,(C.18)
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BR(Cl → 3l) =
[(N∗−2)/2]�

k=1

�
2k + 2

3

�
w3

l w
2k−1
j zN∗−2k−2

j Pk

+
[(N∗−2)/2]�

k=0

�
2k + 2

1

�
wlw

2k+1
j

�
N∗ − 2k − 2

1

�
zlz

N∗−2k−3
j Pk,(C.19)

BR(Cl → 2p ?l) =
p�

q=0

[(N∗−2)/2]�

k=q−1

�
2k + 2

2q

�
w2q

l w2k−2q+2
j ×

�
N∗ − 2k − 2

p− q

�
zp−q
l zN∗−2k−2−p+q

j Pk,(C.20)

BR(Cl → (2p+ 1)l) =
p�

q=0

[(N∗−2)/2]�

k=q−1

�
2k + 2

2q + 1

�
w2q+1

l w2k−2q+1
j ×

�
N∗ − 2k − 2

p− q

�
zp−q
l zN∗−2k−2−p+q

j Pk.(C.21)
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APPENDIX D

Statistical definitions for H → WW → 2l2ν searches

In this Appendix we review the procedure for evaluating exclusion confidence levels

and discovery significances assuming a Gaussian distribution for the expected number

of events. For exclusion of a particular value of the mean expected signal S, the

hypothesis being tested is the signal plus background hypothesis so that expected

number of events, Nexp, has the mean value N̄exp = S + B. We assume a Poisson

distribution for Nexp with mean value S + B and standard deviation
√
S +B. If

the number of events finally observed in the experiment is Nobs < S + B the signal

plus background hypothesis is said to be excluded at 95% confidence level if the

probability that Nexp can fluctuate downward form its mean value S +B to a value

less than or equal to Nobs is less than 5%. For S + B � 1 the Poisson distribution

we have assumed for Nexp tends to a Gaussian distribution and the statement above

implies that signal values S, still allowed after setting the 95% CL 1 bound would

satisfy,

S +B −Nobs√
S +B

≤ 1.64.(D.1)

To find the median 95 % exclusion potential we take Nobs = B to obtain,

(D.2)
S√

S +B
≤ 1.64.

1Note that 95% CL corresponds to 1.96 standard deviations if both upward and downward fluctuations are
considered and 1.64 standard deviations if only downward fluctuations are considered as is the case here.
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The upper limit on the allowed signal is the maximum value of S for which this

condition holds.

The significance of a discovery, on the other hand, is defined as the significance for

rejecting the background-only hypothesis if an excess is seen over the background.

We assume a Poisson distribution with mean B and standard deviation
√
B for the

background. The median discovery significance, Z0 is then the number of standard

deviations by which the background must fluctuate upward from its mean value to

give an excess equal to the mean expected signal S, that is,

(D.3) Z0 =
S√
B
.

For a 5σ discovery, for instance, we would have Z0 = 5. The above expression, how-

ever, overestimates the significance if the statistics is low. A better approximation

for the significance is given by the expression (defined as Sc12 in [92]),

(D.4) Z0 = 2(
√
S +B −

√
B).

This is the definition of significance we will use here.

Systematic uncertainties also play a very important role especially in the h →

WW → lνlν channel. The standard way to incorporate systematic effects is by

convoluting the Poisson distribution for Nexp (which is a Gaussian distribution in

the large statistics limit) with the probability density function for the systematic

uncertainty. Numerical convolution of the Poisson distribution with a systematic

uncertainty having a Gaussian shape with standard deviation ∆B leads to the mod-

ification of Eq. (D.2) and Eq. (D.4) to [92],

S�
S +B + (∆B)2

≤ 1.64 and,(D.5)

Z0 = 2(
√
S +B −

√
B)

�
B

B + (∆B)2
.(D.6)
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respectively.
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APPENDIX E

γγγZ, γZZZ and ZZZZ couplings

We first consider the operators in the light higgs case in Eq. (5.2) when written

in terms of the fields A and Z give rise to γγγγ, γγZZ, γγγZ, γZZZ and ZZZZ

couplings. We already wrote the Lagrangian for the γγγγ and γγZZ couplings in

Eq. (5.7). In this Appendix we will present the γγγZ, γZZZ and ZZZZ couplings.

Using Eq. (5.6) we get from Eq. (5.2),

LγγγZ
QNGC =

aγγγZ1

Λ4
FµνF

µνFρσZ
ρσ +

aγγγZ2

Λ4
FµνF

µρFρσZ
σν

LγZZZ
QNGC =

aγZZZ
1

Λ4

m2
Z

2
FµνZ

µνZρZ
ρ +

aγZZZ
2

Λ4

m2
Z

2
FµνZ

µρZρZ
ν

+
aγZZZ
3

Λ4
FµνZ

µνZρσZ
ρσ +

aγZZZ
4

Λ4
FµνZ

µρZρσZ
σν

LZZZZ
QNGC =

aZZZZ
1

Λ4

m4
Z

4
ZµZ

µZρZ
ρ +

aZZZZ
2

Λ4

m2
Z

2
ZµνZ

µνZρZ
ρ

+
aZZZZ
4

Λ4
ZµνZ

µνZρσZ
ρσ +

aZZZZ
5

Λ4
ZµνZ

µρZρσZ
σν(E.1)

where for the γγγZ couplings we get,

aγγγZ1 = −4swc
3
wc8 + 4s3wcw(c9 + c10) + (2swc

3
w − 2s3wcw)(c11 + c12)

aγγγZ2 = −4swc
3
wc13 + 4s3wcw(c14 + c15) + (2swc

3
w − 2s3wcw)(c16 + c17),(E.2)



180

for the γZZZ couplings we get,

aγZZZ
1 = −2swcwc3 + 2swcwc4 − (c2w − s2w)c5

aγZZZ
2 = −2swcwc6 + 2swcwc7

aγZZZ
3 = −4s3wcwc8 + 4swc

3
w(c9 + c10) + (2s3wcw − 2swc

3
w)(c11 + c12)

aγZZZ
4 = −4s3wcwc13 + 4swc

3
w(c14 + c15) + (2s3wcw − 2swc

3
w)(c16 + c17).(E.3)

and for the ZZZZ couplings we get,

aZZZZ
1 = c1 + c2

aZZZZ
2 = s2wc3 + c2wc4 + cwswc5

aZZZZ
3 = s2wc6 + c2wc7

aZZZZ
4 = s4wc8 + c4w(c9 + c10) + c2ws

2
w(c11 + c12)

aZZZZ
5 = s4wc13 + c4w(c14 + c15) + c2ws

2
w(c16 + c17).(E.4)

As explained in Section 5.2.2, any U(1)em invariant operator, constructed using Zµ

and Fµν fields, is an allowed operator in the higgsless case. Thus, for the higgsless case

we will get the same operators as above but now OZZZZ
1 would arise from dimension

4 operators while OγZZZ
1 , OγZZZ

2 , OZZZZ
2 and OZZZZ

3 would arise from dimension 6

operators.
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APPENDIX F

Derivation of unitarity relation for the γγ → γγ and γγ → ZZ
processes

In this Appendix we derive the expression for the unitarity bound for the processes

γγ → γγ and γγ → ZZ. Applying the optical theorem to the γγ → γγ process tells

us,

Im(M(γ1γ2 → γ1γ2))

s
= σ(γ1γ2 → everything)

= σ(γ1γ2 → γ(�1)γ(�2)) +
�

�3,�4

σ(γ1γ2 → Z(�3)Z(�4))

+∆(F.1)

where γi denotes γ(ki, �i) and ∆ is a positive number that accounts for all the other

contributions to the RHS of Eq.. (F.1) and the cross section for the γγ → V V process

is given by,

(F.2) σ =
βW

64π2s

�
dΩCM |M(γ1γ2 → V V )|2.

The amplitude can be expanded into partial waves as follows,

M(γ1γ2 → γ1γ2) = 16π
�

J

(2J + 1)bJPJ(cos θ)

M(γ1γ2 → ZZ) = 16π
�

J

(2J + 1)aJPJ(cos θ).(F.3)
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where βV =
�

1− 4M2
V

s . For the forward scattering in the LHS of Eq. (F.1), we must

put θ = 0. Using Eqs. (F.1-F.3) and the following property of Legendre polynomials,

(F.4)

� 1

−1

Pm(x)Pn(x) =
2

2n+ 1
δmn,

gives,

(F.5) ( Im(bl))
2 − Im(bl) +

�

�3,�4

(Re(bl))
2 + βW

�

�3,�4

|al|2 + δl = 0.

The first two terms in Eq. (F.5) should be evaluated taking the initial polarizations

to be exactly same as the final polarizations, and δl is the positive contribution from

every other source. Eq. (F.5) is a quadratic equation for Im(bl). The equation must

have real roots and thus must have a positive discriminant. This gives the condition,

(F.6) (Re(bl))
2 + β

�

�3,�4

|al|2 + δl <
1

4
.
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APPENDIX G

Kinematic bound on photon virtuality

First let us derive the kinematical limits on q2i . From conservation laws we must

have q = (E − E �
i, �p − �p�i). Substituting |�p�i| =

�
E2

i −m2, m being the mass of the

particle emitting the photon, we obtain for m � E �
i,

(G.1) q2i = −4EE �
i sin

2 θi
2
− m2ω2

i

EEi
cos θi.

Here θi is the angle between �p and �p�i. In the expression above the first term domi-

nates. As most of the contribution to the amplitude comes from the small |q2i | region,

ignoring the second term above we see that we must have small θ. We thus obtain

the following kinematical bound on q2i ,

(G.2) q2i < − m2ω2
i

E(E − ωi)
.
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