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ABSTRACT

Mechanical Models of Friction That Exhibit Hysteresis, Stick-Slip, and the Stribeck
Effect

by

Bojana Drincié¢

Chair: Dennis S. Bernstein

In this dissertation, we model hysteretic and friction phenomena without intro-
ducing friction or hysteresis per se. We use a combination of masses, springs, and
dashpots and the frictional phenomena emerge as the result of their interaction. By
using physical elements, we can understand the physical mechanisms that lead to hys-
teretic energy dissipation and phenomena, such as stick-slip behavior and the Stribeck
effect. Furthermore, we study the origins of butterfly hysteresis, which arises in optics
and ferromagnetism.

We define the multiplay model for hysteresis with nonlocal memory, which consists
of N mass/spring/dashpot with deadzone elements. The advantage of this model is
that its hysteresis map can be inverted analytically.

Second, we investigate the origins of stick-slip friction by developing an asperity-
based friction model involving the frictionless contact between a body and a row of
rigid, rotating bristles. This model exhibits hysteresis and quasi-stick-slip friction.

The hysteretic energy-dissipation mechanism is the sudden release of the pivoted

xviil



bristles. The discontinuous rotating bristle model is an approximation of the rotating
bristle model that exhibits exact stick-slip and hysteresis.

We next develop an asperity-based friction model in which the vertical motion
of the body leads to the Stribeck effect. The friction model is hysteretic and the
energy-dissipation mechanism is the sudden release of the compressed bristles. We
show that this bristle model is a generalization of the LuGre model.

The final contribution of this dissertation is a framework for relating butterfly-
shaped hysteresis maps to simple hysteresis maps, which are typically easier to model
and more amenable to control design. In particular, a unimodal mapping is used to

transform simple loops to butterfly loops.
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CHAPTER 1

Introduction

Friction is a force resisting the relative motion of two bodies sliding over each other.
It is a widespread phenomenon that has many practical uses such as walking and
driving and is instrumental in mechanical processes such as grinding and polishing.
However, friction also wastes energy and causes wear. Due to its a crucial role in
design, modeling, and control, friction is studied extensively [2-9]. Furthermore, the
understanding of friction is important in many aerospace applications. For example,
friction in bolted joints impacts the structural dynamics of ballistic missiles and other
built-up structures [10-13]. In airplane engines, friction can lead to turbine blade
failure due to fretting fatigue [14-16]. Friction stir welding is used in the aerospace
industry for construction of aircraft and spacecraft where the properties of the welded
materials must be unchanged by the welding process [17-19].

As a result of the pervasiveness of friction, a large number of friction models exist
and are based either on the physics of the surface interactions [8,20,21] or on the
experimental observations [6,22-30]. Furthermore, since friction is a macroscopic
phenomenon that arises due to the interaction of surfaces on the microscopic level,
asperity-based friction models are also often used [5,6,31,32]. The most commonly
used friction models are Maxwell-slip [33-35], Dahl [36-38], and LuGre models [26-

28], which are discussed in more detail in the Section 1.3.



In order to study friction which is a hysteretic phenomenon, it is necessary to also
understand hysteresis. Hysteresis is a non vanishing input-output loop in the limit
as the frequency of the input goes to zero [39]. It is present in many applications
such as ferromagnetism [40-42], smart materials [43-45], aerodynamic stall [46-48],
biological systems [49,50], optics [51,52], and friction [2,6,35,53]. It arises in systems
with multiple stable equilibria, where as the input slowly increases, the output is
attracted to one set of stable equilibria and as the input slowly decreases the output
is attracted to a different set of stable equilibria [39]. This type of system is said to
have multistability, that is, for a constant value of the input, the system has multiple
corresponding stable equilibria. For a single-input, single-output system, hysteresis
is manifested by the existence of a non-vanishing input-output loop in the limit as
the frequency of the input tends to zero [54,55]. Hysteresis is an inherently nonlinear
effect since no such loop persists for asymptotically stable linear systems.

In this dissertation, the goal is to model hysteretic and friction phenomena without
introducing friction or hysteresis per se. We begin with a combination of masses,
springs, and dashpots, and the frictional phenomena emerge as the result of their
interaction. By using physical elements, we can obtain insight into the physical
mechanisms that lead to hysteretic energy dissipation and phenomena such as stick-
slip [56-58] and the Stribeck effect [27,59]. The stick-slip refers to motion in which
a body attached to a compliance periodically comes to rest. This kind of motion,
which is reminiscent of a limit cycle, occurs when the friction force drops as velocity
increases from zero. The Stribeck effect is the apparent drop in the friction force
as the velocity increases. Furthermore, we study the origins of butterfly hysteresis,

which is present in optics and ferromagnetism [40,60-62].



1.1 Introduction to Systems with Hysteresis

Since friction arises in hysteretic systems, we begin by defining hysteresis and
discussing the types of systems that exhibit hysteresis. Next, we give a brief overview
of hysteretic models which are commonly encountered in the literature. Finally, we
describe the three friction models which are often used to describe systems with
friction.

In this section we introduce basic concepts and terminology from the literature
on hysteresis. We use these definitions throughout this dissertation and they are also

available in [22,63]. Consider the single-input, single-output system

&(t) = f(z(t),ult)), x(0)=z0, t>0, (1.1)

y(t) = h(z(t), u(t)), (1.2)

where u : [0,00) — R is continuous and piecewise C!, f : R" x R — R™ is continuous,
and y : [0,00) — R, and h : R” x R — R are continuous. We assume that the
solution to (1.1) exists and is unique on all finite intervals. The following definitions

are necessary for further discussion.

Definition 1.1.1. Consider (1.1)-(1.2) with constant u(¢) = u. The system (1.1)-

(1.2) is step convergent if lim,_,, z(t) exists for all x5 € R™ and for all u € R.

Definition 1.1.2. The nonempty set H C R? is a closed curve if there exists a

continuous, piecewise C!, and periodic map « : [0, 00) — R? such that v([0,00)) = H.

For the system (1.1)-(1.2), we define a periodic input-output map and the limiting

periodic input-output map or a hysteresis map as follows.

Definition 1.1.3. Let u : [0,00) — [Umin, Umax] be continuous, piecewise C!,
periodic with period «, and have exactly one local maximum .y for ¢ € [0, «) and

exactly one local minimum wm, for ¢ € [0, ). For all T > 0, define up(t) = u(at/T),



assume that there exists @7 : [0,00) — R™ that is periodic with period T" and satisfies
(1.1) with w = up, and let yr : [0,00) — R be given by (1.2) with & = xr and
u = up. For all T'> 0, the periodic input-output map Hr(ur,xo) is the closed curve
Ho(up, o) = {(ur(t),yr(t)) : t € [0,00)}, and the limiting periodic input-output
map Hoo(u, o) is the closed curve Hoo(u, xp) 2 limy e Hr(ur, yr, o) if the limit
exists. If there exist (u,y1), (u,y2) € Hool(u, o) such that y; # yo, then Ho(u) is a

hysteresis map, and (1.1)-(1.2) is hysteretic.

Example 1.1.1. Consider the linear system that represents a body of mass m
attached to a wall by a dashpot with damping coefficient ¢. The free end of the body
is attached to a spring with stiffness coefficient k. A periodic position input u(t) is

applied to the free end of the spring. The equations that describe the system are

mi(t) + ci(t) + k(z(t) — u(t)) = 0, (1.3)

y(t) = (1), (1.4)

where z(t) is the position of the center of mass of the body. The periodic input-output
maps of (1.3)-(1.4) are shown in Figure 1.1 for u(t) = sin(wt), m = 1 kg, ¢ = 2 N-s/m,
k=1 N/m, and w = 1,0.1,0.01,0.001 rad/s. Although the periodic input-output
map Hr(ur, ) forms a loop for w = 1 rad/s, the loop disappears as the frequency

of the input tends to DC. Thus, the system (1.3)-(1.4) is not hysteretic.

U

Example 1.1.2. Now consider the cubic example [22]
i(t) = —2°(t) + 2(t) + u(t), (1.5)
y(t) = =(1), (1.6)

where u(t) is a periodic input and y(¢) is the system output. The periodic input-
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Figure 1.1: The periodic input-output maps Hr(ur,yr) of (1.3)-(1.4) with u(t) =
sin(wt), m = 1kg, ¢c=2N-s/m, k=1 N/m, and w = 1,0.1,0.01,0.001
rad/s. The system (1.3)-(1.4) is not hysteretic since the loop in the input-
output plane vanishes as the frequency of the input tends to DC.

output maps Hry(ur, o) of (1.5)-(1.6) are shown in Figure 1.2 for u(t) = sin(wt) and

w=1,0.1,0.01,0.001 rad/s. As the frequency of the input tends to DC, Hr(ur, xq) of

(1.5)-(1.6) converges to the hysteretic limiting periodic input-output map He(u, o).

Thus, the system (1.5)-(1.6) is hysteretic.

U

Definition 1.1.4.The equilibria map € of (1.1)-(1.2) is the set of points (u, h(Z,u)) €

R? such that @ and & satisfy

f(@,a) = 0. (1.7)

Suppose (1.1), (1.2) is step convergent. Then it follows from the above definitions
that limy_,. () exists for every constant u(t) = u and is an equilibrium of (1.1),
(1.2). Now, let u(t) € [Umin, Umax| be periodic with period a. Let urp(t) = u(at/T)

and suppose the periodic input-output map H(ur,xy) exists for all T > 0. Further-



2 2
w=1 w=0.1
1
> 1 >
: 2o
> >
O 0 (e}
-1
-1 -2
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input, u Input, u
2 2
w=:0.01 w=:0.001
1 1
> >
3 0 3 o
5 =
(o] (e}
-1 -1
-2 -2
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input, u Input, u

Figure 1.2: The periodic input-output maps Hr(ur,yr) of (1.5)-(1.6) with u(t) =
sin(wt) and w = 1,0.1,0.01,0.001 rad/s. As the frequency of the input
tends to DC, Hr(up,yr) of (1.5)-(1.6) converges to the hysteresis map
Hoo(u, o).

more, assume the limiting periodic input-output map H.o(u, xo) exists. There exists a

close relationship between H(u, o) and the input-output equilibria map £ of (1.1),

(1.2). The set Heoo(u, xg) represents the response of the system in the limit of DC

operation. Therefore, each element of H..(u, xg) is the limit of a sequence of points

in H(up, xz7(0)) for a sequence of increasingly slower inputs. Thus, the limiting point

(U,y) € Hoolu,xpy) is an equilibrium of (1.1), (1.2) corresponding to the constant

input u(t) = u, and thus is an element of &.

However, not every point in Heo(u, o) is in €. If (1.1), (1.2) has a bifurcation,
that is, a change in the qualitative structure of the equilibria as u changes, then
the limiting solution of (1.1), (1.2), can alternate between the subsets of £. In this
particular case, the limiting periodic input-output map H.,(u, o) contains vertical
components that connect subsets. Thus, it follows that H..(u, ) C £.

Since the definition of hysteresis requires that the hysteresis map have at least two



distinct points (u, y1) and (u, y2), a necessary condition for (1.1), (1.2) to be hysteretic
is that £ be a multivalued map. However, not every nonlinear feedback model that
has a multivalued map £ exhibits hysteresis. The system (1.1), (1.2) is hysteretic if

the multivalued map & has either a continuum of equilibria or a bifurcation for some

u < [umim umax]-

Example 1.1.3. Reconsider the cubic model (1.5)-(1.6) in Example 1.1.2. For all

constant inputs u(t) = @, equilibria map € of (1.5)-(1.6) is the set
E={(z,u)eR: —2*+T+u=0}. (1.8)

Figure 1.3(a) shows the equilibria map (1.8). Figure 1.3(b) shows the equilibria set
& and the hysteresis map Hoo(u, zo) of the cubic model (1.5)-(1.6). Hoo(u, xp) is a
subset of £ everywhere except for the vertical portions, which represent the transition

from one set of stable equilibria to another and appear at the points of bifurcations.

O

Definition 1.1.5.If the hysteresis map Ho.(u, o) as described in Definition 1.1.3
exists, and if, in addition, H(u, o) is independent of &, then the system (1.1), (1.2)

has local memory, and we write Ho(u). Otherwise, Ho.(u, o) has nonlocal memory.

The nonlocal memory of a system is manifested in the form of congruent minor
loops. That is, for two different initial conditions x,, the same input u(t) results in

two different outputs y(t).

Definition 1.1.6. The continuous and piecewise C! function 7 : [0, 00) — [0, 00)
is a positive time scale if 7(0) = 0, 7 is nondecreasing, and lim; ,,, 7(t) = oo. The
system (1.1), (1.2) is rate independent if, for every pair of continuous and piecewise
C! functions & and u satisfying (1.1) and for every positive time scale 7, it follows

that a,(t) = a(7(t)) and u,(t) £ u(7(t)) also satisfy (1.1).
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Figure 1.3: The equilibria map & and hysteresis map Hoo(u, zg) of the cubic model
(1.5)-(1.6) in Example 1.1.2. (a) shows the equilibria map £. (b) shows &
and H(u, xo). Note that, except for the vertical portions, H..(u, xg) C
E.

An easy way to determine whether a system is rate dependent or rate independent
is to plot the periodic input-output maps Hr(ur, xg) for several different frequencies
of the input. If the shape of the Hr(ur,xy) changes with frequency of the input,
then (1.1)-(1.2) is a rate-dependent model.

Example 1.1.4. Reconsider the cubic model (1.5)-(1.6) in Example 1.1.2. Figure



1.2 shows the periodic input-output maps Hr(ur, xg) of (1.5)-(1.6) with u(t) = sin(wt)
and w = 1,0.1,0.01,0.001 rad/s. Note that the shape of Hr(ur, o) changes with the
frequency of the input, and converges to Hs(u, o) as the frequency of the input

tends to zero. Thus, the cubic model (1.5)-(1.6) is rate dependent. O

1.2 Hysteretic Models

In the literature on hysteresis, there are three types of commonly used hysteresis
models, namely, the Preisach model, the Duhem model, and the nonlinear feedback

model. A brief overview of these models and their properties is given in Table 1.1.

Hysteresis Model Rate Dependence Type of Memory
Preisach rate-independent nonlocal
Duhem rate-dependent or independent local or nonlocal

Nonlinear Feedback rate-dependent nonlocal

Table 1.1: Hysteresis models and their properties.

The Preisach model [64-67] is an integral operator, that operates on an infinite
number of elementary hysteresis operators called hysterons. The hysterons are turned
“on” or “off” depending on the direction and value of the input. The hysterons that
are “on” contribute to the output, while the hysterons that are “off” do not. The

Preisach model has the form

o) = [ [ w8 iasutty dads, (19)

a>f
where u(a, 8) is a weight function, w(t) is the input, the hysteresis operator 4,4 is
called a hysteron, and « and [ are the values at which the output of the hysteron
is switched on and off, respectively. Preisach models are rate-independent and have

nonlocal memory. They are often used to model hysteresis in piezoceramic actuators,



shape memory alloys, and magnetism [65,68,69]. The Prandtl-Ishlinskii model, which
is a special type of Preisach model, replaces the hysterons by the play operators
weighted by a density function [66,70-72]. We discuss it in more detail in Chapter
V.

The state of the Duhem model depends on the derivative of the input and thus
the output changes its character when the input changes direction [22,27,36,55]. The

general form of the Duhem model is

@(t) = fx(t), u(t))g(u(t)), (1.10)

y(t) = h(=(t), u(t)), (1.11)

where ¢ is a function that determines how the output changes as the input changes
direction [55]. The function g satisfies g(0) = 0 and thus, for a constant input u(t) =
i, there is an infinite number of equilibria. Duhem models can be rate dependent
or rate independent and can exhibit local or nonlocal memory [22]. Commonly used
examples of the Duhem model are Maxwell-slip, Dahl, and LuGre models described
in Section 1.3.

Nonlinear feedback models are studied in [54,63] and consist of a linear system
connected in feedback to a memoryless nonlinearity. Single-input, single-output non-

linear feedback models have the form

2(t) = Az(t) + Du(t) + Bys(t),  =(0) =m0, t>0, (1.12)
y(t) = Cx(t), (1.13)
up(t) = Bra(t) + Eou(t), (1.14)
Ys(t) = d(ug(t)), (1.15)

where A €e R D eR", BeER", C e R E, e R Ey € R, u: [0,00) = Ris

10



continuous and piecewise C!, ¢ : R — R is a static nonlinearity, and x(t), ¢, € R".
Nonlinearities such as deadzone, cubic, and sinusoid can give rise to hysteresis in a
nonlinear feedback model. These models are rate dependent. A well-known example
of a nonlinear feedback model is backlash, which usually arises due to free play in

mechanical engineering applications [73-75].

1.3 Friction Models

In this section we present four commonly used hysteretic friction models, namely,
Coulomb model, Maxwell-Slip model, Dahl model, and LuGre model. We present the
model equations and investigate their input-output properties by varying the input
frequency and amplitude. Based on the input-output maps, we conclude whether the
model exhibits rate dependent or rate independent hysteresis and whether it has local

or nonlocal memory. The properties of the three models are classified in Table 1.2.

Friction Model = Rate Dependence Continuity
Coulomb rate-independent discontinuous
Maxwell-slip rate-independent discontinuous
v=0 rate-independent discontinuous

0 <y <1 rate-independent continuous but not Lipschitz
Dahl i ) i
v>1 rate-independent Lipschitz
LuGre rate-dependent Lipschitz

Table 1.2: Classification and properties of friction models.

1.3.1 Coulomb Model

The magnitude of the Coulomb model friction force is proportional to the normal

load [24], that is,

FC :,uFN, (116)

11



where p is commonly refereed to as the friction coefficient and Fy is the normal force.
The magnitude of the Coulomb model friction force is independent of the magnitude
of the velocity and the contact area and the friction force opposes the motion of the

body. The friction force can be expressed as

Fy = sign(v) Fe, (1.17)

where v is the velocity of the body relative to the surface it is sliding over [24,76,77].
Figure 1.4 shows the Coulomb model friction force as a function of velocity. The

Coulomb model is rate independent.

25

Friction Force, F [N]
1 ‘ID o =
[ (6] o [9)] - (9]
T T T

|
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25 i i i i i i i i i
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Figure 1.4: The Coulomb model friction force as a function of velocity.

Consider a body of mass m connected to a wall by a spring with stiffness coefficient
K, sliding on the ground under the influence of a periodic input force u. The equations

of motion are

mi(t) + Kx(t) = u(t) — Fy, (1.18)

where F is defined by (1.17). By defining sign(v) = [0, 1], the equilibria map of

12



(1.18) for constant u(t) = @ can be defined as

E= {(u,x):uER,x: %(u—(?a—l)Fg),aE [0,1]}. (1.19)

A portion of the equilibria map £ defined by (1.19) corresponding to @ € [—3,3] is
shown shaded in Figure 1.5. Note that, for each constant value of u, the corresponding
subset of £ is a continuum. Figure 1.5 also shows the hysteresis map of (1.18) with
u = 3sin(0.001¢) N, m =1 kg, K =1 N/m, and Fz = 2 N. The hysteresis map is a

subset of the equilibria map.

Position, x [m]

Force Input, u [N]

Figure 1.5: The equilibria map and the hysteresis map of the (1.18) with the Coulomb
friction force (1.17). The shaded area represents the equilibria map &.
For every constant value @ of the input u, there is an infinite number
of corresponding equilibria. The hysteresis map H., is a subset of the
equilibria map.

1.3.2 Maxwell-Slip Model

The Maxwell-slip model [33-35] shown in Figure 1.6 consists of N masses and
N springs. For i = 1,..., N, the mass m; with displacement z; is connected by a
stiffness k; to a common termination point whose displacement is u. Associated with

each mass is a displacement deadband of width A; > 0, below which the mass does

13



not move, and above which the mass moves with velocity u, that is, the inertia of
the masses is ignored when the mass is sliding. Hence, k;A; is the minimum spring
force needed to move the mass m;. Once the mass m; begins to move, the spring force
remains at k;A; for all velocities of the mass. Hence, each mass-spring combination in

the Maxwell-slip model is subjected to an equivalent Coulomb friction force F' = k;A;.

mi — AN/ —

= i
m - AA

N\

Figure 1.6: The Maxwell-slip model with N masses and N springs. Each mass is
associated with a displacement deadband A;, below which the mass does
not move, and above which the mass moves with the same velocity as the
common termination point.

We can represent the system of masses and springs shown in Figure 1.6 as the

Duhem model [22,27,36, 55]
#(1) = [U(— () +u(t) = A) 1-U(—a®) +u@®+A)| |, (120

Fy(t) = Zk( —z(t) +u(t)), i=1,...,N, (1.21)

14



where F is the friction force and
Uv) = (1.22)

Figure 1.7 shows the input-output maps of the Maxwell-slip model (1.20), (1.21)
with N = 10. The frequency of the input is w = 2 rad/s in Figure 1.7(a) and
w = 0.1 rad/s in Figure 1.7(b). The Maxwell-Slip model is rate independent which is
demonstrated by the identical input-output maps at two different frequencies of the
input. The input u(t) is initially u(¢) = sin(wt) and the friction force corresponds to
the major loops in figures 1.7(a) and 1.7(b). When wu(t) changes to us(t) = 0.5 sin(wt)
after one period, the friction force F; corresponds to the upper minor loops in figures
1.7(a) and 1.7(b). When u(t) changes to us(t) after one and a half periods, F}
corresponds to the lower minor loops in figures 1.7(a) and 1.7(b). Consequently,
with identical inputs but different initial conditions, (1.20)-(1.21) result in distinct
hysteresis maps. Thus, H..(u, o) depends on xy, and the Maxwell-slip model has

nonlocal memory.

1.3.3 Dahl Model

The Dahl model [36-38] has the form

Fi(t) = o |1 - FfT(t)sign a(t)

[

Vsign (1 — FfT@>sign u(t)) u(t), (1.23)

[

where FY is the friction force, u is the relative displacement between the two surfaces
in contact, F. > 0 is the Coulomb friction force, v > 0 is a parameter that determines
the shape of the force-displacement curve, and ¢ > 0 is the rest stiffness, that is,
the slope of the force-deflection curve when Fy = 0. The right-hand side of (1.23) is

Lipschitz continuous in Fy for v > 1 but not Lipschitz continuous in Fy for 0 <~ < 1.
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Figure 1.7: Input-output maps of the Maxwell-Slip model (1.20), (1.21) with N =
10, A = [1.5,2.4,3.3,4.2,5.1,6,6.9,7.8,8.7,9.6] x 107! m, and k =
[1,1.8,2.6,3.4,4.2,5,5.8,6.6,7.4,8.2] N/m. In (a) the frequency of the
input is w = 2 rad/s, and in (b) w = 0.1 rad/s. The input u(¢) is initially
uy(t) = sin(wt) m, where the friction force corresponds to the major loops.
When u(t) changes to us(t) = 0.5sin(wt) m after one period, the friction
force Fy corresponds to the upper minor loops. When u(t) changes to
us(t) after one and a half periods, the friction force Fy corresponds to the
lower minor loops.

As shown in Figure 1.8, the parameter + determines the shape of the hysteresis map.

The magnitude of the friction force Fy(t) approaches F,. under monotonic inputs.
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Friction force  F[N]

Displacement u[m]

Figure 1.8: Displacement u versus friction force F' for hysteresis maps of the Dahl
model for several values of . The shape of the hysteresis map from u to
I depends on the value of 7. The numerical values used are F. = 0.75 N,
o= 1.5 N/m, and u(t) = sin0.1¢ m.

Figure 1.9 shows the input-output maps of the Dahl model (1.23) for sinusoidal
input with frequency w = 2 rad/s (Figure 1.9(a)) and w = 0.1 rad/s (Figure 1.9(b))
with F, = 1.5 N, 0p = 7.5 N/m, and v = 1. The shape of the input-output map is in-
dependent of the input frequency, and thus, the Dahl model (1.23) is rate independent.
The input w(t) is initially u(¢) = 5sin(wt) and the friction force corresponds to the
major loops in figures 1.9(a) and 1.9(b). When the input changes to us(t) = sin(wt)
after one period the friction force corresponds to the minor loops in figures 1.9(a)
and 1.9(b). Furthermore, when the input changes from u; to us after one and a half
periods, the friction force also corresponds to the minor loops in figures 1.9(a) and
1.9(b). Thus, with identical inputs but with different initial conditions, (1.23) results

in identical hysteresis maps and therefore Dahl model has local memory.

1.3.4 LuGre Model

The LuGre model [26-28], which models the asperities of two surfaces as elastic

bristles, is given by
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Figure 1.9: Input-output maps of the Dahl model (1.23) with F, = 1.5 N, gy = 7.5
N/m, and v = 1. In (a) the frequency of the input is w = 2 rad/s, and
in (b) w = 0.1 rad/s. The input u(t) is initially u,(¢) = 5sin(wt) m and
the friction force corresponds to the major loops. When the u(t) changes
to us(t) = sin(wt) m the friction force F; corresponds to the minor loop
regardless of whether the input change happens after one or one and a
half periods.

() (u(t)) z(1), (1.24)

F(t) = 002(t) + 012(t) + o21(t), (1.25)
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where z is the average deflection of the bristles, u is the relative displacement, FY
is the friction force, and o, 01,09 > 0 are stiffness, damping, and viscous friction
coefficients, respectively. The right hand side of (1.24) is Lipschitz continuous with
respect to z.

In [2,27], zs(0(t)) is defined by

i) = = (Bt (B — B0/ (1.26)

00

where F, > 0 is the Coulomb friction force, Fy is the stiction force, and v, is the
Stribeck velocity. For a given constant velocity w, the steady-state friction force Fig

obtained from (1.24) and (1.25) is
Fis (1) = 09zgs()sign() + oat. (1.27)

The drop in friction force (see Figure 1.10) at low magnitudes of velocity is due to
the Stribeck effect, while the Stribeck velocity is the velocity at which the steady-state
friction force begins to decrease when the velocity is positive and increasing.

Letting Fy = F. in (1.26) and 01 = 09 = 0 in (1.25), the LuGre model (1.24)-
(1.26) is equivalent to the Dahl model (1.23) with v = 1 and ¢ = 1. Figure 1.11 shows
the input-output maps of the LuGre model (1.24)-(1.26) with F, = 1 N, F, = 1.5
N, 0o = 10* N/m, and o7 = v10% N-s/m, 05 = 0.6 N-s/m, v, = 0.04 m/s, and
u(t) = 5cos(wt). In Figure 1.11(a) the input frequency is w = 0.25 rad/s and in
Figure 1.11(b) the input frequency is w = 0.01 rad/s. Since the shape of the input-
output map changes with frequency, the LuGre model is rate dependent.

As noted in [78] the LuGre model has local memory. Thus the hysteresis map

Hoo(u, o) of the LuGre model is independent of xy.
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Figure 1.10: Steady-state friction force (1.27) of the LuGre model. The drop in the
friction force at low velocities is the Stribeck effect, while the Stribeck
velocity vs = 0.001 m/s is the velocity at which the steady-state friction
force begins to decrease when the velocity is positive and increasing. The
numerical values are F, = 1 N, F, = 1.5 N, v, = 0.001 m/s, oy = 10°
N/m, oy = V105 N-s/m, and oy = 0.4 N-s/m.

1.4 Dissertation Outline

In this dissertation, the goal is to use mechanical elements such as masses, springs
and dashpot and observe the frictional phenomena and hysteresis arise from their
interaction. In particular we are interested in discovering the mechanical mechanisms
that lead to hysteretic energy dissipation, stick-slip and the Stribeck effect. Stick-slip
is a friction induced limit cycle in which a body sliding on a surface periodically comes
to rest. The Stribeck effect is the apparent drop in the friction force as the velocity
increases. In order to investigate these phenomena, we build several hysteretic models
in hopes that a better understanding of these processes leads to a better understanding
and prediction of friction. If the origins of stick-slip and the Stribeck effect are
understood, then this knowledge can be applied in development of experimentally
based models, so that they can predict a broad spectrum of behaviors.

A short summary of all of the models presented in this dissertation is shown in

Table 1.3. Table 1.3 also states the insights gained from the development of the model
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Figure 1.11: Input-output maps of the LuGre model (1.23) with F, =1 N, Fy, = 1.5
N, 0 = 10* N/m, and o7 = v/10* N-s/m, o5 = 0.6 N-s/m, v, = 0.04
m/s, and u(t) = 5cos(wt). In (a) the frequency of the input is w = 0.25
rad/s, and in (b) w = 0.01 rad/s.

as well as whether the model is an original contribution of this dissertation or not. The

major contributions of this dissertation include the multiplay model for symmetric

hysteresis. This model is invertible which is helpful in control design in systems

where hysteresis is detrimental to the performance. Discontinuous rotating bristle

model (DRBM) gives insight into the origins of hysteretic energy dissipation and the
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origins of stick-slip. The compressed bristle model reveals the physical mechanism

which leads to the Stribeck effect.

Friction Model Description / Insights gained Original Contribution
Maxwell-slip Models friction with nonlocal memory No
Dahl Models friction with local memory No
LuGre Exhibits stick-slip and Stribeck effect No
Multiplay Has nonlocal memory, invertible, physical representation of Maxwell-Slip model Yes
Rotating Bristle Exhibits quasi stick-slip Yes
DRBM Physical mechanism for stick-slip and hysteretic energy dissipation Yes
Compressed Bristle Physical mechanism for Stribeck effect and physical representation of LuGre model Yes

Table 1.3: Summary of the friction models developed or described in this dissertation
and classification of original contributions of this dissertation.

The contents of this dissertation are as follows. In Chapter II, we consider the
multiplay model for hysteresis with nonlocal memory. This new model consists of N
mass/spring/dashpot-with-deadzone elements. The hysteresis map of the multiplay
model is completely determined by the stiffness coefficients and widths of the gaps of
the mass/spring/dashpot-with-deadzone elements. This multiplay model can be used
to model a hysteretic system with a hysteresis map possessing the symmetry of the
cyclic rotation group Cs. Parameters of the multiplay model can be determined based
on the slope of the sampled hysteresis map. Once the multiplay model is determined,
its inverse can be analytically computed.

In Chapter III, we investigate the origins of stick-slip friction by developing an
asperity-based friction model based on the frictionless contact between a body and a
row of rigid, rotating bristles attached to the ground by torsional springs and dash-
pots. This model exhibits hysteresis and quasi-stick-slip behavior. The hysteretic
energy-dissipation mechanism is the release of the pivoted bristles, after which the
bristles oscillate and the stored energy is dissipated by the dashpot. The discontin-
uous rotating bristle model is an approximation of the rotating bristle model that
exhibits exact stick-slip and hysteresis. We derive a single-state formulation of the

discontinuous rotating bristle model and investigate similarities to the LuGre model.
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In Chapter IV we investigate the origin of the Stribeck effect. We develop an
asperity-based friction model and show that the vertical motion of the body leads
to the Stribeck effect. The friction model is hysteretic, and the energy-dissipation
mechanism of the bristle model is the release of the compressed bristles, which causes
the bristles to oscillate and the energy is dissipated by a dashpot. We also show that
the compressed bristle model is a generalization of the LuGre model, and we derive
the LuGre model equations from the compressed bristle model equations.

The contribution of the Chapter V is a framework for relating butterfly-shaped
hysteresis maps to simple (single-loop) hysteresis maps, which are typically easier
to model and more amenable to control design than the butterfly-shaped loops. In
particular, a unimodal mapping is used to transform simple loops to butterfly loops.
For the practically important class of piecewise-monotone hysteresis maps, we provide
conditions for producing butterfly-shaped maps and examine the properties of the
resulting butterflies. Conversely, we present conditions under which butterfly-shaped
maps can be converted to simple piecewise monotone hysteresis maps to facilitate
hysteresis compensation and control design. Examples of a preloaded two-bar linkage
mechanism and a magnetostrictive actuator illustrate the theory and its utility for

understanding, modeling, and controlling systems with butterfly-shaped hysteresis.
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CHAPTER 11

A Multiplay Model for Rate-Independent and

Rate-Dependent Hysteresis with Nonlocal Memory

In this chapter we introduce the multiplay model for hysteresis with nonlocal mem-
ory. This model consists of N mass/spring/dashpot with deadzone elements. The
hysteresis map of the multiplay model is completely determined by the stiffness coef-
ficients and widths of the gaps of the mass/spring/dashpot with deadzone elements.
This multiplay model can be used to model a hysteretic system with a hysteresis map
possessing the symmetry of the cyclic rotation group Cy. Parameters of the multiplay
model can be determined based on the slope of the sampled hysteresis map. Once

the multiplay model is determined, its inverse can be analytically computed.

2.1 Introduction

Hysteresis is manifested as a non-vanishing input-output loop for inputs at asymp-
totically low frequency. This phenomenon arises in nonlinear systems with multiple
attracting equilibria. In the limit of DC operation, the output is attracted to differ-
ent equilibria depending on the direction of the input, which results in a nontrivial
input-output loop called the hysteresis map [39,79].

Several types of models can capture hysteretic behavior. Duhem and nonlinear
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feedback models are finite dimensional. Differential equations of Duhem models in-
volve derivatives of the input [55,66]. Various types of Duhem models including
Maxwell-slip are described in [22]. Nonlinear feedback models consist of a linear sys-
tem with a feedback nonlinearity [63]. Preisach and Prandtl-Ishlinskii models, which
are infinite dimensional, consist of an infinite number of hysterons or unitary hys-
teresis operators, which are turned on or off depending on the current direction of
the input [64]. The Prandtl-Ishlinskii model, which is a special type of the Preisach
model, utilizes the play operators weighted by a density function [66, 70-72].

If the shape of the hysteresis map changes with the frequency of the input, the
model is said to be rate dependent. If the shape of the hysteresis map is identical
for all frequencies of the input, the model is rate independent (see Definition 1.1.6).
Nonlinear feedback models are rate dependent [63], Preisach and Prandtl-Ishlinskii
models are rate independent [72] and can be extended to rate dependent [80], and
Duhem models can be either rate independent or rate dependent [22].

Some hysteresis models have nonlocal memory, that is, the shape and position of
the hysteresis map depend on the initial conditions. Nonlocal memory is manifested as
the existence of congruent minor loops corresponding to input reversals (see Definition
1.1.5) [22,81]. Infinite dimensional Preisach and Prandtl-Ishlinskii models capture
this property [64,70]. However, we introduce a finite-dimensional nonlinear feedback
model with nonlocal memory called the multiplay model. This rate-dependent model
is equivalent to the Maxwell-slip model in the limit of DC operation and can be
analytically inverted which makes it suitable for real-time applications.

In this chapter, we first demonstrate that the multiplay model is a rate-dependent
model with nonlocal memory. Second, we make the connection between the Maxwell-
slip model and the nonlinear feedback model. Third, we extend the Maxwell-slip
model by introducing negative stiffness coefficients, which give greater flexibility to

the shape of the hysteresis map. Next, we present a method for fitting the nonlinear
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feedback model to hysteresis maps possessing the symmetry of the cyclic rotation
group C5. Finally, we introduce a simple algorithm for analytically inverting a given

hysteresis map.

2.2 Multiplay

Consider the mass/spring/dashpot system with deadzone shown in Figure 2.1.
This system consists of a body with mass m, a spring with stiffness k, a dashpot with
damping coefficient ¢, and a deadzone of width 2A. The input u(t) is the position
of the right end of the spring, and the output z(t) is the position of the mass. The

system is modeled by the differential equation

mi(t) + ci(t) + kdoa (2(t) — u(t)) = 0,2(0) =z, t>0, (2.1)
where
(
v—A, v>A,
doa(v) = < 0, lu| < A, (2:2)

v+ A, v<-A

\

is the deadzone function with width 2A > 0.

The mass/spring/dashpot system with deadzone in Figure 2.1 can be represented
as in Figure 2.2, where the mass with deadzone is replaced by the play operator
discussed in [82]. In the present chapter we work directly with the model (2.1) rather
than the play operator.

Next, we define multiplay as the parallel connection of N mass/spring/dashpot
systems with deadzone shown in Figure 2.3. The multiplay system has N masses, N

play operators with widths 2A;, N springs with stiffness coefficients k;, and N dash-
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Figure 2.1: Mass/spring/dashpot system with deadzone. The input u is the position
of the right end of the spring, and output z is the position of the mass.
The system is modeled by (2.1) and the deadzone is modeled by (2.2).
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Figure 2.2: Play operator representation of the mass/spring/dashpot with deadzone
system. The deadzone is replaced by the play operator of width 2A.

pots with damping coefficients ¢;. The mass/spring/dashpot with deadzone elements
are connected by a rigid bar. The input to the multiplay system is the position ()

of the bar. Each element is modeled by the differential equation

.CL’Z'(O):LUZ‘(), tZO, izl,...,N,

where daa,(+) is the deadzone function defined by (2.2). The output of the system is
defined as
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Physically, y(t) represents the sum of spring forces in the multiplay system. We allow
the stiffness coefficients and masses to be negative. We call (2.3)-(2.4) the multiplay

model, and we omit units since we do not physically construct this system.

24,
C1 | | kl
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° |_:r>1 N
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Figure 2.3: A schematic representation of the multiplay system consisting of N
mass/spring/dashpot with deadzone elements. The elements are con-
nected in parallel by a rigid bar.

The periodic input-output maps Hy(ur, yr) as defined by Definition 1.1.3, of the
multiplay model converge to a hysteretic map H.(u,xo) as the frequency of the
periodic input approaches zero as shown in Figure 2.4. This figure shows the input-
output response of a multiplay model with two elements. For simplicity all masses are
set to m; = 1, all stiffness coefficients to k; = 1, all damping coefficients to ¢; = 1, and
the deadzone widths to A; = 0.8 and A, = 0.2. Furthermore, the multiplay model
in Figure 2.4 has nonlocal memory. When the direction of the input is reversed after

either a half or a full period, the output converges to two distinct trajectories.
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Figure 2.4: Periodic input-output maps Hr(ur,yr) of the multiplay model. As the
frequency of the input approaches zero the periodic input-output map

approaches a hysteretic map Ho.(u, o) with nonlocal memory. This hys-

teretic system is rate dependent.

2.3 Multiplay and Maxwell-Slip Model

In this section we explore the relationship between the multiplay model and the

Maxwell-slip model. We begin by taking the time derivative of (2.3)

mii(t) + ¢ (t) = kidya, (u(t) — (1)) (a(t) — @4(1)). (2.5)
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In the limit, as the period of the input approaches infinity, the dynamics in (2.3)

become negligible. The effective mass and damping coefficient are zero, and (2.5)

becomes

ba, (u(t) — x(t)) (alt) — d(t)) =0, (2.6)
which means that either
Ti(t) = u(t) (2.7)
or
ba, (u(t) — z;(t)) = 0. (2.8)
Note that the derivative of the deadzone function (2.2) for v = —A; and v = A,

is equal to the 0 function. Defining the derivative to be 1 at these two points for

convenience, we have

so that (2.8) holds if and only if

u(t) — z;(t)] < A

(2.9)

(2.10)

If (2.10) holds, the end of the spring inside the play element is not in contact with

either the left or right wall of the play operator. Thus, the position of the mass is

not changing since the end of the spring is neither pushing nor pulling on the play
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operator. In other words, |u(t) — x;(t)| < A; corresponds to #;(t) = 0. Now, (2.7)

corresponds to u(t) — x;(t) < —A; and u(t) — x;(t) > A, If u(t) — z;i(t) < —A;

the left end of the spring is pushing on the left wall of the play operator and w(t) is

decreasing. If u(t) — z;(t) > A; the left end of the spring is pushing on the right wall

of the play operator and u(t) is increasing. Based on this discussion, in the limit, as

the period of the input approaches infinity (2.3) is equivalent to

a(t), ult) —z,(t) < —A;,  a(t) <0,

where U(v) is the unit step function

II>

U(v)

and 74 (t) and @_(t) are defined as

iy (t) = max{0,u(t)}, w_(t) =min{0,u(t)}.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Equation (2.12) is a rate-independent semilinear Duhem model of friction, known

as the Maxwell-slip model. Thus, in the limit of DC operation, as the frequency
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of the input approaches zero, the multiplay model (2.3)-(2.4) is equivalent to the

rate-independent Maxwell-slip model (2.12)-(2.13).

2.4 Determining the Hysteresis Map From the Multiplay

Model

In this section we analyze the properties of the limiting periodic input-output map
Hoo(u, o), that is, the periodic input-output map in the limit as the period of the
input approaches infinity.

To find the slope of the limiting periodic input-output map, we differentiate (2.4)

with respect to the input u(t), that is,

dy _ Z k(1 — dxi)7 (2.16)

where % depends on whether m; is moving or not. Rewriting #;(t) as

= = 2.1
At~ dudt  du' (217)
and using (2.11), we have
w(t), wu(t) —x;(t) <=4, a(t) <0,
dz; .
=0, fult) — @) < A (2.18)
w(t), u(t)—xi(t) >A;, a(t) >0
From (2.18) we conclude that
dri _ (2.19)

du
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Substituting (2.19) into (2.16) and assuming that, for i = 1,... 7, |u(t) — z;(t)| > A

and, for i =r+1,..., N, |u(t) — x;(t)] < A;, then

-~ = ;ki(l — ) :ZH kil =) (2.20)
r N N
=D k(-1 + ) k(1-0= ) k. (2.21)
i=1 i=r+1 i=r+1

Once mass m; starts moving, its stiffness is no longer included in the summation
in (2.20), and thus does not affect the slope of the limiting input-output map until
the input u reverses direction and moves 2A; in the opposite direction. The slope of
the limiting input-output curve changes each time a stationary mass starts moving.
Assuming that the input is oscillating between i, and Umax > Umin + 2A N, if u© just
reached uy,;, and is monotonically increasing, none of the masses of the multiplay are
moving. The slope of the limiting input-output map, which is equal to the sum of all
of the stiffnesses, first changes when wu reaches uy;, + 2A;. The slope becomes the
sum of stiffnesses ko through ky. Next, when u increases past i, + 249 the slope is
equal to the sum of stiffnesses k3 through ky. In general, each time u becomes larger
then uni, + 24; the slope decreases by k;. As the input increases from Uy, 10 Umax

the slope changes according to

S1 k‘l
S k

Cl=al (2.22)
SN ]{ZN

where s; is the slope of the section of the hysteresis map that corresponds to u €
[Umin, Umin + 2A1] and s; is the slope of the section of the hysteresis map that cor-

responds t0 U € [Umin + 281, Umin + 28], 7 = 2,..., N, and A € R¥*V is given
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11 1
A=| . (2.23)
|00 1 |

We demonstrate (2.20) based on the limiting input-output map of the two-element
multiplay shown in Figure 2.5(a). The stiffnesses are k; = 2 and ke = 4, the deadzone
widths are Ay = 1 and Ay = 3, and Uy, = —5 and Uy, = 5. In the limit of DC
operation, the mass and damping coefficient are irrelevant, and we thus set them equal
to the corresponding stiffnesses. The transient response is shown by the dashed line.
As the arrows indicate, the hysteresis loop is counterclockwise. As u increases from
Umin = —D 10 Umin + 241 = —3 the slope of the input-output map is s; = 6 = ki + k».
At this point, the first mass starts moving and the slope becomes s, = 4 = k3. When
u increases abov