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ABSTRACT

Mechanical Models of Friction That Exhibit Hysteresis, Stick-Slip, and the Stribeck
Effect

by

Bojana Drinčić

Chair: Dennis S. Bernstein

In this dissertation, we model hysteretic and friction phenomena without intro-

ducing friction or hysteresis per se. We use a combination of masses, springs, and

dashpots and the frictional phenomena emerge as the result of their interaction. By

using physical elements, we can understand the physical mechanisms that lead to hys-

teretic energy dissipation and phenomena, such as stick-slip behavior and the Stribeck

effect. Furthermore, we study the origins of butterfly hysteresis, which arises in optics

and ferromagnetism.

We define the multiplay model for hysteresis with nonlocal memory, which consists

of N mass/spring/dashpot with deadzone elements. The advantage of this model is

that its hysteresis map can be inverted analytically.

Second, we investigate the origins of stick-slip friction by developing an asperity-

based friction model involving the frictionless contact between a body and a row of

rigid, rotating bristles. This model exhibits hysteresis and quasi-stick-slip friction.

The hysteretic energy-dissipation mechanism is the sudden release of the pivoted

xviii



bristles. The discontinuous rotating bristle model is an approximation of the rotating

bristle model that exhibits exact stick-slip and hysteresis.

We next develop an asperity-based friction model in which the vertical motion

of the body leads to the Stribeck effect. The friction model is hysteretic and the

energy-dissipation mechanism is the sudden release of the compressed bristles. We

show that this bristle model is a generalization of the LuGre model.

The final contribution of this dissertation is a framework for relating butterfly-

shaped hysteresis maps to simple hysteresis maps, which are typically easier to model

and more amenable to control design. In particular, a unimodal mapping is used to

transform simple loops to butterfly loops.
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CHAPTER I

Introduction

Friction is a force resisting the relative motion of two bodies sliding over each other.

It is a widespread phenomenon that has many practical uses such as walking and

driving and is instrumental in mechanical processes such as grinding and polishing.

However, friction also wastes energy and causes wear. Due to its a crucial role in

design, modeling, and control, friction is studied extensively [2–9]. Furthermore, the

understanding of friction is important in many aerospace applications. For example,

friction in bolted joints impacts the structural dynamics of ballistic missiles and other

built-up structures [10–13]. In airplane engines, friction can lead to turbine blade

failure due to fretting fatigue [14–16]. Friction stir welding is used in the aerospace

industry for construction of aircraft and spacecraft where the properties of the welded

materials must be unchanged by the welding process [17–19].

As a result of the pervasiveness of friction, a large number of friction models exist

and are based either on the physics of the surface interactions [8, 20, 21] or on the

experimental observations [6, 22–30]. Furthermore, since friction is a macroscopic

phenomenon that arises due to the interaction of surfaces on the microscopic level,

asperity-based friction models are also often used [5, 6, 31, 32]. The most commonly

used friction models are Maxwell-slip [33–35], Dahl [36–38], and LuGre models [26–

28], which are discussed in more detail in the Section 1.3.
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In order to study friction which is a hysteretic phenomenon, it is necessary to also

understand hysteresis. Hysteresis is a non vanishing input-output loop in the limit

as the frequency of the input goes to zero [39]. It is present in many applications

such as ferromagnetism [40–42], smart materials [43–45], aerodynamic stall [46–48],

biological systems [49,50], optics [51,52], and friction [2,6,35,53]. It arises in systems

with multiple stable equilibria, where as the input slowly increases, the output is

attracted to one set of stable equilibria and as the input slowly decreases the output

is attracted to a different set of stable equilibria [39]. This type of system is said to

have multistability, that is, for a constant value of the input, the system has multiple

corresponding stable equilibria. For a single-input, single-output system, hysteresis

is manifested by the existence of a non-vanishing input-output loop in the limit as

the frequency of the input tends to zero [54,55]. Hysteresis is an inherently nonlinear

effect since no such loop persists for asymptotically stable linear systems.

In this dissertation, the goal is to model hysteretic and friction phenomena without

introducing friction or hysteresis per se. We begin with a combination of masses,

springs, and dashpots, and the frictional phenomena emerge as the result of their

interaction. By using physical elements, we can obtain insight into the physical

mechanisms that lead to hysteretic energy dissipation and phenomena such as stick-

slip [56–58] and the Stribeck effect [27, 59]. The stick-slip refers to motion in which

a body attached to a compliance periodically comes to rest. This kind of motion,

which is reminiscent of a limit cycle, occurs when the friction force drops as velocity

increases from zero. The Stribeck effect is the apparent drop in the friction force

as the velocity increases. Furthermore, we study the origins of butterfly hysteresis,

which is present in optics and ferromagnetism [40, 60–62].
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1.1 Introduction to Systems with Hysteresis

Since friction arises in hysteretic systems, we begin by defining hysteresis and

discussing the types of systems that exhibit hysteresis. Next, we give a brief overview

of hysteretic models which are commonly encountered in the literature. Finally, we

describe the three friction models which are often used to describe systems with

friction.

In this section we introduce basic concepts and terminology from the literature

on hysteresis. We use these definitions throughout this dissertation and they are also

available in [22, 63]. Consider the single-input, single-output system

ẋ(t) = f (x(t), u(t)), x(0) = x0, t ≥ 0, (1.1)

y(t) = h(x(t), u(t)), (1.2)

where u : [0,∞) → R is continuous and piecewise C1, f : Rn×R → R
n is continuous,

and y : [0,∞) → R, and h : Rn × R → R are continuous. We assume that the

solution to (1.1) exists and is unique on all finite intervals. The following definitions

are necessary for further discussion.

Definition 1.1.1.Consider (1.1)-(1.2) with constant u(t) = ū. The system (1.1)-

(1.2) is step convergent if limt→∞ x(t) exists for all x0 ∈ R
n and for all ū ∈ R.

Definition 1.1.2. The nonempty set H ⊂ R
2 is a closed curve if there exists a

continuous, piecewise C1, and periodic map γ : [0,∞) → R
2 such that γ([0,∞)) = H.

For the system (1.1)-(1.2), we define a periodic input-output map and the limiting

periodic input-output map or a hysteresis map as follows.

Definition 1.1.3. Let u : [0,∞) → [umin, umax] be continuous, piecewise C1,

periodic with period α, and have exactly one local maximum umax for t ∈ [0, α) and

exactly one local minimum umin for t ∈ [0, α). For all T > 0, define uT (t)
4

= u(αt/T ),
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assume that there exists xT : [0,∞) → R
n that is periodic with period T and satisfies

(1.1) with u = uT , and let yT : [0,∞) → R be given by (1.2) with x = xT and

u = uT . For all T > 0, the periodic input-output map HT (uT ,x0) is the closed curve

HT (uT ,x0)
4

= {
(

uT (t), yT (t)
)

: t ∈ [0,∞)}, and the limiting periodic input-output

map H∞(u,x0) is the closed curve H∞(u,x0)
4

= limT→∞HT (uT , yT ,x0) if the limit

exists. If there exist (u, y1), (u, y2) ∈ H∞(u,x0) such that y1 6= y2, then H∞(u) is a

hysteresis map, and (1.1)-(1.2) is hysteretic.

Example 1.1.1. Consider the linear system that represents a body of mass m

attached to a wall by a dashpot with damping coefficient c. The free end of the body

is attached to a spring with stiffness coefficient k. A periodic position input u(t) is

applied to the free end of the spring. The equations that describe the system are

mẍ(t) + cẋ(t) + k(x(t)− u(t)) = 0, (1.3)

y(t) = x(t), (1.4)

where x(t) is the position of the center of mass of the body. The periodic input-output

maps of (1.3)-(1.4) are shown in Figure 1.1 for u(t) = sin(ωt), m = 1 kg, c = 2 N-s/m,

k = 1 N/m, and ω = 1, 0.1, 0.01, 0.001 rad/s. Although the periodic input-output

map HT (uT ,x0) forms a loop for ω = 1 rad/s, the loop disappears as the frequency

of the input tends to DC. Thus, the system (1.3)-(1.4) is not hysteretic.

�

Example 1.1.2. Now consider the cubic example [22]

ẋ(t) = −x3(t) + x(t) + u(t), (1.5)

y(t) = x(t), (1.6)

where u(t) is a periodic input and y(t) is the system output. The periodic input-
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Figure 1.1: The periodic input-output maps HT (uT , yT ) of (1.3)-(1.4) with u(t) =
sin(ωt), m = 1 kg, c = 2 N-s/m, k = 1 N/m, and ω = 1, 0.1, 0.01, 0.001
rad/s. The system (1.3)-(1.4) is not hysteretic since the loop in the input-
output plane vanishes as the frequency of the input tends to DC.

output maps HT (uT , x0) of (1.5)-(1.6) are shown in Figure 1.2 for u(t) = sin(ωt) and

ω = 1, 0.1, 0.01, 0.001 rad/s. As the frequency of the input tends to DC, HT (uT , x0) of

(1.5)-(1.6) converges to the hysteretic limiting periodic input-output map H∞(u, x0).

Thus, the system (1.5)-(1.6) is hysteretic.

�

Definition 1.1.4.The equilibria map E of (1.1)-(1.2) is the set of points (ū, h(x̄, ū)) ∈

R
2 such that ū and x̄ satisfy

f (x̄, ū) = 0. (1.7)

Suppose (1.1), (1.2) is step convergent. Then it follows from the above definitions

that limt→∞ x(t) exists for every constant u(t) = ū and is an equilibrium of (1.1),

(1.2). Now, let u(t) ∈ [umin, umax] be periodic with period α. Let uT (t) = u(αt/T )

and suppose the periodic input-output map H(uT , x0) exists for all T > 0. Further-
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Figure 1.2: The periodic input-output maps HT (uT , yT ) of (1.5)-(1.6) with u(t) =
sin(ωt) and ω = 1, 0.1, 0.01, 0.001 rad/s. As the frequency of the input
tends to DC, HT (uT , yT ) of (1.5)-(1.6) converges to the hysteresis map
H∞(u, x0).

more, assume the limiting periodic input-output map H∞(u, x0) exists. There exists a

close relationship between H∞(u,x0) and the input-output equilibria map E of (1.1),

(1.2). The set H∞(u,x0) represents the response of the system in the limit of DC

operation. Therefore, each element of H∞(u,x0) is the limit of a sequence of points

in H(uT ,xT (0)) for a sequence of increasingly slower inputs. Thus, the limiting point

(ū, ȳ) ∈ H∞(u,x0) is an equilibrium of (1.1), (1.2) corresponding to the constant

input u(t) = ū, and thus is an element of E .

However, not every point in H∞(u,x0) is in E . If (1.1), (1.2) has a bifurcation,

that is, a change in the qualitative structure of the equilibria as u changes, then

the limiting solution of (1.1), (1.2), can alternate between the subsets of E . In this

particular case, the limiting periodic input-output map H∞(u,x0) contains vertical

components that connect subsets. Thus, it follows that H∞(u,x0) ⊆ E .

Since the definition of hysteresis requires that the hysteresis map have at least two
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distinct points (u, y1) and (u, y2), a necessary condition for (1.1), (1.2) to be hysteretic

is that E be a multivalued map. However, not every nonlinear feedback model that

has a multivalued map E exhibits hysteresis. The system (1.1), (1.2) is hysteretic if

the multivalued map E has either a continuum of equilibria or a bifurcation for some

u ∈ [umin, umax].

Example 1.1.3.Reconsider the cubic model (1.5)-(1.6) in Example 1.1.2. For all

constant inputs u(t) = ū, equilibria map E of (1.5)-(1.6) is the set

E =
{

(x̄, ū) ∈ R : −x̄3 + x̄+ ū = 0
}

. (1.8)

Figure 1.3(a) shows the equilibria map (1.8). Figure 1.3(b) shows the equilibria set

E and the hysteresis map H∞(u, x0) of the cubic model (1.5)-(1.6). H∞(u, x0) is a

subset of E everywhere except for the vertical portions, which represent the transition

from one set of stable equilibria to another and appear at the points of bifurcations.

�

Definition 1.1.5. If the hysteresis map H∞(u,x0) as described in Definition 1.1.3

exists, and if, in addition, H∞(u,x0) is independent of x0, then the system (1.1), (1.2)

has local memory, and we write H∞(u). Otherwise, H∞(u,x0) has nonlocal memory.

The nonlocal memory of a system is manifested in the form of congruent minor

loops. That is, for two different initial conditions x0, the same input u(t) results in

two different outputs y(t).

Definition 1.1.6. The continuous and piecewise C1 function τ : [0,∞) → [0,∞)

is a positive time scale if τ(0) = 0, τ is nondecreasing, and limt→∞ τ(t) = ∞. The

system (1.1), (1.2) is rate independent if, for every pair of continuous and piecewise

C1 functions x and u satisfying (1.1) and for every positive time scale τ , it follows

that xτ (t)
4

= x(τ(t)) and uτ(t) , u(τ(t)) also satisfy (1.1).
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Figure 1.3: The equilibria map E and hysteresis map H∞(u, x0) of the cubic model
(1.5)-(1.6) in Example 1.1.2. (a) shows the equilibria map E . (b) shows E
and H∞(u, x0). Note that, except for the vertical portions, H∞(u,x0) ⊆
E .

An easy way to determine whether a system is rate dependent or rate independent

is to plot the periodic input-output maps HT (uT ,x0) for several different frequencies

of the input. If the shape of the HT (uT ,x0) changes with frequency of the input,

then (1.1)-(1.2) is a rate-dependent model.

Example 1.1.4.Reconsider the cubic model (1.5)-(1.6) in Example 1.1.2. Figure

8



1.2 shows the periodic input-output mapsHT (uT , x0) of (1.5)-(1.6) with u(t) = sin(ωt)

and ω = 1, 0.1, 0.01, 0.001 rad/s. Note that the shape of HT (uT , x0) changes with the

frequency of the input, and converges to H∞(u, x0) as the frequency of the input

tends to zero. Thus, the cubic model (1.5)-(1.6) is rate dependent. �

1.2 Hysteretic Models

In the literature on hysteresis, there are three types of commonly used hysteresis

models, namely, the Preisach model, the Duhem model, and the nonlinear feedback

model. A brief overview of these models and their properties is given in Table 1.1.

Hysteresis Model Rate Dependence Type of Memory

Preisach rate-independent nonlocal
Duhem rate-dependent or independent local or nonlocal

Nonlinear Feedback rate-dependent nonlocal

Table 1.1: Hysteresis models and their properties.

The Preisach model [64–67] is an integral operator, that operates on an infinite

number of elementary hysteresis operators called hysterons. The hysterons are turned

“on” or “off” depending on the direction and value of the input. The hysterons that

are “on” contribute to the output, while the hysterons that are “off” do not. The

Preisach model has the form

y(t) =

∫ ∫

α≥β

µ(α, β)γ̂αβu(t) dαdβ, (1.9)

where µ(α, β) is a weight function, u(t) is the input, the hysteresis operator γ̂αβ is

called a hysteron, and α and β are the values at which the output of the hysteron

is switched on and off, respectively. Preisach models are rate-independent and have

nonlocal memory. They are often used to model hysteresis in piezoceramic actuators,
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shape memory alloys, and magnetism [65,68,69]. The Prandtl-Ishlinskii model, which

is a special type of Preisach model, replaces the hysterons by the play operators

weighted by a density function [66, 70–72]. We discuss it in more detail in Chapter

V.

The state of the Duhem model depends on the derivative of the input and thus

the output changes its character when the input changes direction [22,27,36,55]. The

general form of the Duhem model is

ẋ(t) = f(x(t), u(t))g(u̇(t)), (1.10)

y(t) = h(x(t), u(t)), (1.11)

where g is a function that determines how the output changes as the input changes

direction [55]. The function g satisfies g(0) = 0 and thus, for a constant input u(t) =

ū, there is an infinite number of equilibria. Duhem models can be rate dependent

or rate independent and can exhibit local or nonlocal memory [22]. Commonly used

examples of the Duhem model are Maxwell-slip, Dahl, and LuGre models described

in Section 1.3.

Nonlinear feedback models are studied in [54, 63] and consist of a linear system

connected in feedback to a memoryless nonlinearity. Single-input, single-output non-

linear feedback models have the form

ẋ(t) = Ax(t) +Du(t) +Byφ(t), x(0) = x0, t ≥ 0, (1.12)

y(t) = Cx(t), (1.13)

uφ(t) = E1x(t) + E0u(t), (1.14)

yφ(t) = φ
(

uφ(t)
)

, (1.15)

where A ∈ R
n×n, D ∈ R

n, B ∈ R
n, C ∈ R

1×n, E1 ∈ R
1×n, E0 ∈ R, u : [0,∞) → R is

10



continuous and piecewise C1, φ : R → R is a static nonlinearity, and x(t), x0 ∈ R
n.

Nonlinearities such as deadzone, cubic, and sinusoid can give rise to hysteresis in a

nonlinear feedback model. These models are rate dependent. A well-known example

of a nonlinear feedback model is backlash, which usually arises due to free play in

mechanical engineering applications [73–75].

1.3 Friction Models

In this section we present four commonly used hysteretic friction models, namely,

Coulomb model, Maxwell-Slip model, Dahl model, and LuGre model. We present the

model equations and investigate their input-output properties by varying the input

frequency and amplitude. Based on the input-output maps, we conclude whether the

model exhibits rate dependent or rate independent hysteresis and whether it has local

or nonlocal memory. The properties of the three models are classified in Table 1.2.

Friction Model Rate Dependence Continuity

Coulomb rate-independent discontinuous
Maxwell-slip rate-independent discontinuous

Dahl

γ = 0 rate-independent discontinuous
0 < γ < 1 rate-independent continuous but not Lipschitz
γ ≥ 1 rate-independent Lipschitz

LuGre rate-dependent Lipschitz

Table 1.2: Classification and properties of friction models.

1.3.1 Coulomb Model

The magnitude of the Coulomb model friction force is proportional to the normal

load [24], that is,

FC = µFN , (1.16)

11



where µ is commonly refereed to as the friction coefficient and FN is the normal force.

The magnitude of the Coulomb model friction force is independent of the magnitude

of the velocity and the contact area and the friction force opposes the motion of the

body. The friction force can be expressed as

Ff = sign(v)FC , (1.17)

where v is the velocity of the body relative to the surface it is sliding over [24,76,77].

Figure 1.4 shows the Coulomb model friction force as a function of velocity. The

Coulomb model is rate independent.
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Figure 1.4: The Coulomb model friction force as a function of velocity.

Consider a body of massm connected to a wall by a spring with stiffness coefficient

K, sliding on the ground under the influence of a periodic input force u. The equations

of motion are

mẍ(t) +Kx(t) = u(t)− Ff , (1.18)

where Ff is defined by (1.17). By defining sign(v)
4

= [0, 1], the equilibria map of

12



(1.18) for constant u(t) = ū can be defined as

E =

{

(ū, x̄) : ū ∈ R, x̄ =
1

K
(ū− (2α− 1)FC) , α ∈ [0, 1]

}

. (1.19)

A portion of the equilibria map E defined by (1.19) corresponding to ū ∈ [−3, 3] is

shown shaded in Figure 1.5. Note that, for each constant value of u, the corresponding

subset of E is a continuum. Figure 1.5 also shows the hysteresis map of (1.18) with

u = 3 sin(0.001t) N, m = 1 kg, K = 1 N/m, and FC = 2 N. The hysteresis map is a

subset of the equilibria map.
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 [m
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Figure 1.5: The equilibria map and the hysteresis map of the (1.18) with the Coulomb
friction force (1.17). The shaded area represents the equilibria map E .
For every constant value ū of the input u, there is an infinite number
of corresponding equilibria. The hysteresis map H∞ is a subset of the
equilibria map.

1.3.2 Maxwell-Slip Model

The Maxwell-slip model [33–35] shown in Figure 1.6 consists of N masses and

N springs. For i = 1, . . . , N , the mass mi with displacement xi is connected by a

stiffness ki to a common termination point whose displacement is u. Associated with

each mass is a displacement deadband of width ∆i > 0, below which the mass does

13



not move, and above which the mass moves with velocity u̇, that is, the inertia of

the masses is ignored when the mass is sliding. Hence, ki∆i is the minimum spring

force needed to move the mass mi. Once the mass mi begins to move, the spring force

remains at ki∆i for all velocities of the mass. Hence, each mass-spring combination in

the Maxwell-slip model is subjected to an equivalent Coulomb friction force F = ki∆i.

m1

u

∆1
x1

k1

mi

∆i
xi

ki

mN

∆N
xN

kN

Figure 1.6: The Maxwell-slip model with N masses and N springs. Each mass is
associated with a displacement deadband ∆i, below which the mass does
not move, and above which the mass moves with the same velocity as the
common termination point.

We can represent the system of masses and springs shown in Figure 1.6 as the

Duhem model [22, 27, 36, 55]

ẋi(t) =
[

U
(

− xi(t) + u(t)−∆i

)

1− U
(

− xi(t) + u(t) + ∆i

)]







u̇+(t)

u̇−(t)






, (1.20)

Ff(t) =
N
∑

i=1

ki
(

− xi(t) + u(t)
)

, i = 1, . . . , N, (1.21)
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where Ff is the friction force and

U(v)
4

=















1, v ≥ 0,

0, v < 0.

(1.22)

Figure 1.7 shows the input-output maps of the Maxwell-slip model (1.20), (1.21)

with N = 10. The frequency of the input is ω = 2 rad/s in Figure 1.7(a) and

ω = 0.1 rad/s in Figure 1.7(b). The Maxwell-Slip model is rate independent which is

demonstrated by the identical input-output maps at two different frequencies of the

input. The input u(t) is initially u1(t) = sin(ωt) and the friction force corresponds to

the major loops in figures 1.7(a) and 1.7(b). When u(t) changes to u2(t) = 0.5 sin(ωt)

after one period, the friction force Ff corresponds to the upper minor loops in figures

1.7(a) and 1.7(b). When u(t) changes to u2(t) after one and a half periods, Ff

corresponds to the lower minor loops in figures 1.7(a) and 1.7(b). Consequently,

with identical inputs but different initial conditions, (1.20)-(1.21) result in distinct

hysteresis maps. Thus, H∞(u,x0) depends on x0, and the Maxwell-slip model has

nonlocal memory.

1.3.3 Dahl Model

The Dahl model [36–38] has the form

Ḟf (t) = σ

∣

∣

∣

∣

1− Ff (t)

Fc
sign u̇(t)

∣

∣

∣

∣

γ

sign

(

1− Ff (t)

Fc
sign u̇(t)

)

u̇(t), (1.23)

where Ff is the friction force, u is the relative displacement between the two surfaces

in contact, Fc > 0 is the Coulomb friction force, γ ≥ 0 is a parameter that determines

the shape of the force-displacement curve, and σ > 0 is the rest stiffness, that is,

the slope of the force-deflection curve when Ff = 0. The right-hand side of (1.23) is

Lipschitz continuous in Ff for γ ≥ 1 but not Lipschitz continuous in Ff for 0 ≤ γ < 1.
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Figure 1.7: Input-output maps of the Maxwell-Slip model (1.20), (1.21) with N =
10, ∆ = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−1 m, and k =
[1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m. In (a) the frequency of the
input is ω = 2 rad/s, and in (b) ω = 0.1 rad/s. The input u(t) is initially
u1(t) = sin(ωt) m, where the friction force corresponds to the major loops.
When u(t) changes to u2(t) = 0.5 sin(ωt) m after one period, the friction
force Ff corresponds to the upper minor loops. When u(t) changes to
u2(t) after one and a half periods, the friction force Ff corresponds to the
lower minor loops.

As shown in Figure 1.8, the parameter γ determines the shape of the hysteresis map.

The magnitude of the friction force Ff (t) approaches Fc under monotonic inputs.

16



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement   u[m]

F
ri
ct

io
n

 f
o

rc
e

  
  
F

[N
]

F
C

−F
C

γ = 0

γ = 0.25

γ = 1

γ = 2

Figure 1.8: Displacement u versus friction force F for hysteresis maps of the Dahl
model for several values of γ. The shape of the hysteresis map from u to
F depends on the value of γ. The numerical values used are Fc = 0.75 N,
σ = 1.5 N/m, and u(t) = sin 0.1t m.

Figure 1.9 shows the input-output maps of the Dahl model (1.23) for sinusoidal

input with frequency ω = 2 rad/s (Figure 1.9(a)) and ω = 0.1 rad/s (Figure 1.9(b))

with Fc = 1.5 N, σ0 = 7.5 N/m, and γ = 1. The shape of the input-output map is in-

dependent of the input frequency, and thus, the Dahl model (1.23) is rate independent.

The input u(t) is initially u1(t) = 5 sin(ωt) and the friction force corresponds to the

major loops in figures 1.9(a) and 1.9(b). When the input changes to u2(t) = sin(ωt)

after one period the friction force corresponds to the minor loops in figures 1.9(a)

and 1.9(b). Furthermore, when the input changes from u1 to u2 after one and a half

periods, the friction force also corresponds to the minor loops in figures 1.9(a) and

1.9(b). Thus, with identical inputs but with different initial conditions, (1.23) results

in identical hysteresis maps and therefore Dahl model has local memory.

1.3.4 LuGre Model

The LuGre model [26–28], which models the asperities of two surfaces as elastic

bristles, is given by
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Figure 1.9: Input-output maps of the Dahl model (1.23) with Fc = 1.5 N, σ0 = 7.5
N/m, and γ = 1. In (a) the frequency of the input is ω = 2 rad/s, and
in (b) ω = 0.1 rad/s. The input u(t) is initially u1(t) = 5 sin(ωt) m and
the friction force corresponds to the major loops. When the u(t) changes
to u2(t) = sin(ωt) m the friction force Ff corresponds to the minor loop
regardless of whether the input change happens after one or one and a
half periods.

ż(t) = u̇(t)− |u̇(t)|
zss
(

u̇(t)
)z(t), (1.24)

F (t) = σ0z(t) + σ1ż(t) + σ2u̇(t), (1.25)
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where z is the average deflection of the bristles, u is the relative displacement, Ff

is the friction force, and σ0, σ1, σ2 > 0 are stiffness, damping, and viscous friction

coefficients, respectively. The right hand side of (1.24) is Lipschitz continuous with

respect to z.

In [2, 27], zss(u̇(t)) is defined by

zss(u̇(t)) =
1

σ0

(

Fc + (Fs − Fc)e
−(u̇(t)/vs)2

)

, (1.26)

where Fc > 0 is the Coulomb friction force, Fs is the stiction force, and vs is the

Stribeck velocity. For a given constant velocity u̇, the steady-state friction force Fss

obtained from (1.24) and (1.25) is

Fss(u̇) = σ0zss(u̇)sign(u̇) + σ2u̇. (1.27)

The drop in friction force (see Figure 1.10) at low magnitudes of velocity is due to

the Stribeck effect, while the Stribeck velocity is the velocity at which the steady-state

friction force begins to decrease when the velocity is positive and increasing.

Letting Fs = Fc in (1.26) and σ1 = σ2 = 0 in (1.25), the LuGre model (1.24)-

(1.26) is equivalent to the Dahl model (1.23) with γ = 1 and σ = 1. Figure 1.11 shows

the input-output maps of the LuGre model (1.24)-(1.26) with Fc = 1 N, Fs = 1.5

N, σ0 = 104 N/m, and σ1 =
√
104 N-s/m, σ2 = 0.6 N-s/m, vs = 0.04 m/s, and

u(t) = 5 cos(ωt). In Figure 1.11(a) the input frequency is ω = 0.25 rad/s and in

Figure 1.11(b) the input frequency is ω = 0.01 rad/s. Since the shape of the input-

output map changes with frequency, the LuGre model is rate dependent.

As noted in [78] the LuGre model has local memory. Thus the hysteresis map

H∞(u,x0) of the LuGre model is independent of x0.
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Figure 1.10: Steady-state friction force (1.27) of the LuGre model. The drop in the
friction force at low velocities is the Stribeck effect, while the Stribeck
velocity vS = 0.001 m/s is the velocity at which the steady-state friction
force begins to decrease when the velocity is positive and increasing. The
numerical values are Fc = 1 N, Fs = 1.5 N, vs = 0.001 m/s, σ0 = 105

N/m, σ1 =
√
105 N-s/m, and σ2 = 0.4 N-s/m.

1.4 Dissertation Outline

In this dissertation, the goal is to use mechanical elements such as masses, springs

and dashpot and observe the frictional phenomena and hysteresis arise from their

interaction. In particular we are interested in discovering the mechanical mechanisms

that lead to hysteretic energy dissipation, stick-slip and the Stribeck effect. Stick-slip

is a friction induced limit cycle in which a body sliding on a surface periodically comes

to rest. The Stribeck effect is the apparent drop in the friction force as the velocity

increases. In order to investigate these phenomena, we build several hysteretic models

in hopes that a better understanding of these processes leads to a better understanding

and prediction of friction. If the origins of stick-slip and the Stribeck effect are

understood, then this knowledge can be applied in development of experimentally

based models, so that they can predict a broad spectrum of behaviors.

A short summary of all of the models presented in this dissertation is shown in

Table 1.3. Table 1.3 also states the insights gained from the development of the model
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Figure 1.11: Input-output maps of the LuGre model (1.23) with Fc = 1 N, Fs = 1.5
N, σ0 = 104 N/m, and σ1 =

√
104 N-s/m, σ2 = 0.6 N-s/m, vs = 0.04

m/s, and u(t) = 5 cos(ωt). In (a) the frequency of the input is ω = 0.25
rad/s, and in (b) ω = 0.01 rad/s.

as well as whether the model is an original contribution of this dissertation or not. The

major contributions of this dissertation include the multiplay model for symmetric

hysteresis. This model is invertible which is helpful in control design in systems

where hysteresis is detrimental to the performance. Discontinuous rotating bristle

model (DRBM) gives insight into the origins of hysteretic energy dissipation and the
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origins of stick-slip. The compressed bristle model reveals the physical mechanism

which leads to the Stribeck effect.

Friction Model Description / Insights gained Original Contribution

Maxwell-slip Models friction with nonlocal memory No
Dahl Models friction with local memory No
LuGre Exhibits stick-slip and Stribeck effect No

Multiplay Has nonlocal memory, invertible, physical representation of Maxwell-Slip model Yes
Rotating Bristle Exhibits quasi stick-slip Yes

DRBM Physical mechanism for stick-slip and hysteretic energy dissipation Yes
Compressed Bristle Physical mechanism for Stribeck effect and physical representation of LuGre model Yes

Table 1.3: Summary of the friction models developed or described in this dissertation
and classification of original contributions of this dissertation.

The contents of this dissertation are as follows. In Chapter II, we consider the

multiplay model for hysteresis with nonlocal memory. This new model consists of N

mass/spring/dashpot-with-deadzone elements. The hysteresis map of the multiplay

model is completely determined by the stiffness coefficients and widths of the gaps of

the mass/spring/dashpot-with-deadzone elements. This multiplay model can be used

to model a hysteretic system with a hysteresis map possessing the symmetry of the

cyclic rotation group C2. Parameters of the multiplay model can be determined based

on the slope of the sampled hysteresis map. Once the multiplay model is determined,

its inverse can be analytically computed.

In Chapter III, we investigate the origins of stick-slip friction by developing an

asperity-based friction model based on the frictionless contact between a body and a

row of rigid, rotating bristles attached to the ground by torsional springs and dash-

pots. This model exhibits hysteresis and quasi-stick-slip behavior. The hysteretic

energy-dissipation mechanism is the release of the pivoted bristles, after which the

bristles oscillate and the stored energy is dissipated by the dashpot. The discontin-

uous rotating bristle model is an approximation of the rotating bristle model that

exhibits exact stick-slip and hysteresis. We derive a single-state formulation of the

discontinuous rotating bristle model and investigate similarities to the LuGre model.
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In Chapter IV we investigate the origin of the Stribeck effect. We develop an

asperity-based friction model and show that the vertical motion of the body leads

to the Stribeck effect. The friction model is hysteretic, and the energy-dissipation

mechanism of the bristle model is the release of the compressed bristles, which causes

the bristles to oscillate and the energy is dissipated by a dashpot. We also show that

the compressed bristle model is a generalization of the LuGre model, and we derive

the LuGre model equations from the compressed bristle model equations.

The contribution of the Chapter V is a framework for relating butterfly-shaped

hysteresis maps to simple (single-loop) hysteresis maps, which are typically easier

to model and more amenable to control design than the butterfly-shaped loops. In

particular, a unimodal mapping is used to transform simple loops to butterfly loops.

For the practically important class of piecewise-monotone hysteresis maps, we provide

conditions for producing butterfly-shaped maps and examine the properties of the

resulting butterflies. Conversely, we present conditions under which butterfly-shaped

maps can be converted to simple piecewise monotone hysteresis maps to facilitate

hysteresis compensation and control design. Examples of a preloaded two-bar linkage

mechanism and a magnetostrictive actuator illustrate the theory and its utility for

understanding, modeling, and controlling systems with butterfly-shaped hysteresis.
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CHAPTER II

A Multiplay Model for Rate-Independent and

Rate-Dependent Hysteresis with Nonlocal Memory

In this chapter we introduce the multiplay model for hysteresis with nonlocal mem-

ory. This model consists of N mass/spring/dashpot with deadzone elements. The

hysteresis map of the multiplay model is completely determined by the stiffness coef-

ficients and widths of the gaps of the mass/spring/dashpot with deadzone elements.

This multiplay model can be used to model a hysteretic system with a hysteresis map

possessing the symmetry of the cyclic rotation group C2. Parameters of the multiplay

model can be determined based on the slope of the sampled hysteresis map. Once

the multiplay model is determined, its inverse can be analytically computed.

2.1 Introduction

Hysteresis is manifested as a non-vanishing input-output loop for inputs at asymp-

totically low frequency. This phenomenon arises in nonlinear systems with multiple

attracting equilibria. In the limit of DC operation, the output is attracted to differ-

ent equilibria depending on the direction of the input, which results in a nontrivial

input-output loop called the hysteresis map [39, 79].

Several types of models can capture hysteretic behavior. Duhem and nonlinear
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feedback models are finite dimensional. Differential equations of Duhem models in-

volve derivatives of the input [55, 66]. Various types of Duhem models including

Maxwell-slip are described in [22]. Nonlinear feedback models consist of a linear sys-

tem with a feedback nonlinearity [63]. Preisach and Prandtl-Ishlinskii models, which

are infinite dimensional, consist of an infinite number of hysterons or unitary hys-

teresis operators, which are turned on or off depending on the current direction of

the input [64]. The Prandtl-Ishlinskii model, which is a special type of the Preisach

model, utilizes the play operators weighted by a density function [66, 70–72].

If the shape of the hysteresis map changes with the frequency of the input, the

model is said to be rate dependent. If the shape of the hysteresis map is identical

for all frequencies of the input, the model is rate independent (see Definition 1.1.6).

Nonlinear feedback models are rate dependent [63], Preisach and Prandtl-Ishlinskii

models are rate independent [72] and can be extended to rate dependent [80], and

Duhem models can be either rate independent or rate dependent [22].

Some hysteresis models have nonlocal memory, that is, the shape and position of

the hysteresis map depend on the initial conditions. Nonlocal memory is manifested as

the existence of congruent minor loops corresponding to input reversals (see Definition

1.1.5) [22, 81]. Infinite dimensional Preisach and Prandtl-Ishlinskii models capture

this property [64,70]. However, we introduce a finite-dimensional nonlinear feedback

model with nonlocal memory called the multiplay model. This rate-dependent model

is equivalent to the Maxwell-slip model in the limit of DC operation and can be

analytically inverted which makes it suitable for real-time applications.

In this chapter, we first demonstrate that the multiplay model is a rate-dependent

model with nonlocal memory. Second, we make the connection between the Maxwell-

slip model and the nonlinear feedback model. Third, we extend the Maxwell-slip

model by introducing negative stiffness coefficients, which give greater flexibility to

the shape of the hysteresis map. Next, we present a method for fitting the nonlinear
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feedback model to hysteresis maps possessing the symmetry of the cyclic rotation

group C2. Finally, we introduce a simple algorithm for analytically inverting a given

hysteresis map.

2.2 Multiplay

Consider the mass/spring/dashpot system with deadzone shown in Figure 2.1.

This system consists of a body with mass m, a spring with stiffness k, a dashpot with

damping coefficient c, and a deadzone of width 2∆. The input u(t) is the position

of the right end of the spring, and the output x(t) is the position of the mass. The

system is modeled by the differential equation

mẍ(t) + cẋ(t) + kd2∆
(

x(t)− u(t)
)

= 0, x(0) = x0, t ≥ 0, (2.1)

where

d2∆(v)
4

=































v −∆, v ≥ ∆,

0, |v| < ∆,

v +∆, v ≤ −∆

(2.2)

is the deadzone function with width 2∆ ≥ 0.

The mass/spring/dashpot system with deadzone in Figure 2.1 can be represented

as in Figure 2.2, where the mass with deadzone is replaced by the play operator

discussed in [82]. In the present chapter we work directly with the model (2.1) rather

than the play operator.

Next, we define multiplay as the parallel connection of N mass/spring/dashpot

systems with deadzone shown in Figure 2.3. The multiplay system has N masses, N

play operators with widths 2∆i, N springs with stiffness coefficients ki, and N dash-
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Figure 2.1: Mass/spring/dashpot system with deadzone. The input u is the position
of the right end of the spring, and output x is the position of the mass.
The system is modeled by (2.1) and the deadzone is modeled by (2.2).

m
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x

c

2∆
k

Figure 2.2: Play operator representation of the mass/spring/dashpot with deadzone
system. The deadzone is replaced by the play operator of width 2∆.

pots with damping coefficients ci. The mass/spring/dashpot with deadzone elements

are connected by a rigid bar. The input to the multiplay system is the position u(t)

of the bar. Each element is modeled by the differential equation

miẍi(t) + ciẋi(t) + kid2∆i

(

xi(t)− u(t)
)

= 0, (2.3)

xi(0) = xi0, t ≥ 0, i = 1, . . . , N,

where d2∆i
(·) is the deadzone function defined by (2.2). The output of the system is

defined as

y(t) =
N
∑

i=1

ki(u(t)− xi(t)). (2.4)
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Physically, y(t) represents the sum of spring forces in the multiplay system. We allow

the stiffness coefficients and masses to be negative. We call (2.3)-(2.4) the multiplay

model, and we omit units since we do not physically construct this system.

m1

u

x1

c1

2∆1
k1

mi

xi

ci

2∆i
ki

mN

xN

cN

2∆N
kN

Figure 2.3: A schematic representation of the multiplay system consisting of N
mass/spring/dashpot with deadzone elements. The elements are con-
nected in parallel by a rigid bar.

The periodic input-output maps HT (uT , yT ) as defined by Definition 1.1.3, of the

multiplay model converge to a hysteretic map H∞(u, x0) as the frequency of the

periodic input approaches zero as shown in Figure 2.4. This figure shows the input-

output response of a multiplay model with two elements. For simplicity all masses are

set to mi = 1, all stiffness coefficients to ki = 1, all damping coefficients to ci = 1, and

the deadzone widths to ∆1 = 0.8 and ∆2 = 0.2. Furthermore, the multiplay model

in Figure 2.4 has nonlocal memory. When the direction of the input is reversed after

either a half or a full period, the output converges to two distinct trajectories.
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Figure 2.4: Periodic input-output maps HT (uT , yT ) of the multiplay model. As the
frequency of the input approaches zero the periodic input-output map
approaches a hysteretic map H∞(u, x0) with nonlocal memory. This hys-
teretic system is rate dependent.

2.3 Multiplay and Maxwell-Slip Model

In this section we explore the relationship between the multiplay model and the

Maxwell-slip model. We begin by taking the time derivative of (2.3)

mi
...
xi(t) + ciẍi(t) = kid

′
2∆i

(

u(t)− xi(t)
)(

u̇(t)− ẋi(t)
)

. (2.5)

29



In the limit, as the period of the input approaches infinity, the dynamics in (2.3)

become negligible. The effective mass and damping coefficient are zero, and (2.5)

becomes

d′2∆i

(

u(t)− xi(t)
)(

u̇(t)− ẋi(t)
)

= 0, (2.6)

which means that either

ẋi(t) = u̇(t) (2.7)

or

d′2∆i

(

u(t)− xi(t)
)

= 0. (2.8)

Note that the derivative of the deadzone function (2.2) for v = −∆i and v = ∆i

is equal to the δ function. Defining the derivative to be 1 at these two points for

convenience, we have

d′2∆i
(v) =































1, v ≤ −∆i,

0, |v| < ∆i,

1, v ≥ ∆i,

(2.9)

so that (2.8) holds if and only if

|u(t)− xi(t)| < ∆i. (2.10)

If (2.10) holds, the end of the spring inside the play element is not in contact with

either the left or right wall of the play operator. Thus, the position of the mass is

not changing since the end of the spring is neither pushing nor pulling on the play
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operator. In other words, |u(t) − xi(t)| < ∆i corresponds to ẋi(t) = 0. Now, (2.7)

corresponds to u(t) − xi(t) ≤ −∆i and u(t) − xi(t) ≥ ∆. If u(t) − xi(t) ≤ −∆i

the left end of the spring is pushing on the left wall of the play operator and u(t) is

decreasing. If u(t)− xi(t) ≥ ∆i the left end of the spring is pushing on the right wall

of the play operator and u(t) is increasing. Based on this discussion, in the limit, as

the period of the input approaches infinity (2.3) is equivalent to

ẋi(t) =































u̇(t), u(t)− xi(t) ≤ −∆i, u̇(t) < 0,

0, |u(t)− xi(t)| < ∆i,

u̇(t), u(t)− xi(t) ≥ ∆i, u̇(t) > 0.

(2.11)

Expression (2.11) can be rewritten as

ẋi(t) =

[

U(u(t)− xi(t)−∆i) 1− U(u(t)− xi(t) + ∆i)

]







u̇+(t)

u̇−(t)






, (2.12)

y(t) =

N
∑

i=1

ki(u(t)− xi(t)), (2.13)

where U(v) is the unit step function

U(v)
4

=















1, v ≥ 0,

0, v < 0,

(2.14)

and u̇+(t) and u̇−(t) are defined as

u̇+(t)
4

= max{0, u̇(t)}, u̇−(t)
4

= min{0, u̇(t)}. (2.15)

Equation (2.12) is a rate-independent semilinear Duhem model of friction, known

as the Maxwell-slip model. Thus, in the limit of DC operation, as the frequency
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of the input approaches zero, the multiplay model (2.3)-(2.4) is equivalent to the

rate-independent Maxwell-slip model (2.12)-(2.13).

2.4 Determining the Hysteresis Map From the Multiplay

Model

In this section we analyze the properties of the limiting periodic input-output map

H∞(u, x0), that is, the periodic input-output map in the limit as the period of the

input approaches infinity.

To find the slope of the limiting periodic input-output map, we differentiate (2.4)

with respect to the input u(t), that is,

dy

du
=

n
∑

i=1

ki(1−
dxi

du
), (2.16)

where dxi

du
depends on whether mi is moving or not. Rewriting ẋi(t) as

dxi

dt
=

dxi

du

du

dt
=

dxi

du
u̇ (2.17)

and using (2.11), we have

dxi

du
u̇ =































u̇(t), u(t)− xi(t) ≤ −∆i, u̇(t) < 0,

0, |u(t)− xi(t)| < ∆i,

u̇(t), u(t)− xi(t) ≥ ∆i, u̇(t) > 0.

(2.18)

From (2.18) we conclude that

dxi

du
=















1, |u(t)− xi(t)| ≥ ∆i,

0, |u(t)− xi(t)| < ∆i.

(2.19)
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Substituting (2.19) into (2.16) and assuming that, for i = 1, . . . , r, |u(t)−xi(t)| ≥ ∆i

and, for i = r + 1, . . . , N , |u(t)− xi(t)| < ∆i, then

dy

du
=

r
∑

i=1

ki(1−
dxi

du
) +

N
∑

i=r+1

ki(1−
dxi

du
) (2.20)

=
r
∑

i=1

ki(1− 1) +
N
∑

i=r+1

ki(1− 0) =
N
∑

i=r+1

ki. (2.21)

Once mass mj starts moving, its stiffness is no longer included in the summation

in (2.20), and thus does not affect the slope of the limiting input-output map until

the input u reverses direction and moves 2∆j in the opposite direction. The slope of

the limiting input-output curve changes each time a stationary mass starts moving.

Assuming that the input is oscillating between umin and umax > umin +2∆N , if u just

reached umin and is monotonically increasing, none of the masses of the multiplay are

moving. The slope of the limiting input-output map, which is equal to the sum of all

of the stiffnesses, first changes when u reaches umin + 2∆1. The slope becomes the

sum of stiffnesses k2 through kN . Next, when u increases past umin+2∆2 the slope is

equal to the sum of stiffnesses k3 through kN . In general, each time u becomes larger

then umin + 2∆i the slope decreases by ki. As the input increases from umin to umax

the slope changes according to



















s1

s2
...

sN



















= A



















k1

k2
...

kN



















(2.22)

where s1 is the slope of the section of the hysteresis map that corresponds to u ∈

[umin, umin + 2∆1] and si is the slope of the section of the hysteresis map that cor-

responds to u ∈ [umin + 2∆i−1, umin + 2∆i], i = 2, . . . , N , and A ∈ R
N×N is given
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by

A =



















1 1 · · · 1

0 1 · · · 1

...
...

. . .
...

0 0 · · · 1



















. (2.23)

We demonstrate (2.20) based on the limiting input-output map of the two-element

multiplay shown in Figure 2.5(a). The stiffnesses are k1 = 2 and k2 = 4, the deadzone

widths are ∆1 = 1 and ∆2 = 3, and umin = −5 and umax = 5. In the limit of DC

operation, the mass and damping coefficient are irrelevant, and we thus set them equal

to the corresponding stiffnesses. The transient response is shown by the dashed line.

As the arrows indicate, the hysteresis loop is counterclockwise. As u increases from

umin = −5 to umin+2∆1 = −3 the slope of the input-output map is s1 = 6 = k1+ k2.

At this point, the first mass starts moving and the slope becomes s2 = 4 = k2. When

u increases above umin + 2∆2 = 1, the second mass moves and the slope becomes

zero. When u reaches umax and starts decreasing, the slope follows the same rules; in

particular the slope is initially 6, then 4, then 0.

The stiffness coefficients ki do not have to be limited to positive numbers, which

allows the slope of the hysteresis map to be negative and corresponds to a stiffening

spring. However, if any of the stiffnesses are negative, the corresponding mass and

damping coefficient must also be negative in order for system (2.3)-(2.4) to be sta-

ble. Note that the negative masses and damping coefficient do not have a physical

meaning, rather they are a tool used to allow for more flexibility in the shape of the

hysteresis map. We can introduce the negative masses and damping coefficient since

their effect in the limit of DC operation is negligible.

We demonstrate that the hysteresis map has negative slope with negative stiffness

coefficients, we use the two-element multiplay in Figure 2.5(b). The stiffness coeffi-
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Figure 2.5: Hysteresis map of the multiplay model with two elements and a) positive
and b) negative stiffness coefficients. The slope of the hysteresis map at
each point is equal to the sum of the stiffness coefficients corresponding
to the stationary masses.

cients are k1 = −2 and k2 = −4. Masses and damping coefficients are equal to the

corresponding stiffnesses. All other parameters are the same as in the previous exam-

ple. The hysteresis map is now counterclockwise, and as u increases from umin = −5

to umax = 5 the slope changes from s1 = −6 = k1 + k2, to s2 = −4 = k2, to s3 = 0.

Positive and negative stiffness coefficients can be combined in the same multi-

play model to give S-shaped loops as shown in Figure 2.6. The stiffness coeffi-

cients are k1 = · · · = k5 = −1 and k6 = · · · = k10 = 2. Masses and damp-

ing coefficients are equal to corresponding stiffnesses. Deadzone widths are ∆ =
[

1 3 5 7 9 11 13 15 17 19

]′

, where the ith entry of ∆ is ∆i.

2.5 Determining the Multiplay Model From the Hysteresis

Map

The multiplay model can be used to approximate a known hysteresis map that

is symmetric under a 180◦ rotation in the input-output plane, that is, having the

symmetry of the cyclic rotational group C2. The hysteresis map is approximated by
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Figure 2.6: S-shaped hysteresis map of a multiplay model with ten elements. The
S-shape is the result of a combination of positive and negative stiffness
coefficients.

using positive and negative stiffness coefficients to give the desired slope. We divide

the hysteresis map into N +1 piecewise linear segments, each with slope si. Once the

slopes are known, the stiffness coefficients can be computed by inverting (2.22). The

matrix A in (2.22) is nonsingular for all N and its inverse A−1 ∈ R
N×N is

A−1 =



























1 −1 0 · · · 0

0 1 −1 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 −1

0 · · · · · · 0 1



























. (2.24)

Assuming that the output trajectory from umin to umax is partitioned into N + 1

segments with endpoints (umin, y(umin)), (u1, y(u1)), . . . , (uN , y(uN)), (umax, y(umax)).

The slope of each segment is found from the endpoint coordinates, and the stiffness
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coefficients are computed from













k1
...

kN













= A−1













s1
...

sN













, (2.25)

where s1, . . . , sN are the slopes of the consecutive segments and the slope sN+1 is not

used in the calculation. The widths of the deadzones associated with the stiffness

coefficients calculated from (2.25) can be found from













∆1

...

∆N













=













(u1 − umin)/2

...

(uN − umin)/2













(2.26)

The following example is taken from [1]. Note that this hysteresis map has the

symmetry of the cyclic group C2. However, the actual data presented in the chap-

ter are not available, so the ”true” hysteresis map was estimated by ”extracting”

the points (umin, y(umin)), (u1, y(u1)), . . . , (uN , y(uN)), (umax, y(umax)) from the plot.

Stiffness coefficients and deadzone widths are calculated from (2.25) and (2.26), re-

spectively. The estimated and actual hysteresis maps are identical as shown in Figure

2.7.

2.6 Minor Loops of the Multiplay Model

As already stated, the multiplay system has nonlocal memory, which is manifested

as existence of external or internal minor loops that correspond to input reversals.

The shape of the minor loops is determined by the stiffness coefficients ki and

the deadzone widths ∆i of the masses with ∆i less than the amplitude of the input

reversal. After every input reversal, the initial slope of the reversal loop sr1 is given
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Figure 2.7: True and estimated hysteresis maps from [1]. Note that the hysteresis
map is symmetric under 180◦ rotation in the input-output plane, and
that the true and estimated hysteresis maps are identical.

by sr1 =
∑N

i=1 ki.

The slope subsequently changes according to the same rules as described above.

When the input reversal occurs at a point of the major loop where the slope of the

major loop si satisfies si >
∑N

i=1 ki, the minor loop is external. When the reversal

happens at the point where the slope of the major loop satisfies si <
∑N

i=1 ki, the

minor loop is internal. However, if si =
∑N

i=1 ki, then the minor loop is internal if

its slope increases and external if its slope decreases when a stationary mass begins

moving.

Minor loops are shown in Figure 2.8. The figure shows the hysteresis map of

a multiplay system and the minor loops that correspond to input reversals at dif-

ferent points along the major loop. The multiplay has 10 masses with stiffness

coefficients k1 = · · · = k4 = −2 and k5 = · · · = k10 = 2. Masses and damp-

ing coefficients are equal to corresponding stiffnesses. Deadzone widths are ∆ =
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[

1 2 4 6 8 10 12 14 16 18

]T

, where the ith entry of ∆ is ∆i.
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Figure 2.8: Internal and external minor loops of an S-shaped multiplay hysteresis
map. The major and the large minor loop are clockwise while the small
minor loops are counterclockwise.

2.7 Inverse of the Multiplay Model

In this section we develop the strategy for computing the inverse of a multiplay

model with a known hysteresis map. The slopes s′i of the inverse hysteresis map are

s′i =
1

si
, si 6= 0, (2.27)

where si is defined in (2.25). The stiffness coefficients k′
i of the inverse hysteresis map

are calculated from s′i as in (2.25)













k′
1

...

k′
N













= A−1













s′1
...

s′N













. (2.28)
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To find the new deadzone widths ∆′
i, we use the points y(umin), . . . , y(uN) similarly

to (2.26)













∆′
1

...

∆′
N













=













(y(u1)− y(umin))/2

...

(y(uN)− y(umin))/2













. (2.29)

One shortcoming of the inverse model obtained through this procedure is that

it cannot handle the segments of infinite slope. The inverse hysteresis map of the

one in Figure 2.6 is shown in Fig 2.9. Note that the inverse hysteresis maps are

counterclockwise. The true and estimated hysteresis maps differ only in the vertical

segments with infinite slope. However, if the segment of the estimated inverse that

corresponds to the decreasing input is shifted up and the segment of the estimated

inverse that correspond to the increasing input is shifted down, then the resulting

hysteresis map matches the actual inverse hysteresis map.
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Figure 2.9: True and estimated inverse hysteresis maps. Note that the estimated
hysteresis map defers from the true only in the vertical segments with
infinite slope.
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Figure 2.10: Inversion of a hysteresis map without segments having zero slope. The
true hysteresis map is shown in a), while its true and estimated inverse
is shown in b).

The inverse model obtained from (2.27)-(2.29) will give much better results if the

original hysteresis map has no zero-slope segments. Figure 2.10(a) shows a hysteresis

map of a multiplay with 10 masses. The stiffness coefficients are k1 = · · · = k5 = −1

and k6 = · · · = k10 = 2. Masses and damping coefficients are m1 = · · · = m5 = −1

kg, m6 = · · · = m10 = 2 kg, c1 = · · · = c5 = −1 N-m/s, c6 = · · · = c10 = 2 N-

m/s, respectively. Deadzone widths are ∆ =

[

1 3 5 7 9 11 13 15 17 19

]′

,

where the ith entry of ∆ is ∆i. The true and estimated inverses of this hysteresis

map are shown in Figure 2.10(b). The true and estimated inverse are now identical.

2.8 Alternative Inverse of the Multiplay Model

In this section we develop an alternative strategy for computing the inverse of

any multiplay model given input stiffness coefficients ki, deadzone widths ∆i, and

the output y(t). If the ki’s and ∆i’s are not given initially, they can be computed

through the procedure outlined in Section 2.5. Starting with (2.4) the input u(t) can
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be expressed as

u(t) =
y(t) +

∑N
j=1 kjxj(t)

∑N
j=1 kj

,
N
∑

j=1

kj 6= 0. (2.30)

Substituting (2.30) into (2.3) we get

miẍi(t) + ciẋi(t) + kid2∆i

(

xi −
y +

∑N
j=1 kjxj

∑N
j=1 kj

)

= 0. (2.31)

Introducing the change of variables ū(t) = y(t) and ȳ(t) = u(t) in (2.31) gives a new

system

miẍi(t) + ciẋi(t) + kid2∆i

(

xi(t)−
ū(t) +

∑N
j=1 kjxj(t)

∑N
j=1 kj

)

= 0,

xi(0) = xi0, t ≥ 0, i = 1, . . . , N,

N
∑

j=1

kj 6= 0, (2.32)

with the output

ȳ(t) =
ū(t) +

∑N
j=1 kjxj(t)

∑N
j=1 kj

,

N
∑

j=1

kj 6= 0. (2.33)

Figure 2.11 shows the inverse of the hysteresis loop displayed in Figure 2.6. The

output of the multiplay shown in Figure 2.6 is used as the input ū(t) in (2.32)-(2.33).

Stiffness coefficients, masses, damping coefficients, and deadzone widths remain the

same. The actual inverse is also shown for comparison.

2.9 Conclusions

In this chapter we introduced the multiplay model of hysteresis, which consists of a

parallel connection of mass/spring/dashpot with deadzone elements. This hysteresis

model has nonlocal memory. Multiplay model is used to recreate a known hysteresis
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Figure 2.11: True and recreated inverse hysteresis maps. The inverse is computed
from (2.32)-(2.33) based on the known u(t) and y(t).

map. Parameters of the multiplay model can be determined based on the slope of the

desired hysteresis map. We also present an algorithm for inversion of the hysteresis

map of the multiplay. The multiplay model is a useful tool in control engineering

since it can be used to model a hysteresis map which is symmetrical under 180 degree

rotation. Furthermore, since this model is invertible, it can be used to cancel out

hysteresis in a given system and allow for easier control.
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CHAPTER III

A Frictionless Bristle-Based Friction Model That

Exhibits Hysteresis and Stick-Slip Behavior

In this chapter, we investigate the origins of stick-slip friction by developing an

asperity-based friction model based on the frictionless and lossless contact between

a body and a row of rigid, rotating bristles attached to the ground by torsional

springs and dashpots. This model exhibits hysteresis and quasi-stick-slip friction.

The hysteretic energy-dissipation mechanism is the sudden release of the compressed

bristles, after which the bristles oscillate and the stored energy is dissipated by the

dashpot. The discontinuous rotating bristle model is an approximation of the rotating

bristle model that exhibits exact stick-slip and hysteresis. We derive a single-state

formulation of the discontinuous rotating bristle model and investigate similarities

to the LuGre model. The purpose of this chapter is to understand the physical

mechanism that leads to hysteretic energy dissipation and stick-slip friction. We

investigate these phenomena in hopes that a better understanding of these processes

leads to a better understanding and prediction of friction. If the origins of stick-slip

are known, then this knowledge can be applied in development of experimentally

based models, so that they can predict a broad spectrum of behaviors.
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3.1 Introduction

Modeling and control of systems with friction remains a challenging and practically

important problem in science and engineering [2–4, 6, 9, 83]. Excessive friction con-

tributes to wasted energy measured in billions of dollars, whereas insufficient friction

contributes to accidents. In manufacturing applications, friction is crucial to grinding

and polishing, and it is a limiting factor in achieving precision motion control. In sci-

entific applications, such as atomic force microscopes and nano-scale devices, friction

plays a crucial role [84]. A better understanding of friction is essential for improved

design, analysis, and prediction.

Experimental observations provide the primary approach to understanding how

friction depends on material properties and the relative motion between contact-

ing surfaces [8, 20, 21]. Based on these studies, various empirical models have been

developed to capture the macroscopic properties of friction [6, 22–30]. These mod-

els can be fit to data for a specific application, or they can be used for adaptive

control, where parameters are identified and controller gains are updated during op-

eration [24, 78, 85, 86]. As discussed in [87], empirical friction models are typically

based on an internal state variable, denoted by z, that reflects the internal friction

mechanism.

The approach we take to modeling friction is motivated by bristle models [5,

31, 32], where the bristles represent the asperities, which determine the macroscopic

roughness of the contact surfaces. As the contacting surfaces slide over each other,

their asperities touch and are deformed due to shear stresses. Energy is dissipated as

the asperities deform and change the shape of the contacting surfaces [6].

The unconventional aspect of the bristle model in the present chapter is that the

interface between the bristles and the contacting body is frictionless and lossless.

The goal of this work is thus to discover how friction and the related phenomenon

of hysteresis can emerge from friction-free characteristics. To do this, we construct a
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hysteretic dissipation mechanism without introducing friction per se. In particular, we

assume that each rigid bristle is connected to a spring and a dashpot. As the moving

body comes into contact with each bristle, the bristle is deflected and reaction forces

occur, but otherwise the contact is lossless and thus frictionless. As the moving body

passes beyond a bristle, the bristle is suddenly released, and the potential energy

stored in the spring is dissipated by a dashpot regardless of how slowly the body

moves. The resulting model is thus hysteretic in the sense that energy dissipation

occurs under asymptotically slow motion [39].

In the present chapter we analyze the stick-slip behavior of the bristle-based model.

We differentiate between exact stick-slip and quasi-stick-slip. Exact stick-slip refers to

motion in which a body attached to a compliance periodically comes to rest. This kind

of motion, which is reminiscent of a limit cycle, occurs when the friction force drops

as velocity increases from zero; the LuGre model can reproduce stick-slip friction, as

can other friction models [25, 56, 57, 88–92]. Quasi-stick-slip refers to a limit cycle in

which forward movement (that is, slip) is followed by a slight backward movement

called quasi-slip. Furthermore, we use the steady-state characteristics of the emergent

friction force to derive single-state friction models [93] that exhibit stick-slip friction.

In particular, we derive the LuGre model [25–28] by this approach.

The contents of the chapter are as follows. In Section 3.2 we introduce the rotating

bristle model, derive the governing equations, and show that this model exhibits quasi-

stick-slip. In Section 3.3 we introduce the discontinuous rotating bristle model and

show that this model exhibits exact stick-slip and hysteresis. In Section 3.4 we derive

simplified versions of the discontinuous rotating bristle model, including the LuGre

model. A preliminary version of some results from this chapter is given in [94].
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3.2 Rotating Bristle Model

In this section we describe and analyze the rotating bristle model and demon-

strate the emergence of quasi-stick-slip motion. The bristles represent the microscopic

roughness of the surface on which the body is sliding as shown in Figure 3.1. The

body of mass m and length d moves over an infinite row of rigid bristles, each of

which has length lb. The position of the center of mass of the body is denoted by x.

At the base of each bristle is a torsional spring with stiffness coefficient κ and a tor-

sional dashpot with damping coefficient c. The damping coefficient provides viscous

energy dissipation but is otherwise negligible. The mass of each bristle is nonzero but

negligible compared to the mass of the body. Therefore, the interaction between each

bristle and the body is dominated by the stiffness of the torsional spring. Since the

bristles are rigid, they rotate about their base point, but do not buckle. The distance

between the bases of adjacent bristles is ∆, and the location of the base of the ith

bristle is denoted by xbi . Furthermore, we assume that the body moves only hori-

zontally, maintaining a constant height h above the ground. The body is not allowed

to rotate or move vertically. The distance h can be viewed as the average height of

the asperities, which determine the macroscopic roughness of the contacting surfaces.

The length d0
4

=
√

l2b − h2, and we assume throughout this chapter that
d0
∆

> 1, so

that at every instant there is at least one bristle contributing to the friction force.

As the body moves, there is a frictionless reaction force between the bristle and

the body at the point of contact. This force is due to the torsional spring at the

base of each bristle. We assume that the force on the body due to contact with the

bristle is perpendicular to the direction of the bristle. The sum of all horizontal forces

exerted by the bristles at each instant is defined to be the friction force. Since the

bristle-body contact is frictionless, the direction of the reaction force between the

body and each bristle contacting the lower surface of the body is vertical, and thus

these bristles do not contribute to the friction force. Only the bristles that are in
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Figure 3.1: Schematic representation of the body and bristle contact for the rotating
bristle model. The body of mass m slides over an infinite row of bristles
with negligible mass and length lb. Each bristle is attached to the ground
at its base through a torsional spring with stiffness coefficient κ and a
torsional dashpot with damping coefficient c. The distance between the
bases of adjacent bristles is ∆, and the location of each bristle is denoted
by xbi . The frictionless reaction force at the point of contact between the
body and the ith bristle is Fi.

contact with the lower corners of the body contribute to the friction force.

For simplicity, we neglect the force due to the dashpot and the bristle dynamics

resulting from the impact between the body and the bristle. The torsional dashpot

and the bristle mass provide a mechanism for dissipation of the energy stored in the

torsional spring but otherwise play no role in the bristle-body interaction. Modeling

the impact between the body and each bristle would result in the bristles bouncing

off the mass and hitting each other, thus significantly increasing the complexity of

the model. Furthermore, we neglect the dynamics of the bristles since they represent

the asperities of the contacting surface, which can deform during the contact, but
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otherwise exhibit no dynamics.

Furthermore, in simulations of the bristle model throughout this chapter we as-

sume that the bristle-related parameters such as lb, ∆, κ, etc. have numerical values

with physical units. However, these parameter values do not necessarily represent

physically meaningful quantities. They are a tool used to represent the interaction

between the body and the asperities and have no physical meaning. We assign them

units so that the model is dimensionally consistent, but otherwise do not assume that

they represent physical quantities.

3.2.1 Bristle pivot angle

The pivot angle of each bristle depends on the position of the bristle relative to

the body. Since the body is not allowed to move vertically, the distance h from the

ground to the lower surface of the body is constant. The maximum angle θmax that

a bristle can pivot is given by

θmax = cos−1

(

h

lb

)

, (3.1)

and θmax <
π
2
.

If the ith bristle is pivoted less than θmax, then its pivot angle θi depends on the

distance from the position x of the center of the mass of the body to the location xbi

of the base of the ith bristle. If the bristle is in contact with the right lower corner

of the body, then θi = θri , where

θri = tan−1







x+
d

2
− xbi

h






≥ 0. (3.2)
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If the bristle is in contact with the left lower corner of the body, then θi = θli, where

θli = tan−1







x− d

2
− xbi

h






≤ 0. (3.3)

We use the pivot angle of each bristle to calculate its contribution to the friction

force.

3.2.2 Friction force

The friction force is equal to the sum of the horizontal components of all of the

contact forces between the body and the bristles that are pivoted less than θmax and

thus are in contact with one of the lower corners of the body. When the ith bristle

is in contact with either the left or right lower corner of the body and pivoted by

the angle θi, the distance from the base of the ith bristle to the point at which the

contact force acts is

ri =
h

cos θi
, (3.4)

the contact force between the body and the ith bristle is

Fi =
κθi
ri

=
κθi cos θi

h
, (3.5)

and the horizontal component of the contact force (3.5) due to the ith bristle is

Ffi = Fi cos θi =
κθi(cos θi)

2

h
. (3.6)

To describe the friction force that results from the interaction between the bristles

and the body, we define Θr ∈ R
n to be the vector whose entries are the pivot angles

θri of the bristles in contact with the right lower corner of the body. Likewise, Θl ∈ R
n
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is the vector whose entries are the pivot angles θli of the bristles in contact with the

left lower corner of the body. We define X r
b (x) to be the set of base positions xbi

of the bristles in contact with the right lower corner of the body and X l
b(x) to be

the set of base positions xbi of the bristles in contact with the left lower corner of

the body. The pivot angles θri and θli are calculated by using the elements of the

sets X r
b (x) and X l

b(x) in (3.2) and (3.3), respectively. The elements of X r
b (x) and

X l
b(x) are determined based on the position and velocity of the body by using the

rules outlined in Table 3.1, where xr− is the base position of the rightmost bristle

contacting the lower surface of the body at the instant the velocity changes sign from

negative to positive, and xr+ is the base position of the leftmost bristle contacting

the lower surface of the body at the instant the velocity changes sign from positive

to negative.

Velocity Position X r
b (x), X l

b(x) Description

v ≥ 0

x+ d
2
≤ xr− +∆

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 3.2(a)-(1)

X r
b = ∅

xr− + 2∆ > x+ d
2
≥ xr− +∆

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 3.2(a)-(2)

X r
b = {xbi : xr− +∆ ≤ xbi < x+ d

2
}

x+ d
2
≥ xr− + 2∆ X l

b = {xbi : x− d
2
≤ xbi < x− d

2
+ d0} Figure 3.2(a)-(3)

xr− − d0 ≥ x− d
2

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr− ≥ x− d
2
> xr− − d0

X l
b = {xbi : x− d

2
≤ xbi ≤ xr−} Figure 3.2(a)-(4)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

x− d
2
> xr−

X l
b = ∅ Figure 3.2(a)-(5)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

v < 0

x− d
2
> xr+ −∆

X l
b = ∅ Figure 3.2(b)-(1)

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr+ − 2∆ < x− d
2
≤ xr+ −∆

X l
b = {xbi : x− d

2
< xbi ≤ xr+ −∆} Figure 3.2(b)-(2)

X r
b = {xbi : x+ d

2
− d0 ≤ xbi ≤ x+ d

2
}

x− d
2
≤ xr+ − 2∆ X l

b = {xbi : x− d
2
≤ xbi < x− d

2
+ d0} Figure 3.2(b)-(3)

xr+ + d0 ≤ x+ d
2

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

xr+ ≤ x+ d
2
< xr+ + d0

X l
b = {xbi : x− d

2
< xbi ≤ x− d

2
+ d0} Figure 3.2(b)-(4)

X r
b = {xbi : xr+ ≤ xbi ≤ x+ d

2
}

x+ d
2
< xr+

X l
b = {xbi : x− d

2
≤ xbi < x− d

2
+ d0} Figure 3.2(b)-(5)

X r
b = ∅

Table 3.1: The sets X r
b (x) and X l

b(x) as a function of the position and velocity.
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Figure 3.2 illustrates the bristle-body contact scenarios described in Table 3.1.

Figure 3.2(a) shows the bristle-body interaction starting at the instant the sign of

the velocity changes from negative to positive. As the body moves, the bristles that

contribute to the friction force change, and so do the sets X r
b (x) and X l

b(x). In Figure

3.2(a)-(1) the body starts moving to the right, and all the bristles in contact with the

body are pivoted counterclockwise, that is, θi < 0. The resulting friction force causes

the body to accelerate to the right while x +
d

2
< xr− + ∆. The body encounters

the first bristle to its right in Figure 3.2(a)-(2). As the body continues to move

to the right, its right lower corner comes in contact with additional bristles since

x+
d

2
≥ xr− + 2∆, and bristles push on both lower corners of the body as shown in

Figure 3.2(a)-(3). In Figure 3.2(a)-(4) the left lower corner of the body is in contact

with the only remaining bristle with θi < 0, located at xr−. Finally, as the left lower

corner of the body passes the base of the bristle located at xr−, that is, x−
d

2
> xr−,

only bristles with θi > 0 remain in contact with the body as shown in Figure 3.2(a)-

(5). Figure 3.2(b) shows the bristle-body interaction starting at the instant the sign

of the velocity changes from positive to negative. The direction reversal described in

Figure 3.2(b) is analogous to Figure 3.2(a).

All simulations start at t = t0 with the body position x = x0, and the sets X l
b and

X r
b are assumed to be empty at t = t0. That is, at the beginning of all simulations,

the only bristles contacting the body are the bristles contacting the bottom surface of

the body and supporting the weight of the body. Therefore, no bristles are in contact

with the right or left lower corners of the body at t = t0. The friction force is thus

zero and the body encounters bristles according to the rules outlined in Table 3.2.

Once the sets X r
b (x) and X l

b(x) are known, the horizontal component of the contact

force due to all of the bristles in contact with the right lower corner of the body is

F r
f =

κ

h
ΘT

r (cosΘr ◦ cosΘr) , (3.7)
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Figure 3.2: Interaction of the body and bristles during reversals of the body’s motion.
(a) shows the bristle-body interaction as the sign of the velocity of the
body changes from negative to positive. Bristle-body interaction as the
sign of velocity of the body changes from positive to negative is shown in
(b).

Velocity Position X r
b (x), X l

b(x)

v ≥ 0
x < x0 + d0

X l
b = ∅

X r
b = {xbi : x0 +

d
2
< xbi ≤ x+ d

2
}

x ≥ x0 + d0
X l

b = ∅

X r
b = {xbi : x+ d

2
− d0 < xbi ≤ x+ d

2
}

v < 0
x > x0 − d0

X l
b = {xbi : x− d

2
≥ xbi < x0 − d

2
}

X r
b = ∅

x ≤ x0 − d0
X l

b = {xbi : x− d
2
≥ xbi < x− d

2
+ d0}

X r
b = ∅

Table 3.2: Initialization of sets X r
b and X l

b .

where “◦” denotes component-wise vector multiplication and the function cos(·) op-

erates on each component of its vector argument. Likewise, the horizontal component

of the contact force due to all of the bristles in contact with the left lower corner of
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the body is

F l
f =

κ

h
ΘT

l (cosΘl ◦ cosΘl) . (3.8)

The total friction force is thus

Ff = F l
f + F r

f , (3.9)

where X r
b (x) and X l

b(x) are determined from tables 3.1 and 3.2.

For illustration, consider the body moving with the prescribed position x(t) =

A sin(ωt) and velocity v(t) = Aω cos(ωt), where A = 5 m and ω = 0.1 rad/s. The

remaining model parameters are m = 1 kg, d = 1 m, κ = 0.1 N-m/rad, ∆ = 0.002

m, lb = 0.1 m, h = 0.098 m, d0 = 0.0199 m. The resulting friction force as a function

of position is shown in Figure 3.3(a) and as a function of velocity in Figure 3.3(b).

The friction force is initially zero and increases as the mass moves and encounters

bristles. The friction force drops slightly when a bristle reaches its maximum pivot

angle θmax and increases when a new bristle comes in contact with the right lower

corner of the body. The magnitude of the friction force oscillates around zero when

a direction reversal occurs, since bristles push simultaneously on both the right and

left lower corners of the body. In contrast with the Coulomb and LuGre friction

models [6, 24, 28], Figure 3.3(b) shows that, as the velocity crosses zero, the friction

force does not change sign.

3.2.3 Stick-slip behavior

To investigate stick-slip behavior, we simulate the system shown in Figure 3.4.

The body of mass m is connected to a spring with stiffness K. The free end of the
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Figure 3.3: The friction force (3.7)-(3.9) of the rotating bristle model as a function
of position (a) and velocity (b). The position of the body is prescribed
to be x(t) = A sin(ωt) and velocity v(t) = Aω cos(ωt), where A = 5 m,
ω = 0.1 rad/s.

spring moves at the constant speed vp. The equations of motion are

ẋ = v, (3.10)

v̇ =
1

m
(Kl − Ff), (3.11)

l̇ = vp − v, (3.12)
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where v is the velocity of the body relative to the ground, l is the length of the spring,

and Ff is the friction force described by (3.7)-(3.9).

Ff

v

K, l
vpm

Figure 3.4: Body-spring configuration used to investigate the stick-slip properties of
the rotating bristle model. The body of mass m is connected to a spring
with stiffness K. The free end of the spring moves at the constant speed
vp. The friction force Ff is given by (3.7)-(3.9).

The results of the simulation of the system (3.10)-(3.12) with friction force de-

scribed by (3.7)-(3.9) are shown in Figure 3.5. The velocity of the free end of the

spring is vp = 0.5 m/s, and the model parameters are κ = 0.5 N-m/rad, m = 1 kg,

K = 1 N/m, d = 1 m, ∆ = 0.01 m, d0 = 0.0199 m, lb = 0.1 m, and h = 0.098

m. The trajectories projected onto the l-v plane form a limit cycle shown in Figure

3.5(a). The time histories of x, l, v, and Ff are shown in Figure 3.5(b). As the free

end of the spring moves, the spring force overcomes the friction force and the mass

accelerates to the right. This is the slip phase. However, as the mass accelerates, the

spring length decreases and the friction force becomes larger than the spring force.

The body decelerates, momentarily comes to rest, and reverses its direction of motion

due to the bristles pushing on it from the right (see Figure 3.2(b)-(1)). This phase is

called quasi-stick since, unlike exact stick, the body does not remain stationary. The

body moves to the left, its left lower corner comes in contact with bristles, and it con-

tinues moving to the left until the friction force becomes negative, corresponding to

Figure 3.2(b)-(5). At this instant, the friction force and the spring force are pushing

the body in the same direction, and the body accelerates to the right.
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Figure 3.5: Quasi-stick-slip limit cycle of the rotating bristle model. The limit cycle
in the l-v plane is shown in (a), and the time histories of x, l, v, and Ff

are shown in (b).

3.3 Discontinuous Rotating Bristle Model

In this section, we introduce the discontinuous rotating bristle model (DRBM),

which is identical to the rotating bristle model except during direction reversals. In

particular, the details of the direction reversals arising in the rotating bristle model

are replaced by a simplified model in the DRBM. Simplify the rotating bristle model
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in hopes of observing the exact-stick-slip limit cycle, since the goal of this chapter is

to investigate the origins of exact-stick-slip.

To construct the DRBM, we assume that when the velocity of the body passes

through zero and changes sign from positive to negative, the configuration in which

all of the bristles contacting the body are pivoted to the right, θi ≥ 0, jumps discon-

tinuously to a configuration in which all of the bristles contacting it are pivoted to the

left, θi ≤ 0. Similarly, when the velocity of the body passes through zero and changes

sign from negative to positive, the configuration in which all of the bristles contacting

the body are pivoted to the left, θi ≤ 0, jumps discontinuously to the configuration

in which all of the bristles contacting it are pivoted to the right, θi ≥ 0. In figures

3.2(a) and 3.2(b) this is equivalent to an instantaneous transition from the config-

uration in Figure 3.2(a)-(1) and 3.2(b)-(1) to the configuration in Figure 3.2(a)-(5)

and 3.2(b)-(5), respectively, without passing through the configurations described in

figures 3.2(a)-(2), -(3), and -(4) and 3.2(b)-(2),-(3),-(4), respectively.

The DRBM friction force for v ≥ 0 is given by

Ff = F r
f , (3.13)

where F r
f is defined by (3.7) and the components of Θr are given by (3.2) with xbi in

the set

X r
b (x) = {xbi : x+

d

2
− d0 < xbi ≤ x+

d

2
}. (3.14)

Note that, for every value of x, the set X r
b (x) is nonempty and is initialized from

(3.14) based on the initial position x(t0). For v < 0, the DRBM friction force is given

by

Ff = F l
f , (3.15)
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where F l
f is defined by (3.8) and the components of Θl are given by (3.3) with xbi in

the set

X l
b(x) = {xbi : x− d

2
≤ xbi < x− d

2
+ d0}, (3.16)

which, for all values of x, is nonempty and is initialized from (3.16) based on the

initial position x(t0).

Due to the discontinuous jump from a configuration in which all of the pivot angles

satisfy θi ≥ 0 to a configuration in which all of the pivot angles satisfy θi ≤ 0, and

vice versa, we compare the value of Ff as v → 0+ with the value of Ff as v → 0− in

order to determine discontinuities of the friction force at zero velocity. The value of

θi given by (3.2) with xbi ∈ X r
b (x) defined by (3.14) is in the range

0 ≤ θi < tan−1

(

d0
h

)

. (3.17)

Thus, it follows from (3.13) and (3.7) that Ff ≥ 0 for all v ≥ 0. However, since

d0
∆

> 1, X r
b (x) has at least one element, namely, the ith bristle with base at xbi and

θi > 0. The contribution of the ith bristle to the friction force Ff is thus nonzero and

therefore Ff > 0 for all v ≥ 0. On the other hand, the value of θi given by (3.3) with

xbi ∈ X l
b(x) defined by (3.16) satisfies

− tan−1

(

d0
h

)

< θi ≤ 0. (3.18)

It follows from (3.15) and (3.8) that Ff ≤ 0 for all v < 0. However, since
d0
∆

> 1,

X l
b(x) has at least one element, namely, the ith bristle with base at xbi and θi < 0. The

contribution of the ith bristle to the friction force Ff is thus nonzero and therefore

Ff < 0 for all v < 0.

Since Ff > 0 for all v ≥ 0 and Ff < 0 for all v < 0, we look for the minimum
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value of (3.13) and maximum value of (3.15). The minimum value of Ff for v ≥ 0

occurs when only the ith bristle is contributing to the friction force and thus xbi =

x+ d
2
− d0+∆, xbi ∈ X r

b (x), and θi = tan−1

(

d0 −∆

h

)

> 0. At this instant the pivot

angle of the (i − 1)th bristle reaches θmax and no longer contributes to the friction

force, that is, xbi−1
= x+ d

2
− d0. Thus, the ith bristle is the only bristle contributing

to the friction force, and the minimum value of Ff defined by (3.13) and (3.7) for

v ≥ 0 is

Ff,min =
k

h
tan−1

(

d0 −∆

h

)

cos2
(

tan−1

(

d0 −∆

h

))

> 0. (3.19)

Similarly, the maximum value of Ff for v < 0 occurs when only the ith bristle

contributes to the friction force and thus xbi = x − d
2
+ d0 − ∆, xbi ∈ X l

b(x), and

θi = − tan−1

(

d0 −∆

h

)

< 0. At this instant, the pivot angle of the (i + 1)th bristle

reaches θmax and no longer contributes to the friction force, that is xbi+1
= x− d

2
+ d0.

Thus, the ith bristle is the only bristle contributing to the friction force, and the

maximum value of Ff defined by (3.15) and (3.8) for v < 0 is

Ff,max = −k

h
tan−1

(

d0 −∆

h

)

cos2
(

tan−1

(

d0 −∆

h

))

= −Ff,min < 0. (3.20)

Comparing (3.19) with (3.20) shows that, for all v ≥ 0, Ff ≥ Ff,min > 0 whereas,

for all v < 0, Ff ≤ Ff,max < 0, where Ff,max = −Ff,min. Therefore,

lim
v→0−

Ff < 0 < lim
v→0+

Ff , (3.21)

which implies that the DRBM friction force Ff defined by (3.13)-(3.16) is discontin-

uous at v = 0.

As in the previous section, we consider the body moving with the prescribed

position x(t) = A sin(ωt) and velocity v(t) = Aω cos(ωt), where A = 1 m and ω = 0.01
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rad/s. The resulting DRBM friction force as a function of position is shown in Figure

3.6(a) and as a function of velocity in Figure 3.6(b). In Figure 3.6(a), a drop in the

friction force appears when a bristle reaches the pivot angle θmax, making the friction

force look like a sawtooth function of position. The friction force of the DRBM does

not oscillate around zero during direction reversals as in Figure 3.3(a). However, the

direction of the friction force instantaneously switches while the magnitude remains

unchanged, resulting in a discontinuity at v = 0 as shown in Figure 3.6(b). The

velocity is zero at t1 =
π

2ω
and t2 =

3π

2ω
, and thus, a discontinuity in friction force is

also visible in Figure 3.6(a) at x(t1) = 1 m and x(t2) = −1 m.
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Figure 3.6: The DRBM friction force (3.13)-(3.16) as a function of position (a) and
velocity (b). The position of the body is prescribed to be x = A sin(ωt),
and the velocity v = Aω cos(ωt), where A = 1 m, ω = 0.01 rad/s. As
shown in (b) the DRBM friction force is discontinuous at v = 0.

3.3.1 Switch Model

Due to the discontinuity of the DRBM friction force (3.13)-(3.16) at v = 0, the

integration of (3.10)-(3.12) with the friction force represented by the DRBM (3.13)-

(3.16) requires special numerical techniques. In this section we describe the Switch

Model [88, 95], which is a technique that smooths out the discontinuous dynamics
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around the discontinuity v = 0. The modified equations can then be integrated using

standard numerical integration techniques.

To begin, we rewrite the equations of motion in which the friction force is modeled

by the DRBM as a differential inclusion [95]. Assume that the motion of the body is

described by

ẋ = f (x), (3.22)

where x ∈ R
m and f : V ⊂ R

m → R
m is a piecewise continuous vector field, and

Σ
4

= R
m\V is the set of points of discontinuity of f . We assume that there exists a

function g : Rm → R such that the discontinuity boundary Σ is given by the roots of

g, that is

Σ = {x ∈ R
m : g(x) = 0}. (3.23)

We also define sets

V+
4

= {x ∈ R
m : g(x) > 0}, (3.24)

V−
4

= {x ∈ R
m : g(x) < 0}. (3.25)

With these definitions, (3.22) can be rewritten as the differential inclusion [95, 96]

ẋ ∈































f+(x), x ∈ V+,

αf+(x) + (1− α)f−(x), x ∈ Σ, α ∈ [0, 1],

f−(x), x ∈ V−.

(3.26)

The direction of the flow given by the vector fields f+(x) and f−(x) can lead

to three types of sliding modes across Σ. If the flow is such that the solutions of
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(3.26) are pushed to Σ in both V+ and V−, then the sliding mode is attractive. If

the solutions cross Σ, then the sliding mode is transversal. Finally, if the solutions

diverge from Σ, the sliding mode is repulsive [95].

The Switch Model smooths out the dynamics of the differential inclusion (3.26)

by constructing a stick band within the set G 4

= {x : |g(x)| ≤ η}, where η is a

small positive constant. (Note that the term “stick band” is not related to stick-slip

friction.) The dynamics outside of the stick band remain the same. The dynamics

inside the stick band depend on the type of sliding mode across the discontinuity

boundary. If the sliding mode is attractive, that is,

nTf−(x) > 0 and nTf+(x) < 0, x ∈ Σ, (3.27)

where n
4

= ∇g(x) is the normal to Σ, then the stick-band dynamics are given by

ẋ = αf+(x) + (1− α)f−(x) , x ∈ G. (3.28)

The value of the parameter α is chosen such that it pushes the solutions of (3.27)

toward the middle of the stick band, that is, toward g(x) = 0. Thus, inside the stick

band, g satisfies

ġ(x) = −τg(x), (3.29)

where τ > 0 is a time constant. Since

ġ(x) =
dg(x)

dx

dx

dt
= ∇gT ẋ (3.30)

= nT
(

αf+(x) + (1− α)f−(x)
)

, (3.31)
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setting (4.35) equal to (4.37) and solving for α gives

α =
nTf−(x) + τ−1g(x)

nT (f−(x)− f+(x))
. (3.32)

If the sliding mode is transversal, that is,

(nTf−(x))(n
Tf+(x)) > 0, x ∈ Σ, (3.33)

then the stick-band dynamics are defined by

ẋ =















f−(x), if n
Tf−(x) < 0 and nTf+(x) < 0 , x ∈ G,

f+(x), if n
Tf−(x) > 0 and nTf+(x) > 0 , x ∈ G.

(3.34)

Finally, if the sliding mode is repulsive, that is,

nTf−(x) < 0 and nTf+(x) > 0, x ∈ Σ, (3.35)

than the dynamics are defined by

ẋ = f+(x) , x ∈ G. (3.36)

Outside of the stick band, the dynamics are defined by

ẋ =















f+(x), x ∈ G+,

f−(x), x ∈ G−,

(3.37)

where G+
4

= {x : g(x) > η} and G−
4

= {x : g(x) < η}. More details about the Switch

Model (3.27)-(3.37) and a pseudocode are given in [95].
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3.3.2 Stick-slip behavior

We use the Switch Model (3.27)-(3.37) to simulate the system shown in Figure

3.4 and defined by (3.10)-(3.12) with friction force defined by the DRBM (3.13)-

(3.16). The system (3.10)-(3.12) with friction force modeled by (3.13)-(3.16) can be

formulated as a differential inclusion (3.26) with x
4

=

[

x v l

]T

, the set Σ defined

by the roots of the function g(x) = v, the normal to Σ defined by n = ∇g(x) =
[

0 1 0

]T

, and the vector fields f+(x) and f−(x) defined by

f+(x)
4

=













v

1
m
(Kl − Ff+)

vp − v













, (3.38)

f−(x)
4

=













v

1
m
(Kl − Ff−)

vp − v













, (3.39)

where Ff+ = F r
f is the DRBM friction force for v ≥ 0 defined by (3.13) and Ff− = F l

f

is the DRBM friction force for v < 0 defined by (3.15).

We use the Switch Model (3.27)-(3.37) to simulate the differential inclusion (3.26)

with f+(x) and f−(x) defined by (3.38) and (3.39) with m = 1 kg, K = 1 N/m,

vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m, d0 = 0.01

m, ∆ = 0.005 m, and η = 10−8. Part (a) of Figure 3.7 shows the limit cycle obtained

by projecting the trajectories onto the l-v plane, and Figure 3.7(b) shows the time

histories of x, l, v, and Ff . The exact stick-slip motion is represented by the limit

cycle in the l-v plane. The quasi-stick phase of the rotating bristle model shown in

Figure 3.5(a) is replaced by sticking, indicated by the line segment in which v = 0

and l̇ = vp. The exact stick-slip behavior of the DRBM is a consequence of the drop

in friction force that occurs when the bristle pivot angle reaches θmax.
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Figure 3.7: The exact stick-slip limit cycle of (3.38)-(3.39) with friction force modeled
by the DRBM (3.13)-(3.16). (a) shows the stable limit cycle in the l-
v plane. The trajectories starting inside and outside of the limit cycle
converge to it. (b) shows the time histories of x, l, v, and Ff with zero
initial conditions. The parameter values are m = 1 kg, K = 1 N/m,
vp = 0.002 m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m,
d0 = 0.01 m, ∆ = 0.005 m, and η = 10−8.

3.3.3 Hysteresis map

We consider the mass-spring system shown in Figure 3.8. The body of mass m

is attached to the wall by means of a spring with stiffness coefficient K. A periodic

force input u(t) acts on the body causing it to move over the horizontal surface. The

friction force between the body and the surface is represented by the DRBM (3.13) -

(3.16). The equations of motion are

ẋ = v, (3.40)

v̇ =
1

m
(−Kx+ u− Ff ). (3.41)

To formulate (3.40)-(3.41) with Ff defined by (3.13)-(3.16) as a differential inclu-

sion (3.26), we define vector fields f+(x) and f−(x) corresponding to (3.40), (3.41)
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u

Ff

K
m

Figure 3.8: Body-spring configuration represented by (3.40)-(3.41). The body of mass
m is connected to the wall by a means of a spring with stiffness K and is
acted on by an external force input u.

by

f+(x)
4

=







v

1
m
(−Kx+ u− Ff+)






, (3.42)

f−(x)
4

=







v

1
m
(−Kx+ u− Ff−)






, (3.43)

where x =

[

x v

]T

, Ff+ = F r
f is the DRBM friction force for v ≥ 0 defined by

(3.13), and Ff− = F l
f is the DRBM friction force for v < 0 defined by (3.15). The set

Σ is defined by the roots of the function g(x) = v, so that n = ∇g(x) =

[

0 1

]T

.

We utilize the Switch Model (3.27)-(3.37) to simulate (3.26) with f+(x) and f−(x)

defined by (3.42), (3.43), and the force input u(t) = sin(ωt). The system parameters

used are m = 1 kg, K = 1 N/m, lb = 0.1 m, κ = 0.1 N-m/rad, d = 1 m, h = 0.0995

m, ∆ = 0.01 m, and η = 10−6. The input-output map of (3.42)-(3.43) with ω = 0.05

rad/s is shown in Figure 3.9(a) and with ω = 0.001 rad/s is shown in Figure 3.9(b).

At low input frequencies, the input-output map forms a loop, showing that the system

is hysteretic. The input-output map H, called the hysteresis map, is rate-dependent

since its shape changes with the frequency of the input [55]. The staircase shape of

the hysteresis map, also observed with the LuGre model, indicates exact stick-slip

behavior [22]. The time histories of x, v, u, and Ff for ω = 0.001 rad/s are shown in
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Figure 3.9(c).
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Figure 3.9: Simulation of (3.42)-(3.43) with friction force modeled by the DRBM with
u(t) = sin(ωt) N, m = 1 kg, K = 1 N/m, lb = 0.1 m, κ = 0.1 N-m/rad,
d = 1 m, h = 0.0995 m, ∆ = 0.01 m, and η = 10−6. (a) shows the
input-output map with ω = 0.05 rad/s and (b) shows the input-output
map with ω = 0.001 rad/s. The shape of the input-output map at low
frequencies indicates exact stick-slip behavior. The time histories of x, v,
u, and Ff with ω = 0.001 rad/s are shown in (c).

Since the input-output map of (3.42)-(3.43) is hysteretic, we can calculate the

energy dissipated during one cycle of operation. The area A of the hysteresis map H

shown in Figure 3.9(b) is equal to the energy loss during one cycle. To demonstrate,

we begin with the expression for work done by the force u(t) during one cycle and
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use Green’s theorem

E =

∮

H

udx =

∫ ∫

A

dudx = A (3.44)

to show that the work done E is equal to the area A of the hysteresis map. The

energy dissipated based on the area of the hysteresis loop shown in Figure 3.9(b) is

E = 0.35647 J.

Alternatively, we can calculate the dissipated energy by summing the potential

energy stored in each torsional spring during the motion of the body. As each bristles

pivots, energy is stored in its torsional spring, and is subsequently dissipated by the

dashpot after the body passes beyond the bristle and the bristle is suddenly released.

The total energy stored in the bristles is

Estored =
1

2
Neκθ

2
max, (3.45)

where Ne is the number of bristles that the mass contacts during one cycle of motion.

Based on the minimum xmin and maximum xmax value of x during one cycle of motion

and the spacing of the bristles, Ne is given by

Ne = 2

⌊

xmax − xmin

∆

⌋

, (3.46)

where b·c denotes integer part. The dissipated energy calculated from (3.45) is

Estored = 0.35566 J.

3.3.4 Approximation of the friction force

The calculation of the DRBM friction force (3.13)-(3.16) requires keeping track of

the position of each bristle relative to the body. In order to simplify the calculation of

Ff , we note that the friction force of the DRBM is a function of position that resembles
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a sawtooth wave as shown in Figure 3.6(a). Thus, the friction force (3.13)-(3.16) can

be approximated by the sawtooth wave

Ff =















F r
f , v ≥ 0,

F l
f , v < 0,

(3.47)

F r
f ≈ Fmin +

Fmax − Fmin

∆
mod (x,∆) , (3.48)

F l
f ≈ −

(

Fmin +
Fmax − Fmin

∆
mod (−x,∆)

)

, (3.49)

so that

Ff ≈ sign(v)

(

Fmin +
Fmax − Fmin

∆
mod (sign(v)x,∆)

)

, (3.50)

where the constants Fmin and Fmax determine the minimum and maximum magnitudes

of the friction force. The force Ff given by (3.50) is shown as a function of position

in Figure 3.10(a) and as a function of velocity in Figure 3.10(b), where the position is

prescribed to be x(t) = A sin(ωt) and the velocity is v(t) = Aω cos(ωt), where A = 1

m and ω = 0.01 rad/s.

3.3.5 Equilibria map

In this section we determine the equilibria of (3.40)-(3.41) arising from the friction

force (3.47)-(3.49). The equilibria are found for each constant value ū of the input

u(t). Due to the discontinuity of the friction force for v = 0, we use the approach

of [96, 97] to analyze the equilibria.

We reformulate (3.40)-(3.41) as a differential inclusion (3.26) with x =

[

x v

]T

and vector fields f+(x) and f−(x) defined by (3.42) and (3.43), respectively. How-

ever, Ff+ = F r
f and Ff− = F l

f are defined by (3.48) and (3.49), respectively. We set

the input u(t) = ū and determine the equilibria in the sets V+, V−, and Σ defined
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Figure 3.10: The approximation of the DRBM friction force (3.50) as a function of
position (a) and velocity (b). The position is prescribed to be x(t) =
A sin(ωt) and velocity v(t) = Aω cos(ωt), where A = 1 m and ω = 0.01
rad/s. The friction force parameters are Fmin = 0.5 N, Fmax = 1 N, and
∆ = 0.033 m.

by (3.23), (3.24), and (3.25), respectively, with g(x) = v. The equilibria map E(ū) is

the set of all points (ū, x̄) ∈ R
2, such that x̄ =

[

x̄ v̄

]T

is an equilibrium of (3.26)

corresponding to u(t) = ū.

To find equilibria in V+, we set f+(x) = 0, which yields

x̄ =
1

K
(ū− Ff+), (3.51)

v̄ = 0. (3.52)

However, since V+ = {(x, v) : x ∈ R, v > 0} and v̄ = 0, the equilibrium (x̄, v̄) defined

by (3.51) and (3.52) is not an element of V+, and thus there are no equilibria in V+.

To find the equilibria in V−, we set f−(x) = 0, which yields

x̄ =
1

K
(ū− Ff−), (3.53)

v̄ = 0. (3.54)
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However, since V− = {(x, v) : x ∈ R, v < 0} and v̄ = 0, the equilibrium (x̄, v̄) defined

by (3.53) and (3.54) is not an element of V−, and thus there are no equilibria in V−.

Finally, to find the equilibria in Σ, we set

0 = αf+(x) + (1− α)f−(x), (3.55)

for all α ∈ [0, 1], which yields

x̄ ∈ X̄ (ū)
4

=

{

ū− (αFf+ + (1− α)Ff−)

K
: α ∈ [0, 1]

}

, (3.56)

v̄ = 0. (3.57)

Since Σ = {(x, v) : x ∈ R, v = 0}, it follows that all of the equilibria of (3.26) with

f+(x) and f−(x) defined by (3.42) and (3.43), respectively, are elements of Σ. The

equilibria map E(ū) on the sliding manifold Σ is therefore given by

E 4

= {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (3.58)

where X̄ (ū) is defined by (3.56). The equilibria (ū, x̄) in Σ are called pseudo-equilibria

for α ∈ (0, 1) and boundary equilibria for α = 0 or α = 1 [97]. The set E is shown

in Figure 3.11. The shaded region represents the pseudo-equilibria, and the black

lines represent the boundary equilibria. For each constant input ū there is an infinite

number of corresponding pseudo-equilibria x̄ ∈ X̄ (ū). The hysteresis map is also

shown in Figure 3.11. Except for the vertical portions, the hysteresis map is a subset

of the equilibria map. The vertical portions of the hysteresis map, which correspond

to the slip phase, are not completely contained in the equilibria map since they occur

at the points of bifurcations. For more details, see [63].
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Figure 3.11: Equilibria and hysteresis maps of (3.40)-(3.41) with the friction force
modeled by (3.47)-(3.49). The shaded area represents the pseudo-
equilibria of the system. The boundary equilibria form the boundary
of the shaded area. The hysteresis map, shown in black, is a subset of
the equilibria map. The parameters used are m = 1 kg, K = 1 N/m,
∆ = 0.1 m, Fmin = 0.5 N, and Fmax = 1 N.

3.4 DRBM-Based Single-State Models

In this section we introduce two simplified versions of the DRBM, namely, the

friction-force-based model (FFBM) and the mean-pivot-angle-based model (MPABM).

These versions eliminate the need for the Switch Model and yet capture the stick-slip

behavior of the DRBM. The FFBM and MPABM are both single-state models [83,93],

as described below.

3.4.1 Single-state models

Single-state friction models such as the Dahl and LuGre model involve a state

variable z that represents the internal friction mechanism. These models have the
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form

ż = v

(

1− α(v, z)sign(v)
z

zss(v)

)

, (3.59)

Ff = σ0z + σ1ż + σ2v, (3.60)

where σ0, σ1, σ2 are positive constants, z is the internal friction state, zss(v) de-

termines the shape of the steady-state z curve, and Ff is the friction force. The

function α(v, z) determines the presence and type of elastoplastic presliding displace-

ment [93, 98]. For simplicity, we set α(v, z) = 1 and rewrite (3.59)-(3.60) as

ż = v − |v|
zss(v)

z, (3.61)

Ff = σ0z + σ1ż + σ2v. (3.62)

Setting zss(v) to be

zss(v) =
1

σ0

(

Fc + (Fs − Fc)e
−(v/vs)2

)

, (3.63)

where Fc, Fs, and vs are constants, yields the LuGre model [25, 26], which exhibits

stick-slip, hysteresis, and the Stribeck effect.

In steady-state motion, ż = 0, and thus z = sign(v)zss(v). Furthermore, if σ1 =

σ2 = 0, then

Ff = σ0z = sign(v)σ0zss(v). (3.64)
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3.4.2 Friction-force-based model (FFBM)

The friction-force-based model (FFBM) is formulated by using the approximation

(3.50) of the DRBM friction force to define zss. Equating (3.50) with (3.64) yields

zss(v, x) =
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod (sign(v)x,∆)

)

, (3.65)

and thus (3.61)-(3.62) become

ż = v − σ0
|v|

Fmin +
Fmax − Fmin

∆
mod(sign(v)x,∆)

z, (3.66)

Ff = σ0z. (3.67)

In this case, z has the units of force and can be viewed as the contribution of one

bristle to the total friction force, while the total number of bristles contributes to the

friction force through the parameter σ0. Note that, unlike zss(v) in (3.61), the term

zss(v, x) in (3.65) depends on both position and velocity.

We now consider the system shown in Figure 3.8 and described by (3.40)-(3.41)

with the external force u(t) and the friction force modeled by (3.66)-(3.67). The

complete system of equations is

ẋ = v, (3.68)

v̇ =
1

m
(−Kx+ u− Ff ), (3.69)

ż = v − σ0
|v|

Fmin +
Fmax − Fmin

∆
mod(sign(v)x,∆)

z, (3.70)

Ff = σ0z. (3.71)
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For each constant force input u(t) = ū the equilibria of (3.68)-(3.71) are

x̄ =
1

K
(ū− σ0z̄), (3.72)

v̄ = 0, (3.73)

z̄ = sign(0)
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod (sign(0)x̄,∆)

)

. (3.74)

By viewing sign(0) as the interval [−1, 1] we rewrite (3.74) as

z̄ ∈ Z̄ 4

=

{

(2α− 1)
1

σ0

(

Fmin +
Fmax − Fmin

∆
mod ((2α− 1)x̄,∆)

)

: α ∈ [0, 1]

}

.

(3.75)

Note that (3.75) is equivalent to

z̄ ∈ Z̄ 4

=

{

1

σ0

(

αF r
f + (1− α)F l

f

)

: α ∈ [0, 1]

}

, (3.76)

where F r
f and F l

f are defined by (3.48) and (3.49), respectively. Substituting (3.76)

into (3.72) gives the equilibria map of (3.68)-(3.71)

E = {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (3.77)

where

X̄ (ū) =

{

ū− (αF r
f + (1− α)F l

f)

K
: α ∈ [0, 1]

}

, (3.78)

which is identical to the equilibria set (3.58) for the DRBM on the sliding manifold.

The equilibria set and the hysteresis map of (3.68)-(3.71) are shown in Figure

3.12. The system is hysteretic and exhibits exact stick-slip, where the exact stick-slip

is demonstrated by the staircase-shaped hysteresis map. The parameters used are
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m = 1 kg, K = 1 N/m, Fmin = 1 N, Fmax = 1.5 N, ∆ = 0.05 m, u(t) = 2 sin(ωt) N,

ω = 0.01 rad/s, σ0 = 105. The hysteresis map is a subset of the equilibria set, except

for the vertical portions, which correspond to the slip phases and occur at bifurcation

points [63].
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Figure 3.12: Equilibria map and hysteresis map of (3.68)-(3.71) with force input
u(t) = 2 sin(ωt) with m = 1 kg, K = 1 N/m, Fmin = 1 N, Fmax = 1.5 N,
∆ = 0.05 m, ω = 0.01 rad/s, and σ0 = 105.

3.4.3 Mean-pivot-angle-based model (MPABM)

We develop the mean-pivot-angle-based model (MPABM) by assuming that the

sum θs of the pivot angles θi of all of the bristles contributing to the friction force can

be approximated by its exponentially weighted moving average (EWMA) θ [99,100].

The goal is to express θ as a function of v, so that setting zss(v) = θ(v) yields a

single-state friction model.

To find θ at each discrete time step tj , we use

θ(tj) = βθs(tj) + (1− β)θ(tj − 1), (3.79)
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where β ∈ [0, 1] is a constant, θ(0) = θs(0), and the weighting for the data point θs(tj−

i) is β(1− β)i−1, that is, the weighting for prior data points decreases exponentially

[99, 100].

Since θ can be interpreted as a pivot angle of a single bristle that is contributing

to the friction force, the vectors Θr and Θl used to calculate Ff in (3.13) and (3.15)

are replaced by θ, and (3.13) and (3.15) are replaced by

Ff =
κθ(cos θ)2

h
≈ κ

h
θ, (3.80)

for small angles θ.

We use (3.79) to find θ for the differential inclusion (3.26) with f+ and f− defined

by (3.38)-(3.39), respectively. The sum θs of all of the bristle pivot angles is shown

in Figure 3.13(a). The model parameters are m = 1 kg, K = 1 N/m, vp = 0.002 m/s,

d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m, d0 = 0.01 m, ∆ = 0.005

m, and η = 10−8. Figure 3.13(b) shows θ(tj) found from (3.79) with β = 0.05, as a

function of time and Figure 3.13(c) as a function of velocity. The two traces in Figure

3.13(c) represent θ(tj) corresponding to increasing and decreasing velocity.

As shown by the dashed line in Figure 3.14, the dependence of θ on velocity shown

in Figure 3.13(c) can be approximated by

θ ≈ θ̂(v)
4

= sign(v)
(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (3.81)

where θ̂min = 0.1 rad, θ̂max = 0.133 rad, and v̂s = 0.01 m/s. The parameters θ̂max

and θ̂min are determined by the values of θ for v = 0 m/s and v → ∞, respectively.

In addition, the parameter v̂s reflects the decay rate of θ, which is determined by the

choice of β. Combining (3.80) and (3.81) yields the mean friction force expression

Ff =
κ

h
sign(v)

(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (3.82)
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Figure 3.13: Sum of the pivot angles θs of all of the bristles contributing to the friction
force (a), the EWMA of θs as a function of time (b) and as a function
of velocity (c). The pivot angle data are obtained from the simulation
of (3.38) and (3.39) with parameters m = 1 kg, K = 1 N/m, vp = 0.002
m/s, d = 0.5 N, κ = 0.1 N-m/rad, h = 0.0995 m, lb = 0.1 m, d0 = 0.01
m, ∆ = 0.005 m, and η = 10−8. The EWMA is found from (3.79)
with β = 0.05. The two traces in (c) represent θ(tj) for increasing and
decreasing values of velocity.

so that

zss(v) =
1

σ

(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, (3.83)
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and the single-state friction model equations are

ż = v − σ
|v|

θ̂min + (θ̂max − θ̂min)e−(v/v̂s)2
z, (3.84)

Ff = σ0z, (3.85)

where σ0 = κ
h
σ. The single-state friction model (3.84)-(3.85) is the LuGre model

(3.61)-(3.63) with σ = σ0, σ1 = 0, σ2 = 0. Note that, the Stribeck effect of the

MPABM is an artifact of the approximation of θs by its EWMA θ and is not a

property inherited from the DRBM.
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Figure 3.14: The EWMA θ (solid) of the sum of all pivot angles and its approximation

θ̂ (dashed). The EWMA is found from (3.79) with β = 0.05 and can

be approximated by θ̂ = sign(v)
(

θ̂min + (θ̂max − θ̂min)e
−(v/v̂s)2

)

, where

θ̂min = 0.1 rad, θ̂max = 0.133 rad, and v̂s = 0.01 m/s.

We use (3.84) and (3.85) to represent the friction force of the system shown in
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Figure 3.8 and described by (3.40)-(3.41). The complete description is

ẋ = v, (3.86)

v̇ =
1

m
(−Kx+ u− Ff ), (3.87)

ż = v − σ
|v|

θ̂min + (θ̂max − θ̂min)e−(v/v̂s)2
z, (3.88)

Ff = σ0z, (3.89)

and, for each constant value of the input u(t) = ū, the equilibria of this system are

x̄ =
1

K
(ū− σ0z̄), (3.90)

v̄ = 0, (3.91)

z̄ = sign(0)
1

σ
θ̂max. (3.92)

By viewing sign(0) as the interval [−1, 1], the equilibria map of (3.86)-(3.89) is the

set

E = {(ū, x̄) : ū ∈ R, x̄ ∈ X̄ (ū)}, (3.93)

where

X̄ (ū) =

{

1

K

(

ū− κ

h
(2α− 1)θ̂max

)

: α ∈ [0, 1]

}

. (3.94)

The equilibria set (3.93) and the hysteresis map of the system (3.86)-(3.89) are shown

in Figure 3.15 with parameters u(t) = 2 sin(ωt), m = 1 kg, K = 2 N/m, θmin = 0.5

rad, θmax = 0.75 rad, ω = 0.01 rad/s, σ0 = 105 N/rad, σ = 105, and vs = 0.001

m/s. The equilibria set is the region shaded gray. For each constant force input ū

there is an infinite number of corresponding equilibria points. Thus, the system is
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hysteretic and the hysteresis map is a subset of the equilibria map. Furthermore, the

staircase-shaped hysteresis map indicates exact stick-slip motion.
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Figure 3.15: Equilibria map and hysteresis map of (3.86)-(3.89) with force input
u(t) = 2 sin(ωt) with m = 1 kg, K = 2 N/m, θl = 0.5 rad, θh = 0.75
rad, ω = 0.01 rad/s, σ0 = 105 N/rad, σ = 105, and vs = 0.001 m/s. The
equilibria map forms a continuum shown in gray shade and the hysteresis
map is shown in thick black.

3.5 Conclusions

In this chapter we developed an asperity-based friction model. The friction model

is based on the frictionless and lossless interaction of a body with a row of rigid bristles

that represent the roughness of the contacting surfaces. Each bristle in the rotating

bristle model is attached to the ground through a torsional spring and a dashpot.

As the body moves, the bristles pivot and counteract its motion, and energy is used

to compress the spring at the base of each bristle. As the body passes over each

bristle, it is suddenly released, and the energy stored in its spring is dissipated by a

dashpot. The resulting energy loss occurs regardless of how slowly the mass moves.

82



Consequently, the bristle model is hysteretic.

The rotating bristle model exhibits quasi-stick-slip, similar to exact stick-slip but

where the stick phase is replaced by reverse motion. Thus, we introduce the discon-

tinuous rotating bristle model (DRBM), which exhibits exact stick-slip and hysteresis

and is identical to the rotating bristle model except during direction reversals. The

physical mechanism that gives rise to the exact-stick-slip of the DRBM model is the

drop in the friction force which occurs when a bristle transitions from contacting

the lower corner of the body to contacting the bottom surface of the body. This in-

sight can be used in development of experimentally based friction models that exhibit

exact-stick-slip.

We then simplify the DRBM to obtain single-state friction models that are contin-

uous and have the same stick-slip properties as the DRBM. For the FFBM single-state

model, the internal friction state represents the contribution of each bristle to the fric-

tion force. For the MPABM, the internal friction state is given by the exponentially

weighted moving average of the sum of the pivot angles of all of the bristles contribut-

ing to the friction force. The FFBM and MPABM models exhibit exact stick-slip and

hysteresis and are closely related to the LuGre model. Thus, we show that the fric-

tionless interaction of the bristles and a body results in the friction force that has the

properties of experimentally based friction models such as LuGre.
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CHAPTER IV

A Frictionless Bristle-Based Friction Model That

Exhibits Hysteresis and Dynamic Stribeck Effect

In this chapter we investigate the origin of the Stribeck effect, that is, the drop in

the friction force which occurs as velocity increases from zero. We develop an asperity-

based friction model and show that the vertical motion of a sliding body leads to the

Stribeck effect. The friction model is hysteretic, and the energy-dissipation mecha-

nism is the sudden release of the compressed bristles. We relate this model to the

LuGre model. We investigate the Stribeck effect in hopes that a better understanding

of this effect leads to a better understanding and prediction of friction. If the origins

of the Stribeck effect are known, then this knowledge can be applied in development of

experimentally based models, so that they can predict a broad spectrum of behaviors.

4.1 Introduction

Experimental observations provide the primary approach to understanding how

friction depends on material properties and the relative motion between the contact-

ing surfaces [8, 20, 21]. For example, the classic paper [21] measures the effect of

relative speed, contact pressure, and surface separation on the friction force. Ex-

perimental observations lead to the development of empirical models that capture
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the macroscopic properties of friction [6, 22, 24–28, 101]. The LuGre model captures

stick-slip friction when a sliding object is connected to a stiffness. The LuGre model

also exhibits the Stribeck effect [25,28], which predicts a drop in the friction force as

the speed increases.

The approach we take to modeling friction is neither experimental nor empirical,

but rather is motivated by asperity-based models [5,31,32,102], in which the asperities

represent the microscopic roughness of the contacting surfaces. In this conceptual

approach, the goal is to postulate a model consisting of many degrees of freedom (for

example, bristle deflections), where each component has precisely defined mechanical

properties. The analysis and simulation of this model then gives rise to an emergent

macroscopic friction force whose properties can be traced back to the properties of

the components.

An advantage of this approach is that the hysteretic energy-dissipation mecha-

nism is exposed. For example, in the compressed bristle model presented here, the

energy dissipation at asymptotically low frequency [55] is due to the sudden release

of the compressed bristles, just as in the rotating bristle model discussed in [94,103].

As the body encounters each bristle, energy is stored in the compressed spring and

is subsequently dissipated by the dashpot due to the post-release oscillation of the

bristle. Although the LuGre model [22] is hysteretic, the hysteretic mechanism is not

exposed. Additionally, since the bristles represent the asperities of the contacting

surface, the compression of the bristles is analogous to plastic deformation of the

asperities, which also results in the loss of energy.

The goal of the present paper is to construct a bristle model that exhibits both

stick-slip behavior and the Stribeck effect. Stick-slip behavior is exhibited by the

rotating bristle model given in [94, 103]; however, the Stribeck effect was not found

to be a property of that model.

The Stribeck effect is the apparent drop in the friction force as the velocity in-
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creases. In wet friction, the Stribeck effect can be attributed to the phenomenon

of planing [104–106], where the friction between a tire and a wet surface decreases

with velocity, resulting in a dangerous situation. For a boat on water, the same phe-

nomenon is more apparent since the boat rises as its speed increases, thus reducing

its contact area, which in turn reduces the drag due to the water, that is, the vis-

cous friction force. For a vehicle immersed in a fluid, such as an aircraft, however,

we would not expect to see the Stribeck effect. The Stribeck effect thus depends on

contact at the boundary of a fluid and motion orthogonal to the surface of the fluid.

In modeling dry friction, which is the objective of a bristle model, it seems plausi-

ble in analogy with wet friction that the Stribeck effect would be observed as long as

the mass is given a vertical degree of freedom. In particular, by extending the bristle

model in [94,103] to include a vertical degree of freedom, we would expect to observe

the Stribeck effect due to the fact that the moment arm is increased—and thus the

friction force is decreased—as the height of the mass above the contacting surface

increases.

Rather than revisit the rotating bristle model of [94, 103], in the present paper

we develop an alternative bristle model in which each bristle has a vertical degree

of freedom rather than a rotational degree of freedom. This model gives rise to

the Stribeck effect. Somewhat surprisingly, and unlike the Stribeck effect captured

empirically by the LuGre model [94,103], the Stribeck effect captured by this bristle

model is dynamic in the sense that the speed/friction-force curve forms a loop. We

call this the dynamic Stribeck effect.

The contents of the paper are as follows. In Section 4.2 we introduce the com-

pressed bristle model, derive the governing equations and show that the compressed

bristle model exhibits stick-slip, hysteresis, and the dynamic Stribeck effect. Based

on the observations in Section 4.2, we capture the steady-state characteristics of the

compressed bristle model in the form of a single-state friction model in Section 4.3.
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We show that a simplified version of the compressed bristle model is equivalent to

the LuGre model.

4.2 Compressed Bristle Model

In this section we present the compressed bristle model, which is based on the

frictionless contact between a body and a row of bristles. The friction force of the

compressed bristle model is generated through the frictionless interaction between a

body and bristles as shown in Figure 4.1. We assume that the body has mass m,

length d, and thickness w, and that its front end is slanted from the vertical by the

angle α. The body is allowed to move in the horizontal and vertical directions, but

it does not rotate. The horizontal position of the midline of the body is denoted by

x, and the vertical position of the midline of the body is denoted by y. The bristles

consist of a frictionless roller, a spring with stiffness coefficient k, and a dashpot with

damping coefficient c. The damping coefficient provides viscous energy dissipation

but negligible force. The mass of the roller is assumed to be negligible compared to

the mass of the body. Therefore, the interaction between each bristle and the body

is dominated by the stiffness of the bristle. The distance between adjacent bristles is

∆, the position of the ith bristle is denoted by xbi , and its length is hi. Each bristle

has length h0 when relaxed. As the body moves, the bristles are compressed, which

results in a reaction force at the point of contact between the bristle and the body.

The friction force is the sum of all horizontal components of the forces exerted by all

of the bristles contacting the slanted surface of the body. The vertical components

of the forces exerted by the bristles contacting the body affect the vertical motion of

the body.

As the body moves, there is a frictionless reaction force between each bristle and

the body at the point of contact. This force is due to the compression of the bristle.

We assume that the force on the body due to contact with the bristle is perpendicular
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Figure 4.1: Schematic representation of the compressed bristle model. Each bristle
consists of a frictionless roller of negligible mass, a linear spring with stiff-
ness coefficient k, and a dashpot with damping coefficient c (not shown).
As the body moves over the bristles, the springs in the bristles are com-
pressed, and a reaction force occurs at the point of contact.

to the surface of the body. The sum of all horizontal forces exerted by the bristles

at each instant is defined to be the friction force. Since the bristle-body contact

is frictionless, the direction of the reaction force between the body and each bristle

contacting the horizontal surface of the body is vertical, and thus these bristles do

not contribute to the friction force. Only the bristles that are in contact with the

slanted surface of the body contribute to the friction force.

The force between the body and each bristle is calculated based on the position

of the bristle relative to the body and the resulting length of the compressed bristle.

The reaction forces due to the dashpot are neglected. The dashpots and mass of the

bristles provide the mechanism for dissipating the energy stored in the compressed

springs, but otherwise play no role in the bristle-body interactions.

In simulations of the compressed bristle model we assign numerical values to the

bristle-related parameters, such as ∆ and k. However, these values do not necessarily
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represent physically meaningful quantities, but rather serve only to illustrate the

interaction between the body and the asperities.

4.2.1 Friction Force

In this section we analyze the interaction between the body and the bristles,

and we derive equations for the friction force of the compressed bristle model. For

simplicity, we assume that at the instant the velocity of the body passes through zero,

the body instantaneously rotates about the vertical axis that defines the horizontal

position x of the body, so that its slanted surface always points in the direction of

motion and such that x and y remain constant during the direction reversal.

The length hi of the ith bristle contacting the slanted surface of the body is a

function of the horizontal position x and velocity v of the body as described by

hi(x, v, y)
4

=















hi+(x, y), v ≥ 0,

hi−(x, y), v < 0,

(4.1)

where

hi+(x, y) = y − w

2
+

w

d1

(

xbi −
(

x+
d

2
− d1

))

, (4.2)

hi−(x, y) = y − w

2
+

w

d1

(

x− d

2
+ d1 − xbi

)

, (4.3)

and d1
4

= w tan(α) as shown in Figure 4.1. The magnitude of the force due to the ith

bristle is

Fi(x, v, y) = k(h0 − hi(x, v, y)). (4.4)

The magnitude of the horizontal component of the reaction force due to the ith bristle
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is

Fix(x, v, y) = k cos(α)(h0 − hi(x, v, y)), (4.5)

while the magnitude of the vertical component of reaction force due to the ith bristle

is

Fiy(x, v, y) = k sin(α)(h0 − hi(x, v, y)). (4.6)

The friction force is the sum of all of the horizontal components of the reaction

forces between the bristles and the body. Only the bristles that are in contact with

the slanted surface of the body exert a force with a horizontal component. The base

positions xbi of the bristles that contribute to the friction force for v ≥ 0 are in the

set

Xb+(x) = {xbi : x+
d

2
− d1 ≤ xbi ≤ x+

d

2
}, (4.7)

and, for v < 0, are in the set

Xb−(x) = {xbi : x− d

2
≤ xbi ≤ x− d

2
+ d1}. (4.8)

Thus, for v ≥ 0, the friction force is

Ff(x, v, y) = Ff+(x, y), (4.9)

where

Ff+(x, y) = k cos(α)

n+
∑

i=1

(h0 − hi+(x, v, y)), (4.10)
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and n+ is the number of elements of Xb+(x). For v < 0, the friction force is

Ff(x, v, y) = Ff−(x, y), (4.11)

where

Ff−(x, y) = −k cos(α)

n−
∑

i=1

(h0 − hi−(x, v, y)), (4.12)

where n− is the number of elements of Xb−(x). Expressions (4.9) and (4.11) can be

combined, so that Ff (x, v, y) is given by

Ff (x, v, y) = sign(v)k cos(α)
n
∑

i=1

(h0 − hi(x, v, y)), (4.13)

where n is the number of elements of Xb+(x) for v ≥ 0 and of Xb−(x) for v < 0. Note

that, due to the function sign(v), (4.13) is discontinuous at v = 0.

The vertical force due to the bristles contacting the slanted surface of the body

is equal to the sum of all of the vertical components of the reaction forces between

the body and the bristles contacting the slanted surface of the body. We define the

vertical force due to bristles contacting the slanted surface of the body as

Fys(x, v, y) =















Fys+(x, y), v ≥ 0,

Fys−(x, y), v < 0,

(4.14)

where

Fys+(x, y) = k sin(α)

n+
∑

i=1

(h0 − hi+(x, v, y)), (4.15)

Fys−(x, y) = k sin(α)

n−
∑

i=1

(h0 − hi−(x, v, y)). (4.16)
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The magnitude of the vertical force due to the bristles contacting the horizontal

surface of the body is

Fyb(y) =
N
∑

i=1

k
(

h0 −
(

y − w

2

))

= Nk
(

h0 − y +
w

2

)

, (4.17)

where N
4

=
d− d1
∆

+1 is the number of bristles that are in contact with the horizontal

surface of the body.

4.2.2 Equations of motion

The goal is to investigate the stick-slip and input-output properties of the com-

pressed bristle model. To investigate the emergence of stick-slip, we consider the

system shown in Figure 4.2. The body of mass m is connected to a spring with stiff-

ness K, and the free end of the spring moves at the constant speed vp. The equations

of motion describing the mass-spring system in Figure 4.2 are

ẋ(t) = v(t), (4.18)

v̇(t) =
1

m
(Kl(t)− Ff(x, v, y)), (4.19)

l̇(t) = vp − v(t), (4.20)

where l is the length of the spring and Ff(x, v, y) is the friction force (4.13).

Since the compressed bristle model accounts for horizontal and vertical motion of

the body, we augment (4.18)-(4.20) with vertical-direction equations of motion. The

vertical motion of the body is described by

mÿ = −mg + Fy(x, v, y), (4.21)

Fy(x, v, y) = Fys(x, v, y) + Fyb(y), (4.22)
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where Fys and Fyb are defined by (4.14) and (4.17), respectively. Note that (4.21)-

(4.22) can be rewritten as

mÿ(t) + kuoy(t) = f(t), (4.23)

where, for v ≥ 0, kuo = Nk + n+k sinα and

f = Nk(h0 +
w

2
)−mg + k sinα

n+
∑

i=1

(

h0 +
w

2
− w

d1

(

xbi − x− d

2
+ d1

))

, (4.24)

and, for v < 0, kuo = Nk + n−k sinα and

f = Nk(h0 +
w

2
)−mg + k sinα

n−
∑

i=1

(

h0 +
w

2
− w

d1

(

x− d

2
+ d1 − xbi

))

. (4.25)

Thus (4.21)-(4.22) describe an undamped oscillator.

Ff

v

K, l
vpm

Figure 4.2: Schematic representation of the mass-spring system used to investigate
the stick-slip properties of the compressed bristle model. The body of
mass m is connected to a spring with stiffness K. The free end of the
spring moves at constant speed vp. The friction force Ff is given by (4.13).

To investigate the input-output properties and the emergence of hysteresis, we

consider the mass-spring system shown in Figure 4.3. The body of mass m is con-

nected to a wall by means of a spring with stiffness K and acted on by the force input
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u(t). The equations of motion are

ẋ(t) = v(t), (4.26)

v̇(t) =
1

m
(−Kx(t) + u(t)− Ff(x, v, y)), (4.27)

where Ff (x, v, y) is the compressed bristle model friction force (4.13). Furthermore,

the vertical motion of the body is described by (4.21)-(4.22).

u

Ff

K
m

Figure 4.3: Body-spring configuration used to investigate the input-output properties
of the compressed bristle model. The body of mass m is connected to the
wall by a means of a spring with stiffnessK and is acted on by the periodic
force input u(t). The friction force Ff is given by (4.13).

4.2.3 Switch Model

Due to the discontinuity of the compressed bristle model friction force (4.13) at v =

0, the integration (4.18)-(4.22) and (4.22)-(4.27) with the friction force represented

by the compressed bristle model (4.13) requires special numerical techniques. In this

section we describe the Switch Model [88,95], which is a technique that smooths out

the discontinuous dynamics around the discontinuity v = 0. The modified equations

can then be integrated using standard numerical integration techniques.

To begin, we rewrite the equations of motion in which the friction force is modeled

by the compressed bristle model as a differential inclusion [95]. Assume that the

motion of the body is described by

ẋ = f (x), (4.28)
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where x ∈ R
m and f : V ⊂ R

m → R
m is a piecewise continuous vector field, and

Σ
4

= R
m\V is the set of points of discontinuity of f . We assume that there exists a

function g : Rm → R such that the discontinuity boundary Σ is given by the roots of

g, that is

Σ = {x ∈ R
m : g(x) = 0}. (4.29)

We also define sets

V+
4

= {x ∈ R
m : g(x) > 0}, (4.30)

V−
4

= {x ∈ R
m : g(x) < 0}. (4.31)

With these definitions, (4.28) can be rewritten as the differential inclusion [95, 96]

ẋ ∈































f+(x), x ∈ V+,

αf+(x) + (1− α)f−(x), x ∈ Σ, α ∈ [0, 1],

f−(x), x ∈ V−.

(4.32)

The direction of the flow given by the vector fields f+(x) and f−(x) can lead

to three types of sliding modes across Σ. If the flow is such that the solutions of

(4.32) are pushed to Σ in both V+ and V−, then the sliding mode is attractive. If

the solutions cross Σ, then the sliding mode is transversal. Finally, if the solutions

diverge from Σ, the sliding mode is repulsive [95].

The Switch Model smooths out the dynamics of the differential inclusion (4.32)

by constructing a stick band within the set G 4

= {x : |g(x)| ≤ η}, where η is a

small positive constant. (Note that the term “stick band” is not related to stick-slip

friction.) The dynamics outside of the stick band remain the same. The dynamics

inside the stick band depend on the type of sliding mode across the discontinuity
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boundary. If the sliding mode is attractive, that is,

nTf−(x) > 0 and nTf+(x) < 0, x ∈ Σ, (4.33)

where n
4

= ∇g(x) is the normal to Σ, then the stick-band dynamics are given by

ẋ = αf+(x) + (1− α)f−(x) , x ∈ G. (4.34)

The value of the parameter α is chosen such that it pushes the solutions of (4.33)

toward the middle of the stick band, that is, toward g(x) = 0. Thus, inside the stick

band, g satisfies

ġ(x) = −τg(x), (4.35)

where τ > 0 is a time constant. Since

ġ(x) =
dg(x)

dx

dx

dt
= ∇gT ẋ (4.36)

= nT
(

αf+(x) + (1− α)f−(x)
)

, (4.37)

setting (4.35) equal to (4.37) and solving for α gives

α =
nTf−(x) + τ−1g(x)

nT (f−(x)− f+(x))
. (4.38)

If the sliding mode is transversal, that is,

(nTf−(x))(n
Tf+(x)) > 0, x ∈ Σ, (4.39)

96



then the stick-band dynamics are defined by

ẋ =















f−(x), if n
Tf−(x) < 0 and nTf+(x) < 0 , x ∈ G,

f+(x), if n
Tf−(x) > 0 and nTf+(x) > 0 , x ∈ G.

(4.40)

Finally, if the sliding mode is repulsive, that is,

nTf−(x) < 0 and nTf+(x) > 0, x ∈ Σ, (4.41)

than the dynamics are defined by

ẋ = f+(x) , x ∈ G. (4.42)

Outside of the stick band, the dynamics are defined by

ẋ =















f+(x), x ∈ G+,

f−(x), x ∈ G−,

(4.43)

where G+
4

= {x : g(x) > η} and G−
4

= {x : g(x) < η}. More details about the Switch

Model (4.33)-(4.43) and a pseudocode are given in [95].

4.2.4 Stick-slip behavior

In this section we consider the stick-slip behavior of the compressed bristle model

(4.13) by investigating the existence of a stable limit cycle when the compressed

bristle model is used to represent the friction force in the system (4.18)-(4.20) shown

in Figure 4.2 with the vertical motion described by (4.21)-(4.22).

We use the Switch Model (4.33)-(4.43) to simulate the system (4.18)-(4.22) with

friction force defined by (4.13). The system (4.18)-(4.22) can be formulated as
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the differential inclusion (4.32) with x =

[

x v l y ẏ

]T

, the set Σ defined by

the roots of the function g(x) = v, the normal to Σ defined by n
4

= ∇g(x) =
[

0 1 0 0 0

]T

, and the vector fields f+(x) and f−(x) defined as

f+(x)
4

=

























v

1
m
(Kl − Ff+(x, y))

vp − v

ẏ

−mg + Fy+(x, y)

























, (4.44)

f−(x)
4

=

























v

1
m
(Kl − Ff−(x, y))

vp − v

ẏ

−mg + Fy−(x, y)

























, (4.45)

where Ff+(x, y) and Ff−(x, y) are defined by (4.10) and (4.12), respectively, and

Fy+(x, y)
4

= Fys+(x, y) + Fyb(y), (4.46)

Fy−(x, y)
4

= Fys−(x, y) + Fyb(y), (4.47)

where Fys+(x, y) is defined by (4.15) and Fys−(x, y) by (4.16).

Figure 4.4(a) shows the projection of the trajectories of (4.44)-(4.45) onto the l-v

plane, obtained by using the Switch Model (4.33)-(4.43), with parameter valuesm = 1

kg, w = 1 m, d = 2 m, α = 15◦, K = 5 N/m, N = 500, k = 0.01 N/m, h0 = 2.69 m,

η = 10−6, and vp = 0.1 m/s. In this plane, the trajectory converges to a stable limit

cycle that includes a line segment on which the motion is given by v = 0 and l̇ = vp.

This segment corresponds to the “stick” phase, during which the body is stationary.
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The “slip” phase corresponds to the curved part of the limit cycle for which v 6= 0.

The time histories of the spring length, velocity, height, and position of the body are

shown in Figure 4.4(b). Note that the velocity is characterized by segments in which

the velocity is zero and segments in which velocity quickly increases. This behavior

is typical for stick-slip motion.

The time history of the friction force and plots of the friction force versus height y

and versus velocity v are shown in Figure 4.5. This figure also shows the relationship

between the height y and velocity v. The friction force is a decreasing function

of height, which is consistent with the experimental results presented in [6, 20, 21]

as well as the expression (4.13). In the compressed bristle model, as the height

increases, compression of the bristles from their relaxed length h0 decreases. Thus,

the friction force decreases also. Furthermore, the friction force decreases as the

velocity increases. The velocity/friction-force curve forms a loop, which we refer to

as the dynamic Stribeck effect. The height versus velocity plot in Figure 4.5 shows

that the velocity increases with height. That is, the body moves higher as it speeds

up, and it moves lower as it slows down. This is planing.

4.2.5 Physical mechanism that leads to the dynamic Stribeck effect

In the vertical direction, the system consisting of the body and the bristles de-

scribed by (4.21)-(4.22) represents an undamped oscillator. Thus, if the body is

initially not in a vertical equilibrium or if it is slightly disturbed from an equilibrium

position, then it oscillates vertically whether or not it is moving horizontally. Since

the friction force (4.13) depends linearly on the height y through hi(x, v, y), the verti-

cal oscillation of the body results in oscillation of the magnitude of the friction force

Ff defined by (4.13). The oscillations in Ff are visible in Figure 4.5. The horizontal

velocity increases with y because the friction force Ff decreases as y increases, and

thus the horizontal acceleration of the body increases. The opposite happens when y
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Figure 4.4: The stick-slip limit cycle and time histories of the spring length l, velocity
v, position x, and height y for the system (4.44)-(4.45) with Ff modeled
by (4.13). (a) shows the limit cycle and (b) shows the time histories of
the states. The trajectories projected onto the l-v plane form a stable
limit cycle. The parameter values are m = 1 kg, w = 1 m, d = 2 m,
α = 15◦, K = 5 N/m, N = 500, k = 0.01 N/m, h0 = 2.69 m, η = 10−6,
and vp = 0.1 m/s.

decreases.

Furthermore, as seen in Figure 4.5, the drop in the friction force that occurs when a

single bristle transitions from contacting the slanted surface of the body to contacting
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Figure 4.5: The friction force of the compressed bristle model. The figure shows the

dependence of the friction force on time t, height y, and velocity v. The
bottom left plot shows the dynamic Stribeck effect, while the bottom right
plot shows the velocity-height curve.

the horizontal surface of the body is small compared to the amplitude of oscillation

of the friction force due to vertical oscillation of the body. As the amplitude of the

vertical oscillation of the body decreases, the change in friction force due to a bristle

transition from contacting the slanted surface of the body to contacting the horizontal

surface of the body becomes the mechanism that leads to stick-slip. In comparison

with the discontinuous rotating bristle model [94, 103], the individual bristles do not

have a visible effect on the stick-slip behavior or the dynamic Stribeck effect of the

compressed bristle model.

To demonstrate, we simulate (4.18)-(4.20) with the friction force (4.13). However,

in the vertical direction we assume that the body oscillates according to y(t) =

A sin(ωt). We use the Switch Model (4.33)-(4.43), and reformulate (4.18)-(4.20) as a

101



differential inclusion with f+ and f− defined by

f+(x)
4

=













v

1
m
(Kl − Ff+(x, y))

vp − v













, (4.48)

f−(x)
4

=













v

1
m
(Kl − Ff−(x, y))

vp − v













, (4.49)

where Ff+(x, y) is defined by (4.10) and Ff−(x, y) is defined by (4.12).

The results are shown in Figure 4.6 for A = 0.3 m and A = 1.3 m and for ω = 6.8

rad/s. This frequency of oscillation is approximately equal to the natural frequency

of the vertical oscillations of the body shown in Figure 4.4(b). The parameter values

used are m = 1 kg, K = 2 N/m, w = 1 m, d = 2 m, α = 15◦, N = 100, k = 0.05 N/m,

and h0 = 4.46 m. Note that the dynamic Stribeck effect as well as the dependence of

velocity on the height y of the body are more prominent for larger values of A. Also,

once the body begins moving horizontally, the friction force becomes less smooth,

that is, there are small drops in the friction force that correspond to the transition of

a bristle from contacting the slanted surface of the body to contacting the horizontal

surface of the body.

4.2.6 Hysteresis map

In this section we analyze the input-output properties of the compressed bristle

model. We consider the mass-spring configuration shown in Figure 4.3 and described

by (4.21)-(4.27). We use the Switch Model (4.33)-(4.43) to smooth out the disconti-

nuity in the compressed bristle model friction force (4.13).

The system (4.21)-(4.27) can be formulated as a differential inclusion (4.32) with
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Figure 4.6: Simulations of (4.44)-(4.45) with a prescribed height trajectory y =
A sin(ωt) where A = 0.3 m, and A = 1.3 m and ω = 6.8 rad/s and
Ff modeled by (4.13). The parameter values used are m = 1 kg, K = 2
N/m, w = 1 m, d = 2 m, α = 15◦, N = 100, k = 0.05 N/m, and
h0 = 4.46 m. The dynamic Stribeck effect is more pronounced in the
simulation with a larger amplitude of vertical motion.

x =

[

x v y ẏ

]T

, the set Σ defined by the roots of function g(x) = v, the normal

to Σ defined by n
4

= ∇g(x) =

[

0 1 0 0

]T

, and vector fields f+(x) and f−(x)

defined as

f+(x)
4

=



















v

1
m
(−Kx+ u− Ff+(x, y))

ẏ

−mg + Fy+(x, y)



















, (4.50)

f−(x)
4

=



















v

1
m
(−Kx+ u− Ff−(x, y))

ẏ

−mg + Fy−(x, y)



















, (4.51)
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where Ff+(x, y) and Ff−(x, y) are defined by (4.10) and (4.12), respectively, and

Fy+(x, y) and Fy−(x, y) are defined by (4.46) and (4.47), respectively.

The input-output map of (4.50)-(4.51), obtained from the Switch Model (4.33)-

(4.43), with parameter values m = 1 kg, K = 2 N/m, w = 1 m, d = 2 m, α = 15◦,

g = 10 m/s2, N = 500, ∆ = 0.0035 m, h0 = 1.65 m, k = 0.01 N/m, η = 10−6, and

u(t) = 2 sin(0.01t) N is shown in Figure 4.7(a). The time histories of the states and

the friction force are shown in Figure 4.7(b). Since the plot of the input u(t) versus

position of the body x forms a loop at a low frequency of the input, the system (4.50)-

(4.51) with friction force described by (4.13) is hysteretic [55]. During the motion, the

energy is stored in the bristles and dissipated by the oscillation of the bristles once

the mass passes over them. The energy dissipation is manifested in the force-position

hysteresis loop, whose area 2.384 J is equal to the amount of dissipated energy. Note

that the hysteresis map has a staircase shape typical of stick-slip motion. Furthermore

the time history of the velocity shows jumps in the velocity, which means that the

body goes through periods of sticking, where the velocity is zero, followed by slipping,

where the velocity is nonzero.

The plots in Figure 4.8 show the height and velocity versus the friction force.

In accordance with [21] the magnitude of the friction force decreases with height.

Furthermore, the magnitude of the friction force drops with an increase in velocity,

and the friction force-velocity curve forms a loop as shown in Figure 4.8, which

indicates the presence of the dynamic Stribeck effect.

4.3 Simplified Compressed Bristle Model

In this section we introduce a simplified version of the compressed bristle model,

which eliminates the need for the Switch Model. The simplified compressed bristle

model (SCBM) is a single-state model [83,87,93,98] that captures the stick-slip prop-

erties and the characteristics of the friction force-height, friction force-velocity, and
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Figure 4.7: The input-output map and time histories of the position x, velocity v,
height y, and friction force Ff of the mass-spring system shown in Figure
4.3 with the friction force modeled by (4.13). The input-output map is
hysteretic due to the energy dissipated in order to compress the bristle
springs. The energy dissipated is equal to the area of the hysteresis map.

velocity-height relationships of the compressed bristle model.

4.3.1 Single-state friction models

Single-state friction models such as the Dahl and LuGre model involve a state

variable z that represents the internal friction mechanism. These models have the
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Figure 4.8: Dependence of friction force on height and velocity. The magnitude of
the friction force decreases with increasing height and velocity. The drop
in friction force with increased velocity is the Stribeck effect.

form

ż = v

(

1− α(v, z)sign(v)
z

zss(v)

)

, (4.52)

Ff = σ0z + σ1ż + σ2v, (4.53)

where σ0, σ1, σ2 are positive constants, z is the internal friction state, zss(v) de-

termines the shape of the steady-state z curve, and Ff is the friction force. The

function α(v, z) determines the presence and type of elastoplastic presliding displace-

ment [93, 98]. For simplicity, we set α(v, z) = 1 and rewrite (4.52)-(4.53) as

ż = v − |v|
zss(v)

z, (4.54)

Ff = σ0z + σ1ż + σ2v. (4.55)

Setting zss(v) to be

zss(v) =
1

σ0

(

Fc + (Fs − Fc)e
−(v/vs)2

)

, (4.56)

where Fc, Fs, and vs are constants, yields the LuGre model [25, 26], which exhibits

stick-slip, hysteresis, and the Stribeck effect.
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In steady-state motion, ż = 0, and thus z = sign(v)zss(v). Furthermore, if σ1 =

σ2 = 0, then

Ff = σ0z = sign(v)σ0zss(v). (4.57)

4.3.2 Mean friction force

The goal in formulating the SCBM is to capture the characteristics of the fric-

tion force-height, friction force-velocity, and velocity-height relationships of the com-

pressed bristle model, while redefining the compressed bristle model equations as a

continuous model. As shown in Figure 4.5, the friction force-velocity and height-

velocity curves form loops. To model these loops, we fit a function to the mean

values of each loop and then reformulate the compressed bristle model equations in

the form of a single-state friction model.

First, we find the mean value of the friction force as a function of height y. For

all v ≥ 0, the bristle height hi+(x, y) is calculated from (4.2), and the ith bristle

contributes to the friction force if xbi ∈ Xb+(x) defined by (4.7), that is,

x+
d

2
− d1 ≤ xbi ≤ x+

d

2
. (4.58)

Thus, over all relevant values of xbi , hi+(x, y) takes on the maximum and minimum

values

hi+,max(x, y) = y − w

2
+

w

d2

(

x+
d

2
− d1 −

(

x+
d

2
− d1

))

= y − w

2
, (4.59)

hi−,min(x, y) = y − w

2
+

w

d2

(

x+
d

2
−
(

x+
d

2
− d1

))

= y +
w

2
. (4.60)

Similarly, for all v < 0, the bristle height hi−(x) is found from (4.3), and the ith

107



bristle contributes to the friction force if xbi ∈ Xb−(x) defined by (4.8), that is,

x− d

2
≤ xbi ≤ x− d

2
+ d1. (4.61)

Thus, over all relevant values of xbi , hi−(x, y) takes on the maximum and minimum

values

hi−,max(x, y) = y − w

2
+

w

d

(

x− d

2
+ d1 −

(

x− d

2
+ d1

))

= y − w

2
, (4.62)

hi−,min(x, y) = y − w

2
+

w

d

(

x− d

2
+ d1 −

(

x− d

2

))

= y +
w

2
. (4.63)

Thus, for all v ∈ R, the mean value of the ith bristle height hi(x, v, y) is

hi(y) =
1

2

(

y +
w

2
+ y − w

2

)

= y, (4.64)

and the mean value of the friction force is

Ff (x, v, y) =















k cos(α)
∑n+

i=1 h0 − hi = n+k cos(α)(h0 − hi), if v ≥ 0,

−k cos(α)
∑n−

i=1 h0 − hi = −n−k cos(α)(h0 − hi), if v < 0.

(4.65)

where h0 − hi denotes the mean value of h0 − hi. To find h0 − hi, we use

h0 − hi =

∑n
i=1(h0 − hi)

n
= h0 −

∑n
i=1 hi

n
= h0 − hi = h0 − y, (4.66)

so that

Ff(y, v) = sign(v)kn cos(α)(h0 − y) = sign(v)k̃(h0 − y), (4.67)

where k̃ = kn cos(α) and we assume that n+ = n− = n. Equation (4.67) describes

the friction force as a function of height.
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4.3.3 Velocity-height curve fits

In order to obtain an expression for friction force as a function of velocity we now

formulate the height y as a function of velocity v. We can then use y(v) in (4.67) to

obtain Ff (v).

Instead of a function that approximates the velocity-height loop, we find a function

that approximates the mean value of y as a function of velocity. The actual and mean

values of the height y shown in Figure 4.9 are obtained from simulating (4.44)-(4.45)

with the Switch Model (4.33)-(4.43) and parameters m = 1 kg, K = 5 N/m, w = 1

m, d = 2 m, α = 15◦, g = 10 m/s2, N = 500, k = 0.01 N/m, ∆ = 0.0035 m, h0 = 1.65

m, η = 10−6, and vp = ±0.1 m/s. Note that y is limited to the range 0 ≤ y ≤ h0

since the bristles do not stretch beyond their relaxed length h0 or compress beyond

the level of the ground.
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Figure 4.9: The velocity-height curve and its mean value. The mean value is shown
by the solid line, and the simulation result is shown by the dashed line.

To approximate the mean value of the velocity-height curve, we choose two dif-

ferent functions, namely, hyperbolic secant and exponential. The hyperbolic secant

expression is

y(v) = y1 − y2sech

(

v

vs

)

, (4.68)

where y1 and y2 determine the maximum and minimum values of y and vs is the
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velocity at which the height increases from y1 to y2. If y(v) is defined by (4.68), then

the approximation of the mean friction force is

Ff (v) = sign(v)k̃

(

h0 − y1 + y2sech

(

v

vs

))

. (4.69)

Figure 4.10(a) shows the approximation of the mean height y as the function of

velocity defined by (4.68), while Figure 4.10(b) shows the approximation of the mean

friction force Ff as the function of velocity defined by (4.69) with the parameter

values y1 = 0.4 m, y2 = 0.3 m, vs =
0.6
2π

m/s, k̃ = 0.75 N/m, and h0 = 1.64 m. Figure

4.10 also shows the actual and mean values of the height y and the friction force

Ff obtained from simulating (4.44)-(4.45) with parameters m = 1 kg, K = 5 N/m,

w = 1 m, d = 2 m, α = 15◦, g = 10 m/s2, N = 500, k = 0.01 N/m, ∆ = 0.0035 m,

h0 = 1.65 m, η = 10−6, and vp = ±0.1 m/s

Alternatively, we can approximate the mean height by the exponential function

of velocity

y(v) = y1 − y2e
−(v/vs)2 , (4.70)

where y1 and y2 are the maximum and minimum values of mean height, respectively,

and vs is the velocity at which the mean height increases from y2 to y1. If y is defined

by (4.70), then the approximation of the mean friction force is

Ff (v) = sign(v)k̃
(

h0 − y1 + y2e
−(v/vs)2

)

. (4.71)

Figure 4.11(a) shows the approximation of the mean height y as the function of

velocity defined by (4.70), while Figure 4.11(b) shows the approximation of the mean

friction force Ff as the function of velocity defined by (4.71) with parameters y1 = 0.4

m, y2 = 0.3 m, vs = 0.1 m/s, k̃ = 0.75 N/m, and h0 = 1.7 m. Figure 4.10 also shows
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Figure 4.10: Approximation of the mean height (4.68) and mean friction force (4.69)
of the SBM friction model (dash-dot) obtained by approximating the
mean height by hyperbolic secant function of velocity. (a) shows the
approximation of the mean height y as the function of velocity defined
by (4.68), (b) shows the approximation of the mean friction force Ff as
the function of velocity defined by (4.69). The actual and mean values
of the height y and friction force Ff are also shown by the dotted and
solid lines, respectively.

the actual and mean values of the height y and the friction force Ff obtained from

simulating (4.44)-(4.45) with parameters m = 1 kg, K = 5 N/m, w = 1 m, d = 2

m, α = 15◦, g = 10 m/s2, N = 500, k = 0.01 N/m, ∆ = 0.0035 m, h0 = 1.65 m,
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η = 10−6, and vp = ±0.1 m/s
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Figure 4.11: Approximation of the mean height (4.70) and mean friction force (4.71)
of the SBM friction model (dash-dot) obtained by approximating the
mean height by an exponential function of velocity with parameters y1 =
1 m, y2 = 0.5 m, vs = 0.1 m/s, k̃ = 1 N/m, and h0 = 2 m. (a) shows the
approximation of the mean height y as the function of velocity defined
by (4.70), (b) shows the approximation of the mean friction force Ff as
the function of velocity defined by (4.71). The actual and mean values
of the height y and friction force Ff are also shown by the dotted and
solid lines, respectively.
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Combining (4.57) and (4.69) yields

zss(v) =
k̃

σ0

(

h0 − y1 + y2sech

(

v

vs

))

, (4.72)

and the single-state friction model

ż = v − σ0
|v|

k̃
(

h0 − h1 + h2sech
(

v
vs

))z, (4.73)

Ff = σ0z. (4.74)

Furthermore, combining (4.57) and (4.71) gives the alternative expression

zss =
k̃

σ0

(

h0 − y1 + y2e
−(v/vs)2

)

, (4.75)

and the alternative single-state friction model

ż = v − σ0
|v|

k̃ (h0 − y1 + y2e−(v/vs)2)
z, (4.76)

Ff = σ0z. (4.77)

The equations (4.76)-(4.77) are identical to the LuGre equations (4.54)-(4.56) with

σ1 = σ2 = 0, k̃(h0 − y1) = Fc, and k̃y2 = Fs − Fc. In order to further demonstrate

the similarity of the LuGre model and the simplified compressed bristle model, we

simulate the systems of equations (4.18)-(4.20) and (4.26)-(4.27) with the friction force

(4.76)-(4.77). The output of the system (4.18)-(4.20) with the friction force (4.76)-

(4.77) and input velocity vp = 0.1 m/s is shown in Figure 4.12(a). The parameter

values are m = 1 kg, K = 1 N/m, y1 = 1 m, y2 = 0.5 m, vs = 0.1 m/s, k̃ = 1 N/m,

σ = 105, and h0 = 2 m. The results of simulating (4.26)-(4.27) with the friction force

(4.76)-(4.77) and input defined by u(t) = 5 sin(0.01t) N, are shown in Figure 4.12(b).
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The stick-slip behavior is visible in both simulations, and the system is hysteretic as

shown by the hysteretic input-output map.
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Figure 4.12: The stick-slip limit cycle of (4.18)-(4.20) and the hysteresis map of (4.26)-
(4.27) with friction force modeled by (4.76)-(4.77). The stick-slip limit
cycle in the l-v plane is shown in (a). (b) shows the hysteresis map with
stair-step shape typical of stick-slip motion.

4.4 Conclusions

In this chapter we developed the compressed bristle model, an asperity-based

friction model in which the friction force arises through the frictionless and lossless

interaction of a body with an endless row of bristles that represent the microscopic

roughness of the contacting surfaces. The bristles consist of a frictionless roller at-

tached to the ground through a spring. The body is allowed to move horizontally

and vertically over the bristles, which are compressed and thus apply a reaction force

at the point of contact. The friction force is the sum of all horizontal components

of the contact forces between all of the bristles and the body. As the body passes

over the compressed bristles, they are suddenly released, and the energy stored in

each spring is dissipated by viscous dashpot regardless of how slowly the body moves.

Thus, energy is dissipated in the limit of DC operation and the system is hysteretic.
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In the vertical direction, the body and the bristles form an undamped oscillator.

The body oscillates vertically regardless of whether it is moving horizontally or not.

During the vertical oscillations, as the body rises, the friction force decreases, and

the body speeds up. This mechanism gives rise to the dynamic Stribeck effect, which

refers to the fact that the friction force-velocity curve forms a loop.

Furthermore, we showed that the compressed bristle model exhibits stick-slip fric-

tion and that the compressed bristle model equations can be simplified to give a

single-state friction model. The simplified compressed bristle model (SCBM) retains

the stick-slip and hysteresis properties of the original model. The internal friction

state of the SCBM can be interpreted as the average deflection of the bristles from

their relaxed length. The simplified compressed bristle model is equivalent to the

LuGre model.
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CHAPTER V

Why Are Some Hysteresis Loops Shaped Like a

Butterfly?

The contribution of this chapter is a framework for relating butterfly-shaped hys-

teresis maps to simple (single-looped) hysteresis maps, which are typically easier to

model and more amenable to control design. In particular, a unimodal mapping is

used to transform simple loops to butterfly loops. For the practically important class

of piecewise monotone hysteresis maps, we provide conditions for producing butterfly-

shaped maps and examine the properties of the resulting butterflies. Conversely, we

present conditions under which butterfly-shaped maps can be converted to simple

piecewise monotone hysteresis maps to facilitate hysteresis compensation and control

design. Examples of a preloaded two-bar linkage mechanism and a magnetostric-

tive actuator illustrate the theory and its utility for understanding, modeling, and

controlling systems with butterfly-shaped hysteresis.

5.1 Introduction

Hysteresis is a property of a nonlinear system whose periodic steady-state response

retains a nontrivial input-output map (called the hysteresis map) as the frequency

of periodic excitation approaches zero. The underlying mechanism that gives rise
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to hysteresis is multistability, which refers to the existence of multiple attracting

equilibria. Under slow excitation, the state of the system is attracted to different

equilibria depending on the direction of the input [39].

Hysteretic systems arise in a vast range of applications, such as ferromagnetics,

smart materials, biological systems, and aerodynamics [63, 84, 107–110]. In some

applications, the dynamic response is independent of the frequency of excitation, and

thus the dynamic response map is identical to the hysteresis map. Such systems have

rate-independent hysteresis. In most applications, however, the dynamic response

depends on the frequency of excitation, and thus the dynamic response is distinct

from the hysteresis map. Such systems have rate-dependent hysteresis. For details,

see [55]. In this chapter, we ignore the transient response of the system and focus only

on the hysteresis map, that is, on the periodic steady-state response at asymptotically

low frequency.

This chapter focuses on butterfly-shaped hysteresis maps, which arise in many

applications, such as optics and smart materials [40,41,60–62,111–114]. A hysteresis

map is a butterfly when it consists of two loops of opposite orientation. In some

applications, the shape of the hysteresis map is reminiscent of butterfly wings, which

explains the terminology.

Although butterfly hysteresis is widely observed in the literature, we are not aware

of any explanations of the significance or origin of the characteristic shape of these

maps. In this chapter we show that certain simple (that is, single-loop) hysteresis

maps can be transformed into a multi-loop hysteresis map with alternating loop

orientation by means of a unimodal mapping of the output variable. When more

than two loops appear, we call the hysteresis map a multibutterfly. In particular, we

provide an example in which a unimodal map transforms a simple closed curve into

a triple-loop butterfly.

It is not possible to transform any simple hysteresis map into a butterfly. In
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particular, we show that only a special type of symmetric simple curves can form

butterflies, but that symmetric simple closed curves can form multibutterflies. We

determine conditions on the unimodal functions that can transform piecewise mono-

tonic hysteresis loops into butterflies. We show that if a butterfly satisfies specific

conditions, then there exists a unimodal map that transforms a simple closed curve

into this butterfly.

To facilitate control design, we can minimize the effects of butterfly hysteresis

by transforming the butterfly map into a simple hysteresis map. The simple map

can be fitted with a Preisach or a Prandtl-Ishlinskii model [64, 66, 70–72, 115]. Once

the model of the hysteresis is available we can construct the inverse of the known

hysteresis to cancel its effects.

To illustrate these ideas, we consider the preloaded two-bar linkage, which is a

classical example of elastic instability [116]. The hysteretic nature of this mechanism

is studied in [23], where the hysteresis map is shown to be a simple closed curve in

terms of the force input and linkage joint displacement. In this chapter, we consider

an alternative output variable, namely, the displacement of the spring-loaded mass.

In this case the resulting hysteresis map is a butterfly. This dual-loop hysteresis map

with opposite orientation arises from the unimodal mapping between the linkage joint

displacement and the displacement of the spring-loaded mass.

In a second example, we begin with butterfly hysteresis between the applied cur-

rent and change in length of the specimen observed in a magnetostrictive actuator

and presented in [117]. We use a quadratic law to relate the change of length of the

specimen to the magnetization along the rod direction, as well as to transform the

butterfly map into a simple hysteresis map. We fit a Preisach-Ishlinskii model to the

simple map, which facilitates the design of an inverse compensator for canceling the

hysteresis effect.

The contents of the chapter are as follows. In Section 5.2 we show that asymmetric
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oriented simple closed curves can be transformed into a butterfly or a multibutterfly

through a unimodal map. In Section 5.3 we state conditions under which it is possible

to transform symmetric or piecewise monotonic simple closed curves into butterflies.

In Section 5.4 we consider the preloaded two-bar linkage mechanism studied in [23]

and demonstrate that an alternative output variable corresponds to a mapping that

transforms the simple hysteresis map into a butterfly. In Section 5.5, we revisit

an example of butterfly hysteresis in magnetostrictive actuators given in [117]. We

find the inverse of the unimodal map that converts the butterfly map into a simple

hysteresis map, and we approximate the simple hysteresis map with a generalized

Prandtl-Ishlinskii model. A preliminary version of some of the results of this chapter

is given in [118].

5.2 Transformation From a Simple Closed Curve to a Multi-

Loop Curve

In this section we illustrate the transformation from a simple closed curve to a

butterfly with several examples. Recall that every simple closed curve divides the

plane into three sets, namely, the interior region, the exterior region, and the curve

itself [119].

Throughout this chapter, let C be an oriented simple closed curve and let [x0, x1]×

[y0, y1] be the smallest rectangle with sides parallel to the x- and y-axes containing

C. We assume throughout this chapter that, for each x ∈ (x0, x1), there exists a

unique pair of points (x, ymin(x)), (x, ymax(x)) ∈ C such that ymin(x) < ymax(x). The

following definitions are needed.

Definition 5.2.1. A continuous map f : [y0, y1] → R is ∧-unimodal if there

exists yc ∈ (y0, y1) such that f is increasing on [y0, yc) and decreasing on (yc, y1]. f

is ∨-unimodal if there exists yc ∈ (y0, y1) such that f is decreasing on [y0, yc) and
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increasing on (yc, y1]. f is unimodal if it is either ∨-unimodal or ∧-unimodal.

Definition 5.2.2. A butterfly is the union of two oriented simple closed curves

with disjoint interiors, a single point of intersection, and opposite orientation, such

that the curves are contained in the rectangle [x0, x1]×[q0, q1] and for each x ∈ (x0, x1),

the intersection of the curves and the vertical line through x consists of at most two

points. A multibutterfly contained in the rectangle [x0, x1] × [q0, q1] is the union of

three or more oriented simple closed curves with disjoint interiors and such that each

curve has a point of intersection with at least one and at most two other curves.

Furthermore, each pair of intersecting curves have opposite orientation and for each

x ∈ (x0, x1), the intersection of the curves and the vertical line through x consist of

at most two points.

For f : [y0, y1] → R, define f(C) , {(x, f(y)) : (x, y) ∈ C}.

The following result is immediate.

Fact 5.2.1.Let f : [y0, y1] → R be unimodal. Then C′ = f(C) is a butterfly if and

only if there exist disjoint open intervals I1 and I2 such that [x0, x1] = cl(I1)∪ cl(I2),

and such that, for all x ∈ I1 and all x′ ∈ I2,

[f(ymin(x))− f(ymax(x))][f(ymin(x
′))− f(ymax(x

′))] < 0. (5.1)

We use the notation cl to denote the closure of a set. Note that cl(I1) ∩ cl(I2) is

a single point.

Example 5.2.1. Let C be the circle centered at the origin as shown in Figure

5.1(a), and note that C is a doubly (that is, up-down and left-right) symmetric simple

closed curve. The set of points corresponding to ymax(x) is shown as the dashed curve,

while the set of points corresponding to ymin(x) is shown as the solid curve. Figure

5.1(b) shows the ∧-unimodal mapping f(y) = 1 − |y| applied to C. Note that f is
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continuous and increasing to the left of yc = 0 and decreasing to the right of yc = 0.

The curve C′ = f(C) is shown in Figure 5.1(c). However, C′ is not a butterfly because,

for all values of x ∈ [−1, 1], f(ymin(x)) = f(ymax(x)) and, thus, the left hand side of

(5.1) is zero. In fact, C′ is not a closed curve but rather collapses into the degenerate

curve shown in Figure 5.1(c). �
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Figure 5.1: Transformation that gives a degenerate curve. The original simple closed
curve C in (a) is transformed by the mapping f(y) = 1−|y| shown in (b).
The resulting curve shown in (c) is degenerate.

Example 5.2.2.Consider C shown in Figure 5.2(a). The set of points correspond-

ing to ymax(x) is shown as the dashed curve, while the set of points corresponding

to ymin(x) is shown as the solid curve. Figure 5.2(b) shows the same ∧-unimodal

mapping f used in Example 5.2.1. The curve C′ = f(C) is shown in Figure 5.2(c).

However, the curve C′ is not a butterfly because, for all x in cl(I1) ∪ cl(I2), where
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I1 = (−1, 0) and I2 = (0, 1), the left hand side of (5.1) is positive. Note that, al-

though C′ has two loops, both loops have the same orientation, and thus C′ is not a

butterfly. �
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Figure 5.2: Transformation that gives a two-loop curve that is not a butterfly. The
original simple closed curve C shown in (a) is transformed by the mapping
f(y) = 1 − |y| shown in (b). The resulting curve shown in (c) has two
loops but is not a butterfly since both curves have the same orientation.

Example 5.2.3. Consider C shown in Figure 5.3(a). The set of points corre-

sponding to ymax(x) is shown as the dashed curve, while the set of points correspond-

ing to ymin(x) is shown as the solid curve. We use the same ∧-unimodal mapping

f(y) = 1 − |y| as in Example 5.2.2 (see Figure 5.3(b)). The curve C′ = f(C) is

shown in Figure 5.3(c). In this case, for all values of x in the interval I1 = (−1, 0),

f(ymax(x)) > f(ymin(x)), whereas, for all values of x′ in the interval I2 = (0, 1),
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f(ymax(x
′)) < f(ymin(x

′)) and inequality (5.1) is satisfied. Therefore, Fact 5.2.1 im-

plies that C′ is a butterfly as shown in Figure 5.3(c). �
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Figure 5.3: Transformation of a simple closed curve into a butterfly. The simple
closed curve C shown in (a) is transformed by the ∧-unimodal mapping
f(y) = 1−|y| shown in (b). The resulting curve is the butterfly C′ shown
in (c).

Fact 5.2.2. Let f : [y0, y1] → R be unimodal. Then C′= f(C) is a multibutterfly

if and only if there exist disjoint open intervals I1, . . .,In such that [x0, x1] = cl(I1)∪

· · · ∪ cl(In), and such that, for each pair of adjacent intervals Ii, Ij , it follows that,

for all x ∈ Ii and all x′ ∈ Ij

[f(ymin(x))− f(ymax(x))][f(ymin(x
′))− f(ymax(x

′))] < 0. (5.2)

To illustrate this concept, the following example shows the transformation of a
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non-symmetric simple closed curve into a multibutterfly.

Example 5.2.4. Consider C as in Example 5.2.3 (see Figure 5.4(a)). The set

of points corresponding to ymax(x) is shown by the dashed curve, while the set of

points corresponding to ymin(x) is shown by the solid curve. Figure 5.4(b) shows the

∧-unimodal mapping f applied to C. The function f is continuous and increasing to

the left of yc = −0.5 and decreasing to the right of yc = −0.5. The curve C′ = f(C) is

shown in Figure 5.4(c). Inequality (5.2) is satisfied for all values of x in the intervals

I1 = (−1,−0.675), I2 = (−0.675, 0), and I3 = (0, 1), and thus C′ is a three-loop

multibutterfly.
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Figure 5.4: Transformation of a simple closed curve into a multibutterfly. The
counterclockwise-oriented simple closed curve C shown in (a) is trans-
formed by the ∧-unimodal map f shown in (b). The resulting curve is
the multibutterfly shown in (c).
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�

5.3 Analysis of Unimodal Transformations

In this section we state conditions under which it is possible to transform a simple

closed curve into a butterfly, and we highlight the types of butterfly loops that can

be obtained by a unimodal transformation of a simple closed curve. It turns out

that certain symmetric simple closed curves cannot be transformed into butterflies.

However, we show that every symmetric simple closed curve can be transformed into

a multibutterfly.

Proposition 5.3.1. If C is left-right symmetric, then there does not exist a uni-

modal map that transforms C into a butterfly.

Proof. Let J1 = (x0, x̄0) be an interval, where x̄0 < x0+x1

2
. Due to the sym-

metry of C, for each x ∈ J1 there exists x′ ∈ J2 = (x̄1, x1) such that x̄1 > x0+x1

2
,

ymin(x) = ymin(x
′), and ymax(x) = ymax(x

′). Furthermore, f(ymin(x)) = f(ymin(x
′))

and f(ymax(x)) = f(ymax(x
′)), that is,

[f(ymin(x))− f(ymax(x))][f(ymin(x
′))− f(ymax(x

′))] > 0 (5.3)

for all x ∈ J1 and x′ ∈ J2. Let I1 and I2 be disjoint open intervals such that

[x0, x1] = cl(I1)∪ cl(I2). I1 contains at least a portion of J1, and I2 contains at least

a portion of J2. Since (5.1) is not satisfied on J1 and J2, (5.1) cannot be satisfied for

all x ∈ I1 and all x′ ∈ I2, and, thus, C cannot be transformed into a butterfly. �

Proposition 5.3.2. Suppose that C is up-down symmetric and assume that there

exist unique y(x0) and y(x1) such that (x0, y(x0)) ∈ C and (x1, y(x1)) ∈ C. Then

there does not exist a unimodal map that transforms C into a butterfly.
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Proof. Let J1 = (x0, x̄0) be an interval such that x̄0 ∈ (x0, x1), ymin(x̄0) > y0,

and ymax(x̄0) < y1. Due to the up-down symmetry of C, for each x ∈ J1 there

exists x′ ∈ J2 = (x̄1, x1) such that ymin(x) = ymin(x
′) and ymax(x) = ymax(x

′) and

x̄1 ∈ (x̄0, x1). Following the same line of reasoning as in the proof of Proposition

5.3.1, we conclude that there do not exist two open disjoint intervals for which (5.1)

is satisfied. Thus it is not possible to transform C into a butterfly. �

The following example provides an up-down symmetric simple closed curve that

does not satisfy the conditions of Proposition 5.3.2, but can be transformed into a

butterfly.

Example 5.3.1. Consider the up-down symmetric simple closed curve C shown

in Figure 5.5(a). The set of points corresponding to ymax(x) is shown by the dashed

curve, while the set of points corresponding to ymin(x) is shown by the solid curve.

Figure 5.5(b) shows the ∧-unimodal mapping f applied to C. The function f is

continuous, increasing to the left of yc = 0.25, and decreasing to the right of yc = 0.25.

The curve C′ = f(C) is shown in Figure 5.5(c). C′ is the union of two simple closed

curves of opposite orientation and thus is a butterfly. �

The following example shows that a symmetric simple closed curve can be trans-

formed into a multibutterfly.

Example 5.3.2. Reconsider C as in Example 5.2.1 shown in Figure 5.6(a). The

set of points corresponding to ymax(x) is shown by the dashed curve, while the set of

points corresponding to ymin(x) is shown by the solid curve. The ∧-unimodal mapping

f(y) = y + 1.5 for y ≤ 0.5 and f(y) = −4y + 4 for y > 0.5 is shown in Figure 5.6(b).

The curve C′ = f(C) is shown in Figure 5.6(c). The set [x0, x1] = [−1, 1] can be divided

into the subintervals I1 = (−1,−0.553), I2 = (−0.553, 0.553), and I3 = (0.553, 1),

such that, for all x ∈ I1 and all x′ ∈ I2, inequality (5.2) holds, whereas, for all x ∈ I2

and all x′ ∈ I3, inequality (5.2) holds. Thus C′ is a multibutterfly. �
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Figure 5.5: Transformation of an up-down symmetric closed curve into a butterfly.
The symmetric simple closed curve C shown in (a) is transformed by the
∧-unimodal map f shown in (b). The resulting curve is the butterfly
shown in (c). Note that C does not satisfy the conditions of Proposition
5.3.2 since ymin(x0) and ymax(x0) are not unique.

The following discussion pertains to a special case of simple closed curves that are

piecewise monotonic. This type of hysteresis map is common in smart materials.

Definition 5.3.1. Let C be an oriented simple closed curve such that, for each

x = x0, there exists a unique point (x0, y) ∈ C and, for each x = x1, there exists

a unique point (x1, y) ∈ C. C is piecewise monotonically decreasing if ymin(x) and

ymax(x) are decreasing functions of x. C is piecewise monotonically increasing if

ymin(x) and ymax(x) are increasing functions of x. An oriented simple closed curve

is piecewise monotonic if it is either piecewise monotonically decreasing or piecewise

monotonically increasing.
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Figure 5.6: Transformation of a symmetric simple closed curve C into a multibut-
terfly. The simple closed curve C in (a), which is up-down and left-right
symmetric, is transformed by the ∧-unimodal mapping f(y) shown in (b).
The resulting curve shown in (c) is a multibutterfly.

The following lemma is necessary for further discussion.

Lemma 5.3.1. Let S be a closed polygonal region in a plane with vertices A, B,

C, D, labeled consecutively. Let C1 be a continuous curve that connects A to C and

satisfies C1 \ {A,C} ⊂ int(S). Let C2 be a continuous curve that connects B to D and

satisfies C2 \{B,D} ⊂ int(S). Then C1∩C2 6= ∅. If, in addition, there exist coordinate

axes with respect to which C1 is monotonically increasing (resp. decreasing) function

and C2 is monotonically decreasing (resp. increasing) function, then C1 ∩ C2 consists

of a single point.

Proof. Because C1 is a continuous curve connecting A to C it divides the
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rectangle S into two open disjoint regions R1 and R2, where B ∈ R1 and D ∈ R2.

Since the curve C2 connects points B and D it must cross from region R1 to region

R2. From the Jordan curve lemma C2 must cross the boundary between these regions,

that is, the curve C1. Furthermore, if both of the curves are monotonic functions with

respect to some axis, C1 increases (resp. decreases) from A to C and C2 decreases

(resp. increases) from B to D, and thus, the curves C1 and C2 cross exactly once. �

Theorem 5.3.1. Let C be a piecewise monotonic simple closed curve. Fur-

thermore, let f be a ∨-unimodal function with its minimum point qc(yc) such that

yc ∈ (y0, y1) or a ∧-unimodal function with its maximum point qc(yc), such that

yc ∈ (y0, y1). Then C′= f(C) is a butterfly.

Proof. We assume that the map f is ∨-unimodal and that C is monotonically

increasing; the remaining three cases are analogous. Let J1 = (x0, xc1), where xc1 ∈

(x0, x1) and ymax(xc1) = yc, and let J2 = (xc2, x1), where xc2 ∈ (x0, x1) and ymin(xc2) =

yc. Note that xc1 < xc2. Because f is ∨-unimodal f(ya) < f(yb) for ya, yb ∈ [y0, yc]

such that ya > yb, and furthermore, f(ya) > f(yb) for ya, yb ∈ [yc, y1] such that ya > yb.

Thus, for all x ∈ J1, f(ymax(x)) < f(ymin(x)), and, for all x ∈ J2, f(ymax(x)) >

f(ymin(x)).

Let J3 = [xc1, xc2]. Since C and f are piecewise monotonic, C1 = {(x, f(ymax(x))) :

x ∈ J3} is monotonically increasing and C2 = {(x, f(ymin(x))) : x ∈ J3} is mono-

tonically decreasing. Furthermore, it follows from Lemma 5.3.1 that C1 ∩ C2 consists

of a unique point (x∗, y∗). Now, for all x ∈ I1 = (x0, x∗), f(ymax(x)) < f(ymin(x))

while, for all x ∈ I2 = (x∗, x1), f(ymax(x)) > f(ymin(x)). Thus, (5.1) is satisfied for

all x ∈ I1 and all x′ ∈ I2, and thus C′= f(C) is a butterfly. �

We investigate the properties of the butterfly map created by applying a unimodal

map to an oriented simple closed curve C. The following definition is needed.

Definition 5.3.2. Let C be a simple closed curve or a butterfly and let [x0, x1]×
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[y0, y1] be the smallest rectangle containing C. A point (x, y0) ∈ C is a minimum of

C. A point (x, y1) ∈ C is a maximum of C.

The following result is illustrated by Figure 5.7.

Theorem 5.3.2. Let f : [y0, y1] → R be unimodal and let C be an oriented

simple closed curve defined on the rectangle [x0, x1]× [y0, y1]. Assume that, for each

y ∈ (y0, y1), there exists a unique pair of points (xmin(y), y), (xmax(y), y) ∈ C such

that xmin(y) < xmax(y), and assume that C′ , f(C) is a butterfly. If f is ∨-unimodal,

then C′ has exactly two minima, which are equal. Alternatively, if f is ∧-unimodal,

then C′ has exactly two maxima, which are equal.

Proof. We assume that the map f is ∨-unimodal; the ∧-unimodal case is

analogous. Let [x0, x1] × [qc, q1] be the smallest rectangle containing C′, and let q =

f(y), where q ∈ [qc, q1]. Let yc ∈ (y0, y1) satisfy qc = f(yc). By Definition 5.2.1, yc is

the global minimizer of f . By assumption, there exist exactly two points (xmin(yc), yc)

and (xmax(yc), yc) ∈ C such that xmin(yc) < xmax(yc). Applying f to these points yields

(xmin(yc), f(yc)), (xmax(yc), f(yc)) ∈ C′. Hence these points are minima of the curve

C′ and, since xmin(yc) 6= xmax(yc), it follows that these points are distinct. Thus, the

butterfly map C′ has exactly two minima of equal value qc. �

The following theorem is related to Theorem 5.3.2 and represents the dual of

Theorem 5.3.1.

Theorem 5.3.3. Let C′ be a butterfly and let [x0, x1] × [q0, q1] be the smallest

rectangle with sides parallel to the x- and y-axes containing C′. Decompose C′ as the

union of two branches, namely, branch B+ associated with increasing x and branch

B− associated with decreasing x. Furthermore, define g+ : [x0, x1] → [q0, q1] and

g− : [x0, x1] → [q0, q1], such that B+ and B− are the graphs of g+ and g−, respectively.

(a) Assume that C′ has exactly two minima (xa, qc), (xb, qc), with x0 < xa < xb < x1

and qc = q0. Furthermore, assume that g+ (resp., g−) is decreasing on [x0, xb] and
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Figure 5.7: Illustration of the proof of Theorem 5.3.2. The simple closed curve C and
points (xmin(yc), yc) and (xmax(yc), yc) are shown in (a). The ∨-unimodal
map f and the point (yc, qc) are shown in (b). The butterfly map C′ and
the points (xmin(qc), qc) and (xmax(qc), qc) are shown in (c).

increasing on [xb, x1], and g− (resp., g+) is decreasing on [x0, xa] and increasing on

[xa, x1]. Then, for each ∨−unimodal function f with minimum value qc, there exist

a piecewise monotonically increasing simple closed curve C1 with counterclockwise

(resp., clockwise) orientation and a piecewise monotonically decreasing simple closed

curve C2 with clockwise (resp., counterclockwise) orientation, such that C′ = f(C1) =

f(C2).

131



(b) Assume that C′ has exactly two maxima (xa, qc), (xb, qc), with x0 < xa < xb < x1

and qc = q1. Furthermore, assume that g+ (resp., g−) is increasing on [x0, xb] and

decreasing on [xb, x1], and g− (resp., g+) is increasing on [x0, xa] and decreasing on

[xa, x1]. Then, for each ∧−unimodal function f with maximum value qc, there exist

a piecewise monotonically increasing simple closed curve C1 with counterclockwise

(resp., clockwise) orientation and a piecewise monotonically decreasing simple closed

curve C2 with clockwise (resp., counterclockwise) orientation, such that C′ = f(C1) =

f(C2).

Proof. We prove the case in (a) where g+ is decreasing on [x0, xb] and increasing

on [xb, x1], and g− is decreasing on [x0, xa] and increasing on [xa, x1], as illustrated

in Figure 5.8(a). The other case in (a) and the two cases in (b) can be proven

analogously. Let f be a ∨−unimodal function, such that f(yc) = qc for some yc, and

f(y) =















f−(y), if y ≤ yc,

f+(y), if y ≥ yc,

where the continuous functions f− and f+ are strictly decreasing and increasing,

respectively (Figure 5.8(b)). Let f−1
− and f−1

+ denote the inverse functions of f− and

f+, respectively, as illustrated in Figure 5.8(c). Note that f−1
− is continuous and

strictly decreasing, and f−1
+ is continuous and strictly increasing, with yc = f−1

− (qc) =

f−1
+ (qc).

Define a curve C1 on the plane as the union of four directed segments that are the
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Figure 5.8: Illustration of the proof of Theorem 5.3.3. A butterfly C′ is shown in (a),
and a ∨-unimodal function f is shown in (b). The inverse functions of f+
and f− in (b) are shown in (c). The constructed simple closed curve C is
shown in (d).

corresponding graphs of

y = f−1
− (g+(x)) as x increases from x0 to xb, (5.4)

y = f−1
+ (g+(x)) as x increases from xb to x1, (5.5)

y = f−1
+ (g−(x)) as x decreases from x1 to xa, (5.6)

y = f−1
− (g−(x)) as x decreases from xa to x0, (5.7)

as illustrated in Figure 5.8(d). Since f−1
− (g+(xb)) = f−1

− (qc) = yc = f−1
+ (g+(xb)),

f−1
+ (g+(x1)) = f−1

+ (g−(x1)) (from continuity of C′), f−1
+ (g−(xa)) = yc = f−1

− (g−(xa)),
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and f−1
− (g−(x0)) = f−1

− (g+(x0)) (from continuity of C′), C1 is continuous and closed.

Define y = h+(x) on [x0, x1] using (5.4) and (5.5), and define y = h−(x) on

[x0, x1] using (5.6) and (5.7). Namely, h+ and h− represent the two branches of C1
associated with increasing and decreasing x, respectively. Using the properties of f−1

±

and g±, it can be shown that both h+ and h− are strictly increasing functions of x.

Furthermore, for each x ∈ (x0, x1), h+(x) < h−(x). Therefore, C1 is a simple closed

curve with counterclockwise orientation. Finally, f(C1) can be defined as

f−(y) = f−(f
−1
− (g+(x))) = g+(x)as x increases from x0 to xb,

f+(y) = f+(f
−1
+ (g+(x))) = g+(x)as x increases from xb to x1,

f+(y) = f+(f
−1
+ (g−(x))) = g−(x)as x decreases from x1 to xa,

f−(y) = f−(f
−1
− (g−(x))) = g−(x)as x decreases from xa to x0,

and, thus, C′ = f(C1).

Similarly, we define the curve C2 using

y = f−1
+ (g+(x)) as x increases from x0 to xb, (5.8)

y = f−1
− (g+(x)) as x increases from xb to x1, (5.9)

y = f−1
− (g−(x)) as x decreases from x1 to xa, (5.10)

y = f−1
+ (g−(x)) as x decreases from xa to x0. (5.11)

Following the same line of reasoning as above, it follows that C2 is a piecewise mono-

tonically decreasing, simple closed curve with clockwise orientation, and C′ = f(C2).

�
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5.4 Hysteresis in a Preloaded Two-Bar Linkage Mechanism

In this section, we give a detailed analysis of a mechanical system in which two

output variables are related by a unimodal map in order to demonstrate that our

theoretical results can be used in practice. We analyze the dynamics of the two-bar

linkage with joints P, Q, and R and preloaded by a spring with stiffness constant

k as shown in Figure 5.9. The purpose of this discussion is to show that we can

transform a simple hysteresis map into a butterfly through a unimodal map. That

is, that the shape of the hysteresis map in this mechanism depends on the output

variable because the two possible outputs are related through a unimodal function.

Additional details of derivations are given by [23].

k

cm

F

θ

q

y
l l

P R

Q

Figure 5.9: The preloaded two-bar linkage with a vertical force F acting at the joint
Q. The word ‘preloaded’ refers to the presence of the spring with stiff-
ness constant k, which is compressed when the two-bar linkage is in the
horizontal equilibrium.

A constant vertical force F is applied at Q, where the two bars are joined by

a frictionless pin. Let θ denote the counterclockwise angle that the left bar makes

with the horizontal, and let q denote the distance between the joints P and R. When

F = 0, the linkage has three equilibrium configurations. In Figure 5.10(a) and (b),

the values of q and θ are q0 and ±θ0, respectively, and the spring k is relaxed. Note

that q0 = 2l cos θ0. For the third equilibrium shown in Figure 5.10(c), both bars are

horizontal with θ = 0.

Note that y is the vertical distance from the joint Q to the horizontal equilibrium,
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Figure 5.10: Static equilibria of the preloaded two-bar linkage when the spring is
relaxed and F = 0. In (a) the equilibrium angle θ0 is positive, in (b) the
angle is negative, and in (c) θ = 0. Equilibria in (a) and (b) are stable,
while the equilibrium in (c) is unstable.

and q is the horizontal distance from joint P to joint R as shown in Figure 5.9. The

static equilibria of the system are given by

(sin θ)

(

1− cos θ0
cos θ

)

=
F

4kl
. (5.12)

The equilibrium set E for the preloaded two-bar linkage is the set of points (F, y) that

satisfy

y

(

1− l cos θ0
√

l2 − y2

)

=
F

4k
. (5.13)

Alternatively, set E can be expressed as the set of points (F, q) that satisfy

±
√

(4l2 − q2)

(

1− 2l cos θ0
q

)

=
F

2k
. (5.14)

136



Relations (5.13) and (5.14) are obtained from (5.12) using

y = l sin θ, q = 2l cos θ, (5.15)

respectively. The equilibrium sets E defined by (5.13)-(5.14) are shown in the Figure

5.11. Set E is useful for analyzing the hysteresis of the preloaded two-bar linkage. It

is shown in [54] that a system that exhibits hysteresis has a multi-valued equilibrium

map and that the hysteresis map is a subset of the equilibrium map. It can be

seen from the equilibrium set E in Figure 5.11 that multiple equilibria exist for each

constant F ∈ (−0.375, 0.375).
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Figure 5.11: Equilibrium sets E for the preloaded two-bar linkage. The set E defined
by (5.13) is shown on the left, while the set E defined by (5.14) is shown
on the right. The parameter values are θ0 = π/4 rad, k = 1 N-m, and
l = 1 m.

The equations of motion for the preloaded two-bar linkage are given by

(

(2ml2 +
9

8
mbarl

2) sin2 θ +
5

24
mbarl

2
)

θ̈

+ (2ml2 +
9

8
mbarl

2)(sin θ)(cos θ)θ̇2 (5.16)

+ 2kl2(cos θ0 − cos θ)(sin θ)

+ 2cl2(sin θ)2θ̇ = − l cos θ

2
F,

137



where mbar is the inertia of each bar. Using (5.15) the dynamics (5.16) can be

expressed in terms of the displacement q as

(

(m+
9

16
mbar)(4l

2 − q2) +
5

12
mbarl

2
)

(4l2 − q2)q̈

+
5

12
mbarl

2qq̇2 + cq̇(4l2 − q2)2

+ k(q − q0)(4l
2 − q2)2 =

1

2
q(4l2 − q2)

3

2F.

(5.17)

We use (5.16) and (5.17) to simulate the linkage dynamics under the periodic external

force F = sin(ωt) N with parameter values k = 1 N/m, m = 1 kg, c = 1 N-s/m,

mbar = 0.5 kg, and l = 1 m. As shown in Figure 5.12 there exists a nontrivial

clockwise hysteresis map from the vertical force F to the vertical displacement y at

low frequencies. The presence of a nontrivial loop at asymptotically low frequencies

constitutes hysteresis. Note that the signed area of each hysteresis loop is equal to

the energy dissipated in one cycle. Figure 5.13 shows the input-output map between

the vertical force F and horizontal displacement q. At asymptotically low frequencies

this input-output map is a symmetric butterfly with two loops of opposite orientation.

The energy dissipated in one cycle is equal to the sum of the signed areas of the two

loops. Because the loops have equal area, but opposite orientation, the total energy

dissipated is zero. Energy is not dissipated since the force F and the displacement q

are orthogonal. A comparison of the hysteresis maps and the equilibrium sets E for

the preloaded two-bar linkage is shown in Figure 5.14.

Thus the hysteresis map is a simple closed curve when the output variable is y

and a butterfly when the output variable is q. From (5.15) we find the unimodal map

f =
√

4(l2 − y2), which transforms the simple map to a butterfly and is shown in

Figure 5.15.
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Figure 5.12: Input-output maps between the vertical force F and the vertical dis-

placement y for the two-bar linkage model (5.16) for several values of
frequency ω in rad/s. The nonvanishing clockwise displacement-force
loop at asymptotically low frequencies is the hysteresis map. Ediss, which
is the area of each loop, is the energy dissipated in one complete cycle.
The parameter values are k = 1 N/m, m = 1 kg, c = 1 N-s/m,mbar = 0.5
kg, l = 1 m, and F (t) = sin(ωt) N.

5.5 Hysteresis in a Magnetostrictive Actuator

In this section we present butterfly hysteresis data obtained from a magnetostric-

tive actuator. We find the unimodal function that relates the butterfly hysteresis

map to a simple hysteresis map. The simple hysteresis map can be modeled with

a generalized Prandtl-Ishlinskii model, which is invertible and thus can be used to

compensate for the hysteresis in the magnetostrictive actuator.

A Terfenol-D magnetostrictive actuator manufactured by Etrema Products, Inc.

exhibits displacement to current butterfly hysteresis shown in Figure 5.16. In order

to transform the butterfly into a simple hysteresis map, we adopt the following from

[117].

Definition 5.5.1. Let ∆L be the change in the length of the magnetostrictive
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Figure 5.13: Input-output maps between the vertical force F and the horizontal dis-
placement q for the two-bar linkage model (5.17) for several values of
frequency ω in rad/s. The parameters values are k = 1 N/m, m = 1 kg,
c = 1 N-s/m, mbar = 0.5 kg, l = 1 m, and F (t) = sin(ωt) N.

rod, and let Lrod be the length of the demagnetized rod. Then

λ ,
∆L

Lrod
(5.18)

is the magnetostriction in the rod.

We assume that the magnetostriction and magnetizationM along the rod direction

are related through a quadratic law

λ = a1M
2 + b1, (5.19)

where a1 =
λs

M2
s

, b1 is a constant, λs is saturation value of magnetostriction, and Ms

is the saturation value of magnetization. The input current I and the magnetic field
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Figure 5.14: Comparison of the equilibrium sets E and the hysteresis maps for the
preloaded two-bar linkage. The output variable is y in (a) and q in (b).
The hysteresis map is a subset of E except for the vertical segments at
the bifurcation points. The parameters values are as in Figure 5.12 with
F (t) = sin(0.001t) N.

H are related through

H = c0I +Hbias, (5.20)

where c0 is the coil factor and Hbias is the bias field produced by dc current. Actuator
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Figure 5.15: The ∧-unimodal mapping function f(y) =
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4(l2 − y2) that transforms
the simple hysteresis map of the buckling mechanism into a butterfly.

−2 −1 0 1 2
−20

0

20

40

60

80

I (A)

∆ 
L 

(µ
 m

)

Figure 5.16: Experimental displacement-to-current butterfly hysteresis in a Terfenol-
D magnetostrictive actuator.

specifications state that Ms = 7.87× 105 A/m, Lrod = 5.13× 10−2 m, c0 = 1.54× 104

m−1; the remaining parameters are experimentally identified to be λs = 1.313× 10−3

and Hbias = 1.23× 104 A/m.

Combining (5.18)-(5.20) we transform the butterfly curve in Figure 5.16 into a

simple hysteresis curve between the magnetic field H and the magnetization along
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the rod M . Using (5.18) and (5.19) we obtain

M = ±
√

λ− b1
a1

. (5.21)

The sign of M is chosen such that the H to M hysteresis curve is piecewise monotoni-

cally increasing, as dictated by the physics. The resulting plot of λ versus M is shown

in Figure 5.17(a). Equation (5.20) is used to calculate the values of the magnetic field

H corresponding to the input current. The resulting H to M hysteresis map is shown

in Figure 5.17(b). Notice that there is a vertical jump in the hysteresis map at the

point where it crosses the x-axis. This jump is due to the fact that the two local

minima of the butterfly map in Figure 5.16, while close, are not equal as expected

from Theorem 5.3.2.
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Figure 5.17: Transformation from the butterfly to a simple closed curve. The ∨-
unimodal relationship between M and λ obtained from (5.21) is shown
in (a). (b) shows the simple hysteresis curve between the magnetic field
H and magnetization M along the rod. A vertical jump due to unequal
local minima of the butterfly map is visible at the point where the map
crosses the H-axis.

To minimize the jump in the H-M hysteresis map, we now assume that the re-

lationship between M and λ is hysteretic, as suggested by [120, 121]. That is, one
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branch of the butterfly map in Figure 5.16 is transformed to M through (5.19), while

the other branch is transformed through a unimodal map of the form

λ = a2M
2 + b2, (5.22)

where a2 and b2 are defined so that (5.19) and (5.22) form a closed hysteresis map.

The hysteretic M-λ relationship is shown in Figure 5.18(a). The resulting H to M

hysteresis map is shown in Figure 5.18(b).
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Figure 5.18: Hysteretic unimodal relationship between M and λ obtained by applying
(5.19) to one branch and (5.22) to the other branch of the butterfly
map in Figure 5.16 is shown in (a). (b) shows the simple hysteresis
curve between the magnetic field H and magnetization along the rod M
obtained by applying a hysteretic M − λ relationship to the butterfly
hysteresis map.

In order to model the hysteresis in Fig. 5.18(b), we use a generalized Prandtl-

Ishlinskii (PI) model defined by [72]. The generalized PI model consists of generalized

play operators that are defined by the input u, threshold w, and envelope function γ.

The generalized Prandtl-Ishlinskii model utilizes N generalized play operators

with thresholds wi, i = 1, . . . , N . Let the input u(t) be a piecewise monotone contin-

uous function on the interval t ∈ [t0, tn], let [t0, tn] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tn−1, tn],

and define the initial state of the i-th play operator as xi(u(t0)) = x0i. The output
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of the generalized play operator i at time tj, j = 1, . . . , n is defined as

xi

(

u(tj)
)

= max (γ(u(tj))− wi, min (γ(u(tj)) + wi, xi (u(tj−1)))) , (5.23)

where w ≥ 0 is the threshold of the generalized play operator and the strictly increas-

ing continuous odd function γ : R → R is the envelope function. The output of the

generalized PI model at time tj is defined as

y(tj) = qγ(u(tj)) +
N
∑

i=1

p(wi)xi(u(tj)), (5.24)

where q is a positive constant and p(w) is a positive density function. As in [72], we

use the envelope function

γ(v) = c0 tanh(c1v + c2) + c3 (5.25)

and the density function

p(w) = ρe−τw, (5.26)

where c0, c1, c2, c3, c4, ρ, τ are constants with ρ > 0. We assume that w varies as

w = kβ, k = 1, . . . , N , β > 0. We utilize a least squares optimization routine that

minimizes the error between the data and the model defined by

J =
1

2

m
∑

i=1

(y(i)−M(i))2, (5.27)

where m is the number of available data points of M . The values of M and H

are scaled by k = 10−4 in order to avoid numerical problems. The output of the

optimization is summarized in Table 5.1.

Comparison of the output of the identified generalized PI model (5.23)-(5.24) with
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Parameter Identified value

c0 4.0904
c1 0.7774 m/A
c2 -0.0666
c3 -0.2686
ρ 4.6403 A/m
τ -0.1909
q 11.9609 A/m
β 1.1386

Table 5.1: Identified parameters of the generalized PI model from the least squares
optimization routine.

parameters in Table 5.1 and experimental data in Figure 5.18(b) is shown in Figure

5.19(a). Using (5.18)-(5.20) and (5.22) we convert the output of the generalized PI

model from Figure 5.19(a) into a butterfly hysteresis curve. The comparison of this

butterfly map and the experimentally measured data from Figure 5.16 is shown in

Figure 5.19(b).
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Figure 5.19: Comparison of the experimental data and the output of the PI model.
(a) compares the experimental data shown in Figure 5.18(b) and the
output of the generalized PI model (5.23)-(5.24) with parameters defined
in Table 5.1. (b) compares the butterfly map from experimental data in
Figure 5.16 and the butterfly map obtained by applying (5.19), (5.20),
and (5.22) to the output of the generalized PI model with parameters
defined in Table 5.1.
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5.6 Conclusions

We studied the relationship between simple and butterfly hysteresis maps and

showed that the simple closed curve and butterfly are related by a unimodal map.

Constraints can be placed on the types of simple closed curves that can be transformed

into butterflies and the types of unimodal maps that can achieve this transformation.

To illustrate, we start with the hysteresis map of the preloaded two-bar linkage.

The hysteresis map of this system is a simple closed curve in terms of the force

input and linkage joint displacement. However, if the output is the displacement

of the spring-loaded mass, then the hysteresis map is a butterfly. The butterfly

appears due to the unimodal mapping between the linkage-joint displacement and

the displacement of the spring-loaded mass.

Furthermore, we show that the unimodal transformation between simple and but-

terfly curves can be used to compensate for hysteresis in a magnetostrictive actuator.

We use a quadratic law to relate the change of length of a specimen of magnetostrictive

material to the magnetization along the rod direction, and to transform the butterfly

map into a simple hysteresis map. The simple hysteresis map is monotone and can

be fitted and inverted.

Future work includes the extension of these results to include hysteretic unimodal

maps and multibutterflies. The use of hysteretic unimodal maps could give more

flexibility in the types of butterflies that can be obtained from a given simple closed

curve and enable easier fits to experimental data in control applications.
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CHAPTER VI

Conclusions

In this work, we have considered friction models which are based on frictionless

and lossless interactions of physical elements, such as masses, springs, and dashpots.

The interaction of these elements leads to emergence of a hysteretic model for friction.

In Chapter II of this dissertation, we introduced the multiplay model of hystere-

sis, which consists of a parallel connection of N mass/spring/dashpot with deadzone

elements. This hysteresis model has nonlocal memory and its hysteresis map is com-

pletely determined by the stiffness coefficients and widths of the gaps of the deadzone

elements. The multiplay model can be used to model a hysteretic system with a

hysteresis map possessing the symmetry of the cyclic rotation group C2. Parameters

of the multiplay model can be determined based on the slope of the desired hysteresis

map. Once the multiplay model parameters are know, two different algorithms can

be used to invert the model to aid in control applications.

In Chapter III, we developed an asperity-based friction model. This friction model

is based on the frictionless and lossless interaction of a body with a row of rigid bristles.

The bristles represent the roughness of the contacting surfaces. The rotating bristle

model is based on bristles that are attached to the ground through a torsional spring

and a dashpot. As the body moves the bristles pivot and counteract its motion,

energy is used to compress the spring at the base of each bristle. As the body passes
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over the bristle, the bristle is suddenly released, and the energy stored in the spring

is dissipated by a dashpot regardless of how slowly the mass moves. Consequently,

the bristle model is hysteretic.

The rotating bristle model exhibits quasi-stick-slip, similar to exact stick-slip but

where the stick phase is replaced by a backward movement. Thus, we introduced

the discontinuous rotating bristle model (DRBM), which exhibits exact stick-slip

and hysteresis and is identical to the rotating bristle model except during direction

reversals.

We then simplified the DRBM to obtain single-state friction models that are

continuous and have the same stick-slip properties as the DRBM. For the FFBM

single-state model the internal friction state represents the contribution of each bris-

tle to the friction force. For the MPABM, the internal friction state is given by the

exponentially weighted moving average of the sum of the pivot angles of all of the

bristles contributing to the friction force. The FFBM and MPABM single-state fric-

tion models are closely related to the LuGre model and exhibit exact stick-slip and

hysteresis. Thus, we showed that the interaction of the bristles and a body results

in the friction force that has the properties of experimentally based friction models

such as LuGre.

In Chapter IV, we developed the compressed bristle model, an asperity based

friction model in which the friction force arises through the frictionless and lossless

interaction of a body with an endless row of bristles. The bristles represent the

microscopic roughness of the contacting surfaces. The bristles consist of a frictionless

roller attached to the ground through a linear spring. The body is allowed to move

horizontally and vertically over the bristles which are compressed and a reaction force

occurs at the point of contact. Friction force is the sum of all horizontal components

of the contact forces between all of the bristles and the body. As the body passes

over the compressed bristles, they are released and the energy stored in the spring is
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dissipated regardless of how slowly the body moves. Thus, energy is dissipated in the

limit of DC operation and the system is hysteretic.

In the vertical direction, the body and the bristles form an undamped oscillator.

The body oscillates vertically regardless of whether it is moving horizontally or not.

During the vertical oscillations, as the body rises, the friction force decreases and

the body speeds up. This mechanism gives rise to the dynamic Stribeck effect. We

referred to it as dynamic Stribeck effect since the friction force-velocity curve forms

a loop.

Furthermore, we showed that the compressed bristle model exhibits stick-slip fric-

tion and that the compressed bristle model equations can be simplified to give a

single-state friction model. The simplified bristle model (SBM) retains the stick-slip

and hysteresis properties of the compressed bristle model. The internal friction state

of the SBM can be interpreted as the average deflection of the bristles from their

relaxed length. The simplified compressed bristle model is equivalent to the LuGre

model.

We studied the relationship between simple and butterfly hysteresis maps and

showed that the simple closed curve and butterfly are related by a unimodal map in

Chapter V. Constraints can be placed on the types of simple closed curves that can

be transformed into butterflies and the types of unimodal maps that can achieve this

transformation.

To illustrate, we started with the hysteresis map of the preloaded two-bar linkage.

The hysteresis map of this system is a simple closed curve in terms of the force

input and linkage joint displacement. However, if the output is the displacement

of the spring-loaded mass, then the hysteresis map is a butterfly. The butterfly

appears due to the unimodal mapping between the linkage-joint displacement and

the displacement of the spring-loaded mass.

Furthermore, we showed that the unimodal transformation between simple and
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butterfly curves can be used to compensate for hysteresis in a magnetostrictive ac-

tuator. We used a quadratic law to relate the change of length of a specimen of

magnetostrictive material to the magnetization along the rod direction, and to trans-

form the butterfly map into a simple hysteresis map. The simple hysteresis map is

monotone and can be fitted and inverted.

Future work includes the extension of these results to include hysteretic unimodal

maps and multibutterflies. The use of hysteretic unimodal maps could give more

flexibility in the types of butterflies that can be obtained from a given simple closed

curve and enable easier fits to experimental data in control applications.
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