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Chapter 1 

Overview 

 

 Until the past few years, the tremendous success of complementary metal 

oxide semiconductor (CMOS) technology since its invention in the 1960s was the 

result of shrinking the size of transistors through the use of top-down lithographic 

techniques. Owing to the excellent natural interface between silicon and silicon 

dioxide, no major changes to the device design were needed, in spite of the existence 

of high mobility materials such as germanium and III-V compounds. However, this 

top-down paradigm of transistor size scaling is now being seriously challenged due to 

a number of practical and fundamental problems as the device size approaches the 

few-nanometer scale [1-3]. As the device size shrinks, the device characteristics 

become increasingly sensitive to dimensional variations. For example, simulations of 

a double-gate metal-oxide-semiconductor field-effect transistor (MOSFET) [3] 

predict that for a device with channel length 5 nm and channel thickness 2 nm, either 

a 0.2 nm variation in the length or a 0.1 nm variation in the thickness would result in 

a 50 mV shift in the threshold voltage. It is very difficult to control the device 

dimensions with such precision, and the increasing costs associated with lithography 

equipment and operating facilities needed for traditional manufacturing may create 

an economic barrier to continued scaling. Hence the bottom-up growth of functional 
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 Another route toward reducing power dissipation is to reduce IOFF. In a 

conventional MOSFET, SS has an inherent thermodynamic lower bound of 60 

mV/decade at room temperature. To this end, an alternative device concept, the 

tunnel field-effect transistor (TFET), has been proposed to circumvent this limit (Fig. 

6). While the current conduction mechanism in a conventional MOSFET is 

thermionic emission over a potential barrier, a TFET uses quantum-mechanical band-

to-band tunneling to bring charge carriers into the device channel. Thus in a TFET 

very low OFF currents are possible. This would allow a reduction of VT (and hence a 

reduction in Vdd). However, Si-based TFETs suffer from low ON currents owing to 

its large band gap. Ge has a smaller band gap and thus may offer higher ON currents. 

To this end, in Ch. 3 we explore the use of vertical Ge nanowires grown on Si for 

the construction of a p-channel TFET. In addition, the nanowire geometry offers 

several attractive features when used as the channel of a TFET, including excellent 

gate coupling, scalability, and the coherent relaxation of strain for creating defect-

free tunnel heterojunctions on Si. 

 While much effort in nanowire research is aimed at creating high performance 

electronic devices, the technological promise of semiconductor nanowires extends 

beyond their electronic properties: exploiting their mechanical degrees freedom will 

be a key to unlocking their full potential. Nanoelectromechanical systems (NEMS) is 

an emerging field in which nanoscale structures are mechanically manipulated with 

electrical actuation. In particular, nanoscale resonators have the potential for 

important applications in ultrasensitive mass and force sensing, and quantum 

measurement [31-38] (Fig. 8). Here nanowire-based mechanical resonators 



 

p

in

su

th

d

 

 

C

sy

fi

fr

co

n

ac

otentially ca

ntrinsic to a 

urfaces, and

heir small si

oubly clamp

FIG. 8. Ex

from silico

To su

CMOS-comp

ystems. Cha

ield-effect tr

rom Ge/Si c

oncept. Cha

anowire res

ctuation/de

an obtain ul

 bulk crysta

d minimize l

ize and exce

ped nanowir

xample of a 

on nitride. A

ummarize th

patible grow

apter 3 exam

ransistor. W

core/shell n

apter 4 dem

sonators wit

etection, in s

ltrahigh qua

al, minimize

losses due to

ellent mater

re mechanic

doubly clam

Adapted from

he contents o

wth techniqu

mines the pr

We demonst

nanowires an

monstrates d

th a dual-gat

situ frequen

10 

lity factors b

e surface loss

o bulk impu

ial quality. T

cal resonato

mped nanom

m Ref.[39].

of this thesis

ues with an 

rospects for 

rate high pe

nd discuss t

oubly clamp

te configura

ncy tuning an

by suppress

ses owing to

urities and cr

To this end

or. 

mechanical b

 

s, Chapter 2

 eye toward

 a Ge nanow

erformance 

the junctionl

ped, Very-H

ation that all

nd selective

sing acoustic

o their atom

rystal defec

, in Ch. 4, w

beam resona

2 focuses on

d hybrid nan

wire-based v

 Esaki diode

less field-eff

High Freque

lows integra

e actuation o

c energy los

mically smoo

ts owing to 

we investiga

 

ator, made 

n nanowire 

nowire-CMO

vertical tunn

es constructe

ffect transist

ency (VHF) 

ated electric

of different 

ses 

oth 

 

ate a 

OS 

nel 

ed 

tor 

 

cal 



11 
 

vibrational modes. Finally in Chapter 5, we make some concluding remarks and 

discuss the future work to be done. 
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Chapter 2 

Growth of Si, Ge, and Ge/Si core/shell nanowires: toward 

CMOS integration 

 

2.1: Introduction 

 Over the last five decades, reducing the size of complementary metal–oxide–

semiconductor (CMOS) field-effect transistors (FETs) has enabled extraordinary 

improvements in the switching speed, density, functionality and cost of 

microprocessors. But now, due to this aggressive device scaling, CMOS technology 

faces serious challenges[1-3]. As discussed in Ch. 1, semiconductor nanowires can 

help address some of these challenges. They can enable control of channel thicknesses 

with near-atomic-scale precision, and the nanowire geometry is ideally suited for the 

gate-all-around structure toward which the semiconductor industry is moving. Since 

nanowires are grown from the bottom-up, they represent a radical break from 

traditional top-down manufacturing methods. The traditional technology, which is 

implemented in semiconductor fabrication plants and developed over decades and 

billions of dollars, is quite mature and it would not make economic sense to replace 

it with entirely new technology. Instead, semiconductor nanowires can be used for 
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special high performance devices to complement traditional devices on the same 

chip.  

 Realizing such a hybrid nanowire-CMOS system would require careful 

consideration of whether the nanowire growth process could disturb the properties 

of the CMOS devices. When considering the CMOS-compatibility of the growth 

process, it is useful to look at two components: thermal budget and materials. The 

thermal budget used for fabricating nanowire-based devices depends on whether 

metal diffusion is a concern. For example, if the nanowire growth occurs during the 

back-end-of-line (BEOL) portion of the fabrication process, which begins with the 

first metal interconnect layer, then the thermal budget would be highly constrained. 

To prevent metal diffusion, a general rule of thumb is that the process temperature 

should not exceed ~450 °C [40], although the time t spent at the process 

temperature also influences diffusion (with a diffusion length evolving roughly as 

Dt , where D is the diffusion coefficient whose temperature dependence follows a 

thermally activated Arrhenius equation). On the other hand, if the nanowires are 

grown during the front-end-of-line (FEOL) portion of fabrication, and prior to gate 

metal deposition, much higher growth temperatures could be tolerated.  

 Material compatibility means that any new materials introduced into the 

process should not contaminate the existing CMOS devices. Throughout most of the 

history of CMOS, there had been only a handful of CMOS-compatible materials: Si 

and its oxides and nitrides, dopants, and Al-based metals. Recently, there has been a 

trend in the industry to introduce more materials: SiGe, Cu-based metals, high-k 

dielectrics (e.g. HfO2, ZrO2), and low-k dielectrics (e.g. carbon-doped oxide). The 
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list is expanding (e.g. high mobility III-V materials are being considered). In any 

effort to introduce a new material, it is important to consider whether the material 

could be a contamination risk, and if so, whether the process can be designed to 

mitigate the risk. 

 In this chapter, we explore nanowire growth strategies that aim toward 

CMOS integration and strive to remain CMOS-compatible. To this end, after some 

additional background in Ch. 2.2, in Ch. 2.3 we discuss our progress in Si nanowire 

growth, by replacing the Au catalyst with Al, which is CMOS-compatible. In Ch. 

2.4, we discuss progress toward the vertical integration of Ge, a technologically 

important material, on a Si substrate (which is envisioned to contain CMOS devices 

in the future), while maintaining a low thermal budget. 

2.2: Overview of the nanowire growth process 

 Semiconductor nanowires are generally synthesized by employing metal 

nanoclusters as catalysts via a vapor-liquid-solid (VLS) or a vapor-solid-solid (VSS) 

process, the former being more widely used than the latter. We now illustrate the 

VLS process using as an example the growth of a Ge nanowire with a Au nanoparticle 

as the catalyst (the main process used in Ch. 2.4 and Ch. 3; the Al-Si system 

discussed in the Ch. 2.3 behaves similarly - see Fig. 10(a)). Fig. 9 depicts the binary 

alloy phase diagram for the Au-Ge system. The process begins with a metal 

nanoparticle (Au) in the presence of a vapor phase containing the semiconductor  
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temperature above this value. Eventually the alloy becomes supersaturated with the 

semiconductor material (shaded region in Fig. 6), at which point a crystalline 

semiconductor phase (c-Ge) precipitates out of the alloy. This latter phase constitutes 

the growing nanowire; nanowire nucleation has occurred. The continued 

precipitation of the solid semiconductor at the solid-liquid interface leads to 

nanowire elongation, with the alloy droplet riding on top. In the VSS process, this 

sequence of events is similar except that the metal nanocluster remains in the solid 

state. In this case, the diffusion of semiconductor material through the nanocluster is 

much slower[41]. 

 The nanowires used in Chapter 4 (nanoelectromechanical devices) are 

crystalline metal oxide (SnO2) nanowires. These are grown using a vapor-phase, 

metal-catalyzed process, very similar to VLS. First, vapor phase Sn is generated from 

heating a Sn source metal. Then the vapor condenses at a Au nanocluster, and from 

the nanocluster a SnO2 nanowire is nucleated. However, the exact mechanism of 

metal oxide nanowire growth is still under debate in the literature. Since Chapter 4 

focuses on the nanoelectromechanical device properties rather than potential CMOS 

integration, for further details we refer the reader to Chapter 2 of Ref. [42]. 

2.3: Growth and electrical properties of Al-catalyzed Si nanowires  

 One requirement for the integration of nanowires with CMOS is that the 

nanowire growth process should be CMOS-compatible. In this section we address 

one of the CMOS integration issues, namely, the material contamination risk posed 

by the catalyst material used in the nanowire growth process. Currently the most 
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widely used catalyst material is Au. For example, the SnO2 and Ge nanowires we use 

in Ch. 2.4, Ch. 3, and Ch. 4 are grown using Au as the catalyst. Furthermore, Au is 

often the catalyst for the growth of Si nanowires[43, 44], which have been widely 

studied due to the fact that CMOS technology is based on silicon. However, Au 

forms deep trap levels inside the Si band gap, and poses a potential contamination 

problem for processing. This is particularly an issue for hybrid nanowire-CMOS 

systems. Even though several studies have found that the influence of Au residing in 

the nanowire bulk is negligible [45-47], alternative catalyst materials may still be 

preferred. To date, Fe and Cu were reported as catalysts for Si nanowire growth 

with limited success [48, 49]. Ni as a catalyst[50] was also studied. However, due to 

the high eutectic temperature (964 °C) of Ni–Si alloy, a high synthesis temperature 

was required. Recently Al-catalyzed Si nanowire growth has attracted significant 

interest[51, 52]. However, the growth of Si nanowires using Al catalysts has been 

shown to be difficult due to the fact that Al readily reacts with ambient O2 and H2O, 

thereby forming a surface oxide layer that prevents the continued influx of Si 

reactants into the catalyst[51]. In addition, Al is a shallow acceptor in Si and is 

therefore expected to yield p-type Si nanowires[53]. Previous studies have thus far 

resulted in large-diameter Si nanowires that behave as degenerately Al-doped 

semiconductors with minimal gate response, making them unsuitable in electronics 

applications[52]. 

 In this study we demonstrate Al-catalyzed, small diameter Si nanowires grown 

via the VLS process, and discuss their electrical properties. Specifically, by using high 

H2 and SiH4 partial pressures we were able to minimize the Al oxidation effect and 
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successfully grew large quantities of small diameter Si nanowires with high growth 

rate, minimal tapering, and high aspect ratio. In addition, we observed that the 

effective doping level is diameter-dependent, and small diameter (d < ∼25 nm) Al-

catalyzed nanowires behaved as p-type semiconductors with good gate response, 

while larger diameter Al-catalyzed nanowires behaved as degenerately doped 

semiconductors due to excessive Al-doping. 

2.3.1: Growth of small-diameter nanowires with high yield 

 Fig. 10(a) shows the Al–Si binary phase diagram employed in the VLS 

nanowire growth process[54]. The substrates used for nanowire growth consisted of 

(111) N-type Si wafers with a resistivity of 0.001–0.002 Ω-cm. The substrates were 

first cleaned in 1:1 H2SO4:H2O2 to remove organic surface contamination for 20 

min, and then dipped in 1 M HF for another 20 min to remove the native oxide and 

create a hydrogen-terminated Si surface. The subsequent de-ionized water rinse was 

minimized to retain as much of the hydrogen-termination as possible. The substrates 

were immediately transferred into the evaporator chamber to deposit 6 nm Al seed 

layer followed by the growth of Si nanowires in a low-pressure chemical vapor 

deposition (CVD) system. Once the Al-coated Si substrates were loaded into the 

CVD system, they were annealed at 590 °C for 5 min under 100 Torr H2. The 

annealing, performed at a temperature above the Al/Si eutectic temperature of 577 

°C, was intended to facilitate the Al film agglomeration on the surface and the 

formation of liquid eutectic droplets with the Si substrate. In particular, the 

hydrogen-rich environment during annealing was found to be effective to remove 
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annealing, Si nanowires were grown at 520 °C for 30 s in the same system. The SiH4 

partial pressure during growth ranged from 50 to 75 Torr, and the total reactor 

pressure was kept at 100 Torr balanced by H2. The H-rich environment during 

growth in turn helps prevent aluminum oxide poisoning and results in long, Al-

catalyzed Si nanowires. 

 Fig. 10(b) shows a scanning electron microscopy (SEM) image of typical Si 

nanowires grown on the Al-coated Si substrate at 520 °C. Higher magnification SEM 

image of the tip region of the nanowires shown in Fig. 10(c) inset verified the 

presence of metal nanoparticle at the tip of the nanowires. High density Si nanowires 

with large aspect ratio were obtained with minimal tapering. Compared with earlier 

studies, the reduced tapering is believed to be due in part to the high nanowire 

growth rate (> 5 μm/min), which reduced the time available for vapor-solid 

deposition to occur[52]. Furthermore, the high growth rate suggests that the Al 

catalyst remains in the liquid state during the growth, even though the growth 

temperature is below the bulk eutectic temperature. Similar effects have been 

observed in the growth of Au-catalyzed Ge nanowires and can be explained by 

supercooling of the eutectic[56], and lowering of the eutectic temperature in the 

nanoparticle form[57]. Depending on the SiH4 partial pressure, the as-grown Si 

nanowires have diameters in the range of 20–100 nm and exhibit a unimodal 

diameter distribution with peak range at 60–70 nm and 30–50 nm for SiH4 partial 

pressures of 50 and 75 Torr during growth, respectively [Figs. 2.3.1(c) and (d)]. In 

general, we observed that higher SiH4 partial pressure resulted in smaller diameter 

nanowires, consistent with previous studies on Au-catalyzed nanowires[43, 58]. 
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Notably, we were able to obtain long Al-catalyzed nanowires with diameters down 

to 20 nm, much smaller than previously reported[51, 52]. The effect of the SiH4 

partial pressure is to adjust the thermodynamic conditions for nanowire growth. 

Growth proceeds by thermodynamically driving the transition from the vapor phase 

(SiH4) to the nanowire phase, which is a combination of bulk solid phase and the 

formation of surfaces. The transition occurs because there is a net decrease in the 

effective chemical potential. However, when the nanowire is made thinner, the 

effective chemical potential of the nanowire phase can increase due to the increased 

surface area-to-volume ratio which is more dominated by surface free energy. This 

increased chemical potential makes the nanowire phase less favorable since during the 

phase transition the reduction of chemical potential is less pronounced. To restore 

the difference in chemical potentials between the two phases, the chemical potential 

of the vapor phase should also increase, which is accomplished by increasing the 

partial pressure.  

 Si nanowire growth with a 10 nm Al seed layer was also tested, resulting in an 

increase in average nanowire diameter up to 100–120 nm. This result matched well 

with the recent studies by Wacaser et al.[51] showing that the average diameter 

increased with the Al seed layer. The finding was attributed to the AlSi alloy droplet 

formation during the hydrogen annealing, where thicker films agglomerated into 

larger droplets. 
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2.3.2: Recovery of semiconductor behavior at small diameter 

 After growth, the nanowires were transferred to an isopropyl alcohol solution 

through sonication and drop-casted to a SiO2/Si substrate (p-type, 0.001–0.005 Ω-

cm with a 50 nm thermal SiO2 layer), and a number of device structures were 

fabricated and tested. Briefly, photolithography was used to define pairs of 

source/drain (S/D) electrodes to contact each nanowire, followed by 3 s buffered 

oxide etch (10:1) dip to remove the native oxide on the nanowire surface 

immediately before the samples was loaded into the evaporator chamber to deposit 

100 nm thick Ni electrodes. Contact annealing at 320 °C for 2 min in forming gas 

(N2/H2, 90/10%) completes the final device structure, with the p+ Si substrate 

serving as the back gate [Fig. 11(a), upper right inset]. All devices reported here 

contain only a single nanowire bridging the S/D contacts, with the electrical 

measurements carried out in air at room temperature. Fig. 11(a), lower left inset, 

shows a SEM image of such a device. Gate dependent current-voltage measurements 

indicate that the as-grown wires are p-type, and suggest that Al is incorporated into 

the Si nanowires [Fig. 11(a)]. Figs. 11(b), (c) and (d) show the family of IDS-VDS 

curves for representative devices with nanowire diameter d = 23, 40, and 80 nm, 

respectively. Significantly, the Si nanowire device with d = 23 nm shows typical p-

type semiconductor characteristics and can be turned off within a VGS bias window of 

10 V. However, the Si nanowire device with d = 40 nm shows reduced gate 

response, and cannot be turned off. Finally, Si nanowire device with d = 80 nm 
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 The carrier concentration can be calculated by extracting the threshold 

voltage VT from the transfer curve measured in the linear (VDS = −0.1 V) region. The 

carrier concentration N (at VGS = 0 V) was then calculated from  0g TN C V  , 

where Cg is the capacitance of the back gate and can be estimated from the cylinder-

on-plane model,  1
02 cosh 2g rC L h d d      , where ε0 is the vacuum 

dielectric constant, h = 50 nm is the thickness of the SiO2 layer, and d is the lateral 

size of the nanowire. εr is the relative dielectric constant and was chosen to be 2.5, 

which is the average of air (1) and SiO2 (3.9)[59]. Over 70 devices have been 

measured. However, for devices having nanowire diameters > 70 nm the carrier 

concentration cannot be reliably extracted due to the lack of gate response. Fig. 

12(a) plots the carrier concentration versus the nanowires diameter obtained from 43 

devices with nanowire diameter < 70 nm. Overall the carrier concentration remains 

high due to Al doping and a large spread of data was observed for large diameter 

devices due to the weak gate dependence and the associated uncertainties in 

extrapolating the carrier concentration data. However, linear fit [red line, Fig. 12(a)] 

to the data shows an overall gradual reduction of the effective doping level as the 

nanowire diameter is reduced. Furthermore, a substantial reduction of the carrier 

concentration was observed for nanowires with diameter < 25 nm, consistent with 

results from Figs. 11(a) and (b) and suggesting that nanowires with small diameters 

show semiconductor characteristics. The field-effect mobility fe of the devices 

versus diameter was plotted in Fig. 12(b) for comparison. Here the mobility fe was 

estimated using the equation, 2
m fe g dsg C V L  in the linear operation regime. Here, 
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2.3.3: Possible mechanisms of carrier concentration reduction 

 Several factors may have contributed to the observed reduction of carrier 

concentration at small nanowire diameters. One possibility is due to quantum 

confinement and the amphoteric defect model (ADM) that governs doping limits in 

both bulk and nanoscale semiconductors [60].  Quantum confinement shifts the 

valence band edge downward from its bulk value in the case of p-type doping (or the 

conduction band edge upward in the case of n-type doping). Meanwhile, ADM sets a 

limit to the attainable Fermi level. Consequently, the maximum achievable carrier 

concentration is suppressed with diameter reduction. However, this effect is 

expected to occur only for diameters < 10 nm [60, 61]. The most plausible 

explanations for the observed reduction in carrier concentration are surface 

depletion, nanoscale dielectric confinement, and/or surface segregation of dopants. 

These are described next. 

2.3.3.1: Surface depletion of charge carriers 

 One possible explanation is based on surface depletion[62]. For a p-type 

nanowire, trapped holes at surface states lead to a positive surface charge, which 

creates a depletion region at the surface (dark annular region in Fig. 13). This 

depletion region reduces the effective conducting cross-sectional area (light circular 

region), and hence reduces the effective carrier concentration. As the nanowire 

diameter decreases, the depletion region occupies a greater portion of the cross-

sectional area. In the limiting, very small diameter case, the nanowire can become 

fully depleted and current can no longer flow. 
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(which is air in our measurements, r ~ 1) reduces the dielectric screening effect and 

increases the ionization energy. Therefore the activated doping level and free carrier 

concentration is reduced in small diameter nanowires. 

2.3.3.3: Surface segregation of dopants 

 A third possible explanation is the surface segregation of dopant atoms [66, 

67]. As the surface area-to-volume ratio of a nanowire increases, a greater portion of 

its atoms reside at the surface; these may undergo surface reconstruction since the 

inter-atomic forces are altered due to terminating the bulk crystal. From ab initio 

simulations it turns out that dopant atoms play a role in the reconstruction such that 

it is energetically favorable for them to reside at the surface. It has been shown that 

when the nanowire diameter is small (d < 23 nm in Ref. [66]) all dopants can be 

accommodated at the reconstructed surface with an intrinsic core. Once this occurs, 

the surface depletion (Ch. 2.3.3.1) and dielectric confinement (Ch,. 2.3.3.2) 

mechanisms can take effect, reducing the effective carrier concentration. As the 

surface-to-volume ratio decreases in larger diameter nanowires, the dopants cannot 

be fully accommodated at the surface and there is a transition back to bulk-doped 

material. 

2.3.3.4: Summarizing remark 

 It is not clear at this moment which of the above three factors is dominating in 

our devices, but it is reasonable to suspect that all three factors should have an 

influence on the observed device behaviors such as the gradual reduction of effective 

doping level for large diameter nanowires and a sharp roll-off for small diameter (d < 

25 nm) nanowires. Further experimental studies (such as the one carried out in Ref. 
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[66]) and theoretical studies will be needed to confirm any dominating mechanism 

responsible to the experimental findings. In any case, the ability to grow small-

diameter, semiconducting Al-catalyzed Si nanowires could be a significant step 

forward for incorporating nanowires into future electronic devices/circuits. 

2.4: Vertical integration of Ge nanowires on Si for high-

performance nanoelectronics 

 In this section we explore the integration of Ge on a Si substrate, with the 

epitaxial growth of vertical Ge nanowires as our core strategy. Germanium offers 

both electron- and hole-mobility enhancements over Si, but is especially attractive 

for its high hole mobility (4X larger). Its smaller band gap (0.66 eV) enables larger 

tunneling currents for applications such as the tunnel FET, as well as photodetection 

at near-infrared wavelengths. However, the heterogeneous integration of Ge-based 

devices on a Si substrate has been challenging due to lattice mismatch (~ 4%) during 

thin film growth. To this end, the vertical nanowire geometry allows for radial strain 

relaxation and the growth of heterojunctions with low defect density and sharp 

interfaces [68-71] (Fig. 14). Thus the hybrid integration of bottom-up nanowire-

based devices with traditional Si substrates offers possibilities to circumvent problems 

associated with conventional thin-film-based heterogeneous integration approaches.  
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vertical FET is determined by the thicknesses of deposited films, which are more 

easily controlled than lithographically defined lengths, very short channel lengths are 

readily achieved[72]. 

2.4.1: Material system: Ge/Si core/shell nanowires 

 The nanoscale element that serves as the device channel in our CMOS 

integration and device proposals of Chapter 3 is a Ge nanowire with an optional Si 

shell. Ge nanowires and Ge/Si heterostructures have been shown to be able to offer 

high carrier mobility and device performance. For example, in a Ge/Si core/shell 

nanowire heterostructure developed by Lu et al. consisting of a ~2 nm Si shell 

epitaxially grown over a ~10 nm diameter Ge nanowire, a 1D hole gas was found to 

be formed and confined inside the Ge core with near ballistic transport even at room 

temperature[22, 73] (Fig. 15(a)). In these quasi-one-dimensional devices, it is 

possible that mobility can degrade due to surface roughness scattering. However, this 

is not expected to occur until diameter < 8 nm [74, 75]. In addition, it is known that 

silicon can passivate a Ge surface for reduced interface state density and higher hole 

mobility [76]. Furthermore, in a nanowire geometry, this passivation effect can be 

enhanced since the nanoscale and comparable sizes of the core and shell lead to a 

coherently strained Si-Ge interface to accommodate the relative large lattice 

mismatch between Ge and Si [77]. By integrating the nanowire channel with high-k 

gate dielectrics (e.g. HfO2) and metal gate electrodes, it has already been shown that 

these nanowire FETs can outperform state-of-the-art Si MOSFET devices[73]. Very 

short channel nanowire FETs whose performance approaches the ideal ballistic 
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resolution transmission electron microscopy (HRTEM) of a representative nanowire 

is shown in Fig. 15(b). 

 To verify the quality of our nanowires, we have configured them in lateral 

back-gated devices for electrical characterization. The nanowires were transferred 

from the growth substrate to a device substrate consisting of degenerately doped Si 

(which serves as the back gate) with a 50 nm-thick layer of thermal SiO2 (which 

serves as the gate dielectric). To make source and drain metal contacts to individually 

selected nanowires, a standard lift-off technique was employed using PMMA (950 

K), electron-beam lithography, and Ni evaporation (where just prior to evaporation 

the sample was dipped in buffered HF for ~2 s to remove the native oxide coating 

the nanowires). To make metal contact to the Ge core, a drive-in anneal (320 °C for 

10 s) was performed in forming gas (5% H2 in N2) using rapid thermal annealing. 

Each device contains one nanowire (inset of Fig. 16(d)).  

 Figs. 16 (a) and (b) show the output and transfer characteristics, respectively, 

of a representative device with 20 nm Ge core diameter and 1 μm channel length. 

The output characteristics show long channel behavior with high ON-current 

density. From the transfer characteristics and using the cylinder-on-plane model for 

the gate capacitance (with an effective dielectric constant of 2.5, which is the average 

of air (1) and SiO2 (3.9)[59]) the hole mobility was extracted to be  550 cm2/Vs, 

which is comparable to the best values reported for this nanowire material 

system[73]. Figs. 16 (c) and (d) show analogous data and similarly good performance 

for a representative device with 10 nm Ge core diameter, with an extracted hole 

mobility of 440 cm2/Vs.  
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 Thus we have demonstrated good control of the nanowire growth and 

produced high quality Ge/Si core/shell nanowires. We next discuss the vertical 

integration of this material system on Si. 

2.4.2: Vertical epitaxial growth of Ge nanowires on Si (111) 

 As mentioned earlier, the vertical epitaxial growth of Ge nanowires has 

several advantages as a technique for integrating Ge on a Si substrate. The vertical 

nanowire geometry allows for radial strain relaxation for defect-free interfaces, 

narrow channel thickness and gate-all-around structure for better gate control, and 

3-dimensional device integration for higher device density. Since Ge nanowires 

normally grow along the <111> direction, vertical epitaxial growth can be achieved 

on (111) Si substrates. Several studies have verified the feasibility of vertical growth 

of Ge nanowires on (111) Si using the vapor-liquid-solid (VLS) mechanism[79-81]. 

Our work closely follows Ref. [81] with the use of Au nanoparticles (20 nm in 

diameter, colloid purchased from Ted Pella, Inc.) as catalyst. Under a reduced-

pressure (30 Torr) atmosphere composed of 0.9% GeH4 in H2, a two-step 

temperature profile was used, in which a high-temperature nanowire nucleation step 

(1 min. at 380 °C) was followed by a low-temperature nanowire elongation step 

(300 °C) to minimize conformal Ge deposition (which would lead to nanowire 

tapering). Fig. 17(a) shows a representative vertical Ge NW with diameter 20 nm 

and length 1-2 μm. As shown in Fig. 17(b), we can grow small-diameter (20 nm) 

vertical Ge NWs on Si with good vertical yield ( > 80%). Next we discuss the 

growth technique in greater detail. 
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2.4.2.3: Temperature ramp rate 

 Once the pressure is stable, it is also important to ramp the temperature at a 

sufficiently high rate to prevent ill-formed nucleation at low temperature (i.e. at less 

than the desired nucleation temperature). It was found that a local substrate heater 

capable of a ramp rate ~5 °C/s was sufficient for producing > 80% yield of well-

formed vertical epitaxial nanowires. 

2.4.2.4: Nanowire diameter 

 The nanowire diameter is governed by the diameter of the Au catalyst. We 

have chosen 20 nm Au nanoparticles to catalyze the growth of 20 nm-diameter 

nanowires. This size approaches the lower bound for growth in the <111> direction. 

For diameters < 15 nm, nanowires begin to exhibit different growth directions, such 

as <110> and <112> [77, 84], making it more difficult to achieve vertical growth 

on a (111) substrate. At the same time, for diameters < 10 nm, quantum 

confinement in the radial direction will increase the effective Ge band gap. This latter 

effect is undesirable for the tunnel field-effect-transistor since it negates the gains of 

using a small band gap material for higher tunneling drive current (See Ch. 3). 

2.4.2.5: Nucleation and elongation 

 As is typical in VLS growth[18], the nanowire length is governed by the time 

spent at the elongation step (growth rate is about 50-100 nm/min). The duration of 

the nucleation step governs the nucleation yield (the fraction of Au catalyst 

nanoparticles that nucleate well-formed nanowires); a longer nucleation time 

corresponds to a higher yield. However, the trade-off is increased nanowire tapering 

due to thermal decomposition of GeH4 at the high nucleation temperature. Shown in 
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Fig. 18(b) is a growth with a high nucleation yield but also a high degree of tapering. 

At the preferred short nucleation time of 1 min., the nanowires have little tapering, 

but there is also a low nucleation yield. The reasons for the low nucleation yield are 

currently unclear. Ref. [85] suggests that the growth conditions (temperature and 

pressure) could be further optimized. During our investigations, we have also seen 

SEM evidence of Au catalyst droplets migrating along the Si surface [44]. At ~400 

°C, the apparent velocity of droplet migration is ~0.3 nm/min. Such a migration 

could indicate the presence of an external (non-equilibrium) disturbance during 

nucleation. Finally, we have observed that the substrate surface properties can have a 

large influence on the nucleation yield. In particular, we found that a Ge buffer layer 

can enable high nucleation yields; this we discuss next. 

2.4.3: Ge buffer layer for nanowire location control and high growth 

yield 

 For fundamental studies, it is sufficient to select one nanowire and build a 

device from it. However, nanowire location control is required for any effort toward 

array fabrication, 3D integration with lateral CMOS devices, and more complex 

nanoscale circuits. Ideally, the Au catalyst nanoparticles are first patterned 

(placement of single particles), and from each nanoparticle a vertical nanowire is 

grown. Several attempts have been developed to selectively deposit nanoparticles at 

pre-defined locations[80, 86-92]. For example, using nanoimprint lithography[90], 

nanosphere lithography[91, 92], or block copolymer-templated deposition[89, 93], 

one can form nanoparticle patterns in a periodic array and achieve controlled 
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nanowire or nanotube growth. Other approaches include surface patterning of 

charges[80, 87, 94]. For example, by patterning a substrate with positive and 

negative charges using self-assembled monolayers, Huang et al. were able to deposit 

single 20 nm Au nanoparticles at 400 predefined sites with 91% accuracy[94]. 

 However, for vertical Ge nanowires, there are a few challenges that must be 

addressed before patterned growth can be realized. First, the above patterning 

methods often result in oxidation of the Si substrate which would destroy its epitaxial 

relationship with the growing nanowire. Removal of this oxide and restoration of 

epitaxial growth may be achieved with the use of Cl-based chemistry during growth, 

although a high temperature of > 800 °C is normally required which may not be 

desirable during device integration. Second, both the nucleation yield (the fraction of 

Au catalyst nanoparticles that nucleate well-formed epitaxial nanowires) and the 

vertical yield (the fraction of well-formed nanowires that are vertical) should be 

sufficiently high. As discussed in Ch. 2.4.2.5, high nucleation yield is difficult to 

achieve without significant tapering of the nanowires.  

 A Ge buffer layer deposited on the Si substrate prior to Au catalyst deposition 

can address both of the above issues[95]. The native oxide of this layer would not 

hinder epitaxial growth because GeOx is much more volatile than SiO2 and hence is 

easily removed during nanowire growth in H2 ambient. This makes available the  



 

 

va

A

an

d

b

p

d

gr

n

F

h

FIG. 19. S

buffer laye

arious patte

Also, since th

nd vertical y

emonstrate

uffer layer o

olyelectroly

eposition of

rew nanowi

ucleation an

ig. 19 show

as been oxid

EM image s

er that was o

erning techn

he Ge buffer

yields are po

d the feasibi

on a (111) S

yte poly-L-l

f 20 nm Au 

ires using a 

nd vertical y

ws that a high

dized in air 

showing hig

oxidized in a

niques menti

r layer is lat

ossible with

ility of this a

Si substrate a

ysine (which

 nanoparticl

 nucleation s

yields are > 

h vertical yie

for ~12 hou

41 

h yield vert

air for ~12 

ioned above

ttice-matche

h little nanow

approach. W

at 550 °C. N

h is positive

les (negative

step of 1 mi

 90 %, high

eld can still 

urs. The use

tical growth

 hours. 

e for pattern

ed with the 

wire taperin

We first dep

Next, the sa

ely charged)

ely charged 

in at 380 °C

h enough for

 be obtained

e of polyele

h, obtained f

ning vertical

 nanowire, h

ng. We have

posited a ~5

ample was c

), followed b

 in colloid).

C. The resul

r patterned N

d on a Ge bu

ctrolyte sug

 

from a Ge 

l Ge nanow

high nucleat

e recently 

50 nm-thick

coated with 

by the 

 Finally, we

lt is that bot

NW growth

uffer layer t

ggests that a

wires. 

tion 

k Ge 

 the 

e 

th 

h. 

that 

a 



42 
 

charge patterning technique (as in Ref. [94]) may be employed for the location 

control of the catalyst nanoparticles. 

 While the Ge buffer layer is likely full of crystal defects and hence not suitable 

as a device layer, it can still serve as a contact for devices. To this end, in the future 

the layer should be heavily doped. Also, lower deposition temperatures should be 

tested, since 550 °C could be too high for CMOS compatibility for BEOL integration 

(see Ch. 2.1). We note that it is possible that doping can also help reduce the 

crystallization temperature. We have demonstrated that boron-doped Ge layers of 

resistivity ~1-5 mΩ-cm can be deposited at 425 °C. 

2.4.4: Post-growth Au catalyst removal 

 The Ge nanowire growths discussed above use Au nanoparticles as the 

catalyst. Au is a contaminant in CMOS technology because it can create deep trap 

levels in the band gap, which are detrimental to device performance (for example, 

for tunnel devices, they increase trap-assisted tunneling in the OFF state and degrade 

the subthreshold swing). There are a few points to note regarding the influence of Au 

on device performance. First, studies strongly suggest that the electrical properties, 

including minority carrier transport, of Au-catalyzed Ge and Si nanowires are 

dominated by surface states rather than bulk impurities [45, 46]; in particular, they 

find that the influence of Au residing in the bulk is negligible. Second, in Au-

catalyzed vapor-liquid-solid growth of Si and Ge nanowires, most of the Au remains 

exposed at the surface and nanowire sidewalls [44, 96]. Hence the removal of the Au 

exposed at surfaces would largely eliminate its influence on electrical behavior. 
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Chapter 3 

Toward Ge nanowire-based vertical tunnel field-effect 

transistors for hybrid nanowire-CMOS systems 

3.1: Introduction 

3.1.1: Subthreshold non-scaling in CMOS 

 As discussed in Ch. 1, one of the fundamental challenges that aggressively 

scaled devices face is increased power dissipation due to subthreshold non-scaling. 

Along with transistor scaling, the supply voltage VDD and the threshold VT need to be 

scaled accordingly to minimize power dissipation and reduce high-field effects. 

However, in a conventional MOSFET, a reduction in VT results in an exponential 

increase in the OFF current IOFF, which would increase static power dissipation. To 

first order, the exponential dependence of IOFF on VT in an conventional MOSFET 

with ideal gate coupling is given by  expOFF TI qV kT  , where q is the electronic 

charge, k is the Boltzmann constant, and T is the temperature. This equation 

illustrates a theoretical limit to the rate at which a conventional transistor can be 

turned off. The origin of this limit lies in the thermal injection of carriers over a 

barrier into the channel (Figs. 21(a) and (b)). Due to the Boltzmann distribution, 

some carriers always have enough energy to overcome the barrier, and furthermore 
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Ch. 1) shows the relationship of ION, IOFF, VT, Vdd, and SS in a conventional MOSFET. 

To maintain acceptably low IOFF, the non-scaling of SS leads to the non-scaling of VT. 

To maintain acceptably high ION, the non-scaling of VT in turn puts a restriction on VDD 

scaling, and causes severe power dissipation (both static and dynamic) and reliability 

issues for aggressively scaled devices (see Ch. 1). 

3.1.2: The tunnel field-effect transistor 

 To continue performance scaling and address the power dissipation issue, the 

tunnel field-effect transistor (TFET) has been proposed. This device can potentially 

offer very steep SS, extremely low IOFF and high speed. A TFET is essentially a gated 

reverse-biased p-i-n diode. The operations of an n-type TFET are schematically 

shown in Figs. 21(c) and (d). When an overlap of the conduction band and valence 

band is achieved between the source and channel, electrons in the valence band in the 

source can tunnel into the conduction band in the channel and be collected by the 

drain (Fig. 21(d)). Since in a TFET the carriers are not thermally injected over a 

barrier, but rather tunnel through it instead, an average SS steeper than 60 

mV/decade is achievable since it is not limited by the Boltzmann distribution on the 

source side, if the gate can effectively change the tunnel barrier thickness. To obtain a 

high ION and a steep average SS in a TFET, having efficient gate control to create a 

high electric field for a thin tunnel barrier is of paramount importance. Fig. 7 in Ch. 

1 illustrates the subthreshold behavior of a TFET. It is seen that in a TFET SS varies 

with gate bias and hence is less physically meaningful than in a conventional 
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MOSFET. For purposes of comparison an average SS can be considered, but then 

care must be taken to also specify the current range over which this average is taken.  

 A number of studies have been performed to explore prototype TFET 

devices. So far, impressive OFF-currents and subthreshold slopes have been 

obtained[97-102]. In a TFET, the OFF-current leakage is caused by the reverse bias 

current through the p-i-n diode and can be suppressed to as low as 0.12 pA/μm[97]. 

Experimentally, several groups have achieved SS < 60 mV/dec in various device 

structures[97-100, 102]. However, devices to date suffer from poor ON-state 

performance due to a low band-to-band tunneling probability, which is exponentially 

dependent on the band gap and the thickness of the tunnel barrier. The highest Ion 

demonstrated to date in a Si-based device is 12.1 μA/um at 1 V[98], which is still 

about two orders of magnitudes lower than that offered by state-of-the-art CMOS 

devices. Employing a narrow band gap material at the source/channel junction can 

give improved ON-state performance[103]. Additionally, heterostructures with 

staggered or even broken band alignment can further reduce the effective tunneling 

barrier and improve the ON-state performance. TFETs based on heterostructures 

including Si/InAs[104] and InAs/GaSb[105] have been demonstrated. However, the 

performance of the reported devices including SS and ION are still not sufficient due 

mostly to material/interface issues. In addition, questions still remain about how to 

integrate these new materials with Si. To this end, germanium-based materials may 

offer a better approach. Germanium offers high hole mobility, a small band gap, and 

can form a staggered heterostructure with a Si source to facilitate high tunneling 

currents. However, the heterogeneous integration of Ge-based devices on a Si 
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substrate has remained challenging due to the relatively large (~ 4%) lattice 

mismatch during thin film growth. A Ge-based TFET on a Si substrate has been 

demonstrated[97], but this device suffers from, in addition to having a low ION and an 

average SS ~ 76 mV/dec, a relatively large fixed charge density at the gate, probably 

due to high defect concentration in the Ge thin film on Si. 

3.1.3: TFET using a vertical Ge NW grown on Si 

 One promising route for fabricating a TFET with steep SS and and high Ion is 

to use the Si-Ge tunnel junction formed at the interface between a vertical Ge 

nanowire grown on a n+ Si substrate. This heterostructure is suitable for a p-channel 

TFET with a Si source and Ge channel (band diagram shown in Fig. 22(b)). 

Compared with approaches based on planar structures, the nanowire geometry 

allows for coherent relaxation of radial strain to accommodate for the lattice 

mismatch between Ge and Si, as well as the creation of sharp interfaces with low 

defect density. In addition, the large valance band offset (~ 600 meV) between Si and 

Ge and the staggered band structure means the effective band gap for tunneling can 

be greatly reduced at the Si/Ge source/channel junction to achieve high ON-

current. The Ge nanowire or a Ge/Si core/shell nanowire with a thin shell serves as 

the channel, offering high carrier mobility and long mean free path for effective 

collection of carriers at the drain side. To complete the device structure, a p+ drain 

can be made on the same nanowire with a thicker shell (our studies have found that 

the effective p-doping in Ge/Si core/shell nanowire structures can be significantly 
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where s
CE  is the conduction band edge in the source, ch

VE is the valence band edge in 

the channel, f1 and f2 are the Fermi-Dirac distributions of the channel and source 

respectively, kx and k  are the components of the electron wave vectors parallel and 

transverse to the direction of current flow respectively, m is the effective tunneling 

mass, and T is the tunneling probability. We use an expression for T derived using a 

Wentzel–Kramers–Brillouin (WKB) approximation for a parabolic tunnel barrier, 

neglecting quantum confinement effects and taking transverse kinetic energy E  into 

account [65],  
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where Eg is the effective bandgap (approximately that of Ge) and F is the average field 

at the junction. F is estimated using the natural length model of a MOSFET [106], 
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where Vth is the threshold voltage, Vgs is the gate voltage, dnw is the nanowire 

diameter, tox is the gate dielectric thickness and nanowire diameter, and  is the 

natural length of a MOSFET with cylindrical gate geometry [107]. As the current 

depends exponentially on the field, the simple estimate of F made here using the 
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 Fig. 23(b) shows the improvement in saturation current as the nanowire 

diameter decreases. It is seen that, due to increased gate coupling, which in turn 

causes efficient modulation of the tunnel barrier width, the total current improves 

down to dnw = 20 nm, even though the channel cross-sectional area is decreasing. At 

dnw = 10 nm, the benefit is not as pronounced, and a drop in total current is seen, 

although the current density still improves slightly. This suggests that 20 nm is a good 

diameter to work with. This value is also important in other respects as well. Below 

20 nm, nanowire growth becomes increasingly difficult and the growth direction 

begins to exhibit non-<111> directions. Additionally, below 10 nm, quantum 

confinement effects will increase the effective band gap, reducing the drive current. 

3.1.4: Chapter overview 

 In this chapter we address some of the engineering challenges in realizing a 

high performance TFET. First and foremost, achieving a vertical epitaxial Si/Ge 

heterostructure that can form an excellent tunnel junction at the source/channel 

interface is the key to realizing a high performance device. This heterojunction 

should have low defect density and a sharp transition region. To this end, in Ch. 3.2 

we demonstrate high performance Esaki tunnel diodes using the heterojunction 

formed by a vertical Ge nanowire grown on a Si substrate. Our results suggest that a 

sharp Si/Ge heterojunction with low defect density is readily achievable. To obtain 

proper gate alignment and further refine the junction properties, in Ch. 3.3 we 

propose a raised source structure combined with low nanowire nucleation 

temperature. Device performance will also critically depend on the details of the 
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fabrication process. In Ch. 3.4, we propose to realize another important FET 

structure, the vertical junctionless FET; the fabrication techniques we develop 

through optimizing this device will greatly aid in realizing the competitive 

performance metrics sought for the TFET. 

3.2: Esaki tunnel diodes based on vertical Si-Ge nanowire 

heterojunctions 

 In this section, we demonstrate the fabrication and the electrical 

characterization of heterojunction Esaki tunnel diodes based on small-diameter (∼20 

nm) Ge/Si core/shell nanowires grown vertically on a Si substrate. Esaki diodes[108] 

have been proposed in applications in neuromorphic circuits[109, 110], solar 

cells[111], and microwave amplifiers[112]. Besides these practical applications of 

Esaki diodes, this device structure is also useful for studying and evaluating the tunnel 

junction itself for the TFET. The Esaki tunnel diode essentially constitutes the critical 

source/channel portion of a TFET (e.g. Fig. 22(a), except that the lightly doped Ge 

nanowire channel is replaced with a heavily doped Ge nanowire, and without a gate 

electrode). We find that a representative device exhibits a peak-to-valley current 

ratio (PVR) of 2.75 at room temperature, a high peak current density of 2.4 

kA/cm2, and a high tunneling current density of 237 kA/cm2. Furthermore, the 

temperature dependence of the current-voltage characteristics indicates a low density 

of defect states at the heterojunction. Thus this study forms a solid foundation for 

further TFET research. 
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3.2.1: Vertical diode fabrication 

 The vertical diode fabrication also provides insight into how the vertical TFET 

can be fabricated. The tunnel diode device began with a degenerately doped n-Si 

(111) wafer (resistivity of about 0.002 Ω-cm, which corresponds to an n-type doping 

level of ~4×1019 cm-3)[113]. 20 nm Au catalyst nanoparticles were dispersed onto 

the Si substrate and vertical Ge nanowires were grown epitaxially using the methods 

discussed in Ch. 2.3.2. Nanowire nucleation took place at 380 °C for 1 min, 

followed by elongation at 300 °C for 45 min at a total pressure of 30 Torr (0.9% 

GeH4 in H2). To selectively grow the Si shell to create heavy p-doping in the 

nanowire, as well as limit leakage current between the top and bottom contacts 

outside the nanowire contact window, the as-grown nanowires were transferred to 

an Atomic Layer Deposition (ALD) chamber where a 25 nm-thick conformal layer of 

Al2O3 was deposited at 150 °C. Next, the Al2O3 film was selectively removed from 

the nanowires by masking the substrate with 30 nm-thick layer of spin-on-glass 

(semiconductor grade 700B from Filmtronics, Inc.), followed by wet etching in a 36 

°C bath of 85% H3PO4 for ∼15 min After a de-ionized (DI) water rinse and critical 

point drying, the sample was loaded into a tube furnace where a ∼2 nm-thick Si shell 

was grown around the Ge nanowires at 465 °C for 3.5 min and 5 Torr with a flow of 

20 sccm SiH4. The bottom portion of the core/shell nanowire was then encapsulated 

in a 250 nm-thick layer of spin-on-glass and cured at 300 °C for 45 min. To make 

electrical contact to the exposed upper portion, the sample was dipped briefly in 

buffered hydrogen-fluoride, rinsed in DI water, and immediately transferred to an 
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evaporator where 100 nm Ni was deposited at an angle of 30°- 45° to ensure 

sufficient contact area between metal and nanowire. A drive-in anneal was 

performed using rapid thermal annealing at 320 °C for 30 s in 5% H2/N2 to form 

contact to the Ge core. Care was taken to ensure that the selected device under study 

contained only one nanowire. A schematic of the cross section of the completed 

device structure is shown in Fig. 24(a). 

 Some features of the above fabrication process are noteworthy in regard to a 

future attempt at realizing a vertical tunnel FET. First, the process shows that the Si 

shell deposition need not be deposited in situ after nanowire growth. In spite of the 

fact that the bare Ge nanowire was exposed to air, Al2O3, H3PO4, and H2O prior to 

the Si shell deposition, we achieved high performance devices (see following 

section). This is attributed to the fact that GeOx is volatile and is readily removed in a 

hydrogen-rich ambient (which is present during shell deposition). The implication is 

that the Si shell deposition can be used as a general technique for selective passivation 

and/or doping of the Ge nanowire. Second, the technique of wet etching the high 

quality ALD-deposited Al2O3 using H3PO4 as etchant and spin-on glass as etch mask 

is selective against both Si and Ge, and therefore is a general technique for creating 

high quality spacer layers in a future vertical FET device. This contrasts with the 

efforts of research groups who use polymer spacer layers that may breakdown easily 

and introduce leakage currents. 
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analyzer with the bias applied to the Ni top contact while keeping the Si substrate 

grounded. Several devices were measured and showed similar characteristics. Data 

from the most representative device are shown here. Fig. 24(c) shows a current 

voltage (I-V) plot taken at room temperature (294 K) showing pronounced negative 

differential resistance (NDR) with a PVR of 2.75, the signature behavior of an Esaki  

diode and confirming the band diagram of Fig. 24(b). The peak current density is 

estimated to be 2.4 kA/cm2, which is among the highest values previously reported 

for nanowire- or Si-based Esaki diodes[111, 114]. Fig. 24(d) shows a semi-

logarithmic plot taken from the same voltage sweep showing a larger voltage range at 

both forward and reverse bias. The reverse tunneling current density of 237 kA/cm2 

at 1 V reverse bias is also among the highest previously reported for nanowire-based 

devices[111, 115] and confirms the potential of the Ge/Si nanowire-based tunneling 

devices. 

3.2.3: Temperature dependence indicates low-defect density 

 Detailed temperature-dependence measurements were performed to 

elucidate the physical mechanisms of the observed current-voltage characteristics. 

Fig. 25 shows several representative I-V curves at both forward and reverse bias 

taken at various temperatures. We first focus on the NDR region located in the 

forward-bias window from 0 to 0.4 V (Fig. 25(a)). The PVR increases as the 

temperature is decreased, with the highest PVR of 4.29 obtained at 86 K (the lowest 

temperature studied here). More importantly, the current in this region can be well-

fitted to a model based on band-to-band tunneling[65] 
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where Vin is the voltage across the heterojunction, Ip and Vp are, respectively, the peak 

current and peak voltage of the NDR, Ith0 is the saturation current for thermionic 

emission, and n is the diode ideality factor. Essentially, the first term in Eq. (6)  

empirically models the direct band-to-band tunneling current which dominates at 

low bias, while the second term models the thermionic emission current which 

dominates at high bias. Using Ip, Vp, Ith0, and n as fitting parameters, we obtained very 

good fits to our data as seen in Fig. 25(a). To obtain the best fits, a temperature-

dependent parasitic series resistance Rs was also included[114] so that in sV V IR  , 

where V is the external applied voltage. The temperature-dependence of Rs is likely 

due to the presence of a small Schottky barrier at the interface between the Ni top 

contact and the Ge nanowire, and its inclusion into the model does not change the 

main results. From the fitting, the intrinsic peak voltage Vp ≈ 0.082 V was found to 

be roughly independent of temperature. The term for the so-called excess current, 

which accounts for tunneling via defect states in the band gap[65], was not included 

here. We found that the excess current term was not needed to accurately reproduce 

the behavior of our device, suggesting that the device contains a low density of defect 

states and a high quality Si-Ge heterojunction between the n-type Si substrate and the 

p-type Ge nanowire. 

 Similar fittings were performed for reverse bias (Fig. 25(b)). Here, the 

current is modeled by the expression for tunneling across a triangular barrier[65] 
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where VR is the absolute value of the applied reverse bias, m is the effective tunneling 

mass, Eg is the effective band gap, ɛs = 14ɛ0 is the permittivity of the semiconductor 

(taken to be the average between that of Si and Ge[65]), F is the maximum field at 

the junction interface, N is the doping concentration, Vbi is the diode built-in 

potential, and C is a device-dependent prefactor. From the literature, the effective 

tunneling mass m is estimated to be 0.037m0 for the Si-Ge heterojunction[116]. The 

effective band gap is given by  Geg g CE E E  , where Eg(Ge) is the band gap of Ge 

and ΔEC is the conduction band offset between Si and Ge, which is estimated to be 

0.05 eV from the difference in electron affinities[65]. Eg(Ge) has a temperature 

dependence established empirically as[65] 

 
2

4Ge 0.74 4.77 10 eV
235g

T
E

T
  


.                                 (9) 

The series-resistance effect was not considered in this case since the Schottky barrier 

at the Ni/Ge contact would be forward-biased at these bias conditions and its 

contribution should be small. As a result, only two fitting parameters, N and Vbi, 

were used to fit all the curves at different biases and temperatures in Fig. 25(b). 

Excellent fits were obtained with N = 3×1019 cm-3 and Vbi ranging from 0.67 V to 

1.17 V. The value of N is consistent with an assumption made in Eq. (8) that the 
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doping level is similar on both sides of the junction. Vbi is given by bi g p nqV E E E   , 

where Ep (En) is the distance between the Fermi level and the valence (conduction) 

band edge. The fact that we obtained qVbi > Eg is again consistent with the band 

diagram and the tunneling picture shown in Fig. 24(b). These analyses 

unambiguously verify that the band-to-band quantum mechanical tunneling model 

captures the dominant conduction mechanism in reverse bias, and again support the 

claim that the nanowire and the substrate form an effective tunnel junction for Esaki 

diode and TFET applications. 

 The temperature dependence of the peak current Ip is shown in Fig. 26. 

Theoretically, Ip can also be estimated from the tunneling model and has the 

following form[65, 117]: 

3 2

0

4 2
exp

3
g

p p

m E
I I

q F

 
  
 
 

,                            (10) 

Here the only temperature dependence term originates from the band gap Eg. Using 

Eq. (10) and keeping the same parameters used in the fitting results of Fig. 22, we 

obtained a good fit of Ip vs. temperature as shown in Fig. 26. This agreement suggests 

that the temperature dependence of Ip manifests itself only through the temperature 

dependence of the band gap (Fig. 26, inset), i.e., a reduction in Eg leads to a higher 

tunneling probability. This observation again justifies the use of Ge nanowires to 

form high-performance Esaki diodes and possibly TFETs.  
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we show some work-in-progress that continues our development toward a high 

performance TFET. In Ch. 3.3.1 we address the issue of gate alignment, and in Ch. 

3.3.2 we demonstrate sub-eutectic vertical epitaxial growth for improving the 

junction sharpness. We also demonstrate that both of the proposed techniques may 

be combined.  

3.3.1: Vertical growth of Ge nanowires on Si nanopillars for optimal 

vertical FET gate alignment  

 An apparent disadvantage of the nanowire-substrate geometry is that it does 

not allow for optimal alignment of a gate to the source-channel interface, which is 

critical for tuning the tunnel barrier thickness there. As shown in Fig. 27 (a), the 

dielectric spacer layer between the gate and the source misaligns the gate from the 

nanowire-substrate tunnel junction. A more ideal geometry is shown in Fig. 27(b), in 

which the Ge nanowire has been grown on a Si nanopillar. As shown in the figure, 

this raised source structure allows proper gate alignment for optimal coupling with 

the tunnel junction. We have demonstrated the feasibility of this hybrid top-

down/bottom-up technique (Fig. 27(c)). The process begins with the use of a Au 

nanoparticle as an etch mask for creating a Si nanopillar using reactive ion 

etching[118]. Then the same Au nanoparticle catalyzes the growth of a vertical Ge 

nanowire in a self-aligned fashion. In addition to allowing precise gate alignment, this 

geometry may offer reduced defect density at the interface due to the so-called 

compliant substrate effect[68-71, 119], in which not only can the nanowire geometry 



 

co

w

 

oherently ac

well, such th

FIG. 27. 

(b) By fir

alignmen

nanowire

ccomodate s

hat the strain

 (a) TFET ga

rst etching a 

nt for contro

es (diameter

strain along

n is partition

ate is misali

 Si nanopilla

ol of the tun

r 30 nm) gro

64 

g three dime

ned between

gned with t

ar, the geom

nnel junction

own epitaxi
 

ensions, but 

n the two.  

the Ge/Si N

metry allow

n. (c) SEM i

ially on Si na

 the substra

 

NW/substra

s optimal ga

image of ver

anopillars. 

ate can do so

 

te junction 

ate 

rtical Ge 

o as 

 



65 
 

3.3.2: Sub-eutectic growth of vertical epitaxial Ge nanowires on Si for 

ultrasharp heterojunctions 

 To achieve a steep subthreshold slope in the TFET, ideally its tunnel junction 

should be atomically sharp and defect-free. The Esaki diode measurements of Ch. 3.2 

suggest that our Ge/Si heterojunctions have a low defect density and a transition 

region of a few nanometers or less (otherwise negative differential resistance would 

not have been observed). While the results are promising, there is still a concern 

regarding the junction sharpness. Since the bulk eutectic temperatures of Au-Si and 

Au-Ge are similar (360 °C for Ge, 363 °C for Si), Si-Ge intermixing may still occur 

during nanowire nucleation at 380 °C. There have been several studies regarding the 

feasibility of achieving sharp axial Si-Ge heterojunctions in bottom-up grown 

nanowires[120-123]. Generally, junctions formed via the vapor-liquid-solid growth 

mechanism become graded due to the so-called reservoir effect that occurs in liquid 

catalysts. Wen et al. have achieved ultrasharp junctions using the vapor-solid-solid 

mechanism (where the catalyst remains in the solid state)[121]; however, the Au2Al 

alloy catalyst they used most likely would result in high levels of unintentional Al p-

doping of the Ge nanowire ([121]; also see Ch. 1.2). Here we propose to investigate 

the Si-Ge heterojunction formed by a vertical Ge nanowire grown on a Si substrate, 

using Au catalysts and nucleation temperatures < 360 °C. Our work suggests that 

vertical growth and ultrasharp junctions are achievable for nucleation temperatures < 

320 °C. Shown in Fig. 28(a) is an SEM image of vertical Ge nanowires nucleated at 

320 °C on a Si substrate. The vertical yield is comparable to that obtainable at higher 

temperature nucleation (> 50%). Fig. 28(b) shows a high resolution TEM  
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image of a Ge nanowire nucleated on a Si nanopillar at 320 °C. The transition region 

appears to be very sharp (< 2 nm). Interestingly, the Au catalyst at the tip of the 

nanowire (inset of Fig. 28(b)) is faceted, suggesting that the growth condition is close 

to that of the vapor-solid-solid mechanism[56, 121]. More detailed studies are 

needed to confirm these conclusions. 

3.4: Prospects for vertical junctionless field-effect transistors based 

on Ge/Si core/shell nanowires 

 Growing a nanowire channel on a substrate which is then used as a device 

contact creates a convenient platform for exploring other device concepts. For 

example, by changing the substrate doping from n+ to p+,  a vertical tunnel FET is 

transformed immediately into a conventional MOSFET with gate-all-around 

geometry. If in addition, the nanowire is also doped p+, another important FET 

structure, the vertical junctionless FET, is formed. While the basic physics of the 

tunnel FET and the junctionless FET are very different from each other, optimizing 

the performance of one will greatly aid the optimization of the performance of the 

other. Since they share the same basic vertical Ge nanowire channel grown on a Si 

substrate, they share fabrication challenges such as optimizing the gate stack, forming 

a low-resistance top contact, and depositing spacer layers. Indeed, with our nanowire 

platform it can be argued that fabricating a high performance junctionless FET is a 

prerequisite for a high performance tunnel FET, since the former is a simpler 

structure that does not need a tunnel junction. To this end, here we show some 
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work-in-progress toward realizing a high performance junctionless FET. As this 

device has gained much interest recently, first we begin with some background. 

3.4.1: Introduction to junctionless FET 

 As CMOS devices continue to scale down, it becomes increasingly difficult to 

fabricate devices with short channel lengths (sub-100 nm). Extremely sharp doping 

profiles (e.g. transition from 1019 cm-3 n-type to 1018 cm-3 p-type in a couple 

nanometers) are required, and this imposes severe constraints on the processing 

thermal budget. In nanowire-based FETs, short channels are achievable with a 

controlled silicidation process to form nanoscale source-drain silicide contacts[78]. 

However, these devices suffer from high OFF current due to the use of Schottky 

contacts which cause ambipolar conduction (i.e. the lack of a band gap in the silicide 

allows carriers of the opposite type to tunnel into the channel at large gate voltages). 

Furthermore, the use of any junctions to separate contacts from the channel makes 

gate alignment increasingly difficult as the channel length decreases.  

 To address the above issues, a nanowire structure, termed a “junctionless 

FET,” has emerged as a promising candidate[124]. The junctionless FET is very 

similar in construction to the conventional MOSFET except that its source, channel 

and drain are heavily doped uniformly throughout, i.e., there are no junctions 

separating them. Fig. 29 compares the operation between the two devices. The 

channel region is only defined by the gate so issues with alignment or dopant profiles 

do not come into play. Unlike the conventional MOSFET in which the channel is a 

sheet of inversion charge at the oxide-semiconductor interface (Fig. 29(a-b)), the 
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junctionless transistor requires nanoscale dimensions and nanowire geometry to 

allow full depletion of carriers in the OFF state, and a high density of majority 

carriers to allow sufficient drive current in the ON state. As it becomes more and 

more challenging to define junctions in aggressively scaled MOSFETs, this concept 

offers an attractive alternative with its much-easier fabrication flow and competitive 

performance metrics. Nanowire-based FETs are especially suited to implement this 

concept due to their small channel thicknesses and gate-all-around geometry for 

excellent gate coupling. At the same time, vertical nanowire-based FETs are 

attracting interest due to their scaling potential. To date, more progress has been 

made in developing n-channel vertical FETs[125, 126] than in developing p-channel 

vertical FETs[127]. Only a few vertical p-channel nanowire-based FETs have been 

demonstrated, and their performance is nowhere near that of their lateral 

counterparts [73], and hence currently there is an opportunity to significantly 

advance the state-of-the-art. 

3.4.2: Device proposal and preliminary electrical measurements 

 We can develop a vertical junctionless p-channel FET using a vertically grown 

Ge/Si core/shell nanowire. In our device, schematically shown in Fig. 30(a), the 

underlap regions between gate and contacts serve as source and drain. To get a 

reasonable ON current, the nanowire needs to be doped to a level of 1019 cm-3 or 

more. With conventional dopants, however, the hole mobility will typically degrade 

to about 50 cm2/Vs or less. But in our device, the Si shell can provide (via 

modulation doping effects) a high density hole gas in the Ge core without intentional 
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working devices, our tentative process flow is as follows (once optimized, the 

fabrication process also will give valuable insight into the processing of the TFET and 

other vertical device structures). We begin with a p-type degenerately doped Si 

(111) wafer which serves as external connection to the drain contact. Vertical Ge 

nanowires (20 nm in diameter, 1-2 μm in length) are grown and a ~2 nm-thick Si 

shell is deposited in situ, using the methods described in Ch. 2.4.1 and 2.4.2. Next, 

atomic layer deposition (ALD) is used to deposit a 25 nm-thick conformal layer of 

Al2O3, which acts as both gate dielectric and as spacer between gate and bottom 

contact. Next, ~30 nm Cr is sputtered to form the gate-all-around structure. The 

gate length is defined with a ~200 nm-thick layer of spin-on glass (SOG, 700 B from 

Filmtronics) cured at 300 °C, followed by wet etching of Cr in CR-14. The SOG 

acts as etch mask for the Cr etch; hence the thickness of the SOG determines the gate 

length. To form the spacer between gate and top contact, another layer of SOG 

(which again serves as etch mask) is spin-coated, and the Al2O3 exposed at the 

nanowire tips is wet-etched in a temperature-controlled bath of 85% H3PO4. Finally, 

the top metal contact is formed with Ni (evaporated at an angle of ~30°- 45° to 

ensure sufficient contact area along the nanowire sidewall), followed by a drive-in 

anneal using rapid thermal annealing (320 °C for 30 s) to make metal contact to the 

Ge core. 

 With the above process, we have established basic transistor functionality. 

Shown in Fig. 30(b) are output curves showing transistor gating and high ON current 

density. This device shows short channel behavior, probably caused by uncertainties 

in the Cr etch and the thick oxide. With further improvements (see next section), it 
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should be possible to improve the device performance to levels comparable to state-

of-the-art lateral devices based on the same nanowire material system[73].  

3.4.3: Fabrication developments 

 Here we show some fabrication techniques we have developed at the time of 

this writing that will improve upon the process described in the previous section, and 

make progress toward realizing a high performance nanowire-based vertical 

junctionless FET. The techniques are general enough that they can be directly applied 

to the fabrication of the vertical tunnel FET as well. 

 First, we have changed the gate metal from Cr to Al. Besides being CMOS-

compatible, Al has a work function low enough to yield enhancement-mode devices 

based on Ge/Si core/shell nanowires [73]. Second, we can define the gate length 

using PMMA instead of spin-on glass. The latter is difficult to remove selectively, 

while the former is easily removed using acetone. Selective removal of this gate-

definition layer allows one to inspect the gate and measure its length directly in the 

scanning electron microscope. Shown in Fig. 31(a) are ~300 nm Al gates defined in 

this manner. 

 We have also refined our control of the wet etching of Al2O3, such that we 

can separately define the gate-bottom contact spacer and the gate dielectric (in the 

previous process, the same Al2O3 layer was used as both spacer and gate dielectric). 

Fig. 31(b) demonstrates that a reproducible timed etch of the Al2O3 at 36 °C can 

remove the conformal Al2O3 layer around the nanowire, while leaving it undisturbed 

(via a spin-on-glass etch mask) elsewhere so it can serve as a high quality spacer layer. 
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3.5: Summary 

 In summary, high performance Esaki diodes made from Ge/Si core/shell 

nanowires have been demonstrated. Temperature-dependent current-voltage 

measurements indicate a high quality Si-Ge heterojunction. Further studies may 

include probing the junction quality at lower temperatures (e.g. 4.2 K with liquid 

He) where trap assisted tunneling can be observed to quantitatively study the trap 

density at the junction [128]. 

 In addition, we have grown vertical epitaxial Ge nanowires on Si nanopillars 

at a sub-eutectic temperature of 320 °C. This result is useful for creating ultrasharp 

heterojunctions and enabling proper TFET gate alignment at the junction. Finally, we 

have developed some fabrication techniques for vertical FET structures. In particular 

we have demonstrated Al cylindrical gates and the use of high quality Al2O3 as spacer 

material while allowing independent selection of gate dielectric material/thickness. 
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Chapter 4 

Radio frequency nanowire resonators and in situ frequency 

tuning 

 

 The previous two chapters focused on topics which emphasized the electronic 

properties of nanowires, with particular attention to CMOS-compatibility. 

However, the technological potential of nanowires reaches into novel degrees of 

freedom, in particular the mechanical degrees of freedom. With its small mass, a 

nanowire can be set into mechanical motion at energies that are easily accessible via 

on-chip electrical forces. Such nanoelectromechanical systems (NEMS) have potential 

applications including ultrasensitive mass and force sensing [31-35], ultra-low-power  

frequency domain signal processing [129], and quantum measurement [36-38]. 

NEMS devices can be roughly classified as quasistatic, in which each mechanical state 

is static (e.g. the two states of a single-pole, single-throw switch), or resonant, in 

which the mechanical motion and transducing signals are time varying (e.g. 

mechanical resonators). Here we focus on the latter. 

4.1: Introduction 

 For many NEMS applications, the pursuit of ultrahigh quality factor Q is of 

paramount importance. This dimensionless parameter quantifies how well a 
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resonating structure can store its energy in the preferred oscillating mode. Q can be 

defined as 2π × (energy stored) / (energy lost per cycle of oscillation). A resonator 

in communication with its environment will ultimately achieve thermal equilibrium, 

and hence no resonator is perfect, such that during each cycle some energy is 

dissipated into the environment. Minimizing the dissipation (~1/Q) within a 

resonant mechanical element is essential for maximizing its sensitivity to externally 

applied forces (signals), maximizing its tolerance to fluctuations that degrade spectral 

purity (i.e. broaden its natural linewidth), and minimizing power consumption. 

There are a number of fundamental dissipation mechanisms, including interactions 

between the normal mode of interest (a normal mode is a dynamic state of the 

system in which all degrees of freedom have the same harmonic time dependence, 

e.g. motion of the oscillator) and other mechanical normal modes (e.g. phonons) and 

interactions between electrons and phonons. There are also non-intrinsic dissipation 

mechanisms, including the motion of ions or defects in the crystal due to the imposed 

strain, and interactions with surface contaminants. Finally, there are device-

dependent external dissipation mechanisms such as clamping loss. 

 It was expected that nanoscale mechanical resonators potentially can obtain 

ultrahigh Q by suppressing acoustic energy losses intrinsic to a bulk crystal [130]. As 

a resonator’s dimensions decrease, the wavevectors of the allowed normal 

mechanical modes (through which energy exchange and heat conduction are possible) 

become more spread apart in k-space, such that many of these phonon modes can be 

frozen out at low enough temperatures. The sample becomes smaller than the mean 

free path of phonons. Eventually, when only a handful of modes remain (it is not 
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possible to freeze out all modes), we reach the quantum limit of thermal conduction, 

where each mode conducts heat with the thermal conductance quantum, and 

phonons travel ballistically through the resonator (inside which temperature is no 

longer well defined). Ballistic phonon transport has been demonstrated 

experimentally. In nanoscale rods with very smooth surfaces, phonon mean free 

paths have been measured in excess of 3-10 μm [131, 132]. Thus, a resonator with 

such minimal thermal conductance can be expected to minimize the energy exchange 

between its oscillating mode and other mechanical modes and achieve high Q. 

 However, experiments with nanoscale resonators have indicated a 

degradation of Q as the surface-to-volume ratio increases, and there is strong 

evidence that surfaces play a dominant role in the dissipation(see Ref. [133] and 

references therein). Fig. 32 shows that experimentally measured Qs tend to scale 

downward with linear dimension (i.e. volume-to-surface ratio), illustrating the 

importance of surface-related dissipation mechanisms. In this respect it may be 

difficult for top-down etching techniques to produce an ultrahigh Q NEMS resonator 

out of a bulk substrate or thin film, since these techniques can result in rough and/or 

contaminated surfaces. To this end, bottom-up chemically synthesized nanowires and 

nanotubes have emerged as attractive candidates for the construction of NEMS 

devices because of their small size, excellent material properties, and atomically 

smooth (potentially low-loss) surfaces[134]. Very-high frequency (VHF) and 

ultrahigh frequency resonators have recently been demonstrated based on these 

nanomaterials [34, 134-139]. 
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4.3: Electrical actuation/detection setup 

 The nanowire resonators were actuated capacitively from the gates and 

detected electrically using a scheme in which the nanowire itself, also configured as a 

transistor, serves as a mixer [136, 137]. In capacitive actuation, an electrostatic force 

is induced on the NW by applying an ac drive voltage at frequency ω either to the 

gate or one of the S/D electrodes. The resulting motion modulates the capacitance C 

between the nanowire and the gate. The changing capacitance is converted into an ac 

current signal at the drain, and is added to the ac current that is already present from 

normal transistor action. Since at high frequencies the ac current is not directly 

measurable because it escapes through the parasitic capacitances of the contact pads, a 

mixing signal with a frequency offset     is applied at the drain contact so that 

the transistor will mix the signal of interest down to a low frequency that can be 

measured with a lock-in amplifier.  

 In the double source setup (Fig. 35(b)), the drive signal  cosac
g gv v t  is 

applied to the gate and the mixing signal   cosac
d dv v t     is applied to the 

drain, and the resulting signal amplitude at mechanical resonance as measured by the 

lock-in amplifier is given by 

   
0

22 11
2

dcdC
dz g g di V v v k Q   

   ,                              (11) 

where µ is mobility of the nanowire transistor, C and z are respectively the 

capacitance and distance between nanowire and gate, dc
gV  is the dc bias on the gate, 

and k and Q are respectively the spring constant and quality factor of the resonator. In 
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the single source setup, both the drive and mixing signals are provided at the drain 

via amplitude modulation:     1 cos cosac
d dv t v t     and 0ac

gv  . In this case, 

the resonance signal at the lock-in is given by  

     
0

2 22 11
2

dcdC
dz g di V v k Q   

  ,                            (12) 

i.e. both methods give similar output amplitudes. All measurements were performed 

inside a vacuum probe station at room temperature at a pressure of ∼ 10−5 Torr. 

4.4: High Q achieved at room temperature and size scaling 

 The output signal for a typical nanowire resonator using this electrical 

actuation/detection method is shown in Fig. 35(c), along with a Lorentzian fit that 

yields a quality factor of Q = 2200 and resonant frequency f0 = 59.0 MHz. The 

quality factor value measured at room temperature was among the best that have 

been reported on doubly clamped nanotube or nanowire resonators at the time of 

this writing [34, 135-139]. The force sensitivity of the nanowire resonator was 

estimated to be 1.4×10-13 N/Hz0.5. 

 For the fundamental flexural mode of a suspended beam, the resonant 

frequency f0 can be estimated as 

0 2
1.03

d E
f

L 
  (13) 

where E is the Young’s modulus, ρ is the mass density, d is the thickness of the beam 

in the direction of motion, and L is the length of the suspended region. In Fig. 35(d) 

we plot the dependence of f0 as a function of the geometry factor d/L2 for nine 
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devices (markers), along with the theoretical prediction (solid line) using ρ = 7103 

kg/m−3 for bulk SnO2, E = 154 GPa for SnO2 nanobelts[143] and d and L values 

measured from direct SEM imaging. The good agreement with the data verified the 

feasibility to electrically actuate and detect the fundamental flexural mode of 

nanowire resonators using this approach. In addition, it indicates that our nanowire 

resonators behave as rigid beams with little residual tension or slack[144] and whose 

frequencies can be well predicted from parameters controlled during the fabrication 

process. 

4.5: Nonlinear operation 

 In addition, the nanowire resonators can be readily driven into the nonlinear 

operation regime. This is due to the fact that the onset of nonlinearity occurs for 

small applied force (hence low input power) in large aspect ratio (e.g., one-

dimensional) structures [138, 139, 144]. Fig. 36(a) shows the response of a typical 

nanowire resonator at different DC gate biases. At large drive amplitudes (high DC 

bias) the increase in tension results in a strong non-linear effect and lead to a bi-stable 

region manifested as hysteresis in the response-frequency curve (Fig. 36(b)), a state 

commonly known as a Duffing oscillator [145]. The critical amplitude ac at which the 

resonator response becomes nonlinear can be calculated by fitting the resonance 

amplitude vs. frequency at different drive voltages and yielded ac = 13 nm for the 

device in Fig. 4.5, corresponding to a driving force of 3.7 ×10−10 N. The small 

driving force puts a limit on the dynamic range (DR) of the nanowire resonator, but 

it has also been argued that non-linear operations may lead to novel applications such 
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4.6: In situ frequency tuning 

 Besides providing a means to electrically actuate and detect the nanowire 

mechanical motion, the on-chip gates offer the capability to tune the resonant 

frequency f0 of the nanowire resonators in situ. This feature can be used in 

applications such as NEMS-based tunable bandpass filters [129]. Gate induced 

frequency tuning can be attributed to either a capacitive softening effect (which 

reduces f0) or elastic hardening effect (which increases f0)[136, 144]. In this study we 

employed a dual-gate setup that enables us to study the two effects independently 

and show that the resonant frequency f0 can be tuned up or down simultaneously by 

applying appropriate dc biases to the gates. The insets of Figs. 37(a) and 37(b) show a 

SEM image and a schematic of a device with the dual-gate setup consisting of a global 

back gate and a local side gate near the nanowire, respectively. The double source 

method was used in this study in which the ac drive signal ac
gV  was applied to the side 

gate and induced flexural motion inside the electrode plane (the “in-plane” motion). 

The main panels of Figs. 37(a) and 37(b) show the position of the resonant frequency 

f0 (for this in-plane motion) as a function of the dc voltages applied to the bottom 

gate Vback and side gate Vside, respectively. It can be seen that the resonant frequency 

increases as the magnitude of Vback increases [Fig. 37(a)] while the opposite is true for 

the side gate bias Vside [Fig. 37(b)], thus allowing independent tuning of the frequency 

for the same vibrational mode. 
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4.6.1: Discussion of tuning mechanisms 

 The observed frequency tuning behavior can be attributed to two different 

mechanisms: the elastic hardening and capacitive softening of the spring 

constant[144]. When a dc voltage Vback is applied to the back gate, it pulls the beam 

toward the gate thus induces tension inside the nanowire resonator. This elastic 

hardening increases the resonant frequency and can be estimated from Eq. (14) when 

tension is not too large (in the so-called bending regime), 

2 2
2 '2

0 0 44
dcEZ

f f
L




  ,            (14) 

where Zdc is the static displacement of the center of the beam and can be estimated 

from    2 4 31
2 32dc eff backZ F k dC dz LV Ed L     , where F is the static force of 

deflection and  12 cosh 2C z d   is the capacitance per unit length of a 

cylindrical wire with diameter d at a distance z from the gate. The resulting 

expression shows that in the bending regime, the resonant frequency depends on the 

gate voltage following 4
backA BV . Using measured parameters z, d, and L, the 

factor B can be calculated to be ≈ 1.7×109 Hz2 V−4. This value agrees reasonably 

well with the fitting (solid curve) in Fig. 37(a), which yielded B = 5×108 Hz2 V−4, 

considering the uncertainties involved in the system. The corresponding dc 

deflection of the nanowire beam Zdc was estimated to be ≈ 1 nm at maximum dc bias 

of 5 V. 

 On the other hand, if a dc voltage Vside is applied to the side gate, the 

electrostatic force is in the direction of the nanowire oscillation and the bias not only 
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creates tension but also induces a capacitive softening effect, which we show below 

can be dominating. Since the electrostatic force is proportional to dC/dz and is 

strongest but opposite to the elastic restoring force when the nanowire moves closest 

to the gate, and weakest but adding to the elastic force when the nanowire is furthest 

to the gate, the net result of the electrostatic force is a reduction (“softening”) of the 

effective spring constant keff and results in a decrease in the resonant frequency. The 

k-softening effect can be calculated from 

 

2

2
21

22 '2
0 0 2

2

2

d C
sidedz

V
f f

A 
  ,                       (15) 

and affects f0 in the form of 2' ' sideA B V . Using only measured device parameters, 

the factor B′ was calculated to be ≈ 6×1012 Hz2 V−2, agreeing again reasonably well 

with that extracted from the fitting in Fig. 37(b) which yielded B′ = 1×1013 Hz2 V−2. 

 In the back gate case, the electrostatic force is perpendicular to the motion of 

the beam and induces tension effects only. However in the side gate case, the 

electrostatic force is in the direction of the beam motion and will in principle induce 

both the k-softening and tension effects. To compare the two effects, we calculated 

the expected shifts in 2
0f  for the side gate over a 10 V span using measured device 

parameters. It was found that for the side gate the softening effect is about 20 times 

larger than the hardening effect, thus explaining the observed decrease in resonant 

frequency. However, due to its stronger dependence on Vside the tension effect will 

eventually dominate at larger biases (e.g., for Vside > 45 V). 
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4.7: Selective actuation of different vibrational modes 

 The dual-gate setup not only leads to greater freedom in frequency tuning but 

also provides the capability to selectively actuate the nanowire resonator in different 

modes of vibration. Figure 38(a) shows a frequency scan of the same device using the 

single source method, with Vside = 5 V and Vback = 0 V. Since the driving force is 

proportional to the dc component of the electric field[136, 137], this configuration 

mainly excites the in-plane motion of the nanowire resonator. Indeed, while two 

resonance peaks at f1 = 81.4 MHz and f2 = 92.6 MHz were observed, from 

Lorentzian fits the amplitude of the f2 peak was about twice that of the f1 peak. We 

therefore attributed the f2 peak to the in-plane mode and the f1 peak to the out-of-

plane mode. When the gate voltages were exchanged so that the side gate was 

grounded and the back gate was biased at 5 V [Fig. 38(b)], the size of the f1 peak (out-

of-plane motion) became much larger than the f2 peak (in-plane motion). Thus, by 

changing the dc bias configurations one can selectively excite one mode over the 

other. This capability, combined with the frequency tuning capability, can potentially 

utilize the coupling effects of different vibrational modes to enable parametric 

amplification and dynamic range enhancement [151, 152] (e.g. for sensing 

applications). In addition, the difference in frequency between the two peaks 

observed here implied that the nanowire does not have a perfectly square cross 

section. From Eq. (13) the thickness of the nanowire was estimated to be 6 nm 

smaller than its width. 
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addition, different vibrational modes can be selectively actuated. These results will 

provide valuable insight into the understanding and future applications of nanowire-

based NEMS. 
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Chapter 5 

Conclusion 

 

 In this work, we have achieved some experimental advances toward realizing 

the full technological potential of semiconductor nanowires. Here we will summarize 

our main results, make general comments, and discuss the work that remains to be 

done in the future. 

5.1: Nanowire growth techniques for hybrid nanowire-CMOS 

systems 

 Semiconductor nanowires have excellent properties that could be beneficial 

for high performance CMOS devices, tight critical thickness control, ultra-smooth 

surfaces, and cylindrical geometry suitable for gate-all-around structures. Integrating 

them with CMOS is a challenging primarily due to their bottom-up growth technique 

which radically departs from traditional top-down processing. We have developed 

nanowire growth techniques that should be beneficial toward hybrid nanowire-

CMOS systems.  

 We have demonstrated the growth of small-diameter Si nanowires using Al 

(instead of Au) as catalyst. Previous studies have shown only nanowires with a high 

level of unintentional Al doping, while here we have shown that semiconducting 
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behavior can be recovered at small diameters. However, the unintentional p-doping 

even in small diameter nanowires is significant, and hence further investigation is 

warranted. This may include TEM analysis, post-growth annealing steps, and/or 

selective surface etching to remove surface dopants. Another issue is diameter 

control. Researchers generally use Al thin films since Al nanoparticles spontaneously 

combust in the presence of oxygen. But achieving uniform droplet diameters may be 

difficult using a thin film as a starting point. In the future, Al nanoparticles could be 

used, provided that an experimental apparatus (such as a glove box) is designed to 

prevent oxygen exposure during the deposition of nanoparticles on a substrate, as 

well as during the loading of the substrate into the nanowire growth furnace. 

Alternatively, an Al film could be patterned into discs, although the final droplet size 

would be too small (< 30 nm) for standard photolithography to pattern directly.  

 We have also demonstrated the vertical epitaxial growth of Ge nanowires on 

Si with high yield with a diameter of 20 nm, which is smaller than what previous 

studies have achieved; 20 nm is a technologically important size for reasons both 

practical and theoretical. We have also demonstrated some refinements to the basic 

growth process, including post-growth Au catalyst removal. We have shown that a 

buffer layer can enhance vertical and nucleation yields, enabling the location control 

of vertical Ge nanowires. In the future, work should continue along this trajectory. 

Methods to pattern the vertical nanowires on the buffer layer (e.g. via charge 

patterning of Au nanoparticles) should be investigated. Also, at the time of this 

writing we believe it should also be possible simultaneously to lower the deposition 

temperature of the buffer layer to a more CMOS-compatible level (< 450 °C) 
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without sacrificing growth yield, and to heavily dope the layer so it can serve as a 

device contact. 

5.2: Toward a Ge nanowire-based vertical tunnel FET 

 We have demonstrated high performance Esaki diodes using the 

heterojunction at the interface between a vertical Ge nanowire and a Si substrate. 

The temperature dependence of these devices indicates a heterojunction that contains 

low defects. We have shown that vertical Ge nanowire growth can be achieved on Si 

nanopillars, freeing up the potential for optimal gate alignment in a tunnel FET 

device. We have shown that vertical growth can be achieved at sub-eutectic 

temperatures, and this is anticipated to counter the reservoir effect inherent in VLS 

growth, enabling the sharpest heterojunctions for higher gate coupling. In the future, 

careful TEM analysis of the Ge nanowires grown on Si nanopillars at 320 °C should 

be done. The sharpness of the dopant profile and the Ge-Si interface should be 

evaluated. Also, tunnel diodes using the nanowire-nanopillar structure should be 

fabricated and tested. Once ultrasharp heterojunctions are realized, a prototype 

tunnel FET should be fabricated and tested. 

 Finally, we have made progress toward fabricating vertical FET devices, and 

fabrication of the vertical junctionless FET should continue in the future. It is 

anticipated that surface states in the gate stack may need to be addressed, so that 

passivation strategies should be investigated. Once the vertical junctionless FET has 

been realized with sufficiently high performance, we can use the same fabrication 

techniques to realize the tunnel FET. 



97 
 

5.3: Nanowire-based NEMS 

 We have demonstrated doubly clamped nanowire resonators with quality 

factor ~2200, on-chip electrical actuation/detection, in situ frequency tuning, 

nonlinear operation, and selective actuation of different vibrational modes. These 

results can potentially be used to enable applications of nanowire-based NEMS. High 

Q is of paramount importance in many applications including ultrasensitive mass and 

force sensing [31-35], ultra-low-power  frequency domain signal processing [129], 

and quantum measurement [36-38]. Frequency tuning is useful for applications such 

as tunable bandpass filters [129]. The nonlinear response is useful for parametric 

amplification, sensing, noise squeezing, and mechanical logic [146-148, 153, 154]. 

The selective actuation of modes can be used to study mode coupling effects, which 

potentially can be used for parametric amplification and dynamic range enhancement 

[151, 152] (e.g. for sensing applications), as well as highly condensed mechanical 

logic [155].  

 In the future, the quality factor of our devices needs to be improved 

significantly. The nature of the main loss mechanism is currently unclear. Clamping 

loss is one possibility, in which case, to this end, resonators can be fabricated using 

nanowires that are alloyed to their end supports, via epitaxial growth. Another 

possibility is surface-related loss, in which case a treatment such as high temperature 

annealing may help remove surface defects. Also, it has been shown [156] that the 

application of tensile stress to a doubly clamped beam increases the quality factor, 

although the mechanism by which this occurs is unclear (it is presumed that tension 
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increases the acoustic impedance mismatch between the oscillating beam and the 

clamping support structures). NEMS is a much less mature technology than 

nanoelectronics. To exploit the excellent intrinsic properties of nanomaterials such as 

nanowires, the technology for manipulating and anchoring them, and measuring their 

mechanical properties, needs to mature significantly to minimize external loss 

mechanisms (such as back-action and clamping losses). 

5.4: Final remark 

 We note that underlying our work with Si and Ge nanowires is the constant 

need to remove native oxide. The epitaxial growth of Si nanowires was not 

discovered until the source gas was switched from SiH4 to SiCl4, where chlorine was 

more effective at removing SiO2 than hydrogen. Similarly, the addition of HF to the 

colloid of Au nanoparticles proved to be critical for promoting high-yield epitaxial 

growth of Ge nanowires on Si. Also, the VLS growth of Al-catalyzed Si nanowires 

was not discovered until high partial pressures of hydrogen were used to remove 

native aluminum oxide (initial studies used oxygen-free vacuum environments). 

Finally, we speculate that our work with Ge nanowires (buffer layer, ex situ Si shell 

deposition, vertical FET fabrication, etc.) largely took advantage of the fact that Ge 

oxide is very easy to remove (it evaporates at temperatures > 400 °C, and is easily 

removed using hydrogen annealing); otherwise the laboratory resources available at 

the time of writing might not have have allowed us to make our achievements. In 

light of these observations, ideally one would like to prevent samples from being 
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exposed to oxygen during processing. Perhaps future fabrication tools that 

accommodate nanowire-based devices could be designed with this in mind. 
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