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CHAPTER 1 

Introduction 

 

Since its discovery in the 1928 by C. V. Raman, Raman scattering has found 

increasingly wide applications that allow for better understanding of fundamental 

material properties thanks to the development of light sources and detection techniques. 

With sunlight as the source, and his eyes as the detector, Raman was the first to 

successfully observe the sideband pair of the incident frequency in light scattered by 

several liquids [1,2]. However, due to the low intensity of the scattered radiation, the 

study of light scattering proceeded at a slow pace until the invention of continuous wave 

lasers in the 1960’s. The laser served as a monochromatic, intense, highly polarized, 

highly collimated light source and quickly replaced the traditional mercury arcs [1,2]. 

These powerful new sources produced a renaissance of light-scattering studies [2]. At the 

same time, photoelectric detection techniques superseded the photographic recording 

methods with the much higher sensitivity of photomultipliers compared to photographic 

plates [1,3]. The introduction of double monochromators, triple monochromators and 

holographic gratings further improved the Raman instruments with their higher resolution 

and efficient stray light rejection [1,3]. Continuously tunable dye lasers and later 

Ti:sapphire solid state lasers offered the possibility to characterize resonance Raman 

scattering in even more details, as well as to discriminate unfavorable fluorescence [2]. 

Charge-coupled devices (CCDs) have also been used increasingly since the early 1990’s 

owing to their high quantum efficiency, low dark signal and multichannel advantage, 

greatly reducing the time for signal collection [1,4]. All these advances constitute the 

current state-of-the-art Raman instrumentation. 
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The advent of various lasers also allowed the extension of Raman scattering into the 

field of coherent Raman spectroscopy (CRS) [5]. Coherent Raman spectroscopy has 

advantages over standard incoherent Raman spectroscopy (RS) due to its high conversion 

efficiency, spectral and spatial discrimination against fluorescence and low incident 

average power [6]. With the introduction of a theoretical framework for nonlinear optics 

in 1965 [7], stimulated Raman spectroscopy (SRS) [8], coherent antistokes Raman 

spectroscopy (CARS) and Raman induced Kerr effect spectroscopy (RIKES) [9] were 

subsequently developed in the mid 1960’s based on the intense laser sources. This field 

expanded further with the availability of tunable dye laser sources in the early 1970’s [6]. 

CARS has nowadays become one of the most powerful tools available for investigations 

in physics, chemistry and biology [10]. In the meanwhile, development of ultrafast lasers 

provided researchers with a novel, time-resolved perspective to study coherent Raman 

processes. Progress in generating picosecond pulses in the late 1960’s enabled the 

investigations of dynamics of vibrational relaxation processes in liquids and solids, a 

technique referred to as transient stimulated Raman scattering (TSRS) [11]. The 

sub-100fs output of the colliding pulse mode-locked (CPM) laser developed in 1981 [12] 

and later the 60fs pulsed output of Ti:sapphire arriving in 1991 [13] finally granted 

adequate time resolution for the sub-cycle observation of lattice vibrations, a method 

called impulsively stimulated Raman scattering (ISRS) [11]. Pump-probe spectroscopy is 

now one of the most widely used ultrafast spectroscopies to study ISRS.          

Research presented in this dissertation is based on both standard spontaneous 

Raman spectroscopy and pump-probe spectroscopy. Despite the exhaustive studies of RS 

and extensive application of pump-probe spectroscopy to studying many materials 

including semiconductors [14], high Tc superconductors [15] and semimetals [16], 

discussions and discoveries concerning the various forms and origins of the driving 

forces for coherent phonons in different materials has been an active field for a long time 

[11,17-19]. One of the open questions concerns the generation mechanism of coherent 
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optical phonons in opaque materials such as Sb and Bi. Different from the impulsive 

form in transparent materials, driving forces in opaque materials are of a displacive 

nature [20]. Previous theoretical and experimental work proved that the ratio between the 

initial amplitudes of two modes in the same material in stimulated Raman scattering is 

the same as the ratio between corresponding Raman scattering cross sections in 

spontaneous Raman scattering [21,22]. In Chapter 4, I will show through ISRS 

experiments on Sb and Bi that the A1g and Eg modes have different temperature 

dependent behaviors, and that the ratio increases with temperature, a feature different 

from the case in RS. The discrepancy implies that the driving force of Eg symmetry has a 

lifetime around 10fs, a time much shorter than that of the A1g force, which is usually a 

few picoseconds. The ultrashort Eg lifetime is attributed to the fast redistribution of 

carriers between equivalent k points in the Brillouin zone, which destroys the Eg 

symmetry. The contribution of my experimental work here adds to the existing 

theoretical framework that the lifetime of the driving force influences the initial 

amplitude of coherent phonons. In Chapter 5, I will further extend this topic to the case 

of comparison between two modes of A1g symmetry. By performing temperature 

dependent ISRS and RS experiments on Bi2Te3 and Bi2Se3, I was able to validate that 

the driving forces for the two A1g modes have similar lifetimes, both much longer than 

the periods of coherent phonons that they excite. Lifetimes of the Eg driving forces 

similar with the ones in Sb and Bi were obtained, confirming the conclusion about the 

ultrashort lifetime of the Eg symmetry. 

Phenomena under high laser fluences have become a popular topic in recent years 

due to the capability of high fluence radiation to produce high density plasma and 

photo-induced transient phase transitions [23-26]. In the second part of Chapter 4, I will 

discuss my research on the fluence dependent behaviors of coherent A1g and Eg modes in 

Sb. At high fluences, both modes manifest time dependent frequencies, a phenomenon 

usually called “chirped phonon”, which is attributed to the screening by a diffusive 
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photoexcited plasma [27]. The results also manifest nonlinear growth of the phonon 

amplitudes and increased lattice anharmonicity. These experimental data provide useful 

information for future theoretical work in understanding anisotropic lattice-carrier 

interactions and lattice-radiation interactions in uniaxial crystals.   

 Bi2Te3 and Bi2Se3 have been receiving increasing interest recently due to their 

peculiar property as topological insulators. These materials have a narrow bandgap in the 

bulk and metallic states on the boundary, protected by time-reversal symmetry [28]. In 

addition to their fundamental interest, topological insulators are predicted to be useful for 

applications involving spintronics and quantum computation [28]. I will present my 

attempts to fabricate and characterize ultrathin Bi2Te3 films in Chapter 5 using 

mechanical exfoliation, optical microscopy, AFM and Raman spectroscopy. Since the 

thinnest pieces found were 10nm, an analysis based on transfer matrices was performed 

to aid in the identification of pieces below 10nm. In the Raman experiments, an 

additional peak was found which may be related to the breaking of symmetry in ultrathin 

films.      
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CHAPTER 2 

Theories on Light Scattering by Optical Phonons 

 

Phonons are quasiparticles which characterize the elementary excitation of lattice 

vibrations in a crystal. They influence the optical, electrical, thermal properties of a solid 

[1,2,3]. For example, many materials show strong absorption or reflection of light in the 

infrared spectral region due to the interaction with infrared active phonons [2,3]. Another 

example, phonons are known as an important source for the heat capacity and heat 

conductivity of an insulator or semiconductor [1,3]. Phonons can be investigated by 

various techniques such as light scattering, infrared absorption, neutron scattering, X-ray 

scattering, etc [4,5]. The works in this dissertation focus on light scattering by optical 

phonons. 

This chapter reviews the mathematical derivation of phonon modes as well as 

theoretical foundation underlying two commonly used optical detection techniques of 

optical phonons. Section 2.1 first introduces the physical pictures of acoustic and optical 

phonon modes in a simple diatomic chain. Then generalization to a three-dimensional 

crystal with  atoms in each unit cell is made. Section 2.2 explains the theoretical base 

of spontaneous Raman scattering (RS) from macroscopic and microscopic perspectives. 

In section 2.3, theories for impulsively stimulated Raman scattering (ISRS) are presented. 

In contrast to RS, ISRS involves two distinct Raman tensors, which are derived in this 

section using the electron density matrix. A summary is given in section 2.4. 

n

 

2.1 Normal modes in a crystal 
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A crystal is composed of periodically arranged groups of atoms which fluctuate 

around their equilibrium sites. Despite the variety of atomic forces (metallic, ionic, valent, 

van der Waals) that hold the crystal together, the environment surrounding a single atom 

can always be portrayed as a potential well. To the second order expansion of the 

potential well around the atomic equilibrium position, an approach usually called the 

harmonic approximation, the motion of an atom can be modeled by a harmonic oscillator. 

In a crystal, the behaviors of a collection of these oscillators are coupled with each other. 

By transforming from atom coordinates to phonon coordinates, a more mathematically 

and physically convenient expression can be achieved, in the form of a set of independent 

normal modes describing the collective atomic movements. With its motion decoupled 

from others, each normal mode is individually formulated and quantized. A phonon is an 

energy quantum of these normal modes for lattice vibrations.  

2.1.1 Phonon modes in a one-dimensional diatomic chain 

 

a

1,1lu  1,2lu  ,1lu ,2lu 1,1lu  1,2lu 

a

1,1lu  1,2lu  ,1lu ,2lu 1,1lu  1,2lu   

Figure 2.1. A diatomic chain with masses M  and . The size of a unit cell is  and 
the force constant between neighboring atoms is . Note that the length and direction of 
the arrows do not stand for the actual magnitudes of displacements. 

m a
k

 

Consider a one-dimensional diatomic chain composed of  unit cells, each having 

two atoms with mass 

N

M  and , as shown in Fig. 2.1. The distance between 

neighboring unit cells is  and the spring constant is . Newton’s equations of motion 

for the two atoms in the th cell are  

m

a

l

k

 
,1 ,2 ,1 ,1 1,2

,2 1,1 ,2 ,2 ,1

( ) (

( ) (
l l l l l

l l l l

Mu k u u k u u

mu k u u k u u




)

)l

   

   




 (2.1) 
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where  is the displacement of the atom with mass ,1lu M  in the th cell from its 

equilibrium position, and  is the displacement of the atom with mass . Plane wave 

solutions to these equations are 

l

,2lu m

 
( )

,1 1

(
,2 2

( )

( )

i qla t
l

i qla t
l

u Q q e

u Q q e



)




 (2.2) 

where  is the wavevector and q   is the frequency. Substituting Eq. (2.2) into Eq. 

(2.1), I have 

  (2.3) 
2

1

2
1 2

( 2 ) ( ) (1 ) ( )

(1 ) ( ) ( 2 ) ( ) 0

iqa

iqa

M k Q q k e Q q

k e Q q m k Q q

    

   
2 0



 

optical branch

acoustic branch

0
a




a


Wavevector

F
re

q
ue

nc
y

optical branch

acoustic branch

0
a




a


Wavevector

F
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q
ue

nc
y

 
Figure 2.2. Dispersion curves for optical and acoustic branches in the first Brillouin 
zone. 

 

To get non-trivial solutions to the linear equations, I set the determinant of the 

coefficients to zero  

 
2

2

2 (1 )
0

(1 ) 2

iqa

iqa

M k k e

k e m k

  


  
 (2.4) 

Solve the equation and get 
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1/2

2
2

4
1 1 sin

( ) 2

M m Mm qa
k

Mm M m
2

                
 (2.5) 

q
a a

 
    and 

2 h
q

a N


    is an integer h

The second expression about  above is required by the periodic boundary condition of 

the diatomic chain. Solutions given by Eq. (2.4) depict dispersion relations of two phonon 

branches. The one given by 

q

  is called the acoustic phonon branch and the one given 

by  is called the optical phonon branch. There are in total  modes on each branch 

within the first Brillouin zone. When  becomes very large, those discrete modes can 

be treated as continuous. Fig. 2.2 is an example of the dispersion curves in the first 

Brillouin zone.  

 N

N

Due to the requirement of phase matching, light usually interacts with phonons at 

the long wavelength limit where 0q  . For the acoustic branch, 
2( )

k
a q

M m 


 

and 1

2

(0)
1

(0)

Q

Q


 
 

 
, which means that both atoms in the same unit cell move with the 

same amplitude and phase [2]. Note that under this limit, the dispersion relation is almost 

linear, as seen from the zone center in Fig. 2.2, and the slope corresponds to the sound 

velocity in a solid. For the optical branch, 
2 ( )k M m

Mm


   and 1

2

(0)

(0)

Q m

Q M


 
  

 
. 

This describes the scenario when the two atoms are oscillating out of phase while keeping 

the center of mass of the unit cell unchanged [2]. The optical phonon can hence carry a 

dipole moment and couple to infrared radiation. The dispersion curve is almost flat at the 

zone center, as seen from Fig. 2.2.  

2.1.2 Phonon modes in a three-dimension crystal 

Consider a crystal with  unit cells, each with  atoms inside. An equation 

similar to Eq. (2.1) can be written to describe the motion of each atom, and there are in 

N n
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total  linear equations. Using solutions having the same form as Eq. (2.2), a secular 

function like Eq. (2.4) is solved to get the  branches which depict dispersion relations 

in three dimensions.  

3n

3n

Here, I approach the problem from another aspect by starting from the Hamiltonian 

of the system since the result can conveniently lead to the quantization of lattice waves. 

The procedure follows relevant chapters in Ref. [2] and Ref. [6].  

The potential energy of the entire crystal can be expanded as a function of the small 

displacement of each atom as 

 
2, , , ,

0
, , ,0 0

1
( ) ( ) ( ) ...

( ) 2 


( ) ( )

x y z x y zN n N n

i i j
l i l l i ji i j

U U
u l u l u l

x l x l x l
  

  



                

 U U

i

(2.6) 

where ( )x l  represents one of the three components of the vector describing the 

position of the  th atom in the th unit cell, and  is the deviation of the specific 

atom from its equilibrium position such that .  is the cohesive 

energy of the crystal and is usually set as zero. The second term is by definition zero 

around equilibrium because it represents the slope at the minimum of the potential energy 

well. So the third term is the non-zero leading term for the potential energy of the crystal. 

Neglecting higher order terms, I have 

l ( )iu l

i ix 
0( ) ( ) ( )iu l l x l  0U

 
2

2 (x l

, ,

, , ,
0

1
( ) ( )

) ( )

x y zN n

i j
l l i j i j

U
U u l u l

x l
 

 
 





 
  

   
 (2.7) 

Similarly, I can also write down the kinetic energy of the whole crystal as 

 
, ,z

K m1
( ) ( ) ( )

2

x yN n

i i
l i

l u l u l  



     (2.8) 

where  is the mass of the ( )m l  th atom in the th unit cell. Define the reduced 

displacements 

l

 ( ) ( ) ( )i l m 
il u l   (2.9) 

as well as a dynamical matrix in real space  
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2

0

1
( , )

( ) ( )( ) ( )
ij

i j

U
D l l

x l x lm l m l


  

       
 (2.10) 

Considering the translational symmetry of the crystal, ( , )ijD l l   only depends on the 

relative position of the two atoms, so it can be rewritten as . Substituting Eq. 

(2.9) and Eq. (2.10) in Eq. (2.7) and Eq. (2.8), I have 

( l )ijD l

 
, ,

, , ,

1
( ) ( ) ( )

2

x y zN n

i ij j
l l i j

U l D l l  

 

 



l     (2.11) 

 
, ,1

( ) ( )
2

x y zN n

i i
l i

K  



    l l  (2.12) 

Perform Fourier transform on  and get ( )i l

 0( )1
( ) ( )

N
i l

i il
N

     q x

q

q e  (2.13) 

where  is a wavevector in the reciprocal space spanned by the basis vectors of the 

reciprocal lattice , , . It satisfies the three-dimensional periodic boundary 

conditions such that 

q

1b 2b 3b

 31 2
1 2

1 2 3

hh h

N N N
  q b b 3b  (2.14) 

where , and , ,  are integers.  is the equilibrium 

position of an arbitrary reference atom in the th unit cell. Substituting Eq. (2.13) in Eq. 

(2.11), I have 

1 2 3N N N N   1h 2h 3h 0( )lx

l

 0 0

, ,
( ) ( )

, , , ,

1
( ) ( ) ( )

2

x y zN n N
i l i l

i ij j
l l i j

U e D l l
N

  

 

     

 

   q x q x

q q

q q e  

 0

, ,
( ) ( ) [ ( ) ( ) ]*

, , , ,

1
( ) ( ) ( )

2

x y zN n N
i l i l l

i ij j
l l i j

e D l l e
N

  

 

  0 0    

 

   q q x q x x

q q

q q                
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 0 0

, ,
( ) ( ) ( )

,( ) , , ,

1
( ) ( ) ( )

2

x y zN n N
i l i l l

i ij j
l l l i j

e D l l e
N

  

 

     

 

    q q x q x

q q

q  q

0

 (2.15) 

In the last line, I rewrite 0[ ( ) ( ) ]l l x x  as 0( )l l x  since it only depends on the 

relative position of the two unit cells. Using the orthonormality of wavevectors 

 0( ) ( )1 N
i l

l

e
N

 
 q q x

qq  (2.16) 

where  qq  is the Kronecker delta function. Eq. (2.15) is thus written as 

 0

, ,
( )

, , ,

1
( ) ( ) ( )

2

x y zN n N
i l l

i ij j
l l i j

U D l l  

 

     


 

   q x
qq

q q

q q e  

 0

, ,
( )

, ,

1
( ) ( ) ( )

2

x y zN n N
i l l

i ij j
l l i j

D l l e  

 

   



  q x

q

q q  

 
, ,

, ,

1
( ) ( ) ( )

2

x y zn N

i ij j
i j

D  

 

  
q

q q q  (2.17) 

where  is the Fourier transform of  such that ( )ijD q ( )ijD l

  (2.18) 0( )( ) ( )
N

i l
ij ij

l

D D l e    q xq

Now I have a sum of  independent functions labeled by . For the N q 3 3n n  

dynamic matrix , I can find its  eigenvalues and corresponding eigenvectors by 

solving the secular equations 

( )D q 3n

 
, ,

2( ) ( , ) ( , ) ( , )
x y zn

ij j i
j

D  



    q q q q   (2.19) 

where   labels one of the  phonon branches. 3n ( , ) q  is the eigenvalue that gives 

the dispersion relation and ( , )ε q  is the corresponding eigenvector. The eigenvectors 

have the relations below 
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, ,

( , ) ( , )
x y zn

i i
i

 




    
  q q  (2.20) 

Define phonon coordinates as 

  (2.21) 
, ,

( , ) ( , ) ( )
x y zn

i i
i

Q  



   q q q

 
3

( ) ( , ) ( , )
n

i i Q 



  q q q  (2.22) 

Substitute Eq. (2.22) into Eq. (2.17), I have 

 
, , 3

, , ,

1
( , ) ( , ) ( ) ( , ) ( , )

2

x y zn N n

i ij j
i j

U Q D  

   

Q      



  
q

q q q q q  

 
, , 3

2
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1
( , ) ( , ) ( , ) ( , ) ( , )

2

x y zn N n

i i
i

Q Q 

  

       



   
q

q q q q q  
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,

1
( , ) ( , ) ( , )

2

N n

Q Q 
 

   




  
q

q q q  

 
3

21
( , ) ( , ) ( , )

2

N n

Q Q


  
q

q q q   (2.23) 

Eq. (2.19) and Eq. (2.20) are used to get the second and the third lines. The potential 

energy is now decomposed into  independent phonon modes, each indexed by the 

phonon branch number 

3nN

  and wavevector . There are in total  phonon branches 

(some of which can be degenerate) for a crystal with  atoms in each unit cell and  

modes on each branch. Within the  branches, there are 3 acoustic phonon branches 

and  optical phonon branches.  

q 3n

n N

3n

3n 3

The kinetic energy can be expressed in terms of normal modes, too. Substitute Eq. 

(2.13) into Eq. (2.12) and use Eq. (2.16) to get 

 
, ,

( ) ( )1
( ) ( )

2

x y zN n N N
i l i l

i i
l i

K e
N

 



     



  q x q x

q q

q q  e  
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 



  
q

q q   (2.24) 

Substituting Eq. (2.22) into Eq. (2.24) and using Eq. (2.20), 

 
, , 3

,

1
( , ) ( , ) ( , ) ( , )

2

x y zn N n

i i
i
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  
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2

N n
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 
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


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( , ) ( , )
2

N n

Q Q


  
q

q q   (2.25) 

The Hamiltonian is therefore the sum of those of 3  independent harmonic 

oscillators. In this way, the complicated lattice vibration can be investigated by studying 

the decoupled normal modes. The real atomic displacements  and phonon 

amplitudes 

nN

( )iu l

( , )Q q  are connected by Eq. (2.9), Eq. (2.13) and Eq. (2.22). After second 

quantization, the energy of the crystal is 

 
3 1

( )
2

nN

j
j

E n j     (2.26) 

where j  is a shorthand for the mode indexed by ( , )q . The energy quantum j  is 

called a phonon and  is the number of phonons in mode jn j . 

To get the dispersion curve described by Eq. (2.19), the force constants 

 are needed. Examples of different models taking into account the 

influences of neighboring atoms, Coulomb interactions and screenings are presented in 

Ref. [5]. The parameters in the model are then adjusted to fit experimental quantities. 

After that, numerical calculations are performed to solve Eq. (2.19) in order to obtain 

phonon frequencies [5].  

2 / ( ) (i jU x l x l     )

 

2.2 Light scattering by optical phonons 
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When light is incident on a solid, inelastic scattering takes place due to the spatial or 

temporal fluctuations in the electric susceptibility of the material. The typical frequency 

shift by acoustic phonons around 1cm-1 or less is called Brillouin scattering [7], in which 

case a Fabry-Perot interferometer is often used for detection. For the frequency shift 

larger than 10cm-1 and often in the range 100-1000cm-1 associated with optical phonons 

[7], a diffraction-grating based Raman spectrometer is employed. The process in this 

frequency domain is called Raman scattering.  

Based on whether an energy quantum   is created or absorbed, inelastic light 

scattering can be classified as Stokes scattering and anti-Stokes scattering, as shown in 

Fig. 2.3. In Stokes scattering, a phonon is created and the light is red shifted. In 

anti-Stokes scattering, a phonon is absorbed and the light is blue shifted. In a transparent 

material, momentum and energy are conserved in both cases. In an opaque material, the 

restriction on the momentum conservation is relaxed by 2 / z , where  is the 

penetration depth of the light [8]. 

z

 

, q

,I I k

,S S k

, q

,I I k

,AS AS k

 

Figure 2.3. Vector diagrams for Stokes scattering (left) and anti-Stokes scattering (right).  

 

For a material with refractive index 1.5, the typical wavevector available for a light 

scattering experiment is 70 3 10q 1m   . Compared with the range of Brillouin zone 
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on the order of , the method of light scattering is actually probing phonons 

with wavevectors close to the center of the Brillouin zone [7]. In this region, the optical 

branch is dispersionless. It is only when phonon-polaritons are involved that dispersion 

needs to be considered, which concerns transverse infrared active modes in a polar 

material [5,8]. 

10 13 10 m

2.2.1 Macroscopic description of spontaneous Raman scattering 

A spontaneous Raman scattering (RS) experiment usually measures the relative 

frequency shift of the scattered light from the excitation light. The incident electric field 

excites an ensemble of oscillating dipole moments which emit radiation that adds up 

incoherently, at a frequency shifted   away from the incident light frequency by the 

optical phonons.  

Macroscopically, that effect is incorporated in the electric susceptibility as a 

nonlinear correction term. The electric susceptibility of a material is 0 Q
Q

  



 , 

where 0 0
i t i tQ eQ Q e    ,  is the complex phonon amplitude, 0Q 0  is the linear 

susceptibility and R

Q

 



 is the Raman susceptibility. For an monochromatic incident 

electric field 0( ) i t
0

i tE t E e E e   , the polarization is 

    0 0 0 0 0( ) ( ) R i t i t i t iP t E t Q e Q e E e E e               
t

 


 

         
0 0 0 0 0 0 0 0 0 0 0

i t i t i t i ti t i t R RE e E e E Q e E Q e E Q e E Q e                        

 (2.27) 

The first term describes elastic scattering; the second term describes Stokes scattering at 

frequency   , and the third term describes anti-Stokes scattering at frequency 

  . 

Another important physical quantity for the scattered light is its intensity. Scattering 
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cross sections are commonly used to characterize the efficiency of scattering. The 

differential cross section for Stokes scattering into a unit solid angle is defined as [7]  

 
22 1SI

solid s S solid s I

d Id

d d L d d I

 
  


 

 (2.28) 

where I  and S  are the frequencies of the incident and Stoke scattered light 

respectively, II  and SI  are the incident and scattered light intensity,   and  are 

the volume and length of the part in the material that contributes to the scattered light. By 

substituting the second term of Eq. (2.27), which is the Stokes polarization, in the source 

term of Maxwell’s wave equations for the scattered electric field , the latter can be 

derived to calculate 

L

SE

SI . I then have [7] 

 
32

22 4
0(4 )

S
I S S S S S S

solid s I I

Vnd

d d c n


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 




e P e P

E
 (2.29) 

where  is the incident electric field,  is the Stokes polarization, IE SP
S

S S S S 
 e P e P  

is called the power spectrum of the polarization fluctuations and is averaged over the 

fluctuation probability distribution,  and  are the refractive indices for the incident 

and scattered light,  and  are the corresponding light polarization unit vectors. 

According to the fluctuation-dissipation theory [7], the power spectrum is related to the 

imaginary part of the linear-response function of the system, which can be expressed in 

the form of the distribution probability and the lineshape function of phonons. I have [7] 

In Sn

Ie Se

 
 

2

3
2

2 4

( ) 1

( )
(4 ) 2

k R l
I S S S kl I

kl

solid S I

Vn e e n
d

g
d d c n N

   
 
  

 


 


 (2.30) 

where I S   

( )g

,  is the atomic density and the indices  and  sum over x, 

y and z, 

/N V k l

  is the lineshape function of the phonons with frequency  . For 
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damped harmonic oscillators, ( )g   has a Lorentzian lineshape with full width half 

maximum (FWHM)  such that W

 
2

/ 2
2( ) ( / 2)

W

W
( )g

   (2.31) 
  

( )n   is the Bose-Einstein factor given by  

 
1

( )n    (2.32) 
exp( / ) 1Bk T 

where  is the sample temperature and  is the Boltzmann’s constant. More details 

of the derivation of the Raman scattering cross section can be found in Ref [7]. 

T Bk

A similar expression for an anti-Stokes scattering cross section can be obtained by 

replacing  ( ) 1n    in Eq. (2.30) by ( )n  . A simple relationship between the Stokes 

and anti-Stokes scattering cross sections is [7] 

 
 

2

2

solid

solid

d
d d

d
d d






 2 2

2 2

( ) 1

( )
S SS

I I

AS

n n

n n

 


 
     

 
 
 

 (2.33) 

which is sometimes used to estimate the sample temperature. 

The Raman susceptibility is often written in the form of a tensor called the Raman 

tensor. The positions of non-zero elements and elements of related values in a Raman 

tensor are determined by the symmetry properties of the crystal as well as the specific 

mode that the tensor depicts.  

The macroscopic description of RS is convenient because it can be easily related to 

quantities measured in experiments and physical parameters of the materials. On the 

other hand, the microscopic description of RS is useful in predicting how the cross 

section changes with experimental parameters [7]. 

2.2.2 Microscopic description of spontaneous Raman scattering 
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Loudon [9,10] derived the microscopic expression for Raman tensors in diamond 

lattice and zinc blende lattice crystals. Analogies of the conclusion can be easily drawn 

for crystals with other structures by modifying the effective mass associated with the 

optical phonons.  

Considering a system consisting of the quantized radiation field, electrons and 

quantized phonon field, the spontaneous Raman scattering cross section is proportional to 

the transition rate from the ground state with  incident photons at frequency IN I  and 

 phonons at  to the excited state with n  ( 1)IN   photons at I , one scattered 

photon at S  and  phonons. Based on third-order time-dependent perturbation 

theory, the transition rate is [10]  

( 1n  )

 

2

int int int
6

, ,

1,1; 1;0 ,0; ;01 2

( )( )

( )

S

I I

I I

I S

N n H H H N n

   

   
    

  

 


 

 

 
q k  (2.34) 

where the first three parameters ,  and  in the ket for the initial state are the 

initial numbers of incident photons, scattered photons and optical phonons; the last  

stands for the electronic ground state; 

IN 0 n

0

  and   are the intermediate states with 

energies   and  . The sum over  is confined within the solid angle Sk solid  

subtended by the collecting lens. The interaction Hamiltonian , where 

the first term is the electron-lattice interaction and the second term is the 

electron-radiation interaction. After substituting the specific forms of  and  in 

Eq. (2.34), an expression for a Raman tensor is obtained such that [9,11] 

int EL ERH H H 

ELH ERH
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

 (2.35) 

where  is the deformation potential that characterizes the strength of electron-lattice 

coupling, accounting for the scenario that when a phonon is created, the related atomic 

displacements perturb the periodic potential that electrons are experiencing, thus leading 

to an electron-lattice interaction energy [9]. The delta function in Eq. (2.34) should be 

replaced by a Lorentzian function of the same form as Eq. (2.31) if the lifetime of the 

phonon is considered and phonon anharmonic interactions are used to obtain the line 

width [9]. 



W

Note that according to Eq. (2.30) and Eq. (2.35), all the terms in a Raman tensor are 

added together and then squared to get the scattering cross section measured in an 

experiment. It is thus possible that quantum pathways will interfere with others 

constructively or destructively depending on their relative signs [5]. Such phenomenon 

was observed in CdS, Si and GaAs [12,13], and was also recently found in graphene with 

its G mode and 2D mode [14]. 

When the energy of incident light approaches that of the electronic resonance, the 

virtual intermediate states in Eq. (2.34) become real ones and resonant Raman scattering 

occurs. The material usually shows an enhanced scattering efficiency. In this case, a 

complex energy is needed for   or   to guarantee the convergence of Eq. (2.35). 

Details of the treatment for that case are included in Section 2.3.2.       

 

2.3 Impulsively stimulated Raman scattering 

When two laser beams with frequency difference 1 2     are incident on a 
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solid, a coherent macroscopic phonon field can be created, a process called stimulated 

Raman scattering (SRS). SRS signals are intense and highly directional, in contrast with 

the RS experiment which has relatively weak light scattered in all directions. The 

coherent phonon field attenuates the intensity at 1  and amplifies the intensity at 2 . It 

can also generate a coherent anti-Stokes Raman field at 12 2  , which is the base for 

coherent anti-Stokes Raman spectroscopy (CARS), or intensity induced birefringence and 

dichroism, which is the base for Raman induced Kerr effect spectroscopy (RIKES) [15]. 

Shen and Bloembergen derived the theoretical explanation for SRS by solving a 

coupled-wave problem [16]. They added nonlinear polarization terms describing effects 

of the phonon field in the wave equations of the laser, Stokes and anti-Stokes fields. At 

the same time, the coherent phonon field is driven by a force provided by pairs of the 

radiation fields. In this way, four coupled wave equations can be formulated and solved 

with appropriate boundary and initial conditions.  

SRS is sometimes studied with a femtosecond pulsed laser instead of two continuous 

wave lasers. The phenomenon is called impulsively stimulated Raman scattering (ISRS) 

owing to the short timescale of the pulse. The pulse has a broad enough spectral 

bandwidth so that it provides numerous frequency pairs separated by , as shown in Fig. 

2.4, and wavevector conservation is automatically satisfied in the forward direction. 



 


 

Figure 2.4. Illustration of one of the frequency pairs with a frequency separation   
within the pulse spectrum.  

 

Experimentally, a coherent phonon field is created by a pump pulse, and the 
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modulation of the optical properties of the sample induced by the phonon is monitored by 

a probe pulse that follows behind. By changing the time delay between the pump and 

probe pulses, the time domain evolution of the coherent phonon field can be obtained.  

2.3.1 Impulsively stimulated Raman scattering in transparent materials 

The equation of motion for a coherent phonon field with an amplitude , 

frequency  and decay rate  is  

( )Q t

 b

 
2

2
2

( , ) ( , )
2 ( , )

d Q t dQ t
b Q t F

dt dt
  

r r
r r( , )t  (2.36) 

where  is a coherent driving force provided by the pump pulse. Neglecting the 

depletion of the pump, in a transparent material,  is proportional to the pump 

field intensity such that [8] 

( , )F tr

( , )F tr

 
1

( , )
2

R
kl k l

kl

F t E E  r  (2.37) 

where the summation of  and l  runs over all three Cartesian coordinates and  is 

the pump electric field. Using Green’s function method, the solution to Eq. (2.36) is 

k E

 ( )sin[ ( )]
( , ) ( , )

t b tt
Q t e F d   



 


r r  (2.38) 

For a Gaussian pulse propagating along , z  2 2
0 0( ) exp / 2 cos( )u u     Ε E 0u  and 

, where , /u t zn c  0E 0  and 0  are the electric field amplitude, pulsewidth and 

central frequency of the pulse,  is the refractive index. With Eq. (2.37) and Eq. (2.38), 

I have [8] 

n

 
2 2

0

1/2
2 /40

0( ) cos( ) cos( ) sin( )
4

R bu
kl k l

kl

Q u E e e u          
  (2.39) 

where cos( )k  and cos( )l  are the direction cosines of the pump. The effect of the 

coherent phonon on the probe is to modulate the refractive index, which is manifested as 
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a nonlinear polarization term in the wave equation of the probe electric field  [8] me

 
2

2 2
2 2

1
4 ( , )R

m m mp
p

e n e Q
c t

 
 

    pt e
  

 r   (2.40) 

Solving the wave equation above, I can get the relative change of probe intensity [8] 
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
 (2.41) 

where cos( )m  and cos( )p  are the direction cosines of the probe beam. t  is the 

time delay between the pump and probe pulses.  is the thickness of the sample. Eq. 

(2.41) represents the bulk contribution of the phonon field. 

L

By taking into account the influence of boundaries at  and 0z  z L , an 

interface contribution should be added, which modulates both transmittance and 

reflectance of the probe such that [8] 
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)
 (2.43) 

Eq. (2.42) and Eq. (2.43) are the derivatives of transmittance and reflectance of the probe 

intensity with respect to . n

2.3.2 The theory of two stimulated Raman tensors 

While the behavior of coherent phonons in transparent materials is well understood, 

the answer to whether the generation mechanisms involved in opaque materials are 

related to Raman processes or not had been inconclusive. That led to the proposal of a 
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microscopic view of the pump-probe process, which suggested two different stimulated 

Raman tensors involved in the generation and scattering processes in a pump-probe 

experiment [17]. The specific form of the tensors also revealed the difference of Raman 

processes between a transparent material and an opaque material. This section is a brief 

review of the theory based on Ref [17] and Ref [18] using the density matrix formalism. 

With a semiclassical method which treats the radiation field as classical and crystal 

as quantized, the Hamiltonian of the system can be written as 

 2 2 2
0

1 1 ˆˆ ˆ ˆ ˆ
2 2 eH P Q H H     int

t

 (2.44) 

  (2.45) int
ˆˆ ˆˆ ( )H Q   E

where  is the Hamiltonian of the electron subsystem with ˆ
eH ˆ

e nH n n .  is 

the interaction Hamiltonian containing the phonon-electron interaction  and the 

electron-radiation interaction .  and  are the operators for the canonical 

momentum and coordinate of the phonon field. 

intĤ

ˆˆ Q

ˆ ( )t E P̂ Q̂

̂  and ̂  are the operators for the 

deformation potential and dipole-moment.  

Based on time-dependent perturbation theory, with ( ) ( ) pi t

p
p

t e  E E  and 

( ) ( ) pi t

p
p

Q t Q e   , I can derive the density matrix as follows [18]. For the unperturbed 

density matrix 

 (0) 0nm n m    (2.46) 

where . For the first order contribution (0) 1nn
n

 
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  Δ E


 (2.47) 

where nm  is the damping rate of the nm  coherence, ˆ
nm n mΔ Δ  , ˆ

nm n m    
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and nm n m    . For the second order contribution 

 ( )( )(2) (1)
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With these terms, I can proceed to calculate the physical quantities related to coherent 
phonons. 

Since  does not contain  explicitly, I have Q̂ t
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 (2.50) 

which gives 
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From the expression for  in Eq. (2.37), only terms proportional to ( )F t k lE E  in (2)
nm  

contribute to the driving force 

 (2)( ) EE
mn nm

mn

F t    (2.52) 

where the superscript  indicates terms proportional to EE k lE E  in the second order 

density matrix. Substituting Eq. (2.48) and Eq. (2.49) in Eq. (2.52), and assuming the 

system is originally at the ground state such that (0)
0kk k  , I get 
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 (2.53) 

For the polarization related to the phonon field, only terms proportional to k lE Q  in 
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(2)
nm  contribute, as in Eq. (2.27). Define the Raman polarization 
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where  is the number of unit cells and N c  is the volume of each unit cell. Following 

similar steps as the ones for , I get ( )F t
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Define two stimulated Raman tensors R  and R  as 
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Comparing Eq. (2.53), Eq. (2.56), Eq. (2.55) and Eq. (2.57), I have 
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Note that the tensor R  actually corresponds to the case when complex energies are 

used in Eq. (2.35), and it is thus the same as the Raman tensor in RS.  

In transparent materials where 0m   and 0n  , R R  , so the two Raman 

tensors are the same, both equal to the one in RS. However, in some opaque materials, 

R  and R  can be quite different. In a resonant two-band process, considering only 

contributions from terms with two resonant denominators, which are the third term in Eq. 

(2.58) and the first term in Eq. (2.59), I have 
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Here I am assuming a constant deformation potential in the same band . Note 

the difference in the signs of

0nn  

  ’s in the denominators. In some opaque materials, it is 

this sign difference that brings about quite different behaviors in RS and ISRS for the 

same sample.  

A relationship can be drawn to relate the two stimulated Raman tensors with the 

relative permittivity of a material. With first order density matrix elements in Eq. (2.47), 

the relative permittivity is expressed as [18] 
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At the same time, I can rewrite Eq. (2.60) and Eq. (2.61) with 
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Under the assumption that 0n   and | / | 1  , I have 
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Note that Eq. (2.65) and Eq. (2.66) are for fully symmetric modes. For modes of other 

symmetries, similar relationships can be derived [17].  

In Sb and Bi at 800nm, Re[ ( )] /d d   ~7-10eV-1, Im[ ( )] /d d   ~30-40eV-1 

and 2 Im[ ( )] /   ~3000-4000eV-1 [19,20]. As a result, these crystals which give weak 

RS signals manifest large oscillations in a pump-probe experiment. 

2.3.3 Coherent phonons in opaque materials and lifetime of the driving force 

As concluded in Section 2.3.2, in an opaque material, the magnitude of the driving 

force for a coherent phonon field is determined by a different tensor from the one in RS. 

Another important implication of the theory lies in the specific temporal profile of the 

driving force. In a transparent material, the driving force is provided by the instantaneous 

electronic response to the incoming light, and thus has the same temporal shape as the 

pulse in Eq. (2.37). On the other hand, in an opaque material, the form of the driving 

force does not necessarily resemble the shape of the pulse. Instead, it has a displacive 

nature [17].  
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In a material which has 2 Im[ ( )] / Re[ ( )] /d d     , substitute the 

expression of R  in Eq. (2.65) back into Eq. (2.56) and get 

 20
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( ) | ( ) |

4

t
cN

F t E t dt
 

 
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 (2.67) 

This is a displacive force with an infinite lifetime. Now I add a decaying factor   to 

account for the finite lifetime such that 
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where  is the decay rate of the force. The driving force is a convolution between the 

pump pulse intensity and a decaying response that follows it. For a Gaussian pulse 


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I have 
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where cV N . Fig. 2.5 shows the temporal evolution of driving forces with different 

’s generated by a Gaussian pulse arriving at  0t  . When   is small, the force looks 

like a step function with its rising edge broadened by the pulsewidth 0  and lasting as 

long as 1/ . When  increases, the force gradually transforms to a Gaussian-like 

shape with its amplitude inversely related to the magnitude of 

 

 .   

Using the solution provided by the Green’s function given in Eq. (2.38), I can obtain 

a numerical solution for , which is a set of damped oscillations with angular 

frequency  and decay rate b  superimposed on a decaying background 

( )Q t

 ~ te

.86 TH

. Fig. 

2.6 shows simulation results of  for an oscillator with ( )Q t 2 1 z    and 

 at 0.21 /psb  0.1/ ps   and 100 / ps  . There is a significant drop by a factor of 
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9 in the phonon amplitude when the decay rate of the driving force increases by a factor 

of 1000.  

 

 
Figure 2.5. Simulation results of temporal evolution of driving forces with different 

decay rates generated by a Gaussian pulse with 0 42fs   whose peak arrives at 0t  . 

Legends show different values of   used. 

 

 

Figure 2.6. Simulation results of  for an oscillator with ( )Q t 2 1.86 THz    and 

 when 0.21 /psb  0.1/ ps   and 100 / ps  . 

 

Another feature of the dependence of the initial phonon amplitude  on the decay 0Q
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rate of the driving force is its different response sensitivities within different decay rate 

ranges. Fig. 2.7 shows the relationship between  and 0Q   for the same oscillator. It is 

noted that when  is much smaller than   ,  is insensitive to the change of 0Q  . 

The amplitude is almost constant when   increases from 0 to 1/ps. However, when   

is comparable to or larger than  , the increase of   brings down  drastically. 0Q

   

 

Figure 2.7. Initial amplitude of the oscillatory part of a phonon field with 

2 1.86 THz    and  versus 0.2 /psb   . 1

 

Note that when  and 0 b  , a good approximation can be made for  as 0Q

 
2 2

0 /40
2

e0 0Q V Im(

4
I

)



 (2.71) 



0

which is consistent with Eq. (12) in Ref [17]. Comparing Eq. (2.39) and Eq. (2.71), the 

magnitudes of  in an impulsive case and an extremely displacive case differ by a 

factor of  for their dependence on the phonon frequency. 

0Q



0  , Eq. (2.69) becomes If the pulsewidth is very short such that 
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 0 ( )I I t  (2.72) 

and Eq. (2.70) becomes 

 0
0

Im( )
( ) exp( ) ( )

4
F t VI t H t





 


  (2.73) 

where  is the Heaviside step function. The force represented by Eq. (2.73) has a 

shape similar to those in Fig. 2.5 but with a sharper rising edge. With Eq. (2.73), I can 

achieve an analytical solution for : 
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where 

 tan ( ) /b      (2.75) 

and 0
0 0

Im( )

4
F VI








. In this limit, it is easy to see that the coherent phonon signal is a 

superposition of a decaying background and a damping oscillator, and the analytical form 

of  can be directly extracted. Moreover, the dependence of  on  as shown in 

Fig. 2.7 is clearly revealed by the denominator of the second term. Also, in the limit that 

 and b , the initial amplitude of the second term is reduced to Eq. (2.71) with 

the difference of a factor  which accounts for the pulsewidth.  

0Q

0

0Q 



2 2
0 /4e 

For opaque materials, differential reflectance of a probe beam is usually measured, 

and it follows from Eq. (11) in Reg. [17] 
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where  is the central frequency of the probe pulse. The factor  is a correction 

for the pulsewidth of the probe beam similar to the correction in Eq. (2.71). 

cE
2 2

0 /4e 

 

2.4 Summary 

The mathematics that formulates lattice vibrations into quantized phonons within the 
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framework of harmonic oscillators was presented in this chapter. The macroscopic and 

microscopic theoretical treatments for spontaneous Raman scattering and impulsively 

stimulated Raman scattering were reviewed, too. I also discussed the differences in the 

behaviors of coherent phonon fields in transparent and opaque materials, which originates 

from the virtual and real charge densities fluctuations in the optical excitations. 

Excitations below and above the bandgap induce different forms of Raman tensors that 

influence both the amplitude and the temporal profile of a driving force. Those 

fundamental theories are crucial for reasonable comparison and interpretation of 

experimental data from RS and ISRS experiments in following chapters.   
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CHAPTER 3 

Experimental Techniques 

 

This chapter discusses the experimental equipments and techniques that have been 

extensively used in the lab. The working principle and structure of various continuous 

wave (CW) lasers and ultrafast systems are introduced in section 3.1. Raman 

spectroscopy and pump-probe spectroscopy are presented in section 3.2 and section 3.3 

respectively. Some other methods such as pulsewidth characterization, cryogenic 

technique and linear prediction are considered in section 3.4-3.6.   

 

3.1 Lasers 

Lasers are the key parts of all the experimental setups referenced in this dissertation. 

To investigate spontaneous Raman scattering (RS) and stimulated Raman scattering, both 

continuous wave lasers and ultrafast laser systems are used.  

3.1.1 Argon ion laser 

RS experiments are performed using the output from a CW Argon ion laser (Spectra 

Physics Beamlok 2060). RS in the visible range is performed using the single-line output 

from the Argon laser, while RS in the near infrared range is performed with a Ti:sapphire 

solid-state laser pumped by the multi-line output from the Argon laser.  

An electric discharge is used to pump the Argon laser. The transitions in an Argon 

laser follow a typical 4-level lasing scheme, a simplified diagram of which is shown in 

Fig. 3.1 (a). An Ar atom is excited to a 4p state by two collisions with electrons: the first 

collision ionizes the Ar atom, and the second collision excites Ar+ ion directly to its 4p 
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state or to higher energy levels which quickly cascade to 4p. Then transitions between 4p 

and 4s give several wavelengths in the visible range, between 400nm and 600nm. A 

spectrum of the atomic transitions frequencies is shown in Fig. 3.1 (b). The ion finally 

transitions from the 4s state to its ground state by emitting a photon in the UV range 

(~74nm) [1,2]. 

 

    

         (a)                                    (b) 

 

(c) 

Figure 3.1. Working principle for an Argon gas laser. (a) The 4-level atomic transition 
scheme in an Argon laser [1]. (b) Energy levels of the 4p-4s Argon laser transitions in the 
visible range [1,2]. (c) Schematic graph of a gas laser. The insert shows the Brewster 

angle B  [3]. 

 

The end windows of the plasma tube are aligned in the Brewster angle so that the 

output of the laser is polarized in the plane of incidence, as in the insert of Fig. 3.1 (c). 
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When operating in the visible range, a prism is inserted in the cavity. This is called 

“single-line” setup since due to the dispersion of the prism, there is only one wavelength 

perfectly aligned with the high reflector and thus preferentially amplified. By adjusting 

the tilt of the high reflector, different wavelengths can be selected. When more power is 

needed in order to pump a Ti:sapphire laser, the prism is replaced by a broadband high 

reflector covering wavelength in the range 454.5nm-514.5nm. This “multi-line” setup 

allows lasing at several wavelengths simultaneously and provides more output power. A 

gas fill reservoir automatically detects and keeps the optimum pressure inside the plasma 

tube [1].  

3.1.2 Neodymium-doped Yttrium Orthovanadate (Nd:YVO4) solid state laser 

A Nd:YVO4 solid state laser (Coherent Verdi V-5/V-10) is usually used for pumping 

a Ti:sapphire oscillator or a regenerative amplifier. A schematic graph of the laser cavity 

is shown in Fig. 3.2. 

 

 
Figure 3.2. Schematic graph of an end-pumped ring laser cavity of a Nd:YVO4 laser [4]. 

 

The Nd:YVO4 laser is pumped by laser light around 808nm delivered by optical 

fibers from semiconductor laser diode bar modules (FAP-ITM) located in the power 

supply. The gain medium is an Nd3+-doped YVO4 crystal. The transition from 4F3/2 to 

4I11/2 produces light at a wavelength around 1064nm [5]. An optical diode guarantees that 
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the beam gets amplified in one direction in the cavity and hence guarantees single 

frequency operation, which is reinforced by an etalon. The 1064nm beam is converted to 

532nm beam by second harmonic generation after passing a type I non-critically phase 

matched lithium triborate (LBO) doubling crystal. The fundamental and 

frequency-doubled beams travel collinearly until a dichromatic mirror reflects the 

1064nm beam and transmits the 532nm beam as the output [4]. 

3.1.3 Ti: sapphire mode-locked ultrafast oscillator 

The Ti:sapphire mode-locked ultrafast oscillator (Coherent Mira Seed Laser) is a 

solid state laser usually used for seeding a regenerative amplifier. It utilizes Kerr lens 

passive mode-locking technique to generate laser pulses with repetition rate 76MHz, 

pulsewidth 70fs, and tunable wavelength from 780 to 840nm. The wavelength usually 

used is 800nm and pulses typically have a bandwidth around 30nm. A schematic graph of 

the oscillator cavity is shown in Fig. 3.3. 

 

 

Figure 3.3. Schematic graph of a Mira seed laser [6]. 

 

The Ti:sapphire oscillator uses Ti3+ doped sapphire crystal as the gain medium 

pumped by the frequency-doubled CW output at 532nm from a Nd:YVO4 solid state 

laser (Coherent Verdi V-5). The broad gain curve of Ti:sapphire amplifies light from 

680nm to 1100nm. Cavity end mirrors and a birefringent filter narrow the spectrum to 

around 30nm. There is a glass starter in the optical path. By rocking the starter and thus 
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changing the effective cavity length, more than one longitudinal mode can be made to 

lase simultaneously, hence inducing transient power fluctuation big enough to cause the 

Kerr lens effect. That is how the mode-locking starts. After the pulses are initiated, the 

starter oscillation is halted and prism BP2 is adjusted to optimize the GVD and to 

provide a stable power output. Due to the nonlinear self-focusing effect in the sapphire 

crystal, laser pulses have a smaller diameter where a hard aperture sits, and thus passes 

through the aperture with lower round-trip loss; CW signals suffers from spatial 

beam-loss due to their low peak intensity and larger spot size. Pulsed output is 

significantly amplified in this way. A fused silica prism pair (BP1 and BP2) is used to 

compensate for the positive intracavity group velocity dispersion (GVD) as well as the 

chirp induced by self-phase modulation (SPM) in the crystal. The repetition rate, 76MHz, 

is determined by the time that a pulse takes to finish one round-trip in the laser cavity [6]. 

3.1.4 Ti: sapphire regenerative amplifier 

The Ti: sapphire regenerative amplifier (Coherent RegA 9000) provides μJ pulse 

energy at 800nm and high repetition rate up to 250kHz. It is desirable for white-light 

continuum generation and experiments that require high pulse energy. A schematic of 

RegA is shown in Fig. 3.4 (a). 

The RegA is seeded by a Mira oscillator and pumped by a CW frequency-doubled 

Nd:YVO4 solid state laser (Coherent Verdi V-10) at 532nm. Population inversion is 

created in the Ti: sapphire crystal while lasing is inhibited by an 80MHz radio-frequency 

(RF) modulated TeO2 Q-switch. The acoustic wave in the TeO2 crystal is aligned at the 

Bragg angle so that it diffracts part of the beam out of the cavity when the acousto-optic 

modulation is on. In this way, the loss of the cavity is high and most of the pumped 

energy is accumulated in the Ti:sapphire crystal instead of participating in lasing. It is 

only immediately before a cavity dumper lets in a seeding pulse until immediately after 

the cavity dumper lets out an amplified pulse that the Q-switch is held off so that light 

amplification takes place inside the cavity. The cavity dumper is a 380MHz RF 
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modulated Brewster angled SiO2 crystal. When an RF pulse is sent to the cavity dumper, 

the acoustic wave inside the crystal diffracts a stretched seeding optical pulse into the 

cavity. After 25 to 30 round trips, another RF pulse is sent and the amplified pulse is 

diffracted out. The acoustic pulse is so short that only one pulse out of the 76MHz pulse 

train is injected each time. The timing schematic for the Q-switch and cavity dumper is 

shown in Fig. 3.4 (b). A dispersion compensated Faraday isolator is present in the way of 

the seeding pulses to stop the back reflected pulses from going back to Mira. The 

repetition rate 250kHz is limited by the storage time of the gain medium, which is 2.5μs 

for Ti:sapphire at room temperature [7].  

 

(a) 

 (b) 

Figure 3.4. Schematic graph of a regenerative amplifier. (a) Ti:sapphire regenerative 
amplifier optical schematic. QS: Q-switch, TS: Ti:sapphire, CD: cavity dumper, FI: 
Faraday isolator, CP: cube polarizer [7]. (b) Timing sequence of the Q-switch, cavity 
dumper and intracavity optical pulse train [8]. 
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Chirped-pulse amplification is used to amplify the energy in each pulse. The pulse 

train from Mira is sent to a 4-pass holographic diffraction grating expander before being 

injected into the RegA. The pulsewidth is stretched to 10-100ps in order to reduce 

undesirable nonlinear effects such as gain saturation and SPM in the process of pulse 

amplification. After amplified by the RegA, pulses are sent to another 4-pass grating 

compressor to be converted to an ultrafast pulse train with 70fs pulsewidth. The GVD of 

a light beam passing through a grating pair, no matter positive or negative, is determined 

by the same expression. A setup for pulse compression uses a positive distance between 

the grating pair and hence gains a negative GVD; to get a positive GVD as in a grating 

pulse expander, the image of the first grating that is behind the second grating is made 

use of so that a negative distance can be achieved.  

3.1.5 Optical parametric amplifier  

The optical parametric amplifier (Coherent OPA 9400) provides continuously 

tunable pulsed output with visible signal from 480nm to 700nm and infrared idler from 

933nm to 2300nm. The repetition rate is 250kHz and output power is around 30mW. A 

schematic of the OPA is shown in Fig. 3.5.  

 

 

Figure 3.5. Schematic graph of an OPA [10]. 
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The 800nm horizontally polarized output from RegA is split into two beams upon 

arriving in the OPA. One beam with 25% of the power is focused on a sapphire crystal to 

generate a white light continuum. The high intensity of the Gaussian beam induces a 

Kerr lens due to self-focusing modulation (SFM). The focused beam collapses into a 

symmetric Gaussian filament with the size close to the wavelength when the effect of 

diffraction balances that of SFM. The high intensities in the collapsed filament causes 

self-phase modulation (SPM). It generates a frequency and phase sweep exceeding the 

fundamental laser wavelength, which extends from ultraviolet to near infrared. Both 

SFM and SPM are due to the third-order susceptibility (3)  which contributes to a 

intensity dependent refractive index 0 2n n n I  , where  is the weak-field refractive 

index,  is called the second-order index of refraction, and 

0n

2n I  is the time-averaged 

intensity of the optical field [11]. For SFM, when  is positive, according to the 

Gaussian spatial profile of a beam, the refractive index at the center is higher than at the 

periphery. As a result, a positive lens is formed and the beam is focused. In the case of 

SPM, the strong field also induces a nonlinear phase change when the beam propagates, 

given by 

2n

2 0( ) ( ) /NL t n I t L c   , where 0  is the optical angular frequency,  is the 

distance light travels in the material, and  is the speed of light. It adds an 

instantaneous variation to the original optical angular frequency 

L

c

0  given by  

( ) /d t dtNL   [11]. Due to the specific shape of a Gaussian pulse, the leading part of 

the pulse induces lower frequencies and thus extends to IR, while the tailing induces 

higher frequencies and extends to UV. In this way, the high laser intensity introduces new 

frequencies and broadens the spectrum of the beam.  

The other beam with 75% of the power is sent to a 1mm thick type I Beta-Barium 

Borate (BBO) and converted to a second harmonic generated (SHG) beam at 400nm with 
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a vertical polarization. SHG involves the second-order susceptibility (2)  and is a special 

case of sum-frequency generation. The nonlinear polarization has twice the frequency of 

the incoming field , where  is the amplitude of the 

fundamental electric field [11]. 

02(2) 2( ) . .i tP t E e c c   E

The white-light continuum, usually called the seed, and the second harmonic 400nm 

beam, called the pump, are then both focused on a type I BBO crystal. When 

phase-matching for certain wavelength within the continuum is satisfied, the high 

frequency 400nm beam is converted into a beam at that specific wavelength and another 

beam called the idler. The intensities of seed and idler beams grow when they passes 

through the crystal. This difference frequency generation process is known as optical 

parametric amplification, which is also a (2)  process. Fig. 3.6 (a) shows the 

amplification geometry and 3.6 (b) the energy levels involved.  

 

 
Figure 3.6. (a) Geometry schematic of the optical parametric amplification interaction. A 

pump beam with frequency 3  is converted to a seed beam with 1  and an idler with 

2 . (b) Energy level description of the process. 

 

Phase-matching is realized by angle-tuning of the OPA BBO crystal. It utilizes the 

birefringence of the crystal to compensate for the normal dispersion of light in materials.  

44 
 



Equations which describe conservation of energy and momentum are  

 3 1 2     (3.1) 

 3 1k k k2   (3.2) 

where 3 , 1 , and 2  are the frequencies for the pump, the seed and the idler, and , 

, and  are the corresponding wavevectors. 

3k

1k 2k   and  are related by k / ck n . 

In the normal dispersion regime of a isotropic crystal,  is an increasing function of n  , 

so phase-matching conditions Eq. (3.1) and Eq. (3.2) are hard to achieve simultaneously. 

The difficulty is overcome by making use of the birefringence of BBO. In the case of 

BBO, which is a negative uniaxial crystal, Eq. (3.2) can be rewritten as 

 3 3 1 1 2 2( )e on n no      (3.3) 

where  is ordinary refractive index and on ( )en   the extraordinary refractive index. 

The optic axis of BBO is in the plane of incidence, which is vertical. The seed and idler 

are both polarized in the horizontal direction and have refractive indices independent of 

the crystal orientation. On the other hand, the vertically polarized pump experiences a 

variable refractive index when the crystal orientation is changed [12] 
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3 3
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  





 (3.4) 

where en  is the principal value of the extraordinary refractive index and   is the angle 

between the optic axis and . In practice, by tuning the BBO orientation, different 

wavelengths that satisfy the phase-matching condition are selected and amplified. As 

shown in Fig. 3.5, optimal bandwidth and power are achieved by sending both beams 

through the BBO crystal twice [13]. Positions of the delay stages in the two passes can be 

adjusted to match the lengths of the optical paths of the pump and the seed in order to 

maximize the output power. 

3k
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3.2 Raman scattering spectroscopy 

A Raman spectrometer is a conventional tool for characterizing optical phonons as 

well as photoluminescence in the frequency domain. It has the advantage of high 

resolution, high sensitivity and convenience of operation. As a result, it serves as a quick 

and reliable way for testing the orientation of samples, selection rules, etc. 

3.2.1 SPEX Raman spectrometer 

The Raman spectrometer SPEX (0.85m double SPEX 1404) contains two 1800 

grooves/mm holographic gratings, two alternative entrances, a water cooled 

photomultiplier tube (PMT) for signal detection, several relay curve mirrors and four slits. 

It has spectral coverage 175-1040nm and resolution 0.005nm. Fig. 3.7 shows the 

standard setup for a double-grating SPEX Raman spectrometer. 

 

 

Figure 3.7. Schematic for SPEX. G1 and G2 are gratings, M1, M2, M3 and M4 are curve 
mirrors [14].  

 

The scattered light from the samples are collected and focused on the entrance slit 

S1. After the diffraction by grating G1, the dispersed spectrum is sent through L1 and L2, 
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which are important at shielding off the strong laser line. The beam is then sent to 

another grating G2 and gets diffracted again. The selected wavelength is sent through an 

exit slit S4 and into a PMT. The spectrometer has a high resolution due to the use of two 

grating for spectrum dispersion. The resolution is determined by the sizes of slit S1 and 

S4, which are normally set equal. S2 and S3 are usually 20% wider than S1 and S4. Two 

rods are used to control S2 and S3 respectively. When they are pulled out, S2 and S3 are 

fully open. When they are pushed in, the widths of S2 and S3 are controlled by the 

micrometers outside the SPEX. A swingaway mirror M5 is used to switch between the 

two entrances.  

3.2.2 Dilor Raman spectrometer 

 

 
Figure 3.8. Dilor setup at multichannel normal mode [15].  

 

Dilor XY (JY Horiba) has the advantage of high efficiency over SPEX because it 

can take data over a frequency range instead of at a single frequency at one time. This is 

because Dilor uses a charge-coupled device (CCD) camera for signal detection, referred 

as “multichannel” detection. It contains a 1024×256 pixel array and averages signals 

from pixels on the same column at each frequency. The liquid nitrogen cooled CCD has a 
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low background noise. However, the CCD camera is less sensitive than a PMT, and the 

Dilor has lower resolution than the SPEX due to the single grating diffraction scheme it 

uses. A schematic of Dilor with “normal mode” setup is shown in Fig. 3.8. 

Scattered light from a sample is collimated by a lens outside Dilor and sent to the 

entrance. There is an internal lens that focuses the light on slit S1. The beam is then 

diffracted by grating G1, goes through a widely open slit S2, and then another grating G2, 

which is conjugate to G1 and regroups different wavelengths at slit S3. G1 and G2 are 

controlled by the same motor and always kept coupled. They constitute the 

“premonochromator” part that functions as a bandpass filter that selects a spectrum range 

via S2. Grating G3, which constitutes the “spectrograph” part, is controlled by another 

motor. It diffracts the light coming from S3 to the CCD camera. The resolution of Dilor 

is limited by the width of S1 and S3.  

3.2.3 Raman spectroscopy 

 

 
Figure 3.9. Standard setup for Raman backscattering geometry using Dilor. The different 
colors used for incident light and scattered light are only for illustration clarity. 

 

For opaque materials, backscattering geometry is usually used. With this geometry, 

the focused incident light comes in a direction very close to the normal of the sample 
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surface. The sample sits at the focus of a collecting lens so that the scattered light is 

collimated and sent to the spectrometer. A polarizer usually called an analyzer is placed 

in front of the spectrometer to pick up light of certain polarization. Fig. 3.9 shows a 

standard setup for Raman backscattering geometry using Dilor.  

The input to S1 of the SPEX should be a focused point of the scattered light, so 

either a focusing lens is needed between the collecting lens and SPEX, or the collecting 

lens and focusing lens are replaced by a single lens that carries out the functions of both. 

In either case, the lens should be carefully chosen to match the f/# of the SPEX. A mirror 

target mask is available and can be placed over M1 as a reference point to facilitate 

precise alignment of the optical path outside the spectrometer.      

For transparent materials, in addition to backscattering, other geometries such as 

forward scattering and right-angle scattering can be employed to meet the requirement of 

the phenomena of interest and corresponding selection rules. Multiple reflections of light 

inside the sample should be taken into account when one calculates cross sections and 

phase matching conditions [16,17]. 

The conventional notation used to describe the scattering geometry in an RS 

experiment is , where  and  are the directions of incident and 

scattered light,  and  are the corresponding polarizations [18]. 

( , )I I S Sk e e k
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3.3 Ultrafast pump-probe spectroscopy 

Ultrafast pump-probe spectroscopy has been widely used to depict temporal 

behavior of fundamental excitations such as optical phonons, acoustic phonons, magnons, 

polaritons and photoexcited carriers [19-25]. A pump beam is used to excite these 

phenomena in a sample, and a probe that follows behind is used to detect the change of 

the optical properties induced by these phenomena, usually in the form of spectra shift, 

change of reflectance or transmittance, or change of the polarization of the probe beam.  
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An example of the most commonly used standard degenerate pump-probe setup in 

reflection detection geometry is shown in Fig. 3.10 (a). The 800nm pulsed beam from a 

Ti:sapphire regenerative amplifier with 70fs pulsewidth and 250kHz repetition rate is 

split into a pump beam and a probe beam. An optical chopper is used to modulate the 

intensity of the pump beam at 2kHz. A beamsplitter is inserted in the probe beam to split 

it into a reference beam and a detection probe beam. Both the pump and the detection 

probe beam are focused at the same spot on the sample. The reflected detection probe 

beam and the reference beam are sent to the two channels of a balanced photodetector, 

where the difference between the two intensities is taken. The output of the photodetector 

is sent through a 10kHz low-pass pre-amplifier and then into a lock-in amplifier with the 

same reference frequency as the optical chopper. Since the optical path of the probe 

beam involves a delay stage, the temporal delay between a pump pulse and a probe pulse 

can be controlled by changing the position of the delay stage by step sizes as small as 

0.1 m . Depending on the specific requirement of an experiment, parameters such as the 

polarizations and wavelengths of the pump and probe beam can be adjusted as needed. 

One of these modifications is the detection of anisotropic signals in the reflection 

geometry, as shown in Fig. 3.10 (b). It is usually referred to as Kerr geometry since it 

detects the rotation of the polarization of the probe beam [26]. In this setup, instead of a 

beamsplitter, a half waveplate is inserted in the probe beam to change its polarization to 

45o, while the polarization of the pump beam is kept horizontal. No reference beam is 

used. The reflected probe beam is split by a polarizing cube beamsplitter into two beams 

with vertical and horizontal polarizations, and then sent to the two channels of a balanced 

photodetector. This setup is especially useful in isolating small anisotropic signals from a 

large isotropic background, since vertically and horizontally polarized parts of the probe 

beam see different modulations induced by the anisotropic excitation but the same 

modulations induced by the isotropic excitation.  
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(a) 

 

 

(b) 

Figure 3.10. (a) Standard degenerate pump-probe setup in the reflection detection 
geometry. (b) Degenerate pump-probe setup for detection of anisotropic signals in the 
Kerr reflection geometry.  

 

An analogy can be drawn when transmission from the sample is of interest. In this 

case, the major effect of coherent optical phonons is to shift the spectrum of the beam. As 

a result, if a photon counter is used as the detection device, the spectrally integrated 
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signal can be small since there is no change in the total number of photons. To get 

signals of good quality, a spectral filter or a grating is placed in the path of the 

transmitted probe to sample a portion of the spectra [19,27]. 

 

3.4 Pulsewidth characterization 

Pulsewidth is an important factor that influences the efficiency of coherent phonon 

generation as well as the temporal resolution of a pump-probe experiment. One of the 

techniques that characterize pulsewidth is the crosscorrelation between the pump and the 

probe beams. A noncollinear setup similar to Fig. 3.9 (a) in the transmission geometry is 

used and a BBO crystal is placed where the sample sits. A photodetector is put behind the 

BBO to detect the transmitted crosscorrelation signal generated by SHG. By changing the 

time delay between the two beams, a temporal profile of the second harmonic generated 

light is obtained. 

Assuming the two beams have the same temporal profile, the intensity of the SHG 

signal is  

 (2) ( ) ( ) ( )I t C I t I t t dt



     (3.5) 

where  is the temporal separation of the two beams, and  is the conversion 

efficiency. Assuming a Gaussian pulse  

t C

 
2 2

0/
0( ) tI t I e   (3.6) 

we have 

 
2 2

0( ) /2(2) (2)
0( ) tI t I e     (3.7) 

where (2) 2
0 0 0 / 2I C I  .  

The pulsewidth p  is conventionally defined as the full width at half maximum 

(FWHM) of the pulse intensity envelope in Eq. (3.6), so that  

 02 ln 2p   (3.8) 
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Note that the FWHM  of the autocorrelated signal in Eq. (3.7) is (2)
FWHM 2  times that 

of the individual pulse intensity 

 (2) 2FWHM p   (3.9) 

 

3.5 Cryostat 

All the temperature dependent experiments in this thesis were carried out with the 

samples placed inside a flow-helium cryostat (Janis ST-300) under vacuum around 

2×10-6 Torr. With the combination of a cold finger sample mount cooled by liquid helium 

and a heater placed close to the mount, a very stable temperature can be achieved from 

10K to room temperature.  

 

 
Figure 3.11. Photoluminescence spectrum of a CaF2 window in the range 
535nm-557.5nm taken with SPEX with excitation wavelength 514.5nm.   
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Scattering from the CaF2 windows on the outer jacket of the cryostat is rarely a 

problem, since the focus of the collecting lens in an RS experiment does not rest on the 

window and the reflected beams from the window and the sample are spatially separated 

in an ISRS experiment. However, in an RS experiment, if the sample is mounted very 

close to the window or the signal from the sample is quite weak, care should be taken 

concerning the photoluminescence (PL) from the CaF2 window. Fig. 3.11 shows part of 

the PL spectrum of the CaF2 window taken with SPEX with an excitation wavelength of 

514.5nm at room temperature. CaF2 is well known for its large bandgap around 12eV [28] 

and is thus widely used in making optical windows and lenses in the visible and IR range. 

The PL peaks from the windows coincide with transitions of ionic impurities in the CaF2 

crystal [29]. 

   

3.6 Data analysis: linear prediction method 

Typical data from a pump-probe experiment is in the form of differential reflectance 

or transmittance nx  as a function of time with the same step size . The signal is 

usually a sum of several damping harmonic oscillatory modes, electronic background and 

noise. Due to the finite time window of the experimental data, fast Fourier transform 

(FFT) suffers from limited frequency resolution [30]. What is more, oscillations are 

usually accompanied by some decaying electronic background, which in frequency 

domain shows up as a low frequency signal with a tail that distorts the peaks of interest 

[27]. 

t

A singular value decomposition based linear prediction (LPSVD) procedure is used 

to extract oscillators from the signal with high frequency resolution and high numerical 

stability. At the same time, it also provides other information about the oscillations such 

as decay rate, initial amplitude and initial phase. LPSVD method needs no initial values 

to carry out the fitting process. The following section explains the mathematical principle 

of LP method described in Ref. [30]. 
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For a time sequential signal representing  oscillators of the form  K

 
1

( ) cos( )k

K
b n t

n k k
k

k nx x n t c e n t w  



       (3.10) 

where , , kc kb k  and k  are the initial amplitude, decay rate, angular frequency and 

initial phase of the th oscillator,  is the noise. Backward LPSVD prediction 

assumes that the th point can be expressed as a linear combination of its following 

k kw

n M  

points such that [31] 

 1 1 2 2n n n M n Mx a x a x a x       (3.11) 

where the linear coefficients 1 Ma a  are independent of . If the noise is zero, n

2M K . However, with noise, M  can far exceed . In the LPSVD program, we 

use . We can thus write 

2K

/ 2M N N M  functions of the same form as Eq. (3.11) and 

solve the linear problem 

 ( ) 1 ( )N M M M N M 1    X a x  (3.12) 

The solution is 

  (3.13) 1a VΛ Ux 

where  and  are orthogonal matrices,  is a diagonal matrix, and  denotes 

transposition of . Note that 

U V

U

Λ U

1Λ  is defined as  

  1 0

0 0
l 

E
ΛΛ     (3.14) 

where  is a unit matrix with dimension lE l l , the meaning of  to be explained later. 

The matrices are got from singular value decomposition (SVD) of  

l

X

 ( ) ( ) ( ) ( )N M M N M N M N M M M M      X U Λ V   (3.15) 

The diagonal entries  ’s of  are called singular values (SV’s) of . Without noise, 

there are  non-zero SV’s. The noise adds to the matrix more non-zero but very small 

Λ X

2K
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SV’s, which make the condition number max min/   high and renders a numerically 

unstable problem [32]. As a result, truncation is performed to get the largest  SV’s, 

which are the values actually used to solve Eq. (3.13).  

l

Once  is solved, its components are used to form a a M th order equation 

 1
1 0M Mz a z 

Ma   (3.16)   

The th complex root  of Eq. (3.15) is related to the parameters of an oscillator k kz

  ln mkb od( ) /kz t 

rg( ) /kz

 (3.17) 

 ak t     (3.18) 

kz  larger than unity in Eq. (3.17) and a proper sign in Eq. (3.18) should be chosen to 

guarantee positive decay rates and frequencies. Sorting is usually performed over all the 

roots at this stage and only l  roots with the largest moduli are retained to achieve 

physically meaningful solutions [30].  

Once we have ’s and b  ’s, they are inserted back to Eq. (3.10). We then get  

linear equations about 

N

coskc k  and sinkc k  with coefficients 

 and ,2 1 cos( )kb n t
n kd e n 

 k t ,2n kd e sin(kb n t
k

  )n t  

c

. By solving the equations with 

another linear least square procedure, we can derive ’s and  ’s from pairs of 

solutions. 
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CHAPTER 4   

Temperature and Fluence Dependence of Coherent Optical 

Phonons in Semimetals 

 

Ultrafast lasers have been widely used to characterize phonons with THz frequencies 

in a variety of materials [1-5]. Based on the diverse phenomena under study, different 

generation mechanisms of coherent phonon oscillations were identified and theoretically 

formulated [5-11]. For example, impulsively stimulated Raman scattering (ISRS) is 

well-known for exciting phonons in transparent or molecular crystals [2,12,13]; LO 

phonons in certain semiconductors such as GaAs are initiated by screening of the surface 

electric field by photoexcited carriers [11,14,15]. Among all the discussions, one topic 

over which has been debated for a long time is the nature of the generation mechanism for 

lattice vibrations in certain opaque materials with low crystal symmetry [8,10,16-19].  

The question originated from the first few ultrafast time-resolved experiments in Sb, 

Bi, Te and Ti2O3 [16,17], when large oscillations of A1 (or A1g) modes were seen while 

other modes observable in spontaneous Raman scattering (RS) were missing in the 

pump-probe experiments performed. The results led to the subsequent proposal of the 

theory of displacive excited coherent phonons (DECP) [6], which claimed that coherent 

phonons in those materials are generated by a different process from those in Raman 

scattering. It was argued that lattice vibrations are initiated because of a displaced 

quasiequilibrium coordinate of the nuclear system set by the photoexcited carriers, and this 

mechanism only applies to breathing modes which do not change the symmetry of the 

crystal. Later, experimental observation of Eg modes in Sb [8] and Bi [18], and the related 
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theoretical development [8] proved that the generation process involved in these 

semimetals is actually a particular case of coherent stimulated Raman scattering excited on 

resonance, which can generate modes of arbitrary symmetry. Afterward, the theory of two 

stimulated Raman tensors led to a microscopic interpretation of Raman tensors involved in 

the generation and scattering processes of a pump-probe experiment [10]. This theory 

combined impulsive excitations in transparent materials with displacive excitations in 

absorbing materials under the framework of Raman scattering, and pointed out that the 

difference in those two scenarios lies in different contributions to the driving force from 

virtual and real transitions when materials are excited below and above the bandgap. A 

wavelength dependent measurement of the coherent phonons in Sb revealed the 

relationship between the permittivity of an opaque material and the Raman tensors 

involved in a pump-probe experiment. After that, a model incorporating a finite lifetime of 

the driving forces was developed to explain the starting phases of coherent phonons in Si 

and some other materials [20]. However, according to that method, the initial phases of the 

oscillations need to be accurately determined, which is usually obtained with certain errors 

in a pump-probe experiment due to the ambiguity of the exact temporal overlap between 

the pump and the probe. At the same time, the resolution of the anisotropic part of 

electronic excitation is also limited by the pulsewidth used.  

In this chapter, by investigating A1g and Eg modes in Sb and Bi, I propose another 

approach to estimate the lifetime of the carrier density with Eg symmetry. This method is 

based on the initial amplitudes of coherent phonons, which is more robust against the 

ambiguity of zero time delay determination. A set of temperature dependent pump-probe 

data and RS data in Sb and Bi will be shown. Different behaviors of A1g and Eg modes 

are observed in pump-probe data. Based on the framework of two stimulated Raman 

tensors and infinite lifetime of the driving force, a discrepancy of deformation potentials 

derived from pump-probe experiments and RS experiments is observed. As a result, the 

finite lifetime of the Eg driving force needs to be taken into account. By comparing 
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results from pump-probe and RS experiments, lifetimes of the Eg driving forces around 

and below 10fs were resolved with the 70fs laser pulses used.  Section 4.1-4.6 will discuss 

the topic above based on the selection rules, experimental results and relevant symmetry 

interpretation. 

         

(b)(a) 

Figure 4.1. (a) A unit cell of Sb [25]. Solid circles correspond to atoms from sublattice 
one. Only one atom from sublattice two is shown, which is the open circle within the unit 
cell. The center of inversion symmetry lies at the origin of the orthogonal axis system. 
The z axis is along the trigonal axis of the crystal. (b) The first Brillouin zone of Sb with 
high symmetry points and lines [25].  

 

In addition to the work related to the ongoing debate concerning the generation 

mechanism, some interesting works on other aspects of coherent phonons have also been 

carried out using ultrafast techniques. One of the intensively studied topics is the nature 

of phonon chirp in these materials at high fluence [21-24]. In a pump-probe experiment at 

high fluence, Bi shows a temporally changing frequency, which can be explained by 

lattice anharmonicity and electronic softening [21,23]. The relative importance of the 

electronic softening over lattice anharmonicity was confirmed by a double pump-probe 

experiment on the A1g mode of Bi [24]. However, the chirp of the Eg mode has not been 

investigated to the best of our knowledge. In section 4.7, fluence dependent data on both 
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A1g and Eg modes in Sb will be presented. A summary is given in section 4.8. 

 

4.1 Crystal structure of antimony (Sb) and bismuth (Bi) 

Sb and Bi are group Vb semimetals with rhombohedral A7 crystal structure and 

point group 3m  [8]. The crystal can be viewed as derived from two inter-penetrating 

face centered cubic lattices, with both lattices slightly stretched along the body diagonal 

(which becomes the trigonal axis of the crystal), and one lattice displaced relative to the 

other along the trigonal axis. There are two atoms in each unit cell, and the center of 

inversion symmetry lies midway between these two atoms [25]. The Brillouin zone (BZ) 

of the rhombohedral crystal is thus a slightly squashed version of the BZ of an fcc crystal. 

A unit cell of Sb is shown in Fig. 4.1 (a) and its first Brillouin zone is in Fig. 4.1 (b). 

 

(a) 

       

 

 

(b) 

Figure 4.2. (a) Schematic illustrations of atomic motion corresponding to the 
non-degenerate A1g mode and the doubly degenerate Eg modes. (b) Raman cross section 
of A1g and Eg modes in Sb and Bi at 300K as a function of incident photon energy [26].  
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4.2 Phonon modes in Sb and Bi   

Having 2 atoms in each unit cell, Sb and Bi have 6 phonon branches, 3 acoustic 

phonons and 3 optical phonons. Among the 3 Raman active optical phonons, there is one 

totally symmetric A1g mode and two doubly degenerate Eg modes. The motion of atoms 

in a unit cell corresponding to each mode are schematically shown in Fig. 4.2 (a). 

Previous studies showed that two-band processes are dominant in these materials [26]. 

One evidence is that the ratio of the Raman cross section between A1g and Eg modes in 

both materials is constant over a large range of incident photon energy, as shown in 4.2 

(b). The optical excitation involved is believed to take place in a wide region of the 

Brillouin zone, rather than confined to any high symmetry points [26]. The Raman 

tensors for these modes are shown in Table 4.1 [8].   

 

Table 4.1. Raman tensors for the A1g (nondegenerate) and Eg (doubly degenerate) modes 

in crystals with point group 3m . The trigonal axis of the crystal is oriented in the z 

direction. 
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4.3 Experimental setups 

Our samples are a 1mm thick Sb single crystal and a 100nm Bi single crystal film 

deposited on a sapphire substrate. They were mounted in a Janis ST-300 cryostat with 

surfaces perpendicular to the trigonal axis. A surface of good optical quality is important 

in the successful observation of Eg modes and well-observed selection rules. Temperature 

dependent pump-probe and RS experiments were performed on these samples. 

In the pump-probe experiments, I used the anisotropic detection geometry in Fig. 

3.10 (b). A 2.2mW pump and a 0.5mW probe beam were focused to a 200um and 80um 
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diameter spot respectively on the sample, with incident angles 0o and 13o. Sometimes for 

a sample with an inhomogeneous surface, signals from different spots can be different, so 

detections of isotropic signals and anisotropic signals from the same spot are important. 

In our experiment, for detection of the weak Eg signals, both entrances of the 

photodetector are open; for detection of the A1g signals, only the entrance receiving the 

vertically polarized beam was open. The reference provided by the optical chopper was 

4kHz.  

In the RS experiment, I used a continuous wave Ti:sapphire laser operating at 

780nm pumped by an Argon gas laser in the multiline mode. A backscattering geometry 

( , )z x x z  was employed with a 30mW vertically polarized incident beam. The scattered 

light was filtered with a vertically polarized analyzer and then sent to a Dilor X-Y Raman 

spectrometer, with slit size 200um for both S1 and S3. 

 

4.4 Selection rules 

According to Eq. (2.71) and Eq. (2.76), the initial amplitude of phonon oscillations 

in a differential reflectance pump-probe experiment is 

 k l k l
pump kl pump probe kl probe

kl kl

R
e e e e

R
     

 
  




 (4.1) 

where kl  and kl  are the two stimulated Raman tensors in Chap. 2,  and  

are the polarization unit vectors for the pump and the probe fields. For 

pumpe probee

(cos ,si 0)pump n , e  and (cos ,sin ,0)probe  e , the signals for A1g mode and Eg 

mode are 

  1gA : / a aa
R R     (4.2) 

    gE : / cos 2e ee
R R          (4.3) 

where the subscripts  and  represent Aa e 1g and Eg modes respectively. Note that the 
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A1g signal is independent of the polarization of either beam while the Eg signal is 

dependent on the angle between the polarizations of the pump and probe beams. Neither 

phonon signal depends on the angle between the light polarization and the crystal axis in 

plane. In our specific polarization geometry, the Eg signal obtained is twice the maximum 

amplitude in Eq. (4.3). 

According to Eq. (2.30), the Raman scattering cross section in an RS experiment is 

 
22

k l
S kl I

klsolid S

d
e e

d d

 



   (4.4) 

where  and  are the polarization unit vectors for the incident and the scattered 

fields. Raman cross sections one gets with an incident beam 

Ie Se

(cos ,sin ,0)I  e  and 

scattered light (cos ,sin ,0)S  e  are 

    2 2
1gA : / cossolid S aa

d d d 2        (4.5) 

  2: / 2
g solid S ee

E d d d     (4.6) 

Again, neither signal depends on the orientation of the axis in plane. The A1g signal 

depends on the angle between the polarizations of the incident and scattered light while 

the Eg signal is polarization insensitive. 

 

4.5 Temperature dependent experimental data  

Temperature dependent pump-probe signals from Sb and Bi are shown in Fig. 

4.3-4.6. An A1g mode with frequency 4.5THz and an Eg mode with frequency 3.4THz are 

observed in Sb at room temperature. Similarly, an A1g mode at 2.9THz and an Eg mode at 

2.1THz are observed in Bi. These frequencies shift to higher values at lower temperature. 

A large electronic background can be observed in the A1g data in both materials. A flat 

background is observed in the Eg data due to the cancellation of the isotropic electronic 

background. The initial amplitude of A1g oscillations in Sb is almost constant from room 
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temperature to 10K, while the initial amplitude of Eg oscillations increases by a factor of 

2.5. Similar behaviors are observed in Bi. The amplitude of the A1g mode stays the same 

over the entire temperature range except for a slight decrease at 10K while that of the Eg 

mode increases by a factor of 4.  

I fit the oscillatory part of the signal with the linear prediction method with the 

model 

 / exp( )cos( )i i i
i

R R A b t t i      (4.7) 

where the subscripts  designate the A,i a e 1g mode and Eg mode respectively. , , 

 and 

iA ib

i i  are the initial amplitude, decay rate, angular frequency and initial phase of 

the oscillations corresponding to phonon mode i . Fig. 4.7 is a summary of the 

temperature dependent behavior of initial amplitudes  in Sb and Bi. In Sb, the initial 

amplitude of A

iA

1g is almost constant over the entire temperature range; the initial 

amplitude of Eg decreases from 2.9×10-5 at 10K to 1.2×10-5 at 292K. In Bi, the initial 

amplitude of A1g is constant except for at very low temperatures; for Eg, similar to the 

case of Sb, a decrease is observed from 2.6×10-5 at 10K to 6.2×10-6 at 292K. 

The results from the Stokes RS experiment for Sb and Bi at room temperature are 

shown in Fig. 4.8. Two peaks are observed in each material, with the same frequencies as 

their counterparts in the pump-probe experiment. I fit the spectra with  

 
2

/ 2

( ) ( / 2
i

i
iS i

Wd
S

d W 2)i


 


   (4.8) 

where  is the area under peak  and  is the FWHM. The fit results are shown in 

Fig. 4.8. Note that a decaying exponential is used to fit the laser tail showing up in the 

spectrum of Bi. 

iS i iW

 

 

 

66 
 



 
Figure 4.3. Differential reflectance data of the A1g mode in Sb at different temperatures. 
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Figure 4.4. Differential reflectance data of the Eg mode in Sb at different temperatures. 
The feature at zero time delay is an artifact caused by the interference between the pump 
and the probe. 

 

68 
 



 
Figure 4.5. Differential reflectance data of the A1g mode in Bi at different temperatures. 
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Figure 4.6. Differential reflectance data of the Eg mode in Bi at different temperatures.    
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(a) 

 

(b) (b) 

Figure 4.7. Temperature dependence of initial amplitudes of A1g (blue square) and Eg 
(red triangle) modes in (a) Sb and (b) Bi. 
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(a) 

 

(b) 

Figure 4.8. Raman spectra at room temperature in (a) Sb and (b) Bi. Dots are 
experimental data points. Blue and red lines are Lorentzian fits for the A1g mode and the 
Eg mode respectively.  
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(a) 

 

(b) 

Figure 4.9. Temperature dependence of ratios between deformation potentials in (a) Sb 
and (b) Bi. Solid circles are ratios between deformation potentials from pump-probe 
experiments. Hollow squares are ratios from RS experiments. 
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4.6 Discussion of the temperature dependent experiments 

The differential reflectance in pump-probe and scattering cross section in RS are 

related via the deformation potential. In order to correct for the temperature dependence 

of permittivity, ratios between deformation potentials of the two modes in the same 

material are extracted from both pump-probe and RS data. 

With Eq. (2.30) and Eq. (2.66), the ratio between deformation potentials of mode  

and mode 

i

j  is 

 
 
 

1/2
1

1
i i ji

j j j i

S n

S n

  
  

    
  

On the other hand, in a pump-probe experiment, by assuming the decay rate of the 

driving force  for all modes, with Eq. (2.71), Eq. (2.76), Eq. (2.65) and Eq. (2.66), 

I have 

~ 0
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The primes designate results from a pump-probe experiment. Although this expression is 

obtained under the limit , it can be easily extended to cases that   is much 

smaller than . Under this assumption, ratios from a Raman experiment and a 

pump-probe experiment should be the same. 

~ 0



Fig. 4.9 is a summary of the ratios between the A1g and Eg modes in Sb and Bi. The 

 ratios in the pump-probe experiment have different values from the 

corresponding  ratios in RS, and they also exhibit different 

temperature-dependent behaviors. 

/a 

/a 

/a    in Sb shows strong temperature dependence, 

going from 3.1±0.2 at 10K to 4.5±0.2 at room temperature, while  in RS only has 

weak temperature-dependence, with its value staying in the range 1.6~1.8. Similar  

/a e
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behavior is also observed in Bi. /a e    increases from 4.1±0.5 to 9.7±0.4 and /a e   

stays around 1.6~1.8. 

The temperature dependence of the initial amplitude of each mode can be used to 

estimate the magnitude of the decay rate   of its driving force. As shown in Fig. 2.7, 

 manifests different sensitivities on 0Q   below and above  . Considering the weak 

temperature dependence of the A1g amplitude in Sb and Bi in Fig. 4.7,  should be 

relatively smaller compared to 

a

a , so that the influence on the amplitude of the A1g 

mode is insignificant when a  changes with temperature. This confirms our assumption 

that the decay rate of the driving force for the A1g modes is very small. On the other hand, 

the strong temperature dependence of amplitudes of Eg mode in both materials indicates 

that  is comparable or larger than e e . This means that the assumption  does 

not apply to the case of coherent E

~ 0

g mode, which is the reason for the observed 

discrepancy between RS and pump-probe ratios in Fig. 4.9. 

A1g modes and Eg mode have different  ’s because they are coupled to forces of 

different symmetries. In a crystal, charge density of a specific symmetry only couples to 

lattice vibrations of the same symmetry. For a  point without special symmetry in the 

Brillouin zone of Sb and Bi, there are 11 other equivalent points, as shown in Fig. 4.1 (b). 

For simplicity, Fig. 4.10 shows only three equivalent  points with trigonal symmetry, 

and situations in other equivalent  points can be easy inferred by applying the mirror 

symmetry operation and inversion symmetry operation to the case in Fig. 4.10. As shown 

in Fig. 4.10 (a), when carriers are initially excited by the pump pulse, electronic 

transitions around  points parallel to the electric field are favored owing to a larger 

dipole transition element compared to other  points. This anisotropic distribution of 

carriers in  space, which breaks the trigonal symmetry of the crystal, is the origin of 

the force of E

k

k

k

k

k

k

g symmetry, a process similar to the previously reported generation 
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mechanism for the T2g mode in Si and Ge [20,27]. The driving force of A1g symmetry is 

also present since it only depends on the total number of photoexcited carriers which 

shifts the equilibrium position of the ions. When elastic or quasi-elastic scattering quickly 

redistributes carriers within the equivalent k  points, all three  points are equally 

populated and the trigonal symmetry of the crystal is restored such that the E

k

g force no 

longer exists, as shown in Fig. 4.10 (b). This redistributive process happens in a very 

short time scale and is temperature dependent. It is possibly caused by scattering with 

large wavevector thermal phonons, since at higher temperatures, the population of 

thermal phonons increases and thus raises the electron-phonon scattering rate. After the 

redistribution process, the carrier density in  space becomes isotropic, and the driving 

force of A

k

1g symmetry still lasts; lifetime of the A1g force depends on the rate of 

electron-hole recombination. Fig. 4.11 illustrates the symmetry of the charge distribution 

for the corresponding scenarios in real space around the center of inversion symmetry of 

a unit cell. The blue cloud is for negative charge density while the red cloud is for 

positive charge density. As shown in 4.11 (a), the top ion is pushed/pulled to the right by 

the positive/negative charges while the bottom ion experiences a force in the opposite 

direction. This characterizes the motion of one of the Eg modes. After the trigonal 

symmetry is restored, as shown in 4.11 (b), there is no preference for the ions to move in 

either directions in the plane perpendicular to the trigonal axis. The only motion available 

is to move along the trigonal axis.  

Based on the argument above, I can estimate the decay rates of charge densities of 

Eg symmetry. I make an approximate a ~0.1/ps, which is close to the timescale of 

relaxation of the electronic background in the A1g signal. Fig. 4.12 shows the temperature 

dependent lifetimes  of charge densities with E1/ e g symmetry. The lifetime decreases 

from 15±2fs at 10K to 6±1fs at room temperature in Sb and from 14±3fs to 2.2±0.2fs in 

Bi. All these time scales are much shorter than the 70fs pulsewidth I used. The reason that 

such a short time scale can be resolved with a relatively longer pulse is because I am 
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measuring amplitudes instead of time. When the pump pulse envelope passes through the 

sample, the driving force from charge density with Eg symmetry decays so fast that a 

strong coherent force fails to build up, hence rendering a weaker phonon signal. 

 

 

 

Figure 4.10. Carrier density distributions in three equivalent points L1, L2 and L3 in the 

Brillouin zone of Sb or Bi after the excitation by an electric field polarized along xk . (a) 

More carriers are excited at the L1 point, which is along the polarization of the electric 
field, compared to L2 and L3. The trigonal symmetry is broken. This starts the Eg driving 
force. (b) Elastic or quasi-elastic scattering (represented by the green bidirectional arrows) 
restores the trigonal symmetry of the crystal. Only the A1g driving force is present.  
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(a) 

 

(b) 

Figure 4.11. Schematic diagram of charge distribution in real space. (a) Charge density 
distribution of Eg symmetry. (b) Charge density distribution of A1g symmetry. Blue cloud 
stands for negative charge and red cloud stands for positive charge. Note that the electron 
and hole clouds only illustrate the symmetry characteristic of the charge densities, not the 
absolute magnitude.  
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(a) 

 

(b) 

Figure 4.12. Lifetime of carrier density with Eg symmetry in (a) Sb and (b) Bi. 
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4.7 Fluence dependent experiments in Sb and chirped phonons 

    The fluence dependent behavior of the A1g mode in Bi has been studied extensively. 

One of the features that arise at high fluence is the “chirped phonon”, which means that 

the frequency of the phonon oscillations increases with time after the optical excitation. 

Fig. 4.13 is an example of the “chirped phonons”. As is shown in the graph, a harmonic 

oscillator model fits the data for the first 1.5ps of the signal while it gradually goes out of 

phase with later oscillations.  

    Explanations mainly pertain to two aspects. One attributes the time dependent 

frequency to lattice anharmonicity induced by the high density excitation, stating that 

when the oscillation amplitude damps with time, the contribution to the frequency 

originating from the cubic terms in the higher order expansions of the lattice potential 

becomes less obvious, and hence the potential well restores to the range where harmonic 

approximation applies and the frequency returns to the natural frequency [21]. The other 

explanation emphasizes the softening by a diffusive plasma. The screening effect on the 

bonds between ions by the photoexcited plasma gradually dies out as the carriers on the 

surface layer diffuse into the bulk [23].   

    A set of fluence dependent experiments are carried out on Sb at room temperature 

for both A1g and Eg modes. The conventional analytical tool, the linear prediction method 

which assumes a harmonic oscillator behavior, tends to give two slightly different 

frequencies to fit the varying frequency at high fluences, which is not physical. A new 

model is thus employed to fit the data. A high-pass electronic filter is used to extract the 

oscillatory part of the signal and then a model taking into account the “chirp” is used to 

fit the data [28] 

 
2( )

exp( )cos 2 cR t
A bt t f

R t


     
 

 


 
 (4.9) 

where c  is a parameter that characterizes the diffusive rate of photoexcited carriers. 

The fit result is also shown in Fig. 4.13.  
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(a) 

  

(b) 

Figure 4.13. Phonon signals of (a) A1g and (b) Eg signals in Sb at 0.17mJ/cm2. The solid 
dots are experimental data. The blue curve is a fit with a single frequency harmonic 
oscillator model from 0.16ps to 1.5ps; the red curve is a fit with a chirped oscillator 
model. The background in the A1g signal is removed by a high pass filter with a cutoff 
frequency 3THz; the background and A1g residual oscillations in the Eg signal are 
removed by a high pass filter and a low pass filter with cutoff frequencies 2THz and 
4THz respectively.   
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(a) (b) 

 

(c) (d) 

(e) (f) 

82 
 



 

(g) (h) 

Figure 4.14. Fit results with Eq. (4.9) at different fluencies for A1g (left column) and Eg 
(right column) modes in Sb. (a), (b) are the initial amplitudes; (c), (d) are the decay rates 
of the oscillation amplitude; (e), (f) are the frequencies given by linear prediction, which 
show the averaged frequencies within the 6ps time windows; (g), (h) are the constants 
characterizing the frequency chirp.  

 

Fluence dependent parameters for both modes are summarized in Fig. 4.14. The 

initial amplitude, decay rate and chirp constant increase while the averaged frequency 

decreases with fluence for each mode. Above 0.25mJ/cm2, the initial amplitudes of A1g 

and Eg modes start to show nonlinearity with the increase of fluence. The screening effect 

represented by the second term of the time dependent frequency in Eq. (4.9) is influenced 

by the photoexcited carrier density, which changes with time as 1/ t . Here I am 

assuming a 1-D diffusion into the bulk and the lateral diffusion is not considered because 

the spot size around 200μm is much larger than the penetration depth around 10nm. The 

chirp constant c  increases with fluence due to increased injection of photoexcited 

carriers, which enhances the screening effect. Another notable feature is the different 

curvatures of the decay rate curves for A1g and Eg modes. Since the decay rate is related 

to the anharmonicity of the lattice, the laser beam might modify the potential wells of an 

ion anisotropically along the trigonal axis and in the plane perpendicular to the trigonal 

axis. The explanation needs further testing from first-principle theoretical calculations 

and more experimental works. 
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4.8 Summary 

Coherent and incoherent phonons in Sb and Bi have been studied under different 

temperatures with ultrafast laser spectroscopy and Raman spectroscopy. The different 

temperature-dependent behaviors of A1g and Eg coherent phonon modes reveal the 

ultra-short lifetime of the Eg symmetry of the photoexcited carrier density distribution. 

The experimental results add to the theories on coherent phonons in opaque materials in 

the aspect that the lifetime of the driving force also influences the amplitude of phonon 

oscillations.   

Fluence dependent studies of the A1g and Eg modes in Sb show how laser power 

modifies lattice properties. The high laser power softens the lattice vibration owing to the 

screening by a photoexcited plasma. It also causes nonlinear growth of the phonon 

amplitudes and increased lattice anharmonicity. Further investigations on different 

responses of A1g and Eg at high fluences can provide more information about 

lattice-carrier interaction and lattice-radiation interaction of different symmetries in 

uniaxial crystals.   
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CHAPTER 5   

Optical Phonons in Bi2Te3, Bi2Se3 and                 

Fabrication of Thin Film Bi2Te3 

 

Bi2Te3 and its selenide alloys have been well known since the 1950’s for their 

outstanding thermal properties with a large thermoelectric figure of merit and have been 

widely used in the thermoelectric industry [1-5]. In the meanwhile, the characteristics of 

chemical bondings and lattice dynamics in these crystals were studied intensively due to 

their highly anisotropic electronic and other interesting properties, as well as their role as 

model systems of layered semiconductors [6-12]. In recent years, these materials are 

gaining increasing interest again due to their special properties as three dimensional 

topological insulators. Although being narrow-gap semiconductors in the bulk [13], it 

was proposed that the interface between these materials and the air is metallic and is 

protected from time-reversal-invariant perturbations such as backscattering by disorders 

[14,15]. Subsequent angle-resolved photoemission spectroscopy (ARPES) experiments 

measured the surface electronic energy bands in Bi2Te3 and Bi2Se3, and confirmed the 

prediction of the theory [16-18]. An example of the surface electronic band of Bi2Te3 is 

shown in Fig. 5.1 (a). The V-shaped band pair is the dispersion curve of surface states, 

and it is nearly isotropic in the momentum plane, forming a Dirac cone in the 

energy- xk -  space [17], as shown in Fig. 5.1 (b). Also, the spin of the surface state is in 

the surface plane and always perpendicular to , usually referred to as spin-momentum 

locking [18,19]. In addition to ARPES, other techniques have been used to investigate the 

special properties of bulk topological insulators. Reflection second harmonic generation 

yk

k

87 
 



(SHG) from the surface of a Bi2Se3 crystal has been detected with ultrafast lasers [20]. 

Utilizing the SHG, time-resolved pump-probe experiments were carried out to study 

photoinduced charge and spin dynamics of the surface state with a linearly and a 

circularly polarized pump respectively [21]. A recent coherent helium beam surface 

scattering experiment revealed a Kohn anomaly in the surface phonon dispersion curve 

of Bi2Se3, which is a signature of metallic states [22]. Corresponding theoretical 

calculation of the surface phonon dispersion curves predicts the possibility of observing 

surface phonons with a different frequency from the bulk ones in Bi2Se3 [22]. 

 

     
Figure 5.1. (a) The ARPES plot of electronic band dispersion in Bi2Te3 along the 2D 

K   direction shows a linearly dispersing surface-state band (SSB) above the bulk 
valence band (BVB). The dashed white line stands for the Fermi level [16,19]. (b) The 
Dirac cone of the surface state and spin-momentum locking in Bi2Se3 [18,19].  

 

At the same time of the intensive study of bulk topological insulators, effort has also 

been invested in fabricating 2D ultrathin films of Bi2Te3 and Bi2Se3 [23-28]. Since the 

concept of a metallic surface originates from the interface between a normal insulator 

such as air and a topological insulator [19], it is intriguing to reduce the thickness of a 

topological insulator crystal to the limit of a few atomic layers when the distinction 

between bulk and surface is no longer well defined. A small thickness-dependent gap has 
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been observed to open up below 6 quintuple layers due to modes on opposite surfaces of 

Bi2Se3 coupled by quantum tunneling [29]. That thickness is characteristic of the 

crossover of the 3D topological insulator to the 2D limit. Micro-Raman experiments on 

Bi2Te3 films with only a few quintuple layers discovered an additional mode due to the 

breaking of symmetry and the intensity ratio of the additional mode to the bulk Eg mode 

increases with decreasing film thickness [26]. 

Sections 5.1-5.5 focus on temperature dependent behavior of incoherent and 

coherent phonons in Bi2Te3 and Bi2Se3. The main purpose of this study is to investigate 

the two A1g modes in Bi2Te3 and Bi2Se3 to test if they behave similarly since these two 

modes are of the same symmetry. Comparisons between the A1g and Eg modes are also 

made as in Chap. 4 to check if similar phenomena exist in Bi2Te3 and Bi2Se3. Sections 

5.6-5.8 provide a brief summary of some preliminary work in fabricating and 

characterizing thin film Bi2Te3 with mechanical exfoliation, optical microscope and 

Raman spectroscopy. A summary is given in Section 5.9.  

 

5.1 Crystal structure of Bi2Te3 and Bi2Se3 

Bi2Te3 and Bi2Se3 have rhombohedral crystal structures with space group 3R m  

[30]. The crystal is composed of quintuple layers stacked along the trigonal axis. Each 

quintuple layer has five atomic planes in the sequence , where  

stands for Te (or Se), and the superscripts distinguish the two different positions of Te (or 

Se) atoms in a quintuple layer. The weak bonding between adjacent quintuple layers is of 

van der Waals nature, which makes the cleavage between neighbouring quintuple layers 

easy, while the bondings between atomic planes inside a quintuple layer are covalent or 

ionic [6,8,9]. Fig. 5.2 shows the crystal structure of Bi

(1) (2) (1)
VI VI VIA -Bi-A -Bi-A VIA

2Se3.  
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Figure 5.2. Crystal structure of Bi2Se3 [22]. The left graph shows quintuple layers 
stacked along the c axis. There are five fundamental atomic planes in each quintuple 
layer, among which there are two different positions for a Se atomic plane, represented 
by Se1 and Se2. The right graph is the top view of the stacking scheme of different 
planes A, B and C.  
 

 
Figure 5.3. Raman-active modes of Bi2Te3 and Bi2Se3. The two A1g modes are 
non-degenerate and the two Eg modes are doubly degenerate. 
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5.2 Phonons in Bi2Te3 and Bi2Se3 

Each primitive cell has five atoms, which gives twelve optic phonon modes at q=0. 

Among them, there are six Raman active modes: two non-degenerate A1g modes and two 

doubly degenerate Eg modes [30]. The scheme for the movement of ions in a unit cell for 

each mode is shown in Fig. 5.3. The lower frequency A1g
(I) and higher frequency A1g

(II) 

modes both correspond to ions moving along the c axis, while the lower frequency Eg
(I) 

and higher frequency Eg
(II) modes both correspond to ions moving in the plane 

perpendicular to the c axis. All the modes have inversion symmetry. Raman tensors for 

modes with A1g and Eg symmetries are the same as those listed in Table 4.1.  

 

 
Figure 5.4. Raman signals of Bi2Te3 at room temperature follow selection rules. 

 

5.3 Samples and experimental setups 

Single crystal bulk Bi2Te3 and Bi2Se3 samples were grown using the Bridgman 

technique. They were then mounted in a flow helium cryostat with cleaved surfaces 
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perpendicular to the trigonal axis. Mechanical exfoliation was performed with an 

adhesive tape to obtain surfaces with good optical quality. The Raman selection rule was 

tested and is shown in Fig. 5.4, implying nice crystalline surfaces.  

The setups for the pump-probe experiment and the RS experiment are similar to the 

one used in Chap. 4. In the pump-probe experiment, a 1.5mW pump and a 0.5mW probe 

were focused to spots with diameters of 90μm and 45μm respectively, spatially 

overlapped on the sample. The modulation frequency of the optical chopper in the pump 

path is 2kHz. In the RS experiment, I used a 15mW vertically polarized incident beam 

and backscattering ( , )z x x z  geometry. 

 

5.4 Temperature dependent experimental data 

Temperature dependent differential reflectance signals from the pump-probe 

experiment for the two A1g modes and the high frequency Eg mode in Bi2Te3 and Bi2Se3 

at different temperatures are shown in Fig. 5.5-5.8. Both A1g modes A1g
(I), A1g

(II) and 

only the high frequency Eg
(II) mode are observed, a result consistent with previous 

Raman and pump-probe data [30,31]. In Fig. 5.5 and Fig. 5.7, obvious beatings can be 

observed demonstrating the coexistence of the two modes with A1g symmetry, while the 

relatively weaker Eg mode is hard to identify. In Fig. 5.6 and Fig. 5.8, the strong isotropic 

electronic background and large A1g oscillations in each detection channel are cancelled 

by the other channel, and twice the reflectance change induced by the Eg mode is 

collected as a consequence of the specific detection scheme and selection rules. 
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Figure 5.5. Differential reflectance data of the A1g modes in Bi2Te3 at different 
temperatures. 
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Figure 5.6. Differential reflectance data of the Eg mode in Bi2Te3 at different 
temperatures. 
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Figure 5.7. Differential reflectance data of the A1g modes in Bi2Se3 at different 
temperatures. 
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Figure 5.8. Differential reflectance data of the Eg mode in Bi2Se3 at different 
temperatures. 
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Figure 5.9. Temperature dependence of initial amplitudes of A1g

(I) (blue square), A1g
(II) 

(red dot) and Eg (green triangle) modes in (a) Bi2Te3 and (b) Bi2Se3. Left y-axis is for 
amplitudes of the two A1g modes and right y-axis is for the amplitude of the Eg mode. 
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Figure 5.10. RS signals at room temperature in (a) Bi2Te3 and (b) Bi2Se3. Dots are 
experimental data with background removed. Blue, red and green curves are Lorentzian 
fits for A1g

(I), A1g
(II) and Eg peaks respectively. 
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I fit the oscillatory part of the signal with the linear prediction method according to 

Eq. (4.7). The summary of the initial amplitudes of all three modes at different 

temperatures for Bi2Te3 and Bi2Se3 is shown in Fig. 5.9. In Bi2Te3, the initial amplitudes 

of A1g
(I) and A1g

(II) are almost constant over the entire temperature range; the initial 

amplitude of Eg decreases from 2.7×10-5 at 10K to 9×10-6 at 295K. In Bi2Se3, the initial 

amplitudes of A1g
(I) and A1g

(II) exhibit slight increases from low to high temperature; for 

Eg, similar to the case of Bi2Te3, a decrease is observed from 1.2×10-5 at 10K to 4×10-6 

at 295K. 

ate.  

The results from the Stokes RS experiment for Bi2Te3 and Bi2Se3 at room 

temperature are shown in Fig. 5.10. Three peaks are observed in each material, with the 

same frequencies as their counterparts in the pump-probe experiment. The lower 

frequency Eg
(I) mode has been observed before in Bi2Te3 [9], but is missing in our 

experiment probably because of the low strength of the peak and the high laser 

background at small wavenumbers. I fit the spectra with Eq. (4.8). The fit results are 

shown in Fig. 5.10. To correct for the deviation of the peaks from Lorentzian shape at 

low temperatures, numerical integration of the area under each peak is also performed to 

get the spectrally integrated scattering cross section .  iS

 

5.5 Discussion of the temperature dependent experiments 

Ratios in pump-probe experiments and Raman experiments are analyzed in the same 

way as in Chap. 4. The new feature in Bi2Te3 and Bi2Se3 compared with Sb and Bi is 

that the former two materials have two A1g modes. I can thus use these phonon pairs to 

test whether the driving forces of two modes with the same symmetry have the same 

decay r
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Figure 5.11. Temperature dependence of ratios between deformation potentials in (a) 
Bi2Te3 and (b) Bi2Se3. Blue squares are ratios between deformation potentials of A1g

(I) 
and A1g

(II). Red circles are ratios between deformation potentials of A1g
(I) and Eg modes. 

Solid symbols and notations with primes are for ratios from pump-probe experiments; 
hollow symbols and notations without primes are for ratios from RS experiments. 
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Fig. 5.11 is a summary of the ratios between the two A1g modes as well as ratios 

between A1g
(I) and Eg in Bi2Te3 and Bi2Se3. I used shorthand nota ns 1a , 2a , e  to 

stand for A

tio  

2

2

2 2

1g
(I), A1g

(II) and Eg modes. There are two notable features in the results. First, 

 ratios in both materials in pump-probe experiment have similar values to the 

corresponding  ratios in RS within the error range. At room temperature, 

 in Bi

1 /a a  

1 /a a  

1 /a a 

2Te3 is 0.51±0.02 and 1 /a a   is 0.48±0.03. In the case of Bi2Se3, 

 is 0.41±0.03 and 1 /a a   2 21 /a a 

~ 0

 is 0.37±0.03. Over the entire temperature range, 

 in Bi1 /a a   2

e

e

e

2Te3 shows weak temperature dependence while   in Bi1 /a 2a 2Se3 

shows a slight decrease from 0.49±0.03 at 10K to 0.41±0.03 at room temperature. Their 

counterparts in RS exhibit similar trends, keeping close track of the pump-probe ratios 

except for small deviations at low temperatures. These results are consistent with the 

theoretical prediction at , and indicate that our assumption of the long-lived 

driving force for the A



1g modes is valid.  

Second, the  ratios in the pump-probe experiment have different values 

from the corresponding  ratios in RS, and they also exhibit different 

temperature-dependent behaviors. 

1 /a 

1 /a 

1 /a    in Bi2Te3 shows strong temperature 

dependence, going from 2.06±0.05 at 10K to 3.53±0.08 at room temperature, while 

 in RS only has weak temperature-dependence, with its value staying in the 

range 0.8~0.9. Similar behavior is also observed in Bi

1 /a e

e2Se3. 1 /a   increases from 

1.13±0.06 to 2.20±0.11 and 1 /a e   stays around 0.5. This implies that the assumption 

 does not apply to the case of coherent E~ 0 g mode.  
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Figure 5.12. Lifetime of carrier density with Eg symmetry in (a) Bi2Te3 and (b) Bi2Se3. 

 

Similar to Chap. 4, I can also draw information about the decay rate of the driving 

force with Eg symmetry. I make an approximation of 1a ~0.1/ps which is close to the 

interband electron-hole recombination rate in Bi2Se3 [21]. Fig. 5.12 shows the 
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temperature dependent lifetimes 1/ e  of charge densities with Eg symmetry. The 

lifetime decreases from 10±1fs at 10K to 2.5±0.2fs at room temperature in Bi2Te3 and 

from 7±2fs to 2.4±0.5fs in Bi2Se3. These timescales are of the same order as those in Sb 

and Bi. 

 

5.6 Fabrication of ultrathin Bi2Te3 films 

    A variety of fabrication techniques have been utilized by several groups to obtain 

ultrathin topological insulators. Nanoribbons of Bi2Se3 which show smooth surfaces 

with 1nm step edges have been synthesized using Au-catalyzed vapor-liquid-solid 

mechanism [32]. Catalyst-free vapor-phase deposition on oxidized silicon substrate has 

produced Bi2Te3 and Bi2Se3 nanoplates with thickness as thin as 3nm [23]. The same 

technique is applied in obtaining an epitaxial heterostructure of a single quintuple Bi2Se3 

layer on graphene [24]. Molecular beam epitaxy (MBE) has shown capability to grow 

atomically smooth Bi2Se3 films with controllable thickness down to one quintuple layer 

on Si [33]. A mechanical exfoliation technique is also employed to obtain Bi2Te3 flakes 

with thickness of 4nm [26] or thinner [27].    

ples.  

I used mechanical exfoliation to fabricate ultrathin Bi2Te3 films similar to the 

method used in preparing graphene [34]. An adhesive tape was used to peel off a thin 

layer of Bi2Te3 from a bulk crystal. The front side of the tape with the Bi2Te3 layer was 

then pressed against a Si wafer substrate. The Si wafer usually has a thin layer of SiO2 on 

top with thickness on the order of hundreds of nanometers. I rubbed the tape from the 

back side and lift it off. This produced numerous thin Bi2Te3 pieces of a variety of 

thicknesses and sizes left behind on the substrate, adhering to the SiO2 via van der 

Waal’s force. The goal was to get pieces with thickness below 10nm, corresponding to 

only a few quintu
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Figure 5.13. Bi2Te3 ultrathin films. (a) Optical image taken by a Nikon Optiphot 
microscope. (b) AFM image of the area inside the red square in (a). The height difference 
between the two points specified by the red arrows is 10nm.  

 

In the case of graphene, which is also a layered material, an optical microscope is 

usually used to identify and characterize thin films. One looks for pieces with certain 
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color, a result due to the interference between the light reflected from the top and bottom 

surfaces of the graphene with a phase difference added by that thin layer [35]. Thin films 

with different thicknesses thus tend to demonstrate different colors, which can be 

employed as a rough tool to quickly identify small pieces of interest in a sea of flakes on 

the substrate. Once a desirable piece is located, more accurate measurements can be 

performed in a smaller range with an atomic force microscope (AFM) or a scanning 

electron microscope (SEM).  

I followed similar procedures described above to fabricate and characterize ultrathin 

Bi2Te3 films on a 300nm SiO2/Si substrate. However, due to the high absorption of 

Bi2Te3 [13], I was not able to observe ultrathin films with various colors under an optical 

microscope. The most common colors found on the SiO2 surface demonstrated either 

highly metal-like reflective features as a bulk Bi2Te3 crystal, or a purple color as a bare 

SiO2/Si substrate, with few other colors. The thinnest piece I managed to find has 

thickness of around 10nm, whose optical image shows a dark red hue. Fig. 5.13 is an 

example of a typical optical microscope image of our samples taken by a Nikon Optiphot 

and an AFM image of a piece with thickness 10nm. Sub-10nm layers remained elusive. 

 

5.7 Optical visibility of Bi2Te3 ultrathin films 

In order to determine an optical setup optimized for finding the missing pieces 

below 10nm, I used a transfer matrix method and treated the sample as a layered 

structure composed of air-Bi2Te3-SiO2-Si. Assuming normal incidence propagating 

ong z , the electric field in layer al j  is [36] 

 ( ) ( )j j j jik z z i t ik z z i t

j jE e e         (5.1) 

For adjacent layers j  and 1j   

 1

1

0

0
j

j j

P T T

P T T
j 

 
   

   

     
       
     





 (5.2) 
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where  describes the phase shift when the wave propagates through 

thickness , and  describes transmission and reflection at the 

interface. After multiplying all the matrices, I have 

1 1j jikP e   
 

j 1(1 / ) / 2j jT k k   

 011 12

021 22

n

n

M M

M M

 
 
   




   
 

 
   

 (5.3) 

where indices 0, 1, 2, 3 stand for air, Bi2Te3 film, SiO2 and Si respectively. 

 

   

 

Figure 5.14. Optical constants of Bi2Te3, SiO2 and Si from 390nm to 750nm. 

 

Setting 0 1   to account for unitary incident along positive  and z 3 0   to 

account for zero incidence coming from the other side, the reflectance is  

 
2

0 21 /R M   2

22M  (5.4) 
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The thickness of air and Si are semi-infinite, and the thickness of SiO2 is 300nm. Si and 

Bi2Te3 have wavelength dependent complex optical constants, while SiO2 only has a real 

wavelength dependent optical constant. The optical parameters were sampled from 

relevant references [13,37,38] and fit with polynomials, all of which are shown in Fig. 

5.14 as a function of wavelength in the visible range.   

 

 

 
Figure 5.15. (a) Contour plot of reflectance at different wavelengths and Bi2Te3 
thicknesses. (b) Contour plot of the absolute value of contrast at different wavelengths 
and Bi2Te3 thicknesses. 

 

A contour plot for reflectance is shown in Fig. 5.15 (a) for Bi2Te3 film thickness 
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from 0 to 35nm and wavelength from 390nm to 750nm. The reflectance above 30nm is 

around 0.7, consistent with the highly reflective features of the layers commonly 

observed with an optical microscope. Below 30nm, the reflectance decreases over the 

entire optical range and the relative strength varies with wavelength. The prediction of 

colors at different layer thicknesses based on the RGB components is a standard and 

complicated process which involves considering the spectrum of the light source, the 

reflectance from the sample, and the response of human eyes to different colors [36]. An 

alternative approach is to use a narrow band filter on the reflected light and simply check 

its intensity. For a small piece on a large background, contrast can be defined as [39] 

 1 1

1

( ) ( 0)

( 0)

R R
C

R

   


 
 (5.5) 

where  is the background reflectance from the bare substrate. A contour plot 

of the absolute value of  is shown in Fig. 5.15 (b). To get high contrast, a bandpass 

filter around 590nm can be used to aid the observer to find ultrathin pieces down to 5nm, 

and a bandpass filter around 535nm can be helpful with pieces below 5nm. According to 

the positive sign of  in the 590nm filter case and the negative sign in the 535nm case, 

one should look for brighter features in the former and darker feature in the latter 

compared with the background. Similar analysis can be performed with different SiO

1( 0R   )

C

C

2 

thicknesses to further optimize the experimental conditions. 

 

5.8 Raman characterization of Bi2Te3 films 

Raman spectroscopy has become a useful tool for determing the number of layers in 

graphene according to the lineshape or position of the G’ peak [40]. I also used Raman 

spectrometers to characterize ultrathin Bi2Te3 films. 

Fig. 5.16 shows the Raman spectrum of a Bi2Te3 ultrathin film on SiO2/Si taken 

with backscattering geometry at excitation wavelength 514.5nm. Since the spot size of 

100μm is much larger than the few micron size of a Bi2Te3 flake, signals from both the 
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Bi2Te3 film and the substrate are detected. The strongest peak around 521cm-1 and the 

small bump around 303 cm-1 are attributed to a first-order optical phonon and a second 

order transverse acoustic phonon overtone of Si respectively [41]. The much weaker 

signal from a Bi2Te3 film contains an A1g
(II) peak at 136cm-1, an Eg peak at 104cm-1 and 

an additional peak at 125cm-1. This extra peak has been observed in ultrathin Bi2Te3 

films before, and is assigned to a Raman forbidden A1u mode in the bulk [26]. 

 

 
Figure 5.16. Raman spectrum of a Bi2Te3 ultrathin film on SiO2/Si with excitation 
wavelength 514.5nm. The inset is a spectrum in the range specified by the red circle in 
the main figure. The red arrow indicates an additional peak.      

 

Further study of the Raman spectra in ultrathin Bi2Te3 films was restricted by two 

factors. The first one is the size of the film. Most of the Bi2Te3 films fabricated by 

mechanical exfoliation reported so far are of the size around or below 10μm, which 

requires a tight focus of the incident light to guarantee that signals collected are from an 

area with a single and uniform thickness. That can be realized with a microscope 

objective lens with high magnification which functions as both the focusing lens and the 
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collimating lens, as in a micro-Raman spectrometer. The second factor is the availability 

of Bi2Te3 ultrathin films with various thicknesses to make systematic investigation 

possible. Sample fabrications with MBE [29] or other techniques to provide ultrathin 

Bi2Te3 films with uniform and controllable thickness in larger areas would solve both of 

the above problems.          

 

5.9 Summary 

Coherent and incoherent phonons in Bi2Te3 and Bi2Se3 have been studied under 

different temperatures with ultrafast laser spectroscopy and Raman spectroscopy. Similar 

temperature dependent behavior of the two A1g modes confirms that the lifetime of the 

driving force with A1g symmetry has ~ 0 . Different temperature dependent behaviors 

of A1g and Eg coherent phonon modes give an ultrashort lifetime of the Eg driving force 

around or below 10fs, a range close to those in Sb and Bi.  

Attempts to fabricate ultrathin Bi2Te3 films using mechanical exfoliation have been 

made. Films with thickness around 10nm were obtained but thinner ones were absent. A 

transfer matrix procedure was carried out to characterize the reflectance as a function of 

wavelength and Bi2Te3 thickness, so as to give guidance to improving detection schemes 

which can potentially increase the visibility of ultrathin films. Raman spectra for Bi2Te3 

films were taken and an additional peak has been observed, which might be attributed to 

breaking of symmetry.   
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CHAPTER 6   

Conclusions 

 

In Chapter 4 and Chapter 5, a temperature dependent study of coherent phonons of 

different symmetries and the same symmetry in four materials, Sb, Bi, Bi2Te3 and 

Bi2Se3, have been carried out. The theory on coherent phonons has been expanded to 

include the scenario of a driving force with limited lifetime. Although there are many 

theoretical and experimental efforts before this work that investigated the generation 

mechanism of coherent phonons in opaque materials from various aspects [1-8], it is the 

first time that the influence of the lifetime of the coherent driving force on the amplitude 

of the coherent phonons it excites is emphasized and systematically studied to the best of 

my knowledge. What is more, the physical origin of the driving force has been proposed 

in this work, which provides insights about the significance of the role that carrier 

densities of different symmetries play in phonon excitation. Further, the experiments in 

this dissertation serve as good examples to manifest the fundamental connection between 

RS and ISRS. Last but not least, the extremely short-lived Eg driving force on the order 

of a few femtoseconds offers an approach to measure short timescales with longer laser 

pulses.  

The next step is to study two Eg modes in the same materials, and to test whether 

two driving forces of Eg symmetry have equally fast decay rates. This will function as a 

strong experimental evidence to the theory in this dissertation, and it will also complete 

the entire experimental framework on the generation mechanism of coherent phonons 

with different symmetries. 

In Chapter 4, coherent phonons in Sb have been studied at high laser fluences. The 
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A1g and Eg modes both demonstrate chirped frequencies, nonlinear amplitudes and 

different curvatures for the fluence dependent decay rate. There has been theoretical 

works which used first-principle density functional calculation to study the effect of 

lattice anharmonicity and phonon softening by the electron-hole plasma on the A1g 

phonon dynamics in Bi [9,10]. The results on A1g and Eg modes in this dissertation 

provide plenty of experimental data for future theoretical works about phonon behaviors 

and anisotropic property of Sb within a wide range of fluence. 

Femtosecond lasers can generate large density of photoexcited carriers which lead to 

bond softening, nonthermal melting and ablation [11]. The high fluence can also reveal 

phases which are usually not accessible under equilibrium conditions [12]. Pulsed laser 

has been shown to induce element segregation in semiconductor compounds such as 

Sb2Te3 [13]. These questions provoke many challenging directions for future researchers 

interested in high fluence phenomena. On the other hand, with the availability of ultrafast 

X-rays, lattice displacements can be mapped directly in real time [14], and other physical 

quantities such as carrier density-dependent inter-atomic potentials can be inferred from 

the X-ray diffraction data, too [15]. The combination of pulsed lasers and pulsed X-rays 

offers a powerful tool to study ultrafast phenomena in materials from a more 

comprehensive scope. 

In Chapter 5, attempts have been made to fabricate and characterize ultrathin films 

of topological insulator Bi2Te3 with mechanical exfoliation, optical microscopy, AFM 

and Raman spectroscopy. The thinnest pieces found were 10nm. An additional peak was 

observed in spontaneous Raman scattering which may be related to the breaking of 

symmetry in ultrathin films. Samples with uniform and controllable thickness in larger 

areas are needed for further exploration in this exciting field.          

In addition to the fabrication of ultrathin films, bulk topological insulators have been 

studied with (ARPES) [16], helium atom surface scattering (HASS) [17] and optical 

techniques [18] recently. Calculations predict that the surface phonon has a different 
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frequency from the bulk one in Bi2Se3 [17], as shown in Fig. 6.1. Note that at the center 

of Brillouin zone, the surface phonon has a lower frequency than the bulk one around 3.5 

THz. This surface mode has not been observed in regular optical experiments before. By 

changing experimental parameters such as temperature, pressure, etc., some surface 

phonon modes might appear. One example is a set of high pressure Raman experiments 

on Bi2Te3 crystals, which revealed a new mode near 107cm-1 showing up around 3.6GPa, 

at the onset of electronic topological transition (ETT) [19]. 

 

 
Figure 6.1. Phonon dispersion curves of Bi2Se3. The orange dots are HASS experimental 
data. The black curves are calculated surface phonon dispersion curves and the grey areas 
are projection of 3D bulk phonon dispersion bands on the surface Brillouin zone. From 
Ref. [17]. 

 

Some Raman data taken with a 780nm CW laser source are shown in Fig. 6.2. A 

new mode with symmetry property similar to A1g mode at 153cm-1 has been observed at 

10K, as shown in Fig. 6.2 (a). The mode gradually becomes weaker with increasing 

temperature and finally disappears above 100K, as shown in Fig. 6.2 (b). The property of 
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this new mode at low temperature and its relationship with the surface states is an 

interesting topic for further investigation. 

 

 

(a) 

 

(b) 

Figure 6.2. Low temperature Raman spectra of Bi2Te3. (a) Selection rule of a new peak 
indicated by the green arrow. (b) Temperature dependence of the Raman peaks. 
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