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ABSTRACT

Generalized Statistical Approaches for the Design for Phase I Trials

by

Nan Jia

Chair: Thomas M. Braun

This research examines new design approaches for Phase I clinical trials, which are

designed to study doses of the same agent or dose combinations of two agents in a

small group of patients to determine the maximum tolerated dose or dose combination.

Our first focus is to propose an adaptive accelerated Biased Coin Design (aaBCD)

that generalizes the traditional BCD design algorithm by incorporating an adaptive

weight function based upon the amount of follow-up of each enrolled patient, so that

the dose assignment for each eligible patient can be determined immediately with no

delay, leading to a shorter trial overall.

We later focus on a generalized version of the Continual Reassessment Method

(CRM), denoted gCRM, for identifying the maximum tolerated dose combination of

two agents. For each dose of one agent, we apply the traditional CRM to study

doses of the other agent; each of these CRM designs assumes the same dose-toxicity

model, as well as the value of the parameter used in the model. However, each

model includes a second parameter that varies among the models in an effort to
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allow flexibility when modeling the probability of dose-limiting toxicity (DLT) of all

combinations, yet borrow strength among neighboring combinations as well.

We lastly extend the gCRM by incorporating results for patients with incomplete

follow-up into the decision rule for the assignment of a dose combination to the next

available patient. We derive methods that account for the differing amounts of follow-

up that could occur for the two agents and propose the use of a copula function to

adjust for early- or late-onset DLTs. We show an optimal weight via theory and

simulations that when the DLT times are distributed the same as assumed model,

the optimal weight performs best among all the weight functions under consideration.
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CHAPTER I

Introduction

1.1 Background

In drug development, clinical trials are a set of procedures that are conducted

to assess drug safety, drug associated adverse events, and efficacy of new drugs as

compared to standard therapy or placebo. Clinical trials are usually conducted in

four Phases, where the aims respectively are: initial safety study to determine safe

doses; initial analysis of efficacy to establish a final dose to pursue further; final

testing to study the efficacy of a drug; and post-marketing surveillance. The number

of patients recruited increases as the the trial advances to higher phases, and the

entire study of an agent from Phase I to Phase IV can take years or even more than

a decade.

Phase I trials are the first stage of testing in human subjects. One hallmark

of most Phase I trials is that a relatively small number of patients will be studied,

as investigators would prefer to expend patient resources in later Phase II and III

trials examining the effectiveness of the agent. As a result, an appropriate Phase I

trial design must be one that can identify the MTD accurately in a small number

of patients as well as one that can treat as many patients at the MTD as possible.
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Phase I trials normally include dose escalation studies, so that the best and safest

dose can be found and to discover the point at which a compound has reached the

highest allowable toxicity rate that is pre-specified by the investigators.

Distinguished by the number of agents involved, a Phase I trial can be categorized

as either a one-agent trial or two-agent trial. A one-agent Phase I trial, also called

the dose-escalation study, searches in a set of candidate doses of the same agent for a

target dose whose DLT rate is closest to the pre-specified toxicity rate. A two-agent

Phase I trial, which has two agents that each contains at least two doses, studies the

dose-toxicity profile of the dose combinations, where every dose combination repre-

sents the combined treatment of one dose from each of the two agents. Therefore, a

two-agent Phase I trial aims to determine which dose combination leads to a DLT

rate closet to the target rate .

Every patient or cohort of patients is given a dose or dose combination and are

observed for a period of time. The follow-up period after a patient has received their

treatment usually lasts until several half-lives of the drug have passed, or until the

patient has shown an adverse event, which ever comes first. The dose-toxicity profile

is adaptively built based on the observed DLT outcomes of the currently enrolled

patients, and the dose assignment for a future patient or cohort of patients, as well

as the MTD, is determined accordingly.

1.2 Significance of Research

This dissertation aims to address two issues in currently existing Phase I trials.

The first issue is, although not always explicitly stated, most existing Phase I designs

require that the current patient or group of patients must complete their follow-up
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before the next available patient can be assigned with a dose or a combination of

doses. In a situation where the follow-up period is relatively long as compared to the

average patient inter-arrival time, the length of the whole trial can be impractically

long, and it is not ethical to let a available patient wait for a long period before he

can be assigned with a treatment. Furthermore, for the two agent trials, where the

goal is to find the maximum tolerated combination (MTC) among multiple doses of

each agent, no methodology exists for incorporating partial follow-up of patients.

Another issue in Phase I trials is that, the two-agent Phase I trials, while being

more and more popular within medical researchers, are not as well developed as the

one-agent trials. Most of the existing two-agent Phase I trials suffer from various dis-

advantages that includes requiring too much information from the investigator, being

sensitive to model mis-specifications, not allowing both agents to vary simultaneously

when assigning a treatment to a future patient, etc.

In an effort to solve the first issue, in Chapters II and IV of this dissertation, for

one agent and two agents trials respectively, we aim to utilize the partial information

collected on the patients that are still under follow-up upon the arrival of next avail-

able patient along with the information from the fully followed patients, to assign

a dose or combination of doses to the next available patient immediately, thereby

significantly reduce the length of trial.

As an approach to the second issue, in Chapter III, we aim to develop a two-agent

dose-finding algorithm that, without dramatically increasing the sample size from

the one-agent trials, achieves high accuracy in targeting the MTC while maintaining

patient safety, and performs well even when the information from the investigators

largely deviates from the truth, and is robust to model mis-specifications.

In more details, Chapter II focuses on modifying the traditional Biased Coin
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Design (Durham and Flournoy , 1995a) when partial follow-up exists. The traditional

Biased Coin Design (BCD) is a non-parametric up-and-down design that aims to

target the maximum tolerated dose (MTD) out of several doses of an agent. The BCD

requires that the most recently enrolled patient must has been completely followed

before the next available patient can be assigned with a dose. This may introduce

some practical issues. For example, the next available patient is seriously diseased

thus is not able/unwilling to wait; or the total length of the trial is impractically long

as compared to the average patient inter-arrival times. We develop a method called

the accelerated adaptive Biased Coin Design (aaBCD) for incorporating the partial

contributions of the incomplete follow-ups into the trial, so that a patient can be

entered into a trial immediately at their arrival regardless of whether the previously

enrolled patients are completely followed. The patient waiting time is eliminated

and the duration of the whole trial can be greatly shortened by the aaBCD. We

demonstrate via simulations that even with prompt patient accrual, the aaBCD is

able to maintain comparable accuracy as the BCD in terms of both the MTD selection

and the patient assignments.

In Chapter III, we focus on a parametric dose-finding algorithm for two agents.

We propose a generalized version of the Continual Reassessment Method (CRM),

denoted gCRM, for identifying the MTC of two agents. For each dose of one agent,

we apply the traditional CRM to study doses of the other agent; each of these CRM

designs assumes the same dose-toxicity model, as well as the value of the parameter

used in the model. However, each model includes a second parameter that varies

among the models in an effort to allow flexibility when modeling the probability of

dose-limiting toxicity of all combinations, yet borrow strength among neighboring

combinations as well. We incorporate an adaptive Bayesian algorithm to sequentially
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assign each patient to the most appropriate dose combination, as well as focus patient

assignments to a dose combination that has a DLT probability closest to a pre-

specified target rate. We test the performance of our method via extensive simulations

in various scenarios that are likely to arise in two-agent Phase I trials. We also

compare the operating characteristics of our approach to several existing methods

that were recently published.

In Chapter IV we focus on the development of a time-to-event version of the

gCRM. We develop weight functions that incorporate the partial information from

subjects with uncomplete follow-up into the likelihood function when determining the

most appropriate dose combination for the next available patient. We consider nine

different weight functions and compare them to the gCRM when information from

the partial follow-up is ignored. We show via simulation studies that the weighted

gCRM can handle a great amount of partial follow-up without significantly reducing

the overall performance of the algorithm. In addition, one of the nine weight functions

is shown to perform the best, in terms of identifying the MTC and assigning patients

to the MTC.
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CHAPTER II

The Accelerated Adaptive Biased Coin Design

2.1 Introduction

One agent phase I clinical trials, also known as dose-finding or dose-escalation

studies, are designed to determine which dose of an agent can be given to patients

before an unacceptable fraction, Γ, of patients experience dose-limiting toxicities

(DLTs). The largest dose studied that maintains a DLT fraction closest to Γ is

defined as the maximum tolerated dose (MTD).

Existing one agent phase I trial designs can be categorized in a number of ways.

O’Quigley and Zohar (2006) define trial designs as being either “memoryless” in

which the dose assignment for the next patient or cohort of patients is determined

solely from the DLT experience of the most-recently enrolled patient or cohort of

patients, or “with memory”, in which the dose assignment of each patient or cohort

of patients is determined from a model incorporating the DLT experience of all the

enrolled patients.

Most memoryless designs are also known as “up-and-down designs”, one variant

of which is the widely-used 3+3 method (Storer , 1989). In the 3+3 method, patients

are enrolled in cohorts of three, with each member of a cohort assigned to the same

6



dose. If no patients in a cohort experience DLT, the next cohort is assigned to the

next higher dose. If two or three patients in a cohort experience DLT, the trial is

terminated, with the MTD defined at one dose below the assignment of the current

cohort. If one member of the cohort experiences DLT, another cohort of three patients

is assigned to the same dose. If no additional DLTs occur, the next cohort is assigned

to the next higher dose. However, if at least one additional DLT occurs, the trial is

terminated with the MTD defined at one dose below the assignment of the current

cohort. Although the 3+3 design is widely used because it is easy to administer,

numerous authors, such as Ahn (1998), Storer (2001), and Korn et al. (1994), have

shown that the 3+3 design tends to both identify the MTD at, and assign a large

percentage of patients to, doses below the MTD.

Due to the poor performance of the 3+3 method, statistical researchers began to

propose the use of one agent phase I trial designs “with memory”, the first of which

was the Continual Reassessment Method (CRM) of O’Quigley et al. (1990), with

later modifications proposed by Faries (1994) and Goodman et al. (1995). The CRM

assumes the probability of DLT is related to dose d through a parametric function

F (β; d) that is monotonic in dose. Given a desired probability of DLT, Γ, the CRM

attempts to identify which of the doses under study has F (β; d) closest to Γ. A prior

distribution is placed on β and the posterior mean of β is sequentially updated as each

enrolled subject completes their follow-up. The first patient is usually assigned to the

lowest dose, and patient i, i = 2, . . . , N is assigned to the dose in which F (β̃i−1; d)

is closest to Γ, where β̃i−1 is the posterior mean of β based upon the data from the

first (i − 1) patients. The MTD is the dose, d, for which F (β̃N ; d) is closest to Γ.

A maximum-likelihood version of the CRM for estimation of β also exists (Shen and

O’Quigley , 1996).
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Although the 3+3 method suffers from poor operating characteristics, this is not

a general property of all up-and-down phase I trial designs. The Biased Coin Design

(BCD) of Durham and Flournoy (1995a) is a valid competitor to the CRM, although

the BCD is rarely used in practice. In its basic form, the BCD assigns each new patient

to a dose depending solely upon the DLT outcome of the current patient. Specifically,

if the current patient has a DLT, the next subject is assigned randomly to either the

same dose or the next lowest dose, with the probability of either assignment dependent

upon Γ. If the current patient does not have a DLT, the next patient is assigned to the

next highest dose. Durham and Flournoy (1995b), Stylianou and Flournoy (2002),

and Giovagnoli and Pintacuda (1998) have all published work demonstrating the

excellent operating characteristics of the BCD.

The 3+3 method, CRM, and BCD all share one limitation that fails to address

the needs of practical phase I clinical trials: they all require the complete follow-up

of all enrolled patients before a new patient (or cohort of patients) can be enrolled.

The creators of the CRM suggested that, in the absence of complete follow-up of the

current patient, all patients should be enrolled at whatever dose the current patient

received. A similar approach was suggested for the BCD, called the accelerated

Biased Coin Design (ABCD), by Stylianou and Follmann (2004). However, the idea

of making dose assignments based on the last-completed patient is still inadequate

in studies with rapid patient accrual, as many patients could still be treated at sub-

optimal doses. The rolling six design (RSD) is a recent modification to the 3+3

design that has been shown to shorten the duration of Phase I trials relative to the

3+3 design (See Skolnik et al. (2008) and Onar-Thomas and Xiong (2010)). However,

like the 3+3 method, Skolnik et al. (2008)demonstrates that the RSD continues to

identify the MTD and assign too many subjects to sub-optimal doses.

8



The time-to-event CRM (TITE-CRM) (Cheung and Chappell , 2000) is the first

phase I trial design that can determine a dose assignment for each eligible patient using

all data collected in the trial, including the information for subjects with incomplete

follow-up. The TITE-CRM uses the same adaptive, Bayesian methods of the original

CRM. However, when computing the posterior mean for β, a weight w(t, τ) for each

patient with incomplete follow-up is used in the likelihood, where 0 ≤ t ≤ τ is the

amount of time the patient has been followed, and τ is the maximum amount of follow-

up planned for each patient. The weighted likelihood can actually be derived from a

cure model (Braun, 2006), showing that the appropriate weight function should be

the cumulative distribution (CDF) of DLT times for those experiencing DLT by τ .

The standard form of the TITE-CRM uses the weight w(t, τ) = t/τ , which assumes

uniform DLT times, although any plausible CDF could be used if non-uniformly

distributed DLTs were expected. Braun (2006) and Bekele et al. (2008) have proposed

methods to make the form of the weights used by the TITE-CRM adaptive to the

actual DLT times observed in the trial.

This work focuses upon an adaptive accelerated BCD (aaBCD), a design in which

the BCD is generalized so that patients can be enrolled as soon as they are eligible,

thereby preventing delayed treatment of patients and shortening the duration of the

trial. As the TITE-CRM generalized the CRM, the aaBCD generalizes the BCD by

using weights in the dose-assignment algorithm that are adaptively updated during

the trial and are a function of the amount of follow-up gathered on all currently

enrolled subjects. Section 2.2 covers the details of the BCD, which then leads into

our development and description of the aaBCD. Section 2.3 presents the results of

simulations designed to examine the performance of the aaBCD and also compare

the performance of the aaBCD to both the TITE-CRM and the ABCD. Section 2.4
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contains concluding remarks.

2.2 Methods

2.2.1 The traditional BCD and the accelerated BCD

Suppose there are L doses under study, denoted as d1, · · · , dL, among which we

aim to find an MTD that is associated with a targeted probability of DLT, Γ. We plan

to enroll a total of N patients. We assume that Γ ≤ 0.5, although our methods can

be applied to situations where Γ > 0.5 by replacing Γ with 1−Γ. We assign the first

patient to one of the candidate doses, which, to promote patient safety, is usually the

lowest dose, d1. For all other patients, we use the following dose-assignment algorithm

until all N patients have been enrolled. For subject j, j = 2, · · · , N , if patient j − 1

is assigned to dose dl, l = 1, · · · , L, and experiences a DLT, patient j is assigned to

dose dl−1. If l = 1, patient j is also assigned to the lowest candidate dose. If patient

j − 1 has no DLT by the end of the planned follow up period τ , we flip a biased coin

with probability of heads equal to ph = Γ/1 − Γ. If a head is observed, patient j is

assigned to dose dl+1, with the restriction that if l = L, patient j will be assigned to

the highest candidate dose. If a tail is observed, patient j is assigned to dose dl.

Durham and Flournoy (1995b) demonstrated that under certain conditions, the

mode of the dose assignment distribution of the N patients can be used as a nonpara-

metric estimate of the MTD. Suppose the true underlying probabilities of toxicity of

the L candidate doses are p1, p2, · · · , pL. We denote the respective probabilities of
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escalating, de-escalating or remaining at dose level l where l = 2, · · · , L− 1 are:

pel = (1− pl)ph

pdl = pl

prl = 1− pel − pdl

The corresponding boundary probabilities for the lowest (l = 1) or highest (l = L)

candidate doses are pd1 = peL = 0, pe1 = (1− p1)ph, p
d
L = pL, pr1 = 1− (1− p1)ph, and

prL = 1− pL.

The doses are linked by the above transition probabilities which constitute a one-

dimensional discrete random walk. Since all the doses are reachable from each other

and can be consecutively assigned to patients, this random walk is irreducible and

aperiodic. Furthermore, there is a finite expected number of patients needed for a

dose to be assigned again from the last time it was assigned, making the random

walk positive recurrent. Given these facts, this random walk has a unique stationary

treatment distribution, which is also the limiting distribution π = (π1, · · · , πL), where

πl, l = 1, · · · , L is the limiting probability, as n→∞, of patient n being assigned to

dose l.

Durham and Flournoy (1995b) showed that, when (pd1, p
d
2, · · · , pdL) is monotone

decreasing and (pe1, p
e
2, · · · , peL) is monotone increasing, the stationary treatment dis-

tribution π has a single mode at one of the candidate doses, say d∗l , except when

pel∗ = pdl∗ , a situation for which the mode of π spans the interval [d∗l−1, d
∗
l ]. If the

underlying probabilities of DLT of the L candidate doses are equally spaced with

|dl−dl−1| = ∆, l = 2, 3, . . . L, and if the probability of DLT is monotone increasing in

dose with boundary conditions pd2 < pe1 and pdL > peL−1, the BCD will eventually select
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a dose d∗l , which is the empirical mode of the dose assignment distribution, such that

|µ− d∗l | < ∆, where µ is the true dose that has a probability of DLT equal to Γ.

As we have stated, the BCD requires complete follow-up of every patient and may

result in long trials with a large proportion of time spent on waiting for results from

previous patient(s). One of the approaches that eliminates the need for complete

follow up is the accelerated Biased Coin Design (ABCD) of Stylianou and Follmann

(2004). The ABCD is identical to the BCD when all patients are completely followed,

but when the current patient has not completed their follow-up and a new patient is

ready to be enrolled, the ABCD method assigns a dose to the new patient with the

BCD algorithm using the outcome of the patient who has most recently completed

their follow up. For example, consider a study in which the maximum follow up

time is τ = 100 days. Assume the first two patients have already been completely

followed or have experienced a DLT, while the third patient has been followed for 60

days without experiencing DLT. At this point, we would assign the fourth patient to

a dose based upon the result of the second patient, who is the last patient to have

completed their follow-up.

When using the ABCD, we ignore the partial information collected from patients

who have not completed their follow-up. Although the ABCD is very effective at

reducing the total length of study, it loses precision by ignoring information from

partially followed patients. Simulation studies in Section 2.3 demonstrate that the

ABCD tends to pick a dose as the MTD that is lower than the true MTD, especially

when the MTD is among one of the highest doses studied. As a result, we need

a method that can eliminate the need for complete follow-up as well as one that

can utilize the partial information from partially followed patients. This motivates

a time-to-event version of the BCD, which we call the adaptive accelerated Biased

12



Coin Design (aaBCD).

2.2.2 The Adaptive Accelerated Biased Coin Design

We propose an adaptive weight function that assigns a small weight to the prob-

ability of escalation when the current patient has not completed their follow-up and

also considers the outcomes of all patients assigned to the same dose level. Suppose

dose l has been assigned to the current patient. Let ml be the number of patients

assigned to dl with complete follow-up and without DLT, nl be the number of patients

assigned to dose dl with DLT, and kl be the number of patients assigned to dl without

DLT who have not yet completed their follow-up. Let x̄l ≤ τ be the average amount

of follow-up for the kl patients with incomplete follow-up. When a new patient is

ready for enrollment but the current patient is still being followed with no DLT yet

observed, we flip a biased coin with the following probability of a head, which is also

the probability of escalating the dose:

p∗h = ph ·
ml + kl · x̄lτ
ml + nl + kl

≤ ph (2.1)

The weight function wl = (ml + kl · x̄l/τ)/(ml + nl + kl) computes the fraction of

patients (assuming uniform DLTs over [0, τ ]) assigned to the current dose expected

to not experience DLT by τ . By design, the weight makes it less likely to escalate

a dose if more patients with DLTs are observed, i.e., when nl is large. Conversely,

the weight makes it more likely to escalate a dose if more patients without DLTs are

observed, i.e., when ml is large. Also, as x̄ moves closer to τ , dose escalation becomes

more likely and as x̄ moves closer to 0, dose escalation becomes less likely.

We now study the limiting performance of the aaBCD. We use an indicator func-
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tion Il to indicate if there is any incomplete follow-up when a new patient can be

enrolled, i.e., Il = 1 if kl=0 and Il = 0 if kl ≥ 1. The probabilities of escalating,

de-escalating or remaining at the current dose level l for the aaBCD are:

pel = ph(1− pl)Ilw1−Il
l (2.2)

pdl = pl
IlIl (2.3)

prl = 1− pel − pdl (2.4)

Because the above transition probabilities depend on the presence of incomplete

follow-up, the distributions of inter-arrival times and times of DLT are important

in determining the transition probabilities in Equations (2.2) - (2.4).

Let PD<A be the probability that a DLT is observed before a new patient′s arrival,

and PA<τ be the probability that the inter-arrival time between a new patient and

the most recently enrolled patient is less than τ . Then for any dose 2 ≤ l ≤ (L− 1),

the following one-step transition matrix applies:

pel = pl(1− PD<A)phwl + (1− pl)ph(1− PA<τ ) + (1− pl)phwlPA<τ

pdl = plPD<A

prl = 1− pel − pdl

The above transition probabilities depend on three quantities: (1) the weight wl, (2)

the distribution of DLT times, and (3) the distribution of inter-arrival times. These

transition probabilities are consistent with and reduce to the transition probabilities

of the regular BCD design when no partial follow-up exists, i.e., when PD<A = 1

and PA<τ = 0. Also, the above limiting transition matrix is irreducible, aperiodic,

and positive recurrent. Therefore, if wl is fixed, for given PD<A and PA<τ , there is a
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unique stationary vector of dose assignment probabilities π = (π1, π2, . . . , πL) that is

also the limiting distribution of the dose assignment vector and is the solution to the

equations:

πlp
d
l = πl−1p

e
l−1 (2.5)

with boundary conditions pd1 = peL = 0 and constraint
∑L

l=1 πl = 1, leading to the

solution π1 = [1 +
∑L

l=2

∏l
i=2 p

e
i−1/p

d
i ]
−1 and πl = πl−1p

e
l−1/p

d
l , where l = 2, · · · , L.

The above limiting distribution does not necessarily target the MTD as the mode

of π when PD<A 6= 1 or PA<τ 6= 0, as it depends on the maximum follow up time

τ , the distribution of patient inter-arrival times, and the distribution of DLT times.

When τ is small relative to patient inter-arrival times, kl is small relative to ml and

nl. As a result, wl will very often be 1 (when kl = 0) or close to ml/(ml + nl) (when

kl 6= 0). These values for wl cause p∗h to be either the same as or slightly lower than

ph, leading to an MTD estimate from the aaBCD that is equal to or slightly lower

than the mode of π. Conversely, when τ is large relative to patient inter-arrival times,

p∗h is likely to be much less than ph, thereby increasing the likelihood of the aaBCD to

estimate the MTD at doses below the true MTD. However, despite the above facts,

even with moderately large τ , the aaBCD still works well in terms of choosing the

correct MTD since it mostly targets no more than one dose away from the MTD.

When the study has enrolled and completely followed all N subjects, we do not use

the mode of the dose assignment distribution as our estimate of the MTD. Instead, we

use an isotonic regression estimator which converges faster to the true MTD (Stylianou

and Flournoy , 2002) than the mode of the dose assignment distribution. The isotonic

estimator involves the following two steps. In the first step, we compute the observed

proportions of patients with DLT p̂ = (p̂1, · · · , p̂L) for candidate doses d1, · · · , dL. If
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the elements of p̂ are non-decreasing, we go to the second step. If the elements of

p̂ are not non-decreasing, we scan the elements of p̂ sequentially from left to right.

When we encounter an element of p̂ that is lower than the preceding element, we

average those two elements and any others that are equal to or have been set equal

to the preceding element. This process is also known as the pool adjacent violators

algorithm (PAVA). We then go to the second step. In the second step, we examine

the resulting vector p̂ from the first step and define the MTD as the dose dl with the

smallest value of |Γ − p̂l|. If more than one dose meets this criterion, we assign the

MTD to the lowest (highest) of those doses if their corresponding values in p̂ all are

greater (lower) than or equal to Γ. If two doses have probabilities equidistant from

Γ, but on opposite sides of Γ, we conservatively assign the MTD to the lower of the

two doses.

2.3 Simulation Studies

2.3.1 Description of Simulation Settings

Via simulation, we compared the operating characteristics of the aaBCD, ABCD

and TITE-CRM in hypothetical trials of either four, five or six candidate doses, in

which the candidate doses have DLT probabilities that are either equally spaced,

with a targeted DLT rate of Γ = 0.25 or unequally spaced, with a targeted DLT

rate of Γ = 0.30. For each of these settings, simulations were further stratified so

each of the candidate doses was the true MTD. For example, when there were five

candidate doses, we had five separate scenarios to examine in which the targeted DLT

rate was located at the first, second, third, fourth, and fifth dose, respectively. To

assess the impact of the distribution of DLT times, we ran all simulations assuming
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DLTs occurred uniformly over the period of follow-up and then ran a second set of

simulations where DLTs only occurred during the last quarter of follow up, termed

late-onset DLTs.

For the TITE-CRM, the dose-toxicity relationship was modeled as pl = dl
exp(β),

where dl is the initial estimate of toxicity probability (“skeleton”) of dose level l and

the model parameter β has a normal prior with mean 0 and variance 1. Due to

the vast number of settings examined, a single “skeleton” could not be used across

all settings. Thus, we chose to use the true DLT probabilities as the “skeletons” for

TITE-CRM. As we discuss later, this approach will tend to overstate the performance

of the TITE-CRM, as the true (unknown) DLT probabilities will deviate from the

“skeleton” in any realistic study.

The total sample size for a trial was determined as six patients per candidate dose,

i.e. 24 patients with four doses, 30 patients with five doses, and 36 patients with six

doses. For a sample size of n patients, it was assumed that the duration of the study

would be M = 100n, and the n (ordered) patient arrival times were drawn uniformly

from the interval [0,M ], which is the same as assuming that inter-arrival times were

not fixed, but rather varied uniformly with a mean of 100. We considered values for

the length of follow-up τ ∈ {0, 100, 200, 300}. Simulations were also performed with

τ equal to 400, 500, and 600, but the results for those simulations are not shown as

they led to results similar to those presented. The true probabilities of DLTs that

are used in above simulations are listed in Table 2.1.

For each setting, we ran 2,000 simulations. Results of the 2,000 simulations were

summarized so that the aaBCD, ABCD, and TITE-CRM could be compared with

respect to: (1) the probability that the MTD was correctly identified, and (2) the

average percent of patients assigned to each dose.
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2.3.2 Simulation Results

2.3.2.1 Performance of aaBCD

Table 2.2 contains the probabilities of correctly identifying the MTD when the

true vector of probabilities of DLTs are unequally spaced. In Table 2.2, we see that

with uniform DLT times, the ability of aaBCD to correctly identify the MTD is fairly

unaffected by the value of τ , the length of planned follow-up. For example, when

there are six doses under study and the MTD is located at the second lowest dose,

we see that the aaBCD correctly identifies the MTD anywhere from 45% to 50% of

simulations depending on the value of τ . Thus, the performance of the aaBCD is

fairly robust to the amount of incomplete follow-up observed in the trial when DLTs

occur uniformly.

However, with late-onset DLTs, we see some distinct patterns. When the actual

MTD is one of the highest doses studied, the ability of the aaBCD to correctly identify

the MTD improves slightly when τ > 0 as compared to when τ = 0, i.e. no partial

follow-up occurs. For example, when five doses are studied and the MTD is the

highest dose, the aaBCD correctly identifies the MTD in 36% of simulations when

τ = 0 and 44% of simulations when τ = 200. In contrast, when the true MTD is

among one of the lowest doses studied, the ability of the aaBCD to correctly identify

the MTD is best when τ = 0 relative to when τ > 0.

Table 2.3 contains the percentages of patients assigned to each dose when the

true vector of probabilities of DLTs are unequally spaced. In Table 2.3, we see that

in most settings, the percent of patients assigned to the true MTD is also relatively

unaffected by the planned length of follow-up. One exception to this pattern is when

the true MTD is located at the lowest dose studied. In that setting, we see that fewer
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patients are assigned to the lowest dose when τ > 0 relative to when τ = 0. For

example, when there are six doses studied and the true MTD is the lowest dose, we

see that with uniform DLTs, 44% of patients are assigned to the lowest dose when

τ = 0, which decreases to 31% when τ = 300. This differential is even greater with

late-onset DLTs.

The results in Tables 2.2 and 2.3 exemplify how the use of partial follow-up can

lead the aaBCD (and really any dose-finding algorithm) to be aggressive. Since our

weights assume uniformly distributed DLTs, the aaBCD is more likely to escalate

late in a patient′s follow-up because the weights indicate that a late-onset DLT is

less likely than it really is. Thus, higher doses will tend to be preferred, and will

be assigned to more patients. These properties are not necessarily a weakness of the

aaBCD, as the liberal nature of the aaBCD will actually improve its performance

when the MTD exists among the highest doses under study.

Tables 2.4 and 2.5 present results similar to those in Tables 2.2 and 2.3, respec-

tively, but with equally spaced DLT probabilities, the setting in which the BCD

performs optimally. In Table 2.4, we once again see that with uniform DLTs, the

ability of the aaBCD to correctly identify the MTD is unaffected by the value of τ ,

but with late-onset DLTs, we see that the presence of incomplete follow-up (τ > 0)

can increase (decrease) the performance of the aaBCD when the true DLT is among

the highest (lowest) doses studied. The results in Table 2.5 also lead to similar results

as those reached from the results in Table 2.3.

2.3.2.2 Comparison of aaBCD to ABCD and TITE-CRM

In Table 2.2, we see that a vast number of values corresponding to the aaBCD

and the TITE-CRM are boldfaced. This indicates that with both approaches, the
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dose most often identified as the MTD at the end of the study is located at the true

MTD. In contrast, many fewer of the values in Table 2.2 corresponding to the ABCD

are boldfaced, because as τ becomes larger relative to the average inter-arrival time

of patients, the ABCD becomes conservative and tends to identify the MTD at lower

doses. This fact is emphasized in Table 2.3, where we see that when the ABCD is

used, a majority of patients are assigned to the true MTD only when the true MTD

is the lowest dose under study. Similar results are seen in Tables 2.4 and 2.5; thus,

we determine that the ABCD is inferior to both the aaBCD and TITE-CRM.

In a head-to-head comparison of the aaBCD and the TITE-CRM, we see in Tables

2.2 and 2.3 that when the true MTD is among the highest doses studied, the TITE-

CRM is more likely to correctly identify the MTD and assign more patients to that

dose than is the aaBCD. However, the differential between the aaBCD and TITE-

CRM largely vanishes when the true MTD lies among the middle of the range of

doses studied. Moreover, we see in Tables 2.4 and 2.5 that the aaBCD can actually

outperform the TITE-CRM when the true DLT probabilities are equally spaced,

which is the setting where the optimality of the BCD was first proved.

As we stated earlier in Section 2.2.3.1, the “skeleton” used in our simulations

for the TITE-CRM matched the true DLT probabilities. By doing so, we have con-

tributed to an improved performance of TITE-CRM than what may be realized in

actual trials. If we had used a “skeleton” in which the DLT probabilities were lower

than the true DLT probabilities, the TITE-CRM could have been lead to prefer lower

doses. Furthermore, the performance of the TITE-CRM is dependent upon the value

of the prior variance on the model parameter β; differing values of the variance will

impact the performance of the TITE-CRM. These facts also emphasize the inherent

differences between the aaBCD and TITE-CRM, namely that the TITE-CRM is a
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Bayesian model-based approach to dose-finding, whereas the aaBCD can be viewed

as a non-parametric, model-free approach to dose-finding. As such, the aaBCD is

straightforward to implement and execute, as it does not require specification of a

model, the “skeleton” of prior DLT rates, the prior distribution of the model param-

eter, nor sophisticated statistical software to do the Bayesian calculations necessary

for each dose assignment in the trial.

2.4 Conclusion and Discussion

By incorporating a weight function into the probability of escalation for the BCD,

the aaBCD eliminates the need for complete follow-up of every patient, thereby short-

ening the duration of the entire trial. At the same time, the aaBCD is able to maintain

a high probability of correctly targeting the MTD, as well as assign a larger percent-

age of patients to the actual MTD, relative to when no partial follow-up exists. In our

simulations, we have seen that the aaBCD performs better than the ABCD, which

tends to locate the MTD at lower doses as the length of follow-up increases. The

aaBCD has performance similar to that of the TITE-CRM when the true MTD is

near the middle of the range of doses studied and actually slightly outperforms the

TITE-CRM when the true DLT probabilities are equally spaced.

Like the traditional form of the TITE-CRM, our weight function is based upon an

assumption of uniformly distributed DLT times. However, the aaBCD can be easily

generalized to accommodate early- or late-onset DLTs as needed. We also considered

an alternate weight function wl = [(ml + klx̄l/τ)/(ml + nl + kl)]
kl . The appeal of this

weight function was that when kl = 0, the probability of escalation reduced to that of

the BCD. However, we found that as kl increased away from zero, the probability of
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escalation decreased too quickly and make escalation difficult, even when warranted.

Another weight function we considered was wl = [ml/(ml+nl+kl)]
kl which preferred

lower doses more than the uniform weight function proposed in Section 2.2.2 when kl

is small. However, in simulations, we found this weight function tended to be almost

as conservative as the ABCD when the target dose was among the highest candidates.

Future work can be emphasized on examining the applicability of the aaBCD to

two bivariate settings. The first setting involves the use of the aaBCD in Phase I

studies of combinations of two agents, which are growing in popularity in oncology

as single-agent therapies for cancer are proving less successful than desired but the

toxicity profiles of combined agents are unknown. Here the difficulty lies in deter-

mining how dose assignments should occur during the study, as each agent could be

escalated or de-escalated simultaneously. The second setting involves the incorpora-

tion of efficacy into the dose assignment algorithm, so that the dose selected at the

end of the study is not only non-toxic, but also appears to be therapeutic. Here the

complication lies in how one computes the probability of escalation, as the decision

to escalate must reflect whether or not the current patient has a positive response, in

terms of efficacy, to the dose assigned.
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Table 2.1: True DLT probabilities in scenarios examined in simulations. Rankings of
doses are from lowest to highest.(i.e., 1st means the lowest dose, and 2nd
means the second lowest dose, etc.)

Equally Spaced Probs. of DLT Unequally Spaced Probs. of DLT

Target 1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

4 Doses 1st 0.30 0.35 0.40 0.45 – – 0.25 0.34 0.44 0.55 – –
2nd 0.25 0.30 0.35 0.40 – – 0.17 0.25 0.33 0.45 – –
3rd 0.20 0.25 0.30 0.35 – – 0.08 0.16 0.25 0.35 – –
4th 0.15 0.20 0.25 0.30 – – 0.01 0.08 0.15 0.25 – –

5 Doses 1st 0.30 0.35 0.40 0.45 0.50 – 0.25 0.38 0.48 0.55 0.60 –
2nd 0.25 0.30 0.35 0.40 0.45 – 0.10 0.25 0.31 0.39 0.44 –
3rd 0.20 0.25 0.30 0.35 0.40 – 0.03 0.16 0.25 0.31 0.35 –
4th 0.15 0.20 0.25 0.30 0.35 – 0.01 0.11 0.19 0.25 0.29 –
5th 0.10 0.15 0.20 0.25 0.30 – 0.01 0.09 0.16 0.21 0.35 –

6 Doses 1st 0.30 0.35 0.40 0.45 0.50 0.55 0.25 0.31 0.38 0.46 0.55 0.65
2nd 0.25 0.30 0.35 0.40 0.45 0.50 0.14 0.25 0.36 0.45 0.55 0.64
3rd 0.20 0.25 0.30 0.35 0.40 0.45 0.07 0.16 0.25 0.34 0.44 0.53
4th 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.17 0.25 0.33 0.42
5th 0.10 0.15 0.20 0.25 0.30 0.35 0.03 0.08 0.13 0.19 0.25 0.38
6th 0.05 0.10 0.15 0.20 0.25 0.30 0.01 0.05 0.09 0.14 0.19 0.25
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Table 2.2: Proportion of 2,000 simulations in which each dose was identified as the
MTD when the doses have unequally spaced probabilities of DLT. Boldface
indicates the mode, i.e. the dose that was selected most often on average.
τ is the length of follow-up for each patient. Rankings of doses are from
lowest to highest.(i.e., 1st means the lowest dose, and 2nd means the second
lowest dose, etc.)

4 Candidates 5 Candidates 6 Candidates
DLT target on target on target on

Method Occurrence τ 4th 3rd 2nd 1st 5th 4th 3rd 2nd 1st 6th 5th 4th 3rd 2nd 1st

aaBCD Uniform 0 54 40 42 65 36 32 36 48 72 39 30 35 42 50 58
100 52 41 41 60 37 34 36 46 71 42 32 35 42 48 53
200 52 42 41 58 36 32 37 43 66 40 32 35 40 48 51
300 50 45 42 61 33 32 38 45 64 36 32 37 41 45 50

ABCD 0 53 40 42 65 35 29 38 49 75 41 30 37 40 51 58
100 37 36 43 71 17 27 39 51 74 20 21 29 40 52 64
200 24 35 44 72 8 21 36 53 76 8 12 25 38 52 67
300 16 28 43 71 5 16 37 54 77 4 8 21 39 49 68

TITE-CRM 0 73 43 33 69 61 27 36 52 79 67 36 43 48 53 67
100 71 43 35 74 59 26 36 50 81 64 36 42 48 52 69
200 67 41 36 72 54 25 37 52 81 62 35 41 49 53 70
300 67 40 35 76 54 24 36 51 82 61 37 40 46 49 71

aaBCD Late Onset 0 54 41 40 64 36 29 37 49 73 41 32 35 42 49 58
100 58 43 38 57 42 33 37 42 63 45 34 35 40 45 45
200 57 43 37 53 44 31 34 37 56 47 35 35 38 37 43
300 55 42 38 51 39 32 36 39 56 45 34 34 38 40 41

ABCD 0 53 42 42 66 35 29 38 48 73 40 31 35 43 48 57
100 40 37 42 66 22 26 40 52 76 23 22 31 43 51 62
200 26 35 43 68 14 24 38 53 75 11 16 31 40 52 64
300 20 34 44 68 7 20 37 54 74 5 12 24 41 52 64

TITE-CRM 0 74 41 35 70 60 25 38 52 79 65 38 42 47 53 67
100 70 41 34 73 57 26 38 51 80 65 37 43 47 53 70
200 67 41 35 75 56 27 37 52 82 65 38 42 49 51 71
300 66 42 34 75 52 25 36 53 83 63 38 43 44 50 71
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Table 2.3: Average percentage of patients assigned to each dose in 2,000 simulations
when the doses have unequally spaced probabilities of DLT. Boldface in-
dicates the mode, i.e. the dose most often assigned to patients. τ is the
length of follow-up for each patient. Rankings of doses are from lowest to
highest.(i.e., 1st means the lowest dose, and 2nd means the second lowest
dose, etc.)

4 Candidates 5 Candidates 6 Candidates
target on target on target on

Method DLT Occurrence τ 4th 3rd 2nd 1st 5th 4th 3rd 2nd 1st 6th 5th 4th 3rd 2nd 1st

aaBCD Uniform 0 28 25 32 52 18 20 24 31 53 18 17 21 25 32 44
100 28 26 32 46 20 20 24 30 46 20 18 20 25 31 38
200 27 25 32 42 19 19 23 29 40 18 17 19 24 30 33
300 24 25 31 42 17 18 24 30 37 16 15 19 24 28 31

ABCD 0 27 26 33 51 18 20 24 31 54 18 17 20 24 33 45
100 12 16 30 67 6 11 18 32 66 5 7 12 19 31 61
200 5 11 25 75 2 5 13 29 75 1 3 7 13 28 71
300 3 7 22 80 1 3 10 26 80 1 1 4 11 25 78

TITE-CRM 0 60 32 26 64 51 18.6 27 39 71 54 25 30 33 38 62
100 57 30 27 70 49 18 27 38 74 51 25 29 33 38 65
200 54 30 26 71 44 18 27 38 76 50 24 29 33 38 68
300 52 29 26 73 43 18 26 38 80 47 25 28 32 36 70

aaBCD Late Onset 0 28 25.4 32 52 18 19 24 31 54 19 18 2 25 32 45
100 34 27 29 35 27 21 22 25 34 26 19 20 22 25 26
200 35 25 26 29 29 19 20 22 25 27 17 17 19 20 20
300 33 23 26 27 25 18 21 22 23 24 15 17 18 19 19

ABCD 0 27 26 33 51 18 19 24 31 54 19 17 20 25 33 44
100 15 18 31 59 8 12 20 32 61 7 9 14 21 32 53
200 15 18 31 59 8 12 20 32 61 7 9 14 21 32 53
300 7 14 28 67 3 8 16 31 66 2 4 10 17 31 60

TITE-CRM 0 59 31 26 65 49 18 27 38 71 55 26 28 33 38 62
100 57 30 26 68 46 18 27 38 74 52 25 29 33 38 65
200 54 30 27 72 46 19 26 39 77 51 25 29 34 37 67
300 52 29 26 74 42 18 26 39 79 49 25 29 32 36 70
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Table 2.4: Proportion of 2,000 simulations in which each dose was identified as the
MTD when the doses have equally spaced probabilities of DLT. Boldface
indicates the mode, i.e. the dose that was selected most often. τ is the
length of follow-up for each patient. Rankings of doses are from lowest to
highest.(i.e., 1st means the lowest dose, and 2nd means the second lowest
dose, etc.)

4 Candidates 5 Candidates 6 Candidates
target on target on target on

Method DLT Occurrence τ 4th 3rd 2nd 1st 5th 4th 3rd 2nd 1st 6th 5th 4th 3rd 2nd 1st

aaBCD Uniform 0 40 29 33 50 37 27 26 32 51 37 25 26 28 32 50
100 40 30 32 49 40 29 28 29 48 40 29 26 28 32 46
200 40 30 32 47 38 27 28 29 46 41 27 26 27 31 43
300 40 30 32 46 38 28 29 29 44 39 26 27 27 29 43

ABCD 0 39 29 34 52 37 27 28 32 52 39 27 26 28 31 52
100 26 26 34 58 21 20 28 32 59 18 17 22 29 34 58
200 14 24 35 63 10 14 26 35 64 8 11 18 27 38 63
300 10 20 37 65 5 11 22 35 68 4 7 14 25 36 67

TITE-CRM 0 58 22 22 62 57 24 23 24 65 63 25 27 27 26 64
100 58 22 21 64 60 25 24 23 65 62 26 26 26 26 64
200 55 23 23 64 57 22 22 24 67 59 26 26 26 25 67
300 54 21 21 67 54 26 24 23 69 55 26 27 26 26 69

aaBCD Late Onset 0 39 29 33 52 36 26 27 31 51 38 26 26 27 31 53
100 47 32 28 42 48 30 26 29 41 47 29 26 26 29 38
200 50 31 28 38 48 29 29 27 36 49 29 25 25 26 35
300 47 30 28 38 47 29 26 27 35 50 29 25 23 24 35

ABCD 0 37 30 32 52 39 29 26 31 49 38 28 26 27 32 51
100 29 27 34 55 25 23 28 32 55 22 19 24 27 35 54
200 21 26 37 57 14 20 27 33 57 14 15 22 28 33 60
300 14 25 35 62 10 17 29 33 62 6 1 19 29 37 60

TITE-CRM 0 61 23 22 61 59 24 25 24 63 63 24 26 26 26 65
100 58 21 21 62 59 25 25 24 67 60 26 26 26 26 66
200 55 24 22 65 59 24 24 23 64 58 25 25 26 26 65
300 52 22 20 70 57 25 23 23 68 55 24 26 24 24 69
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Table 2.5: Average percentage of patients assigned to each dose in 2,000 simulations
when the doses have equally spaced probabilities of DLT. Boldface indi-
cates the mode, i.e. the dose most often assigned to patients. τ is the
length of follow-up for each patient. Rankings of doses are from lowest to
highest.(i.e., 1st means the lowest dose, and 2nd means the second lowest
dose, etc.)

4 Candidates 5 Candidates 6 Candidates
target on target on target on

Method DLT Occurrence τ 4th 3rd 2nd 1st 5th 4th 3rd 2nd 1st 6th 5th 4th 3rd 2nd 1st

aaBCD Uniform 0 24 24 30 44 20 18 21 28 41 19 17 18 21 28 40
100 26 23 29 40 22 19 22 27 36 21 17 18 21 26 33
200 25 23 29 37 21 19 22 26 33 20 16 18 21 24 29
300 24 23 29 35 21 18 22 26 31 19 15 18 20 24 27

ABCD 0 24 23 30 44 20 19 22 28 43 19 17 18 211 28 41
100 10 15 29 61 7 9 15 29 59 5 7 10 16 29 58
200 4 9 25 72 2 4 10 25 70 2 3 6 11 26 69
300 2 6 20 78 1 21 17 211 77 1 1 3 8 22 77

TITE-CRM 0 49 17 18 61 49 18 18 19 61 51 18 19 19 19 62
100 47 17 17 64 48 17 18 18 65 49 19 19 19 20 64
200 43 16 17 67 45 17 17 18 66 45 18 19 18 19 67
300 42 16 17 69 43 16 17 18 70 43 17 18 19 19 68

aaBCD Late Onset 0 23 23 30 44 20 19 21 28 42 19 17 18 21 27 41
100 35 25 25 29 32 21 21 23 26 30 19 17 18 20 22
200 39 22 23 24 36 19 19 19 20 33 17 15 16 16 17
300 38 21 22 23 34 17 18 18 19 32 15 15 15 15 16

ABCD 0 23 23 30 44 21 19 22 28 42 19 17 18 21 10 40
100 13 18 30 54 10 12 19 29 52 8 9 13 19 30 49
200 7 13 29 62 4 8 15 29 59 3 5 9 15 29 58
300 3 10 26 68 2 5 12 27 65 1 3 6 1 28 63

TITE-CRM 0 49 17 18 40 50 17 19 18 61 51 18 19 19 19 62
100 46 17 17 42 46 17 18 18 65 48 18 18 19 20 65
200 42 17 17 44 45 17 18 18 65 45 18 18 19 19 67
300 39 16 17 47 43 17 17 18 69 43 17 18 18 19 68
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CHAPTER III

A Generalized Continual Reassessment Method

for Two-Agent Phase I Trials

3.1 Introduction

The primary goal of traditional one agent phase I oncology trials is identifying the

maximum tolerated dose (MTD), defined as the largest possible dose that maintains

the probability of a dose-limiting toxicity (DLT) that is closest to a pre-specified

target rate, Γ ∈ (0, 1). The most widely used one agent parametric model, the

CRM assumes that the probability of DLT is related to dose d through a simple

parametric function F (β; d) that is monotonic in dose, with monotonicity enforced

by requiring β > 0. The two most commonly-used forms for F (β; d) are the logistic

model logit[F (β; d)] = a+βd with known value a, where logit(p) = log(p)− log(1−p),

and the power model F (β; d) = dβ. Many recent Phase I trials have begun to study

the combined toxicity of two agents, with multiple doses of both agents being studied.

For example, Rowinsky et al. (1996) conducted a trial where cisplatin and topotecan

with five and two dose levels, respectively, were simultaneously administered to study

the combined toxicity of the two drugs. Yuan and Yin (2008) also present a study for
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the combination of bortezomib with chemotherapy that examined eight dose levels

for each agent. In such studies, identifying a maximum tolerated combination (MTC)

cannot be done using single-agent designs. This is because even with an assumption

of monotonicity of DLT rates between dose levels in one agent when the other agent

is fixed, we still do not have a complete ordering of the probabilities of DLT for all

possible dose combinations with the two agents. For instance, in a simple case of two

doses each of Agents A and B, we have no knowledge regarding the order of the DLT

rates of the combinations of the high dose of A and the low dose of B versus the low

dose of A and the high dose of B.

Numerous statistical approaches exist for the design of two-agent Phase I trials.

Thall et al. (2003) propose a design in which the DLT rate of a combination is modeled

as a function of the doses of the two agents via a logistic model. Identification of the

MTC is based on a contour map, in which combinations on the same contour have the

same DLT rate. Wang and Ivanova (2005) use an alternate parametric model and

define a “start-up” stage when little data are available for parameter estimation. After

collection of enough data for a sufficient toxicity profile, the dose combinations deemed

“acceptable” in the “start-up” stage are more fully examined using the parametric

model and Bayesian methods for estimation. Yuan and Yin (2008) define a search

range of combinations by first running a one-dimensional trial and later updating it,

then eliminating the doses that lay outside of the search range based on the partial

ordering of the DLT rates, thereby largely reducing the two-dimensional dose-finding

space. Additional adaptive, parametric approaches have been proposed by Yin and

Yuan (2009a), Yin and Yuan (2009b) and Braun and Wang (2010). Most recently,

using the methods of partial ordering first suggested in the single-agent setting by

Conaway et al. (2004), Wages et al. (2011a) and Wages et al. (2011b) develop designs
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for two-agent Phase I trials based upon an examination of all possible orders of

combinations, when the number of combinations can be feasibly enumerated, or a

subset of all possible orders when enumeration of all possible orders is infeasible.

We propose an alternative design of two-agent Phase I trials that is a straight-

forward generalization of the CRM, which we denote gCRM. We visualize the com-

binations of m doses of Agent A and n doses of Agent B as a grid of m columns

and n rows; see Figure 3.1(a) for an example when m = n = 4. We then adopt

the CRM separately for each row in the grid, with each CRM specific to a single

dose of Agent B in combination with doses of Agent A. We include a parameter β

that is shared among all the row-wise models, while each model contains a second

parameter (usually fixed in the one agent CRM) that is specific to the dose of Agent

B being studied. These row-specific parameters are given a prior distribution that

reflects their correlation and allows for “borrowing of strength” among all combina-

tions being studied. In Section 3.2, we explicitly develop our model and describe how

to determine hyperparameter values for the prior distributions of the model param-

eters, as well as rescaled dose values for one of the agents, using information elicited

from investigators. We also explicitly outline the conduct of an actual trial using our

methods. We examine the operating characteristics of our approach via simulations

and compare our approach to other existing approaches in Section 3.3 . We present

concluding remarks in Section 3.4.
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3.2 Methods

3.2.1 Model Description

As stated in Section 3.1, the logistic model and the power model are commonly

used as the dose-toxicity function F (β; d) for the traditional CRM. We now generalize

the CRM to a Phase I trial of two agents specific to the logistic model; a short

description of generalization for the power model appears at the end of Section 3.2.2.

We have a trial of two agents, in which there arem doses, a1 < a2 < . . . < am, of Agent

A, and n doses, b1 < b2 < . . . < bn, of Agent B. We let (j, k) represent the combination

of Agent A at dose aj, j = 1, 2, . . . ,m and Agent B at dose bk, k = 1, 2, . . . , n. We let

pjk denote the true DLT probability for (j, k) and define the MTC, (j∗, k∗), as the

combination with a DLT rate closest to the target rate Γ. For each value of k (each

dose of Agent B), we adopt a traditional logistic regression model logit(pjk) = αk+βaj

describing how the probability of DLT varies with each dose of Agent A combined

with the given dose of Agent B. Note that the intercept is now a parameter specific

to the dose of Agent B under study, rather than a fixed value traditionally used in

the CRM; see Figure 3.1(b) for a visual representation of this idea. In more general

applications, this model is known as a proportional odds logistic regression model. We

attempt to “join” the row-wise CRM models through a joint prior distribution that

forces correlation among their intercept parameters. We note that like the traditional

CRM, the dose values a1, a2, . . . , am of Agent A are not actual clinical dose values,

but are rescaled dose values selected to improve model fit. However, there is no need

to compute rescaled dose values for Agent B because the doses of Agent B do not

contribute directly to our model.

We assume log(β) has a normal distribution with mean θ and variance σ2, denoted
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log(β) ∼ N (θ, σ2), and the intercept for the model at the lowest dose of Agent B,

α1 ∼ N (µ, σ2). Instead of directly modeling the joint distribution of the intercepts, we

focus on the difference between intercepts corresponding to adjacent doses of Agent

B. Specifically, we assume ∆k = αk − αk−1 ∼ N (δk, σ
2), k = 2, 3, . . . , n. We note

that our use of a normal distribution for the differences does allow for the possibility

of non-increasing DLT rates among doses of Agent B for a fixed dose of Agent A.

However, such a possibility is minimized if the value of σ2 is kept sufficiently small

so as to force a majority of the prior distribution above zero.

Let Njk be the number of patients assigned to (j, k), and Yjk be the number of

the Njk patients with DLT. Then the posterior distribution of (α, β) is

f(α, β|Y,N) =

∏m
i=1

∏n
j=1 fij(Yij|α, β,Nij)g(α)h(β)∫ +∞

−∞

∫ +∞
−∞

∏m
i=1

∏n
j=1 fij(Yij|α, β,Nij)g(α)h(β)d(α)d(β)

where α = (α1, α2, · · · , αn),Y = {Yij : i = 1, 2, · · · ,m, j = 1, 2, · · · , n}, N =

{Nij : i = 1, 2, · · · ,m, j = 1, 2, · · · , n},
∏m

i=1

∏n
j=1 fij(Yij|α, β,Nij) =

(
Nij

Yij

)
p
Yij
i,j (1 −

pi,j)
(Nij−Yij), g(α) is the multivariate normal priors for α with parameters µ and σ2,

and h(β) is the log normal density for β with parameters θ and σ2.

Since a closed-form expression for the posterior distribution is not available, based

upon the the accumulated data Y = {Yjk : j = 1, 2, . . . ,m, k = 1, 2, . . . , n} and

N = {Njk : j = 1, 2, . . . ,m, k = 1, 2, . . . , n}, we can use Gibbs sampling to generate

a sample of observations from the joint posterior distribution of (∆, α1, β), where ∆ =

{∆2,∆3, . . . ,∆n}, which, in turn, gives us a sample from the posterior distribution of

(α, β) = {α1, α2, . . . , αn, β}. From this posterior sample, we can compute a posterior

estimate for the probability of DLT for combination (j, k) as logit(p̃jk) = α̃k + β̃aj,

in which β̃ and α̃k are the respective posterior means of β and αk.
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3.2.2 Deriving Hyperparameter Values and Rescaled Doses

Before the trial can begin, investigators must supply the values p∗j1 and p∗1k, which

are the a priori estimates for pj1 and p1k, the DLT rates for combinations that use

the lowest dose of either or both of the agents, i.e the first column and row of Figure

3.1(a). This leads to m+n− 1 values from which we seek to determine values for the

n+2 hyperparameter values θ, µ, δ = {δ2, δ3, . . . , δn}, and σ2, as well as the m rescaled

dose values for Agent A. Due to this overparameterization relative to the amount of

elicited information, we choose to treat µ, θ and σ2 as “tuning parameters” whose

values will be determined via simulation, with the remaining values based directly

upon the elicited information. Specifically, if we assume from our logistic model

that logit(p∗j1) = E(α1) + ajE[β], where E(·) denotes prior expectation, we have the

rescaled dose value aj ≈ [logit(p∗j1)−µ]/exp(θ). Since δk is approximately the average

difference between the logits of the DLT rates of doses bk and bk−1, k = 2, 3, . . . , n when

each is combined with the same dose of Agent A, we set δk = logit(p∗1k)− logit(p∗1,k−1).

An appropriate value for σ2 requires that, in the starting stage of a trial when

only a few patients are entered, the priors are informative enough to accommodate

for the relative lack of data. In contrast, when more patients are enrolled later in

the study, σ2 should be “large enough” so that the data are able to dominate the

priors. Also, given that the DLT rate for combination (1, 1) is typically quite small,

we would expect a rather large negative value to be appropriate for α1. Based upon

an extensive set of small simulation studies over a grid of candidate values for µ, θ,

and σ2, we have found that our design is able to identify the MTC well when using

values of σ2 ∈ [0.3, 0.6], µ ∈ [−8.5,−7.5], and θ ∈ [4.5, 5.5].

We note that although the methods described here and in Section 3.3 are specific
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to the use of a logistic model, our idea is easily generalized to any one-parameter

model used with the CRM. For example, a simple transformation of the power model

gives us log[−logF (β; d)] = α + log[−log(d)], where α = log(β), which is a standard

logistic model with complementary log-log link and slope parameter fixed at 1.0.

Application of our methods to this complementary log-log model is straightforward.

Adopting the previous parameterization used for the logistic model, for each dose

k of Agent B, we have log[−log(pjk)] = αk + βlog[−log(aj)], in which the slope

parameter is now allowed to vary from the fixed value of 1.0, if necessary. We once

again define ∆k = αk − αk−1, k = 2, 3, . . . , n and adopt the same form for the prior

distributions of α1, β, and ∆. However, appropriate values for the hyperparameters

µ, θ, and σ2 will necessarily change and will require the same sort of grid search via

simulation to determine what those values might be. For the scenarios presented

in Section 3.3, we found that θ = 3, µ = 5.5 and σ2 = 0.3 led to satisfactory

operating characteristics (not presented). We use the elicited information to set

δk = log[−log(p∗1k)]− log[−log(p∗1,k−1)] and the rescaled dose values aj are determined

from the equation log[−log(p∗j1)] ≈ µ + exp(θ)log[−log(aj)]. The simulation results

for the power model gCRM are shown in Table 3.6.

From Table 3.6 we see that, the gCRM using the power CRM model maintains

similar operating characteristics as the gCRM using the logistic model in terms of both

the percentages of correct MTC identification, and the mean percentages of patients

assigned to the recommended dose combinations. For example, using the gCRM with

the power model, the percentages of the MTC selections whose DLT rates are within

10 points of Γ (or the percentage of selecting any dose combination as the MTC

without terminating the trial for scenario D) for the seven scenarios are 95%, 93%,

66%, 3%, 77%, 87%, 91% respectively, which are comparable to their corresponding
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counter parts of 90%, 95%, 86%, 5%, 74%, 84%, 91% from the gCRM with the logistic

model; and the corresponding average percentages of patient assignments of the seven

scenarios with the same criterion are 75%, 84%, 54%, 35%, 59%, 78%, 69%, which

are similar to their respective counter parts of 77%, 84%, 75%, 40%, 59%, 81%, 75%

from the gCRM using the logistic model. The gCRM using the power model is more

likely to terminate a trial as compared to the gCRM using the logistic model. This is

reflected in scenario C, where the targeted dose combination is one of the lowest dose

combinations while the majority of the dose combinations are overly toxic in that, the

gCRM using the power model terminates an additional of 20% of the simulations as

compared to the gCRM using the logistic model; and correspondingly an additional

of 21% of the patients are entered into a trial that uses the logistic model as compared

to a trial using the power model.

3.2.3 Trial Conduct

Two outstanding issues remain for our design. First, like most Phase I trial de-

signs, we restrict the set of possible assignments to each patient in the trial so as

to limit exposure of patients to toxic combinations but also promote sufficient ex-

ploration of the combinations and increase the likelihood of correctly identifying the

MTC. The idea of sufficient exploration is of greater import when studying combi-

nations of two agents instead of a single agent because every additional dose level in

an agent leads to a significant increase in the total number of dose combinations. To

this end, the first patient is assigned to combination (1, 1) and each future patient

i = 2, 3, . . . N must be assigned to a combination that has doses of Agent A and Agent

B that are within one dose (higher or lower) than the respective doses of Agent A and

B assigned to patient i− 1. Note that this rule allows for the possibility of escalation
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of both doses at the same time, which may seem aggressive, but has been shown to

not lead to increased exposure to unsafe combinations (Wang and Ivanova (2005);

Braun and Wang (2010)). We limit the amount of dose de-escalation to within one

dose lower than the respective doses of Agent A and B because in two-agent trials,

especially when few patients are entered into a study, a single DLT can be quite in-

fluential and result in dramatic dose de-escalation, which slows later dose escalation

when the true MTC is among combinations including the highest dose of either agent.

Second, the study should be terminated if there is sufficient evidence that all of the

combinations are overly toxic. Although a stopping rule could be based solely on the

posterior distributions of the model parameters, we have found that such a rule leads

to early termination too often. Instead, our design does not allow for early stopping

until data have been collected on the third patient. At this point, the accumulated

data from all patients, regardless of the combinations to which they were assigned,

are pooled together to compute an exact 95% confidence interval for the probability

of DLT. If the lower bound of this confidence interval is greater than the targeted

DLT rate, Γ, the trial will be terminated.

Thus, the conduct of a Phase I trial for two agents using the gCRM is as follows:

(1) Elicit a priori estimates for the probabilities of DLT for combinations including

the lowest dose of either agent;

(2) Determine appropriate values for the hyperparameters and rescaled dose values

as described in Section 3.2.2;

(3) Assign the first patient to combination (1, 1);

(4) For patient i = 2, 3, . . . N , compute the posterior means p̃jk for each combination
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(j, k). If we let (ji−1, ki−1) denote the combination assigned to patient i− 1, we

define the set of acceptable combinations as S = {(j, k) : max(1, ji−1−1) ≤ j ≤

min(ji−1 +1,m),max(1, ki−1−1) ≤ k ≤ min(ki−1 +1, n)}. The current estimate

of the MTC, (j∗, k∗), is the combination in S whose value of p̃jk is closest to Γ;

(5) If i ≤ 3, assign patient i to the current MTC;

(6) If i ≥ 4, determine if the stopping rule above has been met. If so, terminate

the trial; otherwise, assign patient i to the current MTC;

(7) If data have been collected on all N patients, use step (4) to compute the final

estimate of the MTC.

3.3 Simulation Studies

3.3.1 Simulation results of the gCRM

We examine the operating characteristics of our design in seven scenarios, scenarios

A-G, with m = 4 doses of Agent A and n = 4 doses of Agent B. Scenarios A-F were

previously examined in Braun and Wang (2010). We have a target DLT rate of

Γ = 0.20. The true DLT rates of the 16 combinations in each scenario are displayed

in columns 3-6 of Table 3.1. In scenario A, combinations of lower doses of both agents

have DLT rates less than Γ while the combinations of higher doses of both agents

have DLT rates greater than Γ. Scenarios B and D reflect settings when all the

combinations are safe and too toxic, respectively. Scenario C is a situation when only

a few dose combinations are tolerable while all others are overly toxic. Scenario E is

an example when the DLT rates grow slowly with doses of one agent but rapidly with

doses of the other agent. Scenario F represents a situation when there is a jump in
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the DLT rates of one agent, thus only the dose combinations associated with certain

levels of that agent are safe. Scenario G reflects a situation when there are large

deviations from the assumed proportional odds logistic model. It should be noted

that none of true DLT rates fit our assumed proportional odds model.

Since we have 16 dose combinations for each scenario, we chose to use N = 35 as

the maximum sample size of each trial in our simulations, which is approximately two

patients per dose combination on average, and we consider that to be the minimal

possible sample size for exploration of all dose combinations. We also used our design

with increased sample sizes of N = 40 and N = 50, but we did not see a great

difference in operating characteristics as compared to when N = 35, similar to the

findings of Braun and Wang (2010).

We ran 2,000 simulations for each of the seven scenarios. We used the first row

and first column of true DLT rates for scenario A as the elicited values supplied by

the investigators. Thus, scenario A represents the situation when the elicited values

equal the truth, while the remaining scenarios represent the more realistic setting

when the elicited values do not equal the truth. These elicited values generated

rescaled dose values of a1 = 0.0325, a2 = 0.0374, a3 = 0.0405, and a4 = 0.0427

and hyperparameters δ2 = 0.98, δ3 = 0.54, and δ4 = 0.39. We ran simulations using

both the fixed hyperparameters and uniformly distributed priors on hyperparameters,

but found there is no noticeable difference in the simulation results. Therefore, for

simplicity reason, we recommend to use a fixed set of hyperparameters. When using

a fixed set of hyperparameters, given the recommended hyperparameter ranges in

Section 3.2.2, we simply chose µ = −8, θ = 5 and σ2 = 0.5, while other combinations

yield similar results.

The simulation results on scenarios A – G using uniform priors on the hyperpa-
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rameters are presented in Table 3.5, and the simulation results on scenario A using

fixed hyperparamters, but other combinations than the one discussed above are pre-

sented in Table 3.10. From both of the two tables we see that, the different settings

of the hyperparameters certainly result in some differences on the simulation results.

However, these differences are ignorable because the percentages of most of the quan-

tities are no more than 2 percents′ different from setting to setting. This finding

supports our decision that a fixed set of hyperparameters can be randomly selected

from their respective domains.

In each simulation, we drew 10,000 samples from the posterior distributions with

a burn-in of 2,000 samples. The samples were obtained via the “rjags” library in

R. Among the 2,000 simulations in each scenario, we calculated the mean percentage

that each dose combination was selected as the MTC at the end of the trial, the mean

percentage of patients assigned to each dose combination, and the mean probability

of DLT that each patient is exposed to based upon the their assignments in the 2,000

simulations. The simulation results for each scenario are summarized numerically in

the last eight columns of Table 3.1 and visually in Figure 3.2.

As we summarize the results in Table 3.1, we note that with a sample size of N =

35 patients, it is nearly impossible to distinguish between DLT rates that are within 10

points of the targeted DLT rate. Thus, we define a combination to be acceptable for

selection as the MTC if its true DLT rate is within this ten-point window. In scenario

A, the gCRM selected a dose combination within the ten-point window as the MTC

in 92% of simulations while assigning 81% of the patients to a dose combination

within the ten-point window. Furthermore, in 46% of the simulations, the selected

MTC is within a four-point window of Γ. In scenario B, all the dose combinations are

safe and the gCRM selected the highest possible dose combination (4, 4) in 62% of
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simulations and selected the MTC at a combination within the ten-point window in

95% of simulations. Also, more than half of the patients are assigned to (4, 4), which

is a promising percentage considering the fact that we always assign the first patient

to (1, 1).

In scenario C, there are only four combinations in the ten-point window, and they

are selected as the MTC in 86% of simulations and are assigned to 75% of patients.

Moreover, combination (2, 1), which has a DLT rate equal to Γ, is selected as the

MTC in 39% of simulations. Due to the large number of combinations with DLT

rates above Γ, 8% of simulations resulted in early trial termination. The remaining

6% of simulations selected a toxic combination as the MTC, although none selected

a combination with a DLT rate above 0.4. In scenario D, all combinations are toxic,

and the gCRM led to early termination in 95% of simulations, with combination (1, 1)

selected as the MTC in the remaining 5% of simulations.

In scenario E, the gCRM identified an MTC within the ten-point window in 74%

of simulations and the identified MTC is within a two-point window in 42% of sim-

ulations. Since the elicited values from the investigator are based on the DLT rates

of scenario A, we see that the gCRM is reluctant to explore higher doses of Agent

B, since the gCRM assumes every escalation in Agent B will result in a bigger in-

crease in the DLT rates than what the actual data suggest. 59% of the patients are

assigned to the dose combinations within the ten-point window, and most of those

assignments are within a two-point window. In scenarios F and G, whose DLT rates

deviate greatly from the assumed proportional odds logistic model, we continued to

see excellent operating characteristics for the gCRM.

Figure 3.2 presents the patterns of dose assignments in the seven scenarios. The

y-axis is the average DLT rate of the 2,000 dose assignments of each patient and
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the x-axis is the number of each patient (1 denotes the first patient, 2 denotes the

second patient, etc). Note that the average DLT rate for each patient is only based

upon trials in which that patient was enrolled, i.e. the mean dose for patient 30

would be based upon less than 2,000 simulations if some of the simulations had early

termination of the trial. We see that the gCRM does an excellent job of converging to

combinations with DLT rates equal to Γ, while in scenarios B and D, the gCRM tends

to converge to combinations with the highest possible DLT rate and lowest possible

DLT rate, respectively.

We also ran simulations on situations with four levels of Agent A and three levels

of Agent B, five levels of Agent A and three levels of Agent B, as well as five levels

of Agent A and four levels of Agent B. These results are presented in Table 3.7 –

Table 3.9. From these three tables we can see that, in all scenarios except scenarios

D1, D2 and D3, the MTC selections are mostly centered around the targeted dose

combination whose DLT rate equals Γ, and the patient assignments also concentrates

around the targeted dose combination. In scenario D1, D2 and D3, the gCRM also

maintains high termination rate of at least 94%, enrolls no more than 40% of patients

into a toxic trial, and the majority of the 40% patients are assigned to the lowest

possible dose combination. It should be noted that, even for scenarios A3 – G3,

where there are 20 dose combinations in each of the scenarios, the sample size used

is still 35 patients, which is quite small as compared to the total number of dose

combinations under study.

3.3.2 Comparison to Existing Approaches

Table 3.2 directly compares the operating characteristics of the gCRM with the

methods of Braun and Wang (2010) in scenarios C, E, and F. Results for the other
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scenarios are omitted as both methods were very similar in terms of both the per-

centage of simulations selected as the MTC for each dose combination, as well as the

mean percentage of subjects assigned to each dose combination.

We see from Table 3.2 that the gCRM targets an MTC within the ten-point

window more frequently than the method of Braun and Wang (2010): 86% versus

71% for scenario C; 74% versus 72% for scenario E; and 84% versus 67% for scenario F.

The two approaches have comparable performance in terms of the mean percentages

of patients assigned to a combination within the ten-point window. However, the

gCRM assigns more patients than Braun and Wang (2010) at the combination with

DLT probability exactly equal to Γ. For example, in scenario C, the combination

with DLT rate exactly equal to Γ is assigned to 25% of patients with the gCRM and

21% with the method of Braun and Wang (2010), and in scenario F, the respective

values are 12% and 6%. Correspondingly, the gCRM also assigns less patients to

overly toxic dose combinations than Braun and Wang (2010).

We also compare the operating characteristics of the gCRM to the CRM for Par-

tial Ordering (POCRM) of Wages et al. (2011a) in the six scenarios, scenarios 1-6,

presented in their manuscript. Scenarios 1-4 correspond to scenarios 6, 3, 10 and 12

of Yin and Yuan (2009a), and scenarios 5 and 6 correspond to scenarios 1 and 2 of

Yin and Yuan (2009b). Like Yin and Yuan (2009a) and Yin and Yuan (2009b), we

used a sample size of N = 60 with the gCRM, while Wages et al. (2011a) used the

average number of patients that were actually entered into the study, which will be

less than 60 in settings where early termination occurred with Yin and Yuan (2009a)

and Yin and Yuan (2009b).

The operating characteristics of the gCRM are based on 2,000 simulations in all

six scenarios, and the hyperparamters of the prior distributions are the same as pre-
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viously discussed in Section 3.1. In scenarios 1 and 2, we used the same elicited

values as we used in Section 3.1. In scenarios 3 and 4, we used the elicited values

(p11, p21, p31, p41, p51) = (0.04, 0.08, 0.12, 0.12, 0.20) and (p11, p12, p13) = (0.04, 0.10, 0.16),

and in scenarios 5 and 6, we used (p11, p21, p31, p41, p51) = (0.04, 0.08, 0.12, 0.16, 0.20)

and (p11, p12, p13, p14) = (0.04, 0.10, 0.16, 0.22). The true DLT rates of the six scenar-

ios are displayed in columns 3-7 of Table 3.3, with the operating characteristics of the

three approaches summarized in the last three columns of Table 3.3. Instead of using

a ten-point window as we did in Section 3.1, we focus our comparison of the three

methods to the combinations with DLT rates that are exactly equal to Γ = 0.30 in

scenarios 1-4 and Γ = 0.40 in scenarios 5-6.

From Table 3, we see that the gCRM does as well as (in scenarios 5 and 6) or

better than (in scenarios 1-4) the methods of Yin and Yuan at identifying the MTC

and always assigns a much higher percentage of patients to the MTC. We also see

that the gCRM has comparable operating characteristics to the POCRM in scenarios

4 and 6 and better operating characteristics in scenarios 1, 2, and 5. However, the

POCRM performs better than the gCRM in scenario 3. Overall, the results in Table

Table 3.3 demonstrate that the gCRM has excellent operating characteristics and

is a serious contender with existing methods. Our results also demonstrate that the

gCRM works well regardless of the number of doses studied for each of the two agents.

We also note that the gCRM uses a relatively small set of elicited information from

which to design the entire study, while the POCRM requires a “skeleton” of elicited

probabilities for DLT rates of all the dose combinations.
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3.3.3 Assessing Sensitivity to Elicited DLT Probabilities

Recall that the results in Table 3.1 were based upon a first set of elicited values

in which p∗1k were equal to the first column of the true DLT rates in scenario A and

p∗j1 were equal to the first row of the true DLT rates in scenario A. We also examined

the operating characteristics of the gCRM in scenarios C, E, F, and G when using

two additional sets of elicited DLT rates supplied by the investigator. The second

set reverses the values of p∗1k and p∗j1, i.e. p∗1k are equal to the first row of the true

DLT rates in scenario A and p∗j1 are equal to the first column of the true DLT rates

in scenario A. The third set has p∗1k and p∗j1 equal to the first column and first row,

respectively, of the true DLT rates in scenario E. All other hyperparameter values

remain unchanged from those in Section 3.1. Operating characteristics resulting from

2,000 simulations are shown in Table 3.4, in which columns 3-6 are the values from

Table 3.1 using the first set of elicited values, columns 7-10 correspond to the second

set of elicited values, and columns 11-14 correspond to the third set of elicited values.

From Table 3.4, we see that the operating characteristics resulting from the three

different sets of elicited values are fairly comparable among all the scenarios, although

the results certainly reflect some sensitivity of the gCRM to the elicited values. For

example, in scenario C, combination (2, 1) is selected more often as the MTC and

assigned to more patients when using the first set of elicited values and combination

(1, 2) is selected more often as the MTC and assigned to more patients when using

the third set of elicited values. Furthermore, we see that the operating characteristics

in scenario E are improved when using the third set of elicited values, which are based

on the true DLT rates in scenario E, than the other two sets of elicited values.
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3.4 Discussion

The gCRM is a logical extension of the original CRM for single-agent Phase I

trials to the study of two agents, in which we extend the logistic model used in the

traditional CRM to proportional odds logistic models. However, the gCRM only

assumes proportional odds of DLT for adjacent doses of one of the agents (Agent

A) when combined with the same dose of the other agent (Agent B). The odds

of DLT among adjacent doses of Agent B, when combined with the same dose of

Agent A, are not necessarily required to be proportional nor monotonic, although

monotonicity is expected and can be promoted through appropriate selection of the

prior variance parameter. In essence, we have reduced the problem of estimating

m × n probabilities of DLT to the estimation of n + 1 model parameters. This fact

motivates our suggestion that the label “Agent B” be given to the agent with fewer

dose levels being studied, as this will minimize the number of parameters that need

to estimated from the traditionally small sample sizes used in Phase I trials.

One of the obvious limitations in existing Phase I trial designs of two agents,

including our work, is the implicit assumption that each patient must complete their

follow-up for DLT before the next patient can be enrolled. Like the time-to-event

CRM (TITE-CRM) (Cheung and Chappell , 2000), we are working on methods to

incorporate results for patients with incomplete follow-up into the decision rule for

assignment of combinations. One of the interesting issues is that both agents will

most often not be given at the same time, thereby requiring methods that account

for the differing amounts of follow-up that could occur for the two agents.
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logit(pj1) = α1 +  ajβ                                                       

logit(pj2) = α2 + ajβ                                                       

logit(pj3) = α3 + ajβ                                                        

logit(pj4) = α4 +  ajβ                                                       
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Figure 3.1: Schematic representation of Phase I trial of two agents, with four doses
of each agent.
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Figure 3.2: Average dose assigned to each patient in simulations.
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Table 3.1: Operating characteristics of the gCRM in seven hypothetical scenarios.
All values are multiplied by 100. Boldfaced numbers correspond to dose
combinations with a true DLT rate that is within 10 points of the desired
DLT rate Γ = 0.20.

Percentage of Mean percentage
simulations of patients

True DLT Rates selected as MTC assigned

Agent A
Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4

A 1 4 8 12 16 0 2 4 8 6 4 4 6
2 10 14 18 22 1 8 11 10 3 10 7 7
3 16 20 24 28 5 10 10 6 5 6 10 6
4 22 26 30 34 5 7 5 6 4 4 5 13

B 1 2 4 6 8 0 0 0 2 4 1 1 2
2 5 7 9 11 0 1 2 3 1 5 2 3
3 8 10 12 14 0 2 5 8 1 2 8 6
4 11 13 15 17 1 4 10 62 2 3 7 53

C 1 10 20 30 40 21 39 13 3 29 25 9 4
2 25 35 45 55 13 2 0 0 12 8 1 1
3 40 50 60 70 1 0 0 0 3 0 3 0
4 55 65 75 85 0 0 0 0 0 0 0 1

D 1 44 48 52 56 5 0 0 0 31 2 1 1
2 50 54 58 62 0 0 0 0 1 3 0 0
3 56 60 64 68 0 0 0 0 0 0 1 0
4 62 66 70 74 0 0 0 0 0 0 0 0

E 1 8 18 28 38 7 18 10 3 14 11 6 4
2 9 19 29 39 4 10 8 3 5 10 6 4
3 10 20 30 40 5 9 4 2 6 5 8 3
4 11 21 31 41 5 5 3 1 4 3 3 7

F 1 12 13 14 15 8 9 8 15 16 9 6 10
2 16 18 20 22 7 14 12 11 8 15 9 8
3 44 45 46 47 5 2 1 0 5 2 5 1
4 50 52 54 55 1 0 0 0 2 0 0 2

G 1 1 2 3 4 0 0 0 2 4 1 1 4
2 4 10 15 20 0 9 18 24 2 12 12 14
3 6 15 30 45 3 17 15 3 6 12 15 4
4 10 30 50 80 5 3 1 0 7 3 1 3
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Table 3.2: Comparison of gCRM operating characteristics to those in Braun and
Wang (2010) in three scenarios. All values are multiplied by 100. Boldfaced
numbers correspond to dose combinations with a true DLT rate within 10
points of the desired DLT rate Γ = 0.20.

True DLT Rates gCRM Braun & Wang

Agent A
Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4

Percentage of simulations selected as MTC
C 1 10 20 30 40 21 39 13 3 15 27 9 3

2 25 35 45 55 13 2 0 0 20 3 0 0
3 40 50 60 70 1 0 0 0 0 0 0 0
4 55 65 75 85 0 0 0 0 0 0 0 0

E 1 8 18 28 38 7 18 10 3 2 9 6 5
2 9 19 29 39 4 10 8 3 8 11 11 3
3 10 20 30 40 5 9 4 2 6 12 6 2
4 11 21 31 41 5 5 3 1 5 4 3 2

F 1 12 13 14 15 8 9 8 15 6 8 9 7
2 16 18 20 22 7 14 12 11 16 14 6 1
3 44 45 46 47 5 2 1 0 11 4 1 0
4 50 52 54 55 1 0 0 0 2 0 0 0

Mean percentage of subjects assigned
C 1 10 20 30 40 29 25 9 4 23 21 8 3

2 25 35 45 55 12 8 1 1 14 9 2 1
3 40 50 60 70 3 0 3 0 6 2 3 0
4 55 65 75 85 0 0 0 1 1 0 0 1

E 1 8 18 28 38 14 11 6 4 10 8 5 3
2 9 19 29 39 5 10 6 4 6 12 7 3
3 10 20 30 40 6 5 8 3 5 8 9 3
4 11 21 31 41 4 3 3 7 4 3 3 8

F 1 12 13 14 15 16 9 6 10 14 9 7 5
2 16 18 20 22 8 15 9 8 11 14 7 2
3 44 45 46 47 5 2 5 1 8 5 5 1
4 50 52 54 55 2 0 0 2 2 1 1 3
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Table 3.3: Comparison of the operating characteristics of the gCRM to the designs
of Yin and Yuan (2009a; 2009b) and the POCRM of Wages, Conaway,
O’Quigley (2011a). All values are percentages multiplied by 100. Bold-
faced numbers correspond to dose combinations with a DLT rate equal to
the desired DLT rate.

Agent A Correct Observed Patients
Scenario Agent B 1 2 3 4 5 Method Recommend DLTs at MTC

1 1 6 8 10 15 • Yin & Yuan 41 28 13
2 10 12 30 45 • POCRM 53 31 39
3 15 30 50 60 • gCRM 66 31 44
4 50 55 60 70 •

2 1 8 12 16 18 • Yin & Yuan 53 28 19
2 10 15 30 45 • POCRM 50 31 39
3 12 30 50 55 • gCRM 65 30 46
4 30 50 55 60 •

3 1 6 8 10 30 50 Yin & Yuan 63 28 21
2 12 16 30 50 55 POCRM 86 31 69
3 15 30 50 55 60 gCRM 74 31 49

4 1 6 10 15 30 50 Yin & Yuan 56 29 19
2 10 30 50 70 80 POCRM 68 33 43
3 50 60 70 80 90 gCRM 71 31 48

5 1 24 40 47 56 64 Yin & Yuan 44 37 23
2 40 45 59 67 74 POCRM 38 46 27
3 48 59 68 75 81 gCRM 46 43 37
4 54 67 75 81 86

6 1 18 29 40 47 56 Yin & Yuan 48 35 22
2 27 40 45 59 67 POCRM 45 44 33
3 40 49 59 68 75 gCRM 46 42 35
4 49 58 68 75 81
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Table 3.4: Operating characteristics of the gCRM using three different sets of elicited
DLT probabilities. All values are multiplied by 100. Boldfaced numbers
correspond to dose combinations with a true DLT rate within 10 points of
the desired DLT rate Γ = 0.20.

First set of Second set of Third set of
elicited values elicited values elicited values

Agent A
Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4

Percentage of simulations selected as MTC
C 1 21 39 13 3 20 32 8 2 32 13 3 0

2 13 2 0 0 24 2 0 0 34 2 0 0
3 1 0 0 0 2 0 0 0 5 0 0 0
4 0 0 0 0 0 0 0 0 1 0 0 0

E 1 7 18 18 3 4 16 11 4 3 11 7 2
2 4 10 8 3 6 11 5 3 5 15 6 2
3 5 9 4 2 6 9 4 2 6 14 5 2
4 5 5 3 1 7 5 3 1 7 9 3 1

F 1 8 9 8 15 10 6 7 11 14 9 7 6
2 7 14 12 11 11 13 13 10 21 9 9 6
3 5 2 1 0 6 2 1 0 6 3 1 0
4 1 0 0 0 1 0 0 0 2 0 0 0

G 1 0 0 0 2 0 0 0 4 0 1 3 8
2 0 9 18 24 0 7 21 22 0 5 16 16
3 3 17 15 3 1 20 15 2 1 20 15 2
4 5 3 1 0 4 2 0 0 4 7 2 0

Mean percentage of patients assigned
C 1 29 25 9 4 27 21 9 3 36 7 2 0

2 12 8 1 1 19 7 1 1 25 7 1 0
3 3 0 3 0 3 0 2 0 8 1 3 0
4 0 0 0 1 1 0 0 1 3 0 0 1

E 1 14 11 6 4 11 11 9 4 11 7 5 2
2 5 10 6 4 8 10 5 3 6 13 5 3
3 6 5 8 3 4 6 7 3 6 9 7 3
4 4 3 3 7 4 3 3 7 7 6 3 7

F 1 16 9 6 10 17 6 7 8 21 6 5 4
2 8 15 9 8 9 12 11 7 16 10 6 5
3 5 2 5 1 4 3 5 1 7 3 5 1
4 2 0 0 2 2 1 1 3 3 1 1 3

G 1 4 1 1 4 4 1 3 6 4 3 5 6
2 2 12 12 14 1 11 16 14 1 10 11 11
3 6 12 15 4 2 12 16 3 3 11 14 4
4 7 3 1 3 4 3 2 3 5 6 2 3
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Table 3.5: Operating characteristics of the gCRM when assuming the priors of the hy-
perparameters are uniformly distributed in their respective recommended
range. All values are multiplied by 100. Boldfaced numbers correspond
to dose combinations with a true DLT rate that is within 10 points of the
desired DLT rate Γ = 0.20. Simulation size is 1000, draw size is 5000 with
a burn-in of 1000.

Percentage of Mean percentage
simulations of patients

True DLT Rates selected as MTC assigned
Agent A

Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4
A 1 4 8 12 16 0 3 4 7 6 4 3 5

2 10 14 18 22 2 8 12 20 4 10 8 7
3 16 20 24 28 5 11 11 6 5 6 11 6
4 22 26 30 34 4 6 4 5 4 4 5 13

B 1 2 4 6 8 0 0 0 0 4 1 0 1
2 5 7 9 11 0 0 2 2 1 5 2 2
3 8 10 12 14 1 2 5 7 2 2 7 6
4 11 13 15 17 1 4 10 64 2 3 8 54

C 1 10 20 30 40 20 37 12 2 26 26 8 4
2 25 35 45 55 14 2 0 0 14 8 1 1
3 40 50 60 70 2 0 0 0 3 0 2 0
4 55 65 75 85 0 0 0 0 1 0 0 1

D 1 44 48 52 56 6 1 0 0 31 3 1 0
2 50 54 58 62 0 0 0 0 1 2 0 0
3 56 60 64 68 0 0 0 0 0 0 1 0
4 62 66 70 74 0 0 0 0 0 0 0 0

E 1 8 18 28 38 6 14 9 4 13 9 6 3
2 9 19 29 39 5 10 10 4 6 11 6 3
3 10 20 30 40 6 8 4 2 7 5 7 3
4 11 21 31 41 6 4 3 2 5 3 3 7

F 1 12 13 14 15 7 9 7 14 15 9 5 9
2 16 18 20 22 10 16 12 10 11 16 8 7
3 44 45 46 47 5 2 1 0 6 2 5 1
4 50 52 54 55 1 0 0 0 2 1 1 2

G 1 1 2 3 4 0 0 0 1 4 1 1 4
2 4 10 15 20 0 9 20 19 2 12 13 13
3 6 15 30 45 3 20 16 3 5 11 16 4
4 10 30 50 80 5 3 1 0 7 3 2 3
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Table 3.6: Simulation results of the gCRM using the power model. True DLT prob-
abilities, and simulation results for scenarios A through F. All values are
multiplied by 100. Bold faced numbers correspond to dose combinations
with a true DLT rate exactly equal to the target DLT rate.

Agent A

Percentage of Mean percentage
True Dlt Rates simulations of

selected as MTC patients assigned

Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4

A 1 4 8 12 16 0 0 1 13 3 1 2 10
2 10 14 18 22 2 8 10 15 4 9 8 13
3 16 20 24 28 3 11 5 9 3 4 8 12
4 22 26 30 34 5 5 8 3 3 3 6 11

B 1 2 4 6 8 0 0 1 4 3 0 0 5
2 5 7 9 11 0 0 2 13 0 4 2 11
3 8 10 12 14 0 2 5 24 0 2 7 18
4 11 13 15 17 0 5 7 37 1 3 7 35

C 1 10 20 30 40 10 24 16 4 11 16 14 12
2 25 35 45 55 16 4 1 0 13 8 3 2
3 40 50 60 70 0 0 0 0 1 0 2 0
4 55 65 75 85 0 0 0 0 0 0 0 1

D 1 44 48 52 56 3 0 0 0 17 5 3 2
2 50 54 58 62 0 0 0 0 3 2 1 1
3 56 60 64 68 0 0 0 0 0 0 1 0
4 62 66 70 74 0 0 0 0 0 0 0 0

E 1 8 18 28 38 1 9 7 0 4 4 5 4
2 9 19 29 39 8 20 13 3 8 17 12 8
3 10 20 30 40 5 10 3 3 4 6 7 6
4 11 21 31 41 4 6 3 0 1 3 4 5

F 1 12 13 14 15 0 2 5 19 5 2 3 15
2 16 18 20 22 9 21 9 22 9 15 11 18
3 44 45 46 47 5 0 0 0 4 2 5 3
4 50 52 54 55 0 0 0 0 1 1 1 2

G 1 1 2 3 4 0 0 0 4 4 1 1 4
2 4 10 15 20 1 8 12 25 3 4 7 19
3 6 15 30 45 3 19 21 1 4 17 19 5
4 10 30 50 80 2 4 0 0 1 2 2 3
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Table 3.7: True DLT probabilities, and simulation results for scenarios with four levels
of agent A and three levels of agent B. All values are multiplied by 100.
Scenario A1 boundary DLT rates are used in all seven scenarios. Bold
faced numbers correspond to dose combinations with a true DLT rate that
is no more than 10 points away from the target toxicity rate Γ = 0.2.

Agent A

Percentage of Mean percentage
True Dlt Rates simulations of

selected as MTC patients assigned

Scenario Agent B 1 2 3 4 1 2 3 4 1 2 3 4

A1 1 4 8 12 16 0 2 6 11 6 5 4 7
2 10 14 18 22 2 7 13 12 3 9 9 8
3 16 20 24 28 4 13 14 17 4 7 12 14

B1 1 2 4 6 8 0 0 0 1 4 1 1 2
2 5 7 9 11 1 5 4 5 1 5 4 5
3 8 10 12 14 2 4 13 71 2 4 13 59

C1 1 10 20 30 40 20 40 13 3 28 26 10 5
2 25 35 45 55 12 2 0 0 11 8 2 1
3 40 50 60 70 1 0 0 0 3 1 2 1

D1 1 44 48 52 56 5 0 0 0 31 2 1 0
2 50 54 58 62 0 0 0 0 1 2 0 0
3 56 60 64 68 0 0 0 0 0 0 1 0

E1 1 8 18 28 38 6 24 13 4 13 15 8 5
2 9 19 29 39 5 12 9 4 7 11 8 4
3 10 20 30 40 5 9 5 1 6 6 8 9

F1 1 12 13 14 15 9 8 7 15 16 8 6 10
2 16 18 20 22 7 16 13 14 7 14 10 9
3 44 45 46 47 5 2 1 0 5 3 5 4

G1 1 1 2 3 4 0 0 0 2 4 1 1 5
2 4 10 15 20 0 9 20 22 2 11 16 15
3 6 15 30 45 3 24 17 3 5 12 16 11
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Table 3.8: True DLT probabilities, and simulation results for scenarios with five levels
of agent A and three levels of agent B. All values are multiplied by 100.
Scenario A2 boundary DLT rates are used in all seven scenarios. Bold
faced numbers correspond to dose combinations with a true DLT rate that
is no more than 10 points away from the target toxicity rate Γ = 0.2.

Agent A

Percentage of Mean percentage
True Dlt Rates simulations of

selected as MTC patients assigned

Scenario Agent B 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A2 1 4 8 12 16 20 0 2 6 8 10 6 4 5 5 8
2 10 14 18 22 26 2 5 12 10 7 3 8 7 8 7
3 16 20 24 28 32 2 7 11 9 8 3 4 8 9 15

B2 1 2 4 6 8 11 0 0 0 1 3 4 1 1 1 3
2 5 7 9 11 13 0 0 2 3 6 1 4 2 4 5
3 8 10 12 14 17 0 1 5 10 69 1 2 6 11 53

C2 1 10 20 30 40 50 21 40 16 3 0 29 27 11 4 2
2 25 35 45 55 65 10 1 0 0 0 10 7 1 1 0
3 40 50 60 70 80 1 0 0 0 0 2 1 2 1 0

D2 1 44 48 52 56 60 6 0 0 0 0 31 2 1 0 0
2 50 54 58 62 66 0 0 0 0 0 1 3 0 0 0
3 56 60 64 68 72 0 0 0 0 0 0 0 1 0 0

E2 1 8 18 28 38 48 6 26 18 5 1 13 16 11 6 3
2 9 19 29 39 49 6 10 7 2 1 6 10 5 4 2
3 10 20 30 40 50 6 5 2 1 0 6 4 4 4 3

F2 1 12 13 14 15 16 8 9 9 9 15 16 8 6 6 10
2 16 18 20 22 24 5 8 10 8 8 7 12 7 7 6
3 44 45 46 47 48 4 2 1 0 0 4 2 4 3 2

G2 1 1 2 3 4 5 0 0 0 1 6 4 1 1 2 10
2 4 10 15 20 30 0 6 23 29 14 1 9 13 19 12
3 6 15 30 45 70 2 9 7 2 0 4 7 8 6 3
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Table 3.9: True DLT probabilities, and simulation results for scenarios with five levels
of agent A and four levels of agent B. All values are multiplied by 100.
Scenario A3 boundary DLT rates are used in all seven scenarios. Bold
faced numbers correspond to dose combinations with a true DLT rate that
is no more than 10 points away from the target toxicity rate Γ = 0.2. A
sample size of 35 patients is used in all seven scenarios.

Agent A

Percentage of Mean percentage
True Dlt Rates simulations of

selected as MTC patients assigned

Scenario Agent B 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A3 1 4 8 12 16 20 0 2 6 8 11 6 4 4 6 8
2 10 14 18 22 26 2 6 9 8 6 3 8 5 7 5
3 16 20 24 28 32 3 6 8 6 3 4 4 7 6 4
4 22 26 30 34 38 3 4 3 3 2 2 2 2 5 7

B3 1 2 4 6 8 11 0 0 0 1 3 4 1 1 1 3
2 5 7 9 11 13 0 0 2 3 5 1 4 1 3 4
3 8 10 12 14 17 0 1 3 6 7 1 1 5 5 6
4 11 13 15 17 19 1 3 5 11 49 1 1 3 10 42

C3 1 10 20 30 40 50 19 40 15 3 0 28 26 10 4 2
2 25 35 45 55 65 11 2 0 0 0 11 7 1 1 0
3 40 50 60 70 80 1 0 0 0 0 3 0 3 0 0
4 55 65 75 85 95 0 0 0 0 0 0 0 0 1 0

D3 1 44 48 52 56 60 6 0 0 0 0 31 2 1 0 0
2 50 54 58 62 66 0 0 0 0 0 1 2 0 0 0
3 56 60 64 68 72 0 0 0 0 0 0 0 1 0 0
4 62 66 70 74 78 0 0 0 0 0 0 0 0 0 0

E3 1 8 18 28 38 48 7 22 16 5 1 14 13 10 6 3
2 9 19 29 39 49 4 9 5 2 1 5 10 3 4 2
3 10 20 30 40 50 5 5 3 1 0 5 3 5 3 1
4 11 21 31 41 51 4 2 1 0 0 3 1 1 2 3

F3 1 12 13 14 15 16 8 7 9 10 14 16 8 6 6 10
2 16 18 20 22 24 6 9 10 8 7 7 12 6 7 5
3 44 45 46 47 48 4 2 1 0 0 4 1 4 2 1
4 50 52 54 56 58 0 0 0 0 0 1 0 0 1 1

G3 1 1 2 3 4 5 0 0 0 1 6 4 1 1 2 9
2 4 10 15 20 30 0 6 21 26 15 2 9 10 17 10
3 6 15 30 45 70 2 10 7 2 0 5 7 9 4 1
4 10 30 50 80 99 4 2 0 0 0 5 2 1 2 0
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Table 3.10: Simulations results of different combinations of µ, θ and σ2 using the
proportional odds logistic model of the gCRM. All values are multiplied
by 100. Scenario A DLT rates are assumed as the true DLT rates in all
the 11 scenarios. Bold faced numbers correspond to dose combinations
with a true DLT rate that is no more than 10 points away from the target
toxicity rate Γ = 0.2. Simulation size is 2000, draw size is 5000 with a
burn-in of 2000. A sample size of 35 patients is used in all seven scenarios.

Agent A Agent A

Percentage of Mean percentage Percentage of Mean Percentage
Hyper- Simulations of Hyper- Simulations of

Agent B params Selected as MTC Patients assigned Params Selected as MTC Patients assigned

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 µ = −8 0 2 4 7 7 4 3 5 µ = −8.5 0 3 5 9 6 4 4 7
2 β = 5 4 8 11 8 7 8 8 5 β = 4.5 2 9 10 9 3 10 7 6
3 σ2 = 0.3 7 10 10 7 5 9 8 4 σ2 = 0.5 5 9 9 7 5 6 11 6
4 4 7 7 5 3 5 1 11 4 7 6 5 3 4 5 13

1 µ = −8 0 2 5 8 7 4 3 6 µ = −8.5 0 3 5 9 6 4 4 6
2 β = 5 3 8 11 8 4 9 7 6 β = 5.5 1 7 11 9 3 9 7 7
3 σ2 = 0.4 5 10 10 7 5 7 10 6 σ2 = 0.5 4 10 10 8 4 6 11 7
4 4 7 7 4 3 4 6 12 5 8 4 5 4 4 5 13

1 µ = −8 0 3 5 11 6 4 4 8 µ = −8.5 0 2 5 9 6 4 4 6
2 β = 5 2 7 11 11 2 9 7 8 β = 5 2 8 12 9 3 10 7 6
3 σ2 = 0.6 4 9 9 7 4 5 10 7 σ2 = 0.5 4 10 8 6 3 6 10 6
4 6 6 5 4 3 4 5 12 4 7 6 5 4 4 5 14

1 µ = −7.5 0 2 5 9 6 4 4 6 µ = −8 0 3 5 9 6 4 4 6
2 β = 4.5 2 8 11 10 4 9 7 7 β = 4.5 2 8 11 10 3 10 7 7
3 σ2 = 0.5 5 10 8 7 5 7 9 6 σ2 = 0.5 4 10 10 6 5 6 10 6
4 5 6 5 5 3 4 6 13 4 8 5 5 4 4 5 13

1 µ = −7.5 0 3 4 9 6 4 4 6 µ = −8 0 3 5 8 6 4 4 6
2 β = 5.5 2 8 12 10 4 9 8 7 β = 5.5 1 9 11 10 3 10 8 7
3 σ2 = 0.5 4 10 9 7 5 7 9 6 σ2 = 0.5 4 10 10 6 5 6 11 6
4 4 7 6 5 3 4 6 12 5 6 5 4 4 4 5 12

1 µ = −7.5 0 2 4 9 6 4 3 6
2 β = 5 3 9 11 11 4 9 8 7
3 σ2 = 0.5 5 9 8 7 5 7 9 6
4 5 7 6 4 3 4 6 12
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CHAPTER IV

A Time-To-Event Approach to the gCRM

4.1 Introduction

Similar to most of the existing methods in Phase I oncology trials, the gCRM

as proposed in Chapter 3 is built on the assumption that each patient is completely

followed before the next available patient can be assigned to a dose combination.

This is because the outcome of interest, although truly assessed over a follow-up

interval [0, T ], is treated as binary, indicating whether or not a patient experienced

a DLT in that interval. A patient is considered to be fully followed when either they

experience a DLT or reach time T without experiencing a DLT. Thus, any patient

with a total follow-up of 0 < t < T who has not experienced a DLT has yet to

have an observed outcome and would contribute nothing to a likelihood of binary

outcomes. Traditional methods allow for two solutions to this dilemma when a new

patient might be enrolled.

First, we could simply ignore any patients with incomplete follow-up and base

dose assignment decisions solely using data from completely followed patients. This

was the suggestion made by the original creators of the CRM (O’Quigley et al., 1990)

, which is statistically unappealing since it is inefficient and does not incorporate all
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the information gathered in the study. Second, we could restrict enrollment of a new

patient to occur only when all previously enrolled patients have completed follow-up.

However, such a restriction is unrealistic in practice because most patients eligible

for Phase I trials are gravely ill and require treatment as soon as they are eligible to

receive it.

While little research has been done on incorporation of partial follow-up in two

agent Phase I trial designs, there are two existing methods for one-agent Phase I trials:

the time-to-event CRM (TITE-CRM) by Cheung and Chappell (2000), and the EM-

CRM by Yuan and Yin (2011b). Recall that we have a single-parameter dose-toxicity

model F (β; d) that computes a probability of DLT by time T for a patient receiving

dose d. In a sample of N patients, we let D[i] denote the dose assigned to patient

i, i = 1, 2, . . . N and Yi be the indicator of DLT by time T for patient i. If we let D

denote the data from all N patients, then the likelihood used for estimating β would

be

LN(β | D) =
∏
i

F (β;D[i])
Yi [1− F (β;D[i])]

(1−Yi). (4.1)

The TITE-CRM generalizes the traditional CRM by computing a weight function

0 ≤ w(t) ≤ 1 for each partially-followed patient that encompasses the probability

that patients who currently have not had a DLT will fail to experience DLT by the

end of their follow-up. Thus, one needs a model for the distribution of times to DLT

to compute these weights. Given the difficulty in determining this model and any

additional parameters that would need to be estimated, a standard implementation

of the TITE-CRM uses a weight for each partially-followed patient that is their pro-

portion of completed follow-up, which assumes a uniform distribution of DLT times in

the interval [0, T ] that is the same for each dose. As a result, β would be estimated us-
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ing the weighted likelihood LN(β | D) ∝
∏

i F (β;D[i])
Yi [1−wiF (β;D[i])]

(1−Yi), where

wi = ti/T for a patient with follow-up ti. Cheung and Chappell (2000) also propose

an alternate weight function if late-onset DLTs are expected and more generalized

approach to accommodating late-onset DLTs was proposed by Braun (2006).

The EM-CRM is an extension to the maximum-likelihood version (as opposed to

the Bayesian methods that we use) of the CRM (Shen and O’Quigley , 1996) that

treats the unobserved outcomes of the partially-followed patients as missing data

and uses the expectation-maximization (EM) algorithm (Dempster et al., 1977) to

compute a maximum-likelihood estimate of β. The authors let s1, s2, ..., sK denote the

K unique times at which DLT has been observed in the study and also define sK+1 = T

for mathematical necessity. A discrete hazard function λk = P (t = sk | t >= sk) is

introduced for each sk and is used to impute a probability of future DLT for partially-

followed patients. Essentially, the EM-CRM computes a nonparametric estimate of

the probability of DLT by time T given no DLT has yet been observed. For patient

i with partial follow-up ti, we can use this nonparametric estimate to impute a value

for the missing Yi as its expected value

Ỹi =
F (β;D[i])

∏
k:sk<ti

(1− λk)
1− F (β;D[i]) + F (β;D[i])

∏
k:sk<ti

(1− λk)
,

for a given value of β. We then maximize the likelihood in Equation (4.1) with Ỹi

used in place of Yi for each partially-followed patient to get an updated value of β.

We then iteratively update the values of Ỹi and β until convergence. Although a

Bayesian form of the EM-CRM has never been formally proposed, such an approach

is easily created from the Bayesian data augmentation ideas of Tanner and Wong

(1987).
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As the TITE-CRM generalizes the CRM, we propose a time-to-event version of the

gCRM, which we call the weighted gCRM (wgCRM). As compared to the gCRM with

partial follow-up information completely ignored, we expect the wgCRM will assign

more patients to the MTC and identify the MTC more often at the end of the study.

We discuss possible choices of the weight function as well as the implementation of

the wgCRM in Section 4.2, present the simulation settings and results in Section 4.3,

and present concluding remarks in Section 4.4.

4.2 Methods

4.2.1 Description of the gCRM

In Chapter 3, we have generalized the CRM, denoted as gCRM, to a Phase I trial

of two agents in which there are m doses, a1 < a2 < . . . < am, of Agent A, and n

doses, b1 < b2 < . . . < bn, of Agent B. We let (j, k) represent the combination of

Agent A at dose aj, j = 1, 2, . . . ,m and Agent B at dose bk, k = 1, 2, . . . , n. We let

pjk denote the true DLT probability for (j, k) and define the MTC, (j∗, k∗), as the

combination with a DLT rate closest to the target rate Γ. For each value of k (each

dose of Agent B), we adopt a traditional logistic regression model logit(pjk) = αk+βaj

describing how the probability of DLT varies with each dose of Agent A combined

with the given dose of Agent B. Note that the intercept is now a parameter specific

to the dose of Agent B under study, rather than a fixed value traditionally used in

the CRM. In more general applications, this model is known as a proportional odds

logistic regression model. We attempt to “join” the row-wise CRM models through a

joint prior distribution that forces correlation among their intercept parameters. We

note that like the traditional CRM, the dose values a1, a2, . . . , am of Agent A are not
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actual clinical dose values, but are rescaled dose values selected to improve model fit.

However, there is no need to compute rescaled dose values for Agent B because the

doses of Agent B do not contribute directly to our model.

We assume log(β) has a normal distribution with mean ν and variance σ2, denoted

log(β) ∼ N (ν, σ2), and the intercept for the model at the lowest dose of Agent B,

α1 ∼ N (µ, σ2). Instead of directly modeling the joint distribution of the intercepts, we

focus on the difference between intercepts corresponding to adjacent doses of Agent

B. Specifically, we assume ∆k = αk − αk−1 ∼ N (δk, σ
2), k = 2, 3, . . . , n. We note

that the use of a normal distribution for the differences does allow for the possibility

of non-increasing DLT rates among doses of Agent B for a fixed dose of Agent A.

However, such a possibility is minimized if the value of σ2 is kept sufficiently small

so as to force a majority of the prior distribution above zero. If we let (ji, ki) denote

the combination assigned to patient i = 1, 2, . . .M and Yi denote whether or not a

patient i has experienced DLT, then we have collective data YM = {Y1, Y2, . . . YM}

and CM = {(j1, k1), (j2, k2), . . . , (jM , kM)}. This leads to a likelihood

L(β,α | YM , CM) ∝
M∏
i=1

pYiji,ki(1− pji,ki)
1−Yi (4.2)

that can be used to estimate values for β and α.

4.2.2 Incorporation of Partial Follow-up

The gCRM as just described earlier did not explicitly state that each patient is

followed for DLT to time T after being enrolled. Furthermore, it was assumed that the

inter-arrival times of patients were greater than T , so that we fully observe the DLT

outcome of every enrolled patient. However, as we have stated in the Introduction
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of this chapter, such an assumption is not likely to hold in most applications, neces-

sitating methods that properly utilize information from partially followed patients.

Our specific approach is as follows.

Out of a maximum planned sample size of N patients, suppose M patients, 1 ≤

M ≤ (N−1), have been enrolled in the study. Among these M patients, some patients

are still under follow-up without experiencing DLT and the remaining patients are

fully-followed, i.e. have either experienced DLT or been followed to time T without

DLT. At the arrival of patient (M + 1), we will assign an individual weight w to

each partially-followed subject that is a function of the length, 0 < ti < T of their

follow-up. Specific forms for w will be explained shortly. If we let Yi = 1 for all

patients experiencing DLT and Yi = 0 for all other patients regardless of their length

of follow-up, the likelihood for β and α based upon the data of the first M patients

is now

L(β,α | YM , CM) ∝
M∏
i=1

pYiji,ki [1− w(ti)pji,ki ]
1−Yi ,

which is a weighted form of the likelihood in Equation (4.2)

In the TITE-CRM, the weight given to each partially-followed patient was a func-

tion of their follow-up time 0 ≤ ti ≤ T . Any non-decreasing function w(ti) could

be used as long as w(0) = 0 and w(T ) = 1. Note that this latter constraint implic-

itly places complete weight, as desired, on subjects without DLT who have completed

their follow-up. We also note that our weighted likelihood implicitly places full weight

on subjects who experience DLT. As we stated earlier, the appropriate form of w(ti)

would reflect the underlying distribution of the time to DLT, but for simplicity, the

function w(ti) = ti/T is conventionally used with the TITE-CRM, which assumes

that DLT times are uniformly distributed over the interval [0, T ]. However, in a trial
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of two agents, say Agent A and Agent B, there is no reason to assume that both

agents will be given simultaneously, as in many settings, one agent, say Agent A,

would be given immediately upon enrollment, while Agent B, would be given later,

say at τ, 0 < τ < T , time units after enrollment. As a result, the follow-up col-

lected on Agent B, which ranges from τ to T , is less than the follow-up on Agent A,

which ranges from 0 to T , and this differential follow-up might prove useful in the

form of wi used. Furthermore, there is no reason to assume that both agents have

the same underlying distribution of DLT times, nor that these two distributions are

independent.

Specifically, for the wgCRM, we can use non-decreasing functions u(ti) and v(ti),

where u(0) = v(0) = 0 and u(T ) = v(T ) = 1, to denote the respective marginal

contributions that Agents A and B make to the non-decreasing weight function

w[u(ti), v(ti)], where w(0, 0) = 0, w(1, 1) = 1. Note that we allow the possibility

of a non-zero weight to any patient who has received Agent A and has yet to receive

Agent B. This is because the time followed on Agent A alone still provides informa-

tion about toxicity of the combined treatments, i.e if no DLT has yet occurred when

receiving Agent A alone, this suggests that the combination of both agents may also

prove to be non-toxic.

There are several possible forms for w(·), among which are three naive candidates:

w1(t) = min[u(t), v(t)] (4.3)

w2(t) = max[u(t), v(t)] (4.4)

w3(t) = [u(t) + v(t)]/2 (4.5)

Thus, if we were to define u(ti) = ti/T and v(ti) = (ti − τ)/(T − τ), then the three
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weight functions above would be, respectively, the amount of follow-up on Agent B,

the amount of follow-up on Agent A, and the average amount of follow-up on both

agents.

The major limitation of these three weight functions is their lack of statistical

motivation, as the appropriate weight should be based upon the joint distribution

of the time-to-DLT for Agent A and the time-to-DLT for Agent B. Similar to the

derivation made in Braun (2006) for the single-agent setting, let TA and TB denote

the marginal underlying DLT times for Agent A and Agent B, with TA ∈ [0, T ]

and TB ∈ [τ, T ], and let TF denote the observed failure time in [0, T ]. Then, the

appropriate weight is for a patient with follow-up t is

w(t) = Pr(TF ≤ t) = Pr(min(TA, TB) ≤ t)

= Pr(TA ≤ t or TB ≤ t)

= Pr(TA ≤ t) + Pr(TB ≤ t)− Pr(TA ≤ t, TB ≤ t)

= u(t) + v(t)− Cθ[u(t), v(t)]

We now see that the appropriate forms for u(t) and v(t) are the respective marginal

CDFs for TA and TB evaluated at t. Furthermore, since the joint CDF of TA and TB

is harder to conceptualize than their marginal distributions, and prior data may even

exist regarding the marginal CDFs, we express the joint CDF as a copula, which is a

parametric function that “couples” the two marginal CDFs into a single joint CDF,

with the parameter θ quantifying the association between TA and TB (Nelson, 1999).

Thus, the appropriate weight requires selection of a copula, for which a vast num-

ber of choices exist. We have chosen to use a Farlie-Gumbel-Morgenstern (FGM) (Nel-

son, 1999) that has the simple analytical form Cθ(x, y) = xy+θxy(1−x)(1−y), with
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θ ∈ [−1, 1], θ = 0 indicating independence and 0 < θ ≤ 1 (−1 ≤ θ < 0) indicating pos-

itive (negative) correlation. Thus, if we were to extend the idea of marginal uniform

distributions for TA and TB as used in the TITE-CRM, and were to also assume that

TA and TB were independent so that Pr(TA ≤ t, TB ≤ t) = Pr(TA ≤ t)Pr(TB ≤ t),

the appropriate weight would be

w(t) =
t

T
+max

{
0,
t− τ
T − τ

}
−
(
t

T

)(
max

{
0,
t− τ
T − τ

})
=

t

T
+

(
1− t

T

)(
max

{
0,
t− τ
T − τ

})
,

which has the simple interpretation as a weighted average of complete follow-up

(weight of 1) and the amount of follow-up on Agent B, with the weight determined

by the amount of follow-up on Agent A. In our simulations, we will examine using

three weight functions, each of which assume marginal uniform DLT times and an

FGM copula, with each of the functions assuming one of the values for θ ∈ {−1, 0, 1},

which correspond to Spearman rank correlation values of -1/3, 0, and 1/3, respec-

tively. Note that greater values of correlation between TA and TB are not possible,

and this is one of the limitations of the FGM copula.

In an alternate use of the FGM copula, we see that a copula is a function that

takes two arguments that lie between 0 and 1 and produce a value that also lies

between 0 and 1. Thus, the copula itself could be a weight, i.e. w(t) = Pr(TA ≤

t, TB ≤ t) = u(t)v(t){1 + θ[1 − u(t)][1 − v(t)]}. Although such a weight function

was not generated from statistical principals, it does have the property that for a

given value of t, smaller (larger) values of θ lead to smaller (larger) weights. If late-

onset DLTs were expected, then we would perhaps like to place less weight on a

patient than if uniformly distributed DLTs were expected, as we would have less
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confidence about how the patients’ current follow-up without DLT would predict for

later follow-up without DLT. Conversely, if early-onset DLTs were expected, then we

would perhaps like to place more weight on a patient than if uniformly distributed

DLTs were expected, as we would have more confidence about how the patients’

current follow-up without DLT would predict for later follow-up without DLT. As a

result, a value of θ < 1 could be used if early-onset DLTs were expected and a value

of θ > 1 could be used if late-onset DLTs were expected. In our simulations, we will

also examine this approach with values of θ ∈ {−1, 0, 1}.

In summary, we have proposed a total of nine possible weight functions. The first

three weights are given in Equations (4.3) - (4.5). The next three use the FGM copula

with values of θ ∈ {−1, 0, 1}:

w4(t) = u(t)v(t){1− [1− u(t)][1− v(t)]} (4.6)

w5(t) = u(t)v(t) (4.7)

w6(t) = u(t)v(t){1 + [1− u(t)][1− v(t)]} (4.8)

and the final three are the theoretically motivated weights assuming an FGM copula

with values of θ ∈ {−1, 0, 1}:

w7(t) = u(ti) + v(ti)− w4(t) (4.9)

w8(t) = u(ti) + v(ti)− w5(t) (4.10)

w9(t) = u(ti) + v(ti)− w6(t) (4.11)

For comparison purposes, we will also examine the use of a final weight function,

w10(t) = 0, which means that partially followed patients will be excluded entirely
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from the likelihood, leading to use of only completely-followed subjects as proposed

with the original CRM.

4.2.3 Trial Conduct

In Chapter 3, we implemented a stopping rule with the gCRM such that after

at least three patients have been completely followed, the trial can be terminated

if the lower bound of the 95% confidence interval is higher than the targeted rate

Γ. However, during rapid accrual of patients, such a stopping rule would require

enrollment of too many patients before trial termination would be considered. As

an alternative, our stopping rule with the wgCRM will be similar to the one used in

Yuan and Yin (2011a). Specifcally, when patient (M + 1) arrives, 1 ≤M ≤ (N − 1),

for each of the posterior draws of the hyperparameters, we calculate an empirical

probability of p11, denoted as p̂11. If more than a fraction, φ, of the posterior draws

have p̂11 greater than Γ, then we stop the trial and conclude all the dose combinations

under study are overly toxic. i.e., a trial using the wgCRM should be terminated if

P (p11 > Γ) > φ. By using such a stopping rule, an overly toxic trial can be terminated

very early, so as to enhance patient safety. Also, by varying φ, the investigator has

the option to choose between conservative and aggressive stopping rules.

Like we did with the gCRM, we still limit the patient escalation or de-escalation

to within the neighborhood of the current dose assignment as a trade-off between

patient safety and full exploration of the dose combination space. The conduct of a

trial with partial follow-up via the wgCRM is as follows:

(1) Elicit a priori estimates for the probabilities of DLT for combinations including

the lowest dose of either agent;
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(2) Determine appropriate values for the hyperparameters and rescaled dose values

as described in Section 3.2.2, as well as the cut-off value φ for the stopping rule;

(3) Assign the first patient to combination (1, 1);

(4) When patient i = 2, 3, . . . N arrives, compute a weight for any previously en-

rolled patient without DLT who is still under follow-up using the one of the

weight functions described earlier;

(5) Determine if the stopping rule above has been met. If so, terminate the trial

and conclude all the dose combinations under study are overly toxic; if not, go

to step (6).

(6) Compute the posterior means p̃jk for each combination (j, k) using the method

described in Section 4.2.2. If we let (ji−1, ki−1) denote the combination assigned

to patient i − 1, we define the set of acceptable combinations as S = {(j, k) :

max(1, ji−1−1) ≤ j ≤ min(ji−1+1,m),max(1, ki−1−1) ≤ k ≤ min(ki−1+1, n)}.

The current estimate of the MTC, (j∗, k∗), is the combination in S whose value

of p̃jk is closest to Γ;

(7) If data have been collected on all N patients, use step (6) to compute the final

estimate of the MTC.

4.3 Simulation Studies

4.3.1 General Description

We now compare the performance of the ten weight functions described in Section

4.2.2 via simulation. We have a trial designed to study the sixteen combinations
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of four doses of Agent A and four doses of Agent B. The goal is to determine the

combination with a DLT rate of Γ = 0.20. A total of N = 35 patients will be enrolled

in the trial. Each patient will be followed for T = 100 time units after enrollment.

Agent A will be administered at enrollment, while Agent B will be administered at

time τ = 20 after enrollment. We assume that an average of 15 patients will arrive

uniformly during any follow-up interval [0, T ], so that there is a considerable amount

of partial follow-up that will exist in a trial. We also ran simulations with less than

15 subjects per follow-up interval, but found the differences among the weights are

less distinguishable with less partial follow-up.

The true probabilities of DLT by time T for each combination are exactly the same

as Scenarios A-G used in Section 3.3.1 with the gCRM. By doing so, we are able to

use the results when using the gCRM with complete follow-up as a benchmark for

the performance of each of the weight functions and determine how much information

is lost with partial follow-up. All prior parameter values are the same as they were

with the gCRM, and 3,000 draws were made from each posterior distribution, with a

burn-in of the first 600 samples. A value of φ = 0.8 was used for the threshold in the

stopping rule.

We performed 1,500 simulations for each weight function in each scenario and

each simulation was summarized by the combination selected as the MTC and the

number of patients assigned to each combination.

4.3.2 When Weights are Based on Actual Distribution of DLT Times

In this section, the actual joint and marginal distributions of the DLT times for

both agents were known and used directly in our methods. Specifically, for patients

who experience DLT by time T , the actual time-to-DLT for Agent A was normal
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with mean 70 and standard deviation 25, truncated to lie within the interval [0, 100],

while the actual time-to-DLT for Agent B was normal with mean 60 and standard

deviation 20, truncated to lie within the interval [20, 100]. Thus, for a given follow-up

0 ≤ t ≤ 100, we have

u(t) =
Φ70,25(t)− Φ70,25(0)

Φ70,25(100)− Φ70,25(0)

v(t) =
Φ60,20(t)− Φ60,20(20)

Φ60,20(100)− Φ60,20(20)
,

where Φm,s(x) is the CDF at x for a normal distribution with mean m and standard

deviation s. The two DLT times were also correlated using an FGM copula with

θ = 1. The observed DLT time for each patient with DLT was then selected as the

minimum of the DLT times of Agents A and B. Thus, w9(t) given in Equation (4.11)

is the theoretically “best” weight to use. The first four columns of Tables 4.1 - 4.7

display the simulation results.

From Table 4.1, we see that use of the optimal weight w9 lead to similar operating

characteristics as those when using weights w2, w7 and w8, and these four weights

have the best performance among all the weights, although the magnitude of the

difference from the other weights is marginal, except w10, which is clearly a poor

choice. Specifically, the four best weights have the highest percentages of selecting

an MTC around the targeted dose combination, with at least 54% of simulations

identifying the MTC at combinations with DLT rates within four points of Γ, and

at least 92% within ten points of Γ. They have the highest average percentages of

patients assigned to the doses at or around the targeted dose combination, with about

34%-36% and 64%-68% of patients assigned to combinations with DLT rates within
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four and ten points, respectively, of Γ. Similar findings are made from the results in

Table 4.2.

Scenario C is a difficult setting for all of the weight functions, because the targeted

dose combination is among one of the lowest dose combinations and the majority of

the dose combinations are overly toxic, so that such a trial is has a high probability of

being mistakenly terminated. From Table 4.3, we see that the optimal weight w9 along

with w2, w3, w7, and w8 terminate the trials in 7% or less of the simulations, while

for the rest of the weights the trials are terminated in 8% or more of the simulations.

All five weights identify the MTC within the five-point window of Γ in at least 52%

of simulations and within the ten-point window of Γ in at least 84% of simulations.

Scenario D is a situation when all the dose combinations are overly toxic, and from

Table 4.4 we see that, except for w10 which terminates the trials in all the simulations

and the copula type weights w4, w5 and w6 that terminate more than 93% of the

trials, all the rest of the weights select the lowest dose combination as the MTC too

often, and assigns too many patients to overly toxic dose combinations. However, we

do not think such a scenario is very likely to happen in reality, since in applications,

usually at least the lowest dose combination in a trial is chosen to be safe. It is also

possible that the lower-than-desired rate of earlier terminations may be due to the

stopping rule we selected and other stopping rules might lead to higher rates of early

termination.

Tables 4.5-4.7 continue to confirm what was seen earlier: the optimal weight w9

along with the weights w1, w2, w7 and w8 have better performance than the rest of

the weight functions. Moreover, use of w10, is a poor choice, and we can always do

better to incorporate partial information than ignore it altogether.
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4.3.3 When Weights are Based on Assumed Distribution of DLT Times

In Section 4.3.2, the true joint distribution of DLT times was known and was used

to specify the forms of u(t) and v(t) as well as the theoretically appropriate form

for w(t). We now assess the performance of the ten weight functions when the true

joint distribution and true marginal distributions of the two DLT times are unknown.

Specifically, we use the functions u(t) = t/T and v(t) = (t−τ)/(T −τ), which assume

uniform DLT times over [0, T ] for Agent A and [τ, T ] for Agent B. In reality, DLTs

are simulated to occur uniformly over the interval [0, τ ], when Agent B has yet to be

administered, with cumulative probabilities of DLT equal to (0.01, 0.02, 0.03, 0.04) for

doses 1, 2, 3, and 4 of Agent A, respectively. After Agent B has been administered,

DLTs occur uniformly in the last third of the combined follow-up period, e.g. in the

last [(T − τ)/3] time units of the follow-up period. All other parameters and values

used in the simulations are the same as those in Section 4.3.2. The simulation results

are displayed in the four columns of Tables 4.1 - 4.7.

From Table 4.1, we see that w2, w7, w8 and w9 have comparable performance

that is better than the rest of the weights. Combinations with DLT rates within four

points of the targeted DLT rate are identified as the MTC in 54%-55% of simulations

when using one of these weights, as compared to no more than 50% with any of

the other weights. Furthermore, combinations with DLT rates within ten points of

the targeted DLT rate are identified at the MTC in 92%-95% of simulations when

using one of these weights, as compared to no more than 91% with any of the other

weights. This trend continues with the average percentage of patients assigned to

each combination. Specifically, when using w2, w7, w8 and w9, 32%-36% (64%-68%)

of patients are assigned to combinations with DLT rates within four (ten) points of
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Γ, as compared to around 31% (58%) for the remaining weights. These four weights

also lead to some of the lowest rates of early termination.

In Tables 4.2 and 4.3, we see that using weights w2, w3, which are the maximum

and mean amounts of follow-up, respectively, and weights w7, w8, and w9, which

assume the DLT times are possibly correlated with uniform marginal CDFs, all lead

to the best performance of the wgCRM, both in terms of identifying the MTC and

assigning patients to combinations with DLT rates close to the targeted DLT rate.

Within these five weights we see that w3 does not perform as well as the other weights.

Given that the DLT times are independent and that DLTs occur rather late (rather

than uniformly), none of the weights is expected to be ”best” and it is unclear why

w7, w8, and w9, which all make strong distributional assumptions about the DLT

times, perform better than the other weights. Most notably, weights w4, w5, and

w6 all lead to unacceptably high rates of early termination. Tables 4.2 and 4.3 also

demonstrate how inclusion of only partially-followed patients, using w10, tends to

identify the MTC less often than the other weights, and more importantly, assigns a

much smaller fraction of patients to desirable combinations.

In Table 4.4, which summarizes the setting when all combinations are overly toxic,

only the copula-type weights w4, w5 and w6, as well as w1 and w10 correctly terminate

the trial in 91% or more of the trials, while all other weight functions lead to early

termination rates of 77% or less. Use of these copula-type weights also leads to

enrollment of fewer patients, on average. However, because use of the copula-type

weights always tends to select combinations with low DLT rates as the MTC and

higher rates of mistakenly terminating a trial, this is the only scenario where use of

the copula-type weights leads to better operating characteristics than using any of

the other weights. From Tables 4.5 - 4.7, we continue to see that using weights w2,
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w7, w8, and w9 all lead to similar operating characteristics that are better than those

when using the remaining weights.

4.4 Concluding Remarks

Based upon the results of our simulation study, we make the following general

conclusions. First, incorporation of data from patients with incomplete follow-up is

always better, in terms of identifying combinations close to the MTC and assignment

of patients to those combinations, than basing decisions solely using data from pa-

tients with complete follow-up. Most notably, incorporation of incomplete follow-up

allows for faster escalation of doses of either agent and thereby will always assign

more patients to the MTC when it includes a high dose of either agent. Second, use

of the FGM copula-type weights w4, w5 and w6, as compared to the other weights,

tends to cause over-estimation of the DLT rates of all combinations, which results in

assignment of more patients to dose combinations whose DLT rates are less than the

desired DLT rate Γ and also higher rates of early termination. However, we chose

the FGM family of copulas mainly because of its simple analytical form and perhaps

other copulas may produce weights that result in better operating characteristics.

Third, as theoretically shown, our simulations also support using weights that are

based upon the true joint distribution of the time-to-DLT of both agents. Doing so

leads to a higher percentage of correct identifying the MTC, the average percentage of

patients assigned to combinations with DLT rates close to that desired, and a lower

rate of early termination in trials in which at least one combination is acceptable.

However, the optimality of weight w7, w8, or w9, depending upon the amount of

correlation between the DLT times of the agents, is impacted by the incorporation of
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a stopping rule. Specifically, in scenarios where many of the dose combinations have

DLT rates above the target Γ and the MTC exists at a combination with a low dose

of either agent, use of these weights leads to higher rates of early termination, which

in turn lessens the ability of the wgCRM to correctly identify the MTC.

Fourth, even when the joint distribution of the time-to-DLT of both agents is

known, use of the “naive” weights w2, the larger of the two marginal CDFs, and

w3, the average of the marginal CDFs, tends to produce operating characteristics

that are comparable to those when using the “optimal” weights. Fifth, when the

joint distribution of the DLT times of the agents is not known, we continued to

see comparable operating characteristics among the weights w2, w3, w7, w8, and

w9 when assuming uniform margins for the times to DLT of each agent. However,

our simulations focused upon one specific example of actual DLT times and our

results may not be generalizable to other settings with different marginal failure time

distributions of the two agents.
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Table 4.1: Operating characteristics of the wgCRM in Scenario A using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Lower Higher Lower Higher

Within Within than than Early Within Within than than Early

4 pts 10 pts 10 pts 10 pts Termination 4 pts 10 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 59 90 2 6 2 59 90 2 6 2

w1 50 91 3 4 2 40 75 6 2 17
w2 54 92 1 4 3 46 90 6 1 3
w3 48 88 4 5 3 44 86 7 2 5

w4 43 84 5 4 7 32 60 3 2 35
w5 48 88 4 5 3 32 65 4 1 30
w6 49 89 4 4 3 35 70 4 1 25

w7 54 92 2 4 2 49 91 6 2 1
w8 54 95 1 3 1 49 92 5 1 2
w9 55 95 1 4 0 51 92 5 2 1

w10 38 68 3 5 24 49 86 5 5 4

Average Percentage of Patient Assignments

gCRM 45 77 10 13 0 45 77 10 13 0

w1 33 66 10 13 0 25 57 28 3 12
w2 36 68 6 24 2 36 75 19 7 0
w3 29 58 31 6 5 32 71 23 4 2

w4 28 57 34 5 4 17 43 31 2 24
w5 31 58 31 6 5 19 46 31 1 22
w6 30 62 29 6 3 23 51 30 2 17

w7 34 66 5 28 1 38 77 14 8 1
w8 32 64 5 28 3 37 77 16 7 0
w9 34 65 5 28 2 37 76 15 7 2

w10 14 34 48 1 17 20 45 52 4 0
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Table 4.2: Operating characteristics of the wgCRM in Scenario B using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Lower Lower
Within Within than Early Within Within than Early
5 pts 10 pts 10 pts Termination 5 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 80 95 5 0 80 95 5 0

w1 65 93 6 1 37 67 20 13
w2 76 94 5 1 43 80 19 1
w3 70 93 5 2 39 75 22 3

w4 57 85 13 2 31 54 19 27
w5 60 86 12 2 31 60 22 18
w6 62 89 10 1 34 63 19 18

w7 79 96 2 2 48 82 18 0
w8 78 95 3 2 49 83 18 0
w9 76 95 4 1 47 81 18 1

w10 47 74 14 12 46 79 18 3

Average Percentage of Patient Assignments

gCRM 66 84 17 0 66 84 17 0

w1 39 60 40 0 17 37 57 6
w2 64 83 17 0 32 58 40 2
w3 55 77 22 1 25 49 50 1

w4 22 44 53 3 10 24 58 18
w5 25 46 51 3 11 26 59 15
w6 28 49 51 0 12 29 57 14

w7 71 85 12 3 39 63 37 0
w8 70 84 13 3 37 63 37 0
w9 68 85 13 2 37 63 37 1

w10 12 29 63 8 17 34 61 5
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Table 4.3: Operating characteristics of the wgCRM in Scenario C using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Higher Higher
Within Within than Early Within Within than Early
5 pts 10 pts 10 pts Termination 5 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 52 86 6 8 52 86 6 8

w1 48 82 10 8 35 55 7 38
w2 52 86 9 5 49 80 8 12
w3 52 84 9 7 46 76 8 16

w4 43 69 10 21 21 31 5 64
w5 44 73 11 16 27 41 6 53
w6 47 77 11 12 29 44 5 51

w7 54 88 9 3 53 86 9 5
w8 57 89 9 2 51 85 9 6
w9 54 87 9 4 50 83 9 8

w10 25 40 7 53 43 70 14 16

Average Percentage of Patient Assignments

gCRM 37 75 21 4 37 75 21 4

w1 31 63 31 6 25 55 19 26
w2 28 49 49 2 32 60 32 8
w3 32 55 42 3 33 65 27 8

w4 26 66 18 16 17 44 8 48
w5 28 67 22 11 20 49 11 40
w6 30 68 25 7 20 49 10 41

w7 27 44 55 1 33 59 39 2
w8 26 43 56 1 33 59 39 2
w9 26 44 49 7 32 59 38 3

w10 9 54 8 38 13 68 26 6
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Table 4.4: Operating characteristics of the wgCRM in Scenario D using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Lowest Other Early Lowest Other Early
Dose Doses Termination Dose Doses Termination

Average Percentage of MTC Selections

gCRM 5 0 95 5 0 95

w1 14 1 85 7 2 91
w2 39 10 51 27 6 67
w3 33 6 61 19 4 77

w4 5 0 95 2 0 98
w5 6 0 94 3 0 97
w6 7 0 93 3 0 97

w7 48 13 39 35 9 66
w8 47 13 40 35 6 59
w9 47 12 41 31 8 61

w10 0 0 100 9 0 91

Average Percentage of Patient Assignments

gCRM 31 9 60 31 9 60

w1 31 19 50 22 11 67
w2 26 52 22 27 45 28
w3 28 48 24 26 34 40

w4 29 7 64 18 4 78
w5 28 9 63 18 7 75
w6 28 9 63 19 9 72

w7 24 61 15 26 50 24
w8 24 62 14 28 48 24
w9 23 62 15 27 47 26

w10 26 0 74 50 7 43
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Table 4.5: Operating characteristics of the wgCRM in Scenario E using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Lower Higher Lower Higher

Within Within than than Early Within Within than than Early

2 pts 10 pts 10 pts 10 pts Termination 2 pts 10 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 42 74 11 12 13 42 74 11 12 3

w1 28 67 12 17 4 25 49 11 11 29
w2 31 72 5 19 4 32 68 14 14 4
w3 31 71 8 18 3 34 65 14 9 12

w4 27 62 13 11 14 16 34 7 9 50
w5 29 61 14 14 11 19 39 7 8 46
w6 27 63 16 15 6 21 41 10 9 40

w7 33 74 5 19 2 33 69 14 12 5
w8 32 72 6 20 2 33 68 15 14 3
w9 31 73 6 19 2 31 69 14 13 4

w10 17 35 9 12 44 28 62 14 14 10

Average Percentage of Patient Assignments

gCRM 29 59 19 21 1 29 59 19 21 1

w1 27 53 29 16 2 21 38 32 8 22
w2 24 51 10 35 4 30 58 25 16 1
w3 27 57 13 28 2 30 51 28 10 11

w4 23 41 40 8 11 17 28 31 5 36
w5 24 46 38 11 5 18 31 30 6 33
w6 26 47 36 11 6 19 34 32 6 28

w7 22 48 8 43 1 30 58 21 20 1
w8 22 47 8 41 4 31 58 22 18 2
w9 23 51 9 40 0 30 59 21 18 2

w10 12 19 48 5 28 17 30 56 9 5
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Table 4.6: Operating characteristics of the wgCRM in Scenario F using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Higher Higher
Within Within than Early Within Within than Early
4 pts 10 pts 10 pts Termination 4 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 44 84 9 7 44 84 9 7

w1 33 80 11 9 25 60 6 34
w2 42 81 17 2 33 82 11 7
w3 40 80 16 4 30 77 9 14

w4 26 69 8 23 13 35 5 60
w5 28 71 10 19 18 41 6 53
w6 30 76 9 15 20 49 6 45

w7 46 81 18 1 37 84 12 4
w8 42 77 20 3 36 84 12 4
w9 45 79 17 4 38 82 11 7

w10 40 80 16 4 30 77 9 14

Average Percentage of Patient Assignments

gCRM 40 81 17 2 40 81 17 2

w1 29 72 23 5 21 63 12 25
w2 31 54 43 3 32 71 24 5
w3 34 60 36 4 29 72 18 10

w4 20 72 13 15 13 50 5 45
w5 21 73 15 12 16 52 7 41
w6 23 73 16 11 18 59 11 30

w7 31 51 49 0 33 68 29 3
w8 31 49 49 2 33 69 28 3
w9 31 50 49 1 32 68 29 3

w10 6 54 4 42 13 73 16 11
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Table 4.7: Operating characteristics of the wgCRM in Scenario G using 10 different
weights. All values are multiplied by 100.

Known Joint & Marginal Unknown Joint & Marginal

Distribution of DLT Times Distribution of DLT Times

Lower Higher Lower Higher

Within Within than than Early Within Within than than Early

5 pts 10 pts 10 pts 10 pts Termination 5 pts 10 pts 10 pts 10 pts Termination

Average Percentage of MTC Selections

gCRM 59 91 5 4 0 59 91 5 4 0

w1 48 77 22 3 0 38 67 18 4 11
w2 50 74 22 1 3 41 71 24 3 2
w3 48 74 21 1 4 39 70 23 5 2

w4 45 74 17 6 3 33 60 13 6 21
w5 46 75 19 4 2 32 60 16 8 16
w6 46 74 21 4 1 32 63 16 7 14

w7 49 71 26 0 3 43 73 26 1 0
w8 49 73 22 1 4 43 73 26 1 0
w9 47 71 26 1 2 41 70 27 2 1

w10 33 64 17 13 6 35 66 28 5 1

Average Percentage of Patient Assignments

gCRM 38 75 18 8 0 38 75 18 8 0

w1 23 46 33 20 1 18 38 46 9 7
w2 25 48 25 23 4 24 48 35 15 2
w3 27 51 26 21 2 21 45 37 14 4

w4 20 41 45 13 1 13 28 50 6 16
w5 21 43 42 14 1 14 32 51 7 10
w6 22 44 41 16 0 16 34 52 7 7

w7 27 50 22 26 2 25 50 30 20 0
w8 28 51 22 26 1 25 50 30 20 0
w9 26 50 22 26 2 25 52 28 19 1

w10 11 29 58 8 5 10 26 57 16 1
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CHAPTER V

Summary and Future Work

This dissertation focuses on two outstanding issues in phase I oncology trials: one

is how to incorporate the partial information from patients that are still under follow-

up in order to instantly assign a treatment to the next available patient right at his

arrival; the other issue is approaching efficient methods with higher accuracy, less re-

quired information, less complexity, and more robustness to model mis-specifications

to handle dose-finding in dose combinations from two agents.

In Chapter II and Chapter IV, we developed methods that dealt with incomplete

follow-up in either one-agent or two-agent trials. Via simulations we showed that

our proposed methods had the ability to reduce the overall duration of trial while

consistently maintaining high accuracy in targeting the correct MTC or MTD, and

assigning a high percentage of the patients to or around the recommended dose or

dose combination. In Chapter III, we showed how to develop a generalized CRM

using the logistic or power model of the CRM that extends the one-agent CRM to

a two-dimensional space. We showed via simulations that, as compared to several

other methods that aim to solve the same type of issue, the proposed method gCRM

is less complex, more robust, and performs better in terms of both the frequency of
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recommending the correct MTC or the frequency of assigning patients around the

recommended dose combination.

The main idea used to generate the time-to-event versions of phase I trials is to

incorporate adaptive weight functions into the algorithm. In Chapter II, we developed

the time-to-event version of the BCD, and the weight function is calculated from

the DLT outcomes of the previously followed patients, as well as the proportion of

time that had been followed on patients that are still under follow-up. Besides the

CRM and BCD, which are representatives of the parametric and non-parametric

phase I dose-finding algorithms, and already have their time-to-event versions of the

algorithm, there is another distinct type of Phase I trial, called the group up-and-

down designs. In such designs, in stead of being enrolled one after another, the

patients enter a trial in groups with at least two patients per group, and the same

group of patients are assigned to the same dose at the same time. One future work

is to develop time-to-event versions of such group up-and-down designs.

The gCRM proposed in Chapter III is a serious contender to several other two-

agent phase I dose-finding algorithms in literature. However, in applications, partic-

ularly in the pharmaceutical area, usually patients are entered into a study in cohorts

rather than one by one. Therefore, one future direction in the two-agent phase I

trials is to develop methods that generalizes the group up-and-down designs from the

one-dimensional space to the two-dimensional space.

The weighted gCRM proposed in Chapter IV generalizes the gCRM by allowing

partial follow-up in the dose assignment decision rule. In the optimal weight we had

proposed, we used the FGM family of Copulas. It should be noted that we chose

FGM Copula for illustration purpose mainly because of its simple analytical form.

The FGM Copula requires that the correlation between the failure times of the two
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agents is known to the investigators. However, this correlation information may not

always be available. On the other hand, there can be many other Copulas that can

model the joint distribution of the failure times of the two agents, but require different

information about the two agents other than their correlation. Due to the different

requirements of various types of Copulas, investigators may choose other types of

Copulas based on the available information from the two agents.

Overall speaking, this dissertation focuses on the applied aspect of statistics. It

addresses practical issues in phase I oncology trials, and the methods developed here

are easy to carry out, and are directly applicable in real life scenarios. One more step

that will make the current work better is to develop software support. For example,

building R packages, SAS macros, SPSS modules so that these algorithms can be

more easily implemented.
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