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The fact that we live at the bottom of a deep gravity well, on the surface of a gas covered planet
going around a nuclear fireball 90 million miles away, and think this to be normal is obviously

some indication of how skewed our perspective tends to be – but we have done various things over
intellectual history to slowly correct some of our misapprehensions.

– Douglas Adams

To be able to see Nobody! And at that distance, too! Why, it’s as much as I can do to see real
people, by this light!

– Through The Looking-Glass
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CHAPTER I

Introduction

1.1 Constraining models of inflationary-era physics

The Friedmann-Robertson-Walker metric commonly used to describe our universe

is based on the assumption that the universe looks the same everywhere, in all

directions. While this is nearly true on large scales, it is manifestly untrue on small

scales, as demonstrated by our existence, and more broadly the existence of galaxies

and galaxy clusters. The evolution of these structures is reasonably well understood;

the cosmic microwave background (CMB) gives us evidence for density perturbations

on the order of one part in 105 at the time of recombination, and their evolution to

the large density perturbations that we see today is described well by gravitational

collapse. But the origin of those perturbations is far less well understood. Our best

guess comes from inflation. Inflation posits that the primordial density perturbations

have their origin in quantum fluctuations of the inflaton field that were “blown up”

to macroscopic scale during the inflationary era in the first ∼ 10−33 seconds after

the Big Bang. Inflation is a remarkably successful theory – it neatly resolves several

major problems regarding the very early universe, it’s passed every observational

test we have thrown at it, and it has been very theoretically fruitful. If anything,

though, it’s been too fruitful – in the thirty years since it was first proposed by Guth

1
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(Guth (1981); Albrecht and Steinhardt (1982); Linde (1983)), inflation has grown

from a single theory into a large class of theories. Since we have very little empirical

access to the inflationary era, these theories have proliferated with few constraints

placed upon them by observation. Furthermore, there are theoretical alternatives to

inflation, such as ekpyrotic models, which cannot be ruled out on the basis of current

observations.

It is difficult to place observational constraints on the physics of inflation because

the inflationary epoch is so early in the history of the Universe. Very few signals

remain from that epoch, and there are none uncontaminated by late-time effects.

Most hopes for placing constraints on inflation are pinned on seeking out properties

of the primordial density perturbations that were left behind after reheating1. The

power spectrum of the primordial perturbations has been of particular interest: its

amplitude As, spectral index ns, the running (scale-dependence) of the spectral index

dns
d ln k

, and the tensor-to-scalar ratio r have all been measured or constrained, largely

through measurements of the CMB. While all of these parameters can tell us about

the physics of inflation, the spectral index is especially notable. Standard slow-roll

inflation predicts that ns is just below one, and the WMAP CMB data confirm this

prediction (Komatsu et al. (2011)): ns = 0.963± 0.014. This is perhaps the greatest

observational triumph of standard inflation, but the spectral index carries limited

information about the physics of inflation – and there are many different types of

inflation (and alternatives to inflation altogether) which predict the same value for

ns. A large number of these models are also consistent with current measurements

of As,
dns
d ln k

, and r, leaving us with dozens of alternatives and few prospective means

of choosing among them.

1While there is some hope of detecting gravitational waves from inflation, it is entirely possible that these waves
are far too weak to be seen with a detector smaller than the observable universe.
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1.2 Non-Gaussianity

One way to mine the primordial density perturbations for more information

about the physics of inflation is go beyond the power spectrum and search for non-

Gaussianity in the distribution of the perturbations. Single-field slow-roll inflation,

with a canonical kinetic term in a Bunch-Davies vacuum, predicts that the primor-

dial distribution of density perturbations at all scales should be very nearly Gaussian

– to about one part in 108, though this would be reduced to one part in 106 by sec-

ondary and late-time effects (See Maldacena (2003), among many others; for a more

recent review, see Yadav and Wandelt (2010)). Specifically, the magnitude of the

primordial fluctuations should follow a Gaussian distribution at all scales (see Figure

1.1). This follows from Wick’s theorem, which guarantees that the Nth-order corre-

lation function of the inflaton field will be equal to the Nth moment of a Gaussian

distribution, given the assumptions of standard inflation (slow-roll, Bunch-Davies

vacuum, canonical kinetic term, and a single inflaton field). Thus, the detection of

significant non-Gaussianity would be a serious challenge to the simplest models of

inflation, and would be a corresponding boon to non-standard inflationary theories.

1.2.1 Modeling non-Gaussianity

Unfortunately, searching for non-Gaussianity is not as simple as searching for a fit

to a given probability distribution – “non-Gaussianity” is a wildly non-specific term.

(Calling a distribution “non-Gaussian” is like calling an object “not a puppy” – many

things (hats, lions, sonic screwdrivers) are not puppies.) The universe is so close to

Gaussian that merely searching for deviations from Gaussianity in the distribution

of the primordial perturbations isn’t an enlightening line of inquiry (Figure 1.2). But

sensitive estimators of non-Gaussianity can be constructed if a particular model is
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Figure 1.1: A comparison of a Gaussian distribution (black curve) with a non-Gaussian distribution
of the local type (Equation 1.1; blue curve). Here, the non-Gaussianity parameter fNL = 104, much
larger than it is in our universe; I have made it large so the difference between the two distributions
is visible. (See Figure 1.2.) The slight excess in the high tail of the non-Gaussian distribution (blue
filled region) is the key region for detecting non-Gaussianity in large-scale structure today.

picked. The most commonly discussed model of non-Gaussianity, known as the local

or “squeezed” model, is defined via (see e.g. Komatsu and Spergel (2001)):

(1.1) Φ(x) = φG(x) + fNL(φG(x)2 − 〈φG(x)2〉).

Here, Φ denotes the primordial curvature perturbations (Bardeen’s gauge-invariant

potential), and φG(x) is a Gaussian random field. The parameter fNL characterizes

the level of non-Gaussianity – in a Gaussian universe, fNL = 0. Looking more

carefully at (1.1), we will have non-Gaussianity of order unity when the second term

is roughly equal to the first term; that is, when fNL ∼ 1/φG ∼ 105.

The local model has been much studied, in part because it is the first two terms

of the most general local form of non-Gaussianity (Babich et al. (2004)). This model
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is also theoretically well-motivated: various popular forms of inflation, including

curvaton, multi-field, and modulated reheating models, all predict some amount

of local non-Gaussianity (Yadav and Wandelt (2010)). Perhaps the most interesting

thing about the local model is the remarkable result from Creminelli and Zaldarriaga

(2004): the detection of fNL much greater than unity would rule out all single-field

inflation models, regardless of the dynamics involved.

1.2.2 Detecting non-Gaussianity

In addition to the vagueness of the term “non-Gaussianity,” there is the further

problem that neither the primordial curvature perturbations Φ(k) nor the primordial

density fluctuations δρ/ρ are directly observable. To learn more about primordial

non-Gaussianity, we have to turn the clock back: we must infer properties of the

primordial perturbations from their “descendants,” the CMB anisotropies and the

large-scale structure (LSS) of the universe today. (See Figures 1.3 and 1.4.) Since

the universe is so close to Gaussian – and since Gaussian distributions are fully

described by their one- and two-point functions – we must look at higher-order

correlation functions (and their Fourier transforms, the polyspectra) in order to test

any given model of non-Gaussianity. The polyspectra generally offer a much larger

number of observables, yielding a large signal-to-noise ratio even if S/N is small in

each individual observable. For example, if there was non-Gaussianity of the local

type in the primordial universe, then the bispectrum (the Fourier transform of the

three-point function) of the CMB is directly proportional to fNL; and the number

of angular-averaged terms B`1`2`3 in the bispectrum is proportional to `3
max, where

`max ∼ 500 for WMAP. In fact, the best constraints on the Gaussianity of the universe

have until recently come from the bispectrum2 of the CMB: WMAP has constrained

2Some models of non-Gaussianity exist that lead to modifications in the four-point function and its Fourier
transform, the trispectrum; these are often characterized using the parameters gNL and τNL. These are not quite as
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fNL to roughly 30± 20 (Komatsu et al. (2011)), corresponding to a universe that is

Gaussian to about one part in 103.5. However, Dalal et al. (2008) pointed out that

a non-zero fNL leads to a strongly scale-dependent dark matter halo bias, which can

be detected in the power spectrum of large-scale structure; this technique has since

emerged as a source of constraints already competitive with the CMB (Slosar et al.

(2008)).3

Applying these methods in the context of scale-dependent models of non-Gaussianity

is the focus of the rest of this work. In the rest of this chapter, I will examine the

local model in greater detail, along with scale-dependent extensions of that model;

in Chapter II, I’ll discuss the relatively new method of constraining non-Gaussianity

from the power spectrum of the LSS, following Dalal et al. (2008), in the context of

scale-dependent models; in Chapter III, I’ll discuss methods of constraining scale-

dependent models from the CMB; in Chapter IV, I’ll give actual constraints from

current WMAP data on a particular scale-dependent model; finally, Chapter V com-

prises my overall conclusions and a summary.

1.3 Beyond the local model

Switching over to Fourier space, the local model takes the form:

(1.2) Φ(k) = φG(k) + fNL

∫
d3k′

(2π)3
φG(k′)φG(k − k′).

For this model, the primordial curvature bispectrum takes a relatively simple form:

(1.3) Bφ(~k1, ~k2, ~k3) = 2fNL(2π)3δ(~k1 + ~k2 + ~k3)(Pφ(k1)Pφ(k2) + perm.).

well-studied, in part because there are few truly computationally-efficient algorithms to calculate the trispectrum. I
will not be considering such models in this work.

3There are also other techniques involving large-scale structure, most notably the galaxy bispectrum and cluster
counts – but the former is not practical to calculate, and the latter is not nearly as sensitive a probe of non-Gaussianity
as the halo bias.
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Here, Pφ is the power spectrum of the primordial curvature perturbations, and δ

is the Dirac delta function, enforcing the condition that the three k-vectors must

form a triangle. Assuming translational symmetry, the primordial bispectrum for

any model can always be written in the form (Babich et al. (2004)):

(1.4) Bφ(~k1, ~k2, ~k3) = (2π)3δ(~k1 + ~k2 + ~k3)F (~k1, ~k2, ~k3),

where F is known as the shape function, so called because it determines which shapes

of triangles in k-space are the dominant contributions to the bispectrum. Thus, we

can characterize different models of primordial non-Gaussianity by looking at the

shape functions that they produce. We can easily see that F for the local model is

(1.5) Flocal(k1, k2, k3) = 2fNL(Pφ(k1)Pφ(k2) + perm.),

where Pφ(k) ∝ k−(4−ns) is the primordial curvature power spectrum. This function is

maximized for triangles with one side much shorter than the others: k3 << k1 ∼ k2 –

a long thin “squeezed” isosceles triangle. (Hence the name “squeezed model” for the

local model.) Other models of non-Gaussianity favor triangles of different shapes.

The equilateral model, as the name suggests, has much of its power in near-equilateral

triangles; this type of non-Gaussianity is seen in DBI inflation, ghost inflation, and

other inflationary models with non-standard kinetic terms. Models of inflation that

drop the assumption of a Bunch-Davies vacuum can give rise to non-Gaussianity

with a shape function that favors “folded” triangles: k1 ∼ k2 ∼ k3/2 (see e.g. Babich

et al. (2004); Chen (2005)).

1.3.1 Scale-dependent non-Gaussianity

While these models each favor a different shape of triangle, the deviation from

Gaussianity in each model is independent of scale.4 But there is good theoretical
4Scale-independence for a particular model of non-Gaussianity does not imply that similar triangles of different

sizes in k-space contribute equally to the primordial curvature bispectrum associated with that model. A glance
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motivation to think that non-Gaussianity, if it exists, will be scale-dependent; this is

a generic result of single-field inflationary models with interactions, along with most

multi-field models (e.g. Salopek and Bond (1990); Luo and Schramm (1993); Wang

and Kamionkowski (2000); LoVerde et al. (2008); Sefusatti et al. (2009)). We can

introduce scale-dependence to the local model by promoting the parameter fNL to a

function of scale, fNL(k). The curvature pertubations in this new model are

(1.6) Φ(k) = φ(k) + fNL(k)

∫
d3k′

(2π)3
φ(k′)φ(k − k′).

This form of non-Gaussianity is expected in curvaton or modulated reheating scenar-

ios (see e.g. Byrnes et al. (2010) and Shandera et al. (2011), where this form explicitly

appears in the study of these models; see also Linde and Mukhanov (1997); Lyth

and Wands (2002); and Zaldarriaga (2004), among many others). Note that this new

ansatz is not local, which is clear when we transform back into real space:

(1.7) Φ(x) = φ+ fNL(x) ∗ (φ(x)2 − 〈φ(x)2〉),

where ∗ represents convolution and x denotes a three-dimensional spatial coordinate.

The shape function F for this model takes the form:

(1.8) F (k1, k2, k3) = 2 (fNL(k3)Pφ(k1)Pφ(k2) + 2 perm.)

We can parametrize fNL(k) in a way that is valid for any general form of fNL(k)

by breaking fNL(k) into a set of piecewise-constant (in wavenumber) bins, such that

fNL(k) is equal to f iNL in the ith wavenumber bin (Becker et al. (2011)):

(1.9) f iNL ≡ fNL(ki).

at (1.5) confirms this: Flocal(λk1, λk2, λk3) = λ−(8−2ns)Flocal(k1, k2, k3). This scale-dependence comes from the
fact that we are looking at the primordial curvature bispectrum, which is related to the bispectrum of density
perturbations through the Poisson equation.
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In this work, we pay special attention to this parametrization of fNL(k), as well as

a simple form of non-Gaussianity analogous to the conventional parameterization of

the power spectrum

(1.10) fNL(k) = f ∗NL

(
k

kpiv

)nfNL

.

Here, kpiv is an arbitrary fixed parameter, leaving f ∗NL and nfNL
as the parameters of

interest in this model (Shandera et al. (2011); Becker et al. (2011)).

In the rest of this work, I will forecast and find constraints on scale-dependent

non-Gaussianity of the form (1.6). Chapters II and III are focused on projecting

constraints on the piecewise-constant parameters in (1.9) using LSS and the CMB,

respectively. In Chapter IV, I find the constraints placed on nfNL
from the WMAP7

CMB temperature data set – to the best of my knowledge, a novel result.
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Figure 1.2: A further comparison of Gaussian and local non-Gaussian distributions. As the text
in each panel indicates, the top panel has fNL = 104, the middle has fNL = 103, and the bottom
panel has fNL = 102. For fNL < 103, it is quite difficult to tell the difference between the Gaussian
and non-Gaussian one-point functions; thus, higher-order correlation functions and estimators are
needed.
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Figure 1.3: The effects of local non-Gaussianity on N-body simulations of large-scale structure
(Dalal et al. (2008)). Here, we have five different simulations, each with a different value of fNL,
but all with exactly the same initial conditions. Local non-Gaussianity introduces a scale-dependent
bias into the halo power spectrum; see Chapter II.
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Figure 1.4: Effects of local non-Gaussianity on Monte Carlo simulations of the CMB sky, based on
Elsner and Wandelt (2009).



CHAPTER II

Forecasted constraints on scale-dependent non-Gaussianity
from LSS

2.1 Non-Gaussianity and bias

2.1.1 The effect of a non-vanishing bispectrum on bias

Dalal et al. (2008) found, analytically and numerically, that the bias of dark

matter halos acquires strong scale dependence if fNL 6= 0:

(2.1) b(k) = b0 + fNL(b0 − 1)δc
3ΩmH

2
0

a g(a)T (k)c2k2
.

Here, b0 is the usual Gaussian bias (on large scales, where it is constant), δc ≈ 1.686

is the collapse threshold, a is the scale factor, Ωm is the matter density relative

to the critical density, H0 is the Hubble constant, k is the wavenumber, T (k) is

the transfer function, and g(a) = g(1)D(a)
a

is the growth suppression factor . This

result has been confirmed by other researchers using a variety of methods, includ-

ing the peak-background split (e.g. Afshordi and Tolley (2008)), perturbation the-

ory (e.g. McDonald (2008)), and numerical (N-body) simulations (e.g. Desjacques

et al. (2009)). Astrophysical measurements of the scale dependence of the large-scale

bias, using galaxy and quasar clustering as well as the cross-correlation between the

galaxy density and CMB anisotropy, have recently been used to impose constraints

Portions of this chapter first appeared in:
Becker, A., Huterer, D., Kadota, K., Scale-dependent non-Gaussianity as a generalization of the local model, Journal
of Cosmology and Astroparticle Physics, 2011, vol. 1, p. 006, doi:10.1088/1475-7516/2011/01/006

13
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Figure 2.1: The peak-background split. Halos form when the local matter overdensity δρ/ρ
exceeds the critical threshold for collapse, δc (red dashed line). In our toy model here, small-scale
fluctuations are added to the large-scale fluctuations (green line) to get the overall fluctuations
(black line). A given fluctuation is more likely to exceed the threshold and form a halo (blue
regions) when it is sitting on top of a large-scale overdensity than when it is sitting on top of a
large-scale underdensity; this is why there are more blue halos on the left than there are on the
right.

on fNL already comparable to those from the cosmic microwave background (CMB)

anisotropy, giving fNL = 28 ± 23 (1σ), with some dependence on the assumptions

made in the analysis (Slosar et al. (2008)). In the future, constraints on fNL are

expected to be on the order of a few (Dalal et al. (2008); Cunha et al. (2010)). The

sensitivity of the large-scale bias to other models of primordial non-Gaussianity has

not yet been investigated much (though see analyses in e.g. Desjacques and Seljak

(2010); Verde and Matarrese (2009)).

To get a physical picture of how halo bias is sensitive to local non-Gaussianity,

first remember that halos form when the local matter overdensity δρ/ρ exceeds the

critical threshold for collapse, δc. Therefore, a given small-scale fluctuation is more
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likely to exceed the threshold when it is sitting on top of a large-scale overdensity

than when it is sitting on top of a large-scale underdensity (see Figure 2.1). This

picture is called the peak-background split, and it is the primary source of the linear

halo bias: δhalo = b0 δmatter.

Local non-Gaussianity introduces a coupling between the power in primordial

curvature fluctuations, Φ, at small scales and large scales. Φ and δρ are related

by the Poisson equation: Φ ∼ δρ
k2

. Thus, when fNL 6= 0, the power in small-scale

density fluctuations becomes tied to the power in large-scale density fluctuations,

which introduces a scale-dependent term ∆b(k) ∼ k−2 into the halo bias.

We can get a more rigorous derivation of this extra term by starting with the

full Poisson equation, to find the relation between Φ(k) and the present-time (z=0)

smoothed linear overdensities δR:

(2.2) δR(k) =
2

3

k2T (k)

H2
0 Ωm

W̃R(k)Φ(k) ≡MR(k)Φ(k);

where T (k) is the matter transfer function, H0 is the Hubble constant, Ωm is the

matter density relative to critical today, and W̃R(k) is the Fourier transform of

the top-hat filter with radius R. The smoothing spatial scale R is related to the

smoothing mass scale M via

(2.3) M =
4

3
πR3ρm,0,

where ρm,0 is the matter energy density today.

One can expand the two point correlation function of dark matter halos, ξh(x1,x2),

in terms of high-order correlation functions of the underlying density field, ξ
(N)
R . In

the high-threshold limit (ν � 1), this becomes the so-called MLB formula (Grinstein
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and Wise (1986); Matarrese et al. (1986)):

ξh(x1,x2) = ξh(x12)

= −1 + exp

 ∞∑
N=2

N−1∑
j=1

νN

σNR

1

j!(N − j)!
ξ

(N)
R

 x1, ...,x1, x2, ...,x2

j times (N − j) times


 ;(2.4)

where xij = |xi − xj|, ν = δc/σR is the peak height, and ξR
(n)(r) is the n-point

correlation function of the underlying matter density field smoothed with a top-hat

filter of radius R. Keeping the terms up to the three-point correlation function, which

is reasonable for the observationally allowed range of fNL, the expansion series gives

us the halo correlation function in terms of the density field correlation functions:

(2.5) ξh(x12) =
ν2

σ2
R

ξ
(2)
R (x1,x2) +

ν3

σ3
R

ξ
(3)
R (x1,x1,x2) + . . .

The power spectrum is given, to the same expansion order as Eq. (2.5), by

(2.6) Ph(k) =
ν2

σ2
R

PR(k) +
ν3

σ3
R

∫
d3q

(2π)3
BR(k, q, |k − q|) + . . .

The first term on the right-hand side includes the familiar (Gaussian) bias b =

ν/σR (in the high-peak limit for which the MLB formula is valid) for the Gaussian

fluctuations. The effects of non-Gaussianity on the galaxy bias are represented by

the second term, including the bispectrum BR, which vanishes for the Gaussian

fluctuations.

2.1.2 Beyond the high-peak approximation

The expression (2.1) is only correct in the high-peak, small-k limit. Desjacques

et al. (2011) pointed out an additional term is required for the exact expression:

∆b(k) = 2
F (k)

MR(k)

(
(b0 − 1)

δc
D(z)

+
d lnF (k)

d lnσ0s

)
(2.7)
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where

F (k) ≡ 1

8π2σ2
R

∫
dk1k

2
1MR(k1)Pφ(k1)

×
∫ 1

−1

dµMR(k2)

[
fNL(k)

Pφ(k2)

Pφ(k)
+ 2fNL(k2)

]
.(2.8)

The new term (second term on the left-hand side of Equation 2.7) vanishes when

the fiducial fNL(k) = 0, but it remains relevant for any other constant or scale-

dependent fiducial value, even for the piecewise-constant parametrization of fNL(k)

from equation (A.13). (See Appendix A.2.1 for details on this.) Desjacques et al.

have found that this new term explains previously mysterious discrepancies (Shan-

dera et al. (2011)) between the theoretical expectation for the scale-dependent bias

and the results of numerical simulations.

2.2 Forecasted constraints on scale-dependent non-Gaussianity from large-
scale structure

2.2.1 Fisher matrix analysis

We would like to project constraints on scale-dependent non-Gaussianity for future

galaxy redshift surveys. To do this, we can calculate the Fisher information matrix

for the parameters f jNL that describe the piecewise-constant fNL(k). The Cramér-

Rao inequality tells us that the inverse of the Fisher matrix sets a lower bound

on the covariance matrix we can get on our parameters f iNL from our hypothetical

survey. Specifically, given the Fisher matrix Fij, the minimum possible marginalized

and unmarginalized errors for a particular f iNL are
√
F−1
ii and 1/

√
Fii, respectively.

Thus, the Fisher matrix allows us to forecast the extent to which scale-dependent

non-Gaussianity could be constrained by future galaxy surveys. (For more on Fisher

matrix analysis in general, see Appendix B.1. Details on calculating the derivative of

the bias with respect to fNL and fNL(k), a necessary intermediate step in calculating
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the Fisher matrix, are in Appendix A.)

We consider measurements of the power spectrum Ph(k) of dark matter halos

(galaxies or clusters, for example) averaged over thin spherical shells in k-space. The

variance of Ph(k) ≡ Ph in each shell is (Feldman et al. (1994))

(2.9) σ2
Ph

=
2P 2

h

Vshell Vsurvey

(
1 + nPh
nPh

)2

=
(2πPh)

2

k2dk Vsurvey

(
1 + nPh
nPh

)2

,

where Vshell = 4πk2dk/(2π)3 is the volume of the shell in Fourier space (we are

ignoring redshift distortion effects for simplicity here). Therefore, the Fisher matrix

for measurements of Ph(k, z) is the standard expression from Tegmark (1997):

(2.10) Fij =
∑
m

Vm

∫ kmax

kmin

∂Ph(k, zm)

∂pi

∂Ph(k, zm)

∂pj

1[
Ph(k, zm) +

1

n

]2

k2dk

(2π)2
,

where Vm is the comoving volume of the m-th redshift bin, each redshift bin is

centered on zm, and we have summed over all redshift bins. We adopt kmin =

10−4 h−1 Mpc, and we choose kmax as a function of z so that σ(π/(2kmax), z) = 0.5

(Seo and Eisenstein (2003)), which leads to kmax(z = 0) ≈ 0.1hMpc−1. Ph is the

dark matter halo power spectrum, related to the true dark matter power spectrum

P through

(2.11) Ph(k) = b(k)2P (k),

where each quantity implicitly also depends on redshift. Finally, pi are the parame-

ters of interest; in our case, these are the f iNL.

2.2.2 Survey properties

We assume a future survey covering one-quarter of the sky (about 10,000 square

degrees) out to z = 1, and find constraints for a set of 20 f iNL uniformly spaced in

log k in the range 10−4 ≤ k/(hMpc−1) ≤ 1, with a smoothing scale of Msmooth =
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1014M�. We assume a flat universe and a fiducial model of constant non-Gaussianity

at the value favored by the seven-year WMAP CMB data: fNL(k) = 30 = f iNL. We

include six cosmological parameters in our Fisher matrix aside from the f iNL: Hubble’s

constant H0; physical dark matter and baryon densities Ωcdmh
2 and Ωbh

2; equation of

state of dark energy w; the log of the scalar amplitude of the matter power spectrum,

logAs; and the spectral index of the matter power spectrum, ns . Fiducial values

of these parameters correspond to their best-fit WMAP7 values (Komatsu et al.

(2011)). We also added the forecasted cosmological parameter constraints from the

CMB experiment Planck by adding its Fisher matrix as a prior (W. Hu, private

communication). Note that the CMB prior does not include CMB constraints on

non-Gaussianity; the CMB constraints on fNL(k) are studied separately in Chapter

III. Finally, in addition to the cosmological parameters and the f iNL, we include five

Gaussian bias parameters in our Fisher matrix – one b0(z) for each redshift bin.1 The

fiducial values of these parameters are set by the Sheth-Tormen formalism (Sheth

and Tormen (1999)). All of the hypothetical galaxy redshift surveys in this chapter

and in Chapter III have these same assumptions, unless explicitly stated otherwise.

2.2.3 Forecasted constraints on the f iNL

We already have the derivatives of b(k) with respect to each of the f iNL (see

Appendix A for these), so the derivative of Ph(k) with respect to the f iNL is just

(2.12)
∂Ph(k)

∂f iNL

= 2
∂b(k)

∂f iNL

b(k)Pmat(k);

Pmat(k) is the ΛCDM matter power spectrum, easily obtained from a numerical

code – in this case, CAMB. Since we only consider information from large scales

1Using six cosmological parameters along with five b0(z) and 20 f iNL led us into some issues with floating-point
errors and numerical precision. The 31 × 31 Fisher matrix we obtained was rather ill-conditioned and difficult to
invert reliably using 64-bit precision; we were eventually forced to move to 128-bit precision in order to accurately
marginalize over the cosmological parameters and nuisance parameters.
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(k ≤ kmax ≈ 0.1hMpc−1), we do not model the small amount of nonlinearity present

at the high-k end of these scales. (Note that, while some of the f iNL have support

at k > kmax(z = 1) ≈ 0.2hMpc−1, we only use information about those (and other)

parameters coming from k < kmax(z) in each z-bin.)

The constraints vary considerably as a function of the k at which these parameters

are defined. The best-constrained f iNL corresponds to the 10−0.6 < k < 10−0.4 bin,

and it has an estimated unmarginalized error of σ(f 17
NL) = 28; for comparison, the

worst-constrained f iNL, which corresponds to the largest scale (smallest k) bin, has

an unmarginalized error well over 1011. As expected, the marginalized constraints for

the best-constrained parameters are a bit weaker than the unmarginalized constraints

– the best-measured f iNL has an estimated marginalized error of 41. In general,

dependence of the constraints on the value of k is determined by two competing

factors: as k increases, there is a larger number of modes, each with a smaller signal

(given by the smaller nongaussian bias ∆b). The best-constrained k is also affected

by the fact that only information out to k = kmax = 0.1hMpc−1 is assumed from

the galaxy survey. In particular, we have checked that if we unrealistically assume

information to be available at all k (instead of at k < kmax) without modeling the

nonlinearities, the unmarginalized constraints on f iNL improve monotonically with

increasing k. Therefore, the raw signal-to-noise ratio in f iNL increases with k.

2.3 Projection and principal components

2.3.1 Constraining other fNL(k) models

Once the Fisher matrix F has been obtained for the set of parameters f iNL, it is

quite simple to find the best possible constraints on the f iNL that could be obtained

from a future galaxy redshift survey. By projecting this Fisher matrix into another

basis, it is also possible to find the constraints on any arbitrary fNL(k) without
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(a) Unmarginalized errors
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(b) Marginalized errors

Figure 2.2: Forecasted unmarginalized (left panel) and marginalized (right panel) constraints on
piecewise-constant parameters f iNL assuming a future galaxy survey covering one-quarter of the
sky out to z = 1, with average number density of 2 × 10−4 gal/Mpc3. For comparison, the green
horizontal line is the constraint found for a constant fNL using the same survey assumptions . While
the individual parameters f iNL are poorly constrained as expected, their few best linear combinations
– the principal components – are well measured; see the next section and text for details.

calculating a new Fisher matrix from scratch. A trivial example can be found in

Appendix B.2, where we find that the estimated error on a constant fNL, assuming

the same future survey as in the previous section, is σ(fNL) = 8.7. (Note that

this forecasted constraint is on a par with the error expected from Planck, where

σ(fNL) ∼ 5.)

For another, scale-dependent example, consider a power-law form for fNL(k) (as

in Equation 1.10):

(2.13) fNL(k) = f ∗NL

(
k

kpiv

)nfNL

,

where kpiv is an arbitrary fixed parameter, leaving f ∗NL and nfNL
as the parameters

of interest in this model. (kpiv is generally chosen to minimize degeneracy between

f ∗NL and nfNL
for the observable of interest. We have set kpiv = 0.20hMpc−1, close to

the optimal value in our case; in CMB analysis, the optimal value is lower, around

0.08hMpc−1.) The partial derivatives of our basis of f iNL with respect to these
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parameters are:

∂f iNL

∂f ∗NL

=

(
k

kpiv

)nfNL

;(2.14)

∂f iNL

∂nfNL

= f ∗NL

(
k

kpiv

)nfNL

log

(
k

kpiv

)
.(2.15)

Starting in a basis of 20 f iNL evenly spaced in log k, we project down to a basis

of f ∗NL and nfNL
in order to forecast constraints on the two new parameters from a

survey covering one-quarter of the sky out to z = 1. We are using the same limits of

integration as in Section 2.2.1, along with the fiducial values f ∗NL = 30 and nfNL
= 0.

The forecasted constraints on these parameters, marginalized over each other, are

σf∗NL
= 8.7 and σnfNL

= 0.85.

2.3.2 Principal components

We now represent a general function fNL(k) in terms of principal components

(PCs). In this approach, the data determine which particular modes of fNL(k) are

best or worst measured. The PCs also constitute a useful form of data compression,

so that one can keep only a few of the best-measured modes to make inferences about

the function fNL(k). Finally, the PCs will also enable us to measure the degree of

similarity between our scale-dependent ansatz and the local and equilateral forms of

non-Gaussianity.

It is rather straightforward to start from the covariance matrix for the piecewise

constant parameters f iNL and obtain the PCs of fNL(k). The PCs are weights in

wavenumber with amplitudes that are uncorrelated by construction, and they are

ordered from the best-measured (i = 0) to the worst-measured (i = 19) for the

assumed fiducial survey. The construction of the PCs is described in Appendix B.3. A

few of these PCs of fNL(k) are shown in Fig. 2.3. For example, the best-measured PC

has most of its weight around k = 10−0.4 hMpc−1, which agrees with sensitivities of
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Figure 2.3: The forecasted best-measured principal components of fNL(k). The PCs, e(j)(k), are
eigenvectors of the Fisher matrix for the f iNL, and are ordered from the best-measured one (j = 0)
to the worst-measured one (j = 19) for the assumed fiducial survey.

piecewise-constant parameters shown in Fig. 2.2. Again, the sensitivity is not greatest

at the largest value of k (1hMpc−1) because we assumed cosmological information

from k ≤ kmax = 0.1hMpc−1. We checked that information available at a higher

kmax would shift the “sweet spot” of sensitivity to higher wavenumbers in this case

as well.

The forecasted error in the best-measured PC is 19.3; the error in the next-best

measured PCs are 31.3 and 34.7, but the accuracy rapidly drops off from there. Thus,

the first three or four PCs should be enough for any conceivable application. The

forecasted error in each PC is plotted on a logarithmic scale in figure 2.4.
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Figure 2.4: Forecasted RMS error on each principal component from LSS.

2.4 Conclusions

In this chapter, we used forecasted constraints from an intermediate-future galaxy

survey to calculate errors on individual parameters f iNL (see Fig. 2.2). Projecting

the Fisher matrix for the f iNL down to a different basis, we were able to project

constraints on the power-law model of fNL(k) (1.10). We further calculated the

principal components of fNL(k), and thus identified the best-measured configurations

(in wavenumber) of this function (see Fig. 2.3). While the sensitivity of the survey

to non-Gaussianity increases with increasing k, restricting the survey information to

scales where linear perturbation theory is valid imposes a “sweet spot” in sensitivity

of k ∼ 0.2hMpc−1. We will see a similar effect – but at a different scale – in the

next chapter, where we forecast constraints on the f iNL from the CMB.



CHAPTER III

Forecasted constraints on scale-dependent non-Gaussianity
from the CMB

3.1 Signatures of the generalized local model in the CMB

Traditionally, the best constraints on non-Gaussianity have come from the CMB.

This is done almost exclusively through estimators involving the N-point correlation

functions for N > 2 and their Fourier transforms, the polyspectra. Most emphasis

has been on the N = 3 case, or the bispectrum of temperature fluctuations in the

CMB, if only because of its relative computational simplicity. The well-known general

expression for the CMB bispectrum, re-derived in Appendix C.1, is

Bpqr
`1`2`3

=

(
2

π

)3
√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)∫
k2

1dk1 k
2
2dk2 k

2
3dk3

× BΦ(k1, k2, k3)tp`1(k1)tq`2(k2)tr`3(k3)

∫ ∞
0

r2dr j`1(k1r)j`2(k2r)j`3(k3r).(3.1)

In principle, we can use this to find the Fisher matrix Fij for the CMB bispectrum:

(Babich and Zaldarriaga (2004); Komatsu and Spergel (2001))

(3.2) FCMB
ij = fsky

∑
lmn,pqr

∑
2≤`1≤`2≤`3

1

∆`1`2`3

∂Blmn
`1`2`3

∂pi
(C−1

`1`2`3
)lmn,pqr

∂Bpqr
`1`2`3

∂pj

Here, C is the covariance of the bispectrum and pi,j are the parameters of interest.

∆`1`2`3 is a combinatoric term – equal to 6 when `1 = `2 = `3, 1 when `1 6= `2 6= `3,

and 2 otherwise (Spergel and Goldberg (1999)). The indices i, j, k and p, q, r run

25
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(c) Combined

Figure 3.1: LSS (top left), CMB (top right), and combined (bottom) forecasted constraints on the
piecewise constant parameters f iNL in the generalized local model. All constraints are unmarginal-
ized. The LSS constraints come from the power spectrum of halos, assuming the same survey
parameters as Section 2.2.2, while the CMB constraints come from the bispectrum of temperature
and polarization fluctuations. See text for details. For reference, the green line is the forecasted
error on a constant fNL using the same assumptions. There are bins “missing” on the rightmost
end of the Planck plot; those bins correspond to k-values too large to be probed when `max = 2000,
as it is here.

independently over all eight possible ordered triplets of temperature and polarization

fields (TTT, TTE. . . EEE). C can be thought of as a 6-point function, being the

covariance of the 3-point function; since fNL � 105, it is reasonable to only consider

the Gaussian contribution to the covariance of the bispectrum, C. Using Wick’s

theorem, this is:

(3.3) C`1`2`3 = C`1C`2C`3
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Further details of calculating C, Bpqr
`1`2`3

, and the derivatives of the bispectrum are

all in Appendix C.

Equation (3.1) is a totally general result for the bispectrum of the CMB in terms

of the primordial Bardeen curvature bispectrum BΦ; we have not picked a particular

model of non-Gaussianity. But (3.1) is not useful without an expression for BΦ. For

the local model (i.e. constant fNL), BΦ is:

(3.4) BΦ(k1, k2, k3) = 2∆2
φfNL

(
1

k
3−(ns−1)
1 k

3−(ns−1)
2

+ perm.

)

where ∆φ is the amplitude of the primordial Bardeen curvature power spectrum.

Using Eqs. (3.2), (C.29), and (C.24), we have the following expression for the CMB

bispectrum Fisher information in the constant fNL case:

FCMB
fNL

= 4∆4
φ

∑
lmn,pqr

∑
2≤`1≤`2≤`3

1

∆`1`2`3

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)2
1

∆`1`2`3

× (C−1
`1

)lp(C
−1
`2

)mq(C
−1
`3

)nr

[∫ ∞
0

r2dr
(
αl`1(r)β

m
`2

(r)βn`3(r) + perm.
)]

×
[∫ ∞

0

r2dr
(
αp`1(r)β

q
`2

(r)βr`3(r) + perm.
)]
.(3.5)

For the scale-dependent generalized local model, with fNL(k) in place of fNL,

things are somewhat more complicated. The Bardeen curvature bispectrum is:

(3.6) BΦ(k1, k2, k3) = 2∆2
φ

(
fNL(k3)

k
3−(ns−1)
1 k

3−(ns−1)
2

+ perm.

)
.

Using the piecewise-constant parametrization of fNL(k) together with (3.2), (C.29),

and (C.25), we get an expression for the Fisher matrix of the f iNL that is similar to

(3.5):
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FCMB
ij = 4∆4

φ

∑
lmn,pqr

`max∑
2≤`1≤`2≤`3

1

∆`1`2`3

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)2

× 1

∆`1`2`3

(C−1
`1

)ip(C
−1
`2

)jq(C
−1
`3

)kr

[∫ ∞
0

r2dr
(
αl,i`1(r)βm`2 (r)βn`3(r) + perm.

)]
×

[∫ ∞
0

r2dr
(
αp,j`1 (r)βq`2(r)β

r
`3

(r) + perm.
)]
.(3.7)

Despite appearances, calculating the full Fisher matrix FCMB is relatively straight-

forward, and it takes roughly half an hour (on four 2.2 GHz processors) for twenty

f iNL parameters with `max ≈ 2000. (Some tabulation is necessary for the α and β

functions, and the Wigner 3j-symbol is not easy to calculate for large `. Details on

all of this are in Appendix C.) We did not include other cosmological parameters in

this Fisher matrix, as the CMB bispectrum does not constrain them terribly well,

nor is fNL expected to be terribly degenerate with them; the CMB power spectrum

places much stronger constraints on other cosmological parameters.

3.2 Results and joint constraints

3.2.1 Forecasted constraints on the f iNL

We have performed a CMB Fisher matrix analysis to forecast errors from the

Planck mission: we take `max = 2000 and noise parameters from the Planck “blue

book.” Figure 3.1 shows the (unmarginalized) constraints on the piecewise constant

parameters f iNL in the generalized local model from the LSS and Planck forecasts

individually, as well as combined. Note that both types of surveys have comparable

constraints at the pivot wavenumber, and the pivots also agree (though this statement

is only approximate given the huge range of scales on both axes). Away from the

pivot, the Planck constraints are expected to be better than those from the LSS,

but both rapidly deteriorate away from the pivot kpiv ≈ 0.1hMpc−1. Finally, the
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Figure 3.2: The forecasted best-measured principal components of fNL(k) from LSS and Planck,
with a fiducial fNL(k) = 30. The PCs, e(j)(k), are eigenvectors of the Fisher matrix for the f iNL,
and are ordered from the best-measured one (j = 0) to the worst-measured one (j = 19) for the
assumed fiducial survey.

combined constraints are significantly helped by breaking of the degeneracies between

the CMB and the LSS, and lead to better constraints across a wider range of scales.

We will make these statements more quantitative below when we study the specific

case where fNL(k) is a pure power law in k.

Note that our Fisher matrices for the CMB – but not for the LSS – assume

all cosmological parameters other than the f iNL are fixed (known). Adding priors

from other data sets (e.g. SN Ia, the power spectrum of the CMB) constrains other

cosmological parameters well enough that we would not get appreciably different

results if we had those other parameters and their priors in our Fisher matrix.

3.2.2 Principal component analysis

As in Chapter II, we can represent a general function fNL(k) in terms of prin-

cipal components (PCs). Figure 3.2 shows the forecasted PCs of LSS and Planck

separately, while Fig. 3.3 shows the combined PCs. Fig. 3.4 shows the forecasted

1-σ errors on the PCs for LSS, Planck, and the two combined. Typically, the lowest

principal component (PC0) serves to see how well we can find the deviation of fNL(k)
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Figure 3.3: The forecasted best-measured principal components of fNL(k) from the joint LSS +
Planck data set.

at its pivot (i.e. best-determined wavenumber) from the fiducial value. The higher

PCs (PC1, PC2, etc) serve to probe the k-dependence of fNL.

While the combined principal components are dominated by the contribution from

the Planck PCs in this particular case, the relative strength of the LSS constraints

is strongly dependent on two factors: volume of the LSS survey and, to a slightly

lesser extent, fiducial (i.e. true) value of fNL(k). We investigate these dependences

further in the next section.

3.2.3 Projecting constraints on the power-law model of fNL(k)

As in section 2.3.1, we can project our Fisher matrix down to a different basis in

order to study the power-law parameterization of fNL(k) (see Equation 1.10):

(3.8) fNL(k) = f ∗NL

(
k

kpiv

)nfNL

.
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Figure 3.4: Forecasted RMS error on each principal component for LSS, Planck, and combined data
sets.

We find a story similar to the one we found with the PCs; see Table 3.1. We can use

the constraints on f ∗NL and nfNL
to find constraints on fNL(k) as a whole, through

the usual methods of error propagation:

(3.9)

σ(fNL(k)) =

√(
∂fNL

∂f ∗NL

σ(f ∗NL)

)2

+

(
∂fNL

∂nfNL

σ(nfNL
)

)2

+ 2
∂fNL

∂f ∗NL

∂fNL

∂nfNL

Cf∗NL,nfNL
,

where Cf∗NL,nfNL
is the covariance between f ∗NL and nfNL

. Using this relation, and given

some fiducial model of fNL(k), we can plot the forecasted constraints on fNL(k) as a

function of k. This is what we have done in Figure 3.5 for the Planck bispectrum, a

Projected errors σ(f∗NL) and σ(nfNL
), and the corresponding pivots

Variable LSS LSS + Planck C`s Planck bispectrum LSS + all Planck

σ(f∗NL) 17 8.7 4.4 3.9

σ(nfNL) 2.0 0.85 0.29 0.22

kpiv 0.12 0.20 0.080 0.096

Table 3.1: Fiducial f∗NL = 30; fiducial nfNL
= 0. Each column’s numbers are for the pivot in

that column; thus the errors in the two parameters are uncorrelated in each column. LSS survey
parameters are the same as in Section 2.2.2.
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Figure 3.5: Forecasted constraints on fNL(k) from several different data sets, assuming the power-
law model of scale-dependent non-Gaussianity: fNL(k) = f∗NL(k/kpiv)nfNL , projecting down from
the piecewise-constant f iNL basis. The red dashed line is the maximum k for which information was
kept in the LSS Fisher matrix at z = 0.

future large-scale structure survey, and the combination of both (along with priors

on cosmological parameters from the Planck power spectrum).

The constraints on fNL(k) from a large-scale structure survey are quite sensitive to

the survey parameters. Unlike the constraints on fNL(k) from the CMB bispectrum,

the forecasted constraints from LSS are also sensitive to the choice made for the

fiducial model of fNL(k), as shown in Appendix A.3. Forecasted constraints on f ∗NL

and nfNL
for a couple of different LSS surveys, with a couple of different fiducial

models, are compared to forecasted constraints from Planck in Table 3.2. (Note

that all values of nfNL
are equally likely for the fiducial model where f ∗NL = 0, since

fNL(k) = 0 no matter what nfNL
is in that case.) Figures 3.6 and 3.7 are analogous



33

10-4 10-3 10-2 10-1 100

k (h/Mpc)

0

20

40

60

80

100

f N
L
(k

)

LSS + Planck bispectrum

Planck bispectrum

Large-scale structure + cosmological prior

(z
max =2, f

sky =1/2)

Fiducial fNL(k) =30

LSS kmax

(z=0)

Figure 3.6: The same as Figure 3.5, but with different survey parameters for large-scale structure,
similar to the planned Euclid survey.

to Figure 3.5, but for different choices of survey parameters and fiducial values of

f ∗NL and nfNL
, respectively.

3.3 Conclusions

In this chapter, we studied how well the generalized local model (1.6) can be

probed with the combination of cosmic microwave background data and large-scale

structure surveys. As in Chapter II, we started by forecasting errors on the individual

parameters f iNL (see Fig. 3.1). We also found the best-measured linear combinations

of the f iNL through principal component analysis (see Fig. 3.2). We also projected the

Fisher matrix down to the two-parameter space for the power-law form of fNL(k),

and then propagated the errors from those parameters to fNL(k) as a whole (see
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Figure 3.7: The same as Figure 3.5, but with a fiducial fNL(k) = 0.

Figures 3.5, 3.6, and 3.7.)

We found that both the bispectrum measurement from the CMB Planck survey

and power spectrum measurement from an LSS survey can constrain fNL(k) tightly

in a relatively narrow range of wavenumbers around k ' 0.1hMpc−1. The scale best

constrained by the CMB is larger (i.e. at a smaller k) than the scale best constrained

by LSS: we get complementary information about fNL(k) from the two data sets.

Constraints from the CMB and LSS should remain comparable if systematics are

properly controlled for – but systematics are arguably more difficult to control for

LSS surveys (witness the larger number of nuisance parameters and degeneracies

in the LSS Fisher matrix). The ability of LSS to constrain fNL(k) effectively at a

wide range of scales also depends on the survey parameters and the fiducial model
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Projected errors (σf∗
NL
, σnfNL

) for different surveys and different fiducial fNL(k)

zmax = 1, fsky = 1/4 zmax = 2, fsky = 1/2 Planck

Fiducial fNL(k) = 30 (8.7, 0.85) (2.2, 0.28) (4.4, 0.29)

Fiducial fNL(k) = 0 (2.9, ∞) (0.41, ∞) (4.4, ∞)

Table 3.2: Forecasted constraints σf∗
NL

from different LSS surveys, assuming different fiducial mod-
els. Forecasted constraints from Planck are also shown for comparison. (All values of nfNL

are
equally likely in the second fiducial model, where f∗NL = 0. )

of fNL(k) chosen, as is clear from Figures 3.5 - 3.7 and Table 3.2. Nonetheless, large

galaxy redshift surveys planned for the future may well be competitive with, or even

better than, the constraints on the magnitude and running of fNL(k) expected from

Planck.



CHAPTER IV

Constraints on the running of local-type non-Gaussianity
from WMAP 7-year data

4.1 Introduction

As mentioned elsewhere in this work (e.g. equation 1.10), a common parametriza-

tion of fNL(k) is a simple power law:

(4.1) fNL(k) = f ∗NL

(
k

kpiv

)nfNL

Despite the relative popularity of this model, nobody has ever placed actual con-

straints on nfNL
, nor any other form of running of non-Gaussianity with scale. In

this chapter, we use CMB data – specifically, the seven-year data set from the Wilkin-

son Microwave Anisotropy Probe (WMAP7) – to place the first-ever constraints on

nfNL
, the running of local-type non-Gaussianity.

4.2 Estimating nfNL

In order to extract information about primordial non-Gaussianity from actual

CMB data, we need to have an unbiased estimator. Estimators relate the observable

quantities on the CMB sky (pixels) to theoretical parameters of interest (e.g. fNL).

Unfortunately, it is difficult (if not actually impossible) to construct an estimator for

nfNL
directly. Instead, we have adopted an alternative procedure.

36
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We start with a fast cubic estimator for fNL due to Komatsu, Smith, and Wandelt

(Komatsu et al. (2005)) and modified it to get an estimator for f ∗NL. (The details

of the KSW estimator and our modification of it are in Appendix D.) We used this

modified estimator to construct the likelihood as a function of both f ∗NL and nfNL
.

Then we marginalized over f ∗NL to get the likelihood as a function of nfNL
alone,

which in turn gave us an estimate of nfNL
.

To find the likelihood, we first find a χ2 statistic for f ∗NL, given a value of nfNL
.

The χ2 statistic for a set of observables Oi is defined as:

(4.2) χ2 ≡
∑
i

(
Oobs
i −O

theory
i

)2

σ2
theory,i

Taking the angular-averaged bispectrum B`1`2`3 as our observables, and defining

Btheory
`1`2`3

(nfNL
) as the theoretical expectation for the angular-averaged bispectrum in

the case where f ∗NL = 1, we have:

χ2(f ∗NL, nfNL
) =

∑
`1`2`3

(
Bobs
`1`2`3

− f ∗NLB
theory
`1`2`3

(nfNL
)
)2

C̃`1C̃`2C̃`3

=
∑
`1`2`3

(
Bobs
`1`2`3

)2 − 2f ∗NLB
obs
`1`2`3

Btheory
`1`2`3

(nfNL
) +

(
f ∗NLB

theory
`1`2`3

(nfNL
)
)2

C̃`1C̃`2C̃`3
.(4.3)

(This works because the theoretical expectation for B`1`2`3 ∝ f ∗NL.)

Using the skewness parameter S(nfNL
) from the KSW estimator (equation (D.24)),

and taking advantage of the definition of the Fisher matrix F (nfNL
) for f ∗NL (equation

(D.25)), we can rewrite χ2 as:

(4.4) χ2(f ∗NL, nfNL
) =

[∑
`1`2`3

(
Bobs
`1`2`3

)2

C̃`1C̃`2C̃`3

]
− 2f ∗NLS(nfNL

) + (f ∗NL)2F (nfNL
).

We can simplify this expression by introducing the following definition:

(4.5) χ2
0 =

∑
`1`2`3

(
Bobs
`1`2`3

)2

C̃`1C̃`2C̃`3
.
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χ2
0 is the goodness-of-fit parameter for the data with respect to the f ∗NL = 0 case,

hence the notation. Note that the numerator of χ2
0 is an observed quantity, and the

denominator is based solely on the theoretical prediction for the power spectrum (as

well as a few noise and beam parameters of WMAP). Therefore, χ2
0 does not depend

on f ∗NL or nfNL
at all.

Now we can rewrite χ2 as:

(4.6) χ2(f ∗NL, nfNL
) = χ2

0 − 2f ∗NLS + (f ∗NL)2F.

Completing the square, we find:

(4.7) χ2(f ∗NL, nfNL
) = F

(
f ∗NL −

S

F

)2

+ χ2
0 −

S2

F
.

Finally, we can take advantage of the definition of the modified KSW estimator itself,

f̂ ∗NL(nfNL
) ≡ S/F (equation (D.26)):

(4.8) χ2(f ∗NL, nfNL
) = F

(
f ∗NL − f̂ ∗NL

)2

+ χ2
0 − (f̂ ∗NL)2F.

χ2 is minimized in f ∗NL when f ∗NL = f̂ ∗NL:

(4.9) χ2
min(nfNL

) = χ2
0 − (f̂ ∗NL)2F.

Figure 4.1 is a plot of χ2
min − χ2

0 as a function of nfNL
.

We don’t have to settle for minimizing χ2 over f ∗NL, though. We can actually find

an expression for the likelihood, L(f ∗NL, nfNL
), and marginalize over f ∗NL to find the

likelihood as a function of nfNL
alone. We can get the likelihood from χ2:

L(nfNL
, f ∗NL) ∝ exp

(
−χ

2

2

)
= e−

F(f∗NL−f̂∗NL)2

2 e−
χ20−(f̂∗NL)2F

2(4.10)

Figure 4.2 is a contour plot of this likelihood in the nfNL
- f ∗NL plane, and figure 4.3

is a three-dimensional plot of L(nfNL
, f ∗NL).



39

6 4 2 0 2 4 6 8
nfNL

6

5

4

3

2

1

0

χ
2 m
in
−
χ

2 0

Figure 4.1: χ2
min − χ2

0 as a function of nfNL
.

2 0 2 4 6
nfNL

50

0

50

100

150

200

f
∗ N
L

68%

95%

98%

f̂
∗
NL

Figure 4.2: A contour plot of the likelihood in the f∗NL - nfNL
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Figure 4.3: A three-dimensional plot of the likelihood, L(f∗NL, nfNL
).

To marginalize over f ∗NL, we integrate the likelihood:

(4.11) L(nfNL
) =

∫
L(nfNL

, f ∗NL) df ∗NL ∝
1√
F
e−

χ20−(f̂∗NL)2F

2 .

Remembering that χ2
0 is constant, e−

χ20
2 merely contributes to the normalization, and

we are left with:

(4.12) L(nfNL
) ∝ 1√

F
e

(f̂∗NL)2F

2 .

4.3 Results and conclusions

4.3.1 WMAP7 constraints on nfNL

Figure 4.4 shows L as a function of nfNL
for three different values of the pivot scale

kpiv. χ2 is independent of our choice for kpiv, but the likelihood itself is not, since F

is inversely proportional to k
2nfNL
piv . This is not especially surprising, since choosing

a different pivot is equivalent to choosing a different effective prior in f ∗NL. The true
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Figure 4.4: The likelihood marginalized over f∗NL as a function of nfNL
for the true pivot, along

with two other pivots.

pivot scale favored by the data is the value of kpiv for which the errors in f ∗NL are

uncorrelated with the errors in nfNL
. We find this scale by using the likelihood to

calculate the covariance matrix C between f ∗NL and nfNL
:

(4.13) Ci,j = 〈(pi − p̄i)(pj − p̄j)〉.

With C in hand, we can find kpiv (Shandera et al. (2011)):

(4.14) kpiv = k∗ exp

(
−

Cf∗NL,nfNL

f ∗NLCnfNL
,nfNL

)
.

Here, k∗ is the pivot used when evaluating C; similarly, f ∗NL is the value used in C.

Despite the fact that k∗ and f ∗NL show up in the expression, kpiv does not depend

on them – the same value of kpiv will come out of (4.14) no matter what values of

k∗ and f ∗NL are used. We find that kWMAP7
piv ≈ 0.0538 Mpc−1; this corresponds to the

likelihood shown by the bold blue line in Figure 4.4.
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Figure 4.5: Several models of fNL(k) with high likelihood. All of the models shown here lie within
the 68% confidence region in Figure 4.2, and they all use the pivot favored by the data, kpiv = 0.0538
Mpc−1.

The central value for nfNL
is the value which maximizes the likelihood at the cor-

rect pivot, and the uncertainty comes from the width of the likelihood (our likelihood

is manifestly not Gaussian, so we can’t just use the uncertainty from C). Putting it

all together, we have the following estimate for nfNL
from the WMAP7 data, with a

68% (95%) confidence interval:

(4.15) nfNL
= 1.9

+2.1(+4.2)
−1.4(−2.1)

4.3.2 Conclusions

These constraints in nfNL
, (4.15), are the first constraints on the scale-dependence

of any form of non-Gaussianity. They are, admittedly, somewhat loose constraints

– there are still a variety of power-law models for fNL(k) that the data do not rule

out (Figure 4.5). While the WMAP7 data are compatible with nfNL
= 0, the shape
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of the likelihood function does hint at a positive value for nfNL
. We will learn more

about this hint soon with the Planck data, due out next year. For the fiducial

value fNL = 30 favored by the WMAP7 data, the forecasted Planck error on nfNL
in

Table 3.2 is σPlanck
nfNL

= 0.29, indicating that Planck may be able to improve upon our

WMAP7 constraints by nearly a full order of magnitude.



CHAPTER V

Summary and conclusions

Non-Gaussianity is a potentially powerful probe of inflationary physics in the

very early universe. Single-field inflationary models with interactions, along with

most multi-field models, generically produce scale-dependent non-Gaussianity. To

learn more about primordial non-Gaussianity, we must infer properties of the pri-

mordial perturbations from the anisotropies in the CMB and the large-scale structure

of the universe today, and we must look at higher-order correlation functions and

polyspectra in order to test any given model of non-Gaussianity.

The best constraints on the Gaussianity of the universe have, until recently, come

from the bispectrum of the CMB: WMAP has constrained fNL to roughly 30 ± 20

(Komatsu et al. (2011)). But Dalal et al. (2008) pointed out that a non-zero fNL

leads to a strongly scale-dependent dark matter halo bias, which can be detected in

the power spectrum of large-scale structure; this technique has since emerged as a

source of constraints already competitive with the CMB (Slosar et al. (2008)).

I have focused on an extension of the local model, Equation (1.6), in which the

usual local non-Gaussianity parameter fNL is promoted to a function of scale, fNL(k).

I have paid particular attention to a piecewise-constant parametrization of fNL(k)

into a set of constants f iNL, Equation (1.9), as well as a simple power-law model of

44
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fNL(k), Equation (1.10).

In Chapter II, we used forecasted constraints on the individual parameters f iNL

from an intermediate-future galaxy survey. We also projected constraints on the

power-law model of fNL(k). We calculated the principal components of fNL(k) to

find the best-measured linear combinations of f iNL. The sensitivity of the survey to

non-Gaussianity increases with increasing k, but restricting the survey information to

scales where linear perturbation theory is valid imposes a “sweet spot” in sensitivity

of k ∼ 0.1hMpc−1.

In Chapter III, we studied how well the generalized local model can be probed

with the combination of cosmic microwave background data and large-scale struc-

ture surveys. As in Chapter II, we started by forecasting errors on the individual

parameters f iNL. We found the principal components and forecasted errors for the

power-law form of fNL(k). We then propagated the errors from those parameters to

fNL(k) as a whole.

Constraints from the CMB and LSS should remain comparable if systematics are

properly controlled for – but systematics are arguably more difficult to control for

LSS surveys (witness the larger number of nuisance parameters and degeneracies in

the LSS Fisher matrix). Nonetheless, large galaxy redshift surveys planned for the

future may well be competitive with, or even better than, the constraints on the

magnitude and running of fNL(k) expected from Planck.

In Chapter IV, we used the WMAP7 data to obtain the first constraints on the

scale-dependence of non-Gaussianity of any form. The WMAP7 data are compatible

with nfNL
= 0 : nfNL

= 1.9+2.1
−1.4. The Planck data, due out next year, should be able

to improve on these constraints enough to tell us whether the slight hint of a positive

nfNL
is significant.
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We are entering a very exciting era in cosmology; in the next few years, data

may finally be good enough to start placing serious constraints on entire classes of

inflationary models via primordial non-Gaussianity. Planck and the next generation

of large-scale structure surveys will be able to constrain the non-Gaussianity of the

universe down to one part in 105. Non-Gaussianity, if we do find it, will give us new

insight into the physics at work in the first fraction of a second after the Big Bang.
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APPENDIX A

Finding the derivative of the halo bias with respect to fNL

and the f iNL

If we denote the full bias of dark matter halos by b + ∆b, where b represents the

bias for the Gaussian fluctuations and ∆b is the non-Gaussian correction, then

(A.1)
Ph
PR

= b2

(
1 +

∆b

b

)2

,

where Ph and PR are the power spectra of halos and dark matter, respectively. The

non-Gaussian correction to the linear peak bias to the leading order becomes

(A.2)
∆b

b
(k) =

ν

σR

1

2PR(k)

∫
d3q

(2π)3
BR(k, q, |k − q|),

where BR is the matter bispectrum on scale R. Hence, the non-Gaussian correction

∆b(k) can be expressed in terms of the primordial potential fluctuations as (Matar-

rese and Verde (2008)):

(A.3)
∆b

b
(k) =

δc
D(z)

1

8π2σ2
RMR(k)

∫ ∞
0

dk1k
2
1MR(k1)

∫ 1

−1

dµMR(k2)
Bφ(k1, k2, k)

Pφ(k)
.

We perform the integration over all triangles. The triangles’ sides are k1, k2, and k;

the cosine of the angle opposite k2 is µ, so k2
2 = k2

1 + k2 + 2k1kµ. MR(k) is the same

function defined in Eq. (2.2), and the redshift dependence of the critical threshold

for collapse is given as δc(z) = δc/D(z), with δc = 1.686.

Portions of this appendix first appeared in:
Becker, A., Huterer, D., Kadota, K., Scale-dependent non-Gaussianity as a generalization of the local model, Journal
of Cosmology and Astroparticle Physics, 2011, vol. 1, p. 006, doi:10.1088/1475-7516/2011/01/006
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A.1 Constant fNL

Eq. (A.3) leads to the famous scale-dependent bias formula in the case of a con-

stant fNL. For this model, the bispectrum is

(A.4) Bφ(k1, k2, k3) = 2fNL [Pφ(k1)Pφ(k2) + perm.].

Through Eq. (A.3), this leads to the result

∆b

b
(k) =

δc
D(z)

2fNL

8π2σ2
RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

[
Pφ(k2)

Pφ(k)
+ 2

]

≡ 2fNLδc
D(z)

F(k)

MR(k)
,(A.5)

where

(A.6) F(k) ≡ 1

8π2σ2
R

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

[
Pφ(k2)

Pφ(k)
+ 2

]
.

Note that there is a factor of 2 in Eq. (A.5) because we can exchange the order of

integration of terms corresponding to k1 and k2.

Finally, we rewrite Eq. (A.5) by defining

F1(k) ≡ 1

8π2σ2
RMR(k)Pφ(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)Pφ(k2);(A.7)

F2(k) ≡ 2

8π2σ2
RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2).(A.8)

Then, for constant fNL,

(A.9)
∆b

b
(k) =

2fNLδc
D(z)

[F1(k) + F2(k)] ,

and the derivative with respect to fNL is

(A.10)
∂

∂fNL

[
∆b

b
(k)

]
=

2δc
D(z)

[F1(k) + F2(k)] .
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A.2 Scale-dependent fNL

Now we repeat the analysis of the previous section, but we allow fNL(k) to be

an arbitrary function of scale, adopting the ansatz in Eq. (1.6). We still assume

homogeneity, so fNL(~k) = fNL(k). The bispectrum is given by

(A.11) Bφ(k1, k2, k3) = 2[fNL(k1)Pφ(k2)Pφ(k3) + perm.].

Here, the triangle condition always holds, so that (for example) k1 = |~k2 + ~k3|.

Following Eq. (A.3), we get

∆b

b
(k) =

δc
D(z)

2

8π2σ2
RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

×
∫
dµMR(k2)

[
fNL(k)

Pφ(k2)

Pφ(k)
+ 2fNL(k2)

]
.(A.12)

This looks like Eq. (A.5) – but this time, fNL(k) is a function, not a constant.

Thus, to find the derivative of ∆b/b(k) with respect to the relevant parameters, we

must parametrize fNL(k) in a way that is valid for any general form of fNL(k). We

consider the piecewise-constant (in wavenumber) parametrization where fNL(k) is

equal to f iNL in the ith wavenumber bin:

(A.13) f iNL ≡ fNL(ki).

The derivative of ∆b/b(k) with respect to these f iNL is:

∂

∂f jNL

[
∆b

b
(ki)

]
=

δc
D(z)

2

8π2σ2
RMR(k)

×

[
δij

1

Pφ(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)Pφ(k2)+(A.14)

+2

∫
k2∈kj

dk1k
2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

]
,

where δij is the Kronecker delta function. Note that the last integral over k2 only

goes over the jth wavenumber bin.
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This derivative can be rewritten more concisely as

(A.15)
∂

∂f jNL

[
∆b

b
(ki)

]
=

2δc
D(z)

[
δijF1(k) + F j2(k)

]
.

The functions F1 and F2 are defined as in Eqs. (A.7) and (A.8), except that the

superscript in F j
2 indicates that the integral over k2 is to be executed only over the

jth wavenumber bin.

A.2.1 The Desjacques et al. term

The new term in the bias, pointed out by Desjacques et al. (2011), is the second

term of (2.7):

(A.16) N(k) ≡ d lnF (k)

d lnσR
.

This is not a particularly computationally friendly form. We can make it more

tractable by using the chain rule:

(A.17) N(k) =
σR
F (k)

dF

dM

(
dσR
dM

)−1

.

Now we need to take the derivative of N with respect to the f iNL, for our Fisher

matrix.

∂N

∂f iNL

= σR

(
dσR
dM

)−1
∂

∂f iNL

[
1

F (k)

dF

dM

]
=
σR
F

(
dσR
dM

)−1
∂

∂f iNL

[
d

dM

(
∂F

∂f iNL

)
− 1

F

dF

dM

∂F

∂f iNL

]
.(A.18)

Equations (A.17) and (A.18) are everything we need to properly account for the

new term in our Fisher matrix. Note that σR and dσR
dM

are the only z-dependent

quantities in N ; since their z-dependence is linear and exactly the same, it cancels

entirely, leaving N independent of z.
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Figure A.1: How the choice of fiducial fNL affects the forecasted constraints on constant fNL from
a future galaxy survey. See text for analytic explanation for why results are the best at a fiducial
value of fNL = 0.

A.3 The effect of the fiducial value on constraints

The fiducial value of fNL affects the Fisher matrix – and thus the forecasted

constraints on fNL itself – because the relationship between Ph(k) and fNL is non-

linear. The fiducial fNL enters the Fisher matrix through the bias, by way of

Ph = (b2(k))P (k). Assuming Ph(k)� 1/n (a reasonable assumption at large angular

scales where non-Gaussianity constraints largely come from and where shot noise is

negligible), we find that the Fisher matrix element corresponding to fNL = const is

(A.19) F LSS ∝
∫ (

∂b(k)

∂fNL

)2

b−2(k)dk =

∫ (
∆b(k)

fNL (b0 + ∆b(k))

)2

dk.
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Thus, the expression on the right-hand side will, in general, be dependent on the

choice of fiducial fNL. Since |∆b(k)| blows up at small k, in that regime we have:

(A.20)

(
∆b(k)

fNL (b0 + ∆b(k))

)2

≈ 1

f 2
NL

.

At large k, ∆b(k) goes to 0, taking the entire expression with it. Thus, the integral

is dominated by the contribution at low k, meaning we should expect a maximal

Fisher matrix element around a fiducial fNL = 0. And indeed, that is what we see

in Figure A.1: the forecasted constraints on fNL from a given sky survey depend on

the fiducial value chosen, with the tightest constraints at fNL = 0.
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APPENDIX B

Statistical methods: Fisher matrices, principal components,
and all that.

B.1 Fisher information matrices: a brief introduction.

Fisher matrices are powerful tools for forecasting the constraints placed on a set

of parameters from an expected future data set. It is a purely analytic method; no

likelihood evaluation or parameter search of any kind is required. This makes it a

particularly fast and convenient method for error forecasting. In this subsection, I

will give a brief overview of the derivation and application of Fisher matrices in the

abstract. More details about how I performed specific Fisher matrix calculations are

provided in Chapters II and III.

B.1.1 Bayes’s theorem, likelihood, and the Fisher information matrix

Any reasonable interpretation of probability admits the following truth about

conditional probabilities:

(B.1) P (A|B) =
P (AB)

P (B)

In other words, the probability of A given B is equal to the probability of both A

and B divided by the probability of B. Given B.1 and some other basic axioms of

Portions of this appendix first appeared in:
Becker, A., Huterer, D., Kadota, K., Scale-dependent non-Gaussianity as a generalization of the local model, Journal
of Cosmology and Astroparticle Physics, 2011, vol. 1, p. 006, doi:10.1088/1475-7516/2011/01/006
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probability, we have the following chain of reasoning concerning the probability of a

hypothesis H and some data D:

P (H|D) = P (HD)/P (D)

P (D|H) = P (DH)/P (H)

P (H|D)P (D) = P (HD) = P (DH) = P (D|H)P (H)

∴ P (H|D) = P (D|H)P (H)/P (D)(B.2)

This is Bayes’s theorem. The probability of the hypothesis given the data,

P (H|D), is equal to the probability of the data given the hypothesis, P (D|H), mul-

tiplied by the probability of the hypothesis, P (H), divided by the probability of the

data, P (D). P (H) is known as the prior probability ; P (D) =
∫
P (D|H ′)P (H ′)dH ′ is

the probability of the data marginalized over all hypotheses, and is therefore called

the marginal probability ; P (H|D) is the posterior probability ; finally, P (D|H), the

probability of observing the data given the truth of the the hypothesis, is known as

the likelihood. Bayes theorem, then, can be restated:

posterior probability = likelihood× prior probability

marginal probability

The marginal probability depends only on the data (and the chosen hypothesis

space), not on H itself; thus, it can be viewed as an overall normalization factor. For

a likelihood function sharply peaked in hypothesis space, it (nearly) doesn’t mat-

ter what method you’re using to assign priors to your hypotheses – the likelihood

function will pick out a narrow band of hypotheses so long as we have sufficiently

informative data.

But how do we quantify the notion of “sufficiently informative” for our data? Our

data is sufficiently informative if the models in our model space are sensitive to the
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parameters our data tell us about. We already know that our models are sensitive

to the parameters we’re measuring if the likelihood function for those parameters

is sharply peaked in our model space. So we can quantify how useful our data will

be for distinguishing among different models in terms of the peak curvature of the

likelihood function – and we measure a function’s curvature by taking its second

derivative. Thus, we arrive at the Fisher information matrix, often just called the

Fisher matrix:

(B.3) Fij =

〈
−∂

2 lnL
∂pi∂pj

〉
Here, L is the likelihood, and the pi are the parameters of interest in the model (e.g.

any cosmological parameters). The Fisher matrix gives us a quantitative measure

of how well a data set can choose among available models – and thus, how much

information a data set can contain about the parameters that determine our models.

The brackets 〈〉 indicate an expectation value taken over realizations of the data;

this enables us to find an analytic expression for the Fisher matrix. We assume

that the data are distributed according to a multivariate Gaussian; in that case, the

covariance matrix of the data C has all the information about the distribution of the

data:

(B.4) L =
1

(2π)n/2| detC|1/2
exp

[
−1

2
(d− d̄)Ti C

−1
ij (d− d̄)j

]
,

where di are the data (with d̄i the mean for each i) and Cij is the covariance of the

data. After some tedious but straightforward algebra, (B.3) and (B.4) combine to

give an expression for the Fisher matrix:

(B.5) Fij =
1

2
Tr[C−1C,iC

−1C,j] + d̄T,i C
−1d̄,j

where ,i is the partial derivative with respect to pi.
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In most cases, d̄,i and C will depend on the values chosen for the parameters pi; in

order to calculate the Fisher matrix Fij, one must first choose fiducial values for these

parameters. So the Fisher matrix can be used to forecast constraints on the errors in

the pi – as we are about to see – but it obviously cannot give any information about

the most likely values for the pi themselves.

B.1.2 Using Fisher matrices to estimate parameter errors

The most straightforward way to use Fisher matrices in error forecasting is through

the Cramér-Rao bound, which states that an error in a cosmological parameter pi

will be greater than or equal to the corresponding Fisher matrix element:

(B.6) σ(pi) ≥


√

(F−1)ii (marginalized error)

1/
√
Fii (unmarginalized error)

Here, the marginalized error is the error in pi marginalized over the uncertainties in

all the other parameters in the Fisher matrix F , while the unmarginalized error is the

error in pi while holding all the other parameters perfectly fixed. The marginalized

errors are generally the quantities of interest, since we are usually trying to determine

the values of several parameters at once from the same set of data. Cramér-Rao only

gives us a lower bound on the marginalized error – but in practice, we assume that the

data will saturate the bound, allowing us to effectively forecast the best achievable

errors for a given set of observations using Fisher matrices.

B.2 Calculating the error on an arbitrary parametrized fNL(k)

Projecting the constraints from an old set of parameters f iNL ≡ fNL(ki) (i =

1, 2, . . . , N) to new parameters (which we can call q; j = 1, 2, . . . ,M for some M)

is in principle straightforward. The Fisher matrix in the new parameters, F new, is
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given by

F new
i,j =

N∑
k,l=1

∂pk

∂qi
∂pl

∂qj
Fkl(B.7)

so that

(B.8) F new ≡ PTF P ,

where Pij = ∂pi/∂qj is the derivative matrix of old parameters with respect to new.

Let us look at a couple of examples. Projecting to the case

(B.9) fNL(k) = fNL = const

is particularly easy, since P is the column vector with Pi1 = df iNL/dfNL = 1. Then

F new
ij is a 1× 1 matrix that quantifies information on fNL, given by

(B.10) F new
11 =

∑
k,l

Fkl.

The error on fNL is of course given simply by σ(fNL) = 1/
√
F new

11 .

Another example is given by the function

(B.11) fNL(k) =

(
k

k0

)nNG

,

with two parameters, k0 and nNG. Then one can show that (labeling k0 ≡ q1 and

nNG ≡ q2):

Pi1 = −nNG

k0

(
ki
k0

)nNG

;(B.12)

Pi2 = ln

(
ki
k0

) (
ki
k0

)nNG

.(B.13)

Then, using Eq. (B.8), one can simply obtain the 2× 2 Fisher matrix in k0 and nNG.
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B.3 Principal components of fNL(k)

We now show how to decompose the measurement of fNL(k) in principal compo-

nents, which are essentially the eigenmodes of the covariance matrix for the afore-

mentioned parameters fNL(ki). This method has been widely used in cosmology,

including applications to parametrizing and describing dark energy (Huterer and

Starkman (2003); Albrecht et al. (2009)). It allows us to order the best-to-worst

measured weights in wavenumber of the function fNL(k).

Let the function fNL(k) be described in terms of piecewise constant parameters

f iNL ≡ fNL(ki), where

(B.14) fNL(k) =
N∑
i=1

piΘi(k).

Here, Θ(k) ≡
[
H(k − klower

i )−H(k − kupper
i )

]
is the top-hat function of unit height

over the ith wavenumber bin, and we assume a total of N bins. klower
i and kupper

i

are the wavenumber bin boundaries, and H is the Heaviside step function. We have

effectively expanded the function around the zero value, though this is not crucial:

the left-hand side could be fNL(k)−ffid
NL(k), for any fiducial ffid

NL(k), and the formalism

still follows.

The Fisher matrix F is the inverse covariance matrix in the original piecewise-

constant parameters pi, so that F−1
ij = 〈pipj〉 − 〈pi〉〈pj〉. We first diagonalize the

Fisher matrix F :

(B.15) F = W TDW,

where D is diagonal and W is some orthogonal matrix. The vector of uncorrelated

parameters, q, is related to the vector of original parameters p via

(B.16) q = Wp,
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and it is easy to check that the q are uncorrelated; that is, 〈q qT 〉 = D−1. The rows

of W are therefore the new parameters.

Thus, to calculate the principal components:

1. Obtain the full Fisher matrix for N parameters pi, plus the cosmological pa-

rameters Ωbh
2,ΩCDMh

2, H0, w, logAs, and ns.

2. Marginalize over the cosmological parameters by inverting this larger Fisher

matrix, taking the N × N submatrix, then inverting back to get the Fisher

matrix of the pi; we call this Fisher matrix F

3. Diagonalize F as in Eq. (B.15)

4. The rows of W are the principal components. More precisely, qa =
∑

iWaipi,

and qa are the PCs.

Let us now change notation slightly (to agree with the commonly used one, e.g. Huterer

and Starkman (2003)), and define the shape of the a-th principal component in i-th

redshift bin as α
(a)
i , so that α

(a)
i ≡ Wai. Then we can represent the a-th principal

component, e(a)(k), in terms of the original parameters pi as1

(B.17) e(a)(k) =
N∑
i=1

α
(a)
i pi Θi(k).

The PCs are obviously uncorrelated, and their eigenvalues λa, so that

〈e(a)e(b)〉 ≡
N∑

i,j=1

α
(a)
i α

(b)
j 〈pipj〉 =

δab
λa
.(B.18)

where, recall, λa ≡ Daa.

Finally, let us calculate the coefficients c(a) in the expansion in principal compo-

nents of an arbitrary fNL(k)

(B.19) fNL(k) =
N∑
a=1

cae
(a)(k).

1This is basically the continuous version of the relation qa =
∑
iWaipi.
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Let coefficients f iNL describe fNL(k) in our original basis, so that fNL(k) = const ≡∑
i f

i
NLpiΘi(k), with f iNL being left arbitrary for now. Then, taking the expectation

value of the product with e(b), we get

〈fNL(k)e(b)〉 ≡ cb
λb

=

〈(
N∑
i=1

f iNL pi

)
×

(
N∑
j=1

α
(a)
j pj

)〉
(B.20)

=
N∑

i,j=1

f iNL α
(a)
j (F−1)ij,(B.21)

so that

(B.22) ca = λa

N∑
i,j=1

f iNL α
(a)
j (F−1)ij.

For example, in the simplest case of constant fNL(k), where f iNL = const ≡ fNL, the

coefficients of the principal components in the expansion of fNL(k) are

(B.23) ca = λa fNL

∑
ij

α
(a)
j (F−1)ij (for fNL(k) ≡ fNL = const).
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APPENDIX C

Calculating the CMB bispectrum Fisher matrix for
local-type non-Gaussianity

C.1 Calculating the CMB bispectrum

The non-averaged bispectrum is:

(C.1) B`1`2`3,m1m2m3 = 〈a`1m1a`2m2a`3m3〉

where the alms are the coefficients on the spherical harmonic decomposition of the

CMB sky. The alms can be related to the Bardeen curvature perturbations Φ(k) by:

(C.2) a`m =

∫
d2k̂

∆T (k̂)

T
Y ∗`m(k̂) = 4π(−i)`

∫
d3k

(2π)3
Φ(k)g`(k)Y ∗`m(k̂)

Here, g`(k) is the CMB temperature radiation transfer function. There are several

conventions used for this transfer function; g`(k) is related to the transfer function

T`(k) found in (Gibelyou et al. (2010)) by:

(C.3) g`(k) =
(−i)`√

2`(`+ 1)
T`(k)

We will be using yet another convention, as both of the transfer functions above

lead to messy prefactors later on. Throughout this paper, we denote the radiation

transfer functions as t`(k), defined as:

(C.4) t`(k) =
1

(−i)`
g`(k) =

1√
2`(`+ 1)

T`(k)
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With these transfer functions, (C.2) becomes:

(C.5) a`m =
4π√

2`(`+ 1)
(−1)`

∫
d3k

(2π)3
Φ(k)t`(k)Y ∗`m(k̂)

One last word on transfer function conventions: these transfer functions connect

the CMB sky to the Bardeen curvature perturbations, not the primordial curvature

perturbations.

The angular-averaged bispectrumB`1`2`3 is related to the raw bispectrumB`1`2`3,m1,m2,m3

of (C.1) by the relation:

(C.6) B`1`2`3 =
∑

m1,m2,m3

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3,m1,m2,m3

Here,
(

`1 `2 `3
m1 m2 m3

)
is the Wigner 3j-symbol. This symbol ensures that `1 + `2 + `3 is

even, m1 + m2 + m3 = 0, and the triangle inequality (|`i − `j| ≤ `k ≤ `i + `j) is

met for all i, j, k.1 Substituting (C.1) and (C.5) into (C.6), we obtain the following

expression for the angular-averaged bispectrum:

B`1`2`3 = (4π)3(−1)`1+`2+`3
∑

m1,m2,m3

(
`1 `2 `3

m1 m2 m3

)∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

×Y ∗`1m1
(k̂1)Y ∗`2m2

(k̂2)Y ∗`3m3
(k̂3)t`1(k1)t`2(k2)t`3(k3)〈Φ(k1)Φ(k2)Φ(k3)〉(C.7)

Using the definition of the Bardeen curvature bispectrum, BΦ,

(C.8) 〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1 + k2 + k3)BΦ(k1, k2, k3),

we find:

B`1`2`3 =
1

π3

∑
m1,m2,m3

(
`1 `2 `3

m1 m2 m3

)∫
d3k1 d

3k2 d
3k3Y

∗
`1m1

(k̂1)Y ∗`2m2
(k̂2)Y ∗`3m3

(k̂3)

×t`1(k1)t`2(k2)t`3(k3)δ(k1 + k2 + k3)BΦ(k1, k2, k3).(C.9)

1There are some computational difficulties that arise when evaluating the 3j-symbol for high l1,2,3; see Appendix
C.3.2 for more on this.
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(The prefactor of (−1)`1+`2+`3 vanished because the Wigner 3j-symbol ensures `1 +

`2 + `3 is even.) Taking advantage of several identities in Wang and Kamionkowski

(2000) (their (12) and (13)), the orthogonality of the spherical harmonics, and the

Gaunt integral identity (Komatsu and Spergel (2001)), this becomes:

B`1`2`3 =

(
2

π

)3

I`1`2`3

∫
k2

1dk1 k
2
2dk2 k

2
3dk3BΦ(k1, k2, k3)t`1(k1)t`2(k2)t`3(k3)

×
∫ ∞

0

r2dr j`1(k1r)j`2(k2r)j`3(k3r),(C.10)

where I`1`2`3 is the Gaunt integral

(C.11) I`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)
.

The real-space integral is now a one-dimensional integral in the spherical coordinate

r, starting at our location and ending at infinity. This real-space coordinate is

the difference in the conformal time ∆η =
∫ t0
te

dt
a

= c(τ0 − τe) between the time

when the CMB was emitted and the time when we saw it. Equivalently, it is the

difference between the radius of the particle horizon of the observable universe when

the CMB was observed and that radius when the CMB was first emitted. Thus,

nearly all of the contribution to the integral in r comes from a short period of time

around the surface of last scattering, and there are no physical contributions beyond

r > rmax = η0 = cτ0 ≈ 14.6 Gpc. For our purposes, when performing this integral in

Chapter III, we sampled the integral 150 times between rmax and rmax − 2r∗, where

rmax− r∗ is the comoving distance to the surface of last scattering. We also sampled

50 times between rmax−2r∗ and 0 to capture any impact that late-time effects might

have had. Increasing the sampling rate did not significantly improve our results.
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C.1.1 Bispectrum and derivatives for fNL and fNL(k)

Using (C.10) along with (3.4), we get the following expression for the angular-

averaged CMB bispectrum in the constant fNL case:

B`1`2`3 = 2∆2
φfNL

(
2

π

)3

I`1`2`3

∫
k2

1dk1 k
2
2dk2 k

2
3dk3

(
1

k
3−(ns−1)
1 k

3−(ns−1)
2

+ perm.

)

× t`1(k1)t`2(k2)t`3(k3)

∫ ∞
0

r2dr j`1(k1r)j`2(k2r)j`3(k3r)(C.12)

Following equations 33 and 34 from Yadav and Wandelt (2010) (where they are

themselves following Komatsu and Spergel (2001), equations 17 and 18), we’ll define a

pair of functions, α`(r) and β`(r), to help us rewrite (C.12) in a more computationally

friendly way.

α`(r) ≡
2

π

∫
k2t`(k)j`(kr)dk(C.13)

β`(r) ≡
2

π

∫
k−(2−ns)t`(k)j`(kr)dk(C.14)

Now (C.12) looks like this:

B`1`2`3 = 2∆2
φfNLI`1`2`3

∫ ∞
0

r2dr (α`1(r)β`2(r)β`3(r) + perm.)(C.15)

and (naturally)

(C.16)
∂B`1`2`3

∂fNL

=
1

fNL

B`1`2`3 .

For the scale-dependent fNL(k) case, we use (3.6) to find that the angular-averaged

CMB bispectrum is:

∂B`1`2`3

∂f iNL

= 2∆2
φI`1`2`3

∫ ∞
0

r2dr
(
αi`1(r)β`2(r)β`3(r) + perm.

)
(C.17)

where αi` is:

(C.18) αi`(r) ≡
2

π

∫ kupperi

klower
i

k2t`(k)j`(kr)dk.
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Polarization and cross-terms

The bispectrum for multiple fields is a simple extension of the single field case.

By analogy with (C.1) and (C.2), the multiple-field bispectrum is

(C.19) Bpqr
`1`2`3,m1m2m3

= 〈ap`1m1
aq`2m2

ar`3m3
〉,

where

(C.20) ap`m =
4π√

2`(`+ 1)
(−1)`

∫
d3k

(2π)3
Φ(k)tp`(k)Y ∗`m(k̂)

and ti`(k) is either the temperature or polarization radiation transfer function. Using

these definitions and running through equations (C.7) through (C.17) again, it’s

pretty clear that we can rewrite the bispectrum for multiple fields very easily if we

just change (C.13), (C.14), and (C.18) slightly:

αp` (r) ≡
2

π

∫
k2tp`(k)j`(kr)dk;(C.21)

βp` (r) ≡
2

π

∫
k−(2−ns)tp`(k)j`(kr)dk;(C.22)

αp,i` (r) ≡ 2

π

∫ kupperi

klower
i

k2tp`(k)j`(kr)dk.(C.23)

So for the constant fNL case, we have

∂Bpqr
`1`2`3

∂fNL

= 2∆2
φI`1`2`3

∫ ∞
0

r2dr
(
αp`1(r)β

q
`2

(r)βr`3(r) + perm.
)

(C.24)

while for the piecewise-constant fNL(k) case, we have:

∂Bpqr
`1`2`3

∂f iNL

= 2∆2
φI`1`2`3

∫ ∞
0

r2dr
(
αp,i`1 (r)βq`2(r)β

r
`3

(r) + perm.
)

(C.25)

C.2 The covariance of the bispectrum

It is usually a good assumption to consider only the Gaussian contribution to the

covariance of the bispectrum, C. Using Wick’s theorem, one can straightforwardly
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show (Liguori et al. (2010); Babich and Zaldarriaga (2004); Spergel and Goldberg

(1999)):

(C.26) C`1`2`3 = C`1C`2C`3

where

(C.27) C` = CCV
` + σ2

`W` = CCV
` + CN

`

CCV
` is cosmic variance, while CN

` is the variance due to the noise and beam width

in the survey. σ2
` is the variance of the noise in the survey per pixel, and W` is a

“window” term relating to the survey beam type and width (Cooray and Hu (2000);

Knox (1995)).2 For an experiment with multiple frequency channels (such as Planck

or WMAP), the basic form of equation (C.27) still holds, but finding CN
` is slightly

trickier (Cooray and Hu (2000)):

(C.28)
1

CN
`

=
∑
ν

1

CN
` (ν)

=
∑
ν

1

σ2
` (ν)W`(ν)

.

For uncorrelated Gaussian noise, σ2
` (ν) = σ2(ν) is constant, and you can find its

value for a particular experiment fairly easily; for example, the Planck beam width

and noise parameters are found in the Planck mission “blue book.”

We have only been dealing with temperature (TT), but it is not significantly

harder to add in polarization (EE) and cross (TE) terms. The covariance matrix

here is (Yadav et al. (2007); Babich and Zaldarriaga (2004))

(C.29) (C−1
`1`2`3

)lmn,pqr = (C−1
`1

)lp(C
−1
`2

)mq(C
−1
`3

)nr,

where

(C.30) C` =

CTT
` CTE

`

CTE
` CEE

`

 .

2Confusingly, Cooray and Hu (2000) uses w−1 for what we are calling σ2.
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Noise is dealt with in the same way as in (C.27) for CTT
` and CEE

` in (C.30). Assuming

that the noise for T and E are uncorrelated, σ2
TE = 〈∆T∆E〉 = 〈∆T 〉〈∆E〉 = 0, and

thus CN,TE
` = 0 for all `.

C.3 Computational details

C.3.1 ` sampling and binning

In evaluating equation (3.7), we do not actually use every ` ≤ `max; that would be

incredibly computationally expensive. Instead, we sample and bin in `. The binning

in ` is progressive, not fixed-width: all `s are kept up through ` = 40, at which point

sampling drops off gradually until, at ` & 100, only every tenth ` is sampled. The

“width” of the bins in ` are given by the equation

(C.31) ∆`i =
1

2
[(`i − `i−1) + (`i+1 − `i)] =

1

2
(`i+1 − `i−1).

C.3.2 Calculating the Wigner 3j-symbol

We need to be able to calculate the Wigner 3j-symbol for large (> 1000) val-

ues of `1,2,3 in order to evaluate many of the expressions we’re interested in. Un-

fortunately, the 3j function built in to the GNU Scientific Library can’t properly

evaluate the symbol for `1,2,3 & 70. Thus, we were forced to create our own special-

purpose 3j-evaluator. Thankfully, we’re only interested in the special case m1,2,3 = 0;

as it turns out, in this case, the 3j-symbol reduces to (see Wolfram Mathworld:

http://mathworld.wolfram.com/Wigner3j-Symbol.html):

(C.32)

(
`1 `2 `3

0 0 0

)
=


(−1)g

√
(2g−2`1)!(2g−2`2)!(2g−2`3)!

(2g+1)!
g!

(g−`1)!(g−`2)!(g−`3)!
if L = 2g;

0 if L = 2g + 1,

where L = `1+`2+`3. Since (C.32) involves evaluating the factorials of relatively large

numbers when any of `1,2,3 are large, we used Stirling’s approximation to perform the
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factorials – but we needed the factorials to remain accurate even when the arguments

were small, so we used six terms in the approximation.
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APPENDIX D

The KSW estimator and the modified KSW estimator

D.1 The KSW estimator

Komatsu et al. (2005) found a fast cubic estimator for fNL based on a full-sky

CMB temperature map; Yadav et al. (2007) and Yadav et al. (2008) extended that

estimator to deal with polarization, sky cuts, and inhomogeneous noise. I will refer

to this estimator as the KSW estimator for convenience’s sake.

We start by recalling from Appendix C several useful definitions and equations

relating the primordial curvature bispectrum to that of the CMB. The angular-

averaged CMB bispectrum B`1`2`3 is related to the shape function of the primordial

curvature bispectrum FΦ through the equation

Btheory
`1`2`3

=

(
2

π

)3

I`1`2`3

∫
(k1k2k3)2 dk1 dk2 dk3 FΦ(k1, k2, k3) t`1(k1) t`2(k2) t`3(k3)

×
∫ ∞

0

r2dr j`1(k1r)j`2(k2r)j`3(k3r),(D.1)

where I`1`2`3 is the Gaunt integral

(D.2) I`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)
.

We can reduce this to a considerably simpler form in the case of local non-Gaussianity

(i.e. when FΦ = F local
Φ ; see equation (1.5)) :

(D.3) Btheory
`1`2`3

(fNL) = 2fNLI`1`2`3

∫ ∞
0

r2dr (α`1(r)β`2(r)β`3(r) + perm.)
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where α`(r) and β`(r) are defined (using a slightly different convention from Appendix

C, to play nicely with the output from CAMB) as

α`(r) ≡
2

π

∫
k2t`(k)j`(kr)dk(D.4)

β`(r) ≡
2

π

∫
k2PΦ(k)t`(k)j`(kr)dk(D.5)

Given a set of spherical harmonic coefficients a`m for the CMB sky, we can define

a set of “filtered” maps, A and B:

A(n̂, r) ≡
∑
`,m

α`(r)
b`

C̃`
a`mY`m(n̂);(D.6)

B(n̂, r) ≡
∑
`,m

β`(r)
b`

C̃`
a`mY`m(n̂),(D.7)

where C̃` = b2
`C` + N` is the power spectrum corrected for beam width and noise.

Komatsu et al. (2005) construct a skewness parameter S from these filtered maps:

(D.8) S ≡
∫
r2dr

∫
d2n̂A(n̂, r)B2(n̂, r)

Equation (D.8) is the computationally friendly form of the skewness parameter, and

we can skip straight to (D.15) if we just want to calculate a full-sky estimator for

fNL. But to see how it leads us to that estimator, we have to do a little more work.

Keeping in mind that the observed CMB bispectrum is defined as

(D.9) Bobs.
`1`2`3

= 〈a`1m1a`2m2a`3m3〉,

it is not hard to see that S reduces to

(D.10) S =
∑

`1≤`2≤`3

Bobs
`1`2`3

B̃theory
`1`2`3

(fNL = 1)

C̃`1C̃`2C̃`3

where

(D.11) B̃theory
`1`2`3

(fNL) = b`1b`2b`3B
theory
`1`2`3

(fNL).
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Performing a least-squares fit of Bobs
`1`2`3

to B̃theory, we find (Komatsu et al. (2005)):

(D.12) S ≈ fNL

∑
`1≤`2≤`3

(
B̃theory
`1`2`3

(fNL = 1)
)2

C̃`1C̃`2C̃`3

B̃theory
`1`2`3

(fNL = 1) = ∂B̃theory
`1`2`3

/∂fNL, because Btheory
`1`2`3

is proportional to fNL. Therefore,

we can write the Fisher matrix F for fNL as (see (3.5)):

(D.13) F =
∑

`1≤`2≤`3

(
∂B̃theory

`1`2`3

∂fNL

)2
1

C̃`1C̃`2C̃`3
=

∑
`1≤`2≤`3

(
B̃theory
`1`2`3

(fNL = 1)
)2

C̃`1C̃`2C̃`3
.

This, in turn, means we can rewrite (D.12) as

(D.14) S ∼ fNLF.

Thus, the KSW estimator for fNL is:

(D.15) f̂NL ≡
S

F

While this estimator works well for a full-sky map, it breaks down for a cut-sky

map. To get around this, an extra term is introduced into the estimator (Yadav

et al. (2008)) to account for the spurious signal introduced by the sky cut:

(D.16) f̂NL =
Scut

F
=

1
fsky

S + Slinear

F
.

Slinear is:

Slinear =− 1

fsky

∫
r2dr

∫
d2n̂

[
A(n̂, r)〈B2

sim(n̂, r)〉MC

+2B(n̂, r)〈Asim(n̂, r)Bsim(n̂, r)〉MC ] .(D.17)

The subscripted filtered maps Asim and Bsim are generated from Monte Carlo real-

izations of the cut CMB sky; the brackets 〈〉MC indicate an average over all Monte

Carlo maps. The Monte Carlo maps were produced using the prescription laid out
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in Appendix A of the WMAP5 paper (Komatsu et al. (2009)); the only difference

(aside from our use of the WMAP7 data) is that we used a uniform weighting for

the maps, rather than the slightly more complicated weighting given there, since it

only results in a marginal improvement of the estimation of fNL. We created the

Monte Carlo maps in Python; we plugged these Monte-Python maps into HEALPix,

by way of HealPy, to do the forwards and backwards spherical harmonic transforms

required to obtain the A and B maps.

D.2 Modifying the KSW estimator for a power-law fNL(k)

It is fairly simple to modify the KSW estimator for the case of a power-law fNL(k)

of the form

(D.18) fNL(k) = f ∗NL

(
k

kpiv

)nfNL

.

We want an estimator for the parameter f ∗NL. Note that the pivot scale, kpiv, is

completely degenerate with f ∗NL; the choice of pivot scale is largely arbitrary, and

in fact we will see that kpiv cancels entirely from some (but not all!) quantities of

interest.

To get our new estimator, start with the shape function for the bispectrum asso-

ciated with this fNL(k):

(D.19) FΦ = 2(fNL(k1)P (k2)P (k3) + perm.) = 2
f ∗NL

k
nfNL
piv

(k
nfNL
1 P (k2)P (k3) + perm.).

Plugging (D.19) into (D.1), and deploying the usual tricks, we get:

(D.20) Btheory
`1`2`3

(f ∗NL, nfNL
) = 2f ∗NLI`1`2`3

∫ ∞
0

r2dr (γ`1(nfNL
, r)β`2(r)β`3(r) + perm.) .

Here, γ`(nfNL
, r) takes the role of α`(r), and is similarly defined:

(D.21) γ`(nfNL
, r) ≡ 2

π

1

k
nfNL
piv

∫
k2+nfNL t`(k)j`(kr)dk.
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We can use γ`(r) to write down a new filtered map G(n̂, r),

(D.22) G(nfNL
, n̂, r) ≡

∑
`,m

γ`(nfNL
, r)

b`

C̃`
a`mY`m(n̂),

and we can use G(nfNL
, n̂, r) to write down a new skewness parameter S(nfNL

).

(D.23) S(nfNL
) ≡

∫
r2dr

∫
d2n̂G(nfNL

, n̂, r)B2(n̂, r)

In the case where nfNL
= 0, γ`(nfNL

, r) = α`(r) and S(nfNL
) trivially reduces to (D.8).

The same argument that takes us from (D.8) to (D.10) applies here too, so S(nfNL
)

must reduce to

(D.24) S(nfNL
) =

∑
`1≤`2≤`3

Bobs
`1`2`3

(
B̃theory
`1`2`3

(f ∗NL = 1, nfNL
)
)

C̃`1C̃`2C̃`3

We can write the Fisher matrix F (nfNL
) for f ∗NL at a given value of nfNL

as:

(D.25)

F =
∑

`1≤`2≤`3

(
∂B̃theory

`1`2`3
(nfNL

)

∂f ∗NL

)2
1

C̃`1C̃`2C̃`3
=

∑
`1≤`2≤`3

(
B̃theory
`1`2`3

(nfNL
, f ∗NL = 1)

)2

C̃`1C̃`2C̃`3
.

The least-squares fit (D.12) still holds, so we have the following unbiased estimator

for f ∗NL:

(D.26) f̂ ∗NL =
S(nfNL

)

Ff∗NL
(nfNL

)

To account for a sky cut, the same arguments used by Yadav et al. (2008) hold

here, as we are still using a cubic estimator. Thus, our actual estimator for f ∗NL is

(D.27) f̂ ∗NL =
Scut(nfNL

)

F
=

1
fsky

S(nfNL
) + Slinear(nfNL

)

F
,

where F is the appropriately-modified Fisher matrix element for f ∗NL, and Slinear(nfNL
)

is

Slinear(nfNL
) =− 1

fsky

∫
r2dr

∫
d2n̂

[
G(nfNL

, n̂, r)〈B2
sim(n̂, r)〉MC

+2B(n̂, r)〈Gsim(nfNL
, n̂, r)Bsim(n̂, r)〉MC ] .(D.28)
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Now we have an estimator for f ∗NL – and more importantly, we have a skewness

parameter for f ∗NL, which allows us to get the likelihood function for nfNL
in Chapter

IV.
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