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CHAPTER I

Introduction

A brain tissue is composed of many neurons which function and interact with each

other by generating a time sequence of characteristic electrical pulses known as action

potentials or spikes. These time sequences of spikes generated by a set of neurons are

referred to as multi-neuronal spike train data. Such data contain the stochastic firing

(or spike generating) events of individual neurons as well as spiking activity due to

coordinated functioning of a group of neurons which are functionally interconnected.

Analyzing multi-neuronal data to identify the spatio-temporal network structure of

the functional connectivity of the neurons underlying a specific brain activity is one

of the biggest challenges in neuroscience.

Experimenters may not only characterize neuronal activity in anatomically well-

defined regions, but they can also examine dynamics of neuronal response and their

relationship to behavior. Although elementary methods of data analysis such as t-

tests or visual examination of the peristimulus time histogram (PSTH) remain useful

for many purposes, the growing complexity of neuroscientific experiments, often ex-

amining subtle changes on a comparatively fine timescale, requires careful attention

to statistical methods for data analysis.

In neurophysiological experiments, individual spikes are not directly recorded.

This is because when multiple electrodes are implanted, the extracellular voltage
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potentials recorded on any electrode represent the simultaneous electrical activity of

an unknown number of neurons. To identify the spike train data from these voltage

traces is a process called “spike sorting”. There are two stages in the spike sorting

process. In the first stage the spike events or action potentials must be identified from

the voltage traces and in the second stage the number of neurons being recorded must

be determined and each spike must be assigned to the neuron that produced it. The

spike sorting is the mandatory first step in all multiple spike train data analyses.

The accuracy of the spike sorting critically affects the accuracy of all subsequent

analyses. Many algorithms are used for spike sorting and at present, there is no

consensus as to which are the best (Harris et al. (2000), Fee et al. (1996)). Differ-

ent algorithms using a variety of methods such as Gaussian errors for model based

parametric algorithms have been proposed (Lewicki (1988)). A Monte Carlo based

strategy has also been proposed recently in Harris et al. (2000). Spike sorting is a

complex problem and is an open area of research.

In this dissertation, we assume that the data have been spike sorted and that the

firings can be attributed to individual neurons. If this is not the case, we can treat

the term “neurons” as other appropriate “units”. This dissertation makes several

statistical contributions to modeling and analyzing multi-neuronal spike train data

to characterize the functional connectivity among a set of neurons. Throughout,

we assume stationary firing rates. The methods here can be extended to piecewise

stationary and slowly time-varying non-stationary models.

The first part deals with time sequences of firings of a group of neurons and

models them as multivariate point processes. The research goal here is to develop

computationally fast methods of inference based on the frequent episodes and examine

their efficiencies in a broad range of models. We examine connections with delays

and develop procedures for detecting connections between pairs of neurons that are

stronger than a given threshold. Methods for screening out false positives that occur in
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chains and problems that arise with multiple testing are also considered. We showed

applications of the results to simulated multi-neuronal data and demonstrated the

usefulness of the results on a real spike train data set.

The second contribution develops a new class of temporal models for characterizing

Markovian dependence between a set of neurons. Likelihood-based inference methods

and associated algorithms are developed for estimating the connectivity matrix and

baseline firing rates for each neuron. We also develop the asymptotic theory associated

with the estimators and demonstrate the usefulness of the models and methods on

simulated neuronal networks. The results are also applied to real spike train data

from cultures of cortical neurons.

The final part develops a general graphical modeling framework and extends the

work in the second contribution to also study delays. An iterative algorithm is devel-

oped to estimate the delay and connectivity strength matrices for a group of neurons,

and the results are used to select the appropriate model and network structure. The

efficiency of the method is studied and the results are applied to several simulated

examples as well as the data from cultures of cortical neurons.

There exist many representations of univariate and multivariate point processes

in terms of conditional intensity function (Kass and Ventura (2001), Chornoboy et al.

(1988)). The general conditional intensity framework allows inclusion of a wide variety

of measured effects, including trial-to-trial variation terms and the local field poten-

tial (LFP) (Truccolo et al. (2005), Paninski (2011)). Local field potential (LFP) is

an electrophysiological signal which is the result of the activity of a group of neurons.

LFP records the sum of synaptic activity of multiple neurons and tends to be an oscil-

lation on a slower scale than spiking. It is possible to use LFP data as a supplemental

data in improving the efficiency of inference from spike train data.

Nevertheless, we do not consider the use of LFP data here. Finally, the methods

developed here are illustrated on only small set of neurons. Some of the methods here
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can scale up to thousands of neurons but others only to hundreds. Further work is

needed to develop algorithms and techniques that will extend our results to situations

involving larger neuronal networks.
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CHAPTER II

Statistical Inference of Functional Connectivity

in Neuronal Networks using Frequent Episodes

2.1 Introduction

An animal’s central communication system is composed primarily of neurons

(nerve cells) which are responsible for the accumulation, processing and transmis-

sion of information. A neuron is composed of dendrites, which are susceptible to

chemical stimuli, the cell body or soma and axon. A “message” received by the den-

drites propagates to the soma and is eventually communicated to the junctions of

neuronal networks or synapses via the axon. The message is actually an electric pulse

called firing of a neuron or spike of a neuron. The sequence of spikes of a neuron is

referred to as a “spike train” and it may carry important information processed by

the brain and underlying cognitive functions and sensory perception.

Neurons can fire spontaneously with no outside stimulus. The firing can also be

influenced by other neurons through synaptic connections. These connections are

usually of two types: excitatory and inhibitory, depending on whether the firing

of one neuron makes the firing of a second neuron either more likely or less likely.

Refractoriness is another phenomenon in a neuron due to which after one firing of a

neuron, the chance of its firing immediately after that is reduced (perhaps to zero).

The time sequences of spikes generated by a set of neurons is referred to as multi-

neuronal spike train data. Analyzing the multi-neuronal data to identify the spatio-
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temporal network structure of the functional connectivity of the neurons underlying

a specific brain activity is one of the biggest challenges in neuroscience (Brillinger

(1988), Brillinger (1992), Brillinger and Villa (1997)).

There have been many technical advances, such as multi-electrode array (MEA),

that have led to new methods for collecting and storing huge amount of electrophys-

iological data with finer time scale. Figure 2.1 shows an example of MEA data. The

x-axis in Figure 2.1 shows the time in seconds and the y-axis shows the neurons. Each

black bar in the plot shows the time at which a particular neuron has spiked. This

has resulted in increased interest in examining the dynamics of neuronal response and

their relationship to behavior patterns. Elementary methods of data analysis and vi-

sual examination of the cross-correlogram or peristimulus time histogram (PSTH)

are adequate in many cases. However, the growing complexity and enormity of neu-

roscientific experiments and examination of subtle changes on a comparatively fine

timescale requires the development and use of more advanced research techniques

(Brown et al. (2004), Kass and Ventura (2001)).

This chapter of the dissertation focuses on determining connectivity by develop-

ing methods to determine significant interactions among the neurons. The research

goal here is to develop fast and robust methods of inference based on the frequent

episodes and examine their efficiencies in a broad range of models described in Section

2.2.1. Frequent episodes are statistical summaries that characterize the directional

relationships among neurons. They are formally defined in Section 2.2.2, where we

also provide additional background for the data types considered in the dissertation.

We develop the distribution theory for the frequent episodes under a stochastic frame-

work. In Section 2.2.3 we develop a method for analyzing the significance of sequential

firing patterns that extends beyond the currently available techniques by allowing the

null hypothesis to include “weak dependence” among neurons and by rank ordering

significant patterns according to the “strength of influence” among participating neu-
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rons. The results are then used to develop statistical thresholds for determining the

important frequent episodes (those that correspond to strong functional connectivity

among the neurons) and to estimate the strengths of the connectivity. Section 2.2.4

considers an appropriate notion of strength and develop methods for determining

connectivity above the specified measure of strength. We describe the test of hypoth-

esis in Section 2.2.5. Two issues arise in implementing the methods in practice: a)

screening out false positives that occur due to chains; and b) controlling the overall

error rates due to multiple testing. Both of these topics are also discussed in Section

2.2.6 and 2.2.7. We demonstrate the effectiveness of our method on simulated as well

as real neuronal network data. We show how the results can be used to recover the

network structure on two simulated networks in Sections 2.3.1. Section 2.3.2 illus-

trates application of the methods to multi-electrode array data from cortical cultures.

The chapter concludes with Section 2.4 discussing how the results can be extended.

Figure 2.1: Spike recordings of Neurons
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2.2 Methods

2.2.1 The Bernoulli Model

The results in Chapter II are developed under a simple stationary model for firing

of neurons and their dependence. We start from the simplest possible model, a

homogeneous Poisson process, with constant firing rate λj for neuron j, j = 1, ..., J .

In this case the spike generating process is said to be stationary. If the neurons fire

independently, then the J Poisson processes are independent. It is convenient to work

with a discretized version of these processes. Let ∆ be a small enough interval so

that there is at most one spike in an interval. We observe the processes over a period

of time, and suppose there are L intervals during this period. Assume for now that

the neurons fire independently. So neuron j either fires or not in interval k, and we

have a Bernoulli process Xj(k), k = 1, ..., L, j = 1, ..., J . Let pj be the probability

of firing in an interval (= 1 − exp(−λj∆t)) and denote by Nj the number of firings

during this period for neuron j = 1, ..., J . The Nj’s are independent binomial(L, pj)

random variables.

To describe the dependence, consider two neurons A and B with a one-directional

structure: A influences B, written as A→ B. We say that the episode A[k]B occurs if

a firing of A is followed by a firing of B after k time units. If A and B are independent,

the probability of observing A[k]B is just PA×PB. However, if the firing of A leads to

an excitation of neuron B and it is more likely to fire after k time units, then P (A[k]B)

will be higher. Similarly, if the effect is inhibitory, it will be lower. Throughout this

section, we will focus on excitatory effects. Neurons have a particular synaptic delay

depending on the neuro-transmitter they have, so one neuron typically affects another

neuron to which is connected to it after some delay. For simplicity, we will assume

that the time delays between the neurons are fixed at a given value k. This is what

is typically done in other papers in the literature (Sastry and Unnikrishnan (2010)).
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In practice, one will analyze the data with different values of k and then combine the

evidence for dependence across the values of k for a given pair of neurons. We will

come back to the issue at the end of this section.

Let Pk(B|A) denote the conditional probability of A[k]B, i.e., B fires at time

j + k given that A fired at j. From now on we will drop the suffix k from Pk(B|A)

for convenience. Define s = P (B|A)/PB. Let s0 be a user-defined threshold that is

larger than one. We say that the (excitatory) influence of A on B is ’strong’ if s > s0.

Since A→ B, the firing rate of A is unaffected and the firings are iid Bernoulli with

rate PA. To get the distribution of the firings of B, note that it can fire on its own

or it can fire because it is excited by the firing of A; thus, it can be viewed as a

mixture of two processes. Since each of these processes is independent over time,

the combined firings in different intervals remain independent. We can compute the

mixture probability of B firing in any interval as follows:

P (XBt = 1) = P (XBt = 1|XAt−k
= 1)P (XAt−k

= 1)

+ P (XBt = 1|XAt−k
= 0)P (XAt−k

= 0)

= PAPB|A + (1− PA)PB|Ā

P (XBt = 0) = 1− P (XBt = 1)

Further, XBt is marginally a Bernoulli process with P c
B = PA PB|A + (1−PA) PB|Ā,

where the superscript c stands for combined. However, (XAt , XBt) are now dependent.

For j = 1, ..., L − k, consider the binary data Zj that equals 1 if XAj
= 1 and

XBj+k
= 1. Now, this is an iid Bernoulli process with success probability PE =

PB|APA. So the number of occurrences of the episode A[k]B during the period is

Binomial(L− k + 1, PE).

The formulation here using dependent binary processes is simple, but they have

been found to be a reasonable approximation for the firing statistics of cortical neu-
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rons in other studies (Shadlen and Newsome (1998)). However, neurons do exhibit

time-varying behavior, and the validity of a Poisson assumption should be tested

empirically (Kass et al. (2005)). If the temporal behavior is piece-wise stationary or

slowly varying, the results can be applied to segments of time intervals within which

the behavior is stationary. Another complication is that, immediately following a

spike, a neuron may exhibit a short (typically less than 1 ms) absolute refractory

period during which it cannot spike again (Kass and Ventura (2001), Olson et al.

(2000)). Such refractory effects become detectable when neurons have high enough

firing rates. This means that the Bernoulli process assumption may not be valid right

after a firing. However, the critical assumption in this chapter is that the distribution

of the number of episodes follow approximately a Bernoulli process, which can still

hold even when the spiking of individual neurons do not (Abeles and Gat (2001)).

This result extends readily for multi-neurons provided there is no cycle, i.e., the

network structure connecting the neurons is a directed acyclic graph. It does not

appear to hold if we have loops or cycles. Consider a 2 neuron-cycle, i.e., A and B

are both connected to each other with different delays k and s and with constant firing

rate PA and PB respectively. Let {XAt|Bt−s} be a mixture Bernoulli process consisting

of a finite sequence of independent random variables XA1|B, XA2|B, XA3|B, ... such that

for each t, the value of XAt|B is either 0 or 1 accordingly the neuron A has fired at

time t or not given that B has fired at time t− k or not. Similarly, XBt|At−k
will be a

mixture of Bernoulli processes describing the firing pattern of neuron B given that A

has fired or not at time point t− k. Thus, XAt can influence XBt+k
which in turn can

influence XAt+k+s
. Hence we have 2 neurons effecting each other at different delays

and we can characterize the dependence structure of the spiking process of A as:

10





XA0 XAk+s
XA2(k+s)

· · ·

XA1 XAk+s+1
XA2(k+s)+1

· · ·
...

...
...

XAk+s−1
XA2(k+s)+1

XA3(k+s)−1
· · ·


Here, the random variables in each column are distributed as independent Bernoulli

but may have different success probabilities. The random variables in each row are

distributed as dependent Bernoulli but the random variables in different row are in-

dependent of each other. For example XA0 is independent of XA1 as well as XAk+s+1

but dependent on XAk+s
. So, the marginal Bernoulli assumption does not hold.

To demonstrate how these results are used, suppose we observe the number of

firings over a time period with L bins, each of size ∆. Let PA be the probability that

neuron A fires in an interval. Define PB similarly. Suppose we are interested in the

event E = A[k]B, i.e., B fires k time units after A fires. Let IE(t) = 1 if E occurs at

time t, i.e., A fires at time t and B fires at time t + k. Let PE be the probability of

this event at any time t. Then, PE = P (B|A)×PA. In other words, PE = sPB ×PA,

where s is the strength of the connection.

Suppose we have spike train data on J neurons and the assumptions of our model

hold. Then, we can compute the number of frequent episodes of order 2, say i[k]j for

pairs of neurons (i, j), frequent episodes for triplets, etc. and use the binomial dis-

tribution theory or the corresponding normal approximations to test for significance.

Once we have identified a subset of these connections, we can attempt to identify the

underlying network. Examples of this process will be discussed later. One will have

to use the screening for important frequent episodes hierarchically as done in apriori

and other data mining algorithms. We can look for a higher order episode, say, (r,s,t)

only if all pairwise interactions were significant.
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2.2.2 Frequent Episodes

Enumerating the occurrences of all possible episodes in multiple spike trains is

computationally challenging. Instead, counting only the “non-overlapping” occur-

rences makes the process computationally efficient (Laxman et al. (2005)). Two

occurrences of an episode are said to be non-overlapping if their corresponding time

periods do not overlap. For example, the first occurrence of A[k]B overlaps with the

second one. (See Figure 2.2 for illustration). Figure 2.2 shows three occurrences of

the episode A[k]B, however at most two of them are non-overlapping. A set of oc-

currences of an episode is said to be non-overlapping if every pair is non-overlapping.

Figure 2.2: Non-overlapping occurrences of episode A[k]B. The total number of oc-
currences is N = 6, consisting of M = 3 non-overlapped occurrences and
R1 +R2 = 3 overlapped occurrences.

The restriction to non-overlapping episodes significantly reduces the computa-

tional complexity as only N finite state automata are required to count occurrences

of an N-node episode (Laxman et al. (2005)). Analysis based on the number of non-

overlapping frequent episodes Mannila et al. (1997), has been proposed as a method

for characterizing temporal firing patterns from multi-neuronal spike train data (Pat-

naik et al. (2008)). In this section, we develop statistical inference methods when we

have data only on the non-overlapping episodes. Specifically, we develop statistically-

12



defined thresholds that allow us to distinguish the unimportant ones (random or weak

connectivity) from the significant ones, so that only counts above pre-specified thresh-

olds need to be counted. The results here are more general and more efficient than

those of Sastry and Unnikrishnan (2010) who use iterative methods to calculate the

moments and propose a conservative threshold based on Chebyshev inequality.

In contrast, we can characterize the entire distribution and compute the moment

generating function. Further, we estimate the connectivity strength of the neurons as

well as the loss of efficiency we incur due to the use of non-overlapping occurrences

instead of total occurrences. It is relatively straightforward to compute thresholds

under the assumption that the neurons fire independently of each other. It is more

interesting (and useful) to compute thresholds under appropriate notions of weak

connectivity, and look at counts larger than these thresholds, indicating moderate to

strong connectivity. We will do this under the notion of strength based on conditional

probabilities introduced in Sastry and Unnikrishnan (2010).

To recap, the patterns we consider are ordered firing sequences by groups of neu-

rons with specific time lags or delays between successive neurons in the sequence.

Such a pattern (when it repeats many times) may denote a chain of triggering events,

and, thus, unearthing such patterns from spike data can help us understand the un-

derlying functional connectivity. Such patterns of ordered firing sequences (with fairly

constant delays between successive neuronal firings) have been observed in many ex-

periments, and there is much interest in detecting such patterns and assessing their

statistical significance (Gerstein (2004), Abeles and Gat (2001)).

13



2.2.3 Inferring Connection Strengths

Distribution in the Unrestricted Case

We start with simple case where we are not restricting attention to non-overlapping

episodes. For t = 1, ..., L − k, consider the binary process where IE(t) that equals 1

if XA(t) = 1 and XB(t+ k) = 1. The data are iid Bernoulli with success probability

PE = PAPB|A. The number of times that IE(t) equals 1 is equivalent to the number

of occurrences of the serial episode E = A[k]B, which we denote as N . Note that the

possible values of N range from 0 to (L− k); any A[k]B episode where A fires after

time t = L− k will not be complete by time t = L. So the number of occurrences of

the episode E during L intervals has a binomial distribution with parameters (L−k)

and PE. In particular, we have P̂E = N/(L− k) and V ar(P̂E) = PE(1−PE)/(L− k).

This result holds provided there are no cycles among the neurons, i.e., the network

structure connecting the neurons is a directed acyclic graph (DAG). If neuron A

influences B and B in turn influences A, the model becomes much more complicated.

We do not consider such situations in this chapter.

Distribution in the Non-Overlapping Case

Consider now the case where frequent-episode counts are based on non-overlapping

occurrences. Consider again two neurons A and B, and let M be the number of non-

overlapping occurrences of the event E = A[k]B. Recall that N is the total number

of all occurrences of E discussed in the last sub-section. Sastry and Unnikrishnan

(2010) used iterative methods to calculate the mean and variance of M and proposed

a conservative testing procedure based on Chebyshev inequality. In contrast, we pro-

vide a complete characterization of the distribution of M and compute its moment

generating function, which provides expression for moments of all order. This char-

acterization also allows one to simulate the distribution of M easily. We also suggest
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a simple approximation to the distribution. We can partition N as follows: consider

the jth non-overlapping occurrence of E, and let Rj be the number of episodes of E

that occur between the (j − 1)th and jth non-overlapping episodes. We illustrate the

notion of non-overlapped episodes in Figure 2.2. We have the following.

Proposition II.1. N has the same distribution as

N = M +
M∑
j=1

Rj (2.1)

Further, the Rj’s are iid binomial(k, PE) random variables and are independent

of M . The cumulative distribution function (CDF) or the probability mass function

(pmf) of M cannot be obtained analytically. However, we can readily compute the

moment-generating function and hence all the moments of M . The mean and variance

can be obtained directly. Taking expectations of both sides of Equation 2.1, and using

the independence assumption and the distributions of N and Rj’s, we have

E[M ] =
E[N ]

1 + E[X1]
=

L− k
1/PE + k

(2.2)

Similarly, the variance of M is

V ar[M ] =
(L− k)PE(1− PE)

(1 + kPE)3
(2.3)

=
V ar[N ]

(1 + kPE)3
(2.4)
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The moment generating function (MGF) of M can be obtained as follows:

E[exp(tN)] = E[exp(t(M +
M∑
j=1

Rj))]

= EM [EX [exp(t(M +
M∑
j=1

Rj))|M ]]

= E[exp(tM)(QE + PE exp(t))Mk]

= E[exp(M(t+ k log(QE + PE exp(t))))] (2.5)

where QE = 1− PE. Let

s(t) = t+ k log(QE + PE exp(t)).

Note that this is a one-to-one and strictly increasing function of t, so a unique inverse

exists. Denote this inverse function by g(s). (Note that g(s) has to be obtained

numerically.) Then, the MGF of M can be expressed as

E[exp(sM)] = E[exp(g(s)N)] = (QE + PE exp(g(s))L−k.

We can get the kth moment of the distribution of M by differentiating the MGF k

times w.r.t. to s and evaluating it at s = 0.

The CDF and pmf can be ‘estimated’ with good precision by Monte Carlo sampling

using the characterization of the distribution of M . We examined several other ways

of approximating the distribution of M and found a following fourth-order polynomial

function of a normal random variable (due to Fleishman, 1978) to be reasonable. The

Fleishman technique approximates the distribution of M by
∑

j ajZ
j, where Z is a

standard normal random variable and the aj’s are chosen to match the first four

moments of M . Table 2.1 provides a comparison of the quantiles of M obtained from

this method and quantiles obtained by simulating M directly. Here we use L = 100s
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and k = 50ms and different values for PE. Specifically, we simulated 1,000 replications

of A and B as independent with 5Hz firing rates, and also with dependence of B on

A (PB|A=0.2).

Table 2.1: Table showing quantiles of M from different simulations

From simulated moments of M From direct simulation of M
PB|A 0.025 quantile 0.975 quantile 0.025 quantile 0.975 quantile
0.02 27.00 51.03 27.51 51.05
0.10 156.00 204.00 155.28 200.85
0.20 298.96 359.00 297.34 356.75
0.30 423.96 489.00 421.28 488.90
0.40 531.00 596.03 532.90 597.52
0.50 627.00 692.03 627.13 693.06
0.60 710.00 776.00 709.65 777.83
0.70 783.00 850.00 781.18 849.63
0.80 850.96 914.00 849.83 916.57
0.90 912.00 971.03 909.08 975.77

From Equation (2.2), we can get an estimate of PE based on M as

P̂E =
(L− k

M
− k
)−1

, (2.6)

a non-linear function of M . We can use Taylor series to approximate its variance as

V ar[P̂M ] ≈
(1 + kPE)PA[k]B(1− PE)

(L− k)

It is of interest to compare the (asymptotic) variances of P̂E based on N with

that from just M . Let P̂N
E be the estimator based on N (all the episodes) and P̂M

E

be based on M (non-overlapping). The ratio of the asymptotic variances is

Relative Efficiency =
1

1 + kPE
. (2.7)

Note that this ratio is independent of L. Further, it decreases as k or PE get large,

suggesting a greater loss in efficiency when one restricts attention to M in these cases.
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Of course, these are also the cases where the number of occurrences will be large, and

the computational efficiency is greater in using non-overlapping occurrences. Thus,

we lose more efficiency as k or PE or both gets large. Relative efficiency seems to be

independent of L since the efficiency of both the estimators increases with L. When k

or PE are large, we lose the efficiency of the estimators but in turn gain computational

efficiency by computing non-overlapping occurrences, M instead of total occurrences,

N . In Tables 2.2 and 2.3, we calculate the number of overlapped episodes along with

the relative loss of efficiency of the estimators for different values of PE and k.

Table 2.2: Total, non-overlapped, overlapped occurrences and loss of efficiency calcu-
lated from the theoretical expressions with L=200s

Expected # Occurrences (calculated theoretically)
k PE Total Non-overlapped Overlapped Loss of Efficiency

0.0005 99.99 99.75 0.24 0.9975
5 0.0010 199.99 199.01 0.98 0.9950

0.0100 1999.96 1904.72 95.24 0.9524

0.0005 99.98 97.54 2.44 0.9756
50 0.0010 199.95 190.43 9.52 0.9524

0.0100 1999.51 1333.01 666.50 0.6667

0.0005 99.95 95.19 4.76 0.9524
100 0.0010 199.90 181.72 18.18 0.9091

0.0100 1999.01 999.51 999.50 0.5000

0.0005 99.88 88.78 11.10 0.8889
250 0.0010 199.75 159.80 39.95 0.8000

0.0100 1997.51 570.71 1426.80 0.2857

Both the simulation and theoretical results are for L = 200s and all the results

are shown for fixed L since both the number of overlapped occurrences and loss of

efficiency does not change with L. As we increase k or PE the number of overlapped

episodes increases and thus we gain computational efficiency at the cost of loss of

efficiency in estimation. A confidence interval for M given in Table 2.1 can be di-

rectly inverted to get a confidence interval or test of hypothesis for PE and hence the

strength s. To demonstrate this, we simulated two neurons A and B with a variety
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Table 2.3: Total, non-overlapped, overlapped occurrences and loss of efficiency calcu-
lated from 1000 replications of direct simulation with L=200s

Expected # Occurrences (calculated for 1000 replicates)
k PE Total Non-overlapped Overlapped Loss of Efficiency

0.0005 100.36 100.14 0.22 0.9989
5 0.0010 200.76 199.97 0.79 0.9842

0.0100 2001.29 1924.05 77.24 0.8175

0.0005 100.29 97.78 2.51 0.9831
50 0.0010 199.68 190.39 9.29 0.9544

0.0100 2000.78 1341.92 658.86 0.6093

0.0005 99.71 94.94 4.77 0.9400
100 0.0010 197.76 180.27 17.49 0.8939

0.0100 2001.68 1005.33 996.35 0.5540

0.0005 99.88 88.93 10.95 0.8637
250 0.0010 199.59 159.98 39.61 0.8506

0.0100 1998.27 572.93 1425.34 0.1801

of connections strengths as shown in Table 2.4. For each simulation, we obtained a

count of the non-overlapping occurrences of the episode A[k]B, which we used to es-

timate PE. Table 2.4 shows the empirical coverage probabilities which are very close

to the true value of 0.95. Figure 2.3 shows the confidence intervals obtained for 100

replications at two different connections strengths 0.005 and 0.025.

We can also estimate the total number of occurrences, N from the non-overlapping

occurrences, M . We know E(N) = (L− k + 1)PE and we can estimate PE from the

non-overlapping occurrences, M . Then the estimated number of total occurrences N̂

will be:

N̂ = (L− k + 1)P̂M (2.8)

We simulated a spike train data for 6 seconds and calculated the number of total

occurrences, N and nonoverlapped occurrences, M . Figure 2.4 shows a quantile-

quantile plot (QQ plot) of the actual number of total occurrences, N and estimated

number of total occurrences, N̂ .
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Table 2.4: Estimated strength of functional connection A[k]B (1000 replications)

Sample coverage

PB|A P̂B|A probability of P̂B|A
0.005 0.0052 0.946
0.010 0.0103 0.958
0.025 0.0253 0.941
0.050 0.0501 0.959
0.080 0.0802 0.959
0.100 0.1002 0.956
0.120 0.1204 0.950
0.150 0.1503 0.951
0.180 0.1801 0.935
0.200 0.2003 0.938

2.2.4 Detecting Active Connections

Consider again two neurons A and B. If an excitatory connection is present,

PA[k]B > PA × PB; for an inhibitory connection, PA[k]B < PA × PB. We will restrict

attention to the excitatory case as the arguments for the inhibitory case are analogous.

The simplest question is to ask if the number of observed episodes (based on N

or M) is larger than what one would expect under “randomness”. This can be

formulated as testing the null hypothesis PA[k]B = PA × PB against the alternative

PA[k]B > PA×PB. If we let S = PA[k]B/PAPB, the question becomes testing H0 : S = 1

against H1 : S > 1. The value of S can be viewed as a measure of the connection

strength between A and B (Sastry and Unnikrishnan (2010)).

Researchers are typically interested in detecting only connections that are “active”

or sufficiently strong, and weak connections may not be of interest. Let S0 be a user-

specified threshold for strength. Let τ(S) = PA[k]B−SPAPB. Then, detecting S ≥ S0

is equivalent to testing the hypothesis

H0 : τ(S0) ≤ 0 against HA : τ(S0) > 0 (2.9)
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Figure 2.3: 95% confidence intervals for estimate of PB|A based on a single count of M
(100 replications) for PB|A=0.005 (A and B independent) and PB|A=0.025
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Figure 2.4: QQplot of Simulated N (with L = 600, k = 50 and PB|A = 0.2) and

Estimated N from P̂M

In other words, we decide in favor for S ≥ S0 only if the null hypothesis is rejected,

a decision that requires sufficiently strong evidence.
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2.2.5 Test Procedures

Consider first the case where one observes N , the episode count based on all oc-

currences of A[k]B. Then, we can estimate the parameters in τ(S) based on the

underlying binomial data. Denote the corresponding estimator as τ̂N(S). The com-

ponents of its variance are given by:

V ar(τ̂N(S)) = V ar(P̂A[k]B) + S2V ar(P̂AP̂B)− 2SCov(P̂A[k]B, P̂AP̂B). (2.10)

Expressions for these variances are obtained in the Appendix A. The problem is

non-trivial since P̂A and P̂B are not independent when S > 1. The estimated variance

of τ̂N(S) can be obtained by substituting the estimates for the unknown parameters

in the variance expressions. One can then test the hypothesis of an active connection

using normal approximation for the standardized statistic Z = τ̂N(S)/

√
V̂ ar(τ̂N(S)).

Note that this is a one-sided test. In practice, one can implement the test procedure

by computing the approximate lower confidence bound corresponding to the desired

α−level for τ(S0) and checking if the confidence bound does not include the value

zero.

The more technically challenging problem is to develop analogous procedures

based on M or equivalently τ̂M(S). The formulation of the problem and the struc-

ture of the estimator τ̂M(S) is exactly the same as before. However, computation of

V ar(τ̂M(S)) is now much more involved. Knowledge of the third and fourth order

moments of M , discussed in the last section, is needed for this purpose. The details

of the variance calculations are developed in Appendix C. An illustration of these

procedures is discussed in the next section. We have examined the adequacy of the

normal approximations to the test-statistics through simulation studies, and they

were adequate for the most part. See Diekman et al. (2012) for details.
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2.2.6 Multiple Testing

Recall that the proposed procedure involves testing all pairs of nodes and at all

possible values of the delay k. If either J or k is large, we have a large number of tests,

and the problem of multiple testing becomes a concern. The researcher will typically

not view this as a formal hypothesis testing problem, and so one is not interested

in controlling the overall error rate or any of the related quantities discussed in the

multiple comparisons literature. Nevertheless, preforming hundreds of thousands of

tests will lead to the detection of many false positives. Several approaches have been

proposed in the literature, such as the use of Bonferroni’s method to control the

overall error or the more recent techniques of false detection rates, etc. We used

simulation studies to examine the performance of these methods, but there was no

single approach that worked better than others. So we propose a heuristic method in

the context of specific examples in later sections and use the examples to illustrate

the idea.

2.2.7 Eliminating False Edges

When testing for connectivity among all pairs of J neurons, we are likely to

detect false edges or connections. Figure 2.5 shows the two kinds of false positives

that can occur (the dashed lines). The left panel shows the situation where we have

a pair of active connections A
k1−→ B and B

k2−→ C. This may lead to the detection

of A
k1+k2−→ C as significant even if it is not an active connection. The right panel

shows a different scenario where false edges can be detected. When there are active

connections A
k1−→ B and A

k1+k2−→ C, then B
k2−→ C may be detected as active even if

it is not. So, we need to do a second-pass through the connections that are detected

as active to determine if these are not false edges due to the above phenomenon.

Consider first the case in the left panel. We propose the following approach to

detect if A
k1+k2−→ C is a false edge, given that A

k1−→ B and B
k2−→ C are identified
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as active connections. Consider the two quantities: PAB̄C , the probability of the

episode A
k1+k2−→ C in the absence of B, and PAPB̄PC , the probability of the same

episode under the hypothesis of independence. The difference in these two quantities

provides a good measure of whether A
k1+k2−→ C is a true edge. If the probability PAB̄C

is significantly higher than PAPB̄PC , A
k1+k2−→ C is a true edge and is not a byproduct

of the episodes A
k1−→ B and B

k2−→ C occurring sequentially. Thus, consider the

following hypothesis to screen out such false edges, A
k1+k2−→ C:

H0 : ξ = PAB̄C − PAPB̄PC ≤ 0 (2.11)

H1 : ξ > 0

There are other ways to detect the false edge, but this is a simple and easily im-

plementable procedure that is especially useful when dealing with M , test statistics

based on non-overlapping occurrences. The variances of this test statistic are devel-

oped in Appendices B and D. As before, one can use the standardized test statistic

(test statistic divided by its estimated standard error) and the normal approximation

to implement the procedure.

Consider now the second case of false positive in the right panel of Figure 2.5 that

is, we have the following true edges: A
k1−→ B and A

k1+k2−→ C, and we also detected

B
k2−→ C as active. Our goal is to test if the latter is a false edge. We now use the

difference between PĀBC , the probability of the episode B
k2−→ C in the absence of A,

and the probability of the same episode under independence, namely PĀPBPC . The

hypothesis test to eliminate this type of false edge is as follows:

H0 : η = PĀBC − PĀPBPC ≤ 0 (2.12)

H1 : η > 0
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Figure 2.5: A network with 3 neurons and embedded connections illustrating two
kinds of false positives (dashed lines) that can occur

2.3 Results

2.3.1 Simulation Study

We use the example with 9 neurons and connections in Figure 2.6 and simulated

data to examine the usefulness of our results. In this example, each neuron has an

baseline firing rate of 10Hz, with three different 3-neuron connections with delays as

shown in Figure 2.6. We varied the connectivity strengths of the 7 edges (connections)

at values of S ranging from 1 to 40. The value of S = 1 effectively has no connectivity

as it implies the neurons spike according to the baseline firing rate.

For each value of S, we simulated 100 data sets from the network. To analyze

the data, we first count the total number of spikes from the 9 neurons; these can

be viewed as 1-node episodes. We then obtain the count of all possible 2-node serial

episodes with delays ranging from 1 to 200 ms. There are 81 pairwise episodes, so this

is a total of 81× 200 = 16, 200 cases. We can then test for active 2-node connections.

Since we are performing n = 81 × 200 = 16, 200 tests, we must consider the issue of

multiple testing as described in Section 2.2.6.

We implemented our 2-node detection tests as described in Section 2.2.4. More
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specifically, we used the procedure in Equation (2.9) with different values of S0 and

examined the number of significant 2-node connections. The mean number of such

connections for the 100 replicates are shown in Table 2.5. The row corresponds to

different values of the true connection S for the 7 active edges with 2 false positives

and the columns correspond to the different values of S0 used in the test procedure.

Consider first the cell corresponding to S = S0 = 1. This is the null case where

there are no connections and we test the hypothesis of independence. At significance

level is α = 0.05, we would expect about 16, 200× 0.05 or approximately 800 of these

tests to be declared as significant. We see that about 200 connections were identified

as significant, so the test procedure is conservative. If we used S0 = 2 for the case

with S = 1 (zero connections), we see that, on the average, 1 edge is falsely detected

as significant; when S0 = 3, we detect zero which is the correct value. Looking at

moderate sized values of S (ranging from 2 to 4), we can see that the tests with

S0 = 2 miss some of the 7 active edges. When the connection strength S is stronger

(above 5), the tests with S0 = 2 detect at least 7 connections. A detailed analysis

showed that all the active edges were indeed identified. For high values of S, we also

detect some false edges. An inspection of Figure 2.6 shows that we may detect two

false edges: A[100]C and G[10]D for the reasons discussed in Section 2.2.7. This was

indeed the case here. A[100]C will occur whenever an occurrence of A[50]B is followed

by an occurrence of B[50]C. Similarly, G[5]D is triggered by the same occurrence of

H[5]G and H[10]D.

As an example, we discuss the case with S = 30 for one particular simulated data

set. We applied all the test procedures, including the false-edge detection tests in

(2.11) and (2.12). Table 2.6 shows the Z-statistics for all 9 edges. We see that Zξ

for A[100]B is negative, indicating that the relatively large value of Zτ = 7.85 was

triggered by the chain A[50]B[50]C. Consider now the group of neurons D,H and

G. Similarly, the value of Zη for G[10]D is negative, but Zξ for H[30]D is large.
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This indicates that that the G[10]D edge was falsely detected, caused by the pairs of

connections H[20]G and H[30]D (see Figure 2.6). On the other hand, the Z-statistics

for all the pairs E[5]F , F [10]I, and E[15]I are large, indicating that all three pairs

of connections are active and there are no false edges here.

50 50

5

15
10

30

20

A B C

D E F

G H I

Figure 2.6: A network with 9 neurons and embedded connections. Each neuron had
an intrinsic firing rate of 20Hz. The connections had varying strengths
and time delays from 5 to 60 ms.

Table 2.5: Showing significant 2 node connections for different S0 with alpha α= 0.05

S/S0 1 2 3 4 5 10 15 20 25
1 198.51 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 208.16 1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 209.75 3.27 0.25 0.00 0.00 0.00 0.00 0.00 0.00
4 217.25 5.07 1.42 0.33 0.00 0.00 0.00 0.00 0.00
5 230.42 7.34 3.44 1.11 0.44 0.00 0.00 0.00 0.00
10 239.33 8.25 7.00 6.88 6.63 0.38 0.00 0.00 0.00
15 241.39 7.67 7.00 7.00 7.00 6.25 0.28 0.00 0.00
20 245.27 7.61 7.00 7.00 7.00 7.00 5.38 0.35 0.00
30 249.71 9.76 8.86 7.14 7.14 7.11 7.02 7.00 4.91
40 265.47 9.14 9.00 8.57 8.57 7.45 7.13 7.00 7.00
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Table 2.6: Test statistics for the initial detection test and false edge elimination test
for the 9 neuron network

Neuron1[k]Neuron2 Zτ Zξ Zη
A[50]B 15.76 - -
A[100]C 7.85 -3.70 -
B[50]C 18.04 - 15.72
E[5]F 16.15 - -
E[15]I 17.85 13.09 -
F[10]I 20.37 - 16.34
G[10]D 8.70 - -1.38
H[30]D 16.36 13.13 -
H[20]G 17.32 - -

2.3.2 Analysis of a Real Data Set

To understand and model the interactions of neurons in a network, neurobiologists

conduct experiments in which they record the activity of several neurons from a

region in the brain, sometimes simultaneously, in response to external stimuli. These

experiments are done both in-vivo (on live test subjects) and in-vitro (on cell cultures).

In-vitro experiments are conducted on networks of neurons cultured on, for example,

a petri-dish. A sophisticated tool called the multielectrode array (MEA) is used to

measure the activities of groups of neurons. The neuron cells are cultured on top of

a grid of micro-electrodes. Each electrode in the grid is capable of recording activity

of one or more neurons around it. A typical MEA setup consists of 8 × 8 grid of 64

electrodes. These electrodes, besides recording cell activity, can also inject electric

charge or external stimulus into the neurons. Some of the special areas of interest for

such experiments have been the primary motor cortex which initiate and co-ordinates

muscle activity; hippocampus or pre-frontal cortex responsible for cognitive tasks,

long term memory and retinal ganglion cells to understand vision encoding.

The output of a MEA setup is in the form of spike trains, a spike train coming

from each electrode. The analysis of these recordings involves finding regularities

in the spike train data so as to correspond these regularities with neuronal firings
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chains of an activity. The nature of the MEA data recordings makes it possible to be

expressed as an event stream after suitable pre-processing of the data. We used our

methods to analyze spike train data available in the literature on cultures of cortical

neurons (Wagenaar et al. (2006)). Their work focused on characterizing “population

bursts” in the spiking activity of the cultures. Such bursts, defined as brief periods

of time during which the firing rate of several cells or electrodes greatly exceeds the

baseline rate, are a common feature observed in cultures of many different types of

neurons. Our focus is not to characterize the bursts but rather to detect precisely

timed spiking patterns involving multiple neurons in order to estimate the strength of

functional connectivity between different neurons in the culture. Since our methods

assume that the firing rates of individual neurons are relatively stationary in the

analysis window, we selected a segment of the data that did not contain bursts.

Figure 2.7: Inferred functional connectivity in cortical culture 2-1-34 with S0 = 2.

We analyzed 120 seconds of data from culture 2-1-34. To visualize the functional

connectivity present in the culture, we show the network graphs based on our pruned

list of significant 2-node episodes. If there is a significant episode with any delay for
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Figure 2.8: Inferred functional connectivity in cortical culture 2-1-34 with S0 = 10.

a pair of neurons (i, j), we draw a directed edge i→ j connecting them. Figures 2.7

and 2.8 show the inferred network structure for two different S0 thresholds. As S0

is increased from S0 = 2 to S0 = 10 (Figures 2.7 and 2.8), the weaker connections

are no longer significant and the inferred network becomes more sparse. In this way,

our methods can be used to identify the strongest microcircuits present in the cul-

ture. Although we considered episodes with delays of up to 200ms, all the significant

episodes had delays of less than 10ms. Fast delays such as this are consistent with

the timescale of the action for AMPA, a common excitatory neurotransmitter in the

cortex.

2.4 Discussion

In this chapter, we have presented a statistical framework for discovering func-

tional connectivity of neuronal networks from spike trains based on repeating occur-

rences of temporally precise patterns of spikes. Most methods for detecting repeated

occurrences of precise spike patterns and assessing their significance are based on cor-
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relations between time-shifted spike trains (Abeles and Gerstein (1988), Tetko and

Villa (2001), Diekman et al. (2009)). In contrast, the framework developed here is

based on computationally efficient data mining algorithms for frequent episode discov-

ery. Our framework also allows one to infer episodes that represent strong interactions

among neurons. We have demonstrated the effectiveness of our methods both on sim-

ulated neuronal spike data as well as on data collected from in vitro neuronal cultures

of cortical neurons.

The strength of connection between a pair of neurons is characterized using the

conditional probability that one neuron fires after a specified delay given that the other

neuron has fired. This delay is usually caused by the axonal delay of spike propagation

and the delay at synapses due to chemical diffusion. In our analysis, we have assumed

that the inter-event time constraints which represent the time delays in neuronal

connections are constants. In general there would be variation in these delays. Also,

since we do not have complete control over which specific neurons are recorded from,

we may be seeing some connections mediated by more than one synapse. Hence, one

very useful extension for the method proposed here is to incorporate variable delays

as inter-event time constraints.

Currently, our statistical framework handles only serial episodes and the case of

directed acyclic graphs. Another interesting problem would be to extend the statis-

tical theory for the case of more general episodes which may be able to represent

additional types of connectivity graphs. For example, Viswanathan et al. (2010) has

developed a framework for determining the statistical significance of parallel episodes.

Parallel episodes can capture the co-occurrence of spikes from many different neurons

within a time-window, a type of synchronous activity of interest to many researchers

(Grun et al. (2001), Pipa et al. (2008)). We will be addressing such extensions in our

future work.

31



CHAPTER III

A Class of Models and Likelihood-Based Inference

for Assessing Functional Connectivity in Neuronal

Networks

3.1 Introduction

There are several points process models characterizing the spiking activity of single

neurons and the interactions among small numbers of neurons over time (Brillinger

(1988), Brillinger (1992), Brillinger and Villa (1997)). Kass and Ventura (2001) intro-

duced a non-homogeneous Markov interval point process in which memory structure is

determined by the inter-arrival times of successive spikes. Kass et al. (2005), Koyama

and Kass (2008) proposed the BARS method as a model-based smoother of the in-

stantaneous firing rate function. Brown et al. (2004) and Kass et al. (2005) present

their perspectives on the state-of-the-art research in the area of multiple spike trains

analysis, concerned with the development of statistical models for the joint firing

activity of many neurons over time. These papers indicate two key challenges: es-

timating the mutual dependence of the firing activity of several neurons over time

and modeling the noise induced by spike detection problems. In order to address the

former issue, Brillinger and Villa (1997) proposed a discrete time random threshold

model where the interactions among neurons are captured via their membrane po-

tential and threshold functions. Recently, Okatan et al. (2005) developed maximum

likelihood methods for estimating the functional connectivity of stochastic neuronal
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networks based on a discretization of the approach of Chornoboy et al. (1988). Truc-

colo et al. (2005) proposed a point process framework to relate the spiking probability

of neuronal ensembles to the neurons’ own spiking history, to the concurrent ensemble

activity and to extrinsic covariates, such as external stimuli and behavior. Martignon

et al. (2000) modeled the high order interactions among the measured spike trains

using log-linear models. So we see that there are many representations of univariate

and multivariate point processes in terms of conditional intensity function (see Kass

and Ventura (2001), Truccolo et al. (2005), Chornoboy et al. (1988)).

In this chapter we develop a new class of temporal (Markovian) models to char-

acterize the connections between a group of neurons and develop likelihood-based

methods of inference for the connectivity matrix and baseline firing rate. We are

able to estimate both excitatory and inhibitory connections – a challenge for other

methods in the literature (Sastry and Unnikrishnan (2010)). We also derive the

asymptotic theory for estimators of the connectivity matrix and baseline firing rates.

We illustrate our method on simulated data as well as data from cultures of cortical

neurons.

The chapter is organized as follows. In Section 3.2.1, we develop the framework

and the model. We discuss the estimation method in Section 3.3. The corresponding

asymptotic properties of the parameters are described in Section 3.3.2. In Section

3.4.1 and 3.4.2 we use a simulated network of neurons and illustrate the usefulness of

the methods. We also describe the application of the results to multi-electrode array

data from cortical cultures in Section 3.4.3.

3.2 A Class of Models

The formulation of the model in discrete time follows the set up in the last chapter.

We assume the intervals between discrete time points to be a small enough so that

there is at most one spike in an interval. We observe the processes over a period of
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time, and suppose there are L intervals during this period. Let J be the number of

neurons in the network. Let Xj(t) be the binary random variable with Xj(t) = 1 if

neuron j fires at time t and Xj(t) = 0 otherwise, for t = 1, ..., L and j = 1, ..., J .

3.2.1 Conditional Probability and Joint Likelihood

Let Ht denote the spike train sequence up to time t, namely {Xj(s), s ≤ t, j =

1, · · · , J}. Let pj(t + 1|Ht) denote the conditional probability of the firing of the

jth neuron at time t + 1 given the history of firing of all the neurons up to time

t. This conditional probability depends on a J × 1 vector b, the set of baseline

firing coefficients, and a J × J connectivity matrix W . The (i, j)th entry wi,j of the

connectivity strength matrix W represents the connectivity or the influence of neuron

i on neuron j.

Let τj(t) denote the last firing time of neuron j before time t, defined formally as

τj(t) = max{1 ≤ s < t : Xj(s) = 1}.

Then, our class of models are defines by the conditional probability

pj(t+ 1|Ht) = P{Xj(t+ 1) = 1|Ht} = F
( J∑
i=1

wijg(Xi(τj(t) : t]) + bj

)
, (3.1)

where F (x) is any continuous, increasing cumulative distribution function (CDF) with

x ∈ (−∞,+∞) andXi(τj(t) : t] denotes the set of random variables (Xi(τj(t), ..., Xi(t))

for i, j = 1, ..., J , and g(·) is some function that maps this set of random variables to

the real line. We discuss some specific examples of g(·) below. We assume that the

spike train for the jth neuron at time t + 1, Xj(t + 1) is dependent on the spiking

history only until time t that is on Ht. In other words, Xj(t+ 1)|Ht is conditionally

independent of Xi(t+ 1)|Ht for all j 6= i.

The above defines a class of models for different choices of F (·) and g(·). Each
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model specifies how the spiking probability of the jth neuron depends on the past

spiking history of itself and of the other neurons to which connect it is connected,

as dictated by the connectivity matrix W . The influence is mediated through the

function g(·). If the jth neuron is not connected to other neurons in the network,

i.e., wij = 0 for all i, then neuron j will have a constant baseline firing rate of bj.

If wij > 0, then a spike of i leads to an increase in the spiking rate of j; wij < 0,

then the spikes of i have an inhibitory effect on j. Turning to the diagonal terms,

if wjj < 0, the neuron j is refractory while wjj > 0, neuron j is self-excitatory and

can display a bursting behavior. We note that discrete stochastic models similar to

Equation (3.1) has been proposed in the literature (Rigat et al. (2006), Truccolo et al.

(2005) and Chornoboy et al. (1988)).

In the rest of this paper, we take F (x) = exp(x)/(1 + exp(x)), the logistic distri-

bution function. The results can be readily extended to other choices. Examples of

g(·) include:

1. g(Xi(τj(t) : t]) = min(Xi(τj(t)), ..., Xi(t)) which equals 1 if there is a firing of

neuron i in the interval (τj(t) : t] and zero otherwise. This corresponds to the

case in Chapter II without accounting for delays.

2. g(Xi(τj(t) : t]) =
∑t

k=τj(t)+1 Xi(k)/(t− τj(t) + 1), the average number of firings

of neuron i within the relevant interval. This model was considered in Rigat

et al. (2006) who used Bayesian methods of inference to estimate the model

parameters. In this paper, we use maximum likelihood methods.

3. g(Xi(τj(t) : t]) =
∑t

k=τj(t)+1 λ
t−kXi(k) with λ ∈ (0, 1], a model that discounts

the influence of the firing of neuron i at time k by the discount factor λt−k. So

recent firings have more weight than those in remote past. The value of λ can

also be treated as a parameter.

It turns out that the parameters wjj and bj are not identifiable in Example 1 above.
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General identifiability conditions are discussed in Lemma III.3. Example 2, or Rigat’s

model, can be viewed as a normalized version of Example 3 with λ = 1.

We will restrict attention to the choice of g(·) in Example 3, although the re-

sults readily extend to other choices also. We will also discuss estimation of λ using

likelihood methods. We illustrate this model with the help of a simple network of

2 neurons A and B, where A influences B with a excitatory connection. Figure 3.1

shows the probability of firing of neuron B which is influenced by the spikes of neuron

A. The spikes of neurons A (brown stars) and B (green solid blocks) are also plotted

at the bottom. We see that the firing probability of neuron B increases as neuron A

spikes. The probability of firing only depends on the number of spikes of the neurons

connected to that neuron. There is a exponential drop in the firing rate after each

peak and the rate of this decrease is controlled by the value of λ.

Figure 3.1: Probability of firing of Neuron B given the spikes of Neuron A (star) and
Neuron B (solid blocks) for the Discounted Model
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3.3 Likelihood-based Inference

The joint likelihood of the data for all neurons can be written as the product of

the conditional likelihood for each neuron. The first few spikes for all the neurons in

the network are generated from a Bernoulli distribution with the baseline firing rates

as the success probability. We define t′ as time when all the neurons in the network

fire at least once for the first time. t′ = mint

{∑t
s=1Xj(s) > 0 for all j

}
Thus, the joint likelihood of the model becomes

L =
J∏
k=1

T−1∏
t=t′

[
pk(t+ 1|Ht)

Xk(t+1)(1− pk(t+ 1|Ht))
1−Xk(t+1)

]

where pk(t+ 1|Ht) = P (Xk(t+ 1) = 1|Ht) is the conditional probability of spiking for

neuron k at time t+ 1 given the history of spiking until time t. We get the expression

of pk(t+ 1|Ht) from Equation (3.1).

The log-likelihood then becomes

`T = log(L) =
J∑
k=1

[ T−1∑
t=t′

Xk(t+ 1) log(pk(t+ 1|Ht))

+ (1−Xk(t+ 1)) log(1− pk(t+ 1|Ht))
]

(3.2)

Lemma III.1. The score functions are given by

∂`T
∂wij

=
T−1∑
t=t′

(Xj(t+ 1)− pj(t+ 1|Ht))g(Xi(τj(t) : t]) (3.3)

∂`T
∂bj

=
T−1∑
t=t′

(Xj(t+ 1)− pj(t+ 1|Ht))

Proof. The proof is sketched in Appendix E.

Remark: Our derivations apply to general forms of g(·) that are not necessarily as

in Equation (3.1).
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The score functions are non-linear equations, so the maximum likelihood estimates

(MLEs) that have to be solved using numerical methods. We used the iteratively

reweighted least squares (IRWLS) algorithm (Agresti (1990)) to obtain the MLEs.

Let uJ×1
j be the derivatives of the log likelihood with respect to the parameters w,

for the jth neuron with connectivity parameters wJ×1
j . Then, the ith element of uj

equals (3.4).

uij =
T−1∑
t=t′

(
Xj(t+ 1)− exp(ηj)

1 + exp(ηj)

)
g(Xi(τj(t) : t])

where ηj =
∑J

i=1 wijg(Xi(τj(t) : t]) + bj. Let W (s) be the estimate of the connectivity

matrix at the sth iterative step. Then

W
(s+1)
J×1 = W

(s)
J×1 + (I

(s)
J×J)(−1)u

(s)
J×1

where I
(s)
i,j is the sth iterative value of the (i, j)th element of the information matrix,

E
[
− ∂2`T

∂wij∂wi′j′

]
. The detailed derivation and theoretical expression of Iii′ is given

in Section 3.3.2. The estimated asymptotic covariance matrix can be obtained by

inverting the observed information matrix. The information matrix for our model is

of the form

Iii′ = E
[
− ∂2`T
∂wij∂wi′j′

]
if j = j′

= 0 if j 6= j′

The discounting rate λ is estimated by numerically maximizing the profile likelihood

for a given value of W and b.
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3.3.1 Identifiability Issues

In this section, we consider two special cases of g(·) to illustrate the broad scope

of the estimation procedure and to discuss the identifiability issue of the model (3.1).

As noted earlier, the model (3.1) is not fully identifiable if we choose g(·) to be an

indicator function g(Xi(τj(t) : t]) = I
{∑t

k=τj(t)+1 Xi(k) > 0
}

. In this setting, the

baseline parameters bi are confounded with the the connectivity strength wii and we

will not be able to estimate both separately. We refer to Lemma III.3 in Section 3.3.2

for more details of the theoretical justification with necessary and sufficient conditions

for identifiability.

The discounted model, however, is identifiable for all λ ∈ (0, 1). We illustrate

this next over an example network which includes three neurons with the configura-

tions shown in Figure 3.2. We embedded both excitatory and inhibitory connections

of equal strength affecting neuron A in the network with the connectivity strength

between the neurons B and A, wBA = −1, and same between the neurons C and A,

wCA = 1, in the network. We simulate 500 replicates of ten thousand data points or in

other words 10 seconds worth of data for each neuron. The baseline firing rates were

set to suitable values in order to ensure that the simulated firing rates are comparable

to those observed for in-vitro multi-electrode recordings. The baseline coefficient b

of each neuron is taken −2.5 so our baseline firing rates become 7.5Hz. We apply

our estimation method to analyze the simulated data. We extensively study the joint

influence of neurons B and C on neuron A. The histogram of the estimated values

of the connectivity strengths and baseline firing rate of the neuron A are shown in

Figure 3.3. The vertical black lines indicate the true value of the parameters and

the histograms show no discernible bias in estimation. Hence, the study confirms the

theoretical finding that there is no identifiability issue or in other words the influences

of B and C, even though they are of “opposite” types, are not nullifying the intrinsic

properties of A when we use the form of g(·) as shown in Example 3 of Section 3.2.1.
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Figure 3.2: A network with 3 neurons with an intrinsic firing rate of 5Hz for each.
Neuron B has an inhibitory influence on A and Neuron C has an excitatory
influence on A with equal and opposite connectivity strengths

Figure 3.3: Histograms of the Estimated connectivity strengths wBA and wCA and
baseline firing rate bA. The vertical black line shows the true value of the
parameters
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3.3.2 Asymptotic Properties of the Estimator

In order to prove the asymptotic properties of the parameters, we redefine our

parameters as

θ = (W,~b) (3.4)

with W = (wij)J×J , the matrix of connectivity strength, and ~b = (bj)j=1··· ,J , the

vector of baseline coefficients. We also introduce a parameter, ∆ ∈ N, which plays

an important technical role. It shows that the remote past before time t − ∆ has

no effect on the conditional probability of spiking at time t + 1. This ultimately

turns { ~X(t)}t∈N into a ∆−dependent process. Note that introducing ∆ is not very

restrictive. In fact, it does not seem physically possible that spikes in the remote

past (of any neuron i) would have any effect on the present state of a given neuron

j. Consider the following model:

pj(t+ 1|Ht) = F
(
bj +

J∑
i=1

wijg(Xi(τj(t) ∨ (t−∆) : t])
)
. (3.5)

The descriptions of the parameters of model are same as the model shown in

Equation (3.1) in Section 3.2.1. Let D(t) := (Dj,s(t))∆×J be a J ×∆ matrix, where

Dj,s(t) := Xj(t − s + 1), s = 1, · · · ,∆, j = 1, · · · , J . One can show by using

Equation (3.1) that {D(t), t ≥ ∆} is a homogeneous Markov chain on the state space

S := {0, 1}J×∆. Observe that Xj(t) = hj(D(t)), where hj(D) = dj,1, D = (di,j)J×∆,

and where {D(t)}t≥0 is the underlying Markov chain associated with the spike train

model. We introduce the notation:

pj(t+ 1|Ht) ≡ pj(D(t); θ), j = 1, · · · , J, (3.6)

Suppose that θ∗ = (W∗,~b∗) is the true unknown parameter.
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Proposition III.2. If |g| ≤ K, then the Markov chain D = {D(t)}t≥0 is irreducible

and aperiodic.

Proof. Since g is bounded and 0 < F (x) < 1 for all x ∈ R, we have that for some

ε0 > 0, pj(t + 1|Ht) ∈ [ε0, 1− ε0] ⊂ (0, 1), with probability one. Therefore, since the

state space is finite, it is easy to see that D ↔ D̃, for all D, D̃ ∈ S and hence the

Markov chain is irreducible. The fact that pj(t + 1|Ht) ∈ (0, 1) also implies that the

chain is aperiodic.

Note: even if one has ∆ = ∞ (i.e. infinite horizon) the chain should be irreducible

and positive (recurrent).

In our setting, the function g is trivially bounded. Therefore, the Markov chain

D is ergodic and irreducible and by the strong law of large numbers for such Markov

chains following Theorem 17.0.1 in Chapter 17 of Meyn and Tweedie (2005), we have:

1

T

T∑
t=1

f(D(t))
a.s.−→ Ef(D∗), as T →∞, (3.7)

for all f ∈ L1(J), where D∗ has the (unique) stationary distribution π of the Markov

chain.

Lemma III.3. The model (3.1) is identifiable if and only if for each fixed j =

1, · · · , J , the functions ~1, gi,j(.), 1 ≤ i ≤ J are linearly independent, where gij(D) :=

g(Di,(τj :∆]) where τj = max{0 ≤ t ≤ ∆ : Dj,t = 1} with max{∅} = 0, by convention.

Proof. The identifiability of (3.1) is equivalent to the fact that

pj(D; θ) = pj(D; θ′), for all j = 1, · · · , J, and D ∈ {0, 1}J×∆ (3.8)

if and only if θ = θ′, where θ = ((bj)
J
j=1, (wi,j)J×J).

If θ = θ′ we trivially have (3.8). Now suppose that (3.8) holds for some θ 6= θ′,

then there exists j0 ∈ {1, · · · , J} such that (bj0 , w1j0 , · · · , wJj0) 6= (b′j0 , w
′
1j0
, · · · , w′Jj0),
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but

pj0(D; θ) = pj0(D; θ′), for all D ∈ {0, 1}∆×J (3.9)

By (3.1) and the fact that F is strictly monotone (3.9) is equivalent to

bj0 +
J∑
i=1

wij0gij0(D) = b′j0 +
J∑
i=1

w′ij0gij0(D), for all D ∈ {0, 1}J×∆.

Since (bj0 , w1j0 , · · · , wJj0) 6= (b′j0 , w
′
1j0
, · · · , w′Jj0), the last equality can hold for all

D ∈ {0, 1}J×∆ if and only if the functions ~1, g1j0(.),..., gJj0(.) are linearly dependent

(as functions from {0, 1}J×∆ to R). This is a contradiction showing that θ = θ′.

In addition to the lemma we have shown in Section 3.3.1 that the model (3.1) is

not fully identifiable in certain special cases particularly if we choose g(·) to be an

indicator function as defined below:

g(Xi(τj(t) : t]) = I{
t∑

k=τj(t)+1

Xi(k) > 0}

In this setting it is obvious that the baseline parameters bi are confounded with the

the connectivity strength wii and we will not be able to estimate both separately.

Following Chapter 12 of Cappé et al. (2005) we have the following standard crite-

rion for the asymptotic normality of the maximum likelihood estimate. The standard

asymptotic properties of the maximum likelihood estimate follows from three basic

results: a law of large numbers for the log-likelihood, a central limit theorem for

the score function uij, defined in Section 3.3, and a law of large of numbers for the

observed information, Îii′ .

Theorem III.4. Suppose that:

(i) For all θ ∈ Θ, T−1`T (θ) → `(θ) Pθ∗ - a.s. uniformly over compact subsets
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of Θ, where `T (θ) is the log-likelihood of the parameter θ given the first T ob-

servations and `(θ) is a continuous deterministic function with a unique global

maximum at θ∗.

(ii)

1√
T
∇`T (θ∗)→ N (0, I(θ∗)) Pθ∗ − weakly, (3.10)

where I(θ∗) is the Fisher information matrix at θ∗.

(iii) For all 1 ≤ i, j ≤ d,

lim
δ→0

lim
T→∞

sup
|θ−θ∗|≤δ

∣∣∣− T−1 ∂2

∂θi∂θj
`T (θ)− Ii,j(θ∗)

∣∣∣ = 0 Pθ∗ − a.s. (3.11)

If in addition to (i), (ii) and (iii) if θ∗ is an interior point of θ and I(θ∗) is non-

singular, then

√
T (θ̂MLE − θ∗)

d−→ N
(
~0, I−1(θ∗)

)
. (3.12)

Remark: One may be tempted to use Theorem 12.5.7 of Cappé et al. (2005) to obtain

the the asymptotic normality of the maximum likelihood estimate. Our case, however,

involves a discrete state space where the densities (w.r.t. the counting measure) of

the one-step transition probabilities are not bounded away from zero as required in

assumption (12.2.1) of Cappé et al. (2005). Therefore, we provide an independent

proof of the desired asymptotic normality of the maximum likelihood estimate.

Proof of Theorem III.4: See page 442-443 of Cappé et al. (2005). The proof of

the conditions of Theorem III.4 are given in propositions F.1, F.2 and F.4 reported

in the Appendix F.
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3.4 Results

3.4.1 Simulated Data Analysis: Network I

In this section, we illustrate the analysis on a simulated neuronal network by

employing our implementation of model (3.1). We show a simple example network

which includes five neurons with the configurations shown in Figure 3.4. 10,000 data

points or in other words 10 seconds worth of data were generated for each neuron. The

baseline firing rates were set to suitable values in order to ensure that the simulated

firing rates are comparable to those observed for in vitro multi-electrode recordings.

The baseline coefficient b of each neuron is taken−3 so our baseline firing rates become

approximately 5Hz. We embedded both excitatory and inhibitory connections in the

network with the connectivity strengths ranging between (−2, 2) in the network.

The red arrows in Figure 3.4 shows the inhibitory connections and the black arrows

shows the excitatory connections. We apply our estimation method to analyze the

simulated data. The true and estimated value of the connectivity matrix and of the

network parameters are shown in Figure 3.5. Figures 3.7 show the correlation matrix

calculated theoretically from Lemma G.1 and from simulated data. As we can see it

is block diagonal in nature. It means that the connectivity strengths of the neurons

influenced by the same neuron could be correlated.

We estimate the baseline coefficients, b as well as the connectivity strength ma-

trix, w from the simulated network data. We ran 100 replications of the simulated

network. Figure 3.6 shows the results of these 100 replicates. In this figure we show

25 boxplots of the estimated connectivity strength matrix W of simulated network

with red lines corresponding to actual values of W . We observe that the width of the

boxplots for inhibitory connections are much wider than the width of the boxplots

with excitatory connections indicating that estimation of the inhibitory connections

are much harder. We empirically calculated the coverage probabilities of the corre-
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Figure 3.4: Simulated Network I: A network with 5 neurons with an intrinsic firing
rate of 5Hz for each

sponding 95% confidence intervals based on these 100 replications. We calculated

the 95% confidence intervals for the baseline coefficients for each neuron. Figure 3.8

reports the 95% confidence intervals of three values of our parameters corresponding

to b = −3 (baseline firing coefficient) and connectivity strength of w = 0 and w = 2

respectively. We observe that the standard errors of w = 2 are much smaller than

those of w = 0 and w = −3. This is because the strength of the signal is much

stronger for an excitatory connection and it is more difficult to estimate an inhibitory

connection as well as detecting a false edge. The estimated baseline firing rates for

the Discounted Model are reported in Table 3.1. We report the empirical coverage

probability of each parameter of the W matrix in Table 3.2. These results are gener-

ated using 100 replicates of data each with L = 104 or 10 seconds sample points from

the network shown in Figure 3.4.

We apply the profile likelihood methods to estimate the discounting rate λ. We

initialize λ at a value within the range of (0,1). We iteratively estimate λ and the

connectivity strength matrix, w and choose that value of λ where the profile likelihood

is maximized. Figure 3.9 shows the profile likelihood for the Discounted model with

different λ. We simulated data from model (3.1) with discounting rate λ = 0.5. We
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Figure 3.5: Left: The actual connectivity matrix of network B Right: Estimated
connectivity matrix from 10s worth of data

Figure 3.6: Boxplots of the estimated connectivity strengths W of simulated network
with red lines corresponding to actual values of W
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Figure 3.7: Correlation Matrix from theoretical calculation (left) and Simulated Data
(right) for the Discounted Model

estimate the profile likelihood at each value of λ chosen and we get λ̂=0.5 where the

likelihood was maximum.

Table 3.1: Estimated baseline firing rates with their standard error for the Discounted
Model

Neuron 1 2 3 4 5
Baseline Parameter −3.00 −3.00 −3.00 −3.00 −3.00

Estimated Baseline Parameter −3.08 −2.94 −3.03 −3.04 −2.97
Standard Error 0.07 0.06 0.06 0.06 0.06

Table 3.2: Coverage probability of each parameter of the W matrix for 100 replicates
for the Discounted Model with L = 104

(i,j) 1 2 3 4 5
1 0.93 0.97 0.96 0.94 0.93
2 0.92 0.93 0.97 0.96 0.94
3 0.96 0.96 0.95 0.90 0.95
4 0.93 0.93 0.95 0.95 0.94
5 0.91 0.95 0.93 0.95 0.97
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Figure 3.8: Confidence Intervals of W = −3, 0, 2 respectively for 100 replications
with L=104

Figure 3.9: Profile likelihood of λ for the Discounted model with the maximum at
λ̂=0.5
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3.4.2 Simulated Data Analysis: Example Network II

In this section, we illustrate that our method works for more complicated net-

works successfully. We simulated a network having different embedded connectivity

strengths and functional relationships. We illustrate an example of a 25 neuron net-

work with number of possible configurations shown in Figure 3.10. Moreover, twenty

thousand data points or 20 seconds worth of data was generated for each neuron by

implementing Equation (3.1). The baseline firing rates, similarly, were set to suitable

values in order to ensure that the simulated firing rates are comparable to those ob-

served for in vitro multi-electrode recordings. The baseline coefficient b of each neuron

is taken −2.5 so our baseline firing rates become 7.5Hz. We embedded both excitatory

and inhibitory connections in the network. The connectivity strengths between the

neurons, w, ranges from (−2, 2) in the network. We estimate the baseline coefficients,

b as well as the connectivity strength matrix, w from the simulated network data.

We observe that both the excitatory and inhibitory connections are estimated accu-

rately. We also calculated 95% confidence intervals for the baseline coefficients for

each neuron. The estimate and standard error of the baseline coefficient of a neuron,

arbitrarily chosen from the network, are reported as −2.49 and 0.07 respectively.
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Figure 3.10: Simulated Network II: A network with 25 neurons and embedded con-
nections. Each neuron had an intrinsic firing rate of 7Hz.

 

 

  Connectivity Strength Matrix W            Estimated Connectivity Strength Matrix W 

 

Figure 3.11: Left: The actual connectivity matrix of network B Right: Estimated
connectivity matrix from 20s worth of data
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3.4.3 Application to Cultured cortical Neurons

Wagenaar et al. (2006) made available to the public an extensive set of multielec-

trode array (MEA) recordings from cultured cortical neurons. Half-hour recording

sessions were performed across 58 different cultures during their first five weeks of

development. Wagenaar et al. (2006) focused on characterizing “population bursts”

in the spiking activity of the cultures. Such bursts, defined as brief periods of time

during which the firing rate of several cells or electrodes greatly exceeds the baseline

rate, are a common feature observed in cultures of many different types of neurons.

Here, our focus is not to characterize the bursts but rather to detect precisely timed

spiking patterns involving multiple neurons. From these patterns we can estimate the

strength of functional connectivity between different neurons in the culture.

3.4.3.1 Data Pre-Processing

We began our analysis with culture 2-1-34, meaning the first culture from the

second batch after 34 days in vitro (DIV). This culture was “densely” plated with

approximately 50,000 cells, and on DIV 34 was characterized by Wagenaar et al.

(2006) as having bursts of fixed size, with a frequency of between 2 and 10 bursts per

minute. The input data for our analysis were the timestamps of the spikes recorded on

56 different electrodes (we did not work with the raw voltage waveforms themselves).

For our analysis we discretized the time axis with a bin size of ∆=1 ms. To

identify bursts we used the array-wide spike detection rate (ASDR) measure, defined

in Wagenaar et al. (2006) as the number of spikes per unit time summed over all

the electrodes in the array. Averaged over the entire 30 minute recording, the ASDR

for a 100 ms window in culture 2-1-34 was about 20. We considered the culture to

be bursting anytime the ASDR in a 100 ms window exceeded 50, corresponding to

a 2.5-fold increase over the average. For example, we will consider the spikes in the

first 120 seconds of recording from culture 2-1-34. In the raster plot shown in Figure
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3.12, bursts are visible at around 10 and 100 seconds. In Figure 3.13, we see that the

ASDR greatly exceeds the threshold of 50 during these bursts.

Figure 3.12: Spike raster of first 120 seconds from culture 2-1-34.

Figure 3.13: ASDR (window size 100 ms) of first 120 seconds from culture 2-1-34.
Burst threshold of 50 shown in red.

To obtain sections of the data suitable for our analysis, we looked for 20 second

stretches which did not contain any windows that exceeded the threshold. Addi-

tionally, we required these 20 second segments to begin and end at least 2 seconds

away from any window that exceeded the threshold (this was to avoid including any

windows that happened to catch the very beginning of a burst, as well as the brief
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periods of extremely low spiking activity that appear to occur immediately following

a burst). The first 120 seconds contained one such segment (60 to 80 seconds). In the

30 minutes of data from culture 2-1-34, we found 63 suitable segments. We analyzed

each of these segments individually.

3.4.3.2 Detecting Functional Connectivity over Time

In each segment, we fit our discounted model and estimate the connectivity

strengths as well as the baseline firing rates of the neurons in the culture. We use 16

neurons from the culture (out of 56). These 16 neurons were chosen based on their

consistent firing rates in all the 63 time segments. We also calculated 95% confidence

intervals for each strength ŵ in each segment. If the confidence limits of ŵ do not

cover 0, then we considered that strength to be significant in that segment. We re-

peated this for each strength of pair of neurons and each segment. Based on the set

of significant connections, we plotted the estimates of the connectivity strength with

their corresponding 95% confidence interval in Figure 3.15.

We study the networks for 6 equally spaced time points in Figure 3.16 to visu-

alize the functional connectivity present in culture 2-1-34. This indicates that the

connectivity in the culture is still evolving. Overall, our results are consistent with

the patterns reported in a Diekman et al. (2012) and also in Rolston et al. (2007).

Specifically, there are thirteen connections mentioned in Rolston et al. (2007), six

of them were also found to be significant in our analysis. We show the connections

which were significant in at least 60 out of 63 (95%) of the time segments in Figure

3.14. We detected 16 connections which were consistently significant in most (95%)

of the 63 time segments and most of these connections are reported in Diekman et al.

(2012) and Rolston et al. (2007). But the connections shown in red arrow in Figure

3.14 were not reported in any of the previous studies of the data. We know that

the data have a lot of bursts and thus the new connections found in our method are
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mostly self exciting properties that are intrinsic to the data.

Figure 3.14: Estimated network from our discounted model with black edges previ-
ously reported in literature and the red edges are new findings

Figure 3.15: Estimates of connectivity strength parameter (which was 95% times sig-
nificant among the 63 segments) with confidence intervals superimposed
with the mean connectivity strength.
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Figure 3.16: The evolving functional connectivity in culture 2-1-34.

3.5 Discussion

In this chapter we introduced a new class of temporal models for the analysis of

multiple spike trains recordings. We adopted a Markovian dependence structure over

time resembling some of the main features of the spiking process following the lines of

Kass and Ventura (2001) and Rigat et al. (2006). A distinctive feature of our approach

is that the network structure is modeled explicitly as one of the unknown parameters

for the network effects. The network connectivity is explained by a regression term

including the available fixed-time covariates.

We model the relationships between the network coefficients, the past history of

the spiking process and the firing probabilities of the neurons. The firings recorded
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within each inter-spike time of a given neuron are weighted using their arrival times

which means that the spikes in recent past has more weightage than the spikes in

remote past. Also, multiple spikes of a neuron has more weightage than a single spike

of a neuron.

Although the exponent of the conditional probability function (3.1) is linear in

the model parameters, the logit link implies a symmetric saturation of the spiking

probability with respect to the input process. In fact, since the logistic density is a

symmetric bell-shaped curve, the fluctuations of the network activity produce small

changes of a neuron’s firing probability when the the conditional probability function

(3.1) is far from zero and larger changes when it is close to zero.

We also derived the asymptotic theory for the estimators under some assumptions.

Our inference methods are shown to be considerably less complex than other com-

parable methods. Currently, our model has no concept of delay between the neurons

and a interesting problem would be to extend the theory for the case of more general

model with delays which may be able to represent additional types of connectivity

graphs. We will be addressing such extensions in our next chapter and also in future

work.
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CHAPTER IV

Estimating Functional Connectivity and Delays in

Neuronal Networks: A Graphical Model Approach

4.1 Introduction

Neuroscience can be broadly described as the study of the physiology, structure

and function of the nervous system, consisting of the brain and nerve pathways run-

ning throughout the body. The nervous system is responsible for actuating response

to external stimulus. The macro effects of the nervous system depend on individual

cells called neurons. Their anatomical structure has long tails (axons) for sending sig-

nals and tree like proliferations (dendrites) for receiving signals. Using the neuronal

signals, we can study how the signals travel down the axon, how they are integrated

in dendrites, etc. The interaction of neurons in a network followed by interaction of

networks is another problem of potential interest.

Existing literature in neuroscience has focused on studying the electrophysiological

and anatomical features of the cells constituting the nervous system. There are also

detailed studies on the micro-level understanding of each cell in a neuronal network.

However there is little literature on how these cells interact to form a neuronal circuit

and are thus capable of producing different behaviors. Studying the neuronal network

is primarily important in order to discover the interactive principles governing the

organization of neuronal systems. Using graphical models theory, we intend to provide

a quantitative approach for the detection of associations between the neurons and thus
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deciphering the neuronal network.

Our problem can be expressed in the graphical theory framework exploiting the

correspondence between a directed graphical model and neuronal network. A di-

rected graphical model is used in a variety of domains including statistical physics,

natural language processing, image analysis and spatial statistics (Lauritzen (1996),

Whittaker (2009), Cressie (1993), Jordan (2004)). Each graph represents a class of

graphical models and thus learning a graph is a model selection problem.

We define an association graph and a directed graphical model in the following

manner. An association graph has a set of vertices, each vertex representing a vari-

able. An edge connecting two variables represents a conditional association between

them. A directed graph is denoted as G = (V,E), with vertex set V = {1, 2, · · · , p}

and edge set E ⊂ V × V . The structure of this graph encodes certain conditional

independence assumptions among subsets of the p-dimensional discrete random vari-

able X = (X1, X2, · · · , Xp), where variable Xi is associated with vertex i ∈ V . A

basic feature of the notion of a graph is that it is a visual object. It is conveniently

represented by a picture with circles used to describe a node and edges to describe

connectivity between the nodes.

In our scenario we treat the neurons as vertices and there will be an edge be-

tween them if there is functional connectivity between them. Our problem for such

a model is to estimate the underlying graph from n samples {x1, x2, · · · , xn} drawn

from the distribution specified by the likelihood of our model. The discrete random

variables Xi will denote the spike train of the ith neuron. Due to both its importance

and difficulty, the problem of structure learning for discrete graphical models has at-

tracted considerable attention. The absence of an edge in a graphical model encodes

a conditional independence assumption.

The chapter is organized as follows. In Section 4.2.1, we focus on a simple problem

of estimating the weights of the edges or in other words connectivity strength matrix
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given the knowledge about the graphical model along with the delay. In Section

4.2.3 we describe our algorithm to find the delay matrix with a grid search method

along with estimating the connectivity strength matrix for a known structure of the

graphical model. In Section 4.2.4, we focus on a discrete time graphical model with

unknown structure and the description of the parameters of the model. We illustrate

the method of estimation in Section 4.2.5. We simulate few examples of neuronal

networks in Section 4.3.1 and estimate the underlying graphical structure. We also

illustrate an application of multi-electrode array data from cortical cultures in Section

4.3.3.

4.2 Methods

We consider the problem of estimating the graph associated with a discrete stochas-

tic model in which the edges of any given node, or neuron in our case, is estimated by

performing logistic regression on each neuron. We start with a simple problem of esti-

mating the weights of the edges or in other words connectivity strength matrix given

the knowledge about the graphical model along with the delay. Then we describe our

algorithm to find the delay matrix with a grid search method along with estimating

the connectivity strength matrix for a known structure of the graphical model. Fi-

nally we focus on a discrete time graphical model with unknown structure and the

description of the parameters of the model and illustrate the method of estimation of

the edges and the delay matrix iteratively.

4.2.1 Likelihood and Estimation with Known Structure

The goal of this section is to estimate the delay given known structures, while we

do not have any parameterizations for the firing conditional probability model. The

conditional probabilities are simply taken to follow Bernoulli distribution. We derive

the likelihood of the network and estimate the parameters assuming that we have
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information about the edges of the full network. We define Xt as a binary random

variable which can take values 0 or 1 according to if the neuron X has fired at time t

or not with probability of firing PX for all t. We assume a simple Bernoulli model for

each neuron in the network and assume that if a neuron A is influenced by another

neuron it could increase the firing probability of neuron A after a delay of d time

units.

To describe the dependence, consider two neurons A and B with a one-directional

structure: A influences B. We say that the episode E = A[d]B occurs if a firing of

A is followed by a firing of B after d time units. If A and B are independent, the

probability of observing A[d]B is just PA×PB. However, if the firing of A leads to an

excitation of neuron B and it is more likely to fire after d time units, then P (A[d]B)

will be higher. Similarly, if the effect is inhibitory, it will be lower. Neurons have

a particular synaptic delay depending on the neuro-transmitter they have, so one

neuron typically affects another neuron which is connected to it after some delay.

For simplicity, we will assume that the time delays between the neurons are fixed

at a given value d. This is what is typically done in existing literature (Sastry and

Unnikrishnan (2010)). In this section, we assume that we know the delay matrix

D. In practice, one will analyze the data by iteratively estimating the delay matrix

and the connectivity strength matrix and then combine the evidence for dependence

across the values of d for a given pair of neurons. These results are shown in later

sections of this chapter.

The likelihood for a generic network will be of the following form:

L(data|θ) =
n∑

(i,j)=1

V∑
v=1

cvij(θvij log(θvij) + (1− θvij)log(1− θvij)) (4.1)

Here, (i, j) = 0 or 1 and V is the set of nodes i.e. {A,B,C}. cvij ’s are functions of

the binary variables xvt which can take values 1 or 0 according to neuron v has fired
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in time bin t or not. The θvij ’s and cvij ’s are function of d here. In Section 4.2.3 we

show that we estimate the time delay d by maximizing the given likelihood.

4.2.2 An Illustrative Example

Figure 4.1: A network with 3 neurons and embedded connections. Each neuron had
an intrinsic firing rate of 5Hz. The connections had varying strengths and
time delays from 1 to 2 ms. The delays are indicated by the numbers next
to the arrows.

We show a simple example network of three neurons to explain our model. Figure

4.1 shows the network of three neurons, A, B and C with delays of 2ms, 2ms and 1ms

for edges A→ B, B → C and A→ C respectively. The figure on the right panel shows

the network from the temporal point of view. For this example network we denote

xA, xB and xC as realizations of At, Bt and Ct respectively which could take values

0 or 1. We define θA = P (At = 1) and θB and θC are defined similarly. Moreover, we

define θBi
= P (Bt = 1|XAt−2 = i) and θCij

= P (Ct = 1|XAt−1 = i,XBt−2 = j) where

(i, j) could be 0 or 1. We can compute the joint likelihood of the example network at

any interval as follows:

L(θ) =
n∏
t=1

P (Ct|Bt−2At−1)P (Bt|At−2)P (At)
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In general, we can write

L(θ) =
n∏
i=1

fθC (xCi
, xBi−d1

, xAi−d2
)gθB(xB, xAi−d3

)hθA(xAi
)

where

Thus, the conditional likelihood can be written as:

fθC (xCi
, xBi−d1

, xAi−d2
) = [θC11

xCi (1− θC11)1−xCi ]
xAi−d2

xBi−d1

× [θC10

xCi (1− θC10)1−xCi ]
xAi−d2

(1−xBi−d1
)

× [θC01

xCi (1− θC01)1−xCi ]
(1−xAi−d2

)xBi−d1

× [θC00

xCi (1− θC00)1−xCi ]
(1−xAi−d2

)(1−xBi−d1
)

Similarly we get the conditional likelihood of neuron B and A as follows:

gθB(xB, xAi−d3
) =

n∏
i=1

[θB1

xBi (1− θB1)(1−xBi
)]
xAi−d3 [θB0

xBi (1− θB0)1−xBi ]
(1−xAi−d3

)

and

hθA(xAi
) =

n∏
i=1

[θA
xAi (1− θA)(1−xAi

)]

Thus we get the joint log-likelihood of the network as:

l(θ) =
n∑
i=1

[log(fθC (xAi−d2
, xBi−d1

, xCi
)) + log(gθB(xAi−d3

, xBi
)) + log(hθA(xAi

))]

We get the MLE of the parameters by differentiating:

δl(θ)

δθ
=

∑n
i=1 xAi−d2

xBi−d1
xCi

θC11

+

∑n
i=1 xAi−d2

xBi−d1
(1− xCi

)

1− θC11

⇒ θ̂C11 =

∑n
i=1 xAi−d2

xBi−d1
xCi∑n

i=1 xAi−d2
xBi−d1
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Similarly by differentiating the log likelihood we can estimate all the parameters

of the network.

θ̂C11 =

∑n
i=1 xAi−d2

xBi−d1
xCi∑n

i=1 xAi−d2
xBi−d1

θ̂C10 =

∑n
i=1 xAi−d2

(1− xBi−d1
)xCi∑n

i=1 xAi−d2
(1− xBi−d1

)

θ̂C01 =

∑n
i=1 (1− xAi−d2

)xBi−d1
xCi∑n

i=1(1− xAi−d2
)xBi−d1

θ̂C00 =

∑n
i=1 (1− xAi−d2

)(1− xBi−d1
)xCi∑n

i=1(1− xAi−d2
)(1− xBi−d1

)

θ̂B1 =

∑n
i=1 xAi−d3

xBi∑n
i=1 xAi−d3

θ̂B0 =

∑n
i=1 (1− xAi−d3

)xBi∑n
i=1(1− xAi−d3

)

θ̂A =

∑n
i=1 xAi

n

Thus we see that the maximum likelihood estimators for the Bernoulli model (4.1)

can be obtained in closed form solutions. However, the delays are not an explicit

function of the likelihood so we cannot differentiate to get the maximum likelihood

estimators of the delays even if we assume them to be continuous. In this case if

the delays are not known we can iteratively estimate the delays and the parameter

estimates by maximizing the profile likelihood of the model. We show the details of

this procedure in the next section.
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4.2.3 Algorithm to Estimate the Delays

In this section, we assume the network structure is known but we do not know

the delay between the firings so we estimate the delays jointly by maximizing the

likelihood. We have to estimate θd’s and d’s iteratively and we choose d using a local

grid search method. The profile likelihood for a network will be of the following form:

L(data|θ̂d) =
n∑

(i,j)=1

V∑
v=1

cvij(θ̂vij log(θ̂vij) + (1− θ̂vij)log(1− θ̂vij))

Thus we get,

d̂ = argmaxd L(data|θ̂d)

=
n∑

(i,j)=1

V∑
v=1

cvij(θ̂vij log(θ̂vij) + (1− θ̂vij)log(1− θ̂vij)) (4.2)

Here, (i, j) = 0 or 1 and V is the set of nodes i.e. {A,B,C}. cvij ’s are functions of

the binary variables xvt which can take values 1 or 0 according to if neuron v has

fired in time bin t or not. The θ̂vijs and cvijs are functions of d here. We choose the

d which maximizes the given likelihood. The profile likelihood here has the form of

weighted sum of negative entropy. We can compute d from the following equation:

d̂ = argmaxd L(data|θ̂d)

However, the problem of estimating the delays becomes harder and computation-

ally intensive as the number of graphical structures grow. The time delays of the

neurons can vary from 1 ms to 200 ms depending on the neurotransmitter. We can

have at most J2 edges with J neurons in the network and that gives us J2 × 200

possibilities. Thus we implement the following hill-climbing “search” algorithm in

a discrete space of all possible delay combinations. The algorithm finds the local
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maxima in the large pool of possible delays.

The algorithm estimates the delay matrix D of a network with known structure

without evaluating the likelihood at all possible combinations of d. We first count the

number of occurrences of the episode E = A[d]B for all pairs of neurons A and B with

different values of d. We construct set S with all possible delays arranged in order of

their corresponding 2-node counts. We initialize our algorithm to that value of delay

matrix D which has the highest counts, say d(0). At the next step of our algorithm

we choose the delays which has the highest likelihood among the neighboring points.

The delay matrix, D, of a network with J neurons will be of order J × J so we select

an arbitrary (i, j) th value at a time and compare the likelihood of the neighboring

values. The neighborhood of delay d(0) is defined as points d(0) + 1 and d(0) − 1. Our

next updated value of the delay d, say d(1) will be the delay with the highest likelihood

among the neighborhood points. If we get stuck in a local maximum then we jump

out of the neighborhood to the second highest count from the set S and similarly

our algorithm repeats the same steps until our results converge. The algorithm is

described next.
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Algorithm 1: Algorithm to estimate delay D

Construct set S with all possible delays arranged in order of their corresponding
2-node counts
Initialize delay d at dinitial, say which has the highest counts in set S and value =
1
while value 6= 0 do

Randomly pick a direction i
Calculate the point di having maximum likelihood within the neighboring points
of k in direction i
if di = d then

Jump to d = di′
else

Stay at d = di
end if
if di = d for all i then

Draw a random sample dr outside the neighborhood of d with probability
proportional to the 2-node counts from set S
Jump to d = dr

else
Stay at d = di

end if
if Stopping Rule then

Set value = 0
end if

end while
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We use the same simulated network in Figure 4.1 to illustrate the algorithm.

We simulated data from the network with three neurons and the given embedded

connections. Each neuron had an intrinsic firing rate of 5Hz. The connections had

varying strengths and time delays from one to two milliseconds as shown in Figure

4.1. We apply Algorithm 1 to the simulated data and run it for 2000 iterations.

Table 4.1 shows the log-likelihood values of the delays where the algorithm found local

maximums. The maximum likelihood is the one having the correct delay k = (1, 2, 2).

We see that sample path of the algorithm in Figure 4.2. The algorithm visits the local

maximums often and Table 4.1 shows the number of times each local maximum has

been visited by the algorithm. Also, Figure 4.2 shows that the true delay (denoted by

a red box) is visited multiple times along with other local maximums. We are able to

select the true delay here since it corresponds to the point with maximum likelihood.

Table 4.1: Table showing log-likelihoods of the delays of the local maximum of the
algorithm

k log-likelihood # times repeated
4 2 2 -15905.60 46
1 2 4 -15942.40 39
1 5 2 -15876.19 52
4 5 2 -16167.76 34
1 2 2 -15614.02 57
4 4 5 -16487.53 9
1 4 5 16195.95 20
4 2 4 -16233.98 25

68



Figure 4.2: Sample Path of D for different iteration of the algorithm. The red square
point is the true delay d = (1,2,2) used in our simulations

4.2.4 A Discrete Time Graphical Model

We have a similar setting as in Chapter III. We consider the spike from a neuron

as instantaneous and we use discrete time. Let the intervals between the time points

be small enough so that there is at most one spike in an interval. We observe the

processes over a period of time, and suppose there are L intervals during this period.

We consider there are J neurons in the network. Let Xi(t), be the binary random

variable of random spiking states, so that Xi(t) = 1 if neuron i is firing at time t

and Xi(t) = 0 otherwise. Let pi(t + 1|Ht) denote the conditional probability for our

model which denotes the probability of firing of the ith neuron at time t + 1 given

the history of firing of all the neurons till time t. The conditional probability can be

expressed as a function of the parameter vectors b, denoting the the baseline firing

coefficient and a parameter matrix W with dimensions J × J , denoting the connec-

tivity strength matrix. The baseline coefficient vector, b, will be of length J with bi
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denoting the baseline firing coefficient of neuron i. The connectivity strength matrix

W and the delay matrix D will be of dimensions J × J , with wij and dij denoting

the connectivity strength and delay time between neurons i and j, respectively. We

define the conditional probability for our model as:

pi(t+ 1|Ht) = P{Xi(t+ 1) = 1|Ht}

= F
( J∑
j=1

wij

kl∑
k=ku

κσ(k, (t− dij))Xj(k) + bi

)
(4.3)

where F is the c.d.f. of logistic distribution that is, F (x) = exp(x)/1+exp(x) and

κσ is a Gaussian kernel of the form exp{− 1
σ2 (k − (t + 1 − dij))2}. Thus we see that

the spiking probability of the ith neuron depends on the past spiking history of itself

and other neurons in the network to which it is connected. If there is no connection

between any neuron in the network then also there is active firing due to the baseline

firing parameter. Indeed, by (4.3) if wij > 0, then a spike of j leads to an increase in

the spiking rate of i. In this chapter we only consider excitatory connections.

We have a Gaussian function which has the highest probability of spiking at dij

and it decreases with normal probability both sides as we move further away from

the true delay dij. We truncated this Gaussian function at kl and ku, the lower and

upper bounds respectively. In practice we take kl = (t + 1 − dij − 3σ) and ku = t.

In our scenario the spikes at and around the true delay, dij, have more weight than

the spikes in remote past or recent past. The rationale behind this is that depending

on the neurotransmitter the signal of a neuron takes few minutes to influence other

neurons connected to it. We note that discrete stochastic models similar to Equation

(4.3) has been proposed in Rigat et al. (2006), Truccolo et al. (2005) and Chornoboy

et al. (1988) but they did not have any notion of delay.

The likelihood will be a product of conditional Bernoulli random variables. The

joint likelihood of the model can be written as the product of the conditional likelihood
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for each neuron. The first few spikes for all the neurons in the network are generated

from a Bernoulli distribution with the baseline firing rate as the success probability.

We define t′, similar to Chapter 2.4, as time when all the neurons in the network fire

at least once for the first time. t′ = mint

{∑t
s=1Xj(s) > 0 for all j

}
Thus, the joint likelihood of the model becomes,

L =
T−1∏
t=t′

J∏
i=1

[
pi(t+ 1|Ht)

Xi(t+1)(1− pi(t+ 1|Ht))
1−Xi(t+1)

]

where pi(t + 1|Ht) = P (Xi(t + 1)|Ht) is the conditional probability of spiking for

neuron i at time t+1 given the history of spiking till time t. We get the expression of

pi(t+1|Ht) from Equation (4.3). The first spike for all the neurons in the network are

generated from a Bernoulli distribution with the baseline firing rates as the success

probability. The log-likelihood becomes:

`T = log(L) =
T−1∑
t=t′

[ J∑
i=1

Xi(t+ 1) log(pi(t+ 1|Ht))

+ (1−Xi(t+ 1)) log(1− pi(t+ 1|Ht))
]

(4.4)

The model is based on the assumption that the spike train for the ith neuron at

time t + 1, Xi(t + 1), is dependent on the spiking history only till time t that is on

Ht. In other words, Xi(t + 1)|Ht is conditionally independent of Xl(t + 1)|Ht for all

l 6= i. We perform the estimation of the parameters of the model under the point

process generalized linear model paradigm. The details of the estimation is given in

the next section.

4.2.5 Likelihood and Estimation with Unknown Structure

We follow similar method of iterative reweighted least squares (IRWLS) algorithm

(Agresti (1990)) as in Chapter III for the estimation of the connectivity strengths
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and baseline parameters of this model. This method is the standard choice for the

maximum likelihood estimation of GLMs because of its computational simplicity,

efficiency, and robustness (Green (1984)). In practice we implemented Iteratively

Re-Weighted Least Squares (IRWLS) method to get the estimates of W and b. This

model can also incorporate different spiking delays with different connection strengths

between neurons.

The log likelihood of the model becomes

` = log(L) =
J∑
i=1

[ T∑
t=t′

Xi(t) log(pi(t|Ht)) + (1−Xi(t)) log(1− pi(t|Ht))
]

We can refer to Section 3.3 of Chapter III to see the detailed derivation of the

estimation of parameters. For each run of our algorithm we need to estimate the

likelihood of our model (4.4) for a given delay and the neighboring delays. In order to

estimate the likelihood we estimate our connectivity strength and baseline parameters

and plug in the estimated value of our parameters in (4.4).

The parameter σ is estimated by numerically maximizing the profile likelihood for

a given value of W , b and d. In Chapter II we have considered the inter-event time

constraints which represent the time delays in neuronal connections are constants.

In general there would be variation in these delays. The parameter σ controls the

variation of the delay d between each pair of neurons. We initialize σ at 1 for the pur-

poses of the simulation study. We iteratively estimate σ and the connectivity strength

matrix, W and choose that value of σ where the profile likelihood is maximized.
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4.3 Results

4.3.1 Simulated Neuronal Networks

In this section, we illustrate the analysis of a simulated neuronal network by

employing our implementation of model (4.3) and Algorithm 1 to estimate delay.

We show two example networks with the configurations shown in Figure 4.3. Ten

thousand data points or in other words 10 seconds worth of data were generated for

each neuron. The baseline firing rates were set to suitable values in order to ensure

that the simulated firing rates are comparable to those observed for in vitro multi-

electrode recordings. The baseline coefficient b of each neuron of each network is taken

to be −3 so our baseline firing rates become 5 Hz approximately. We embedded

excitatory connections in the network with the connectivity strengths between the

neurons, w, ranging from (0,2) in the network. We apply our estimation method to

analyze the simulated data.

We used a total number of neurons, N as 10, 20 and 30. We present the result

for the algorithm which is run for 2000 iterations. Table 4.2 shows the values of the

measures for different sizes of the two networks in Figure 4.3. Table 4.2 shows the

values of the measures for different sizes of the network 2 in Figure 4.3 similarly.

We use three measures to compare the performance of the algorithm and our

estimation procedure. The measures are:

1) wdiff =
√

1
J2

∑
ij(ŵij − wij)2

2) ddiff =
√

1
J2

∑
ij(d̂ij − dij)2

3) δ = 1
J2

∑
ij 1[sign(ŵij)− sign(wij)] where sign(x) = 1 if x 6= 0 and 0 if x = 0

The measures wdiff and ddiff are used to measure the deviation of the estimated

parameters from the true parameter and the discrepancy measure δ is a function of

both false positives and false negatives. We run the algorithm and at each iteration it
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Figure 4.3: Simulated Neuronal Networks

selects the delay and connectivity strength having the maximum likelihood among it’s

neighbors. At the end of the procedure the estimated delay and connectivity strength

matrix corresponds to the value having maximum estimated likelihood among all the

visited delays. We compare the performance of the algorithm for different networks

using these three measures.

Table 4.2: Showing the difference in connectivity strength and delay

Size of Network wdiff ddiff δ
10 neurons 0.0034 0 0

Network 1 20 neurons 0.0543 0 0
30 neurons 0.1119 0.1624 0.13
10 neurons 0.0076 0 0

Network 2 20 neurons 0.0781 0 0
30 neurons 0.1956 0.3671 0.14

We observe that the algorithm detects the correct network with the true delays

for network size 10 and 20 from Table 4.2. But the performance of the algorithm

gets worse with the increase in the number of neurons in the network if we fix the
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number of iterations. Thus, for a fixed number of iterations Table 4.2 shows that the

performance of the algorithm gets worse with the increase in number of neurons in

the network. Also, the algorithm becomes computationally intensive as the number

of neurons and the graph complexity increases as shown in the network having 30

neurons. As a result we cannot run the algorithm for larger of iterations. In such a

setting the algorithm fails to search a reasonable span of possible values of the delay

and thus loses its efficiency. Hence for complicated networks having a large number

of neurons, we partition the graph into sub-clusters consisting of smaller number of

neurons in order to increase the efficiency of the algorithm. For our endeavor we use

the graph partitioning methods described in the next section.

4.3.2 Graph Partition

Graph Partition via clustering is one of the most widely used techniques for ex-

ploratory data analysis, with applications ranging from statistics, computer science,

biology, social sciences and psychology. In virtually every scientific field dealing with

empirical data, people attempt to get a first impression on their data by trying to

identify groups of similar behavior in data. The intuition of clustering is to separate

nodes in different groups according to their similarities. For data given in form of

a similarity graph, this problem can be restated as a partition of the graph such

that the edges between different groups have a very low weight and the edges within

a group have high weight. Thus, a partition of the graph should be such that the

points in different clusters are dissimilar from each other and the points within the

same cluster are similar to each other. In this section, we will see how a special form

of spectral clustering called the normalized cut can be derived as an approximation

to such graph partitioning problems.

We follow the methods of Shi and Malik (2000) which propose a normalized cut

criterion for segmenting a graph. The normalized cut criterion measures both the total
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dissimilarity between the different groups as well as the total similarity within the

groups. Shi and Malik (2000) show that an efficient computational technique based

on a generalized eigen value problem can be used to optimize this criterion. We have

applied this approach to our scenario thus partitioning the neuronal graphical model

and found the results to be very encouraging. We also tried implementing other

forms of spectral clustering such as Ng et al. (2002) and found that the normalized

cut method works best in our scenario.

A graph G = (V,E) can be partitioned into two disjoint sets, A, B, A
⋃
B = V ,

A
⋂
B = ∅ by simply removing edges connecting the two parts. The approach

is related to the graph theoretic formulation of grouping. The set of points in an

arbitrary feature space are represented as a weighted directed graph, where the nodes

of the graph are the points in the feature space, and an edge is formed between every

pair of nodes. The weight on each edge, ωi,j, is a function of the similarity between

nodes i and j in Shi and Malik (2000). We use the 2-node counts matrix instead

of the weights for each edge. In grouping, we seek to partition the set of vertices

into disjoint sets V1, V2, · · · , Vm, where the similarity among the vertices in a set Vi

is high and similarly across different sets Vi, Vj is low. The degree of dissimilarity

between these two pieces can be computed as total weight of the edges that have been

removed. In graph theoretic language, it is called the cut and is defined as:

Cut(A,B) =
∑

u∈A,v∈B

ωu,v (4.5)

The optimal bipartitioning of a graph is the one that minimizes this cut value.

Although there are an exponential number of such partitions, finding the minimum

cut of a graph is a well-studied problem and there exist efficient algorithms for solving

it (Shi and Malik (2000)). We apply the normalized cut partitioning algorithm to
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neuron network data. Then, we implement the Algorithm 1 for each of the subgraph

separately. Finally, we consider that ŵij, combining the results of all the subgroups,

as the final estimate of the connectivity strength between neurons i and j.

Figure 4.4: Partitioning of Neuronal Networks consisting of 50 neurons into two and
three clusters respectively

We implement the normalized cut algorithm on an example network consisting

of 50 neurons shown in Figure 4.4. We calculate the matrix of 2-node counts for

the example network. Using the delay corresponding to the maximum 2-node counts
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we compute a matrix of 2-node counts and use it as the weight matrix, ωi,j, for the

partitioning. Figure 4.4 shows the network of neurons after and before partitioning

using the normalized cut method. We partition the network into two and three

clusters respectively and apply our algorithm to each of the clusters separately. We

observe that the normalized cut method is able to find the inherent clusters in the

data based on the total dissimilarity between the different groups as well as the

total similarity within the groups. There are three clusters present in the original

data with the edges between different clusters having a very low weight and the

edges within a cluster having high weight. We apply the normalized cut method

and specify the number of clusters as two and three respectively. The clustering

method successfully isolates the most distinct cluster among the three clusters when

we specify two clusters while implementing the clustering. We present the results of

the combined connectivity strength from different clusters in Table 4.3. We are able

to analyze larger number of neurons after the partition though we lose some of the

connections due to the partitioning.

Table 4.3: Showing the differences in combined connectivity strength and delay for
different networks presented in Figure 4.4

Type of Network wdiff kdiff δ
50 Neuron Network (2 clusters) 0.0104 0.0877 0.08
50 Neuron Network (3 clusters) 0.0621 0.1272 0.13

We also apply the normalized cut method on the network with 30 neurons shown

in Figure 4.3 of Section 4.3.1. We divide 30 neuron network data into two clusters

consisting of 18 and 12 neurons such that the graph is the one that minimizes the cut

value shown in Equation (4.5). Then we implement the Algorithm 1 for each of the

clusters separately. Finally, we consider the connectivity matrix Ŵ , combining all the

clusters, as the final estimate of the connectivity strength. We present the results of

the combined connectivity strength from the two subgroups in Table 4.4. We observe
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that the performance of our algorithm improves after the partition though we lose

some of the connections due to the partitioning. We conclude that the algorithm

performs better if there is some inherent clustering in the network. However, we can

apply our method to networks with chain structures without any clustering as well.

Table 4.4: Showing the differences in combined connectivity strength and delay for
different networks presented in Figure 4.3

Type of Network wdiff kdiff δ
30 Neuron Network 1 0.0618 0.1425 0.06
30 Neuron Network 2 0.0752 0.2564 0.09

4.3.3 Application to cultured cortical neurons

We used our methods to analyze spike train data recorded from cultures of cortical

neurons. Wagenaar et al. (2006) made these recordings publicly available, and focused

on characterizing “population bursts” in the spiking activity of the cultures. Such

bursts, defined as brief periods of time during which the firing rate of several cells

or electrodes greatly exceeds the baseline rate, are a common feature observed in

cultures of many different types of neurons. Here, our focus is not to characterize

the bursts but rather to detect precisely timed spiking patterns involving multiple

neurons. From these patterns we can estimate the strength of functional connectivity

between different neurons in the culture as well as the delay time of spiking. Our

analysis methods assume that the firing rates of individual neurons are relatively

stationary in the analysis window. Thus, for our analysis we chose a segment of the

data which did not contain bursts. We analyzed 60 seconds of data from culture

2-1-35. We partition the network data of 30 neurons into 3 subnetworks containing

11, 9 and 10 neurons respectively as shown in Figure 4.5. To visualize the functional

connectivity present in the culture, we draw network graphs based on our Algorithm

1 and estimation procedure described in Section 4.2.5. If there is a significant edge
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with any delay for an i − j pair, we draw a directed edge i → j connecting them.

Table 4.5 and Figure 4.5 shows the 58 edges that were significant for culture 2-1-35.

Table 4.5: 2-node episodes of culture 2-1-35 that were significant using Algorithm 1

# i[k]− j ŵ # i[k]− j ŵ
1 48[9]-32 1.28 30 57[6]-65 3.53
2 87[8]-32 2.15 31 65[5]-65 3.29
3 66[1]-32 2.96 32 75[6]-65 4.68
4 55[4]-48 1.42 33 84[3]-13 5.58
5 87[8]-48 2.96 34 78[8]-75 4.39
6 48[5]-14 1.57 35 78[8]-35 3.29
7 87[7]-14 2.43 36 25[2]-35 4.21
8 14[1]-56 1.01 37 27[8]-78 4.39
9 55[1]-56 3.65 38 57[8]-78 4.14
10 58[4]-56 1.21 39 78[8]-84 4.28
11 87[10]-55 2.17 40 13[3]-25 4.76
12 56[4]-87 3.75 41 22[1]-46 1.29
13 21[5]-87 2.73 42 82[1]-82 2.16
14 66[1]-87 3.05 43 34[10]-82 0.84
15 24[1]-24 2.32 44 42[3]-76 2.22
16 66[5]-24 1.08 45 34[9]-76 0.92
17 32[1]-21 3.51 46 68[4]-22 1.63
18 48[1]-21 1.93 47 86[1]-22 1.46
19 14[8]-66 1.31 48 42[3]-42 2.10
20 55[5]-66 1.80 49 34[2]-42 1.16
21 24[1]-66 1.28 50 77[4]-68 1.15
22 48[5]-58 1.80 51 86[1]-68 1.94
23 87[7]-58 2.80 52 72[1]-77 0.92
24 21[8]-58 1.80 53 77[1]-72 3.68
25 75[3]-85 2.03 54 86[4]-72 1.16
26 13[7]-27 5.27 55 68[1]-86 1.61
27 27[4]-57 5.78 56 34[2]-86 1.50
28 65[9]-57 4.87 57 22[1]-34 1.22
29 35[4]-57 4.63 58 72[1]-34 1.16

Although we considered episodes with delays of up to 50 ms, all the significant

episodes had delays of less than 10 ms. Fast delays such as these are consistent with

the timescale of the action for AMPA, a common excitatory neurotransmitter in the

cortex. Overall, our results are consistent with the patterns reported in a previous

study of precisely timed patterns in these cultures Rolston et al. (2007). Specifically,
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Figure 4.5: Functional connectivity in culture 2-1-35.
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of the thirteen 2-node patterns mentioned in Rolston et al. (2007), six of them were

also found to be significant in our analysis (68-78, 78-77, 77-48, 41-42, 42-32 and

37-38).

4.4 Discussion

In this chapter we introduced a new discrete time graphical model for the anal-

ysis of multiple spike train recordings. We defined the spiking probabilities over a

finite grid of time intervals similar to the approaches taken in Brillinger (1988) and

Brillinger and Villa (1997). We developed an iterative method to estimate delays

and connectivity strength matrices. The method is used to reconstruct the graphical

structure of the functional connectivity among a group of neurons. This delay is

usually caused by the axonal delay of spike propagation and the delay at synapses

due to chemical diffusion. In the graphical model, we have assumed that the mean

time delays in neuronal connections are constants with some variations characterized

by σ in the model.

We have shown that a technique based on generalized linear models can be used to

perform consistent model selection in binary graphical models. Our analysis applies

to the settings in which both the number of neurons and number of connectivities

between them are allowed to increase with the number of neurons in the network.

Simulation results show the accuracy of these predictions. We successfully used the

normalized cut method (Shi and Malik (2000)) for graph partitioning and apply our

method to bigger networks involving larger number of neurons, mostly not considered

in existing literature. We demonstrate the effectiveness of our method both on simu-

lated neuronal spike data as well as on data collected from in vitro neuronal cultures

of cortical neurons.

In our current algorithm we are thresholding the insignificant connectivity strengths

to zero. Thus, an interesting direction for future work is to apply l1-regularized linear
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regression to our model and thus thresholding the parameters. It would be interest-

ing to obtain estimates in this setting and compare the performance with the model

without thresholding. Ravikumar et al. (2010) have worked on estimating the graph

associated with a binary Ising Markov random field and described a method based

on l1-regularized logistic regression, in which the neighborhood of any given node

is estimated by performing logistic regression subject to an l1-constraint. We are

dealing with directed graphs while Ravikumar et al. (2010) have considered undi-

rected graphs. Furthermore, incorporating regularization methods in our modeling

framework will be another interesting area of future research.
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APPENDIX A

Derivations of Covariance of τ Based on N

In this section, we derive the covariance of the test statistic τ based on the total

number of occurrences N . We define NAB as the count of the joint occurrences of

neurons A and B. All the estimators in this section are based on the total number of

episodes NAB. N is binomial(L− k, PAB), where PAB is the probability of the event

A[k]B defined in Section 2.2.1. Thus we get V ar(P̂AB) as:

P̂AB =
NAB

L− k

V ar(P̂AB) =
PE(1− PE)

(L− k)

To compute V ar(P̂AP̂B), recall that P̂AP̂B = NANB

(L−k)2 . So, V ar(P̂AP̂B) = 1
(L−k)4V ar(NANB).

Note, however, that we are computing the variance under possible dependence, so NA

and NB are not independent. We can write:

NANB =
L−k∑
t=1

IA(t)
L−k∑
r=1

IB(r + k)

=
L−k∑
t=1

IA(t)IB(t+ k)︸ ︷︷ ︸+
L−k∑
s=1

∑
r 6=s

IA(s)IB(r + k)︸ ︷︷ ︸ .
= NAB N ′AB
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Therefore,

E[NANB] = E[NAB] + E[N ′AB]

= (L− k)PE + (L− k)(L− k − 1)PAPB

Thus, finally we get,

V ar(NANB) = V ar(NAB) + V ar(N ′AB) + 2Cov(NAB, N
′
AB)

where V ar(NAB) = (L − k)PE(1 − PE) and the calculations of V ar(N ′AB) and

Cov(NAB, N
′
AB) are done using the expressions of NA and NB.

Lastly, we compute the third term Cov(P̂AB, P̂AP̂B) as follows:

Cov(P̂AB, P̂AP̂B) =
Cov(NAB, NANB)

(L− k)3

Cov(NAB, NANB) = E(NABNANB)− E(NAB)E(NANB)

E(NABNANB) = E[
L−k∑
t=1

IA(t)IB(t+ k)
L−k∑
s=1

IA(s)IB(s+ k)

+
L−k∑
t=1

IA(t)IB(t+ k)
L−k∑
s=1

∑
r 6=s

IA(s)IB(r + k)]

= E[N2
AB] + E[NABN

′
AB]
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E[NABN
′
AB] = E[

L−k∑
t=1

IA(tIB(t+ k)
L−k∑
s=1

∑
r 6=s

IA(s)IB(r + k)]

=


E[
∑L−k

t=1

∑
r 6=t IA(t)IB(t+ k)IB(r + k)] if t = s 6= r;

E[
∑L−k

t=1

∑
s6=t IA(t)IB(t+ k)IA(s)] if t = r 6= s

E[
∑L−k

t=1

∑
s 6=t
∑

r 6=(t,s) IA(t∗)IB(t+ k)IA(s)IB(r + k)] if s 6= r 6= t.

=


E[NAB]× (L− k − 1)PB if t = s 6= r;

E[NAB]× (L− k − 1)PA if t = r 6= s

E[NAB]× (L− k − 1)(L− k − 2)PAPB if s 6= r 6= t.
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APPENDIX B

Derivations of Covariance of False Edge Test ξ

Based on N

Similarly as before, for the False edge elimination test we compute the variance

and covariance terms one by one. We compute V ar(P̂AB̄C) as follows:

P̂AB̄C =
NAB̄C

L− 2k

V ar(P̂AB̄C) =
V ar(NAB̄C)

(L− 2k)2

V ar(NAB̄C) =
PAB̄C(1− PAB̄C)

(L− 2k)

Now, we compute V ar(P̂AP̂B̄P̂C) as follows:

P̂AP̂B̄P̂C =
1

(L− 2k)6
V ar(NANB̄NC)
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Now, under H0, NA NB̄ and NC are independent. Therefore we get:

V ar(NANB̄NC) = V ar(NA)V ar(NB̄)V ar(NC) + V ar(NA)V ar(NB̄)E(NC)2

+ V ar(NA)V ar(NC)E(NB̄)2 + V ar(NB̄)V ar(NC)E(NA)2

+ E[NA]2E[NB̄]2V ar(NC) + E[NA]2E[NC ]2V ar(NB̄)

+ E[NB̄]2E[NC ]2V ar(NC)

Lastly, we compute the third term Cov(P̂AB̄C , P̂AP̂B̄P̂C) as follows:

Cov(P̂AB̄C , P̂AP̂B̄P̂C) =
Cov(NAB̄C , NANB̄NC)

(L− 2k)4

Cov(NAB̄C , NANB̄NC) = E(NAB̄CNANB̄NC)− E(NAB̄C)E(NANB̄NC)

E(NAB̄CNANB̄NC) = E[N2
AB̄C ] + E[NAB̄CN

′
AB̄C ]

E[NAB̄CN
′
AB̄C ] = E[

L−k∑
t=1

IA(t)IB̄(t+ k)IC(t+ 2k)
L−k∑
t=1

∑
s 6=t

∑
r 6=s 6=t

IA(t)IB̄(s+ k)IC(r + 2k)]

=



E[NAB̄C ]× (L− 2k − 1)PA if t = r = s 6= t;

E[NAB̄C ]× (L− 2k − 1)PB̄ if t = r = t 6= s

E[NAB̄C ]× (L− 2k − 1)PC if t = t = s 6= r

E[NAB̄C ]× (L− 2k − 1)(L− 2k − 2)PAPB̄ if t = r 6= s 6= t

E[NAB̄C ]× (L− 2k − 1)(L− 2k − 2)PAPC if t = s 6= r 6= t

E[NAB̄C ]× (L− 2k − 1)(L− 2k − 2)PB̄PC if t = t 6= s 6= r

E[NAB̄C ]× (L− 2k − 1)(L− 2k − 2)×

(L− 2k − 3)PAPB̄PC if t 6= t 6= s 6= r
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APPENDIX C

Derivations of Covariance of τ Based on M

We show the calculation of the variance and covariance terms in the Equation

(2.10) here. We compute V ar(P̂AB) as follows:

P̂AB =
(L− k
MAB

− k
)−1

V ar(P̂AB) = [f ′(E(MAB))]2V ar(MAB)

V ar(MAB) =
(L− k)PE(1− PE)

(1 + kPE)3

f ′(MAB) =
L− k
M2

AB

(L− k
MAB

− k
)−2

We compute the third term Cov(P̂AB, P̂AP̂B) as follows:

Cov(P̂AB, P̂AP̂B) =
Cov(MAB, NANB)

(L− k)E[MAB]2( L−k
E[MAB ]

− k)2
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Cov(MAB, NANB) = E(MABNANB)− E(MAB)E(NANB)

E(MABNANB) = E[
L−k∑
t∗=1

IA(t∗)IB(t∗ + k)
L−k∑
s=1

IA(s)IB(s+ k)

+
L−k∑
t∗=1

IA(t∗)IB(t∗ + k)
L−k∑
s=1

∑
r 6=s

IA(s)IB(r + k)]

= E[MABNAB] + E[MABN
′
AB]

Here t∗ refers to the non-overlapped t’s → there are MAB of them.

E[MABNAB] = E[MAB(MAB +

MAB∑
j=1

Rj)]

= E[M2
AB] + E[MAB

MAB∑
j=1

Rj]

= E[M2
AB(1 + kPE)]

E[MABN
′
AB]

= E[
L−k∑
t∗=1

IA(t∗)IB(t∗ + k)
L−k∑
s=1

∑
r 6=s

IA(s)IB(r + k)]

=


E[
∑L−k

t∗=1

∑
r 6=t∗ IA(t∗)IB(t∗ + k)IB(r + k)] if t∗ = s 6= r;

E[
∑L−k

t∗=1

∑
s 6=t∗ IA(t∗)IB(t∗ + k)IA(s)] if t∗ = r 6= s

E[
∑L−k

t∗=1

∑
s 6=t∗

∑
r 6=(t∗,s) IA(t∗)IB(t∗ + k)IA(s)IB(r + k)] if s 6= r 6= t∗.

=


E[MAB]× (L− k − 1)PB if t∗ = s 6= r;

E[MAB]× (L− k − 1)PA if t∗ = r 6= s

E[MAB]× (L− k − 1)(L− k − 2)PAPB if s 6= r 6= t∗.
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APPENDIX D

Derivations of Covariance of False Edge Test ξ

Based on M

Similarly as before, we compute the variance and covariance terms in the Equation

(2.10). We compute V ar(P̂AB̄C) as follows:

P̂AB̄C =
(L− 2k

MAB̄C

− 2k
)−1

= f(MAB̄C)

V ar(P̂AB̄C) = [f ′(E(MAB̄C))]2V ar(MAB̄C)

V ar(MAB̄C) =
(L− 2k)PAB̄C(1− PAB̄C)

(1 + 2kPAB̄C)3

f ′(MAB̄C) =
L− 2k

M2
AB̄C

(L− 2k

MAB̄C

− 2k
)−2

Now, we compute V ar(P̂AP̂B̄P̂C) as follows:

P̂AP̂B̄P̂C =
NANB̄NC

(L− 2k)3
= g(NANB̄NC)

V ar(P̂AP̂B̄P̂C) = V ar(g(NANB̄NC))

= [g′(NANB̄NC)]2V ar(NANB̄NC)

=
1

(L− 2k)6
V ar(NANB̄NC)
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Now, under H0, NA NB̄ and NC are independent. Therefore we get:

V ar(NANB̄NC) = V ar(NA)V ar(NB̄)V ar(NC) + V ar(NA)V ar(NB̄)E(NC)2

+ V ar(NA)V ar(NC)E(NB̄)2 + V ar(NB̄)V ar(NC)E(NA)2

+ E[NA]2E[NB̄]2V ar(NC) + E[NA]2E[NC ]2V ar(NB̄)

+ E[NB̄]2E[NC ]2V ar(NC)

Lastly, we compute the 3rd term Cov(P̂AB̄C , P̂AP̂B̄P̂C) as follows:

Cov(P̂AB̄C , P̂AP̂B̄P̂C) = Cov(f(MAB̄C), g(NANB̄NC))

= Cov(MAB̄C , NANB̄NC)f ′(E[MAB̄C ])g′(E[NANB̄NC ])

=
Cov(MAB̄C , NANB̄NC)

(L− 2k)2E[MAB̄C ]2( L−2k
E[MAB̄C ]

− 2k)2

Cov(MAB̄C , NANB̄NC) = E(MAB̄CNANB̄NC)− E(MAB̄C)E(NANB̄NC)

E(MAB̄CNANB̄NC) = E[MAB̄CNAB̄C ] + E[MAB̄CN
′
AB̄C ]

E[MAB̄CNAB̄C ] = E[MAB̄C(MAB̄C +

MAB̄C∑
j=1

Rj)]

= E[M2
AB̄C ] + E[MAB̄C

MAB̄C∑
j=1

Rj]

= E[M2
AB̄C(1 + kPE)]
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E[MAB̄CN
′
AB̄C ]

= E[
L−k∑
t∗=1

IA(t∗)IB̄(t∗ + k)IC(t∗ + 2k)
L−k∑
t=1

∑
s 6=t

∑
r 6=s 6=t

IA(t)IB̄(s+ k)IC(r + 2k)]

=



E[MAB̄C ]× (L− 2k − 1)PA if t∗ = r = s 6= t;

E[MAB̄C ]× (L− 2k − 1)PB̄ if t∗ = r = t 6= s

E[MAB̄C ]× (L− 2k − 1)PC if t∗ = t = s 6= r

E[MAB̄C ]× (L− 2k − 1)(L− 2k − 2)PAPB̄ if t∗ = r 6= s 6= t

E[MAB̄C ]× (L− 2k − 1)(L− 2k − 2)PAPC if t∗ = s 6= r 6= t

E[MAB̄C ]× (L− 2k − 1)(L− 2k − 2)PB̄PC if t∗ = t 6= s 6= r

E[MAB̄C ]× (L− 2k − 1)(L− 2k − 2)×

(L− 2k − 3)PAPB̄PC if t∗ 6= t 6= s 6= r

Here t∗ refers to the non-overlapped t’s → there are MAB̄C of them.
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APPENDIX E

Proof of Lemma III.1

Proof of Lemma III.1. The conditional probability for our model is:

pk(t+ 1|Ht) = P{Xk(t+ 1) = 1|Ht} = F
( J∑
i=1

wikg(Xi(τk(t) : t]) + bk

)

Observe that,

∂pk(t+ 1|Ht)

∂wij

=


∂

∂wij
F
(∑J

i=1wijg(Xi(τj(t) : t]) + bj

)
if j = k

0 otherwise.

=

 F ′
(∑J

i=1wijg(Xi(τj(t) : t]) + bj

)
g(Xi(τj(t) : t]) if j = k

0 otherwise.
(E.1)
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Now we assume logit link then the function F (.) becomes inverse logit.

F (ηj) =
exp(ηj)

1 + exp(ηj)
= pj(t+ 1|Ht)

where ηj =
J∑
i=1

wijg(Xi(τj(t) : t]) + bj.

⇒ F ′(ηj) =
exp(ηj)

(1 + exp(ηj))2
= pj(t+ 1|Ht)(1− pj(t+ 1|Ht)) (E.2)

Therefore combining Equations (E.1) and (E.2) we get,

∂pk(t+ 1|Ht)

∂wij
=

 pk(t+ 1|Ht)(1− pk(t+ 1|Ht))g(Xi(τk(t) : t]) if j = k

0 otherwise.

(E.3)

By Equation (E.3) and taking a partial derivative with respect to wij in Equation

(3.2) we obtain

∂`T
∂wij

=
T−1∑
t=1

[ Xk(t+ 1)

pk(t+ 1|Ht)

∂pk(t+ 1|Ht)

∂wij
− 1−Xk(t+ 1)

1− pk(t+ 1|Ht)

∂pk(t+ 1|Ht)

∂wij

]
=

T−1∑
t=1

(Xj(t+ 1)− pj(t+ 1|Ht))g(Xi(τj(t) : t]) (E.4)

Note that only the term corresponding to k = j remains from the inner summation

because of Equation (E.3). We can similarly derive the expression for ∂`/∂bj and the

derivation is in fact simpler. Since the parameter bj in Equation (3.1) appears with

a coefficient equal to 1.
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APPENDIX F

Proof of Propositions F.1, F.2 and F.4

Proposition F.1. If model (3.1) is identifiable then condition (i) of Theorem III.4

holds.

Proof. Consider now the log–likelihood

`T (X; θ) :=
T−1∑
t=1

J∑
j=1

Xj(t+ 1) log(pj(t+ 1|Ht)) + (1−Xj(t+ 1)) log(1− pj(t+ 1|Ht)).

Then the log–likelihood can be written as follows:

`T (X; θ) :=
T−1∑
t=1

J∑
j=1

hj(D(t+1)) log(pj(D(t); θ))+(1−hj(D(t+1))) log(1−pj(D(t); θ)),

(F.1)

where θ is not necessarily equal to θ0. Thus, the SLLN (3.7) for the underlying

Markov chain in (F.1) implies that

1

T
`T (X; θ)

a.s.−→
J∑
j=1

Eπ
(
pj(D

∗; θ∗) log(pj(D
∗; θ))

+ (1− pj(D∗; θ∗)) log(1− pj(D∗; θ))
)
, (F.2)

=:
J∑
j=1

EπH−(pj(D
∗; θ∗), pj(D

∗; θ)) ≡ `∞(θ∗; θ),
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where H−(p0, p) := (p0 log(p)+(1−p0) log(1−p)) denotes the negative cross–entropy

of the two Bernoulli distributions with parameters p0 and p, respectively. The infor-

mation inequality implies that

H−(p0, p) ≤ H−(p0, p0),

and the inequality is strict unless p = p0. This argument shows that the log–likelihood

converges, as T → ∞ to the deterministic function θ 7→ `∞(θ∗; θ), which has a

maximum at θ = θ∗. This maximum is unique since the model is identifiable. Also

see Lemma III.3 for a criterion of identifiability.

By lemma III.1 we have, | 1
T
∂`T
∂wij
| ≤ 2K since g is bounded by K and | 1

T
∂`T
∂bj
| ≤ 2.

By a Taylor series expansion, we have

1

T
(`T (θ)− `T (θ′)) =

1

T

〈
∇`T (θ̃), (θ′ − θ)

〉

where θ̃ = θ + λ(θ′ − θ) with λ ∈ [0, 1].

Since
(

1
T
∂`T
∂θk

)
are almost surely bounded by a constant that does not depend on

θ, we have

∣∣∣ 1

T

(
`T (θ)− `T (θ′)

)∣∣∣ ≤ C||θ − θ′||, θ, θ′ ∈ Θ

For all ε > 0 let us define a ε- mesh: α(n) = {αi(θ)(ε)}i=1,...,M(ε) such that a compact

set, F ⊂
⋃M(ε)
i=1 B(θi(ε), ε). Thus we get,

sup
θ∈F

∣∣∣ 1

T

T−1∑
t=1

r(θ,D(t))− `(θ)
∣∣∣ ≤ sup

θ∈F

{ 1

T

T−1∑
t=1

|r(θ,D(t))− r(αi(θ), D(t))|

+
∣∣∣ 1

T

T−1∑
t=1

r(αi(θ), D(t))− `(θ)
∣∣∣}
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where r(θ,D(t)) :=
∑J

j=1 hj(D(t+ 1)) log(pj(D(t); θ)) +

(1− hj(D(t+ 1))) log(1− pj(D(t); θ)).

sup
θ∈F

∣∣∣ 1

T

T−1∑
t=1

r(θ,D(t))− `(θ)
∣∣∣ ≤ Cε+ sup

θ∈F

∣∣∣ 1

T

T−1∑
t=1

r(αi(θ), D(t))− `(θ)
∣∣∣± `(αi(θ))

≤ Cε+ sup
θ∈F

∣∣∣ 1

T

T−1∑
t=1

r(αi(θ), D(t))− `(αi(θ))
∣∣∣

+ sup
θ∈F

∣∣∣`(θ)− `(αi(θ))∣∣∣
≤ Cε+ max

j=1,...,M(ε)

∣∣∣ 1

T

T−1∑
t=1

r(αi(θ), D(t))− `(αi(θ))
∣∣∣

+ sup
θ∈F

∣∣∣`(θ)− `(αi(θ))∣∣∣
≤ Cε+ sup

θ∈F

∣∣∣`(θ)− `(αi(θ))∣∣∣
Thus, using the fact that ` is uniformly continuous we prove that T−1`T (θ)

a.s.−→

`(θ), on all compact subsets of the parameter space Θ and thus completes the proof

of Property (i).

Proposition F.2. Condition (ii) of Theorem III.4 holds under the model (3.1).

Moreover, if the model is identifiable then I(θ∗) is invertible for every θ∗ ∈ Θ.

Proof. To prove Property (ii) we show that ∇θ`T (θ) is a Martingale and apply the

Martingale CLT proved in Brown (1971). By the Wold’s Device (Theorem 29.4 in

Billingsley (1995)) the multivariate limit in (3.10) holds provided that for all a ∈ Rd

(d = J2 + J + 1) we have:

1√
T

d∑
i=1

ai∂l/∂θi → N (0, aTI(θ∗)a), as T →∞. (F.3)

For any fixed a ∈ Rd, we will show next that (F.3) holds by using the martingale CLT.

For notational convenience we treat the parameters bi and wij separately. Namely,
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we let βi = ai, i = 1, ..., J and αij = aJ+i+(j−1)J , i, j = 1, ..., J . Then the L.H.S. of

(F.3) equals,

1√
T
NT =

1√
T

J∑
j=1

βj∂l/∂bj +
1√
T

J∑
i,j=1

αij∂l/∂wij

By Lemma III.1 we have,

NT =
T−1∑
t=1

J∑
j=1

[Xj(t+ 1)− Pj(t+ 1|Ht)]
(
βj +

J∑
i,j=1

αijgij(D(t))
)

(F.4)

=
T−1∑
t=1

ζt(α, β)

Observe that E(ζt(α, β)|Ht) = 0 since Pj(t + 1|Ht) = E(Xj(t + 1)|Ht). Therefore,

ζt(α, β) is a martingale difference w.r.t. the filtration Ht, t = 1, 2, ..., i.e. {NT , T =

1, ...} is a martingale w.r.t. the same filtration. This allows us to apply the martingale

CLT to 1√
T
NT . Following( 3.7), let σ2

t be the conditional variance of ζt(α, β). By

Equation (F.5), we have Xj(t+ 1)|Ht is conditionally Bernoulli(pj(D(t)) and we get

σ2
t = E(ζ2

t (α, β)|Ht) =
J∑
j=1

(
βj +

J∑
i=1

αijgij(D(t))
)2

pj(D(t))(1− pj(D(t))) (F.5)

Now, let us define,

V 2
T =

T∑
t=1

σ2
t (F.6)

s2
T = E[V 2

T ] = E[N2
T ] =

T∑
t=1

E[σ2
t ]

=
T∑
t=1

E
[ J∑
j=1

(
βj +

J∑
i=1

αijgij(D(t))
)2

pj(D(t))(1− pj(D(t))
]
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For this class of martingales, the Lindeberg condition is said to hold if

s2
T

T∑
t=1

E[ζ2
t I(|ζt| ≥ εsT )]→ 0 as t→∞ (F.7)

Theorem F.3 (Martingale CLT). If V 2
T s
−2
T →p 1 as n→∞ and if the Lindeberg

condition hold, then

lim
n→∞

P[NT/sT ≤ x] = Φ(x) = (2π)(−1/2)

x∫
−∞

exp{−1

2
y2}dy

for all x.

Using the strong law of large numbers (SLLN) of Markov chains (3.7) we can

verify the conditions in Theorem F.3 and also the Lindeberg condition. Indeed, by

(3.7) and the Lebesgue Dominated Convergence Theorem, since |g2
i | ≤ K2, it follows

that

1

T
V 2
T =

1

T

T∑
t=1

hσ,α,β(D(t))
a.s.−→ Eπ[hσ,α,β(D∗)] as T →∞ (F.8)

where hσ,α,β(D∗) =
∑J

j=1(βj +
∑J

i=1 αijgij(D
∗))2pj(D

∗)(1 − pj(D∗)) and D∗ has the

stationary distribution of the Markov Chain.

The SLLN applies to the function hσ,α,β since the gij’s and pj’s are bounded and

the αij’s, βj’s are some fixed constants. The fact that |hσ,α,β| ≤ Constant and the

Lebesgue DCT also imply that

1

T
E[V 2

T ] =
1

T
s2
T −→ E[hσ,α,β(D∗)] (F.9)

In view of (F.5), |ζt| is uniformly bounded by a constant. Since by (F.9), s2
T ∼

T, t → ∞, the Lindeberg condition trivially holds. Thus, the martingale C.L.T.
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implies that,

1√
T
NT ∼

NT

sT

√
E(h(σ,α,β)(D∗)) −→ N (0, E[hσ,α,β(D∗)]) as T →∞ (F.10)

It can be shown that,

E[hσ,α,β(D∗)] = E
[ J∑
j=1

(
βj +

J∑
i=1

αijgij(D
∗)
)2

pj(D
∗)(1− pj(D∗))

]
= vTI(θ∗)v (F.11)

where ~v = (β1, · · · , βJ , α11, α12, · · · , α1J , · · · , αJJ) and I(θ∗) is the Fisher information

matrix

Proposition F.4. Condition (iii) of Theorem III.4 holds under the model (3.1).

Proof. We shall give detailed proof of Property (iii) only on the case when θi and

θj corresponding to some connectivity strength coefficients. With some misuse of

notation we will denote these coefficients as wi′j′ and wij. We only need to consider

the case j = j′ by Lemma III.1. By applying the SLLN (recall (3.7)) to the underlying

Markov chain in (G.2). By Equation (G.2) we have,

∣∣∣ 1

T

∂2`T
∂wi′j∂wij

(θ)− 1

T

∂2`T
∂wi′j∂wij

(θ′)
∣∣∣ ≤ 1

T

T−1∑
t=1

∣∣∣f(θ,D(t))− f(θ′, D(t))
∣∣∣ (F.12)

where f(θ,D(t)) = pj(D(t); θ)(1 − pj(D(t); θ))gij(D(t))gi′j(D(t)) and for simplicity

we omit the dependence on the indices i, i′ and j which are fixed. By the intermediate

value theorem we get,

∣∣∣f(θ,D(t))− f(θ′, D(t))
∣∣∣ =

∣∣∣∇f(θ̃)T (θ′ − θ)
∣∣∣ (F.13)

where θ̃ = θ + λ(θ′ − θ), λ ∈ [0, 1] using direct differentiation and by considering all
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cases one can show that ‖∇f(θ̃)T‖ is bounded by a constant independent of D, θ′,

θ and λ. For the exact expression see Lemma G.1 in the Appendix. Then, (F.13) is

bounded above as follows:

∣∣∣f(θ,D(t))− f(θ′, D(t))
∣∣∣ ≤ C ′||θ − θ′||, θ, θ′ ∈ Θ (F.14)

where C ′ is a constant independent of θ and D(t).

Now, for the supremum on the L.H.S. of (3.11) by (F.14) and the ∆ - inequality

we obtain,

sup|θ−θ∗|≤δ

∣∣∣ 1

T

T−1∑
t=1

{
f(θ,D(t))± f(θ′, D(t))

}
+ Iij(θ∗)

∣∣∣
≤ sup

|θ−θ∗|≤δ
C ′||θ − θ∗||+

∣∣∣ 1

T

T−1∑
t=1

f(θ∗, D(t))− Iij(θ∗)
∣∣∣, θ, θ∗ ∈ Θ

≤ Cδ +
∣∣∣ 1

T

T−1∑
t=1

f(θ∗, D(t))− Iij(θ∗)
∣∣∣, θ, θ′ ∈ Θ (F.15)

The first term on the R.H.S. of (F.15) is less than C ′δ. The second term therein

vanishes a.s. as T → ∞ by the S.L.L.N (recall (3.7)). Indeed by (F.11) one can see

that the element of the information matrix I(θ∗) corresponding to the coefficients wij

and wi′j equals Eπ
[
pj(D

∗; θ)(1 − pj(D
∗; θ))gij(D

∗)gi′j(D
∗)
]
. By the SLLN applied

to Equation G.2 we have that the second term on the R.H.S. of (F.15) vanished as

T →∞, which completes the proof of (iii).
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APPENDIX G

Proof of Lemma G.1

Lemma G.1. The log-likelihood function ` is infinitely continuously differentiable

with respect to all of its parameters wij ∈ R and bj ∈ R, i, j = 1, 2, · · · , J . Moreover,

∂2`T
∂wi′j′∂wij

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))gij(D(t))gi′j(D(t))
)

× δ(j − j′)

∂3`T
∂wi′′j′′∂wi′j′∂wij

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ)) (G.1)

× (1− 2pj(D(t); θ))gij(D(t))
)
gi′j(D(t))gi′′j(D(t))×

× δ(j − j′)δ(j − j′′)
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∂2`T
∂wi′j′∂bj

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))gi′j(D(t))
)

× δ(j − j′)

∂2`T
∂bj′∂bj

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))
)
× δ(j − j′)

∂3`T
∂wi′′j′′∂bj′∂bj

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))(1− 2pj(D(t); θ))
)

× g(hi′′j(D(t)))× δ(j − j′)× δ(j − j′′) (G.2)

∂3`T
∂wi′′j′′∂wi′j′∂bj

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))(1− 2pj(D(t); θ))
)

× gi′′j(D(t))gij(D(t))× δ(j − j′)δ(j − j′′)

∂3`T
∂bj′′∂bj′∂bj

:= −
( T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))(1− 2pj(D(t); θ))
)

× δ(j − j′)δ(j − j′′)

where g(hij(D(t))) =
∑t

s=τj(t) λ
t−sXi(s) and δ stands for the kronecker symbol.

Proof. As in the proof of lemma III.1 we have that the L.H.S. in (G.2) and (G.2) is

zero unless j = j′ = j′′. We therefore set j = j′ = j′′ and by differentiating (3.4) we

get,

∂2`T
∂wi′j∂wij

=
T−1∑
t=1

∂pj(t+ 1|Ht)

∂wi′j
g(hij(D(t)))

=
T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))gij(D(t))gi′j(D(t))
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Similarly,

∂3`T
∂wi′′j∂wi′j∂wij

=
T−1∑
t=1

∂pj(D(t); θ)(1− pj(D(t); θ))

∂wi′′j
gij(D(t))gi′j(D(t))

:=
T−1∑
t=1

pj(D(t); θ)(1− pj(D(t); θ))(1− 2pj(D(t); θ))

× gi′j(D(t))gi′′j(D(t))

Note that only the term corresponding to k = j remains from the inner summa-

tion because of Equation (E.3). We can similarly derive the expression for ∂`/∂bj,

∂2`T/∂bj′∂bj, ∂
3`T/∂bj′′∂bj′∂bj and ∂3`T/∂wi′′j′′∂bj′∂bj and the derivation is in fact

simpler. Since the parameter bj in Equation (3.1) appears with a coefficient equal to

1.

106



BIBLIOGRAPHY

107



BIBLIOGRAPHY

M. Abeles and I. Gat. Detecting precise firing sequences in experimental data. Journal
of Neuroscience Methods, 107:141–154, 2001.

M. Abeles and G. L. Gerstein. Detecting spatiotemporal firing patterns among si-
multaneously recorded single neurons. Journal of Neurophysiology, 60, 1988.

A. Agresti. Categorical Data Analysis. Probability and Mathematical Statistics, Wiley,
New York, 1990.

P. Billingsley. Probability and Measure. John Wiley and Sons, New York, 1995.

D. Brillinger. Nerve cell spike train data analysis: a progression of technique. Journal
of the American Statistical Association, 87:260–271, 1992.

D. R. Brillinger. Maximum likelihood analysis of spike trains of interacting nerve
cells. Biological Cybernetics, 59:189–200, 1988.

D. R. Brillinger and E. Villa. Assessing connections in networks of biological neurons.
The Practice of Data Analysis: Essays in Honor of John W. Tukey, pages 77–92,
1997.

B. M. Brown. Martingale Central Limit Theorems. The Annals of Mathematical
Statistics, 42, 1971.

E. M. Brown, R. E. Kass, and P. M. Mitra. Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nature Neuroscience, 7, 2004.
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