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ABSTRACT

In this dissertation, we study the impact of efficient resource allocation policies

on the performance of a variety of systems including service centers, manufacturing

systems, and pharmaceutical distribution centers.

In Chapter II, we investigate the optimal server scheduling policy in service in-

dustries such as call centers and off-line information technology service centers. We

model the system as a Markov Decision Process and analytically characterize the

optimal server allocation and scheduling policy. We also propose an efficient heuris-

tic to improve server scheduling with no need to solve the MDP formulation. Our

computational results confirm the effectiveness of our heuristic as compared to other

well-studied routing algorithms from the literature.

In Chapter III, we propose a new production line design framework for a U-

shaped production system consisting of several stations and cross-trained workers.

We address efficient line design principles to enhance the system’s throughput while

keeping the number of required skills per worker significantly lower. We design an

extensive test suite and use simulation to show that the system we designed can

achieve nearly the same level of throughput as a fully cross-trained system.

In Chapter IV, we present two-stage and three-stage stochastic network flow for-

mulations to address the problem of deploying disease treatment in developing coun-

tries when the demand is uncertain. We find efficient distribution strategies that

improve access to treatments at a minimum cost. We use demand data on the

xii



facility-based malaria treatment distribution provided by the Malawian Ministry of

Health. We show that the proposed stochastic approaches can effectively reduce

shortages and lower transportation costs.

Finally in Chapter V, we address the problem of routing incoming calls in an

information technology service center with cross-trained servers and heterogeneous

demand. Another important characteristic of the studied model is the fixed task

completion deadline associated with each incoming service request. If the deadline

is not met, a relatively large deadline violation penalty will be charged. To design

and implement the proposed routing algorithm, we use real data from an industrial

research partner. The simulation results confirm the effectiveness of the proposed

routing heuristic in improving customer satisfaction by avoiding deadline violation.
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CHAPTER I

Introduction

In this dissertation, we study problems drawn from a large domain of optimization

problems addressing the complex issue of resource allocation under uncertainty. The

resources in a manufacturing environment could be workers and the source of un-

certainty could be the manufacturing process variability that causes randomness in

processing times. In a service environment, the resources are human agents who re-

spond to incoming requests from customers, and the service process variability (often

driven in part by the unique needs of the customer) causes randomness in processing

times. Arrivals typically follow a random pattern and also the time that requests

spend in the system is often uncertain. In our fixed task zone chaining model of

production systems, the models are closed queueing network models for which the

random arrival times are driven by the system design and operating policies as well

as intrinsic process time randomness. In a distribution network such as the one in

Chapter IV, resources are the commodities that are transported and temporal and

spatial demand fluctuations are among the key uncertainties to be modeled.

The methodologies investigated in this dissertation include: simulation, statisti-

cal analysis, Markov Decision Processes, dynamic programming, and stochastic pro-

gramming. The studied application domains include call centers, service industries,

1
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manufacturing systems, and medication distribution centers.

In Chapter II, we consider the dynamic scheduling of cross-trained servers to

multiple classes of customers, who are impatient while waiting in finite queues or

being served. We model the scheduling problem as an “N” network with two classes

of customers and two servers: one dedicated server and one cross-trained server.

Since each queue has a finite buffer size, a new arrival will be blocked if the queue is

full, incurring a rejection penalty. When a customer waits longer than she is willing

to, she might renege and generate a reneging cost. The system also incurs a class-

specific holding cost per unit time for each customer in the system. We provide

sufficient conditions under which static priority policies are optimal. We also show,

however, that the optimal policy can in general be complected and lacks a monotone

switching curve. For these cases, we develop a dynamic allocation heuristic called

the comparative expected reward rate index (CERRI) that effectively incorporates

the primary drivers of cost. A performance comparison to the optimal policy and

two well-studied server allocation policies from the literature show that our heuristic

performs well and is robust to parameter changes.

In Chapter III, we study the optimal zone design for a flexible assembly line with

limited work in progress level. The new paradigm of Fixed Task Zone Chain (FTZC)

as a special type of zone-based cross-training was introduced by Williams [93]. Based

on his initial results we develop a heuristic dynamic control policy to maximize the

line’s throughput given a zone structure. We also prove several useful properties of

the optimal policy and extrapolate from them to devise a heuristic control policy

that yields high throughput. The performance of a FTZC system is contingent

upon the choice of zone structure; therefore, we devise the zone assignment (ZonA)

algorithm to design the zone structure to achieve high throughput levels. We then



3

derive sufficient conditions that guarantee that the line is balanceable through ZonA.

Benchmarking over a test suite supports the effectiveness of our proposed heuristic

worker control policy as well as the ZonA algorithm, and we compare it to the

performance of other paradigms.

In Chapter IV, we address the problem of distributing drugs to treat malaria

through the centralized, multi-tiered health system model of the Malawian Ministry

of Health, given temporal and spatial uncertainty in malaria infection and demand

for treatment services. Malaria poses a serious threat to society in many developing

world countries. The efficient and effective distribution of malaria treatments is a

key challenge in resource constrained countries such as Malawi. Chapter IV develops

a practical solution that integrates strategic level and operational level models to

better manage treatment distribution through the centralized, multi-tiered health

system model of the Malawian Ministry of Health. At the strategic level, we develop

a two-stage stochastic programming approach to address the problem of demand

uncertainty. In the first stage, before the malaria season starts, an initial round of

shipments of Artemesinin Combination Threrapies (ACTs) are sent to each local

clinic (third tier) from district hospitals (second tier), which receive medications

from regional warehouses (first tier). When the malaria season begins and demand

is realized, a recourse action is triggered. We analyze two different implementations:

(1) a transshipment model, in which clinics facing a shortage can receive ACTs from

clinics that have supply surpluses, and (2) a delayed shipment model, in which a

safety inventory is stocked at the district hospitals to resupply individual clinics. The

first strategic model indicates that the optimal policy involves the creation of clinic

clusters with exclusive transshipment policies. This insight enables us to reconstruct

the problem at the operational level, solving each clinic cluster independently, where
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the clusters are identified using the original stochastic programming models. We

then solve the operational problem using Markov decision process (MDP) approach

to determine optimal periodic transshipment policies. Finally, we demonstrate a

potential for a 16% reduction of shortage cost by using our proposed distribution

system based on a case study using historical data from 290 facilities under the

control of the Malawi Ministry of Health.

In Chapter V, we present a simulation-based approach to study alternative dy-

namic assignment policies in an information technology (IT) service delivery envi-

ronment. Our overarching goal is to find the most cost-effective assignment of service

requests to cross-trained agents in a large-scale network. We present a novel heuris-

tic algorithm that assigns an analytically described allocation index to each service

request that has arrived. It incorporates factors such as variability in agents capabil-

ities, uncertainty in request inter-arrival times, and complex service level agreements

(SLA). We investigate the effectiveness of our proposed assignment algorithm using

real world data from an IT service environment on a small problem instance. We

discuss how the results of this simulation can help improve the terms of service level

contracts as well as agent training programs.



CHAPTER II

Control Policies for the “N” Network with Impatient
Customers and Finite Buffers

2.1 Introduction

In many service and make-to-order (MTO) manufacturing environments, the abil-

ity to have adequate capacity is critical to avoid delays and lost demand. Many

of these systems, however, operate with finite capacity that cannot be changed as

quickly as demand changes, making adaptive resource allocation (i.e., doing the right

job with the right resource at the right time) more critical. One way to efficiently

utilize the resources is to increase operational flexibility through cross-training of

workers/agents.

Cross-training has the potential to help quickly respond to the needs from a

variety of consumers without adding more workers, but can only be achieved by

effectively allocating the right resource at the right time (dynamic resource alloca-

tion). Furthermore, because of the high cost of training and maintaining a flexible

workforce, many firms use a combination of cross-trained and traditional/dedicated

servers (possessing narrow skill sets). In such environments, using more expensive

flexible resources efficiently is critical to reducing the system’s operating costs.

The “N” network structure has been an excellent research model for gaining fun-

damental insights for flexible workforce (see Bell and Williams [18], Harrison [44],

5
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Bell and Williams[19], and Ahn et al. [2]). A typical “N” network model (including

ours) assumes one of the two servers, assumes server 1 is a specialist and can only

serve jobs/customers in queue 1 (type-1 jobs) and the other server, server 2, is a

generalist and can serve either in queue 1 or queue 2. There are two job types: a

type-1 job is a “shared” task which can be processed by both servers and a type-2

job is a “fixed” task which can only be processed by the cross-trained server.

We assume that buffers for both queues are finite. Consequently, after filling a

buffer of size (Ni), a new type i arrival to the system is blocked. We assume that

jobs that are waiting in the system are impatient; jobs can leave the system before

service completion. We allow heterogeneous jobs; hence costs for waiting, blocking,

and reneging all depend on the job type.

A good example of a system with flexible workforce, finite buffer, and reneging

customers is a MTO system production with “general” and “customized” products.

In such production processes customers can cancel their orders if not served or they

may find another supplier. In this case, the cost associated with reneging represents

the lost revenue plus the loss of goodwill. In the MTO context, the finite order

buffer can model the phenomenon in which a firm stops taking orders (or turns away

customers) if there are too many jobs in the system to avoid the loss of goodwill for

failure to fulfill the orders in a timely manner.

Another example of systems where reneging and blocking occur in a system with

flexible workforce is IT service centers where agents perform a variety of tasks, in-

cluding remote monitoring and management of hardware and software, developing

new applications, applying security patches, etc. At these IT service centers, a dis-

patcher first categorizes the service requests based on their type and assigns them to

job-specific queues. Servers (also called “agents” to avoid confusion with “computer
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servers”) pick the requests from these queues and begin to address them. IT service

centers hire and train agents with a variety of skills. While some agents are more

narrowly trained to resolve high-volume, low complexity problems, other agents can

have a wider set of skills. These cross-trained agents not only resolve low complex-

ity problems, but they can also handle more complex service requests. IT service

delivery centers often need to deal with the issue of impatient customers, because

customers can simultaneously attempt to resolve the problems themselves and/or

hire a competitor in an effort to expedite the service. This will impose direct and

indirect reneging costs on the system, including the loss of revenue and goodwill as

well as the penalty imposed by the service agreement.

Despite its deceptively simple appearance, our model is complex because of the

cost structure and the fact that has an intermediate amount of cross-training, half

way between fully dedicated and fully cross-trained systems. To achieve full benefits

in our model, efficient job-to-server assignment policies must be employed.

An effective policy will judiciously apply efforts of the generalist to the type-1

task of the inflexible (specialist) worker so as to help without inducing starvation of

the specialist. By investigating the structure of the optimal assignment policy in an

“N” network, we provide sufficient conditions under which a static priority policy is

optimal. However, we illustrate that those sufficient conditions are not always met.

Therefore, static priority rules may not necessarily be effective in general. Using

insights derived from the system dynamics and from numerical experimentation,

we then develop a heuristic algorithm for general cases and test it in an extensive

numerical study to establish its effectiveness.

This chapter is organized as follows: The remainder of Section 2.1 surveys the

literature. A Markov Decision Process (MDP) formulation of the dynamic job-to-
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server allocation problem is presented in Section 2.3, followed by a discussion of the

structure of the optimal allocation policy. To gain insight into the characteristics of

the optimal policy, we present numerical results for a limited test suite in Subsection

2.3.3. In Section 2.4 we present sufficient conditions that guarantee the optimality of

a strict priority policy. For other cases, where the sufficient conditions are not sat-

isfied, finding an optimal dynamic allocation of jobs to servers may not be practical

in real time. Therefore, we present a heuristic, index-based dynamic allocation algo-

rithm in Section 2.5. The heuristic algorithm is described as an analytical function of

the basic model parameters. It also clearly presents intuition so that the dispatcher

can gain better insight into the dynamic assignment procedure. Final remarks and

future research are explained in Section 2.6.

2.2 Literature Survey

The research in this chapter is related to two streams of research: allocation of

flexible servers and reneging of impatient customers and/or blocking arising from

finite capacity.

Flexibility and Cross-training

A number of papers have shown that effective control policies are critical to im-

proving system performance and realizing the full value of flexible resources. These

papers include Iravani et al. [52], Iravani et al. [51], and Gurumurthi and Benjaafar

[43]. Buyukkoc et al. [24] and Warland [89] show that in a simple cross-training

framework with one server and several problem types, the cµ rule can be optimal.

Van Oyen et al. [86], Brusco et al. [23], Van Mieghem [85], Sennott et al. [79], and

Ahn et al. [1] consider optimal allocation of a flexible workforce on more complex

network topologies.
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Cross-training often increases the complexity of the system as well as training

costs. Hopp et al. [48], McClain et al. [66], Jordan and Graves [54], and Parvin et

al. [71] evaluate the performance of the system when a limited degree of flexibility is

added. They all support the notion that a modest level of flexibility can significantly

improve the system performance, suggesting that limited flexibility is a good design

that reaps the benefits of flexibility while keeping the training costs (or other overhead

costs) low.

Our model is a special case of “N” network, studied in a number of papers.

Harrison [44] discusses how cµ results can perform poorly in an “N” network when

service times are deterministic. Bell and Williams [18] discuss the optimality of a

threshold policy for an “N” network in heavy traffic with continuous review. Ahn

et al. [2] study an “N” network model with no external arrivals. They characterize

different forms of optimal control policies and the necessary and sufficient conditions

resulting in optimality of the policies. Veatch [87] argues for the optimality of cµ rule

in an “N” network with preemption. However, under more complex models such as

finite buffer capacity or customer impatience, the cµ rule may not necessarily perform

optimally and this rule does not hold in every cross-trained setting. For instance,

the model of Down and Lewis [31] is an “N” network with upgrades, and they prove

the optimality of a threshold policy.

For an “N” network with a more complex model, we argue that, unlike the above-

mentioned cases, the optimal policy may not be easy to characterize. Our research is

different from the existing literature since we include several other realistic features

such as reneging, blocking, and finite buffers in our model. We should also mention

that while most of these papers focus on partial characterization of optimal (or

asymptotically optimal) policies, our research focuses on finding sufficient conditions
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when a static rule is optimal as well as developing a reasonable heuristic for all other

cases.

Reneging and Blocking

Customer abandonment has been studied in the context of queueing networks.

The reneging phenomenon is an important part of many real world systems. Gayon

et al. [39] studies reneging to address lead time quotation by customers in inventory

models. Garnet et al. [37] study the same phenomenon in call centers. Several papers

studied the issue of reneging within the context of inflexible systems and showed that

even for rather simple models, reneging still imposes difficulty in analyzing the system

performance measures. See Baccelli et al. [11], Bae et al. [12], Finch [34], Gavish and

Schweitzer [38], Jennings and Reed [53], Panwar et al. [70], Stanford [82], and Barrer

[14] for more information on the reneging effect in single server systems. Boots and

Tijms [21] study the effect of reneging on system performance measures in multiple-

server queueing systems. Kim et al. [56] characterize the optimal assignment policy

in a production system with homogenous demand. In their model, demand is realized

in a multistage process and customers may leave the system at each given stage.

Down et al. [30] study the optimality of cµ-type policies in a system consisting of

one flexible server and two job types with linear renege rates. Note that the models

proposed by Kim et al. [56] and Down et al. [30] assume infinite buffer capacity and

consider only one server. Our model addresses a system with two servers and finite

buffer capacity.

Ghamami and Ward [41] model an “N” network structure with holding costs and

reneging penalties under heavy traffic. Garnet et al. [37] develop an asymptotic

approach to designing large call centers when customers’ impatience is exponentially

distributed. Zohar et al. [99] study the dynamic nature of customers’ impatience in
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both online customer contact centers and conventional telephone call centers. These

aforementioned papers only focus on systems with heavy traffic. In such settings,

asymptotic-based approximate approaches work well. Our research, however, differs

from the above work as it develops an approach applicable to low, medium, and high

traffic systems and more complex cost structures.

Finite buffer capacity often complicates a queueing network model. [45] study the

design of tandem queues with a finite buffer. Andradóttir et al. [5] study flexible

servers in a finite buffer system with the objective of maximizing throughput. They

also address an extension of this research problem where the flexible server can be

subject to failure (see Andradóttir et al. [8]). Andradóttir and Ayhan [4] study

the problem of an intermediate finite buffer with several flexible servers in a tandem

queue with two stations. They characterize the optimal policy to maximize the

long run average throughput. Kim and Van Oyen [55] develop a heuristic approach

for allocating a flexible server to two job types with a finite queue capacity. See

Perros [72] for an extensive literature study of the queueing systems with finite

buffer capacities.

To the best of our knowledge, there is no existing work that addresses the opti-

mal allocation in “N” network structure with heterogeneous demand, holding costs,

impatient customers, and finite buffer capacities.

2.3 Model

We consider an “N” network model with a dedicated server (server 1) and a

cross-trained server (server 2). Jobs are categorized into two types. Type-1 jobs are

shared task that can be assigned to both servers; and type-2 jobs are termed fixed

and can only be assigned to the cross-trained server (server 2). We assume that
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interarrival times and service times are exponentially distributed. Type-i jobs arrive

at the system with the rate of λ′i. The dedicated server serves type-1 jobs at the rate

of µ′11. The cross-trained server can serve both type-1 and type-2 jobs at the rate

of µ′21 and µ′22 respectively. Type-i jobs waiting in the queue incur holding costs h′i

per unit time. We assume a finite buffer (Ni) for each job type. At the event of an

arrival to a full buffer, a blocking penalty, bi for the rejected type-i job is charged.

Each job may renege from the system (independently) with a type-dependent rate of

r′i. With xi type-i jobs in the system, a reneging event of type-i jobs happens with

the rate of r′ixi. At the event of a type-i job reneging from the system, a lump sum

penalty of πi is incurred.

Jobs can be preempted at any time. Our proposed model allows collaboration

between servers, i.e. they can team up to serve a type-1 job more quickly.

Figure 2.1 illustrates the “N” network representation of this system. It is called

an “N” network because it resembles a rotated letter “N” (see Figure 2.1). Here we

should note that throughout this chapter, terms such as service requests, orders, jobs

and customers are often used interchangeably to refer to “arrivals” to the queueing

network. Similarly, servers, agents and workers are equivalently used to refer to the

classical notion of servers in a queueing model. Next, the notation is presented in

Table 5.1.

2.3.1 MDP Formulation

We first model the problem as a continuous-time stochastic control problem. The

vector x(t) = (x1(t),x2(t)), represents the state of the system at time t and contains

the number of type-1 and type-2 jobs, respectively. Since our model is a controlled

continuous time Markov chain and therefore the future is conditionally independent

of the past given the current state. Thus, without loss of generality we only focus
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Figure 2.1: “N” network model with one fully cross-trained server.

i Index for job types, i ∈ {1, 2}
j Index for servers, j ∈ {1, 2}
Ni Maximum buffer size of type-i jobs in the system, Ni ∈ N, and i ∈ {1, 2}
µ′ji Service rate of server j of type-i job, µji ∈ R+, and j, i ∈ {1, 2}
aji An indicator function for server j’s skill set,

aji = 1 if server j is capable of solving type-j job and zero otherwise, j, i ∈ {1, 2}
λ′i The arrival rate of type-i job, i ∈ {1, 2}
r′i The renege rate of type-i job, i ∈ {1, 2}
πi Lump sum cost of type-i job that reneges; π′i ≥ 0 ∀i ∈ {1, 2}
h′i Linear holding cost per unit time associated with a type-i job; h′i ≥ 0 ∀i ∈ {1, 2}
bi Lump sum blocking cost of type-i; b′i ≥ 0 ∀i ∈ {1, 2}
β Discount rate in continuous-time
Ri(t) Cumulative number of type-i jobs reneged in interval (0, t], i ∈ {1, 2}
Λi(t) Cumulative number of type-i jobs rejected/blocked in interval (0, t], i ∈ {1, 2}.

Table 2.1: Notation.

on Markovian policies (see Ross [76]). A policy is Markovian if it depends only

on the current state of the system, (x1(t),x2(t)). Then Jg(x(0)), the expected total

β-discounted cost of the system with initial state x(0) is:

Jg(x(0)) = lim
T→∞

E

{ ∫ T

0

e(−βt)
2∑
i=1

(
(h′ixi(t) + πidRi(t) + bidΛi(t))

)
dt

}
.(2.1)

To conveniently capture the dynamics of the system, we discretize the model based

on the uniformization technique introduced by Lippman [63]. The uniformization

rate, ψ, is the maximum transition rate across all the states:

ψ =
2∑
i=1

(λ′i +Nir
′
i + µ′2i) + µ′11.
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We then define τ as an exponential random variable with mean 1
ψ

corresponding to

the length of one period in the discrete Markov chain. Let α be the discrete-time

discount factor corresponding to β:

α = E(e−τβ) =

∫ ∞

0

e−βyψe−ψydy =
ψ

β + ψ
.

We define the discrete-time state vector as (x1, x2), denoting the numbers of type-1

and type-2 jobs in the system. We calculate the holding cost per period as:

hi =
h′i

β + ψ
. i = 1, 2

Let λi =
λ′i
ψ

, ri =
r′i
ψ
, and µji =

µ
′
ji

ψ
for all i, j ∈ {1, 2}. Let Vn(x) denote the value

function for n-period problem with terminal value V0(x) = 0 for all x. To simplify

the notation, we introduce two operators. Aix denotes the arrival operator and Dix

denotes the departure operator, both of which are defined as follows:

A1x = (x1 + 1 ∧N1, x2), A2x = (x1, x2 + 1 ∧N2).

D1x = (x1 − 1 ∨ 0, x2), D2x = (x1, x2 − 1 ∨ 0).

In the above notation, a∧ b = min{a, b} and a∨ b = max{a, b}. Also D2
i x is defined

as DiDix, and A2
ix defined similarly. Let uji be an indicator function representing

the assignment of server j to a type-i job. We do not allow one server working on

two different jobs simultaneously; however, type-1 jobs can be served collaboratively

by both servers. To be specific, U(x) is the set of feasible actions in state x:

U(x) = {uji : uji ≤ aji,

2∑
i=1

uji ≤ 1,∀i, j}.
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Then, Vn+1(x) is recursively defined in the following optimality equation:

Vn+1(x) =
2∑
i=1

hixi + α



∑2
i=1[λiVn(Aix) + rixiVn(Dix) + πirixi + λibiI{xi=Ni}]

+ minu∈U(x){
∑2

i=1

∑2
j=1 ujiµji(Vn(Dix)− Vn(x))}

+(1−
∑2

i=1(λi + rixi))Vn(x)


.

(2.2)

In Equation (2.2), the terms in the first line in the braces represent the one-stage

cost associated with state x (including holding costs, reneging penalties, and blocking

penalties) and the terms associated with transitions to the next stage due to a new

arrival of type-i job with probability λi and the renege of a type-i job with probability

rixi. The second and third lines include terms associated with the service completion

and self-loop terms due to uniformization. We define an operator ∆i as the difference

in value function between states Aix and x, that is,

∆iVn(x) = Vn(Aix)− Vn(x) ∀i, n.(2.3)

Using Equation (2.3) and converting minimization into maximization, the value func-

tion in Equation (2.2) is written as:

Vn+1(x) =
2∑
i=1

hixi + α



∑2
i=1[λiVn(Aix) + rixiVn(Dix) + πirixi + λibiI{xi=Ni}]

−maxu∈U(x){
∑2

i=1

∑2
j=1 ujiµji∆iVn(Dix)}

+(1−
∑2

i=1(λi + rixi))Vn(x)


.

(2.4)

2.3.2 Structure of an Optimal Policy

To investigate and characterize optimal assignment policies over a class of static

polices. We first analyze the finite horizon model, and then extend the results to the
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infinite horizon model by applying a convergence result from Sennott [78], Proposi-

tion 4.3.1, given that all the costs are positive and finite and the state is finite as

well.

The next theorem shows that an optimal policy is non-idling and the value func-

tion is in the increasing queue lengths. The proof uses induction and a sample path

argument (see Section 2.7.1).

Theorem II.1. In this system, we have: (P0) the optimal policy is a non-idling

policy and (P1) ∆iVn(x) ≥ 0 for all x, n, and i ∈ {1, 2}.

As a direct result of this theorem, the original value function presented in (2.2)

can be simplified by eliminating all of the idling actions to:

Vn+1(x) =
2∑
i=1

hixi + α



∑2
i=1[λiVn(Aix) + rixiVn(Dix) + πirixi + λibiI{xi=Ni}]

−max{µ21∆1Vn(D1x), µ22∆2Vn(D2x)}

−µ11∆1Vn(D1x) + (1−
∑2

i=1(λi + rixi))Vn(x)


.

(2.5)

2.3.3 Complexity of Optimal Policies

Illustrative numerical examples can provide insight into the structure of an optimal

policy. As shown by Ahn et al. [2], the optimal job-to-server assignment policy, even

in the absence of reneging and finite queue capacity assumptions, will not have a

simple structure in general. We gain insight into conditions under which we obtain

a specific form of optimal policies (i.e. strict priority, threshold, etc) by numerically

solving the MDP model for different parameters. Table 2.2 illustrates the parameter

settings used for each numerical experiment. Note that in all cases, we set λ1 = 1,

λ2 = 1, µ22 = 0.5, and N1 = N2 = 20 (buffer capacity).
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Numerical µ r h π b Optimal

example µ11 µ21 r1 r2 h1 h2 π1 π2 b1 b2 policy

1 0.5 0.5 1 0.4 3 4 5 10 2 6 Strict priority (1)

2 0.5 0.5 0.75 2 3 3 16 5 4 2 Strict priority (2)

3 1 0.5 0.5 0.05 1.5 1 1 1 50 50 Switching curve

4 1 1 1 1 1 1 1 1 1 50 No pattern

Table 2.2: Parameters used for the illustrative examples.

We implemented the MDP value iteration algorithm in C++ and used a conver-

gence criterion of 10−6. The optimal action plots are presented in Figure 2.2. In

each, the horizontal (vertical) axis represents the number of type-1(2) jobs in the

system. An optimal action (represented by dark gray shading) assigns server 2 (the

cross-trained server) to jobs of type-1 (the shared task). Similarly, the feasible action

assigns server 2 to type-2 jobs (the fixed task) is denoted by a light gray shading.
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Figure 2.2: Optimal action plots associated with each numerical example; x1 (x2) is on the hori-
zontal (vertical) axis.
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In Figure 2.2(1), the priority is given to type-2 jobs. In this example, the cross-

trained server works on shared tasks only when there is no fixed task. A justification

for this observed pattern can be derived from a “modification” to the cµ type rule:

the priority could be given to a job with the highest “expected instantaneous cost

saving rate” per unit time possibly defined as: (hi+πiri)µ2i, i ∈ {1, 2}. Note that on

the boundaries, this condition could also include an expected blocking penalty cost

(λibi). We prove the sufficient conditions for optimality of strict priority policy in

favor of job 2 in Theorem II.3.

In Figure 2.2(2), we observe the optimality of a strict priority rule that assigns

server 2 to type-1 jobs. The sufficient conditions to achieve such control policies are

investigated in Theorem II.4. In Figure 2.2(3), we observe that the optimal policy

is a switching curve that is monotone in queue lengths. Finally, in Figure 2.2(4) we

observe a non-monotone switching curve, which intuitively seems to be caused by

the blocking penalty for queue 2.

In practice, it is easy to implement an optimal strict priority server scheduling

policy for cases such as Figures 2.2(1) and 2.2(2). For these cases, we characterize

conditions which guarantee such strict priority policies in Section 2.4. On the other

hand, implementing an optimal dynamic assignment algorithm for cases such as

Figure 2.2(3) requires a solution to the MDP. This may not be practical in real

world settings, so we present in Section 2.5 a good heuristic approach for a wide

range of parameters.

2.4 Optimality of Strict Priority Policies

In this section, we present a set of conditions which guarantee the optimality of a

strict priority policies. Such a policy is easy to implement. A strict priority policy in
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favor of type-2 jobs is defined for our purposes such that server 2 (the cross-trained

server) works on jobs of type-2 until there are no type-2 jobs remaining in the system.

Then, as long as there is no type-2 jobs in the system, server 2 collaborates with

server 1 on serving type-1 jobs (collaboration is required only if x1 = 1; otherwise

the modeling of collaboration or independent service is the same). As soon as a

new type-2 job enters the queue, server 2 preempts the service of the type-1 job and

switches to serving a type-2 job.

Intuition, analysis, and numerical experiments led us to speculate that Conditions

(C1)−(C3), as stated in Theorem (II.3), guarantee the optimality of a strict priority

policy in favor of type-2 jobs. Similarly, Conditions (C4)−(C6), as stated in Theorem

(II.4), guarantee the optimality of a strict priority policy in favor of type-1 jobs.

In Theorem II.1 we proved the optimality of non-idling policies. In the next

theorem we exploit the results of Theorem II.1 to find an upper bound on the value

of ∆iVn(x), which is necessary to prove a strict priority policy in Theorem II.3. This

proof is presented in Section 2.7.2.

Theorem II.2. For all x and n, ∆iVn(x) = Vn(Aix)− Vn(x), i ∈ {1, 2}, is bounded

above by a positive constant B∗i = max
{

hi

1−α , bi + hi, πi + hi
}
.

Theorem II.3 provides sufficient conditions under which a strict priority policy in

favor of type-2 jobs is optimal (see the proof in Section 2.7.3). A similar argument

for type-1 jobs is provided in Theorem II.4.

Theorem II.3. If the following conditions hold:

µ22(h2 + απ2r2) ≥ µ21(h1 + α(π1r1 + λ1b1)), (C1)

r1 ≥ r2 + µ22, (C2)

µ22b2 ≥ µ21B∗1, (C3)
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then the value function has the following properties:

µ22∆2Vn(D2x) ≥ µ21∆1Vn(D1x) ∀x : x2 ≥ 1 ∀n, (P2)

µ22∆2Vn(x) ≥ µ21∆1Vn(x) ∀x, n, (P3)

and as a result, a strict priority policy in favor of type-2 jobs is optimal.

To understand the conditions in Theorem II.3, observe that Condition (C1) cap-

tures the “reward rate” of serving a type-2 job on the left-hand-side and compares

it with the reward rate of serving a type-1 job on the right-hand-side. The reward

rate of serving a type-2 job is the average rate at which the total system cost is

reduced when the cross-trained server is assigned to a type-2 job, accounting for the

fact that by completing the service of a type-2 job, we save a unit of holding cost

(h2) and also prevent in expectation some amount of renege penalty in the future

periods (π2r2). On the right-hand-side, we account for the same cost elements with

respect to type-1 jobs. In addition to the holding cost and the renege penalty, we

include λ1b1 to account for the blocking penalty of type-1 jobs that will occur as a

result of prioritizing type-2 jobs if x1 = N .

On the other hand, Condition (C2) implies that once entered, type-2 jobs are less

likely to be removed from the system (either by service completion or reneging). In

other words, the duration that a type-2 job is in the queue is long and imposes a

great negative externalities on other jobs (both currently in the queue and future

arrivals). As a result compared to compare to type-1 job, a job type-2 has higher

overall cost.

To understand the intuition behind Condition (C3), consider that the highest

system cost occurs at the maximum queue level. At this state (N1, N2), the system

faces the largest holding cost, reneging penalty (caused by the high renege rate), and
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blocking penalty. Serving a type-2 job reduces the queue length with the rate of

µ22 and thus reduces the blocking cost by µ22b2. This decision, however, will cause

queue 1 to grow at a relatively increased rate, but B∗1 limits the marginal cost of an

additional type-1 job (∆1Vn(x)), thus (C3) guarantees that type-2 service provides

a greater instantaneous rate of cost saving.

These three conditions together imply that assigning priority to queue 2 is optimal

when the cost reduction (in terms of rate) achieved by serving a job in queue 2 is

higher than that by serving in queue 1.

Next, in Theorem II.4, we use an argument similar to that of Theorem II.3 to prove

that under certain sufficient conditions, a strict priority policy in favor of type-1 jobs

is optimal (see the proof in Section 2.7.4).

Theorem II.4. If the following conditions hold:

µ21(h1 + απ1r1) ≥ µ22(h2 + α(π2r2 + λ2b2)) (C4)

r2 ≥ r1 + µ11 + µ21 (C5)

µ21b1 ≥ µ22B∗2, (C6)

then the value function has the following properties:

µ21∆1Vn(D1x) ≥ µ22∆2Vn(D2x) ∀x : x1 ≥ 1 ∀n, (P4)

µ21∆1Vn(x) ≥ µ22∆2Vn(x) ∀x, n, (P5)

and as a result, a strict priority policy in favor of type-1 jobs is optimal.

The conditions in Theorem II.4 are similar to those in Theorem II.3. Condition

(C4) captures the “reward rate” of serving a type-1 job and compares it with the

reward rate of serving a type-2 job. The reward rate of serving a type-1 job is the

average rate at which the total system cost is reduced when the cross-trained server
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is assigned to a type-1 job. By removing a type-1 job, we save a unit of holding cost

(h1) and also reduce the expectation of incurring renege penalty in future periods

(π1r1). On the right-hand-side, we have the same cost elements for type-2 jobs.

However, to guarantee that serving a type-1 job is saving more cost in average, we

need to include λ2b2 to account for the blocking penalty of type-2 jobs.

(C5) states that r1 +µ11 +µ21 is larger than r2. Thus it implies that once entered,

on average, type-1 jobs stay in the system for a longer period. This increased time

imposes negative externalities on other jobs. Thus, (C5) further emphasizes that

type-1 jobs have a higher system-wide impact than type-2 jobs.

Condition (C6) is similar to Condition (C3). Condition (C6) consider that the

highest system cost occurs at the maximum queue level. Choosing to serve a type-1

job, reduces the queue length with the rate of µ21 and thus reduces the expected

blocking cost by µ21b1. This decision, however, will cause queue 2 to grow at a

relatively increased rate. Condition (C6) guarantees that the cost of an extra type-

2 jobs is bounded above by B∗2. Thus, (C6) guarantees that serving a type-1 job

provides a greater instantaneous rate of cost saving.

These three conditions together imply that assigning the cross-trained server to

type-1 jobs, on average, results in more cost reduction. Thus, it is optimal to prior-

itize type-1 jobs.

2.5 Dynamic Index Heuristic Policy

When neither of the sufficient conditions presented in (C1) − (C3) nor (C4) −

(C6) hold, the optimal scheduling policy can be both complex and computationally

difficult. The literature lacks a server scheduling heuristic for moderate to low traffic

systems that addresses all the features of heterogeneous demand and service rates,
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customer reneging with penalties, and finite buffers with costs for the overflow of

arrivals to a full queue.

For this reason we develop a heuristic based on an approximate reward rate index.

This problem can be viewed as a restless multi-armed bandit model, a class for which

general solutions are unknown (see Whittle [91] and Gittins et al. [42] for details).

Although we cannot identify an optimal stopping time, it is still effective to create a

myopic reward rate maximizing policy in the spirit of a Gittins Index. We find that

while not always optimal, our proposed reward rate index-based heuristic policy often

generates near-optimal results. This suggests that the simpler models and intuition

that were used to derive this heuristic are sound. For ease of reference, we call it the

Comparative Expected Reward Rate Index (CERRI).

The heuristic calculates an index which estimates the expected reward rate (i.e.

rate of cost savings) of assigning each job type to the cross-trained server. After

calculating the index for both job types, the cross-trained server will be assigned to

the first job of the queue with the highest reward rate index. Thus, until the next

transition of the system, this assignment results in the highest myopic expected cost

saving. It is important to note that holding and blocking costs can be incurred in any

state. However, the blocking penalty is incurred only at the boundaries. Therefore,

the impact of the blocking penalty cannot be easily evaluated at each given state

with a myopic approximation. We must account for the impact of reducing one

type-i job from the system and thus reducing the possibility of incurring a blocking

penalty, we develop an approximate measure, fkj (xj), of the probability of reaching

a buffer boundary (i.e. full queue length) before reaching the state of zero (i.e. no

type-j jobs in the system).

CERRI, as presented in (2.6), estimates the comparative expected reward (or the
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cost reduction) rate of assigning the cross-trained server (server 2) to job type k,

where k = 1, 2:

ICEk (X) =

1

Dk



(
I{k=1}µ21 + µ11 + r1x1 − λ1(1− I{x1=N1})

)
h1 + fk1 (x1)b1+(

I{k=2}µ22 + r2x2 − λ2(1− I{x2=N2})
)
h2 + fk2 (x2)b2+(

I{k=1}µ21 + µ11 − r1x1

)
π1 +

(
I{k=2}µ22 − r2x2

)
π2


.(2.6)

where Dk = µ11 + I{k=1}µ21 + I{k=2}µ22 + r1x1 + r2x2 + λ1 + λ2.

In Equation (2.6), term 1 (the first line in Equation(2.6)) includes the holding cost

savings for a type-1 job (h1) due to the service completion or reneging (with rate

r1x1). If server 2 works on type-1 job, the service completion rate is µ11 + µ21,

otherwise it is µ11. Due to the possibility of reneging from the system, a type-1

job leaves the system at the rate of µ11 + I{k=1}µ21 + r1x1. If an extra type-1 job

arrives to the system (with rate λ1) the holding cost will not be saved. Therefore, we

subtract λ1h1 if x1 < N1. As the number of jobs in the queue reaches the full buffer,

the possibility of incurring a blocking penalty increases. fk1 (x1) estimates the effect

of a blocking penalty given the current state and the server assignment. In general,

fkj (xj) may overestimate the effect of queue j reaching the boundary from state xj

if server 2 serves queue k, since it assumes that if we allocate server 2 to queue j in

state xj, the assignment will be the same for all states xj + 1 to Nj unless there is a

change in state of queue 3− j. This approximation is useful for its tractability and

is satisfactory for our purpose. The formal definition of fkj (xj) is given in Section

2.5.1.

Term 2 (the second line in Equation(2.6)) incorporates the saving of a holding

cost of a type-2 job(h2) due to reneging or service completion if server 2 is assigned
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to job type-2. But the cost can increase with a new arrival of a type-2 job (with rate

λ2 when x2 < N2 ). An expected blocking penalty term (fk2 (x2)b2) is added to term

2 to represent the possibility of incurring a blocking penalty in case of an arrival.

Term 3 (the first part of the third line in Equation(2.6)) corresponds to the ex-

pected reneging penalty savings of a type-1 job (π1) if service is completed before

the renege. This results in two competing exponentials with rates µ11 + I{k=1}µ21

and r1x1.

Finally, term 4 (the second part of the third line in Equation(2.6)) corresponds

to the reneging penalty of a type-2 job. When k = 2, there is an exponential race

between a service completion (with rate µ22) and a reneging event (with rate r2x2). In

case of assigning the cross-trained sever to a type-1 job, the only event that directly

contributes to the reneging penalty (π2) is the reneging event itself.

It should be noted that a heuristic approach is generally useful when it is compu-

tationally simpler than solving the MDP. This is the case for CERRI. Furthermore,

CERRI is derived from intuition and a simple analytical model that captures first

order effects. CERRI estimates expected reward (cost saving) rates by measuring

the first order impact of key cost elements such as holding cost, reneging penalty,

and blocking penalty.

2.5.1 Estimating the Probability of Incurring the Blocking Penalty

In this section, we explain the detailed steps of computing term fkj (xj) used in

CERRI, which is the probability that the buffer associated with job type j reaches

the upper boundary before emptying when server 2 is assigned to job type k and

the number of jobs of type j in the system is xj (j=1,2 and k=1,2), given that the

same control policy that was employed in state xj is effective in states xj+1, .., Nj. We

estimate this probability by using a simplified birth and death process and recursively
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computing fkj (xj) by solving the set of equations described by (2.7)-(2.11).

fkj (Nj) = 1,(2.7)

fkj (xj) = P k
xj
fkj (xj + 1) +Qk

xj
fkj (xj − 1), 0 < xj < Nj(2.8)

fkj (0) = 0,(2.9)

where:

P k
xj

=
λj

λj + rjxj + µ11I{j=1} + µ21I{k=1} + µ22I{k=2}
, and(2.10)

Qk
xj

=
rjxj + µ11I{j=1} + µ21I{k=1} + µ22I{k=2}

λj + rjxj + µ11I{j=1} + µ21I{k=1} + µ22I{k=2}
.(2.11)

In (2.10) and (2.11), P k
xj

is the transition probability from state xj to xj + 1 and

Qk
xj

is the transition probability from state xj to (xj − 1). This way we can compute

fkj (xj) for all xj ∈ {0, 1, .., Nj} by solving a system of linear equations. Note that

fkj (xj) simplifies the probability of reaching boundaries before reaching the state of

zero by assuming that a decision made at state xj will be valid for the consequent

states. Therefore, fkj (xj) overestimates the positive impact of the employed control

policy in reducing the length of the queue. Our computational experiments confirm

the efficacy of this approximation.

j j j

0 1 xj‐1 xj Nj‐2 Nj‐1
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Figure 2.3: The simplified birth and death process

2.5.2 Computational Experiments

This section analyzes the performance of CERRI under a test suite. Before doing

so, it is imperative to compare the actions prescribed by CERRI and the optimal
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actions for the same four problem instances described in Table 2.2.
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Figure 2.4: CERRI action plot associated with numerical examples 3 and 4. In the dark shaded
states, server 2 serves queue 1.

In examples (1) and (2) of Figure 2.2, CERRI generates actions identical to the

optimal actions; hence, there is no sub-optimality. In example (3), we observe that

CERRI’s actions are almost identical to the optimal actions – both follow a threshold-

type policy (the sub-optimality is only 1.2%). Although an optimal policy can be

complex, CERRI closely resembles it. However, as observed in example (4), an

optimal policy may violate the threshold structure, which occurs for states x2 ∈

{18, 19, 20}. As one might expect, in cases where the optimal action is more complex,

CERRI’s actions, as illustrated in Figure 2.4, tend to deviate from the optimal

actions. Nevertheless, CERRI is only 2.54% suboptimal in example (4), which is

surprising at first but can be explained because CERRI matches the optimal policy

in the most probable states (i.e., x1 ≤ 10 and x2 ≤ 17).

In the next step, we analyze the sensitivity of CERRI with respect to changes

in the model parameters: (1) arrival rates, (2) cost components (i.e. holding cost,

reneging penalty and blocking penalty), (3) the cross-trained server’s skill levels

(i.e. service rates), (4) renege rates, and (5) buffer sizes. To do so, we generate

an extensive benchmarking test suite which includes 2,196 problem instances. These
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problem instances are generated by combining three cost regimes defined with respect

to the relative cost of job types. Each cost regimes is evaluated across 122 parameter

scenarios focusing on each parameter in the system and six buffer levels. Additional

details on how we generated the test suite problem instances are found in Section

2.7.5. Each problem instance is then solved using CERRI and the MDP approach

presented in Section 2.3, with average cost per unit time performance values denoted

ACH and AC∗ respectively. The optimality gap of CERRI is calculated as:

(2.12) gapH =
ACH − AC∗

AC∗
× 100(%).

We also compare the results of our proposed heuristic with two heuristic policies

that have proven effective in a variety of models in the literature utilizing holding

costs: the longest queue (LQ) and the cµ algorithms. Overall, the results of the test

suite illustrate that CERRI significantly outperforms LQ and cµ as illustrated in

Figure 2.5. Figure 2.5 depicts the overall performance of CERRI across all test suite

instances in the form of relative cumulative frequency of observations (depicted by

the vertical axis) that fall in each bin. As illustrated in Figure 2.5, CERRI solves

more than 80% of problem instances to an optimality gap of 4% or less versus about

53% and 18% for cµ and LQ respectively. Table 2.3 demonstrates the statistical

performance measures for the test suite.

Next we present detailed sensitivity analysis results. Note that the results illus-

trated in the following sections are obtained by taking the average optimality gap

across the three cost regimes as defined in Table 2.4 in Section 2.7.5. The averaging

across these regimes usually reveals the same pattern as each specific one of the three

cases. Averaging allows us to summarize the behavior of the heuristic across all the

parameter regimes in one figure.
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Figure 2.5: The overall performance of CERRI.

Heuristic cµ LQ CERRI

Mean(%) 6.45 8.91 3.18
Standard Deviation(%) 6.73 7.44 2.29

25th Percentile(%) 0.22 2.21 0.00
Median(%) 1.91 5.35 1.54

75th Percentile(%) 9.95 15.98 2.31
Min(%) 0 0 0
Max(%) 58.26 41.24 16.85

Table 2.3: Statistics on percentage optimality gap for all heuristic algorithms.

Impact of Arrival Rate

The impact of arrival rates is illustrated in Figure 2.6. As observed in this figure,

CERRI outperforms the other heuristics at all levels of λ1 and λ2 (λ2 ranging from

0.1 to 2 when λ1 = 1) with a maximum queue capacity (N) of 10.

Note that neither LQ nor cµ account for arrival rates. This might not be an issue

in cases where the buffer size is very large or the blocking penalty is negligible, but

in our test suite it is. Furthermore, LQ and cµ have a tendency to over-assign server

2 to type-1 jobs as compared to the optimal action. Server 2 is more versatile, so if

an algorithm ignores arrival rates, it tends to overload server 2, increasing congestion

as λ2 increases (leaving little time for helping in queue 1). Thus, with a higher type-
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Figure 2.6: Impact of arrival rate on optimality gap.

2 job arrival rate, a heuristic that over-assigns server 2 to type-1 jobs causes the

incoming type-2 jobs to wait longer. It will also have a higher chance of incurring

reneging or blocking penalties in queue 2.

Impact of Blocking Penalty

The blockage of arrivals and the associated blocking penalty are key features of

our model that are investigated in Figures 2.7 and 2.8. Note that as the buffer size

increases, the probability of incurring blocking penalty will drop significantly. To

better illustrate this effect, we present two graphs with a buffer size of 10 (Figure

2.7) and another case where buffer size is only 5 (Figure 2.8). Both figures show

that CERRI always outperforms the LQ and cµ heuristics. The benefit of employing

CERRI is more significant when the buffer size is small (N = 5), as one would expect.

Fortunately, CERRI is insensitive to buffer size, indicating that the model of buffer

rejection penalties is accurate.

Impact of Servers’ Skill Level

To illustrate the impact of service rates (µ21 and µ22), we let µ21 and µ22 vary in

the left and right plots of Figure 2.9, respectively. We observe significantly better

and more robust performance from CERRI compared to LQ and cµ.

In Figure 2.9, we observe that when the value of µ21 is relatively small, LQ has
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Figure 2.7: Impact of blocking penalty on optimality gap for N = 10.
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Figure 2.8: Impact of blocking penalty on optimality gap for N = 5.

a high optimality gap (the figure on the left), and the opposite occurs as the value

of µ22 increases. This is because as µ21 decreases or µ22 increases (relative to µ11),

server 2 becomes better at handling type-2 jobs, which undermines the flexibility

in the system. In the extreme case where µ21 = 0, the system completely loses

flexibility, and LQ tends to over-assign server 2 to type-1 jobs by using only queue

length without considering other parameters.

Impact of Renege Rate

To analyze the impact of renege rates on the performance of the heuristics, we

consider two cases. First we fix the reneging rate of type-1 jobs at the default value

(0.05) and let the reneging rate of type-2 job vary between 0 to 0.4. In the second

run, we fix the reneging rate of type-2 jobs at the default value (0.05) and let the

reneging rate of type-1 job vary between 0 to 0.4. The results are illustrated in
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Figure 2.9: Impact of service rate on optimality gap.

Figure 2.10. Again, in both cases, we observe that CERRI outperforms the other

heuristics.
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Figure 2.10: Impact of renege rates on optimality gap.

Interestingly, we observe different behaviors in the two cases illustrated in Figure

2.10. In the right figure, we see a rather intuitive pattern: as the reneging rate for

type-2 jobs increases, the performance of all heuristics tends to deteriorate. However,

in the left figure, we see the opposite pattern. As the reneging rate for type-1 job

increases, the optimality gap closes for all heuristics. The main reason for this

behavior is the tendency of all three heuristic approaches to over-assign server 2 to

queue 1. We have already argued that this over-assignment is detrimental in most

cases. However, as the reneging rate for job 1 increases, the type-1 jobs that are

assigned to server 2 have a greater rate of leaving the system. Therefore, the high

reneging rate of type-1 jobs reduces the workload of server 2 and mitigates the adverse



33

effects of this over-assignment simply because it keeps queue 1 small. Therefore, the

flexible server spends less time there. The opposite occurs as r2 increases. We see

this complexity of interacting effects obviously in Figure 2.10. Note that it is hard

to make simple modification to the cµ rule to account for reneging because the rate

is sensitive to queue length.

Impact of Renege Penalty

To analyze the impact of reneging penalty on the performance of the heuristics,

we consider two cases. First, we fix the reneging penalty of type-2 jobs at the default

value (5) and let the reneging penalty of type-1 jobs change between 0 to 120. In

the second run, we fix the reneging penalty of type-1 jobs at the default value (5)

and let the reneging penalty of type-2 jobs range from 0 to 120. The results of this

analysis are illustrated in Figure 2.11. Once again we observe that CERRI performs

much better compared to LQ and cµ. Furthermore, we observe that the performance

of CERRI significantly improves as reneging penalties increase for either job type.

Neither of the other two policies has an effective way of capturing reneging in its

decisions.
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Figure 2.11: Impact of renege penalty on optimality gap.
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Impact of Holding Cost

To analyze the impact of holding cost, we first set the holding cost of type-1 jobs

at the default value of 1 and let the holding cost of type-2 jobs range from 0 to 5.

Then we repeat with the reverse scenario. The results are illustrated in Figure 2.12.

We observe that CERRI maintains its good performance for all levels of holding

cost and achieves a very low error across the range. We also note that the performance

of LQ deteriorates as h2 increases, while CERRI and cµ have similar performances

for very high values of h2. Interestingly, when h1 is very small, cµ performs better as

it does not tend to over-assign server 2 to type-1 jobs. However for smaller values of

h2, cµ performs significantly worse than CERRI, since it ignores the effect of reneging

and blocking. In both cases, for larger holding cost values, the performance gap of cµ

closes. This is rather intuitive: as the holding cost increases, other cost components

in the system (such as blocking and reneging penalties) lose their impact, simplifying

the problem for cµ. LQ has regions where it is nearly optimal; however, the extreme

values of the h2/h1 ratio call for a new priority rule (except h2 ' 0), which LQ

cannot achieve. Therefore, the full benefits of employing CERRI can be observed in

the “middle ranges” of holding cost.
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Impact of Buffer Capacity

Finally, we present the impact of the buffer capacity in Figure 2.13. We set all

the parameters to their default values (see Table 2.6) and set the buffer capacity to

5, 10, 15, 20, 25, and 30. As the buffer capacity increases, the impact of blocking

decreases; therefore LQ and cµ tend to perform better for higher buffer capacities,

whereas CERRI is very good at all levels. This is because at lower buffer sizes, there

is a large probability of reaching the full buffer and incurring blocking cost increases.
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Figure 2.13: Impact of buffer size on optimality gap.

2.6 Conclusions and Future Research

This research analyzes the problem of assigning heterogeneous customer demand

to servers in an “N” network of two servers with two job types, a fixed task, and

a shared task. The cross-trained (flexible) server can handle both job types, while

the dedicated server can only serve the shared jobs, type 1. The system is complex,

possessing three cost components: holding costs per unit time per job in the system,

blocking penalties, and reneging penalties. One interesting feature critical to many

applications is finite buffers, where a new arrival to a full buffer is blocked and incurs

a cost. Also jobs may renege after an exponentially distributed time in the system.
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We use a Markov Decision Process (MDP) approach to model the problem. We

first develop a continuous-time model and then use uniformization technique to con-

vert it into a discrete model. We analyze the dynamic server scheduling (or equiv-

alently, job routing problem) and develop sufficient conditions which guarantee the

optimality of a strict priority policy to assign the flexible server (server 2) to the fixed

task (job type 1). Similarly, we study sufficient conditions that guarantee the opti-

mality of a strict priority policy to assign the flexible server (server 2) to the shared

task (job type 2). We then use value iteration to solve the MDP model numeri-

cally and show that in the absence of the above-mentioned sufficient conditions, the

optimal job routing policy may not be easily characterized as monotonic threshold

functions.

We develop CERRI, an index-based heuristic algorithm that generates near-

optimal policies for cases where the above sufficient conditions are absent. The index

captures the main cost components of the problem such as holding costs, reneging

penalties, and blocking penalties through a simplified birth and death process. We

test the performance of CERRI using a comprehensive test-suite and compare its

results against the optimal assignment achieved by MDP and other assignments

computed by two widely-used heuristics, the cµ and the LQ rules. We show that

CERRI finds efficient (and often optimal) policies in for a vast majority of problem

structures. CERRI can be viewed as a simplified model of the dynamics that dom-

inate the control of this system. The excellent performance of CERRI reveals that

the simplified model contains valid insights. We also use the results of CERRI to

understand the key characteristics of the problem by analyzing its sensitivity as a

function of elements such as buffer size, arrival, service and reneging rates and cost

components such as holding cost, blocking and reneging penalty.
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The insights gained from our research can help better characterize larger networks

as long as they can be broken down into smaller modules which resemble a similar

“N” network structure. Further investigations are required to develop insights and

heuristics for more complex queueing networks.
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2.7 Proofs of Theorems in Chapter II

2.7.1 Proof of Theorem II.1

Proof. To prove these we use induction. Note that the results hold when n = 0, since

V0(x) = 0 for all x. Now suppose that the results hold up to some n ≥ 0. We now

suppose that the claims hold for n+ 1 as well.

Optimality of a non-idling policy in period n+ 1: We use sample path argument

to show optimality of non-idling policy at stage n+ 1. Without loss of generality we

show optimality of a non-idling policy for sever server 2 (the cross-trained server).

A similar argument will treat server 1. Consider the following two policies: policy g

idles server 2 at stage n+ 1 and follows the optimal policy afterward. Policy g̃ does

not idle server 2 at stage n+1 and follows the optimal policy afterward. Let Jgn+1(x)

represent the expected total discounted cost function under policy g at stage n + 1

and state x. Therefore, by Equation 2.2, we have:

Jgn+1(x)− J g̃n+1(x) = µ2i∆iVn(Dix) ≥ 0 (by induction hypothesis).(2.13)

As a result, the expected cost under policy g̃ is less than the expected cost under g.

Therefore, the optimal control belongs to the class of non-idling policies. Vn+1(x1, x2)

is non-decreasing in x1 and x2: To show this property, we first expand Vn+1(x) and

Vn+1(Dix) and use a term-by-term comparison to show that Vn+1(x)−Vn+1(Dix) ≥ 0.

Using (2.2) we expand Vn+1(x) as the following:

Vn+1(x) =

2∑
i=1

hixi + α



∑2
i=1[λiVn(Aix) + rixiVn(Dix) + πirixi + λibiI{xi=Ni}]+

min{µ21∆1Vn(D1x) + [1−
∑2

i=1(λi + rixi)− µ11 − µ21]Vn(x),

µ22Vn(D2x) + [1−
∑2

i=1(λi + rixi)− µ11 − µ22]Vn(x)}


.
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Vn+1(Dix) can be expanded in a similar fashion. Subtracting Vn+1(Dix) from Vn+1(x),

and setting Q = 1−
∑2

i=1(λi + rixi)− µ11, we have:

Vn+1(x)− Vn+1(Dix) =

hi + α



∑2
i=1[λjVn(AjDix) + ri(xj − I{j=i})Vn(DjDix)]+

πirixi + λibiI{xi=Ni} + min{µ21Vn(D1x)+

(Q− µ21)Vn(x), µ22Vn(D2x) + (Q− µ22)Vn(x)}−

min{µ21Vn(D1Dix) + (Q− µ21)Vn(Dix),

µ22Vn(D2Dix) + (Q− µ22)Vn(Dix)}


.

The terms in the first and second lines of the above equation, are all non-negative by

non-negativity of costs and by the induction hypothesis. Subtracting line four from

line three will result is a non-negative term, since by induction hypothesis we know

that Vn(Dix) ≥ Vn(D
2
i x) and Vn(x) ≥ Vn(Dix). The result follows since for any four

numbers, if a ≥ c and b ≥ d, then min{a, b} −min{c, d} ≥ 0.

Therefore Vn+1(x) is non-decreasing in x and the proof is complete.

2.7.2 Proof of Theorem II.2

Proof by a sample path argument. The case of xi = 0 is trivial, because the upper-

bound is zero. ∆iVn(x) can be thought of as the incremental expected discounted

n-stage cost due to the additional job of type-1. For clarity, we mark this extra job

as the red job. To find an upper-bound on ∆iVn(x), we evaluate the cost impact

of the red job along the possible sample paths. Assume Ω is the set of all possible

sample paths. We partition Ω into four sets (Ω1, ...,Ω4) along which four distinct

cases apply.

In case 1, the red job is not cleared from the system during the n stages to go. In

case 2, the red job leaves the system after receiving service. In case 3, the red job
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causes a blockage of a new arrival and in case 4, the red job reneges.

For further clarification we call the scenario in which the system follows an optimal

policy starting with Aix jobs (i.e. the system includes the red job), “scenario A”

and the scenario in which the system has x jobs (i.e. the system excludes the red

job), “scenario B”. The policy in scenario B is mimicked by scenario A, until the two

systems couple (from which time on both systems will follow the optimal policy).

Let Jn(Aix)ω represent the expected cost for a given sample path ω under the policy

that mimics B until two systems couple. Note that in all cases except for case 1,

the two scenarios will couple after the event associated with each case occurs. We

consider each case and the costs associated with it in more detail.

Case 1: In this case, scenarios A and B never couple within n stages for following

reasons: (a) there is never a blockage of any job of type-1 under scenario A at any

stage prior to stage n, and (b) the red job’s service is not completed prior to the last

stage and so the reneging events match for both scenarios. In this case, we have:

Jn(Aix)ω − V ω
n (x) =

n−1∑
t=0

αthi = hi

n−1∑
t=0

αt ≤ hi
1− α

∀ω ∈ Ω1 since α < 1.

Case 2: In this case the red job’s service will complete at τ2(ω) stages into the

future where 1 ≤ τ2(ω) ≤ n, and scenarios A and B are coupled after that time. In

this case, similar to case 1, we only incur holding costs. However, as the red job in

this case leaves the system prior to the time that it leaves the system in case 1, the

expected cost of this case is less than the one in case 1.

Jn(Aix)ω − V ω
n (x) =

τ2(ω)∑
t=0

αthi = hi

τ2(ω)∑
t=0

αt ≤ hi
1− α

∀ω ∈ Ω2. since α < 1.

Case 3: A job is blocked at a time τ3(ω) stages into the future because queue one

has Ni jobs at stage τ3(ω) when the arrival occurs. Therefore, at stage τ3(ω) both
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systems couple. Therefore, we have:

Jn(Aix)ω − V ω
n (x) = biα

τ3(ω) +

τ3(ω)∑
t=0

αthi ≤ max
{ hi

1− α
, bi + hi

}
∀ω ∈ Ω3.(2.14)

To find the upper-bound for the right hand side in (2.14), consider the sequence

sk = biα
k +

∑k
t=0 α

thi. Note that in this sequence, sk+1 − sk = αk(α(bi + hi) − bi).

If α(bi + hi) − bi ≥ 0, the sequence sk is an increasing sequence. Then hi

1−α will be

an upper bound on all the elements of the sequence defined in (2.14). Otherwise,

bi + hi, can be an upper bound.

Case 4: In this case the red job reneges at time τ4(ω) and this causes the scenarios

to couple. Of course, having any job ahead of the red job does not result in coupling

of the processes. Therefore, we have:

Jn(Aix)ω − V ω
n (x) = πiα

τ4(ω) +

τ4(ω)∑
t=0

αth1 ≤ max
{ hi

1− α
, πi + hi

}
∀ω ∈ Ω4.

(2.15)

The argument here is similar to the one used in Case 3. We consider the right hand

side of (2.15) as a sequence. In this sequence, we have, s′k+1−s′k = αk(α(πi+hi)−πi).

If α(πi+hi)−πi ≥ 0, the sequence s′k is an increasing sequence. In this case, hi

1−α will

be an upper bound on all the elements of the sequence defined in (2.15). Otherwise,

πi + hi, can be an upper bound.

Considering all the above cases, we define pi = P (ω ∈ Ωi) which is the probability

of each case. This way we have:

Jn(Aix)ω − V ω
n (x) ≤ p1

hi
1− α

+ p2
hi

1− α
+

p3 max
{ hi

1− α
, bi + hi

}
+ p4 max

{ hi
1− α

, πi + hi
}
.

We define Bi∗ = max{ hi

1−α , bi+hi, πi+hi}. Thus Jn(Aix)ω−V ω
n (x) ≤ B∗i . Therefore,

∆iVn(x) ≤ Jn(Aix)ω − V ω
n (x) ≤ B∗i . This completes the proof.
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2.7.3 Proof of Theorem II.3

Proof of Theorem 3. The proof is by induction.

As the base of induction, we need to prove properties (P2) and (P3) of the value

function for the stage 0. Note that V0(x) = 0,∀x by definition, and as a result

properties (P2) and (P3) hold trivially.

Induction Hypothesis (IH): We assume that all the properties (P2) and (P3)

hold for n− 1 and for all x2 ≥ 1 for (P2) and for all x2 ≥ 0 for (P3). We next prove

these properties for n as our inductive step.

Proof of (P2): To prove this property, we first break down the both sides of (P2).

From the definition of Di and ∆i, we have the following expressions:

µ22∆2Vn(D2x) = µ22

[
Vn(x1, x2)− Vn(x1, x2 − 1)

]
.(2.16)

µ21∆1Vn(D1x) = µ21

[
Vn(x1, x2)− Vn((x1 − 1)+, x2)

]
.(2.17)

In the next step, we expand Vn(x1, x2) and Vn(x1, x2−1) using Equation (2.5). Note

that, based on the induction hypothesis, we know that it is optimal to serve job

type-2 when x2 > 0. Therefore, the second term of the maximization function in

Equation (2.5) (i.e. µ22∆2Vn−1(D2x)) is always greater or equal to the first term in

the equation (i.e. µ21∆1Vn−1(D1x) ). For 2 ≤ x2 < N2, we can expand the left hand

side to get:

µ22∆2Vn(D2x) = µ22h2+

αµ22



π2r2 + λ1∆2Vn−1(A1D2x) + λ2∆2Vn−1(x)+

r1x1∆2Vn−1(D1D2x) + µ11∆2Vn−1(D1D2x)+

r2(x2 − 1)∆2Vn−1(D
2
2x) + µ22∆2Vn−1(D

2
2x)+

(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ22)∆2Vn−1(D2x)


.

(i)

(ii)

(iii)

(iv)

(2.18)
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Similarly, the right hand side can be expanded:

µ21∆1V (D1x) = µ21h1+

αµ21



π1r1 + λ1b1I{x1=N1} + λ1∆1Vn−1(x) + λ2∆1Vn−1(A2D1x)+

(r1(x1 − 1)+)∆1Vn−1(D
2
1x) + µ11I{(x1−1)+ 6=0}∆1Vn−1(D

2
1x)+

r2x2∆1Vn−1(D2D1x) + µ22∆1Vn−1(D2D1x)+

(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ22)∆1Vn−1(D1x)


.

(i)

(ii)

(iii)

(iv)

(2.19)

In the next step, we use a line-by-line comparison between the terms on the left hand

side with their counterpart terms to show that (P2) holds. For comparing, (2.18-i)

to (2.19-i) using (C1) and the induction hypothesis (P2) we can show that:

µ22(h2 + α(π2r2 + λ1∆2Vn−1(A1D2x) + λ2∆2Vn−1(x))) ≥

µ21(h1 + α(π1r1 + λ1b1I{x1=N1} + λ1∆1Vn−1(x) + λ2∆1Vn−1(A2D1x))).

The next lines of terms to compare are (2.18-ii) and (2.19-ii). We first write r1x1 as

r1(x1 − 1)+ + r1I{x1 6=0}. This way, using the induction hypothesis (P2) we get:

µ22((r1(x1 − 1)+) + µ11)∆2Vn−1(D1D2x) ≥

µ22((r1(x1 − 1)+ + µ11I{(x1−1)+ 6=0})∆1Vn−1(D
2
1x).

To compare lines (2.18-iii) and (2.19-iii), we rewrite r2x2 as r2(x2 − 1)+ + r2. As a

result by employing the induction hypothesis (P2), we have:

µ22(r2(x2 − 1) + µ22)∆2Vn−1(D
2
2x) ≥ µ21(r2(x2 − 1) + µ22)∆1Vn−1(D2D1x).

Note that as a result of the substitutions, we are left with a term associated with r1

in the left hand side, and a term associated with r2 in the right hand side. By (C2)

and the induction hypothesis (P3), we have:

µ22r1∆2Vn−1(D1D2x) ≥ µ21r2∆1Vn−1(D2D1x).
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Finally the term associated with the self loops can be compared using the induction

hypothesis (P2). This way we can show that:

µ22(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ22)∆2Vn−1(D2x)

≥ µ21(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ22)∆1Vn−1(D1x).

In case x2 = 1, we have the term µ21∆1Vn−1(D1D2x) in the left hand side instead of

the term µ22∆2Vn−1(D
2
2x) (by optimality of non-idling policy, i.e. instead of idling,

the cross-trained server works on job type-1). In Theorem II.1, we proved the non-

negativity of ∆iVn(x) for all n and x. Therefore we have:

µ21∆1Vn−1(D1D2x) ≥ 0,

and by (C2) and the induction hypothesis (P3), we have:

µ22r1∆2Vn−1(D1D2x) ≥ µ21(r2 + µ22)∆1Vn−1(D2D1x).

Note that, in the case where x2 = N2, as we noted before, λ2∆2Vn−1(x) equals zero

(in the right hand side of (P2). In Theorem II.2, we proved that there exists an

upper bound, B∗1, to ∆1Vn−1(A2D1(x)), for all x. As a result, based on Condition

(C3), we have µ22b2 ≥ µ21B∗1. Therefore we have:

µ22λ2b2 ≥ µ21λ2∆1Vn−1(A2D1x).

We have shown that all the terms on the left hand side of (P2) are greater than or

equal to all the terms on the right hand side of (P2). Therefore, the proof of (P2)

holds for stage n and as a result, for all the other stages.

Proof of (P3): We have defined (P3) as:

(2.20) µ22∆2Vn(x) ≥ µ21∆1Vn(x) ∀x.
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In the next step, we expand Vn(x1, x2) and Vn(x1, x2−1) using Equation (2.5). Note

that, based on the induction hypothesis, we know that it is optimal to serve job

type-2 when x2 ≥ 1. Therefore, the second term of the maximization function in

Equation (2.5) (i.e. µ22∆2Vn−1(D2x)) is always greater or equal to the first term in

the equation (i.e. µ21∆1Vn−1(D1x) ). This way, for 1 ≤ x2 < N2, we can expand the

left hand side to get:

µ22∆2Vn(x) = µ22h2+

αµ22



π2r2 + λ1∆2Vn−1(A1x) + λ2∆2Vn−1(A2x)+

r1x1∆2Vn−1(D1x) + µ11∆2Vn−1(D1x)+

r2x2∆2Vn−1(D2x) + µ22∆2Vn−1(D2x) + r1∆2Vn−1(x)+

(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ22)∆2Vn−1(x)


.

(i)

(ii)

(iii)

(iv)

(2.21)

µ21∆1V (x) = µ21h1+

αµ21



π1r1 + λ1b1I{(x1+1=N1} + λ1∆1Vn−1(A1x) + λ2∆1Vn−1(A2x)+

r1x1∆1Vn−1(D1x) + µ11I{x1 6=0}∆1Vn−1(D1x)+

r2x2∆1Vn−1(D2x) + µ22∆1Vn−1(D2x) + r2∆1Vn−1(x)

(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ22)∆1Vn−1(x)


.

(i)

(ii)

(iii)

(iv)

(2.22)

In the next step, we use a line-by-line comparison between the terms on the left hand

side with their counterpart terms to show that (P3) holds. For comparing, (2.21-i)

to (2.22-i) using (C1) and the induction hypothesis (P3) we can show that:

µ22(h2 + α(π2r2 + λ1∆2Vn−1(A1x) + λ2∆2Vn−1(A2x))) ≥

µ21(h1 + α(π1r1 + λ1b1I{x1+1=N1} + λ1∆1Vn−1(A1x) + λ2∆1Vn−1(A2x))).
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The next lines of terms to compare are (2.21-ii) and (2.22-ii). By using the induction

hypothesis (P3) we have:

µ22(r1x1 + µ11)∆2Vn−1(D1x) ≥ µ21(r1x1 + µ11I{x1 6=0})∆1Vn−1(D1x).

To compare lines (2.21-iii) and (2.22-iii), first we compare the first two terms. As a

result, by employing the induction hypothesis (P3), we have:

µ22(r2x2 + µ22)∆2Vn−1(D2x) ≥ µ21(r2x2 + µ22)∆1Vn−1(D2x).

Note that, we are left with a term associated with r1 in the left hand side, and a

term associated with r2 in the right hand side. By (C2) and the induction hypothesis

(P3), we have:

µ22r1∆2Vn−1(x) ≥ µ21r2∆1Vn−1(x).

Finally, the term associated with the self loops can be compared using the induction

hypothesis (P3).

In case x2 = 0, we will have the term µ21(∆1Vn−1(D1x) + µ21∆2Vn−1(x)) in the

left hand side instead of the term µ22∆2Vn−1(D2x). The reason this term appears

is that when x2 = 0, the cross-trained server will work on the job type-1 by the

optimality of non-idling policies. As a result, the term −µ21Vn−1(D1x) will appear

on the left hand side. Furthermore, we need to add term ±µ21Vn−1(A2(x)) to be

able to compare the self loops. The result of re-writing the formulation will be

µ21Vn−1(A2x)−µ21Vn−1(D1x). By adding ±µ21Vn−1(x), we finally can see the terms

µ21(∆1Vn−1(D1x) + µ21∆2Vn−1(x)). Note that in Theorem II.1, we have proven the

non-negativity of ∆iVn(x) for all n and x. Therefore we have:

µ21∆1Vn−1(D1x) ≥ 0,
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and by (C2) and the induction hypothesis (P3), we have:

µ22r1∆2Vn−1(x) ≥ µ21r2∆1Vn−1(x).

Note that, in the case where x2 +1 = N2, as we noted before, λ2∆2Vn−1(A2x) equals

zero (in the right hand side of (P3)). In Theorem II.2, we proved that there exists

an upper bound, B∗1, to ∆1Vn−1(A2(x)), for all x. As a result, based on Condition

(C3), we have µ22b2 ≥ µ21B∗1. Therefore we have:

µ22λ2b2 ≥ µ21λ2∆1Vn−1(A2x).

We have shown that all the terms on the left hand side of (P3) are greater than or

equal to all the terms on the right hand side of (P3). Therefore, the proof of (P3)

holds for stage n and as a result, for all the other stages.

2.7.4 Proof of Theorem II.4

Proof of Theorem 5. The proof is by induction.

As the base of induction, we need to prove properties (P4)and (P5) of the value

function for the stage 0. Note that V0(x) = 0,∀x by definition, and as a result

properties (P4) and (P5) will hold trivially.

Induction Hypothesis (IH): We assume that all the properties (P4) and (P5)

hold for n − 1 and for all x1 ≥ 1. We next prove these properties for n as our

inductive step.

Proof of (P4): To prove this property, we first break down both sides of (P4).

On the left hand side of (P4) we have µ21∆1Vn(D1x) which can be expanded as the

following:

µ21∆1Vn(D1x) = µ21

[
Vn(x1, x2)− Vn(x1 − 1, x2)

]
.(2.23)
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On the right hand side of (P4) we have µ22∆2Vn(D2x) which can be expanded as:

µ22∆2Vn(D2x) = µ22

[
Vn(x1, x2)− Vn(x1, (x2 − 1)+)

]
.(2.24)

In the next step, we expand Vn(x1, x2) and Vn(x1− 1, x2) based on (2.5). Note that,

based on the induction hypothesis we know that the first term of the maximization

function in Equation (2.5) (i.e. µ21∆1V (D1x)) is always greater than or equal to the

other term in the maximization (i.e. µ22∆2V (D2x)). This way, for 2 ≤ x1 < N2, we

can expand the left hand side to get:

µ21∆1V (D1x) = µ21h1+

αµ21



π1r1 + λ1∆1Vn−1(x) + λ2∆1Vn−1(A2D1x)+

(r1(x1 − 1)+)∆1Vn−1(D
2
1x) + (µ11 + µ21)∆1Vn−1(D

2
1x)+

r2x2∆1Vn−1(D2D1x)+

(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ21)∆1Vn−1(D1x)


.

(i)

(ii)

(iii)

(iv)

(2.25)

Similarly, the right hand side can be expanded:

µ22∆2Vn(D2x) = µ22h2+

αµ22



π2r2 + λ2b2I{x2=N2} + λ1∆2Vn−1(A1D2x) + λ2∆2Vn−1(x)+

r1x1∆2Vn−1(D1D2x) + (µ11 + µ21)∆2Vn−1(D1D2x)+

r2(x2 − 1)+∆2Vn−1(D
2
2x)+

(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ21)∆2Vn−1(D2x)


.

(i)

(ii)

(iii)

(iv)

(2.26)

In the next step we use a line-by-line comparison between the terms on the left hand

side to show that (P4) holds. For the first comparison, (2.25-i) and (2.26-i), using
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(C4) and the induction hypothesis (P4) we can show that:

µ21(h1 + α(π1r1 + λ1∆1Vn−1(x) + λ2∆1Vn−1(A2D1x))) ≥

µ22(h2 + α(π2r2 + λ2b2I{x2=N2}λ1∆2Vn−1(A1D2x) + λ2∆2Vn−1(x))).

The next lines of terms to compare are (2.25-ii) and (2.26-ii). We first write r2x2 as

r2(x2 − 1)+ + r2I{x2 6=0}. This way, using the induction hypothesis (P4) we get:

µ22((r1(x1 − 1)µ11 + µ21)∆1Vn−1(D
2
1x) ≥ µ22((r1(x1 − 1) + µ11 + µ21)∆2Vn−1(D1D2x).

To compare lines (2.25-iii) and (2.26-iii), we rewrite r2x2 as r2(x2 − 1)+ + r2. As a

result by employing the induction hypothesis (P4), we have:

µ21(r2(x2 − 1) + µ22)∆1Vn−1(D2D1x ≥ µ22(r2(x2 − 1) + µ22)∆2Vn−1(D
2
2x).

Note that as a result of the substitutions, we are left with a term associated with r2

in the left hand side, and a term associated with r1 in the right hand side. By (C5)

and the induction hypothesis (P5), we have:

µ21r2∆1Vn−1(D2D1x) ≥ µ22r1∆2Vn−1(D1D2x).

Finally the term associated with the self loops can be compared using the induction

hypothesis (P4). This way we can show that:

µ21(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ21)∆1Vn−1(D1x) ≥

µ22(1− λ1 − λ2 − r1x1 − r2x2 − µ11 − µ21)∆2Vn−1(D2x).

In case x1 = 1, we will have the term µ22∆2Vn−1(D2D1x) in the left hand side instead

of the term (µ11 + µ21)∆1Vn−1(D
2
1x) (by optimality of non-idling policy, i.e. instead

of idling, the server will work on job type-2). In Theorem II.1, we have proven the

non-negativity of ∆iVn(x) for all n and x. Therefore we have:

µ22∆2Vn−1(D2D1x) ≥ 0,
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and by (C5) and the induction hypothesis (P5), we have:

µ21r2∆1Vn−1(D2D1x) ≥ µ22(r1 + µ11 + µ21)∆2Vn−1(D1D2x).

Note that, in the case where x1 = N1, as we noted before, λ1∆1Vn−1(x) equals zero

(in the right hand side of (P4). In Theorem II.2, we proved that there exists an

upper bound, B∗2, to ∆2Vn−1(A1D2(x)), for all x. As a result, based on Condition

(C6), we have µ21b1 ≥ µ22B∗2. Therefore we have:

µ21λ1b1 ≥ µ22λ1∆2Vn−1(A1D2x).

We have shown that all the terms on the left hand side of (P4) are greater than or

equal to all the terms on the right hand side of (P4). Therefore, the proof of (P4)

holds for stage n and as a result, for all the other stages. Proof of (P5): We have

defined (P5) as:

µ21∆1Vn(x) ≥ µ22∆2Vn(x) ∀x.

We can expand the left hand side of the above equation to get:

µ21∆1V (x) = µ21h1+

αµ21



π1r1 + λ1∆1Vn−1(A1x) + λ2∆1Vn−1(A2x)+

r1x1∆1Vn−1(D1x) + (µ11 + µ21)∆1Vn−1(D1x)+

r2x2∆1Vn−1(D2x) + r2∆1Vn−1(x)

(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ21)∆1Vn−1(x)


.

(i)

(ii)

(iii)

(iv)

(2.27)
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We can also expand the right hand side of (P5) to get:

µ22∆2Vn(x) = µ22h2+

αµ22



π2r2 + λ2b2I{x2+1=N2} + λ1∆2Vn−1(A1x) + λ2∆2Vn−1(x)+

r1x1∆2Vn−1(D1x) + (µ11 + µ21)∆2Vn−1(D1x)+

r2x2∆2Vn−1(D
2
2x) + r1∆2Vn−1(x)

(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ21)∆2Vn−1(x)


.

(i)

(ii)

(iii)

(iv)

(2.28)

In the next step we use a line-by-line comparison between the terms on the left hand

side to show that (P5) holds. For the first comparison, (2.27-i) and (2.28-i), using

(C4) and the induction hypothesis (P5) we can show that:

µ21(h1 + α(π1r1 + λ1∆1Vn−1(A1x) + λ2∆1Vn−1(A2x))) ≥

µ22(h2 + α(π2r2 + λ2b2I{x2+1=N2} + λ1∆2Vn−1(A1x) + λ2∆2Vn−1(A2x))).

The next lines of terms to compare are (2.27-ii) and (2.28-ii). Using the induction

hypothesis (P5) we get:

µ22((r1x1 + µ11 + µ21)∆1Vn−1(D1x) ≥ µ22((r1x1 + µ11 + µ21)∆2Vn−1(D1x).

To compare lines (2.27-iii) and (2.28-iii) by employing the induction hypothesis (P5),

we have:

µ21r2x2∆1Vn−1(D2x) ≥ µ22r2x2∆2Vn−1(D2x).

Note that we are left with a term associated with r2 in the left hand side, and a term

associated with r1 in the right hand side. By (C5) and the induction hypothesis

(P5), we have:

µ21r2∆1Vn−1(x) ≥ µ22r1∆2Vn−1(x).
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Finally the term associated with the self loops can be compared using the induction

hypothesis (P5). This way we can show that:

µ21(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ21)∆1Vn−1(x) ≥

µ22(1− λ1 − λ2 − r1(x1 + 1)− r2(x2 + 1)− µ11 − µ21)∆2Vn−1(x).

In case x1 = 0, we will have the term µ22(Vn−1(A1x) − Vn−1(D2x)) in the left hand

side and the term (µ11 + µ21)∆2Vn−1(x) + µ22∆2Vn−1(D2x) in the right hand side

(by optimality of non-idling policy, i.e. instead of idling, the server will work on job

type-2). By adding ±µ22Vn−1(A1x) to the left hand side, we have:

µ21r2∆1Vn−1(x) ≥ µ22(r1 + µ11 + µ21)∆2Vn−1(x) by IH (P5)and (C5).

µ21µ22∆1Vn−1(D2x) ≥ µ22µ22∆2Vn−1(D2x) by IH (P5).

µ21µ22∆2Vn−1(A1D2x) ≥ 0 by (P1).

Note that, in the case where x1 = N1, as we noted before, λ1∆1Vn−1(A1x) equals

zero (in the right hand side of (P5). In Theorem II.2, we proved that there exists an

upper bound, B∗2, to ∆2Vn−1(A1x), for all x. As a result, based on Condition (C6),

we have µ21b1 ≥ µ22B∗2. Therefore we have:

µ21λ1b1 ≥ µ22λ1∆2Vn−1(A1x).

We have shown that all the terms on the left hand side of (P5) are greater than or

equal to all the terms on the right hand side of (P5). Therefore, the proof of (P5)

holds for stage n and as a result, for all the other stages.
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2.7.5 Generating the Benchmarking Test Suite

To generate the problem instances, three main cost regimes are combined with a

set of 122 scenarios and 6 levels of buffer size (5, 10, 15, 20, 25, and 30). Table 2.4

illustrates the three cost regimes. The scenarios are illustrated in Table 2.5.

Cost Description Holding Reneging Blocking

regimes cost penalty penalty

1 Jobs type-1 and type-2 have similar costs h2 = h1 π2 = π1 b2 = b1

2 Job type-1 has higher costs h2 = 0.7 ∗ h1 π2 = 0.7 ∗ π1 b2 = 0.7 ∗ b1

3 Job type-2 has higher costs h2 = 1.3 ∗ h1 π2 = 1.3 ∗ π1 b2 = 1.3 ∗ b1

Table 2.4: Cost regimes used for generating the benchmarking test suite.

Figure Parameter Values
2.6(L) λ1 0.1, 0.2, 0.5, 0.75, 1, 12, 1.5, 1.75, 2, and 2.5
2.6(R) λ2 0.1, 0.2, 0.5, 0.75, 1, 12, 1.5, 1.75, 2, and 2.5

2.7(L),2.8(L) b1 0, 1, 2, 5, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100
2.7(R),2.8(R) b2 0, 1, 2, 5, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100

2.9(L) µ21 0.2, 0.5, 0.7, 1, 1.5, 2, 2.5, and 3
2.9(R) µ22 0.2, 0.5, 0.7, 1, 1.5, 2, 2.5, and 3
2.10(L) r1 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5
2.10(R) r2 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5
2.11(L) π1 0, 0.01, 0.05, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128
2.11(R) π2 0, 0.01, 0.05, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128
2.12(L) h1 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5
2.12(R) h2 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5

2.13 N 5, 10, 15, 20, 25, 30, and 35

Table 2.5: Scenarios used for generating the benchmarking test suite, with the first column indi-
cating the Figure illustrating each sensitivity analysis.

To generate each problem instance, we start with default values illustrated in

Table 2.6. We then iterate over the three cost regimes (from Table 2.4) and 122

scenarios (from Table 2.5). This procedure is then repeated for other values of buffer

size.
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Parameter Default value Parameter Default value
µ11 1 h1 1
µ21 1 h2 1
µ22 1 π1 5
λ1 1 π2 5
λ2 1 b1 50
r1 0.05 b2 50
r2 0.05 N 10

Table 2.6: Default values used for generating the benchmarking test suite.



CHAPTER III

Fixed Task Zone Chaining: Worker Coordination and Zone
Design for Inexpensive Cross-training in Serial CONWIP

Lines

3.1 Introduction

Manufacturing and service systems are currently facing uncertainty in many as-

pects of their operations, including demand fluctuations, supply disruption, and

processing time variability. Increasing flexibility can improve systems’ ability to

adapt to changes and build robust capability to nullify the disruptive impacts of

uncertainty. Worker cross-training is often proposed as an effective means to achieve

flexibility by improving capacity management and alleviating bottlenecks. This can

result in reducing cycle time, increasing throughput, and improving workers’ uti-

lization. Cross-training can also reduce systems’ reliance on excessive inventory (or

buffer) levels.

Cross-training, however, can be expensive. Additional training, providing supple-

mentary tools and the need to redesign work stations often contribute to the cost of

cross-training. Furthermore, as the number of skills for each worker increases, their

ability to focus on a specific task can be reduced. Thus, finding the “proper” level

of cross-training is a critical step toward achieving effective flexibility.

In this chapter we analyze the effect of introducing a minimal level of cross-training

55



56

4

10 9

5

6

2

11 8

1

12

3

7

2

4 3
1

Flow of Material

Figure 3.1: A conceptual illustration of the FTZC structure.

to U-shaped CONstant Work In Process (CONWIP) serial lines. The main idea here

is to divide stations into a set of zones where a worker is assigned to each zone as a

primary resource. To increase flexibility, neighboring zones are overlapped such that

the stations at the boundaries of each zone are shared with another zone. This way,

workers at each zone have a set of fixed stations that are assigned only to them. They

are also cross-trained to work on two shared stations which are located at the two

ends of their zones. Note that a zone may not necessarily have fixed stations, but it

always have two shared stations. A conceptual representation of a FTZC structure

with 12 stations and four workers is illustrated in Figure 3.1.

When the extent of cross-training is limited, three questions become very critical.

First, given the choice of each worker’s skill set, a worker needs to prioritize the

order in which she picks jobs from each station in her skill set. Second, given the

fact that two workers can pick a job from a shared station, it is important to know

which worker should pick that job. Third, given the processing time at each station,

we want to find the most effective zone design for the line.

To answer the first two questions, we build upon the work of Williams [93] in which

the idea of “Fixed Task Zone Chaining” (FTZC) has been introduced. Williams
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incorporates two main ideas of Zoned training introduced by McClain et al. [66]

and two-skill chaining introduced by Jordan and Graves [54] into the new FTZC

paradigm. His work, however, only addresses a very specific model in which the

production line has 12 stations and 4 identical workers. He proposes two worker

heuristic policies and studies the impact of those heuristics under a given symmetric

zone structure and a balanceable production lines. In this chapter, we generalize the

work of Williams [93] to a generic production system consisting of W workers and N

stations. We extend his work to production lines that are not balanceable through a

symmetric zone structure. Our work also provides insight into the dynamic line bal-

ancing (DLB) characteristics of our zone chain structure. We show how balanceable

zone structures can help FTZC yield high throughput, while poorly designed zone

structures can hinder the potential benefits of FTZC.

To address the third question, we relax the symmetric zone structure assumption

and introduce a zone assignment algorithm to design balanceable lines that are cus-

tomized to FTZC structure. This algorithm is based on a calculation of the optimal

fraction of time that a worker should be assigned to a work station to balance the

line for maximum throughput.

This chapter is organized as follows: after surveying the literature in Section 3.2,

the problem description and definitions are introduced in Section 3.3. In Section

3.4, given a fixed zone structure, we analytically describe some characteristics of the

optimal worker control policy in a general FTZC structure. In Section 3.5, we develop

algorithms to design the zone structures to maximize throughput under FTZC. In

Section 3.6, we design an extensive benchmarking test suite and compare the FTZC

structure to two-skill zone chain and classic CONWIP approximation.
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3.2 Literature Survey

There is extensive literature on cross-training and the value of flexibility in pro-

duction systems. Hopp and Van Oyen [49] focus on developing measures to quantify

the value of cross-training in any firm and address the importance of worker schedul-

ing policies to exploit all benefits of flexibility. Treleven [83] and Andradottir et al.

[9] provide thorough literature surveys on workforce agility and its benefits across

different industries.

As we mentioned before, our research in this chapter is closely related to two main

streams of research on cross-training: first, the concept of “overlapping zones” that

was introduced by McClain et al. [66]. Second, the idea of skill chaining (cross-

training workers in a line to link all task-types into a chain) which was introduced by

Jordan and Graves [54]. McClain et al. [66] mainly focus on the size of overlap and

its effect on systems’ performance, whereas Jordan and Graves [54] conduct research

to address the effect of production flexibility in systems.

Building upon the works of McClain et al. [66] and Jordan and Graves [54],

our model uses both ideas of overlapping zones and two-skill chaining. But not all

stations in our line are cross-trained. There are exactly two stations in each zone

which are cross-trained. Any station between the neighboring stations will be fixed

to only one worker.

Increased complexity can be a downside of cross-training in queueing systems.

This is mostly because cross-training increases the set of feasible actions and the need

to design a worker coordination policy. Another potential issue with cross-training

is the increased cost of training. In addition to the obvious cost of training more

servers, a server’s learning curve may also start to diminish as her skill set broadens.
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Therefore, in most practical settings, as studied by Hopp et al. [48], McClain et al.

[66], Jordan and Graves [54], and Parvin et al. [71], a limited degree of flexibility

can significantly improve a wide range of performance measures while keeping the

cost of training manageable. As we have seen in moving worker modules (MWM)

(see Askin and Chen [10]), there are more working stations than workers. The issue

of which station a worker should pick at each given time becomes critical. The

bucket brigade system (BBS) is a good example of MWM. BBS was introduced by

Bartholdi and Eisenstein [16] as well as Bartholdi et al. [17]. Bartholdi and Eisenstein

[16] shows that when the processing times are deterministic, sorting workers from

slowest to fastest will always result in a balance line. Bartholdi [17] incorporates

stochastic processing times, and with a set of mild assumptions, proves the validity

of the result obtained by Bartholdi and Eisenstein [16]. A BBS is very effective in

environments such as warehouses order picking where the barriers to “cross-training”

are small; however, the FTZC paradigm is designed for environments not suited to a

BBS (i.e., very limited cross-training). Bischak [20] considers systems with random

processing times, assuming that preemption is allowed. In contrast, our research

restricts attention to systems for which jobs cannot be preempted.

Andradottir et al. [6] investigate the control of two servers serving two stations

with finite buffers, characterizes the optimal policy, and develops a near-optimal

sever assignment policy for a more general system. It allows more than one worker

to work on any single job (with additive service rates), provided there can be at

most one job in service at any station. We require fewer workers than stations and

allow only one worker per job but two workers can work on two jobs if the station is

overlapped by them. Gel et al. [40] introduce the concept of “fixed before shared” for

WIP constrained lines. This idea in that research always prioritizes a fixed station
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(the one that can only be served by one worker) over a shared task-type. Later we

use this principal to develop our proposed worker coordination heuristic policy.

Our main contribution is to build upon past research (especially Williams [93])

to offer a design and control methodology together with FTZC paradigm for the

purpose of achieving high throughput lines while explicitly incorporating CONWIP

control to limit WIP and keep cycle times short. To implement this vision, we offer

an easily implementable heuristic policy that performs well, and a new zone design

algorithm that improves system performance.

3.3 Problem Description

3.3.1 Problem Definition

We consider a U-shaped serial production line consisting of N stations and W

workers, where W < N (there are strictly less workers than stations). The only

reason for this is that the FTZC paradigm will require precisely one of the W workers

to serve at both the first and last stations of the line. U-shaped structure has the

advantage of the first and the last station being close, so the travel time between

these stations is negligible.

Raw materials enter the first station of the line (called station 1) and will proceed

sequentially downstream through to the last station. As illustrated in Figure 3.1,

there are strictly fewer workers than stations in the FTZC canonical system, and

each worker is assigned to a zone that must overlap the zones of two neighboring

workers by exactly one station on either end of the zone.

Similar to model proposed by Williams [93], each station in our model performs

just one unique task-type. In this model, we do not allow task preemption, meaning

that once a worker starts a task, it cannot be handed off until its completion. Succes-

sive processing times of task-type i at each station are i.i.d. of general distribution
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Figure 3.2: Primary zones in a symmetrical FTZC structure.

and all the workers are identical in this model. By identical and standard, we mean

that the processing time in each station is independent of the worker who is assigned

to the station and is based on a standard work rate of 1.

The release of raw material to the line follows CONstant Work-In-Process (CON-

WIP) policy. Thus, at any given time there are a fixed number of jobs in the system.

Each worker’s zone is defined by two shared stations denoted by set Sk and,

possibly, a set of fixed stations, Fk, for worker k, in between them. Note that

in FTZC structures, two adjacent zones overlap by one station. FTZC structures

are designed to significantly reduce the number of skills to be cross-trained, and

are intended for environments where extensive cross-training is undesirable. For

example in a system of 4 workers and 12 stations, FTZC will reduce the number

of skill training by almost 80% compared to full cross-training. Only one worker at

a time can work on a specific job, but two workers can work simultaneously at a

station provided at least two jobs are available at a shared station.

We introduce the term primary zone to better categorize the stations. Each

worker is trained to work on a set of stations, which we define as a zone. We call a

subset of the zone of worker k that excludes one station from one end of the zone,
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the kth primary zone, denoted Zk. It is convenient to exclude the “upstream” shared

station from the primary zone to avoid over-counting the stations. Thus, the union

of primary zones is the set of all stations (Z =
⋃W
k=1Zk). A formal definition of

upstream and downstream shared stations for each worker is presented in Definition

III.1.

3.3.2 Notation and Definitions

In this section we introduce some key notation and definitions:

N Total number of stations in a line

W Total number of workers in a line and total number of zones in a line

W Set of workers in the line, W = {1, ...,W}

Fk Set of fixed stations that worker k is trained for, where k ∈ W

Sk Set of shared stations for which worker k is trained, where k ∈ W ,

note that Fk
⋃
Sk is the skill set of worker k

Zk Primary zone for worker k

Z Set of stations in the line, Z =
⋃W
k=1Zk

S Set of shared stations, S =
⋃W
k=1 Sk

Ti Mean processing time of the ith station, where i ∈ Z

T0 Raw processing time of all stations, T0 =
∑

i∈Z Ti

⊕ Mod N addition defined as, i⊕ j = i+ j if i+ j ≤ N ;

otherwise, i⊕ j = i+ j −N , ∀i, j ∈ Z

	 Mod N subtraction defined as, i	 j = i− j if i− j ≥ 1;

otherwise, i	 j = i− j +N , ∀i, j ∈ Z

Definition III.1. Station i is the upstream (downstream) shared station of worker
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k if, and only if, with i ∈ Fk
⋃
Sk and station i 	 1(i ⊕ 1) is not a member of set

Fk
⋃
Sk.

Definition III.2. Let i be the upstream shared station of worker k. Worker k is a

same-side worker if, and only if, f > i for all f ∈ Fk. A FTZC design has at least

W − 1 same-side workers.

Definition III.3. Last Buffer First Served (LBFS) rule is a priority rule that defines

the order of stations visited within a worker’s skill zone. Under this rule, the worker

checks for an available job at the most downstream station in her zone, which is the

downstream shared station. Any job at the most downstream station always has

first priority; otherwise the worker moves upstream (in the reverse order of material

flow) and completes the task-type at the most downstream station at which a job is

present (same definition as used by Williams [93]).

Definition III.4. Worker Ds(Us) is called the downstream (upstream) worker of

shared station s ∈ S, if and only if, station s ⊕ 1(s 	 1) is a member of the set

FDs ∪ SDs(FUs ∪ SUs).

3.3.3 Critical WIP

As defined by Hopp and Spearman [47], the critical WIP level, ω0, is the product

of the capacity of the bottleneck station times the total (raw) processing time of

the entire line. Thus, it is the WIP level at which an ideal line without congestion

achieves maximum throughput with minimum cycle time. Critical WIP is useful

as a way of quantifying how lean a system operates via the ratio of WIP/ω0. The

following proposition applies the definition of critical WIP to the FTZC paradigm,

giving us a useful WIP operating point that can be referenced.
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Proposition III.5. In a symmetric FTZC structure (i.e. one with an equal number

of stations in every zone) with equal deterministic processing times at each station

that operates under a LBFS protocol, the critical WIP is equal to the number of

zones, ω0 = W , and the system achieves maximum throughput for any WIP level of

ω0 or greater.

See Section 3.8 for all the proofs.

3.4 Worker Coordination Policy

We first analytically examine some characteristics of the optimal (or optimal

within a class) worker coordination policies, given the zone definitions. Note that a

full characterization of optimal policies is extremely difficult. Then, in Section 3.4.2,

we exploit these results in designing a heuristic to control which jobs a worker picks

from stations in her zone to achieve high throughput with limited WIP.

3.4.1 Analytical Results

Theorems III.6, III.7, and III.8 determine policy properties that maximize the

number of job completions along any sample path. We acknowledge that very similar

versions of these theorems were presented in Williams [93]. Minor improvements were

contributed (e.g. checking that they apply in a more general FTZC system model)

and correcting several errors. We include these theorems here for completeness.

Given any realization ω of the stochastic model, the sequence of job arrival and

service times is known. Let Dπ
t (ω) be the number of completed jobs by time t under

a worker allocation strategy π. We characterize a policy π∗ such that Dπ∗
t (ω) ≥

Dπ
t (ω) ∀ t, π, ω; i.e. a policy that is at least as good as any other policy sample

pathwise. One important outcome from these theorems is the significance of the Last

Buffer First Served (LBFS) rule to determine the priority of a worker’s task-type.
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Theorem III.6. Assuming that all workers are standard, when no jobs are waiting

at the downstream shared station of a same-side worker k, k ∈ W, the number of job

completions is maximized along every sample path by a policy that (i) does not idle

worker k when fixed task-types are present, and (ii) follows the LBFS rule among the

worker’s set of task-types.

This result also reinforces the intuitive rule-of-thumb that to maximize throughput

within the line, priority should be given to jobs that are closer to finished goods

(downstream) than raw material (upstream). In Theorem III.7, we prove that among

the policies that prioritize fixed jobs over shared ones, a policy consistent with LBFS

performs optimally for most of the workers.

Theorem III.7. A policy that follows the LBFS rule maximizes the number of job

completions along every sample path within the class of policies that give priority to

a worker’s fixed task-types versus her shared tasks, provided the worker’s fixed task

stations are on the same side of the line.

In the next theorem, we consider a case where two workers are competing for one

job at a shared station s ∈ S, at time t. To determine the best assignment, Theorem

III.8 proves that to maximize throughput, the downstream worker (as defined in

Definition III.4) should pick that job, provided that the upstream worker has at

least one fixed task in her training set.

Theorem III.8. When there is only a single job available to the downstream worker

Ds and the upstream worker Us at a shared station s, a policy that gives priority

to Ds over Us maximizes the number of job completions along every sample path, if

FUs 6= ∅.
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3.4.2 Fixed First Max Shared (FFMS)

Based on the analytical results from Section 3.4.1, Fixed First Max Shared (FFMS)

was originally developed by Williams. This policy exploits four ideas as follows. First,

it gives strict priority to the worker’s fixed stations over the shared stations, and will

only complete a job at shared stations if no jobs are at a fixed station; hence the fixed

first part of the name. This rule is partially justified by Theorem III.6. Intuitively,

the loss of throughput is the direct result of worker starvation. Downstream workers

will tend to starve when there are upstream bottlenecks at fixed task-type stations,

because these are the stations where the system has no flexibility. Second, within

the fixed stations, the LBFS rule is applied such that the downstream fixed station

is preferred to the upstream fixed station. The implementation of this rule is sup-

ported by Theorem III.7 and the work of Koole and Righter [57], which focused on

systems with no shared tasks and showed that the LBFS policy is optimal in many

cases. In the long-run, the FFMS policy “pools” the fixed tasks for each server.

Third, if no jobs are available at the fixed stations, the worker picks a job from the

longest queue at the shared stations; hence the max shared part of the name (and

note that if both queues have the same number of jobs, the worker prioritizes the

most downstream station). Fourth, according to Theorem III.8, if two workers are

simultaneously available at the same shared station with only one job, preference is

given to the most downstream worker.

3.5 Improving Zone Structure

The FTZC approach is intended to provide sufficient flexibility to allow some vari-

ation in mean processing times. Balance is trivially achieved in a symmetrical system

such as the one in Proposition III.5. Extreme variation in processing times may not
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permit a “low-cost” structure such as FTZC to achieve dynamic line balancing, even

with arbitrary WIP. To define balanceable lines, we will not reference any specific

policy.

Our goal in this section is to develop a method to improve a given zone structure

such that it can generate high throughput. We introduce a zone assignment algorithm

called ZonA which finds a zone structure that results in a balanceable line which

achieves maximum throughput of W/T0 under FTZC. We then describe a set of

conditions that guarantee this achievement.

Considering only the specified FTZC zones and mean processing times, we take

the approach of the past literature that the FTZC system is balanceable if the deter-

ministic (fluid) LP model can achieve the maximum throughput of W/T0. We define

a linear program (similar to that found in other works such as Andradottir et al. [7])

that maximizes throughput given a FTZC structure using the following notation:

Θ Line throughput

W Set of workers in the line

F Set of fixed stations in the line

ysuk Fraction of time that worker k works at her upstream shared station

ysdk Fraction of time that worker k works at her downstream shared station

zi Fraction of time allocated to fixed station i

Ik Fraction of idle time of worker k

T̃(k) Mean processing time at the kth shared station

Based on the above notation, the throughput maximization linear program (LP) is
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defined by (3.1)-(3.7):

LP:

max Θ(3.1)

subject to :

Θ ≤ zi
Ti

∀i ∈ F(3.2)

Θ ≤ ysuk + ysdk	1

T̃(k)

∀k ∈ W(3.3)

Ik + ysuk +
∑
i∈Fk

zi + ysdk = 1 ∀k ∈ W(3.4)

Ik, ysuk, ysdk ≥ 0 ∀k ∈ W(3.5)

zi ≥ 0 ∀i ∈ F(3.6)

Θ ≥ 0.(3.7)

In the formulation above, the objective function (3.1) is to maximize line through-

put (Θ). The inequalities of (3.2) ensure that throughput is bounded above by the

fraction of time allocated to the fixed station i divided by the processing time of that

station. Similar to (3.2), the inequalities of (3.3) describe the upper bound on the

throughput imposed by the fraction of time spent at each shared station. Note that

a shared station has two workers assigned to it, the upstream and the downstream

workers. Therefore, on the right-hand-side, we need to add the fraction of times each

of these two workers spend on the shared station. The equations of (3.4) add the

fractions of time worker k spends at each station (fixed and shared) and finds the

excess capacity of worker k and assigns it to the idle time, Ik. Inequalities (3.5)-(3.7)

represent non-negativity bounds on decision variables.

Note that the solution of the LP provides optimal worker allocations for the

deterministic fluid model. There is no guarantee that the allocations resulting from
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the application of our simple heuristic FFMS to the stochastic model will match

those of the LP. It is important to keep in mind that the value of FFMS rests in its

good performance, which is supported by our numerical investigation in Section 3.6.

On the other hand, the main uses of the LP are to support the proof of the ZonA

algorithm’s ability to construct balanceable lines (Section 3.5.1) and the definition of

the Classic CONWIP Approximation (Section 3.6.4). Next, we characterize optimal

worker allocations for balanceable lines.

Proposition III.9. Let Θ∗, I∗k , z
∗
i , y

∗
suk

,and y∗sdk
be a solution of the linear program.

If the line is balanceable, that is, Θ∗ = W
T0

, we have I∗k = 0, y∗suk
+ y∗sdk	1 = W

T0
T̃(k) for

all k ∈ W, and z∗i = W
T0
Ti for all i ∈ F .

Let T̂j denote the effective service time of station j, so T̂i = Ti

z∗i
∀i ∈ F , and

T̂k =
T̃(k)

y∗suk+y∗sdk	1
∀k ∈ W. Therefore, when the line is balanceable, Proposition III.9

implies that T̂j = T0

W
for all j ∈ S

⋃
F , a result used in the approximate model

presented in Section 3.6.4.

3.5.1 Zone Assignment Algorithm (ZonA)

The idea behind this algorithm is to construct a work-sharing structure such that

the workload that is fixed to any set of k consecutive workers does not exceed k T0

W
,

which is a necessary condition for the line to be balanceable. We do this by first

picking any station (named station one in this section only) to be a shared station.

Then, with stations numbered consecutively toward the most downstream station

(the direction of materials flow in Figure 3.1), the remaining W − 1 shared stations

(named S2, S3,...,SW ) are given by:

(3.8) Si = min

{
k :

k∑
l=2

Tl ≥ (i− 1)
T0

W

}
.
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The zone boundaries for worker i are stations Si and Si+1, where S1 = SW+1 = 1.

The stations between Si and Si+1, if any, are “fixed” for worker i. Equation (3.8)

ensures that
∑Sk+1−1

l=2 Tl, the total processing time of tasks that are served exclusively

by workers 1, ..., k, is less than k T0

W
.

Theorem III.10. Having Ti <
T0

W
for all i ∈ {1, 2, ...N} is a sufficient condition for

the ZonA algorithm to produce a balanceable FTZC structure.

We remark that the choice of the “first” shared station when applying the ZonA

algorithm defines a FTZC structure that balances the line, but any station can be

considered as station 1 to construct a FTZC solution. This way, we can have at most

N different zone structures that balance the line; however, these structures may not

perform identically due to variation in mean processing times. In Section 3.5.2, we

develop a Degree of Imbalance (DOI) metric to select the particular FTZC structure

that results in a minimum DOI value; DOI also serves as an indicator that correlates

with low throughput for any given FTZC design.

3.5.2 Degree of Imbalance (DOI) and Full Specification of the ZonA Algorithm

The DOI metric captures the inherent variation in the mean processing times of

stations within each zone as well as variation across the zones. DOI is a non-negative

index for which zero corresponds to a perfectly balanced line and increasing devia-

tions in the distribution of work content within and across zones lead to increased

values. A high DOI indicates greater variation and a more significant bottleneck

effect, both of which correlate with decreased throughput.

An “optimal” metric is beyond our scope; however, the results of our ZonA algo-

rithm below are fairly insensitive to the DOI metric used. The simple and intuitive

DOI metric below was found to work as well or better than several other metrics
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tested.

Let µZk
and σZk

be the average and the standard deviation of processing times of

stations within primary zone Zk, calculated as the following:

µZk
=

∑
i∈Zk

Ti

|Zk|
,(3.9)

σZk
=

√∑
i∈Zk

(Ti − µZk
)2

|Zk|
.(3.10)

Let σµZ capture the standard deviation of the mean processing times across the

zones, and because the mean is known, |W| is used in the following equation.

σµZ =

√∑
k∈W(µZk

− T0/N)2

|W|
.(3.11)

Next we compute two DOI metrics associated with each zone structure:

(DOI within the zones of the structure) DOIw =
W∑
k=1

σZk

µZk

(3.12)

(DOI across the zones of the structure) DOIa =
σµZ
T0/N

.(3.13)

Thus, the overall DOI associated with the structure is defined as:

(DOI of the structure) DOI = DOIw +DOIa.(3.14)

In order to test the effectiveness of the DOI measure, we also developed two other

measures to represent the possible variability in the line, as follows:

(Second DOI measure) DOI1 = max{DOIw +DOIa, DOIw ∗DOIa}(3.15)

(Third DOI measure) DOI2 = DOIw +DOIa +
√
DOIw ∗DOIa(3.16)
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Smaller DOI values represent more balanced zone structures. Therefore, given

the choice among up to N ZonA structures, we pick the one with the lowest value of

DOI.

We also show that there is no significant difference between employing any of the

three above mentioned DOI matrices. As a result, we used the original DOI measure

(not DOI1 and DOI2) as the performance measure throughout the test suit.

3.6 Numerical Experiments of Heuristic Policies and the Zone Assign-
ment Algorithm

To show the effectiveness of FFMS policy as well as the zone assignment algorithm,

we develop an extensive test suite employing discrete event simulation. The measure

of interest is the system throughput. The system in the test suite consists of 12

stations and 4 workers. We use exponential distributions for processing time in

each station. We should mention that the choice of the processing time probability

distribution does not play a significant role on the result.

Each test case includes 50 simulation replications initialized with an empty line.

The simulation has been run for the total of 8,000 job completions. Then the first

3,000 statistics will be considered as a warm-up period and will be discarded. We use

“common random numbers” to reduce the variance in estimating the performance

differences across policies.

3.6.1 Test Suite

To compare the performance of FFMS to other well-studied worker coordination

policies, we test FFMS against: Random (RND), Last Buffer First Served (LBFS),

and Maximum Queue (MaxQ). In all these mentioned policies (including FFMS)

when two workers are simultaneously available at the same shared station with only
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one job, as discussed in Theorem III.8, preference is given to the most downstream

worker.

• RND - This policy allows each worker to choose any station with an available

job in her zone at random with equal probabilities.

• LBFS - Based on Definition III.3.

• MaxQ - This policy assigns worker w to station i such that

i = argmaxi∈{Fw∪Sw:Qi(t)>0}Qi(t),

where Qi(t) is the observed queue length at station i at time t. In case of a

tie (same length queues), the worker prioritizes the most downstream queue (in

the spirit of LBFS).

To compare the performance of the heuristic policies, we study a wide variety of

problem instances, a suite of 1,024 unique cases, each having a unique set of mean

processing times. To construct each instance, we begin with a standard balanced

line as represented in Figure 3.2, in which all mean processing times for each of

the 12 stations are set to 1
3
. To generate processing times for each station we use

two multipliers, a set of across primary zones (APZ) multipliers and a set of within

primary zones (WPZ) multipliers. In the next step, each station’s mean processing

time is multiplied by both the APZ and WPZ multipliers given in Tables 3.1 and

3.2. These multipliers are carefully chosen to ensure that although the means per

station vary, the total raw processing time of the line stays equal to the number of

workers, thus providing an upper throughput bound of 1 in every instance.

We should mention that sub-suites A to C were originally studied by Williams

[93] in his dissertation. However he only focused of balanceable symmetric lines. In
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our study we relax this assumption, as a result we added sub-suite D to cover this

new generalization.

APZ Z1 Z2 Z3 Z4

A 1.00 1.00 1.00 1.00
B 1.42 0.86 0.86 0.86
C 1.42 0.58 1.42 0.58
D 2.00 0.30 1.40 0.30

Table 3.1: Across primary zone (APZ) multipliers.

WPZ U. Fixed D. Fixed D. Shared
1 0.90 1.00 1.10
2 1.00 1.00 1.00
3 0.90 1.10 1.00
4 1.40 1.40 0.20

Table 3.2: Within primary zone (WPZ) multipliers.

Each problem in the test suite is denoted by a five character code (e.g. D1132 )

that identifies the multipliers used to create that problem instance. The first char-

acter – A, B, C, or D – represents the APZ multiplier used for that problem in-

stance. The APZ multipliers alter the line processing times across the primary zones

(Z1 −Z4). Specifically, the A group of APZ multipliers serves as the standard line,

the B group has one bottleneck in Z1, the C group has two bottlenecks in Z1 and

Z3 with two fast zones in Z2 and Z4. D group has two bottlenecks, a very extreme

bottleneck in Z1, and a moderate bottleneck in Z3. Notice that in case D the line

is not generally balanceable with a symmetric FTZC. As shown in Table 3.1, the

multipliers corresponding to a given letter (A, B, C, or D) apply to every station

within a primary zone. We test each problem instance for eight CONWIP levels of

{4, 6, 8, 10, 12, 24, 36, 48}.

3.6.2 Numerical Results for Station Assignment Heuristics

We compare the FFMS heuristic to the RND, LBFS, and MaxQ policies outlined

in Section 3.6.1. However, as the design of zones can interact with the performance of
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the heuristics, we isolate and clarify this effect as much as possible by later comparing

sub-suites identified by the A, B, C, and D multipliers. Therefore, we consider a fixed

symmetric zone structure of reasonable size in which each worker is assigned to two

shared and two fixed stations (see Figure 3.2). Assuming a fixed zone structure, we

ran 50 replications for each of the four policies across the 1,024 different cases as

described in Tables 3.1 and 3.2. Note that cases A, B and C are balanceable under

a symmetric FTZC structure; however, this is not generally true for case D. Figures

3.3 through 3.7 demonstrate the performance of the heuristics before applying ZonA.

Later, in Section 3.6.3, we test how effectively the zone assignment algorithm (ZonA)

can handle high DOI levels. Figures 3.9 through 3.13 illustrate the improvements

achieved after employing ZonA.

Insight III.11. On average, the FFMS policy performs the best in our policy set;

i.e., it results in the highest average throughput across the entire test suite for each

tested CONWIP level.
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Figure 3.3: FTZC heuristic policy performance averaged over entire test suite.

Figure 3.3 shows that the FFMS consistently provides the highest average through-
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put particularly for CONWIP levels above 8.

For extreme cases of high and low WIP levels, some policies perform as well as or

better than FFMS. For example, in some problem instances LBFS outperforms the

FFMS at a CONWIP level equal to the critical WIP value. This is intuitive, because

with a low WIP level, the throughput is low, starvation is high, and the CONWIP

system becomes closer to an open queueing system, for which LBFS is the optimal

worker coordination policy for all workers.

In the next step we study the performance of each policy at a more detailed “sub-

suite” level. In each sub-suite, we have 256 problem instances, denoted by the APZ

multiplier groups (A, B, C, or D). Figures 3.4, 3.5, 3.6, and 3.7, respectively illustrate

the results of these sub-suites. From Section 3.5.2, the degree of imbalance (DOIm)

denotes the magnitude of imbalance in a given problem instance, m ∈ {1, ..., 1024}.

A higher DOI index corresponds to greater system imbalance, which we expect

will result in lower throughput. In the standard problem instance (A2222) in the

test suite, DOI equals zero, because all station processing times are identical and the

line is perfectly balanced. The DOI metric associated with each sub-suite is given in

Table 3.3. Tables 3.4 and 3.5 demonstrate the average decrease in DOI as a result

of employing ZonA, when the DOI1 and DOI2 measures are employed. The result

confirms that the choice of DOI measure does not affect the performance of ZonA.

Sub-suite Average DOI before ZonA Average DOI after ZonA Decrease percentage
A 1.00 0.67 33%
B 1.45 1.07 26%
C 2.28 1.58 30%
D 3.34 2.50 25%

Table 3.3: Average DOI for sub test Suites.

Figure 3.4 illustrates the performance of each policy under test sub-suite A, which

has a low degree of imbalance. In this sub-suite, LBFS at a CONWIP level of 4
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Sub-suite Average DOI1 before ZonA Average DOI after ZonA Decrease percentage
A 1.00 0.67 33%
B 1.45 1.07 26%
C 2.28 1.58 30%
D 3.34 2.50 25%

Table 3.4: Average DOI1 for sub test Suites.

Sub-suite Average DOI2 before ZonA Average DOI after ZonA Decrease percentage
A 1.00 0.67 33%
B 1.45 1.07 26%
C 2.28 1.58 30%
D 3.34 2.50 25%

Table 3.5: Average DOI2 for sub test Suites.
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Figure 3.4: FTZC heuristic policy performance under low line imbalance (A suite).

outperforms the other policies by 0.3%. At CONWIP levels of 12 and above, FFMS

outperforms the other policies. In general, low DOI values yield high throughput

levels for most policies. This is expected because higher DOI yields a higher level of

“line variation”, and thus, increased flow variability and station starvation. For high

CONWIP levels (i.e., 36 and above), the FFMS policy approaches the maximum

throughput of 1 on average. Figures 3.5 and 3.6 represent moderate and high DOI

levels respectively. As observed in those figures, FFMS still slightly outperforms the

other policies on average. In sub-suite B, an average maximum throughput of 92%
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is achieved by FFMS at the CONWIP level of 48. However, in sub-suite C, this

maximum is decreased to 90%.
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Figure 3.5: FTZC heuristic policy performance under moderate line imbalance (B suite).
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Figure 3.6: FTZC heuristic policy performance under high line imbalance (C suite).

Figure 3.7 illustrates sub-suite D, which is an extreme case where the line is

not balanceable by a symmetric FTZC structure. In this sub-suite the maximum

throughput level of 70% is achieved in the best case, significantly lower than sub-
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Figure 3.7: FTZC heuristic policy performance under extreme line imbalance (D suite).

suites A, B and C. Such cases of high imbalance are especially useful examples to

test the value of the ZonA algorithm.

Insight III.12. Compared to a set of reasonable intuitive policies, FFMS is achieving

significantly greater performance compared to RND, LBFS, and MaxQ.

3.6.3 Zone Assignment (ZonA) Algorithm Performance

In this section, we exploit the ZonA algorithm to improve the standard symmet-

rical zone structure illustrated in Figure 3.2 and compare the performance of the

heuristics under the symmetrical and the improved zone structures. Note that ZonA

yields zone structures that vary for each test sub-suite and each instance within a

sub-suite. Figure 3.8 illustrates the ZonA structure computed for case D1132, where

the DOI metric was reduced from 3.45 for the original symmetric zone structure as

illustrated in Figure 3.2 to only 2.29. First we describe the results of the numerical

experiments for the entire test suite in Figure 3.9. We can observe the positive effect

of ZonA on increasing throughput levels by comparing Figures 3.3 and 3.9. As a
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Figure 3.8: The improved zone structure obtained for case D1132 by ZonA algorithm.

general pattern, all policies achieve higher throughput values after redesigning their

zone structures. In particular, FFMS reaches the maximum throughput of 1 for

CONWIP levels of 24 and above. Next we show the details of each sub-suite A, B, C
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Figure 3.9: FTZC heuristic policy performance for the entire test suite using ZonA.

and D in Figures 3.10, 3.11, 3.12 and 3.13. As observed previously, sub-suite A (the

balanced case) has already reached high throughput levels even with a default zone
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structure. Thus it does not show a significant difference after improving its zone

structures, except at WIP levels around 10. To visualize the power of ZonA algo-
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Figure 3.10: FTZC heuristic policy performance under low line imbalance using ZonA (A suite).

rithm, we can compare throughput levels of sub-suites B, C and D with the previous

results. For instance, compare the throughput levels of the extremely imbalanced

case (case D) before the implementation of ZonA (Figure 3.7) with throughput levels

after improving the zone structure, Figure 3.13. We can clearly observe a dramatic

improvement after implementing ZonA. In particular, we observe that the maximum

throughput levels associated with CONWIP levels of 48 are increased from 92% (in

suite B), 90% (in suite C) and 72% (in suite D) to 100% in all test suites after im-

proving the zone structures, due to the elimination of the bottlenecks that caused

these asymptotes. RND represents a reasonable policy that has no connection to

the structure of cross-training. While ZonA improves the performance of RND, it

is striking that ZonA has a much greater impact on improving the performance of

FFMS, being well matched to the FTZC paradigm.
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Another way to illustrate the improvement is by revisiting the DOI metric, which

is reduced for all the sub-suites after running ZonA (see Table 3.3).
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Figure 3.11: FTZC heuristic policy performance under moderate line imbalance using ZonA (B
suite).
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Figure 3.12: FTZC heuristic policy performance under high line imbalance using ZonA (C suite).
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Figure 3.13: FTZC heuristic policy performance under extreme line imbalance using ZonA (D
suite).

3.6.4 Comparing FTZC to Other Structures

To observe the performance of FTZC with and without ZonA algorithm and

demonstrate the power of zone design, we benchmark the FTZC structure for the

system of 12 stations and 4 workers against two other structures:

• Two-Skill Zone Chain (2SZC): We use this structure, which cross-trains all

workers in a way that two workers cover each station in our model (see Figure

3.14). That is, two adjacent workers share the work at each station such that

each of the four workers is trained on six total stations. All workers use the

maximum queue policy in order to pick jobs available to them.

• Classic CONWIP Approximation (CCA): In this model, there is one worker

per station and no shared stations. The workers are identical and employ the

standard FCFS service discipline, so standard mean value analysis can be used

to compute the performance of CCA (see Buzacott and Shanthikumar [25]).
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Obviously, as CCA dedicates a worker to each station in a system with a similar

number of stations, CCA always has more workers than FTZC. Therefore, to

have a fair comparison between CCA and FTZC, the worker capacities in CCA

are adjusted to be the same as their effective capacities for each station in FTZC.

This is done by computing the fraction of time spent by workers on each station.

These fractions are calculated using the linear program described in Section 3.5

and Proposition III.9.
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Figure 3.14: Two-skill zone chain (2SZC) structure.

Table 3.6 demonstrates the number of skills for all of these three structures.

Total no. No. of cross-
of skills trained skills

Full XT 48 36
2SZC 24 12
FTZC 16 4
CCA 12 0

Table 3.6: Cross-training skill reduction.

We compare the throughput loss for for all three structures: 2SZC, FTZC, and

CCA. Full XT achieves maximum throughput of 1 for all the WIP levels, so we do

not present it in our graphs to avoid clutter.
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2SZC structure achieves the highest throughput as anticipated. FTZC with ZonA

archives a minimal amount of throughput loss with a fraction of skills available

compared with 2SZC. FTZC without ZonA does not perform as well. However, this

lack of strong performance is mainly due to the extreme imbalance in sub suite D.

We measure relative efficiency using the Percent of Throughput Loss (%TL) resulting

from implementing a FTZC. The results of average throughput are presented in

Figure 3.15 as a function of CONWIP level.
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Figure 3.15: Structure performance comparison - entire suite.

As observed in Figure 3.15, the classic CONWIP structure has a weak perfor-

mance due to the lack of cross-training. After implementing ZonA, FTZC rapidly

approaches the system capacity for WIP levels above 8. This confirms that with

ZonA almost all the systems are indeed balanceable — strong evidence that when

operated under the FFMS policy, the FTZC structure is a very effective approach.

In the studied model, the FTZC structure only has 4 cross-trained skills, whereas

in full cross-training, there are 36 skills to be cross-trained and 12 in 2SZC. Given
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this minimal level of cross-training, FTZC performs extremely well by achieving

the throughput level of 1 for WIP levels of higher than 25. This minimal reliance

on cross-training makes FTZC a powerful structure that with a considerably low

training cost.

Insight III.13. Across the entire test suite, for CONWIP levels of 12 or greater,

the FTZC (with ZonA) averages at least 97% of the throughput of the 2SZC. For the

CONWIP levels of 2ω0 to 6ω0 the average %TL (FTZC vs. 2SZC) is 3.6%.

To further study the effect of line imbalance on the FTZC with FFMS, we again

examine the A, B, C, and D sub-suites. Table 3.7 shows the adverse effect of line

imbalance on the %TL. As illustrated in Table 3.7, %TL (FTZC vs. 2SZC) generally

increases as the DOI increases (from A suite to D suite). Low CONWIP levels allows

the 2SZC to benefit more from its flexibility advantage over the FTZC. Note that in

Table 3.7 the DOI measure of DOIw +DOIa was employed.

CONWIP level 4 8 12 24 36 48
Without ZonA 21.1% 15.4% 12.9% 10.0% 8.9% 8.4%

A Suite 16.5% 6.7% 3.0% 0.0% 0.0% 0.0%
B Suite 18.4% 12.4% 10.3% 9.2% 8.6% 8.4%
C Suite 21.3% 16.9% 14.3% 12.5% 11.7% 11.3%
D suite 28.4% 25.8% 24.2% 18.4% 15.2% 14.2%

With ZonA 15.8% 5.7% 1.9% 1.1% 0.8% 0.4%
A Suite 15.5% 4.1% 0.0% 0.0% 0.0% 0.0%
B Suite 15.8% 6.2% 2.0% 0.9% 0.5% 0.3%
C Suite 15.9% 6.1% 2.5% 1.6% 1.0% 0.6%
D suite 16.0% 6.7% 3.1% 2.2% 1.9% 0.7%

Table 3.7: Comparing the percent throughput loss (%TL) of FTZC relative to 2SZC (with and
without ZonA).

We select 5% throughput loss as a target and use Table 3.7 to make the following

assertion that clarifies the robustness of the FTZC structure in various operating

environments:

Insight III.14. When coupled with ZonA and operated under the FFMS policy, the
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FTZC structure incurs a throughput loss of at most 5% when the CONWIP levels

are at least approximately: (1) 2ω0 for the low line imbalance (A Suite); (2) 3ω0 for

moderate, high and extreme line imbalances (B, C, and D Suites).

Table 3.7 also illustrates a relationship between throughput, CONWIP level and

DOI. In general, %TL, increases as DOI index increases. Here we also measure the

performance of FTZC under other DOI measures, i.e. DOI1 and DOI2. The results

in terms of throughput loss are presented in Tables 3.8 and 3.9. As observed in these

tables, the FTZC structure seems to be relatively robust against the choice of DOI.

We only observe a 1% increase in %TL for CONWIP level of 48 when DOI2 was used

to find “the best” zone structure.

CONWIP level 4 8 12 24 36 48
With ZonA 15.8% 5.7% 1.9% 1.1% 0.8% 0.4%

A Suite 15.5% 4.1% 0.0% 0.0% 0.0% 0.0%
B Suite 15.8% 6.2% 2.0% 0.9% 0.5% 0.3%
C Suite 15.9% 6.1% 2.5% 1.6% 1.0% 0.6%
D suite 16.0% 6.7% 3.1% 2.2% 1.9% 0.7%

Table 3.8: %TL of FTZC with employing ZonA based on DOI1 relative to 2SZC.

CONWIP level 4 8 12 24 36 48
With ZonA 15.8% 5.7% 1.9% 1.1% 0.8% 0.5%

A Suite 15.5% 4.1% 0.0% 0.0% 0.0% 0.0%
B Suite 15.8% 6.2% 2.0% 0.9% 0.5% 0.3%
C Suite 15.9% 6.1% 2.5% 1.6% 1.0% 0.7%
D suite 16.0% 6.7% 3.1% 2.2% 1.9% 0.9%

Table 3.9: %TL of FTZC with employing ZonA based on DOI2 relative to 2SZC.

3.7 Conclusions

This chapter builds upon the Fixed Task Zone Chaining (FTZC) paradigm intro-

duced by Williams [93]. The FTZC structure is very powerful and applicable since it

needs only a fraction of skills to be cross-trained compared to a fully cross-trained or

two skill zone chain (2SZC) systems. FTZC divides stations into “zones” and assigns
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each zone to a worker such that zones are chained together as they share a station at

each end. In this chapter we generalized the original FFMS heuristic policy, which

was only designed for symmetric zones and a system of 12 stations and 4 workers,

to be applicable to any U-shaped CONWIP line where the number of workers in

the line are strictly fewer than the stations. FFMS is an efficient worker-to-station

assignment policy under the general framework of FTZC. We compare our proposed

heuristic to other policies to show its effectiveness in maximizing throughput. We

also develop new metrics to capture the “degree of imbalance” (DOI) to quantify the

efficiency of a zone structure. We show that ZonA algorithm demonstrates a great

deal of robustness to the choice of DOI. We use a comprehensive test suite to show

that, on average, the FFMS policy outperforms the other policies.

The performance of the FTZC system design is tied to the efficiency of the zone

structures. We use our test suite and the DOI metric to show how, in some cases, a

poor (i.e. imbalanced) zone structure can result in low throughput levels. Therefore

in the next step, we develop a Zone Assignment (ZonA) algorithm to improve the

zone structure in a given production line. We derive sufficient conditions under

which a line is balanceable with a FTZC system design. We use computational

experiments to show how the ZonA algorithm can significantly improve throughput

by balancing zone structures. Based on our experiments, under mild conditions,

the FFMS heuristic applied to a ZonA designed structure can achieve maximum

throughput for almost all practical CONWIP levels.

Finally, we benchmark the FTZC family of designs against other alternative struc-

tures ranging from a CONWIP line with a dedicated (but slow) server at every station

to a “two-skill zone chain” to a fully cross-trained system. Careful numerical exper-

iments indicate that the FTZC system (when designed using the ZonA algorithm)
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can nearly reach the performance of a fully cross-trained system while requiring a

far more limited set of skills and reducing the training cost.

3.8 Proofs of Propositions and Theorems of Chapter III

3.8.1 Proof of Proposition III.5

Our FTZC includes N stations and W workers, where all workers have two shared

task-types, and an LBFS policy (see Definition III.3) is followed at every queue in the

zone. Given the assumption of a symmetrical FTZC structure, each worker covers N
W

stations. This yields a total work content of (N
W

)(T0

N
) = T0

W
for every worker within her

primary zone. We have the ideal scenario (no congestion) because each station has

a deterministic processing time of (T0

N
). If each worker begins at time 0 with one job

at her upstream fixed-task station, all workers send one job to their “downstream”

neighbor after T0

W
. Since there is no wait, the cycle time will be T0; further each worker

achieves a throughput equal to bottleneck rate, rb = W
T0

, which is the maximum

value possible. By Little’s law, the critical WIP, ω0 = rbT0 = (W
T0

)T0 = W . For the

deterministic system, we can see that additional WIP does not decrease throughput.

3.8.2 Proof of Theorem III.6

We prove part (ii) first. Let τ be a time instant when worker k becomes available

with jobs waiting at least two stations in her zone, and i be the most downstream

such non-empty station. For any policy π that assigns worker k in some other station

l, where l < i, we construct an alternative policy π̃ that assigns worker k in station

i and is such that Dπ̃
t (ω) ≥ Dπ

t (ω) along every sample path ω, which proves the

statement of the theorem.

Because service times are task-type and worker dependent, sample path ω is

defined by sequences Swj (n, ω), n ∈ N, where Swj (n, ω) is the time duration of the nth
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service performed by worker w in station j. We construct policy π̃ to be identical

to π except that at time τ worker k is assigned in station i and then follows the

sequence of actions taken under π after time τ . The first action in that sequence is

a service in station l, and the rest (that may include idle periods) are determined

from the realization of the arrival and service processes. Let τc(ω) be the time of the

first service completion under π in station i. Until that time it is not possible for

policy π to assign worker k in her (empty) downstream shared station, which means

that π̃ can always mimic π with respect to actions taken by workers other than k,

because at any time all stations where these workers can be assigned (the ones not

fixed to worker k) have at least as many jobs under π̃ as under π. Therefore, π̃ is

well defined in [τ, τc(ω)] and the two policies are coupled at τc(ω). Time periods

[τ + Skl (1, ω), τc(ω) − Ski (1, ω)] under π and [τ + Ski (1, ω) + Skl (1, ω), τc(ω)] under π̃

include the same sequence of actions by worker k. A comparison of the two policies

shows that for any t ∈ [τ, τc(ω)], the number of jobs completed by t under π̃ is at

least equal to the number completed under π.

The proof of part (i) is based on a similar construction of the alternative policy

π̃. After the service completion in station i worker k idles for the same amount of

time she would have idled under π, say I(ω), which can be calculated by observing

the sample path realization. Then she replicates her actions under π until the two

policies are coupled the first time she completes a service in station i.

3.8.3 Proof of Theorem III.7

In Theorem III.7, we only focus on the class of policies that prioritize a worker’s

fixed stations over shared stations. Let τ be a time instant when worker k becomes

available with at least two fixed stations in her zone having jobs. Let i be the most

downstream fixed station in her zone with at least one job available and let j be
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another fixed station in worker k zone (i.e. j < i) with at least one job available. To

show that LBFS is optimal among fixed tasks, for any policy π that assigns worker

k to station j, we construct an alternative policy π̃ that assigns worker k to station

i for which the number of completed jobs by time t (Dπ̃
t (ω)) is at least equal to the

number of jobs completed under π (Dπ
t (ω)) along every sample path.

The way π̃ is defined is exactly the same as in Theorem III.6. Since π gives

priority to fixed stations, it is not possible to assign worker k to her downstream

shared station before station i, which ensures that π̃ can mimic π as far as the

actions of the other workers are concerned. As in Theorem III.6, a comparison of π̃

and π until their coupling at the time of the first job completion under π in station

i shows that π̃ performs at least as well as π.

3.8.4 Proof of Theorem III.8

Let π be a policy that assigns Us to s. We define an alternative policy π̃ that

assigns Ds to s, keeps Us idle until job s is served at the shared task-type, and

is identical to π afterwards. Since the two workers have equal speeds, the service

time of task-type s is equal under policies π and π̃ along any sample path. Along

any sample path, it is not possible for π to assign Ds to some task-type during the

service of s. First, no job can arrive at station s from upstream because Us is busy

at s, and second, no jobs can become available for Ds downstream of s because Ds

has only one shared station with her downstream neighbor (this station is either

empty or occupied by the other worker). The two policies are coupled at the time of

service completion at s implying that they will result in the same throughput. This

shows that assigning a single job to the downstream worker (Ds) will not result in

throughput loss.
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3.8.5 Proof of Proposition III.9

Because Θ∗ = W
T0

, the inequality constraints (3.2) and (3.3) of the LP take the

form

z∗i ≥ Ti
W

T0

, ∀i ∈ F(3.17)

y∗suk + y∗sdk	1 ≥ T̃(k)
W

T0

, ∀k ∈ W(3.18)

Summing over all constraints (3.17) and (3.18), we get

∑
i∈F

z∗i +
∑
k∈W

(y∗suk + y∗sdk	1) ≥
W

T0

(
∑
i∈F

Ti +
∑
k∈W

T̃(k)) =
W

T0

T0 = W.(3.19)

Taking the sum over all equality constraints (3.4) we get:

∑
k∈W

I∗k +
∑
k∈W

(y∗suk + y∗sdk
+

∑
i∈Fk

z∗i ) = W.(3.20)

Because the left-hand side of Equation (3.19) is equal to the second sum in Equation

(3.20), we obtain I∗k = 0 for all k and
∑

k∈W(y∗suk
+ y∗sdk

+
∑

i∈Fk
z∗i ) = W . Assuming

that z∗i >
W
T0
Ti for some i or y∗suk

+ y∗sdk	1 >
W
T0
T̃(k) for some k, we get from (3.17)

and (3.18)
∑

k∈W(y∗suk
+ y∗sdk

+
∑

i∈Fk
z∗i ) > W , which is clearly a contradiction.

Therefore, all inequalities in (3.17) and (3.18) are satisfied as equalities and the

proof is complete.

3.8.6 Proof of Theorem III.10

Proof. Condition Ti <
T0

W
ensures that stations S1, ..., SW are distinct, so that ZonA

produces a FTZC structure. To prove that this structure is balanceable, we construct

a feasible solution to LP such that the objective function reaches the value of Θ =

W/T0. Let Fk =
∑

i∈Fk
Ti, which equals the sum of mean processing times at the
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fixed stations of worker k and

ysu1 = min
1≤k≤W

{
k −

[ k∑
j=1

Fj +
k∑
j=2

T̃(j)

]
W

T0

}
,

ysuk =

[ k−1∑
j=1

Fj +
k∑
j=2

T̃(j)

]
W

T0

+ ysu1 − (k − 1) for k ∈ W − {1},

zi = Ti
W

T0

for i ∈ F ,

ysdk = 1− ysuk −
∑
j∈Fk

zj for k ∈ W ,

Ik = 0 for k ∈ W .

We can see that the inequality constraints (3.2) are satisfied as equalities with Θ =

W/T0. This is also true for inequalities (3.3). To demonstrate this we use the above

equations and the fact that T0 =
∑W

j=1(Fj + T̃(j)) to get

ysu1 + ysdW = ysu1 + 1− ysuW −
∑
j∈FW

zj =

W − [
W−1∑
j=1

Fj +
W∑
j=2

T̃(j)]
W

T0

− FW
W

T0

= W − (T0 − T̃(1))
W

T0

= T̃(1)
W

T0

,

and for 2 ≤ k ≤ W

ysuk + ysdk−1 = ysuk + 1− ysuk−1 −
∑

j∈Fk−1

zj =

(Fk−1 + T̃(k))
W

T0

− Fk−1
W

T0

= T̃(k)
W

T0

.

It remains to be shown that the non-negativity constraints for the worker allocations

are also satisfied. For all k ∈ W we have:

k∑
j=1

Fj +
k∑
j=2

T̃(j) =

Sk+1−1∑
l=2

Tl < k
T0

W
⇒ ysu1 > 0,

and for k ∈ W − {1}
k−1∑
j=1

Fj +
k∑
j=2

T̃(j) =

Sk∑
l=2

Tl ≥ (k − 1)
T0

W
⇒ ysuk > 0,
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where the first inequality in each of the above equations follows from Equation (3.8).

By the definition of ysu1 we have

ysu1 +
∑
i∈F1

zi ≤ 1− F1
W

T0

+ F1
W

T0

= 1,

and for all k ∈ W − {1} we have:

ysuk +
∑
i∈Fk

zi ≤ [
k−1∑
j=1

Fj +
k∑
j=2

T̃(j)]
W

T0

+ k − [
k∑
j=1

Fj +
k∑
j=2

T̃(j)]
W

T0

− (k − 1) + Fk
W

T0

= 1.

Therefore, ysdk ≥ 0. Thus a feasible solution to the LP defined by (3.1) - (3.7) can

be constructed such that the maximum throughput is achieved.



CHAPTER IV

Malaria Treatment Distribution Logistics in Developing
World Health Systems and Applications to Malawi

4.1 Motivation

Despite decades of elimination and control efforts worldwide, malaria remains

one of the largest killers of children worldwide and a serious threat to the health of

residents in most developing countries. According to WHO [94], there were nearly

250 million suspected malaria cases in 2009, nearly all in developing countries and

half the world’s population lives at some risk for malaria infection. Malaney et al.

[65] show that in addition to being an immense burden on human health and welfare,

malaria is a major impediment to the economic development of impoverished nations.

Thus, efforts to control and treat malaria are a priority of the development goals of

the United Nations, various governments, and many non-governmental organizations.

According to Human Development Report [84], Malawi is one of the poorest coun-

tries in the world and ranks 153rd out of 177 countries on the Human Development

Index. Due to a combination of intense poverty and environmental and local weather

conditions, Malawi suffers from an intense high burden of malaria. Dzinjalamala [32]

indicates that all Malawians live at year round risk for malaria though incidence

peaks during the December-May rainy season. The World Health Organization esti-

mated that there were approximately 5.5 million cases of malaria out of a population

95
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of just over 15 million people. At least a third of all medical consultations were

related to malaria (WHO [94]). Multiple infections among the same individuals are

common. Dzinjalamala [32] shows that though all ages are affected, symptomatic

disease disproportionately strikes children under five years of age and is a major

cause of childhood death. This is due in part to increasing immunity over time that

develops as a result of repeated infections.

Health care in Malawi is available for free to all those who seek it, however, the

availability and level of services are rudimentary. The amount Malawi spends on

health care is one of the lowest in sub-Saharan Africa, $4.93 per person in 2004, and

is well under the $34 per person expenditure recommended by the WHO Commis-

sion of Macroeconomics and Health (Conticini [26]). Malawi’s public health system

is a three tiered network consisting of a central warehouses and regional warehouses

on the first tier, district hospitals on the second tier, and primary health centers

and community clinics on the third. Each tier receives supplies from and answers

to the tier above it with the exception of the central warehouses and regional ware-

houses which answer directly to the Ministry of Health (see Figure 4.1). In addition

to the public providers, private health services are also available at cost for those

who can afford them, though these households are primarily located in urban areas.

Malaria care is provided at all levels of the Ministry of Health system, though central

hospitals principally accept patients on a referral basis only. Distribution of phar-

maceuticals begins at the Central Medical Stores (CMS) in Lilongwe, Malawi, the

first point on the pharmaceutical supply chain in Malawi, which allocates drugs to

the regional warehouses and central warehouses (first tier). Central warehouses and

regional warehouses then deliver to district hospitals, which are in turn responsible

for supplying primary health centers and local community clinics. The goal is to
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maintain a constant and equitable supply of drugs to all levels of health facilities

and to insure transparency and accountability in the system.

According to Malawian Ministry of Health [74], since 2007 the Ministry of Health

of Malawi has recommended the use of ACTs as a first line treatment for patients

presenting symptoms of uncomplicated malaria. As shown by Garner and Graves

[36], ACTs not only treat malaria in the individual, but also reduce infectivity to

mosquitoes, theoretically reducing infections in the community.

The goal of this research is to provide insights into how developing countries

with highly centralized systems of health delivery can most effectively distribute

these expensive and valuable treatments on a restrictive budget. In this chapter we

employ stochastic programming and Markov decision models to significantly decrease

the annual shortage of the medication while keeping transportation costs low and

affordable.

 

Central 
Warehouse 

Regional 
Warehouses 

District Hospitals 

Local Clinics and 
Drug Dispensaries

Figure 4.1: Malaria pharmaceautical distribution network in Malawi.

4.2 Literature Review

The stochastic transportation problem has been previously addressed in the liter-

ature. Williams [92] studies the problem of shipment scheduling for a single commod-
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ity in the face of demand uncertainty, where there is costs associated with transporta-

tion, shortage, and excess inventory, represented by a nonlinear objective function.

Holmberg [46] studies a large-scale stochastic transportation program and tests the

effectiveness of a wide range of solution methods including separable programming,

Benders decomposition, and Lagrangian relaxation. Romeijn and Sargut [75] study

the problem of stochastic transportation with finite suppliers’ capacities and demand

uncertainty and use a branch-and-price algorithm to solve it.

The most relevant literature to this chapter can be divided into two categories: (1)

disaster preparedness and emergency response, and (2) disease prevention resource

allocation. Literature on emergency response tends to focus on broad public health

needs that must be addressed rapidly and in a targeted manner after a period of

prior planning. Disease prevention literature, on the other hand, focuses on long

term public policy decisions, such as vaccination strategies to prevent incidence and

ultimately the spread of a particular communicable disease. Our work contains

components common to both types of literature. We consider a two-stage (and three-

stage) response in the distribution of medications (as in disaster preparedness), but

our response occurs over a longer span of time and is driven by the geographical

evolution of malaria over the course of the malaria season.

Published research regarding disaster preparedness and emergency response is

extensive and has been well documented by several survey papers, including Altay

and Green [3], Simpson and Hancock [80], and de la Torre et al. [27]. Readers are

encouraged to review these surveys for a more complete understanding of the disaster

preparedness and emergency response literature.

Particularly relevant to our work is the two-stage stochastic programming litera-

ture. These approaches involve an initial allocation of resources before a disaster and
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subsequent transportation to affected locations after a large emergency event. Two

such approaches have been developed and researchers have performed case studies

in the context of earthquake preparedness in Seattle by Mete and Zabinsky [67],

Turkey by Barbarosoğlu and Arda [13] and China by Zhu et al. [98]. Additionally,

Salmerón and Apte [77] develop a model that focuses on optimal acquisition and pre-

positioning of assets in anticipation of a disaster, with a second stage that deploys

assets to rescue victims, deliver goods and transport citizens to safety. Lee et al. [62]

introduce RealOpt, a decision support tool developed to support government activi-

ties in a wide range of disasters which considers the minimum number of facilities to

satisfy demand in a given region and also seeks to minimize the travel distance from

population to facilities.

In addition to natural disasters, there has also been work done on terror attacks.

Miller et al. [68] and Miller et al. [69] develop models to show how an existing

network of care resources can respond to a bio-terror attack. The approach involves

integrating two different stochastic models: (1) a model of disease progression and

casualty events, and (2) a model of health care network of resources and requirements

for victims at different stages of progression.

Models of disaster preparedness and emergency response share similarities with

our work; however, they typically concern rare events that require a rapid response.

Our system involves the disease evolution of malaria over an entire malaria season

along with fixed warehousing facilities and the political sensitivity of taking supplies

from one facility to another. Also, in contrast to applications of emergency response

is that, rather than being a rare and catastrophic event with unknown timing, malaria

follows predictable seasonal patterns. This means our model can address immediate

health needs and continue to impact health demand year after year.
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The other body of literature that shares common features with our work is the area

of disease prevention resource allocation. This literature typically considers public

health response and budget allocation to specific disease treatments to mitigate the

effects or prevent the spread of a particular disease. Dimitrov and Morton [29]

develop a two-stage approach where the first stage represents the one-time “design”

decision followed by a second stage of optimal control of the system via MDP. It

applies this approach to the prevention of the spread of malaria in Nigeria considering

objectives of minimizing the number of deaths and economic impact of the disease

subject to a fixed budget by considering allocation strategies based on a geographical

grid. Dimitrov et al. [28] develop mathematical models for determining optimal geo-

temporal stockpiles of anti-viral medication and distribution tactics to minimize the

impact of an influenza pandemic using optimization combined with simulation. Due

to the size of our problem, such approaches would be difficult to tractably employ.

Hutton et al. [50] develop a Markov decision model to assess the effectiveness

of various treatment strategies, and shows that catch-up vaccinations have been

extremely beneficial in China. Optimal allocation of resources for treating epidemics

is considered in Zaric and Brandeau [95] and Zaric and Brandeau [96]. These works

support our hypothesis that a dynamic policy can be more effective in treating disease

outbreaks than allocating all resources at the beginning of the period. A number of

models consider the spread and prevention of HIV in various populations. Zaric and

Brandeau [97] develop optimization models for HIV prevention resource allocation

considering aggregate level allocation to regions and local level allocation to specific

clinics. Lasry et al. [60] and Lasry et al. [59] develop non-linear optimization

models to determine the allocation of HIV treatment and prevention budget over a

five year horizon. The disease prevention models typically focus on the effectiveness
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of treatment strategies and how much budget to use to employ different types of

treatments. Furthermore, those models often have no geographical or transportation

component as in our models. In our work we consider a more operational level, where

the quantities of treatment are fixed and the goal is to allocate them most effectively

to geographical regions based on the evolution of the disease over the course of the

malaria season.

In the following sections we develop our model and present some of the results

based on data – that has been disguised for confidentiality – from Malawi. As a final

motivation for this work, we refer the reader to Foster [35], who claims that:

1. Proper inventory management of medications and and drugs in Africa can re-

duce costs an estimated 15-20%.

2. Transportation of drugs and medical aid is a more critical factor in Africa than

in other developing countries.

Our research addresses these problems by integrating strategic and operational level

models that can provide workable on-the-ground solutions to the problem of efficient

ACTs distribution in Malawi. The chapter proceeds as follows. First, we develop

a strategic level stochastic programming model to address the distribution of ACTs

at an aggregate level. These models provide both practical results for ACTs pre-

positioning and insight into an effective management structure for operationalizing

a transshipment approach – clinic clustering. Clinic clusters enable the effective de-

composition of the 290 clinic problem into manageable clusters of about 3 clinics each

on average. The output of the strategic level stochastic program can then be used to

parameterize a periodic review operational model for transshipping between clinics.

Clinic cluster decomposition enables tractable solutions to this periodic review model
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at the cluster level using a Markov decision process (MDP) approach. From the MDP

we also gain valuable insights into the structure of the optimal transshipment policy,

which we show to be of threshold type.

4.3 Deterministic Model for Medication Distribution

To demonstrate the effectiveness of incorporating demand uncertainty in distri-

bution decisions we first define a “baseline” model as a surrogate for the current

state of ACTs distribution in Malawi. The goal of this model is to minimize the

expected transportation costs and shortage penalties. All the distribution decisions

are made upfront, before the malaria season. Current practice of ACTs distribution

lacks real time updates and recourse actions. Therefore, distribution decisions are

made only once, before the malaria season, based on projected demand obtained

through observations of case demand. We introduce notation in Table 4.1.

N Set of nodes consisting of the central pharmaceutical warehouse (w),
regional warehouses (R), district hospitals (D), and local clinics (C)

AR Subset of arcs connecting the central warehouse to regional warehouses
AD Subset of arcs connecting regional warehouses to district hospitals
AC Subset of arcs connecting district hospitals to local clinics
A Set of arcs (A = AR ∪ AD ∪ AC)
S Set of demand scenarios
ps Probability of scenario s where s ∈ S
πi Penalty of one unit of treatment shortage in clinic i
cij Cost of transporting one unit of treatment on arc (i, j)
σ Total available supply of treatments
ds

i Demand of local clinic i under scenario s where i ∈ C and s ∈ S

Table 4.1: Distribution model notation.

The main decision variable in the baseline model, xij, corresponds to the number of

malaria treatments transported on arc (i, j). In other words, all distribution decisions

from the central warehouse to the regional warehouses, from the regional warehouses

to the district hospitals, and from district hospitals to the local clinics are made at

the same time, based on some historical estimate of the demand. Therefore, it is
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quite possible that when the malaria season starts and the actual demand is realized,

some local clinics will face supply shortages. An auxiliary variable, zsj is therefore

introduced to capture the shortage of malaria treatments in clinic j under scenario

s, in which a demand of dsi is realized for clinic i. The min-cost flow formulation

introduced in (4.1)-(4.7) represents the baseline model.

(4.1) min
∑

(i,j)∈A

cijxij +
∑
s∈S

∑
i∈C

psπiz
s
i

s.t. ∑
j:(w,j)∈AR

xij ≤ σ(4.2)

∑
j:(i,j)∈AD

xij =
∑

j:(j,i)∈AR
xji ∀i ∈ R(4.3)

∑
j:(i,j)∈AC

xij =
∑

j:(j,i)∈AD
xji ∀i ∈ D(4.4)

∑
j:(j,i)∈AC

xji = dsi − zsi ∀i ∈ C,∀s ∈ S(4.5)

xij ≥ 0 ∀(i, j) ∈ A(4.6)

zsi ≥ 0 ∀i ∈ C,∀s ∈ S.(4.7)

The objective function (4.1) represents the cost minimization goal. This includes

the total transportation costs from the central warehouse to the local clinics and

the shortage penalty. Constraint (4.2) guarantees that no more than the available

supply (σ) will be delivered to the regional warehouses. Constraints (4.3), i.e. flow

conservation constraints, guarantee the distribution of treatments from regional ware-

houses to district hospitals. Similarly, constraints (4.4) ensure the flow of treatments

from regional warehouses to local clinics. Finally, constraints (4.5) represent the

flow conservation in each local clinic. The left-hand-side represents the total flow

of treatments into local clinic i and the right-hand-side of (4.5) corresponds to the
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total demand of clinic i under scenario s (dsi ) minus the shortage in that clinic under

scenario s (zsi ). If the treatments in clinic i are not enough to address all the de-

mand under the realized scenario, the unsatisfied demand is considered as shortage.

Constraints (4.6) and (4.7) ensure non-negativity of the decision variables.

4.4 Two-Stage Stochastic Formulation

The models in this section contrast with the baseline model in that the demand

for each clinic is considered unknown when the decisions about the transportation

of treatments to each major inventory is made, but information and recourse actions

are available in the second stage. In the first stage of these models, the Malawi

Ministry of Health would decide how many treatments to send from the inventory

locations to each clinic before the malaria season begins. In the second stage, the

actual demand is realized and the Ministry can take recourse action to address the

supply and demand mismatch. Here we consider two potential recourse actions: (1)

transshipment and (2) delayed shipment.

In the transshipment model, all the treatments are distributed among the clinics

in the first stage. In the second stage, transshipment of treatments between clinics

occurs to adjust inventories in light of new demand information. Hence clinics with

high inventories can ship their extra inventory to the clinics experiencing shortages.

The mathematical formulation for this case is presented in Section 4.4.1.

In the delayed shipment model, an initial delivery of treatments is distributed to

the clinics, but some is held back at the higher tier. As the malaria season begins,

a better estimate of the demand is realized and a second round of shipments is

delivered. The mathematical formulation for this case is presented in Section 4.4.2.

There are benefits and drawbacks to both types of models. The delayed shipment
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model is less cost effective, but from an implementation standpoint it has the political

benefit of not having to take stock away from one clinic to give to another.

Figure 4.2 illustrates the timeline of events for the two-stage stochastic models.

Note that the recourse actions are not necessarily done all at once. Instead, the trans-

shipment or delayed shipments are made throughout the malaria season as needed.

Therefore, the recourse decisions considered here are aggregate-level surrogates for

the actual periodic adjustments in the inventory level of each local clinic.

(a) Two-Stage Transshipment Model

(b) Two-Stage Delayed Shipment Model

Figure 4.2: Event timelines for two-stage stochastic models.

4.4.1 Case I - Transshipment between Clinics

In this strategic planning model, during the malaria season medications can be

transshipped from one clinic with an excess inventory to a clinic facing a supply

shortage. Under this formulation, we assume a set of scenarios (S) where each

scenario, s ∈ S is realized with probability ps. Under scenario s, the realized value
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of demand for clinic i is dsi . The first stage problem is formulated as follows:

(4.8) min
∑

(i,j)∈A

cijxij +Q

s.t. ∑
j:(m,j)∈AR

xij ≤ σ(4.9)

∑
j:(i,j)∈AR

xij =
∑

j:(j,i)∈AD
xji ∀i ∈ R(4.10)

∑
j:(i,j)∈AD

xij =
∑

j:(j,i)∈AC
xji ∀i ∈ D(4.11)

xij ≥ 0 ∀(i, j) ∈ A.(4.12)

The first term in the objective function (4.8) minimizes shipping costs, similar to

the deterministic objective function. The second term, Q captures the expected cost

of the second stage (recourse) decision. Constraints (4.9) and (4.10) are the flow

conservation constraints. Here we define the expected recourse function, Q:

(4.13) Q = min
∑
s∈S

ps
( ∑

(i,j)∈AC
cijy

s
ij +

∑
i∈C

πiz
s
i

)
s.t. ∑

j:(j,i)∈AC
ysji −

∑
j:(i,j)∈AC

ysij + zsi ≥ −
∑

j:(j,i)∈AC
xji + dsi ∀i ∈ C,∀s ∈ S(4.14)

ysij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S(4.15)

zsi ≥ 0 ∀i ∈ C,∀s ∈ S.(4.16)

In the above formulation, the decision variable ysij corresponds to the aggregate

transshipment of treatments from clinic i to clinic j under scenario s through the

malaria season. The recourse function, Q, as defined in (4.13), captures the cost

of the recourse action – the transshipment cost between the clinics plus the penalty

corresponding to the shortage of medications in clinic i under scenario s at the end of
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the malaria season, denoted by zsi . Constraints (4.14) correspond to flow conservation

– the amount of treatment sent from node j to node i (ysji) minus the number of

treatments (ysij) transported from node i to node j is greater and equal to the realized

demand under scenario s, i.e. dsi minus the original number of treatments assigned

to clinic i in the first stage (
∑

j:(j,i)∈AD xji). The new decision variable zsi captures

the shortage in clinic i and is subtracted from the left hand side of constraints (4.14).

Note that the value of first-stage decisions xij is known in the second stage, therefore∑
j:(j,i)∈AD xji is a known value.

4.4.2 Case II - Delayed Shipment

In this case, some portion of the shipment of treatments is reserved for shipment

after the start of the malaria season. Similar to the transshipment model, we define dsi

as the demand of clinic i under scenario s. Here is the first stage problem formulation:

(4.17) min
∑

(i,j)∈A

cijxij +Q

s.t. ∑
j:(m,j)∈AR

xij ≤ σ(4.18)

∑
j:(i,j)∈AR

xij =
∑

j:(j,i)∈AD
xji ∀i ∈ R(4.19)

∑
j:(i,j)∈AD

xij ≥
∑

j:(j,i)∈AC
xji ∀i ∈ D(4.20)

xij ≥ 0 ∀(i, j) ∈ A.(4.21)

The objective function (4.17) and constraints (4.18) and (4.19) are similar to the ones

in the transshipment model. However, constraints (4.20) are changed from equality

to inequality. This is because we do not ship all the supply at the first stage. Thus,

some reserved inventory stays at each district hospital. Here we define the expected
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recourse function, Q for delayed shipment:

(4.22) Q = min
∑
s∈S

ps
( ∑

(i,j)∈AC
c′ijw

s
ij +

∑
i∈C

πiz
s
i

)
s.t. ∑

j:(i,j)∈AC
wsij ≤

∑
j:(j,i)∈AD

xij −
∑

j:(i,j)∈AC
xij ∀i ∈ D,∀s ∈ S(4.23)

∑
j:(j,i)∈AC

wsji + zsi ≥ −
∑

j:(j,i)∈AC
xji + dsi ∀i ∈ C,∀s ∈ S(4.24)

wsij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S(4.25)

zsi ≥ 0 ∀i ∈ C,∀s ∈ S.(4.26)

In the recourse problem defined by (4.22)-(4.26), wsij denotes the amount of treat-

ments shipped from district hospital i to clinic j through the malaria season. The

objective function (4.22) minimizes the expected transportation costs and shortage

penalties. c′ij denotes the cost of delayed shipment between district hospital i and

local clinic j. Due to practical reasons such as economy of scale, it is safe to assume

that the initial round of shipments are less expensive than delayed shipments, i.e.

c′ij > cij.

Constraints (4.23) ensure that the second round of shipments (
∑

j:(m,j)∈AD w
s
ij) will

distribute all treatments left from the first stage (σ −
∑

j:(m,j)∈AD xij). Constraints

(4.23) ensure the conservation of flow from the central warehouse to each clinic.

Constraints (4.24) capture the shortage in each clinic (zsi ) after the second round of

treatments are distributed. Constraints (4.25) and (4.26) ensure the non-negativity

of shortage values.

In the next section, we discuss modeling techniques that ensure equitable distri-

bution in the face of supply shortages.
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4.4.3 Equity of Shortage

When the total supply of malaria treatments is less than the demand, shortage

is inevitable. However, depending on the specific distribution scenario, some clinics

may face higher shortages than others. The issue of shortage equity among clinics

can be addressed such that the optimization model does not generate solutions in

which some clinics have significantly higher shortage values than others.

To do so, instead of minimizing the sum of shortage values, we minimize the sum

of absolute differences between the shortage of each clinic and the average shortage

among all clinics. Define z̄s as the average shortage of treatments in all the clinics in

scenario s. Also define z̃si as the absolute difference between the shortage in clinic i

and the average shortage. This way, we need to add the following constraints to the

recourse problems.

z̄s =
1

|C|
∑
i∈C

zsi ∀s ∈ S(4.27)

z̃si ≥ zsi − z̄s ∀s ∈ S,∀i ∈ C(4.28)

z̃si ≥ −zsi + z̄s ∀s ∈ S,∀i ∈ C(4.29)

z̃si ≥ 0.(4.30)

Equations (4.27) define the average shortage. Equations (4.28) - (4.30) linearize the

absolute value function. Based on the above definition of equity, we can modify

objective function in each model by adding a new term
∑

s,i πiz̃
s
i to the objective

function.

Note that minimizing the sum of absolute differences is not the only approach to

maintain equity. Other approaches such as minimizing the maximum shortage, or

minimizing the difference between the minimum and the maximum shortage values

can also be easily implemented and still maintain linearity of the model.
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Stepwise Transportation Cost

A potential realistic extension to the stochastic model is to consider a case where

treatments have to be shipped in batches. In those cases, a step-wise transportation

cost function (see Figure 4.3) will represent the model better than linear cost.

 

Figure 4.3: Stepwise transportation cost function.

To do so, instead of minimizing the sum of linear transportation cost, we minimize

the sum of number of truckloads for shipping the treatment. We define uij as number

of loads shipped on arc (i, j). We assume the capacity of each truck is known and

fixed to b.

xij
b
≤ uij ≤

xij
b

+ 1 ∀(i, j) ∈ A(4.31)

uij ≥ 0, integer ∀s ∈ S,∀(i, j) ∈ A(4.32)

Constraints (4.31) define the decision variable uij as the number of truckloads i.e.

dxij

b
e. Constraints (4.32) ensure that the new decision variable is non-negative and

integer. As a result in the objective function, instead of terms
∑

(i,j)∈A cijxij, we

have the new term
∑

(i,j)∈A c
l
ijuij.

Note that the assuming a stepwise transportation cost function will turn the model

into a mixed-integer program. This increases the problem complexity and solution

time.
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4.5 Three-Stage Stochastic Formulation

In Section 4.4, we considered two-stage models in which the demand scenario

for each clinic is realized at the beginning of the malaria season. Recourse actions

are then triggered to address the disparity between the realized demand and the

initial inventory of treatments at each clinic - either through transshipment or using

another round of delayed shipments. One major drawback of the two-stage model

is that the recourse actions are aggregate-level surrogates for the actual periodic

decisions. All the shipments that are made through the malaria season are aggregated

as a one-shot recourse decision made for each clinic’s entire demand through the

season. This assumption helps simplify the problem and make the solution tractable.

The downside here is that the temporal (e.g. bi-monthly, monthly, weekly, etc)

fluctuations in the demand for each clinic are ignored. Therefore, when the actual

temporal demand fluctuations are high, the two-stage models may underestimate the

actual shortage in each period.

One potential remedy for this issue is to increase the granularity of the recourse

actions. For instance, the transshipments or delayed shipments can be delivered peri-

odically. This way, the model can better estimate the actual shortage in each period

and trigger more precise actions. To implement such a model, a better understanding

of the proper level of granularity is needed. This requires answering questions such

as: should the model consider the monthly demand for each clinic and compute the

monthly recourse actions, or should it happen on a weekly basis? As the granularity

of the model increases, the computation time increases dramatically. Moreover, col-

lecting and processing the demand data at a very detailed level might not be feasible

in a developing nation.



112

(a) Three-Stage Transshipment Model

(b) Three-Stage Delayed Shipment Model

Figure 4.4: Event timelines for three-stage stochastic models.
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To improve the granularity of the decisions, here we present three-stage models

based on event timelines displayed in Figure 4.4. Similar to the models in Section

4.4, we consider two possible recourse actions: transshipment and delayed shipment.

The only difference here is that the recourse actions are made in stages two and

three. The three-stage transshipment and delayed shipment models are described in

Sections 4.5.1 and 4.5.2 respectively.

4.5.1 Three-Stage Transshipment Model

For the case of three-stage clinic transshipment, the formulation for the first stage

problem is identical to the two-stage problem as defined by (4.8)-(4.12). In the

second stage, however, we add another term (Q′) to the objective function (4.33) to

represent the third-stage problem. We also define a new auxiliary decision variable

to capture the extra inventory left in each clinic at the end of the second stage. lsi

represents the number of malaria treatments left at clinic i under scenario s after

the second stage. This way, the term −lsi is added to the left-hand-side of the flow

conservation constraints (4.38). This variable is then used in the third-stage problem

as input data.

(4.33) Q = min
∑
s∈S

ps
( ∑

(i,j)∈AC
cijy

s
ij +

∑
i∈C

πiz
s
i

)
+Q′

s.t. ∑
j:(j,i)∈AC

ysji −
∑

j:(i,j)∈AC
ysij + zsi − lsi = −

∑
j:(j,i)∈AC

xji + dsi ∀i ∈ C,∀s ∈ S

(4.34)

ysij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S

(4.35)

zsi ≥ 0, lsi ≥ 0 ∀i ∈ C,∀s ∈ S.

(4.36)
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To formulate the third-stage problem (Q′), we define a set of transshipment decisions

made in the third stage. y
′s
ij represents the number of treatment units transshipped

from clinic i to clinic j under scenario s. In general, the transshipment cost in

the third stage can be different from the second-stage transshipment cost. Thus we

introduce a new parameter (c′ij) to represent the transshipment cost in the third

stage. The third-stage problem is defined by (4.37)-(4.40).

(4.37) Q′ = min
∑
s∈S

ps
( ∑

(i,j)∈AC
c′ijy

′s
ij +

∑
i∈C

πiz
′s
i

)
s.t. ∑

j:(i,j)∈AC
y
′s
ij −

∑
j:(j,i)∈AC

y
′s
ji + z

′s
i ≥ −lsi + d

′s
i ∀i ∈ C,∀s ∈ S(4.38)

y
′s
ij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S(4.39)

z
′s
i ≥ 0 ∀i ∈ C,∀s ∈ S.(4.40)

Equation (4.37) defines the objective function of the third-stage transshipment prob-

lem. The goal is to minimize the expected transshipment cost

(
∑

s∈S ps
∑

(i,j)∈AC c
′
ijy

′s
ij) plus the expected shortage penalty (

∑
s∈S ps

∑
i∈C πiz

′s
i ) in-

curred in the third stage. The flow conservation constraints defined by (4.38) ensure

that the existing inventory at clinic i under scenario s (
∑

j:(i,j)∈AC y
′s
ij−

∑
j:(j,i)∈AC y

′s
ji+

lsi ) is enough to satisfy clinic-i’s demand in the third stage under that scenario (d
′s
i ).

If not, the unsatisfied demand will be counted toward shortage (z
′s
i ). We rearranged

the flow conservation constraints (4.38) so that the decisions (y′ and z′) are on the

left-hand-side and the input data (l and d′) are on the right-hand-side.

4.5.2 Three-Stage Delayed Shipment Model

For the case of three-stage delayed shipment, the formulation for the first stage

problem is identical to the two-stage problem as defined by (4.17)-(4.21). Similar
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to the idea presented in Section 4.5.1, we add another term (Q′) to the objective

function (4.41) to represent the third-stage problem. Similarly, a new auxiliary

decision variable (lsi ) is defined to capture the extra inventory left in each clinic at

the end of the second stage.

(4.41) Q = min
∑
s∈S

ps
( ∑

(i,j)∈AC
cijw

s
ij +

∑
i∈C

πiz
s
i

)
+Q′

s.t. ∑
j:(i,j)∈AC

wsij ≤
∑

j:(j,i)∈AD
xij −

∑
j:(i,j)∈AC

xij ∀i ∈ D,∀s ∈ S(4.42)

∑
j:(j,i)∈AC

wsji + zsi − lsi = −
∑

j:(j,i)∈AC
xji + dsi ∀i ∈ C,∀s ∈ S(4.43)

wsij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S(4.44)

zsi ≥ 0, lsi ≥ 0 ∀i ∈ C,∀s ∈ S.(4.45)

To formulate the third-stage problem (Q′), we define a set of delayed shipment

decisions made in the third stage. w
′s
ij represents the number of treatment units

shipped from district hospital i to clinic j under scenario s in the third stage. In

general, the shipment cost in the third stage can be different from that of the second-

stage. Thus, similar to what we did in Section 4.4.2, we introduce a new parameter

(c′′ij) to represent the cost of shipment in the third stage. This way, the third-stage

delayed shipment problem is defined by (4.46)-(4.50).

(4.46) Q′ = min
∑
s∈S

ps
( ∑

(i,j)∈AC
c′′ijw

′s
ij +

∑
i∈C

πiz
′s
i

)
s.t. ∑

j:(i,j)∈AC
w
′s
ij ≤

∑
j:(j,i)∈AD

xij −
∑

j:(i,j)∈AC
xij −

∑
j:(i,j)∈AC

wsij ∀i ∈ D,∀s ∈ S(4.47)

∑
j:(j,i)∈AC

w
′s
ji + z

′s
i ≥ −lsi + d

′s
i ∀i ∈ C,∀s ∈ S(4.48)

w
′s
ij ≥ 0 ∀(i, j) ∈ AC,∀s ∈ S(4.49)

z
′s
i ≥ 0 ∀i ∈ C,∀s ∈ S.(4.50)
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Equation (4.46) defines the objective function of the third-stage delayed shipment

problem. The goal here is to minimize the expected shipment cost

(
∑

s∈S ps
∑

(i,j)∈AC c
′′
ijw

′s
ij) plus the expected shortage penalty (

∑
s∈S ps

∑
i∈C πiz

′s
i )

incurred in the third stage.

Constraints (4.47) ensures that the amount of treatments shipped out of district

hospital i (
∑

j:(i,j)∈AC w
′s
ij) is less than or equal to the amount received from all the

regional warehouses in stage one (
∑

j:(j,i)∈AD xij) minus the number of treatments

shipped out to local clinics in the first stage (
∑

j:(i,j)∈AC xij), minus the delayed

shipment to the local clinics in the second stage (
∑

j:(i,j)∈AC w
s
ij).

The flow conservation constraints defined by (4.48) ensure that the existing in-

ventory at clinic i under scenario s (
∑

j:(j,i)∈AC w
′s
ji + lsi ) is enough to satisfy clinic-i’s

demand in the third stage under that scenario (d
′s
i ). If not, the unsatisfied demand

will be counted toward shortage (z
′s
i ). We rearranged the flow conservation con-

straints so that the decisions (w′ and z′) are on the left-hand-side and the input data

(l and d′) are on the right-hand-side.

4.6 Computational Experiments

In this section, we present the results of computational experiments we performed

based on actual locations of health facilities from a country-wide survey conducted by

the Japanese International Cooperative Agency (JICA). We used disguised historical

data (for confidentiality) from each facility based on district level malaria prevalence

estimates and approximated facility catchment using Thiessen polygons and the 1998

Malawian Census. Then, for each clinic we randomly generated 10 scenarios to

populate demand parameters (dsi ). Our data includes a total of 290 facilities including

3 regional warehouses, 21 hospitals and 266 local clinics. We ran the first set of
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experiments for a supply value of 1.2 million units.

To capture the transportation cost (cij) we calculated the distance between each

facility pair in kilometers. We used Lall et al. [58] to obtain an estimate for the

unit transportation cost. Road quality in Malawi varies widely and the system is

mostly underdeveloped. Thus, the unit transportation cost can vary depending on

route. For our computational experiments, we used the average transportation cost

per kilometer in Malawi reported by Lall et al. [58] which is about 4 cents (or 228.4

kwacha, the Malawian currency).

Estimating the shortage penalty is non-trivial. We considered Malawi’s national

income per capita, $810 reported by the WHO as a basis. We started with $20 as

an initial estimate for the shortage penalty. Based on our initial computation, even

a low number (such as $20) is high enough to guarantee effective distribution of

medications so that all available treatment units are distributed while supplies are

available. Thus the stochastic models minimize the expected shortage. For future

extensions, one can perform a sensitivity analysis to quantify the impact of shortage

penalty on the outcomes of the model. However, based on our initial findings, any

value of shortage penalty above $20 will result in the same distribution pattern.

4.6.1 Comparing the Stochastic Models to the Baseline

Two-stage stochastic models
Metric Baseline Value Reduction

(Expected value) model Del. ship. Transship. Del. ship. Transship.
Transportation cost 7,727,076 7,307,568 7,230,674 5.43% 6.42%
Shortage penalty 10,024,752 8,407,020 8,407,020 16.14% 16.14%

Total cost 17,761,050 15,725,834 15,664,164 11.46% 11.81%
Shortage volume 501,238 420,351 420,351 16.14% 16.14%

Table 4.2: Comparing two-stage stochastic models to the baseline.

In Tables 4.2 and 4.3 we observe that the two approaches we have introduced (i.e.

transshipment and delayed shipment) result in similar outcomes in terms of reducing
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Three-stage stochastic models
Metric Baseline Value Reduction

(Expected value) model Del. ship. Transship. Del. ship. Transship.
Transportation cost 7,727,076 7,230,308 6,879,559 6.43% 10.97%
Shortage penalty 10,024,752 8,407,020 8,407,020 16.14% 16.14%

Total cost 17,761,050 15,654,328 15,299,457 11.86% 13.86%
Shortage volume 501,238 420,351 420,351 16.14% 16.14%

Table 4.3: Comparing three-stage stochastic models to the baseline.

the shortage penalty. However, the transshipment idea seems to be more effective

in reducing transportation cost. The transshipment model can better exploit the

network structure by allowing the transfer of stock between clinics in the vicinity.

The delayed shipment, on the other hand, reserves some extra inventory in district

hospitals and distributes it in the second stage over local clinics facing shortages.

Thus, the delayed shipment model results in higher transportation costs.

4.6.2 Two-Stage vs. Three-Stage Models

Another result of the computational experiments is the marginal benefit of adding

another recourse stage to the stochastic model. The three-stage stochastic model

provides more opportunities to react to demand uncertainty, but adding more stages

can potentially make the problem harder to solve. Generally speaking, it is difficult

to determine if the marginal benefits of adding another decision stage to the model

will necessarily justify the increased computational effort. Depending on the problem

instance – especially features such as the total available malaria treatments and the

demand uncertainty profiles – the marginal benefits of adding another decision stage

can vary.

In Figure 4.6 we observe that both the two and the three-stage models reduce the

expected shortage to the same level. In other words, based on the available supply

and the realized demand scenarios, adding one extra recourse action does not have

a significant impact on reducing shortage. However, the extra recourse action can
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Figure 4.5: Expected cost of the stochastic models compared to the baseline.

result in a significant reduction in transportation cost.

4.6.3 Supply Availability

Supply availability is a major challenge in distributing malaria treatments in

holoendemic areas. To better assess the effectiveness of our proposed stochastic

models, we compare their results for a range of possible supply values, between

500,000 to 2,000,000 units. The results of this analysis are illustrated in Figure 4.6.

As the number of available treatments is increased, the stochastic models’ capability

to reduce shortage and distribute treatments efficiently also increases. However, the

transshipment model seems to be reducing the shortage more effectively. Here is an

explanation: To avoid shortage, the delayed shipment model sends additional ACTs

from district hospitals to local clinics after the demand is realized. The distance

between district hospitals to local clinics, on average, is much higher than the dis-

tance between a local clinics and its neighboring clinics. Thus, in the instance where

2,000,000 ACTs are available, the delayed shipment model faces such a high-cost

recourse action (due to high transportation cost between regional warehouses and

local clinics) that it fails to address all the demand. In the transshipment model,

however, the recourse actions are far less costly. Therefore the transshipment model
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can effectively address all the demand with no shortage.
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Figure 4.6: Available supply sensitivity analysis.

4.6.4 Clinic Clusters

One of the key insights gained from the computational experiments on the strate-

gic level stochastic program is the appearance of what we call clinic clusters. That is,

the stochastic program groups clinics together into clusters such that transshipment

occurs within clusters only, and not between different clusters. In our transshipment

model experiments, for example, 15% to 25% of clinics send treatments to other

clinics in the recourse stage. These clinics transship their excess inventory to an

average of 2 to 5 proximal receiver clinics. Based on this observation, we define the

notion of clinic clusters. Each clinic consists of one sender clinic and between 2 to

5 receiver clinics in the vicinity of the sender clinic. Figure 4.7 illustrates five rep-

resentative clinic clusters in the northern area of Malawi. Note that the actual size

and structure of clusters depends on the problem instance. This idea of clusters can

be used to decompose the country-level problem into tractable cluster problems that

can be solved independently at the operational level. This is the key to integrating

our strategic models with our operational models that we develop in Section 4.7.
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Figure 4.7: Five clinic clusters in the northern area of Malawi.

4.7 Operational Model for Transshipment in Clusters

For the purposes of strategic planning we have assumed in previous sections that

demand can be completely satisfied by transshipment if enough supply exists to

transship. In this section, we use the output of the strategic planning transship-

ment model and design an operational mechanism to manage the transshipment of

treatments at a cluster level. The operational reality is that clinics will transship

batches of treatments periodically, rather than transshipping demanded ACTs in a

Just in Time manner that perfectly matches shipments to demand, which is the im-

plicit modeling assumption of the stochastic program. To capture this reality, in this

section we develop a periodic review model for transshipment between clinics within

a cluster of clinics. These clusters are generated from the strategic-level stochastic

models presented in Sections 4.4 and 4.5.

In our operational model, we consider each clinic cluster separately. We consider

a bi-monthly periodic review in which clinics survey their inventory and then decide

how much to transfer to other clinics. At the beginning of each period, each clinic

incurs a shortage penalty proportional to the amount that demand exceeded inven-

tory in the prior stage (indicated by a negative inventory value). Next, a decision is

made regarding how much product to ship between clinics. Then demand arrives to
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each clinic within the cluster according to a distribution d ∼ F and then the state

is updated for the next decision epoch. Notation is presented in table 4.4.

Ξ n-dimensional vector for the amount of inventory at each clinic for Ξ ∈ Rn

UΞ n-dimensional integer vector space where u ∈ U is defined in Equation (4.52),
which enforces flow conservation

Π n-dimensional vector of shortage penalty
c Unit cost of transshipment between clinics
dn Random variable for pharmaceutical demand in period n
Φ Set of clinics in the cluster, a subset of C.

Table 4.4: Clinic transshipment model dynamic program notation.

fn(Ξ) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}},(4.51)

where the action space is given by

UΞ = {u = (u1, ..., us) : uj ≤ ξj and
∑
j∈Φ

uj = 0}.(4.52)

Equation (4.51) presents a finite horizon MDP formulation of the malaria treat-

ment distribution within a cluster. Equation (4.52) presents the set of feasible ac-

tions, where an action will be taken if there is any inventory available at the clinics.

Total volume of shipment out of each clinic is bounded above by its inventory.

Note that, the total medication transshipped between clinics is zero. The expected

cost to go is based on the positive part of Ξ, because in malaria treatment, the

dynamics behave as “lost sales” not back orders.

Theorem IV.1. fn(Ξ) is non-increasing in ξj for all n and j.

Proof. We prove this theorem by induction. Base Case: f0(Ξ) = 0 for all Ξ and

therefore is trivially non-increasing.

Induction Step:
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Assumefn−1(Ξ) is non-increasing in Ξ.

fn(Ξ)− fn(Ξ− ej) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}}−

ΠT(−(Ξ− ej))
+ − min

u∈UΞ−ej

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ− ej)

+ + u− dn)}}.

We compare the equation term by term. First, the instantaneous cost is clearly

greater in the system with less inventory:

ΠT((−Ξ)+ − (−(Ξ− ej))
+) ≤ 0.(4.53)

Next we compare the minimization term. If the optimal action, u∗, is the same in

both fn(Ξ) and fn(Ξ− ej), it follows from the induction hypothesis that

E{fn−1((Ξ)+ + u∗ − dn)} − E{fn−1((Ξ− ej)
+ + u∗ − dn)} ≤ 0.

If, on the other hand, the optimal actions for fn(Ξ) and fn(Ξ − ej) are different,

without loss of generality we assume that optimal action in state (Ξ− ei) is u0. We

then have that

min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1(Ξ + u− dn)}}−

c
∑
j∈Φ

(u0
j)

+ − E{fn−1((Ξ− ej)
+ + u0 − dn)} ≤

c
∑
j∈Φ

(u0
j)

+ + E{fn−1((Ξ)+ + u0 − dn)−

c
∑
j∈Φ

(u0
j)

+ − E{fn−1((Ξ− ej)
+ + u0 − dn)} ≤ 0.(4.54)

Inequality (4.53) follows because the minimizing action at Ξ is clearly at least as

small as action u0. Inequality (4.54) follows directly from the induction hypothesis.

This completes the proof.
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Theorem IV.1 supports the intuition that the more inventory a particular clinic

within the cluster has, the better the entire cluster will perform in terms of serving

their population. In the next section we can gain additional operational insight via

a cluster of two clinics.

4.7.1 Analyzing a Two-Clinic Cluster for Operational Insight

In this section we develop a model for a cluster with two clinics. From this stylized

model we develop some insights into the operational management of clinic clusters

that form in the transshipment model. The next theorem shows that if demand at

each clinic is correlated and symmetric, the more balanced the inventory is between

the two clinics, and the better the system performs.

Definition IV.1. We call a function f : R2 → R balanced if given Ξ and Ξ′, such

that ξ1 + ξ2 = ξ′1 + ξ′2, if |ξ1 − ξ2| ≤ |ξ′1 − ξ′2| then f(Ξ) ≤ f(Ξ′).

In the following lemma we show that for symmetric demand distributions, the

expected cost to go function of the MDP preserves the balanced property.

Lemma IV.1. If the demand dn at the two clinics is symmetric and the function

fn(Ξ) is balanced for all n, then E[fn(Ξ− dn)] is also balanced.

Proof. Without loss of generality let dn be distributed as qi,j for i, j = 1, . . . , n where

qi,j = qj,i is the probability of observing i units of demand in clinic 1 and j units of

demand in clinic 2 and vice versa. Let Ξ and Ξ′ be such that ξ1 + ξ2 = ξ′1 + ξ′2 and

∆Ξ = |ξ1− ξ2| ≤ |ξ′1− ξ′2| = ∆Ξ′. We now show that E[fn−1(Ξ
′−dn)]−E[fn−1(Ξ−
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dn)] ≥ 0.

E[fn−1(Ξ
′ − dn)]− E[fn−1(Ξ− dn)] =

n∑
i=1

n∑
j=1

qi,jfn−1(Ξ
′ − ie1 − je2)−

n∑
i=1

n∑
j=1

qi,jfn−1(Ξ− ie1 − je2)

=
n∑
i=1

n∑
j=i

(
qi,j[fn−1(Ξ

′ − ie1 − je2)− fn−1(Ξ− ie1 − je2)]+

qj,i[fn−1(Ξ
′ − je1 − ie2)− f(Ξ− je1 − ie2)]

)
.(4.55)

We now perform a term by term comparison of Equation (4.55). First note that,

because of the symmetric demand assumption, qi,j = qj,i. If j − i ≤ ∆Ξ then both

terms within the sum are positive. Otherwise we have that fn−1(ξ
′
1 − i, ξ′2 − j) −

fn−1(ξ1 − i, ξ2 − j) is negative and the fn−1(ξ1 − j, ξ2 − i) − fn−1(ξ1 − j, ξ2 − i) is

positive. What we show is that the magnitude of the negative portion is smaller than

the magnitude of the positive portion. To do so we consider two cases:

Case 1: ∆Ξ < j − i < ∆Ξ′.

The amount of imbalance for each term is:

∆(Ξ′ − ie1 − je2) = ξ′2 − j − ξ′1 + i = ∆Ξ′ − (j − i)(4.56)

∆(Ξ− ie1 − je2) = ξ1 − i− ξ2 + j = −∆Ξ + (j − i)(4.57)

∆(Ξ′ − je1 − ie2) = ξ′2 − j − ξ′1 + i = ∆Ξ′ + (j − i)(4.58)

∆(Ξ− je1 − ie2) = ξ2 − j − ξ1 + i = ∆Ξ + (j − i)(4.59)

In Equations (4.56) and (4.57), −∆Ξ+(j− i) ≤ ∆Ξ′−(j− i), therefore fn−1(ξ
′
1−

i, ξ′2 − j) − fn−1(ξ1 − i, ξ2 − j) ≥ 0, so that term of the sum in Equation (4.55)

will be positive. If, however, the opposite is true, then the amount of imbalance

for the negative term – which directly correlates with the magnitude – is given

by subtracting Equation (4.56) from Equation (4.57). In this situation, the state
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(ξ′1−i, ξ′2−j) actually becomes more balanced than the state (ξ1−i, ξ2−j). Therefore

the difference in the amount of imbalance of the negative term is given by

0 ≤ −∆Ξ + (j − i)− (∆Ξ′ − (j − i)) ≤ ∆Ξ′ −∆Ξ.(4.60)

The first inequality holds by the assumption that −∆Ξ + (j − i) ≥ (∆Ξ′ − (j − i)).

Then second inequality holds because we have ∆Ξ < j − i < ∆Ξ′ and the fact that

the difference in imbalance is non-decreasing in j − i.

Likewise we know that the difference in imbalance for the positive term, f(ξ′1 −

j, ξ′2 − i)− f(ξ1 − j, ξ2 − i), is at least as large as the difference in imbalance for the

negative term by subtracting Equation (4.59) from Equation (4.58).

0 ≤ ∆Ξ′ + (j − i)− (∆Ξ + (j − i)) = ∆Ξ′ −∆Ξ.(4.61)

Where the inequality follows from the fact that the Ξ′ term is more imbalanced

than the Ξ term and the equality follows directly. Clearly the negative term has less

difference in imbalance between its components than the positive term, and therefore

must be smaller in magnitude.

Case 2: ∆Ξ′ ≤ j − i.

This case is straightforward, because we now have that for the pair of terms for

the negative term, fn−1(ξ
′
1 − i, ξ′2 − j) − f(ξ1 − i, ξ2 − j), both ξ2 − j < ξ1 − i and

ξ′2 − j < ξ′1 − i. Therefore the imbalance for each component is now given by

∆(Ξ′ − ie1 − je2) = ξ′2 − j − ξ′1 + i = −∆Ξ′ + (j − i)(4.62)

∆(Ξ− ie1 − je2) = ξ1 − i− ξ2 + j = −∆Ξ + (j − i)(4.63)

∆(Ξ′ − je1 − ie2) = ξ′2 − j − ξ′1 + i = ∆Ξ′ + (j − i)(4.64)

∆(Ξ− je1 − ie2) = ξ2 − j − ξ1 + i = ∆Ξ + (j − i)(4.65)
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For the negative term the Ξ′ component is still more balanced than the Ξ′ compo-

nent as can be seen from Equations (4.62) and (4.63). So the difference in imbalance

between the two terms is given by

−∆Ξ + (j − i)− (−∆Ξ′ + (j − i) = ∆Ξ′ −∆Ξ.(4.66)

For the positive term, the difference in imbalance remains the same:

∆Ξ′ + (j − i)− (∆Ξ + (j − i)) = ∆Ξ′ −∆Ξ.(4.67)

Therefore in Case 2, the difference in imbalance between the components of the

negative term and the difference in the imbalance between the components of the

positive term are equal and thus the subtraction will be 0.

Lemma IV.2. If function fn(Ξ) is balanced for all n, the optimal action will be

within the class of policies that transships medication from a clinic with higher in-

ventory to the one with lower inventory.

Proof. Assuming ξ1 ≤ ξ2, the optimal action will be within the class of policies than

transships medication from clinic 2 with the inventory level of ξ2 to clinic 1 with

the inventory level of ξ1. To prove this, we simply show that the action of “do

nothing” will result in less cost than shipping from the clinic with a lower inventory

level to the one with a higher stock of medication. If the action is to do nothing,

the cost function will be J0
n = ΠT(−Ξ)+ + 0 + E{fn−1((Ξ)+ − dn)}, otherwise the

amount of û medication is moved from clinic 1 to clinic 2 (û = (−û, û)), we have

J û
n = ΠT(−Ξ)+ + cû + E{fn−1((Ξ)+ − û − dn)}. Clearly by induction hypothesis,
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we have:

cû ≥ 0,

E{fn−1((Ξ− ûe1 + âe2)
+ − dn)} − E{fn−1((Ξ)+ − dn)} ≥ 0, =⇒

f ûn (Ξ)− f 0
n(Ξ) ≥ 0.

This is simply because ξ2−ξ1 ≤ ξ2 + û−ξ1 + û = ξ2−ξ1 +2û. This result will help us

reduce the action space significantly. As a result the optimal action u∗ can only be

an element of {0, ...,max{ξ1, ξ2}−min{ξ1, ξ2}}. u∗ will be the amount of medication

shipped from the clinic with higher inventory to the one with lower inventory.

The result of this lemma will be employed to further prove the validity of Theorem

IV.2. The next lemma demonstrates that a balanced inventory distribution will have

the lowest cost.

Lemma IV.3. If fn(Ξ) is a balanced function, for any total inventory level ξ1 + ξ2,

the value function is minimized where ξ∗1 = ξ∗2 .

Proof. This is the direct result of fn(Ξ) being a balanced function. We employ

induction to show this property.

Base Case:

Since f0(Ξ
∗) = f0(Ξ) = 0 for all Ξ, the hypothesis holds.

Induction Step:

We assume that the induction hypothesis holds for stage n − 1. Now we show

that it holds for stage n. Consider Ξ∗ where ξ∗1 = ξ∗2 versus Ξ where ξ1 6= ξ2.

fn(Ξ) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}},

fn(Ξ
∗) = ΠT(−Ξ∗)+ + min

u∈UΞ∗
{c

∑
j∈Φ

(uj)
+ + E{fn−1((Ξ

∗)+ + u− dn)}}.
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By Lemma IV.1 we know that fn(Ξ) is balanced, thus E{fn−1((Ξ)+ + u − dn)} is

also balanced. Therefore the optimal action at Ξ∗ is u∗ = 0, which achieves the

lowest possible value for the expectation. Thus we have:

E{fn−1((Ξ
∗)+ − dn)} ≤ E{fn−1((Ξ)+ + u− dn)},(4.68)

and because the optimal policy at Ξ∗ has no penalty because u∗ = 0 it is clear that

min
u∈UΞ∗

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ

∗)+ + u− dn)}} ≤

min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}}.(4.69)

Finally, it can quickly be verified that the instantaneous cost is lower for the balanced

inventory, Ξ∗:

ΠT(−Ξ∗)+ ≤ ΠT(−Ξ)+.(4.70)

Thus we have shown that fn(Ξ
∗) ≤ fn(Ξ).

Theorem IV.2. When the demand is symmetric, the value function in Equation

(4.51) is balanced.

Proof. Without loss of generality, we assume ξ1 ≤ ξ2 and ξ′1 ≤ ξ′2. This ordering along

with our assumption that ξ1 + ξ2 = ξ′1 + ξ′2 and ∆Ξ = |ξ1 − ξ2| ≤ |ξ′1 − ξ′2| = ∆Ξ′,

implies that ξ′1 ≤ ξ1 ≤ ξ2 ≤ ξ′2. We proceed to prove this theorem by using induction.

Base Case:

Since f0(Ξ) = 0 for all Ξ. As a result, the induction hypothesis holds.

Induction Step:

We assume that the induction hypothesis holds for stage n− 1. In order to show
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fn(Ξ) is less than or equal to fn(Ξ
′), we first write the expressions for both cases:

fn(Ξ) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}},

fn(Ξ
′) = ΠT(−Ξ′)+ + min

u∈UΞ′
{c

∑
j∈Φ

(uj)
+ + E{fn−1((Ξ

′)+ + u− dn)}}.

Let ξ̄ = ξ̄′ = ξ1+ξ2
2

=
ξ′1+ξ2

2
. At stage n − 1, the state [ξ̄, ξ̄] = [ξ̄′, ξ̄′] achieves the

minimum value for the expectation of the function fn−1(Ξ) (direct result of Lemma

IV.3).

By the induction hypothesis we have fn−1(Ξ
′) ≥ fn−1(Ξ). Since ξ1 + ξ2 = ξ′1 + ξ′2,

we can conjuncture that fn−1(Ξ̄) is the state which reaches the minimum possible

cost.

fn(Ξ
′)− fn(Ξ) =ΠT(−Ξ′)+ + min

u∈UΞ′
{c

∑
j∈Φ

(uj)
+ + E{fn−1((Ξ

′)+ + u− dn)}}−

ΠT(−Ξ)+ − min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}}.

First we compare the instant cost associated with the shortage penaltyies. As we

mentioned before, without loss of generality, we consider the cases where ξ1 ≤ ξ2 and

ξ′1 ≤ ξ′2. Other cases can be investigated similarly. There are the following cases:

1. ξ′1, ξ
′
2, ξ1, ξ2 ≥ 0: In this case both fn(Ξ) and fn(Ξ

′) incur zero shortage penal-

ties. As a result ΠT(−Ξ′)+ − ΠT(−Ξ)+ = 0.

2. ξ′1 ≤ 0 and ξ2, ξ1, ξ
′
2 ≥ 0: In this case fn(Ξ

′) has a positive shortage cost while

fn(Ξ) incurs zero shortage penalty. Therefore ΠT(−Ξ′)+ − ΠT(−Ξ)+ ≥ 0.

3. ξ′1, ξ1 ≤ 0 and ξ2, ξ
′
2 ≥ 0: In this case fn(Ξ

′) and fn(Ξ) both have positive

shortage cost but since ξ′1 ≤ ξ1, fn(Ξ) has a greater shortage penalty. As a

result ΠT(−Ξ′)+ − ΠT(−Ξ)+ ≥ 0.
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4. ξ′1, ξ1, ξ2 ≤ 0 and ξ′2 ≥ 0: We conclude that having ξ′2 ≥ 0, will result in

ξ′1 ≤ ξ1 + ξ2 as a direct result of the assumption, since ξ1 + ξ2 = ξ′1 + ξ′2.

Therefore ΠT(−Ξ′)+ − ΠT(−Ξ)+ ≥ 0.

5. ξ′1, ξ1, ξ2, ξ
′
2 ≤ 0: this implies that ΠT(−Ξ′)+ = ΠT(−Ξ)+ ≥ 0.

The next step is to investigate the possible actions and compare the cost to go terms

for both fn(Ξ) and fn(Ξ
′). Let assume the optimal action in state Ξ′ is u

′∗. Having

ξ′1 ≤ ξ′2 and based on the result of Lemma IV.2, u
′∗ ∈= {0, ..., uξ̄′} = UΞ′ and

u
′∗ = (u

′∗,−u′∗) , the optimal action either will be to ship from clinic 2 to clinic 1 or

do nothing (result of Lemma IV.2). We also know that ξ′2− ξ′1 ≥ ξ2− ξ1, as a result,

the optimal action u∗ of the state Ξ′ will be a member of {0, ..., uξ̄}. We have:

UΞ ⊂ UΞ′

There are two possible scenarios, either u
′∗ ∈ UΞ or u

′∗ ∈ UΞ′ \ UΞ′ .

1. Scenario 1: u
′∗ ∈ UΞ:

fn(Ξ
′)− fn(Ξ) ≥

=Q1≥0︷ ︸︸ ︷
ΠT(−Ξ′)+ − ΠT(−Ξ)+ +

cu
′∗ + E{fn−1((Ξ

′)+ + u
′∗ − dn)}−

min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}} ≥

Q1 + cu
′∗ + E{fn−1((Ξ

′)+ + u
′∗ − dn)} − cu

′∗+

E{fn−1((Ξ)+ + u
′∗ − dn)} = E{fn−1((Ξ

′)+ + u
′∗−

dn)} − E{fn−1((Ξ)+ + u
′∗ − dn)} ≥ 0. by induction hypothesis
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2. Scenario 2: u
′∗ ∈ UΞ′ \ UΞ:

fn(Ξ
′)− fn(Ξ) ≥

Q2≥0︷ ︸︸ ︷
ΠT(−Ξ′)+ − ΠT(−Ξ)+ +cu

′∗+

E{fn−1((Ξ
′)+ + u

′∗ − dn)} − min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}} ≥

Q2 +

B≥0︷ ︸︸ ︷
cu

′∗ − cuξ +

C≥0︷ ︸︸ ︷
E{fn−1((Ξ

′)+ + u∗ξ′ − dn)} − E{fn−1((Ξ)+ + uξ̄ − dn)} ≥ 0.

by induction hypothesis

We should note that B ≥ 0 since the total units shipped from clinic 2 to clinic 1

in scenario 2 is more than uξ̄. Also after transshipping uξ̄, fn−1(Ξ) is reaching its

minimum (as a direct result of Lemma IV.3), therefore C ≥ 0.

As a result of Lemmas IV.2, IV.3, and Theorem IV.2, the following corollaries

IV.1 and IV.2 hold.

Corollary IV.1. Under a fixed shipping cost, the optimal policy is of threshold na-

ture, where u = 0 if c > E{fn−1((Ξ)+−dn)}; otherwise u is the action that balances

the inventory.

Corollary IV.2. Under a linear shipping cost, the optimal policy is of threshold

nature with multiple stage dependent thresholds. That is, depending on the shipping

cost, each threshold will move the inventory closer into balance or does nothing.

Any analytical proof regarding the structure of an optimal policy for clusters

consisting of more than two clinics can be complex. Also, relaxing the demand

assumptions can increase the complexity of characterizing the optimal actions.

4.7.2 Illustrative Numerical Example for a Two-Clinic Cluster

In this section, a numerical example is used to gain insight into state-specific

optimal actions. For purposes of exposition, we begin with an example of a cluster
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consisting of two clinics. We also scale the demand and supply to obtain the following

restricted state space:

Ξ =
{

(ξ1, ξ2) ∈ R2 : −5 ≤ ξi ≤ 9,∀i ∈ {1, 2} and ξ1 + ξ2 ≤ 9
}
.

We solve the two-dimensional MDP under three different parameter settings where

the ratio of shortage penalty to unit transportation cost was either: (1) low , (2)

moderate, or (3) high and solve it for six stages. Figure 4.8 illustrates the optimal

actions at stage 5 (i.e. n− 1) for each state for cases (1), (2) and (3).
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Figure 4.8: Optimal actions in period 5 for three parameter settings.

The optimal actions in Figure 4.8 are identified by six areas, 1 through 6. Details

of the optimal actions in each area are described in Table 4.5.

Area Description Actions

1 Clinics 1 and 2 face shortage No action is possible

2 Clinics have low inventories No action is recommended

3 Both clinics have high surplus No action is required

4 Clinic 1 is facing shortage while clinic 2 has surplus Clinic 2 transships to clinic 1

5 Clinic 2 is facing shortage while clinic 1 has surplus Clinic 1 transships to clinic 2

6 Infeasible state No action is defined

Table 4.5: Six areas in the two-dimensional illustrative example.

As illustrated in Figure 4.8, the ratio of shortage penalty to transportation cost

(π/c) plays an important role in the structure of optimal policy. As this ratio in-

creases, there is more transshipment between clinics. As the π/c ratio decreases we

observe less transshipment. Notice that areas 5 and 6 become larger as π/c increases.
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At the same time, areas 2 and 3 shrink. Note that in all three cases the size of areas

1 and 6 stays constant. This is because there is no action in area 1 due to the lack

of inventory. Area 6 represents infeasible states and thus no action is defined in that

area.

4.7.3 Periodic Transshipment for Generalized Cluster Sizes

In Section 4.7.1 we develop an optimal transshipment policy within clusters con-

sisting of two clinics when the demands in each period across all the clinics in the

cluster are symmetric. To gain insight into the structure of the optimal transship-

ment policy in a generalized case with more than two clinics in a cluster, parame-

terized with historical demand, we solved the MDP formulation described by (4.51)

and (4.52) numerically for clusters of size three. We constructed the demand data

for each cluster based on the actual bi-monthly demand (disguised for reasons of

confidentiality) from a five-year period between 2003 to 2008. Here we summarize

the insights we gained through numerical experiments on a representative subset of

clusters:

Insight IV.1. When the demand across all the clinics in a cluster are identically

distributed, the optimal action is to balance the inventory between the clinics in the

cluster. The finding of Corollary IV.1 extends to clusters of size greater than two.

Insight IV.2. As the ratio of the shortage penalty to the transshipment cost in-

creases, the optimal action tends to ship more units between the clinics.

In Lemma IV.3 we have proven the validity of Insight IV.1 for the case of clusters

consisting of two clusters. Generalizing Lemma IV.3 to larger clusters, however, re-

quires further analysis. The above insights are further argued through an illustrative

numerical example in Section 4.7.4.
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4.7.4 Illustrative Numerical Example for a Three-Clinic Cluster

To illustrate the insights described in Section 4.7.3, we consider a cluster consisting

of three clinics. Similar to the previous example, we scale the demand and supply to

obtain the following restricted state space:

Ξ =
{

(ξ1, ξ2, ξ3) ∈ R3 : −5 ≤ ξi ≤ 9,∀i ∈ {1, 2, 3} and ξ1 + ξ2 ≤ 9
}
.

Note that in this case, the state of the system has three dimensions. Therefore

illustrating the optimal actions for the entire state-space can be challenging. Thus

we only illustrate the optimal actions for three inventory levels at clinic 3: 0, 2,

and 3. For ease of comparison, we chose a moderate ratio of shortage penalty to

transportation cost, i.e. π/c = 10.
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Figure 4.9: Optimal actions in period 5 for a cluster consisting of three clinics.

The optimal actions in Figure 4.9 are identified by six areas, 1 through 6. Details

of the optimal actions in each area are described in Table 4.6.

Area Description Actions

1 Clinics 1 & 2 face shortage No action is possible if clinic 3 does not have surplus

2 Clinics 1 & 2 have low inventories No action is recommended if clinic 3 does not have surplus

3 Clinics 1 & 2 have high surplus 1 & 2 transship to 3 if needed

4 Clinic 2 has surplus Clinic 2 transships to clinics 1 and/or 3 if needed

5 Clinic 1 has surplus Clinic 1 transships to clinics 1 and/or 3 if needed

6 Infeasible state No action is defined

Table 4.6: Six areas in the three-dimensional illustrative example.



136

As illustrated in Figure 4.9, in the presence of symmetric demand, the optimal

policy balances the inventory between the three clinics. As the inventory level of

clinic 3 increases, that clinic ships more pharmaceutical units to clinics 1 and 2.

This observation is also valid for the amount of medication shipped by clinics 1 and

2.

4.8 Conclusion and Future Research

This chapter has addressed the challenging problem of distributing malaria treat-

ments through centralized health systems in developing world. This problem is dif-

ferent from problems of traditional pharmaceutical in many ways: transportation

infrastructure in countries such as Malawi is under-developed, demand is spatially

and temporally uncertain and financial resources to address an incredible disease

burden are limited and subject to donor interest and motivation. In addition, fore-

casting demand and finding exact parameter values (such that of shortage penalty)

may not be feasible, given the non-commercial nature of health operations.

The main contribution of this chapter has been to develop an analytical approach

to solving the problem of efficiently delivering malaria drugs, both at a strategic level

(where the planning horizon spans through the malaria season) and an operational

(periodic) level. Further, we do so in a manner that integrates the strategic with the

operational planning, using the policy structure and numerical results to decompose

the national problem into clinic clusters. This enabled a tractable solution to the

periodic review operational MDP.

To illustrate the tractability and effectiveness of our proposed stochastic models,

we performed a set of computational experiments using 5 years of data from Malawi.

Our initial results show that both the two-stage and the three-stage models can effec-
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tively reduce the expected shortage at least by 16%, while distributing the available

malaria treatments efficiently through the supply network.

As discussed earlier, one major challenge in this domain is limited supply. To

show the sensitivity of the solution to the available supply value, we illustrated the

results under three different supply assumptions: low, medium, and high. Based

on our preliminary results, the transshipment model often outperforms the delayed

shipment model by having a lower transportation cost (only 4% less). However,

due to its decentralized nature as well as the politics of asking an individual clinic

to relinquish some of its inventory, transshipment would likely be more difficult to

implement.

The structure of the optimal solution to the strategic planning model exhibited a

clustering effect, with groups of clinics clustering together to transship. We used this

structure to decompose the full operational problem into tractable sub-problems by

solving the periodic review operational MDP problem for each cluster independently.

We also gained key insights into the periodic review model by analyzing a stylized

model. Specifically, we were able to show that the structure of the optimal policy was

of threshold form where the clinic with higher inventory levels will ship to the clinic

with lower inventory levels or do nothing. These insights were then extended to a

model that was fully parameterized by historical demand and the true solution of the

strategic level model by numerically solving the MDP for a number of representative

cases.

An interesting future extension to consider is uncertainty in the supply of medi-

cations, since much of the resources for medications are donated. Another realistic

extension is to consider a budget constraint. This way, the objective is to minimize

shortage (perhaps with an equity measure) subject to the limited funds to be spent
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on transportation.

In conclusion, the result of our integrated strategic and operational models is

a workable decision support system approach that can guide government policy in

driving better health outcomes at a lower cost. In a country such as Malawi, where

malaria is widespread and budgets are severely constrained, such a system can have

a significant impact on the society.



CHAPTER V

Priority-Based Routing with Strict Deadlines and Server
Flexibility under Uncertainty

5.1 Introduction

Recently, the ability to deliver information technology (IT) services from multiple

locations has given rise to an entirely new IT service delivery model. In this model,

organizations outsource components of their IT infrastructure operations to one or

more service providers, who in turn use a combination of onsite and offsite resources

to manage the components on behalf of their clients. To provide these capabilities,

service providers have pioneered a new onsite-offsite delivery model called the global

delivery model (GDM), in which a service provider uses a number of delivery centers

around the globe to provide services to its clients. The agents at these delivery centers

perform a variety of tasks including remote monitoring and management of hardware

and software, developing new applications, testing configurations, applying security

patches, etc. While call centers are often the primary interface between clients and

service providers, the delivery centers perform a variety of tasks at different levels

of service complexity behind the scenes. Using this model, the clients of the GDM

can scale their core business operations to match demand without worrying about

resources and skills required to manage their IT infrastructure. At the same time, by

leveraging local skills, cost structure and process standardization, service providers

139
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can ensure the level of quality of the services performed from different locations.

The critical factor for a service provider to achieve a high service quality in the

GDM is efficient utilization of the agents and resources available at its delivery cen-

ters. The process by which a service provider assigns a service re-quest to an agent

at a service delivery center is known as “dispatching.” The nature of the IT ser-

vice centers presents a number of challenges to efficient dispatching, primarily due

to variability in agent skills and complexity of service requests. It is difficult to

incorporate agent skill variability and service request complexity in the dispatching

procedure for several reasons. First, there have been very few studies on quantify-

ing agent skill variability in performing IT infrastructure services. The experience

level and skill sets of an agent strongly affect diagnosis and resolution of IT service

requests. Therefore it is crucial that service requests are dispatched to the most

suitable agents. Second, IT service requests exhibit a wide range of complexity and

require varying levels of effort and coordination by the agents.

Although the well-studied call center staffing problem has some similarity with

the service-dispatching problem, there are many important differences. In a ser-

vice request fulfillment system, there is no abandonment, whereas in a call center

environment, requests may leave the system even before their service begins. Fur-

thermore, IT service centers typically serve requests with different levels of priority

(or severity), whereas call centers have a more homogenous demand structure.

The main contributions of our study are: (1) a model to address variability in

service time and skill level for each agent for each specified request type, (2) a novel

dispatching policy that considers the complexity of each service request in addition

to the variability in agent service times and skill levels, and (3) investigation of the

performance of this proposed approach using data from an IT service center.
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5.2 Literature Review

Determining the number of agents and their skill requirements is a well studied

problem in the literature. As demonstrated by Bartholdi [15], even in the deter-

ministic case where the demand and supply are fixed, finding the number of agents

required for each time period can be a complex task. In real world scenarios, one

faces even more complexities due to the stochastic nature of the demand. Another

dimension of complexity is taking into account an agent’s skill level in environments

where different skills and levels of skills are necessary to serve an incoming request.

Van Oyen et al. [86] address how cross training can be aligned with organizational

strategies. Their model includes improving performance measures of the system but

does not consider fixed deadlines for jobs in the system. Brusco and Johns [22] use

integer programming to show that cross training can be a very useful approach when

agent skills can be combined in a sequential setting.

Perhaps the most relevant research framework to our problem can be found in the

call center literature. Similar to call centers, IT service centers require agents with a

variety of skills to handle the arriving requests. However, it is almost impossible to

expect that every agent is fully cross-trained for every task. Therefore it is important

to route problems to the best agents considering their skills and skill levels.

Investigation of different algorithms and methodologies for routing traffic has

been done with the purpose of system improvement. Many researchers considered

this concept to improve the Quality of Service (QoS). Ma and Steenkiste [64] propose

a model in order to decrease delay time of calls for a call center as a measure of QoS

by finding a feasible path.

Feldman et al. [33] and Whitt [90] study the problem of call center staffing in
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a complex structure. They investigated the effect of time-varying demand on the

performance measures of the system. They also studied variability of the service

time.

Finding the most appropriate agent training policy is another important factor

which can affect both the stability and the performance of the system. It is important

to note that training all agents for all skills is typically too expensive. A suitable

algorithm can approximate the number of agents with the required set of skills.

Wallace and Whitt [88] introduce an algorithm to route problems based on the skill

level of the agent. Other algorithms were developed by Sisselman and Whitt [81],

who introduced the concepts of “value-based routing” and “preference-based routing”

to the existing skill-based routing algorithm. All of these algorithms are based on

simulation and heuristic approaches but none addressed having different priority

of requests and strict (or hard) deadlines, both of which are incorporated into our

proposed approach.

5.3 System Description

The dispatching system consists of several agents who are assigned to different

service request resolution groups. Each resolution group is capable of handling several

different types of service requests. Each service request can be characterized by a

request type and a priority level. We assume that each service request with a specified

type and priority level has a lump sum penalty cost associated with violating its

deadline according to a service level agreement (SLA) contracted with the customer.

The inter-arrival time distributions are independent (but not necessarily identical)

for each request type and priority level. The time required to resolve a request type

can vary by agent.
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The goal of an efficient dispatching policy is to minimize the total penalty cost

of violating deadlines. The differences between a traditional call center problem and

the IT service center problem motivate us to study this problem. Here we mention

some of these differences. First, in a typical call center, the SLA is solely a function

of the waiting time for the customer before the service starts (i.e. waiting time in

the queue), whereas in an IT environment, the SLA is concerned with the total time

a request spends in the system until the request is resolved. This, in turn, adds

another source of uncertainty to the dispatching problem. Second, in a call center,

a customer may leave the system before the service starts. However, in a typical IT

application, a customer would never leave the system before the request is resolved.

Third, the nature of operations in IT environments requires a more sophisticated set

of skills for agents, whereas agents in a call center generally have a more limited set

of skills. In fact, requests that cannot be resolved at the call center are often passed

on to the IT service centers. Fourth, IT service requests may be handled by multiple

agents simultaneously depending on their complexity, whereas in a call center, each

agent typically handles a single call in its entirety or possibly hands off the call in a

sequential fashion.

In this research, we study agent-level variability and complexity of the service

request to build a dispatching model for IT infrastructure service requests in a single-

stage service delivery center. Figure 1 presents an example of dispatching systems

commonly found in many service delivery centers. We discuss factors critical to

developing an efficient dispatching policy. These factors include an agent’s skill level,

service time variability, and the penalty cost associated with violating the deadline.
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Figure 5.1: The service request dispatching and resolution process.

5.4 Input model

In a typical IT service delivery environment, there is considerable variability

among the agents in resolving similar requests. This variability stems from experi-

ence level (e.g. number of years), certifications, subject-matter expertise, specialized

training, and other factors. As a result, some agents are able to diagnose the root

causes of a problem faster and more accurately than others, resulting in a shorter

mean service restoration time and a smaller standard deviation. There is also a

temporal variation in performance of an agent in performing the same task when

monitored over time. This can be attributed to an inconsistent performance level

and is generally complex to model. In recent years, manufacturing processes have

been automated to the point that only random sources of variation remain, resulting

in mostly normal distributions of the process outcomes. However, many IT service

management processes such as maintaining servers, patch management, and installa-

tion have a high degree of manual involvement. This results in a high agent-induced
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variability in the process.

Variability has many sources. However, our input analysis shows that the two

most important factors that contribute to variability in service resolution time are

the complexity level of service requests and their priority level. The complexity level

of service requests is illustrated in Figure 5.2.
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Figure 5.2: Task complexity in defining a request type can decrease variability

Figure 5.2(a) shows a histogram of service time associated with a sampled agent,

serving requests categorized as “software problems.” Based on this high-level catego-

rization, the service time has a standard deviation of 146. We then refine the catego-

rization further by introducing a complexity level. This way, the “software problem”

is broken into two categories: “low-complexity software problems (LC)” and “high-

complexity software problems (HC).” Examples of such problems are restarting an

application (LC) versus installing a new application middleware on a server (HC). As

shown in Figure 5.2(b) and Figure 5.2(c), adding a dimension of complexity dramat-

ically reduces the standard deviation of service time. As a result of this analysis, we

redefine the request categorization across all request types in the system to account

for the complexity level of service requests. We fit a probability distribution to the

service time for each request type, at each complexity level, and for each agent. We
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note that mapping an incoming service request to its complexity level can be done

either manually by a human dispatcher or automatically by a classification agent

who analyzes the text description of the request and other structured attributes be-

fore assigning a complexity class to the request. We describe the key aspects of our

simulation model next.

5.5 Simulation Model

5.5.1 Priority-Basel Allocation

In order to heuristically address the dispatching model described above, we de-

velop a policy to assign each service request to the appropriate agent, based on an

allocation index. The priority-based allocation index associated with service request

k with type i and priority s, if allocating agent j, where the remaining time to

deadline is td, is defined in 5.1:

(5.1) Ikjis(θ, td) =
mji(θ, td)πis

tαji

where:

πis Penalty cost of violating the deadline associated with service request i with priority s

tαji Time required by agent j to serve service request type i with a confidence level of 1− α

td Remaining time to deadline

mji(θ, td) Step function associated with agent j and request type i to be defined below

θ Positive coefficient used to tune the algorithm to the application

Table 5.1: Notation.

As soon as an agent finishes serving a request (i.e. the system is non-preemptive),

we update all the indices for all the requests and the request with the highest index

will be assigned to the idle agent. In order to develop this index, we calculate the

average service rate at which agent j can solve the type associated with the service

request i (µji) from historical data. However, it is important to note that the average

service times do not capture the inherent variability of the service time. In the case of
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IT applications, this is even more important due to non-normal distributions that are

a consequence of manually-performed steps, as explained by Pyzde [73]. Therefore,

we need to include another measure that better represents the service time variability.

An appropriate measure of variability can be defined based on the confidence level

at which an agent can serve a request before its deadline. Let tαji denote the time it

takes for agent j to serve request type i with probability 1− α (see Equation (5.2)).

Based on this equation, the values of tαji are calculated a priori.

(5.2) Pji(T ≤ tαji) = 1− α =⇒ tαji = F−1
ji (1− α)

We also define a step function (mji(θ, td)) which assigns weight to each request

based on the remaining time to deadline (td). This function takes the value of

one when the time to deadline is relatively large. As a request gets close to its

deadline, this function takes the value of M , where M is a sufficiently large number.

This gives a high priority to the service requests that are critically close to their

deadline. Specifically, for a service request that is reaching its deadline in less than

1
µji

, this function returns a value of M . Finally, for requests that already missed

their deadlines, the value of this function will be zero (see Equation (5.3)).

xp =


1 if td >

θ
µji

M if 0 < td ≤ θ
µji

0 if td = 0

(5.3)

The priority-based allocation index is calculated by multiplying function mji(θ, td)

by the penalty cost (πis) of violating the deadline and dividing it by tαji. According to

this index, service requests with a high penalty cost and an imminent deadline receive

the highest priority while requests with a passed deadline are given the lowest priority.

We note that there may be service requests for which the penalty function may be
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duration-based rather than deadline-based, e.g. how long a web server remains down

after an outage. This type of penalty may be associated with the most critical or

revenue-generating components of IT infrastructure (e.g., a web server that processes

payments). The present simulation model, however, does not address these types of

penalty cost functions.

5.5.2 Simulation Results

In our initial testing, we consider a system consisting of four agents, four problem

(service request) types as a way to incorporate their complexity, and three levels of

priority. We assume that agents have different skill levels. Table 5.2 illustrates the

mean service time of each agent for each service request type. The penalty of missing

the deadline for priorities 1, 2, and 3 are 100, 80 and 30 respectively. The deadlines

for priorities 1, 2 and 3 are 40, 60 and 85 minutes respectively. Our performance

criterion is to maximize the long run average SLA violation penalty per unit time.

Service request type (i
Agent (j) 1 2 3 4

1 10 10 ∞ ∞
2 ∞ ∞ ∞ 3
3 10 ∞ 15 ∞
4 ∞ ∞ 5 8

Table 5.2: Mean service time (1/µji) for each agent and each service request type. Infinity repre-
sents that the agent is not skilled in handling the type of request.

In order to demonstrate the performance of the allocation indices, we simulate

this system under two settings. In the first setting, service requests are assigned to

agents based on a first-come-first-serve (FCFS) policy. In the alternative setting,

we use the priority-based allocation index defined in Equation 5.1. We use common

random numbers for both systems in order to reduce the variance of the performance

difference. We then analyze the warm up period using Welch’s method, presented

by Law and Kelton [61]. After examining the output we conclude that 100 service
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requests provides a sufficient warm-up period. After deleting the data from the

warm-up period, we calculate the average difference between the cost of our proposed

algorithm and that based on FCFS policy and construct 90% confidence intervals

and used a paired t-test to compare the results.

Our initial computations show that the proposed dispatching algorithm dramati-

cally reduces SLA violation penalties compared to a FCFS policy. However, in spite

of reducing the penalty cost, the proposed algorithm increases the average queue

length and average delay in the queue. This is primarily due to the fact that the

service requests which passed their deadline receive the lowest priority and there-

fore have to wait longer. We summarize the results (SLA violation penalty) of 40

replications in Table 5.3.

FCFS policy Proposed policy Difference
Mean performance 37.33 7.28 30.04

Confidence interval (90%) (35.42,39.23) (6.76,7.81) (28.04,32.05)

Table 5.3: Comparing the long run average SLA violation penalty per unit time of the proposed
dispatching policy with FCFS.

5.5.3 Sensitivity Analysis

In this section we investigate the effects of:

• increasing the aggregate arrival rate,

• improving the skill levels of the agents, and

• decreasing the deadlines on the SLA violation penalty.

To investigate the sensitivity of the proposed algorithm to any possible change

in arrival rate, we analyze the system where the aggregate arrival rate is increased

from 0.5 to 4 arrivals per minute (see Figure 5.3). We observe that the penalty

cost increases for both algorithms. However, the rate of increase in our proposed
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algorithm is much slower compared to FCFS as the aggregate arrival rate increases.

In other words, prioritizing the service requests is more critical as the system becomes

more crowded.
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Figure 5.3: SLA violation penalty as a function of arrival rate

The second important analysis here is to show how the SLA violation cost changes

as the agent’s skill levels improve marginally. In this case we decrease the mean ser-

vice time of one of an agent (Agent 1) for service request type two (1/µ12) from 10

to 8 minutes. There are many potential ways to achieve this objective in a real-life

delivery environment, e.g. via implementing customized training programs, stream-

lining the problem diagnosis process, or automating some of the tasks performed

by the agent. The results (see Figure 5.4) show that the proposed algorithm takes

advantage of this improvement; however, the improvement under FCFS is not signifi-

cant. This result suggests that the overall performance of the system in terms of cost

is highly sensitive to the efficiency of the dispatching system. Moreover, improving

the skill levels of agents does not necessarily decrease the penalty cost associated

with deadline violation, because the policy employed may not be effective.
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We examine how our proposed algorithm responds to modifications of the terms

of the service contract, particularly shortening the deadlines. In order to test this

scenario, we reduce the deadline for service requests of priority level 1, from 40 to

20 minutes. Our results (see Figure 5.4) show that both the proposed and FCFS

policies are very sensitive to this reduction. In both settings, the SLA violation

penalty is increased drastically. However the increase in the total penalty cost is more

pronounced under the FCFS policy. This result is consistent with our hypothesis

that a sound dispatching policy can mitigate the negative impacts of environmental

factors, in this case, the terms of the contract.

Finally we test the effectiveness of our proposed heuristic on improving average

agents’ utilization. As it is demonstrated in Figure 5.5, the proposed heuristic im-

proves the overall agents utilization by 7%.
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Figure 5.4: Effects of improving agents’ skill levels and decreasing the deadlines on the overall cost
of the system

5.6 Conclusion and Future Research

In this research, we propose a new priority-based dispatching policy that incorpo-

rates the inherent complexity of the IT service delivery environment. In the proposed
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Figure 5.5: Comparison of average utilization of agents

approach, we first introduce a more accurate service complexity categorization by

refining the granularity level of our input model. We also develop a new allocation

index that captures uncertainty in agents’ service time, which is a significant source

of variability commonly observed in such environments. This index considers impor-

tant factors such as deadlines and the variability in service time. It also incorporates

the nature of probability distributions to address a more accurate measure of vari-

ability. Our proposed dispatching algorithm assigns a priority-based allocation index

to each service request in the queue. This index is dynamically updated upon each

service termination in the system (i.e., we assume non-preemptive service).

Our initial results show that the proposed dispatching policy can have a significant

impact on reducing the penalty cost of violating deadlines. Sensitivity analysis shows

that the proposed dispatching policy is even more significant in reducing penalty cost

when the aggregate arrival rate increases or deadlines are shortened (both cases rep-

resent a more congested system in some sense). Further benchmarking is warranted.

In this research, we restricted attention to non-idling policies. However, there

is no guarantee that our proposed policy can always perform well in other settings

such as the case where idling is allowed. In this particular problem setting where
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agents are cross-trained, one may argue that keeping some skilled agents idle for

short periods of time may produce better results. Consider this simplified example:

Agent 1 is very efficient at resolving service requests of type 1. At a given time,

Agent 1 becomes idle but there is no request of type 1 in the queue. Here we have

two choices: we can either assign another service request (e.g. type 2 at which Agent

1 is less skilled) or wait for a certain period of time expecting that another service

request of type 1 arrives. In the current framework, we only restrict our approach to

the first option. Future investigations are required to address this type of policy.
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