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Abstract 

 

 Repair after injury to the adult mammalian central nervous system (CNS) 

is hindered by inhibitory proteins, including the myelin associated inhibitors 

(MAIs):  NogoA, MAG, and OMgp.  Blocking the function of MAIs and their 

receptors enhances axon regrowth following injury. These findings suggest that 

therapeutic control of these inhibitors may be a strategy for regulating axon 

outgrowth and plasticity, leading to restoration of neuronal connections lost in 

response to injury or disease. Thus, functional recovery after CNS injury is 

limited by MAIs, and small molecule compounds that can circumvent MAI 

inhibition are likely to enhance functional recovery after stroke or spinal cord 

injury. 

The precise intracellular molecular signaling mechanisms of MAIs are not 

well understood. Toward this goal, it is demonstrated here that the multi-domain 

scaffold protein POSH assembles a distinct signaling module composed of the 

mixed-lineage kinase LZK, the actin-myosin regulatory protein Shroom3, and 

Rho-associated kinase, ROCK. Through the receptor PirB, the POSH complex 

mediates growth inhibitory signals from extracellular NogoA and MAG, as well as 

cell autonomous NogoA signaling.  PirB associates with the protein tyrosine 

phosphatase, Shp2, and we show that phosphatase activity of Shp2 is required 

for axonal growth inhibition. In addition, NogoA stimulation promotes trapping of 

LZK with Shp2, suggesting LZK is a potential substrate for dephosphorylation by 

Shp2.  

 Lastly, interference with the function of any member of the POSH 

complex results in enhanced growth on MAIs, suggesting that chemicals that 

target protein-protein interactions within the POSH complex will reduce the 

inhibitory action of MAIs, facilitating axon outgrowth in the CNS. Towards this 
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goal, high-throughput screening in the Center for Chemical Genomics at the 

University of Michigan has identified potential inhibitors of the Shroom3-ROCK 

interaction. Collectively, these studies delineate an intracellular signaling 

pathway emanating from MAIs through the receptor PirB to the POSH complex. 

Further insight into the molecular signaling mechanisms of this pathway may 

provide novel therapeutic targets for axonal repair following CNS injury.  
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Chapter 1 
 

Introduction 
 

1.1  Development and wiring of the nervous system 
 

The mammalian nervous system with its billions of nerve cells and 

unimaginably complex network of nerve fibers and connections is unlike any 

other organ in the body. During embryogenesis, the brain generates 50-100 

thousand new cells per second derived from the neural tube [1]. Newborn 

neurons migrate to their designated destinations where they mature, projecting 

axons and dendrites to form neuronal connections. The correct formation of 

neuronal connections is crucial for higher order function of the nervous system; 

therefore nature has developed an extensive and complex system to mediate 

axonal growth and pathfinding.  

The nervous system is patterned with molecular guidance cues which 

create a road map for developing axons, leading them to their synaptic targets 

(Figure 1.1). Guidance molecules can be located on the cell surface of 

neighboring neuronal or glial cells or secreted into the extracellular space acting 

as chemical signals [2]. These cues can be either repulsive or attractive and 

function as short-range or long-range signals. Moreover, some guidance cues 

are bifunctional, being attractive to some axons and repulsive to others [2, 3]. 

The semaphorins, which are a large family of both secreted and membrane-

associated proteins, are an excellent example of bifunctional guidance cues. 

Members of the semaphorin family are capable of mediating both repulsive and 

attractive guidance events in the developing nervous system and it is believed 

their function is regulated by expression of distinct receptors on the cell surface 

[2-4]. 
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Guidance molecules influence axonal growth through modulating 

cytoskeleton dynamics, which is made up of actin, microtubule, or myosin 

molecules. Each axon extended by a differentiated neuron contains a growth 

cone at its leading edge. The growth cone detects molecular guidance cues and 

signaling events at the growth cone mediate the appropriate response. For 

example, inhibitory signals can cause the growth cone to collapse, facilitating 

axon retraction [2-4].  

 

1.2 Plasticity of the nervous system 
 

After the establishment and refinement of the nervous system during 

embryonic and early post-natal periods, the mammalian central nervous system 

undergoes stabilization, moving away from being highly fluidic towards a more 

structured environment to maintain neuronal connections [5]. Synaptic 

remodeling and dendritic pruning occurs to allow for learning and functional 

adaptation.  However, long distance changes in axon length, greater than several 

millimeters or more, are rarely seen [6]. The umbrella term “neuronal plasticity” is 

used to define changes that culminate in rewiring or reorganization of neuronal 

networks. Examples of plastic changes include: synaptic remodeling and axonal 

sprouting leads to new neuronal connections [7].  

Extensive research has gone into determining the intrinsic and extrinsic 

differences in gene expression, protein localization, and the extracellular 

environment responsible for the shift from rapid growth and re-arrangement to a 

more conservative structure and plasticity [5, 8, 9]. It is now known that intrinsic 

neuronal growth potential decreases as neurons mature and one hypothesis for 

this phenomenon is down-regulation of growth-promoting genes. Additionally, 

select guidance cues that influenced axonal pathfinding persist into adulthood, 

maintaining connections and directing secondary branching of axons and 

dendrites. There are also additional proteins that are expressed in the mature 

CNS which regulate neuronal plasticity [5, 8, 9]. Therefore, it may be more 

correct to refer to these molecules as “guidance cues” during development and 
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“regulatory cues” in adulthood.  Regardless, the understanding of the function of 

regulatory cues throughout all stages of life provides a valuable tool and is 

particularly relevant for the development of therapeutic strategies to promote 

regeneration of damaged neuronal connections in the CNS after traumatic injury 

or disease.  

 

1.3  Lack of regeneration of the central nervous system after injury or 
disease 

 

Spontaneous and functionally relevant regeneration or replacement of lost 

neuronal tissue is limited and often absent following injury or disease of the CNS. 

In 1927, Ramon y Cajal was the first to observe that axons of the CNS fail to 

regenerate [10]. This is in stark contrast to the axons of the peripheral nervous 

system (PNS) whose axons regenerate after injury. Subsequently, Aguayo and 

colleagues demonstrated in a series of experiments that damaged CNS axons 

can regenerate if provided with a permissive substrate [11-13]. Sciatic nerve 

grafts were used as bridges between regions of the CNS, for example in a 

midthoracic spinal cord lesion and between the medulla oblongata and the upper 

thoracic spinal cord. They showed that transected axons from the adult rat CNS 

were able to grow into PNS tissue grafts to distances upwards of 1cm. 

Additionally, axon growth terminated at the edge of the graft where the CNS 

tissue resumed. These studies indicated that CNS neurons retain the intrinsic 

ability to regenerate when presented with the growth-permissive PNS 

environment. Conversely, PNS axons navigated around, not through CNS 

implants, suggesting the presence of inhibitory molecules in the CNS that both 

PNS and CNS neurons are responsive towards. This result was critical in 

establishing that CNS neurons retain the capability to grow and the lack of 

regeneration is due to the presence of inhibitory molecules and/or 

receptors/ligands, not present in the PNS. Working off this hypothesis, much 

effort began to identify CNS inhibitory molecules and characterize their 

mechanism of axon growth inhibition in the hope that manipulation of their activity 

will restore the permissive extrinsic growth environment of the developing CNS.  
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1.4 The role of myelin and its associated proteins on axon outgrowth  
 

 A prominent difference between the embryonic brain and the adult brain is 

the presence of myelin, which is visualized as the white matter of the brain. In 

humans, myelination begins in late fetal development and proceeds, although 

slower, into adulthood [14]. The brain myelinates in a wave like fashion from the 

back of the head to the frontal lobe, which is the last portion of the brain to 

myelinate [1, 15]. The onset of myelination coincides with a decrease in neuronal 

plasticity [16]. However, development of white matter structure in children 

correlates with enhanced motor skills, reading ability, and cognitive development, 

suggesting the stabilization of the brain by myelination is necessary for higher 

order function [16].  

Myelin forms a layer called the myelin sheath around the axons of a 

subset of neurons (Figure 1.2A).  The sheath is a greatly extended and modified 

plasma membrane. Myelin membranes originate from oligodendrocytes in the 

CNS and the Schwann cells in the PNS [17].  The main purpose of the myelin 

sheath is to enhance the transmission of electrical impulses along the axon. The 

presence of myelin increases the speed at which the signal travels as well as 

insulates the axon preventing the loss of the electrical current [1, 15]. In the PNS, 

when an axon is severed the myelin sheath can function as a track along which 

regrowth can occur [18]. However, CNS myelin does not support regeneration. 

Martin E Schwab first demonstrated this by culturing neurons on dissociated 

CNS glial cells. Neurons were unable to extend axons on cultured 

oligodendrocytes or isolated myelin from the CNS, but were able to grow on 

myelin from the sciatic nerve of the PNS [19]. This and work by other groups 

indicated that one of the differences between the regenerative capacity of the 

PNS, versus the CNS, was due to extrinsic molecules present in myelin 

originating from oligodendrocytes. Consistent with this hypothesis, three 

molecules isolated from CNS myelin have been shown to highly inhibit axonal  
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growth in vitro: NogoA, myelin associated glycoprotein (MAG), and 

oligodendrocyte myelin glycoprotein (OMgp) (Figure 1.2B). 

 

1.4.1 NogoA 
 

The inhibitory activity of NogoA was discovered by Martin E Schwab and 

colleagues over 20 years ago. First, extraction of myelin with 4M guanidinium 

chloride provided conditions that removed peripheral membrane proteins, and 

resulted in myelin that maintained a non-permissive growth environment for 

neurons in vitro. Second, lipid extraction resulted in a growth-permissive lipid 

fraction and a non-permissive protein fraction that had to be maintained in 

liposomes to function. Finally, trypsin treatment of CNS myelin removed axonal 

growth inhibition [20]. Collectively, these studies show that a membrane-bound 

protein is facilitating the non-permissive growth of myelin. Separation of myelin 

proteins by SDS-PAGE identified two proteins of 35 and 250kDa, termed NI-

35/250, that maintained a non-permissive substrate [20]. Removal of NI-35/250 

from CNS myelin resulted in a growth permissive substrate, while addition of NI-

35/250 to PNS membrane fractions caused a shift from permissive to non-

permissive. Antibodies developed against NI-250 allowed for the isolation of a 

cDNA encoding a protein that was growth inhibitory and was designated NogoA  

[21-24]. 

NogoA is a member of the Reticulon family, also known as Reticulon 4-A  

[23]. Reticulons are membrane bound proteins and are named due to their high 

expression on smooth endoplasmic reticulum [25]. In mammals there are four 

genes, rtn 1-4, encoding multiple splice variants of the reticulon proteins [26]. 

The reticulon proteins contain a conserved structural motif, called the reticulon 

homology domain (RHD), which contains a hydrophilic loop of 60-70 amino acids 

flanked by two putative transmembrane domains [27]. The three splice variants 

of the reticulon 4 gene, NogoA, NogoB, and NogoC, contain 188 amino acids in 

their C-terminus which correspond to the RHD. NogoA and NogoB share the first 

172 amino acids; however NogoA contains a unique 800 amino acids stretch in 
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between the N-terminus and the RHD. NogoC is made up of an extremely short 

N-terminus followed directly by the RHD [26, 27]. NogoA contains an 

endoplasmic reticulum retention motif, resulting in high ER expression and recent 

evidence suggests that NogoA may regulate the tubular morphology of the ER  

[28]. 

Three axonal growth inhibitory domains of NogoA have been identified. 

First, the loop between the two transmembrane domains, termed Nogo66, has 

been shown to be present on the extracellular surface of oligodendrocytes and 

has potent axon growth inhibitory effects in vitro [23, 29]. Nogo-66 binds to 

multiple receptors, including Nogo-66 receptor (NgR) and PirB (discussed in 

detail below) [30, 31]. The amino-terminal domain of NogoA contains a unique 

sequence called amino-Nogo that also inhibits axon outgrowth and the adhesion 

of non-neuronal cells; however the receptor mediating these actions has yet to 

be discovered [20, 29]. Amino-Nogo has been shown to bind and inhibit some 

integrin signaling, suggesting Amino-Nogo may inhibit axon growth through 

blocking growth-promoting integrin signaling [32]. A third, NogoA specific region, 

NiG-∆20, also strongly inhibits neurite outgrowth [29]. 

Attempts to determine the membrane topology of NogoA have proven 

difficult. Computer modeling predicts two transmembrane domains in the RHD, 

which are long enough (28-36 amino acids) to loop back through the membrane. 

Immunofluorescence studies have shown the most common topology in the ER 

places the N- and C-terminals in the cytoplasm. However, studies with antibodies 

against the N-terminus of NogoA and Nogo66 show that both regions are 

localized on the cell surface of oligodendrocytes [23, 33]. These studies indicate 

that the first transmembrane domain may adopt a flexible mechanism to either 

extend across the membrane or to flip back to adopt a horseshoe-like orientation. 

Additionally, NogoA, expressed intracellularly on the endoplasmic reticulum, may 

only be exposed when there is injury or death of the oligodendrocyte.  

NogoA is highly expressed on oligodendrocytes and only minimally on 

PNS Schwann cells consistent with a role in mediating axonal growth inhibition 

specifically in the CNS [34, 35]. On the oligodendrocyte surface, NogoA is 
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expressed on the innermost loop of myelin, where it could make contact with the 

axon (Figure 1.2). Interestingly, NogoA is also expressed in the neuron, albeit at 

lower levels. NogoA was found in the growth cone of growing olfactory bulb 

axons and in the projection neurons of the cortex and cerebellum [34-37]. In the 

developing forebrain cortex, NogoA expressing neurons migrate along NogoA 

positive radial glia and cells that will become part of the cortical plate pass 

between these NogoA expressing neurons. Interestingly, in NogoA knock-out 

mice, this migration is enhanced, while migration of cortical interneurons was 

delayed in NogoA deficient mice [38]. Additionally, removal of NogoA function in 

embryonic cortical neurons results in enhanced axonal branching in culture, while 

dorsal root ganglion neurons show increased fasciculation and decreased 

branching[39, 40]. Lastly, NogoA expressing radial glia in the ventral midline 

inhibit growing optic nerve axons and spinal cord commissural axons and 

blocking NogoA function leads to misprojected axons [41, 42]. Combined these 

studies suggest that NogoA can exert multiple guidance effects in the developing 

CNS in addition to its role as a myelin-associated inhibitory protein.  

 

1.4.2 Myelin-associated glycoprotein  
 

 Myelin-associated glycoprotein (MAG) was identified through purification 

and separation of molecules present in myelin. It is a potent inhibitor of neurite 

outgrowth and immunodepletion of MAG from CNS myelin allows for permissive 

growth [43, 44]. MAG is expressed by both CNS and PNS glial cells and has 

been shown to participate in the formation and maintenance of the myelin sheath  

[45]. It is highly expressed in myelin membranes adjacent to the axon. 

Interestingly, MAG is a bifunctional molecule and can regulate neurite outgrowth 

in an age-dependent manner. MAG promotes the growth of specific types of 

young neurons, while in the mature CNS MAG strongly inhibits neurite outgrowth 

[9, 46]. The molecular mechanism of the switch is unknown; however it appears 

to be dependent on the neuronal cell type and developmental stage. For 

example, late embryonic rat cortical neurons show a growth inhibitory response 
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toward MAG, while post-natal day 1 dorsal root ganglion neurons are able to 

extend processes on MAG [44, 47-49].  

MAG is a member of the immunoglobulin (Ig) super family and its 

extracellular domain contains five Ig domains [9]. It is also a sialic acid-binding 

protein with its first four Ig domains being homologous to those of other sialic 

acid-binding lectins. Following the Ig domains, MAG has a single transmembrane 

domain and a cytoplasmic domain. In rodents, MAG exists in two splice forms, L-

MAG and S-MAG, corresponding to variable cytoplasmic domain length [50]. To 

exert axon-inhibitory activity, MAG, like Nogo-66, interacts with the Nogo-66 

receptor and PirB [30, 51, 52]. It also interacts with Nogo receptor 2 (NgR2) [53, 

54]. The sialic acid binding activity of MAG is not required for neurite growth 

inhibition; however it has been observed that under certain conditions sialic acid 

binding can potentiate inhibitory signals[55]. 

  

1.4.3 Oligodendrocyte myelin glycoprotein 
 

A third myelin-associated protein, Oligodendrocyte myelin glycoprotein 

(OMgp), is a glycosylphosphatidylinositol (GPI)-linked protein that is expressed 

on oligodendrocytes, peripheral neurons, and in high levels on various CNS 

neurons [56, 57]. OMgp is a 110-kDa glycoprotein with five tandem leucine-rich 

repeats followed by a C-terminus with serine/threonine repeats. Similar to NogoA 

and MAG, OMgp expression induces growth cone collapse and inhibits neurite 

outgrowth[56]. The Nogo66 receptor and PirB both have been shown to bind 

OMgp to initiate signal transduction to inhibit axonal outgrowth [30, 58]. 

 

1.4.4 Additional inhibitory proteins in the CNS 
 

In addition to MAIs, there are other proteins present in the CNS that 

mediate growth-inhibitory effects.  Chrondroitin sulphate proteoglycans (CSPGs) 

are released by astrocytes at sites of CNS injury or disease along with other 

inhibitory extracellular matrix proteins[59]. CSPGs are potent inhibitors of axon 
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growth both in vitro and in vivo, and similar to MAG they have also been shown 

to promote growth in the correct cellular context. Canonical axon guidance 

molecules such as the semaphorin, netrin, and ephrin families are expressed 

through development and in the adult CNS. There is evidence that these proteins 

contribute to the inhibitory environment and upon injury the expression levels of 

these proteins often change [60-63]. For example, EphrinB3 is highly expressed 

in CNS myelin and is a potent inhibitor of neurite outgrowth in vitro, while 

Semaphorin 3A causes growth cone collapse. Through the identification of more 

and more inhibitory cues, it appears likely that robust regeneration of axon 

growth will require strategies that neutralize multiple inhibitory cues 

simultaneously, or a common downstream component. 

  

1.5  Receptors mediating myelin-associated growth inhibition 
 

There are several known receptors for MAIs and some receptors are able to 

associate with multiple MAIs. Additionally, several MAI receptors do not have 

intracellular domains, but rather require a co-receptor to relay signaling and 

depending on the neuronal cell type, the co-receptor can vary. A select group of 

receptors are described in greater detail below (Figure 1.2B).  

 

1.5.1 Nogo-66 receptor 1  
 

Nogo-66 receptor 1 (NgR1) was the first Nogo-66 receptor to be 

identified[31]. It is a GPI-linked leucine rich repeat protein that is expressed on 

the surface of neurons. Direct interaction of Nogo66 with NgR1 induces growth 

cone collapse, and transfection of Nogo66 unresponsive neurons with NgR1 

converts them to responsive [31]. NgR1 does not bind Amino-Nogo and blocking 

NgR function does not alleviate growth cone collapse induced with Amino-Nogo, 

suggesting the presence of an additional receptor for Amino-Nogo that has yet to 

be identified. There are multiple NgR family members in addition to NgR1, NgR2 

and NgR3.  The NgR family shares 55% identity in the leucine-rich repeat region; 
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however only NgR1 binds Nogo66. Interestingly, MAG and OMgp also bind 

NgR1, although MAG has been shown to bind NgR2 with greater affinity [51, 56]. 

 NgR1 does not have a transmembrane domain, and therefore it must 

associate with a co-receptor to mediate intracellular signaling (Figure 1.2B). The 

low affinity neurotrophin receptor p75 (p75NTR) interacts with NgR1 through its 

extracellular domain [64]. The intracellular domain of p75NTR is required for signal 

transduction as a truncated receptor is no longer able to activate the small 

GTPase, Rho, in a MAG dependent manner [64-66].  LINGO1 (LRR and Ig 

domain containing Nogo Receptor interacting protein) has also been identified as 

a component of the NgR1/ p75NTR complex [67]. The fact that p75NTR is 

detectable on only a subset of mature neurons led to the discovery that 

TAJ/TROY, an orphan tumor necrosis factor receptor family member can 

substitute for p75 as an alternative co-receptor for NgR1/LINGO1[68].  

 

1.5.2 Paired immunoglobulin-like receptor B (PirB) 
 

Paired immunoglobulin-like receptor B (PirB) is a receptor for all three 

MAIs: NogoA, MAG, and OMgp (Figure 1.2B) [30]. PirB was first described in the 

immune system [69, 70]. PirB is a MHC-1 class I receptor, contains a single 

transmembrane domain, and its intracellular domain has three potential 

immunoreceptor tyrosine based inhibitory motifs (ITIMs). Phosphorylation of 

these sites promotes the association of the protein tyrosine phosphatases, Shp1 

and Shp2 [71-73]. In immune cells, PirB acts as an inhibitory receptor and it is 

the recruitment of Shp1/Shp2 that leads to termination of signaling cascades 

initiated by activating receptors[74, 75]. In neurons, PirB has also been shown to 

associate with Shp2 through its intracellular domain, and this domain is crucial 

for relaying growth inhibition from myelin-associated proteins [30, 76]. 

Neutralization of PirB function by antibody treatment is sufficient to partially 

relieve growth inhibition by Nogo66 and myelin extracts and appears to be a 

more substantial mediator of MAI growth inhibition than NgR. Interestingly, 

studies with cerebellar granule neurons from NgR null mice suggest that the two 
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receptors work together to relay signals from myelin, but PirB is the more potent 

receptor of Nogo66 [30]. Recent studies have also shown that PirB together with 

p75 negatively regulate TrkB signaling to modulate axon outgrowth [77, 78]. 

Additionally, a transgenic mouse expressing a truncated form of PirB displays 

increased ocular-dominance plasticity suggesting that PirB acts as a negative 

regulator of neuronal stability/plasticity [30, 76]. Combined these studies define a 

role for PirB as a negative regulator of axon outgrowth in the CNS and also 

highlight the complexity of myelin-inhibitory events at the cellular surface of the 

neuron. 

 

1.6 From animal models to clinical trials: targeting MAIs for regeneration 
 

Myelin associated inhibitors are abundant in the adult mammalian central 

nervous system. They are expressed on the surface of oligodendrocytes, a 

subset of neurons, and are released after injury to limit axon outgrowth and 

plasticity. Much work has gone into the identification of MAIs and characterization 

of their inhibitory mechanism in cell culture. However, even though in vitro neurite 

growth assays are a powerful tool for studying inhibitory mechanisms, studies in 

animal models allow researchers to evaluate the significance and relative 

contribution of individual inhibitor molecules to regenerative failure in vivo.  

Several knock-out animals have been engineered looking at functional 

recovery after CNS injury following removal of inhibitory proteins. Three separate 

laboratories generated Nogo knockouts. However, only two saw enhanced 

sprouting and axonal regeneration after spinal cord injury (SCI), while the third 

group did not observe any difference in regeneration in Nogo knockout animals 

after SCI [79-81]. It was found that differences in the genetic background of the 

mice played a role in the conflicting results as Nogo-A knockout animals 

generated in two different pure background strains confirmed the initial results, 

enhanced regenerative fiber growth[82]. Interestingly, studies looking at 

regeneration in p75, NgR, and PirB knockout animals did not see enhanced 

growth after SCI, although there was some mild sprouting[83-86]. These studies 
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highlight the redundancy of MAI receptors in the CNS, indicating that simply 

targeting one inhibitory molecule will not be sufficient to promote robust and 

functional regeneration. 

 Antibody-based strategies, soluble function-blocking NgR ectodomain 

(NgR (310)-Fc), and an NgR1 antagonistic peptide (NEP1-40) have been 

successful in achieving anatomical and functional recovery following CNS injury 

[87-89]. The antibody IN-1 binds NogoA and inhibits NogoA function and delivery 

of IN-1 via implanted hybridoma cells into rats that had undergone a unilateral 

stroke, induced branching of the intact axons and the establishment of 

compensatory circuits. This resulted in an improvement in fine motor movement 

of paw which was lost due to stroke injury [90-92]. Treatment with IN-1 antibody 

in adult rats that had undergone spinal cord injury resulted in several millimeters 

of regrowth of the injured axon. Application of peptides blocking NgR function 

also promoted growth after injury. Studies in macaque monkeys that had been 

subjected to a unilateral spinal cord transection showed recovery of hand 

function [6, 93, 94]. Due to these promising results, a human anti-human NogoA 

antibody (ATI 355) has entered into clinical trials both in Europe and in North 

America. Phase I clinical trials have progressed positively and Phase II clinical 

trials began in 2010 to test the efficacy of the antibody on spinal cord treatment in 

acute paraplegic and tetraplegic patients [6].  

 

1.7 Decline of intrinsic growth-promoting signals in the adult CNS also 
contributes to the lack of regeneration after injury 

 

Much effort has gone into the identification and characterization of extrinsic 

inhibitory proteins in the CNS. As described previously, inhibition of MAIs and 

other inhibitory cues can lead to functional regeneration after injury or disease. 

However, there are additional factors blocking regeneration. It has become clear 

that neurons in the adult CNS display a decreased intrinsic ability to regenerate 

when compared to embryonic neurons. For example, cerebellar slices taken from 

post-natal day 10 rats survive in cell culture and maintain cellular composition 

resembling the mature cerebellum. Mature Purkinje cell axons do not regenerate 
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after axotomy even when provided with permissive substrates from the sciatic 

nerve or embryonic slices. However, embryonic Purkinje cells readily regenerate 

after axotomy and extend axons robustly into adult cerebellar slices [95, 96]. 

Similar developmental declines have been observed with retinal ganglion cells 

and tissue explants from the brainstem [97, 98]. In addition, some embryonic 

neurons, such as dorsal root ganglion (DRG) neurons, are able to grow on MAG, 

while DRGs isolated from postnatal mice are not [47, 99].  This has been 

observed for several of the myelin inhibitory cues and from these results, two 

hypotheses have arisen. First, that the expression of receptors for inhibitory 

ligands is lower in the embryonic versus the adult CNS, and secondly, that the 

adult CNS lacks the intrinsic growth properties of the embryonic CNS [100]. 

However, it is more likely that both hypotheses contribute to the lack of 

regeneration in the CNS, and therefore the molecular mechanism of the switch 

decreasing intrinsic growth properties in the adult CNS will need to be elucidated.  

To this end, roles for cyclic AMP and the PTEN/mTOR pathway have been 

implicated in the lack of intrinsic growth-promoting signals in the adult CNS. 

A direct correlation between cAMP levels and inhibition of neurite outgrowth 

by myelin and MAG was demonstrated. Intracellular cAMP levels are high in 

post-natal day 1 DRGs which are not inhibited by MAG or myelin. However, as 

the DRGs matured cAMP levels decreased, and the neurons became responsive 

to myelin inhibition [47].  Interestingly, a conditioning lesion on DRGs elevates 

cAMP levels and can relieve growth inhibition of MAIs [47, 100, 101]. The 

addition of pharmacological agents to elevate cAMP levels also relieves growth 

inhibition by MAIs. For example, injection of DRGs in vivo with a non-

hydrolyzable cAMP analogue induces regeneration of lesioned dorsal column 

axons[101]. The ability of cAMP to overcome MAI inhibition is protein kinase A 

(PKA) dependent and links to the activation of the transcription factor cAMP 

response element binding protein (CREB)[102]. Consistent with the initiation of 

transcription, several cAMP-regulated genes have been linked to MAIs and 

research is ongoing to determine the molecular mechanism of cAMP-mediated 

inhibition of MAIs. 
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Recently, it was shown that deletion of PTEN enhances survival of 

axotomized retinal ganglion cells and promotes regeneration of injured optic 

nerve fibers through the induction of sprouting, formation of new synapses, and 

regeneration of injured corticospinal tract axons[103, 104]. Loss of PTEN function 

leads to the activation of Akt and subsequently, mTOR, a critical regulator of 

protein translation initiation and cell growth [105]. It has been shown that mTOR 

signaling is downregulated in the mature CNS and axotomy further decreases 

mTOR activity [104]. mTOR is a critical regulator of protein translation initiation 

and cell growth. This suggests that the injured axon is further crippled by an 

inability to effectively synthesize new protein to promote regeneration[106].  

In summary, the lack of axonal regeneration in the CNS cannot only be 

attributed to the presence of extrinsic factors, such as myelin associated 

proteins. The loss of intrinsic growth capability of mature neurons also provides a 

large obstacle to promote regeneration in the injured CNS. Thus, these studies 

suggest that a dual approach, blocking MAI function and enhancing intrinsic 

neuronal growth, may be a more efficacious strategy to regenerate the injured 

CNS. 

 

1.8 Intracellular axon growth inhibitory signaling pathways 
  

 Due to the complexity and redundancy of inhibitory signals at the neuronal 

cell surface, it is advantageous to understand the intracellular signaling 

pathways, as a more potent therapeutic strategy to enhance axonal regeneration 

could be developed. Currently, there is a lack of knowledge of the molecular 

mechanisms of MAIs and only a few signaling pathways have been linked to 

MAIs (Figure 1.3). MAG has been shown to increase calcium levels in neurons 

and this is dependent on the presence of both p75 and NgR [107, 108]. MAG 

enhances calcium levels by activating protein kinase C (PKC) in a phospholipase 

C (PLC) dependent manner. Inhibitors of PKC function relieve growth inhibition 

on MAG, NogoA, and myelin in cell culture [109, 110]. Additionally, epidermal  
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growth factor receptor (EGFR) is transactivated in response to Nogo66 and 

MAG, and it is suggested that this is due to increases in calcium levels [111].  

 MAIs must signal to the cytoskeleton to cause growth cone collapse and 

inhibition of axon growth, and the Rho family of small GTPases is well 

characterized as modulators of the actin-myosin cytoskeleton. The Rho family of 

GTPases includes RhoA, Rac1, and Cdc42. The GTPases cycle between being 

in an active GTP-bound state and an inactive GDP-bound state, and nucleotide 

exchange is controlled by several distinct inactivating GTPase-activating proteins 

(GAPs), activating guanine nucleotide exchange factors (GEFs) and guanine 

nucleotide dissociation inhibitors (GDIs) that maintain GTPases in an inactive 

state[112]. RhoA activation has been implicated as an essential component of 

MAI downstream signaling; the involvement of Rac1 or Cdc42 is unknown. 

However, Rac1 activity has been linked to growth cone collapse downstream of 

ephrin-A2 and semaphorin 3A, suggesting it may promote growth inhibition 

through a MAI-independent pathway [113-115]. Inhibition of RhoA activity 

releases inhibition by MAG or myelin in cell culture and promotes regeneration of 

the optic nerve in mice [116-118]. It was also found that the receptor p75 upon 

MAG or Nogo stimulation associates with a RHO-GDI, releasing its inhibitory 

association with RhoA, and resulting in RhoA activation [65, 66]. Downstream of 

RhoA activation, Rho-associated kinase (ROCK) is an important relay point for 

signal transduction to the cytoskeleton. Our laboratory has discovered that Plenty 

of Src Homology 3s (POSH), a scaffold protein for the Rho GTPase, Rac, 

negatively regulates axon outgrowth. Additionally, POSH forms a signaling 

complex with the actin-myosin regulatory protein Shroom3 and its associated 

protein ROCK to negatively regulate axon outgrowth, potentially linking POSH to 

changes in cytoskeletal dynamics to regulate axon outgrowth[119]. 

  

1.9 Plenty of Src Homology 3s (POSH) 
 

Plenty of SH3s (POSH) is a multidomain scaffold protein compromised of 

four Src homology 3 (SH3) domains, a Rac binding domain (RBD), and a really 
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interesting new gene (RING) domain[120]. SH3 domains facilitate protein-protein 

interactions (PPIs) through proline rich regions (Figure 1.4). The presence of four 

SH3 domains highlights the role of POSH as a scaffold protein, as POSH could 

potentially associate with four distinct proteins through each SH3 domain. The 

RING domain classifies POSH as an ubiquitin E3 ligase. The E3 ubiquitin ligase 

family is large and structurally diverse, and specifies ubiquitin conjugation 

through their substrate recognition and the recruitment of a cognate E2 ubiquitin 

conjugating enzyme [121]. POSH levels are regulated by self-ubiquitination, 

however there remains minimal knowledge of additional substrates for 

ubiquitination by POSH.  

POSH was discovered through a yeast two hybrid screen for Rac 

interacting proteins that facilitate Rac-mediated activation of c-Jun N-terminal 

kinase (JNK)[120]. POSH is ubiquitously expressed with highest expression 

levels in the kidney, lung, and brain[120]. Through its RBD, POSH binds the 

GTP-loaded (active) form of Rac but not the GDP-loaded (inactive), facilitating 

the activation of a mitogen-activated protein kinase (MAPK) signaling pathway 

including: mixed-lineage kinase 1 (MLK1), mitogen-activated protein (MAP) 

kinase kinases (MKKs) 4 and 7, and JNK [120, 122]. POSH also associated with 

the mixed-lineage kinases, dual leucine zipper (DLK) and leucine zipper kinase 

(LZK) to facilitate JNK interaction. However, DLK and LZK do not contain a 

canonical CRIB (Cdc42/Rac interactive binding) motif, thus their activation of 

JNK may be Rac independent [123, 124]. POSH forms a multiprotein complex 

with the scaffold protein JIP (JNK interacting protein) to activate JNK and 

promote apoptosis, leading to the complex being termed PJAC (POSH-JIP 

apoptotic complex). In the PJAC, POSH binds members of the MLK family and 

GTP-Rac, while JIP associates with MKK4/7 and JNK (Figure 1.5A). The 

formation of the complex promotes JNK activation, and is stabilized by a feed-

forward loop enhancing JNK-mediated cellular events [125, 126]. The PJAC 

complex is regulated by Akt. Akt2 associates with POSH and phosphorylates 

MLK3, destabilizing the complex and causing it to disassemble[127]. Additionally, 

Akt1 binds JIP1 and inhibits its interaction with JNK [128]. 
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In the nervous system, the JNK pathway regulates neuronal cell death 

evoked by stress stimuli, such as: withdrawal of trophic support, DNA damage, 

and oxidative stress. Overexpression of POSH, MLKs, MKK4/7, or constitutively 

active JNK has been reported to be sufficient to cause cell death in neuronal and 

non-neuronal cells, however our laboratory has not observed this phenotype 

[120, 122, 129]. Neuronal apoptotic death induced by trophic support withdrawal 

can be reversed through the removal of POSH function by POSH siRNA and 

JNK activation by MLKs is enhanced by overexpression of POSH [122]. These 

results highlight the importance of the scaffold in mediating apoptosis through 

JNK activation. Additionally, ischaemic stress, the loss of blood supply to the 

brain, induces JNK pathway activation and this is followed closely by neuronal 

cell death [130].  Removal of POSH function results in decreased neuronal cell 

death after ischemia in rats, indicating that manipulation of POSH function is 

neuroprotective in this context. POSH’s role in apoptosis and neuronal cell death 

has also been characterized in Xenopus during early embryogenesis. Loss of 

POSH function resulted in neural tube defects that were similar to phenotypes 

seen with JNK deficient mice and MLK2 knockdown in Xenopus [131]. The above 

studies highlight a crucial role for POSH in JNK activation leading to apoptosis. 

However the POSH-JNK pathway and POSH itself have additional roles distinct 

from programmed cell death. 

 As a scaffold protein, POSH interacts with or regulates the function of 

many distinct proteins allowing POSH to affect diverse biological processes.  In 

Drosophila, the dorsal appendages on eggshells serves as a breathing tube for 

the developing embryo and provides a mechanism for air exchange if the embryo 

becomes submerged [132]. Ras signaling is important for synthesis of dorsal 

appendages and loss of Ras signaling results in eggs with a single dorsal 

appendage [133]. POSH was identified in a screen for enhanced loss of Ras 

phenotypes in the dorsal appendage, suggesting that POSH regulates cell shape 

changes during development [133]. On endosomes, POSH has been shown to 

regulate hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), 

which is involved in receptor down-regulation and multivesicular body biogenesis. 
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POSH targets Hrs for ubiquitination and subsequent degradation, potentially 

affecting normal cell morphology (Figure 1.5B) [134]. The E3 ligase function of 

POSH and its association with the endosome is also involved in the production of 

infectious HIV-1. POSH facilitates the sorting of HIV Gag viral polyprotein to the 

inner leaflet of the plasma membrane, where GAG induces virus-like particle 

budding and release [135]. Furthermore, the E3 ligase activity of POSH in the 

Drosophila immune system leads to degradation of the JNK activator, 

transforming-growth factor β (TGFβ)-activated kinase (TAK1), and subsequent 

termination of the immune response[136]. POSH has a role in calcium 

homeostasis through its association with the homocysteine-inducible ER protein, 

Herp. POSH-Herp binding increases the levels of Herp in the endoplasmic 

reticulum (ER), where Herp protects the cell after ER stress by controlling 

calcium homeostasis (Figure 1.5C) [137]. Lastly, our laboratory has reported a 

novel role for POSH as a negative regulator of axon outgrowth [119]. POSH 

assembles a signaling complex composed of Shroom3 and ROCK to inhibit axon 

length (Figure 1.5D). It was found that the RING domain is required for POSH-

mediated regulation of process outgrowth, suggesting a role for E3 ligase activity 

[119]. Through these collective studies, it is clear that POSH is able to regulate 

many diverse functions through the assembly of distinct protein complexes.  

   

1.10 Shroom3 
 

Shroom3, an f-actin and myosin binding protein, was first identified as a 

critical player in neural tube closure.  Shroom3 deficient mice exhibit neural tube 

closure defects where the neural folds fail to converge at the dorsal midline and 

“mushroom” outward [138]. Exencephaly, where the brain is located outside the 

skull, was observed in all homozygous mutant embryos. Additional neural tube 

defect phenotypes, such as craniofacial clefting and spina bifida were observed 

in a smaller percentage of the mutants, 87% (68/78) and 23% (21/93) 

respectively[138].  Shroom3 contains two highly conserved domains termed 

ASDs (Apx/Shroom domains). Proteins which contain an ASD domain have been 
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classified into the Shroom family and renamed: Shroom1 (APX), Shroom2 

(APXL), Shoom3, and Shroom4 (Kiaa1202) [139].  All four members of the 

Shroom family associate with cytoskeletal elements, and therefore are suggested 

to be involved in the control of cellular architecture. For example, Shroom1, 

Shroom2, and Shroom3 regulate the cellular distribution of γ-tubulin, linking the 

Shroom family to coordinating microtubule dynamics [140-142]. Shroom4 has 

also been shown to play a role in neural development and mutations have been 

linked to mental retardation[143].  

 Shroom3 is a key player in apical constriction, the process in which 

contraction of the apical side of a cell causes the cell to become wedge shaped. 

Apical constriction occurs during embryonic development where epithelial cells 

are undergoing morphological changes, including folding, invagination, and 

elongation. Correct formation of the neural tube requires these morphological 

changes to occur. Overexpression of Shroom3 in epithelial cells induces apical 

constriction as well as the recruitment of myosin II to the apical surface where it 

is hypothesized to elicit cell shape changes or maintain tension required for 

constriction [139, 144]. Both ASD domains of Shroom3 play a role in regulating 

actin-myosin dynamics to modulate cytoskeletal events. The ASD1 domain is 

involved in F-actin association, while the ASD2 domain recruits ROCK to 

regulate myosin II [145, 146]. The N-terminus of Shroom3 contains a post 

synaptic density 95/disclarge/zona occludens (PDZ) domain, providing an 

additional site for protein-protein interactions. 

 Shroom3 is widely expressed during embryonic development, suggesting 

roles in addition to apical constriction. Studies from our laboratory revealed that 

Shroom3 associates with POSH through the third SH3 domain of POSH [119]. 

The POSH binding region (PBD) of Shroom3 is located upstream of the ASD1 

and ASD2 domains, and downstream of the PDZ domain. Removal of Shroom3 

function by RNA interference (RNAi) in primary cortical neurons leads to 

enhanced axon length that is similar to the phenotype seen with POSH RNAi. 

The ASD1 and ASD2 domains are required for Shroom-mediated regulation of 
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axon length [119]. These results indicate a role for POSH, through Shroom3, as 

a modulator of the actin-myosin cytoskeleton. 

 

1.11 ROCK 
 

ROCK was first identified as an effector of the small GTPase Rho, 

facilitating Rho-induced formation of stress fibers and focal adhesions through 

the phosphorylation of myosin light chain (MLC) [147, 148].  There are two 

known isoforms, ROCKI and ROCKII, and both are ubiquitously expressed in 

rodents, although there is increased expression of ROCK II in muscle tissue and 

brain. ROCKs are serine/threonine kinases consisting of an amino-terminal 

kinase domain followed by a potential coiled-coil region, a Rho binding domain 

(RBD), and a C-terminal pleckstrin homology (PH) domain. ROCK is primarily 

located in the cytoplasm, however it can translocate to the cellular membrane 

when provided the proper stimuli [149].  

 The kinase activity of ROCKI and ROCKII is regulated in distinct 

mechanisms. The PH domain and the RBD function in the autoinhibition of 

enzymatic activity by interacting with the amino-terminal kinase domain [150]. 

Binding of activated GTP-bound Rho to the RBD is thought to open up the 

kinase, removing autoinhibition. ROCKII can also be activated in a Rho-

independent manner by association with arachidonic acid treatment in smooth 

muscle [151]. In vivo, ROCKI is truncated by caspase-3 in the c-terminus 

resulting in a constitutively active kinase [152, 153]. There is also evidence that 

ROCK can associate with additional small GTPases which can bind and 

selectively inhibit ROCK function. For example, the small GTPase, Gem, binds to 

ROCKII in a region adjacent to the Rho binding domain and expression of Gem 

inhibits ROCK from activating its downstream substrates [154]. This finding is 

interesting as it suggests that ROCK may have additional unknown roles 

downstream of other small GTPases independent of Rho. 

Following activation by Rho, ROCK regulates multiple signaling pathways 

that all have potential to modulate cytoskeletal functions downstream [149]. A 
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well studied target of ROCK phosphorylation is the light chain of myosin, also 

referred to as myosin light chain (MLC). Phosphorylation of MLC regulates 

myosin II function by promoting its interaction with actin, thereby activating 

myosin ATPase and enhancing cell contractility [155-157]. ROCK also 

phosphorylates myosin binding subunit (MBS) [157, 158]. MBS is one of three 

subunits of myosin light chain phosphatase (MLCP), a negative regulator of 

actomyosin contractility. Phosphorylation of MBS by ROCK causes MLCP to 

dissociate from myosin retaining myosin activity. Therefore, ROCK regulates 

contractility on multiple levels: activating contractility and inhibiting deactivation. 

Additionally, ROCK can regulate actin dynamics and microtubule stability through 

activation of LIM kinases and collapsing response mediator protein-2 (CRMP2), a 

neuronal protein that is involved in growth cone collapse [159, 160]. 

ROCK’s regulation of actin-myosin function is crucial to modulating axon 

outgrowth. Recently, ROCK function has been shown to mediate neuronal 

responses to myelin-associated inhibitory proteins (MAIs) [161]. The ROCK 

antagonist, Y-27632, can promote neurite growth on MAI substrates in vitro and 

enhanced regeneration in rats subjected to corticospinal tract transection. Four 

independent studies showed that Y-27632 treatment allows outgrowth on MAG, 

NogoA, and crude myelin in cerebellar granule neurons, cortical neurons, and 

dorsal root ganglion cells [58, 116, 118]. Y-27632 treatment in rodents subjected 

to corticospinal tract transection yielded enhanced sprouting of cortical spinal 

tract fibers and accelerated locomoter recovery, visualized by recovery of hind 

limb function [116, 118]. This was also observed in ROCKII knock-out mice [162]. 

Investigation into the molecular mechanism of ROCK signaling downstream of 

MAIs revealed that upon NogoA stimulation ROCK translocates to the cellular 

membrane and phosphorylation of myosin light chain is enhanced [161].  

However, further characterization of known ROCK effectors, such as LIMK and 

CRMP2, were not performed, therefore, the complete downstream signaling 

mechanism of MAIs through ROCK is unknown.  

The ASD2 domain of Shroom3 binds Rho associated kinase (ROCK) to 

localize ROCK to the epithelial apical junction where ROCK contributes to apical 
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constriction [145]. Our laboratory has shown that Shroom3 also recruits ROCK to 

the POSH complex where ROCK mediates axon outgrowth [119]. Interference 

with ROCK activity with the inhibitor Y-27632 or expression of a dominant 

negative domain of ROCK, which disrupts the Shroom3-ROCK interaction, leads 

to enhanced axon length. Our data suggests that ROCK is involved in the POSH 

pathway as a negative regulator of axon length. 

 

1.12 Mixed-lineage kinases: Dual leucine zipper kinase (DLK) and Leucine 
zipper kinase (LZK) 

 

The mixed-lineage kinases (MLKs) are a family of serine/threonine protein 

kinases that act in a mitogen-activated protein kinase (MAPK) signaling pathway. 

The name mixed-lineage comes from their kinase domain where the conserved 

subdomains contain homology with both serine/threonine and tyrosine kinases 

[163]. However, there is no evidence for MLKs having tyrosine kinase activity. 

There are three subfamilies of MLKs, classified on the basis of their domain 

arrangements and sequence similarities: the MLKs, the dual-leucine-zipper-

bearing kinase (DLK and LZK), and the zipper-sterile-α-motif kinases (ZAK). The 

MLKs (MLK1-4) are characterized by an amino-terminal src-homology-3 (SH3) 

domain, followed by a kinase domain, a leucine zipper region, and a Cdc42/Rac-

interactive binding (CRIB) motif, which promotes activation via Rac or Cdc42 

[164]. The MLK subgroup contains 75% sequence identity within their kinase 

domain and 65% identity from their SH3 domain to their CRIB motif. The c-

terminal ends are less homologous, potentially serving as regulatory sites for 

distinct cellular functions.  

DLK was identified using degenerative oligonucleotide-based PCR cloning 

in a screen to identify novel protein kinases[165]. LZK was isolated soon after 

from the human cerebellum[166]. DLK is an 888 amino acid protein, while LZK 

contains 966 amino acids. The proteins possess a kinase domain in their N-

terminus followed by two leucine zipper domains with 86.4% homology [165, 

166]. DLK and LZK lack the CRIB motif present in other MLK family members, 

and they are activated by dimerization rather than association of small GTPases. 
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DLK and LZK can form homo- and heterodimers, however there is evidence that 

only homodimers occur through the zipper domains, while heterodimers occur 

through additional binding regions in the N-terminus [124, 167]. DLK and LZK 

bind and phosphorylate MKK7 to activate JNK, and DLK has been shown to 

activate p38 through the phosphorylation of MKK4 [167, 168]. Additionally both 

proteins associate with the scaffold proteins POSH and JIP (JNK-interacting 

protein) to facilitate JNK activation [124, 169]. However, DLK is also held in an 

inactive, monomer state by JIP. Phosphorylation of JIP by JNK releases DLK and 

facilitates its dimerization, subsequent activation, and leads to further activation 

of JNK [170, 171]. This model suggests a feed forward mechanism of regulation 

for the DLK-JIP-JNK signaling pathway. Additionally, JIP tyrosine-

phosphorylation by Src family members increases the affinity of JIP for DLK, 

preventing the activation of JNK [172]. 

 In vitro, LZK is primarily known for inducing JNK activation and apoptosis, 

and its in vivo role is not well characterized. On the other hand, DLK has several 

roles defined in the nervous system. In Caenorhabditis elegans, a DLK homolog 

is required for axon regeneration by initiating the formation of new growth cones 

on severed axons through the activation of MKK4 and p38 [173].  In Drosophila 

melanogaster, DLK regulates synaptic growth through activation of JNK. 

Interestingly in both systems, DLK is negatively regulated by an E3 ubiquitin 

ligase protein family denoted PHR (human Pam, mouse Phr1, zebrafish Esrom, 

Drosophila Highwire, and C.elegans RPM-1)[174]. In a collection of studies using 

DLK knockout mice, researchers found that loss of DLK lead to defects in 

neuronal migration and axon outgrowth resulting in reduced size of the anterior 

commisure and corpus callosum[175]. Further studies revealed that DLK 

regulates axon outgrowth through JNK activation, followed by downstream 

activation of doublecortin (DCX) and microtubule-associated protein 1b (MAP1B) 

[175-177]. Collectively these studies highlight a role for DLK/LZK as regulators of 

axonal development and outgrowth upstream of JNK activation. 
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1.13 POSH is a negative regulator of axon outgrowth 
 

 Our laboratory identified a novel role for POSH as a negative regulator of 

axon length [119]. Removal of POSH function by RNA interference (RNAi) in 

differentiated P19 cells or primary cortical neurons from mice results in enhanced 

axon length.  The enhancement in axon length was not due to a increase in cell 

survival, which suggested that the signaling pathway mediating axon outgrowth is 

independent from its role in apoptosis[120, 122, 131, 178]. Consistent with this 

hypothesis, POSH binds the actin-myosin regulatory protein, Shroom3, through 

its third SH3 domain. RNAi-mediated interference of Shroom3 expression also 

results in long axons suggesting that POSH and Shroom3 work in concert to 

negatively regulate axon outgrowth.  

 Shroom3 regulates the actin-myosin cytoskeleton through its ASD1/2 

domains and we found that both domains are required for regulation of process 

length. Expression of the ASD1 domain in cortical neurons acts as a dominant 

negative to block the binding of endogenous Shroom3 to actin, and results in 

neurons with enhanced process length. Additionally, a Shroom3 mutant lacking 

the ASD2 domain is no longer able to regulate axon outgrowth. The ASD2 

domain regulates myosin II activity or localization through the recruitment of 

ROCK and interference with the ability of Shroom3 to bind ROCK results in 

enhanced process growth, indicating that interaction with ROCK is critical for 

Shroom3-POSH to regulate axon length [119, 144, 145]. Interestingly, loss of 

myosin IIA function reverses the POSH and Shroom3 long process phenotype, 

indicating that increased myosin II function may be the driving force in the 

POSH/Shroom3 phenotypes. As stated previously, ROCK regulates myosin II 

activity by phosphorylating myosin light chain and myosin light chain 

phosphatase[149]. However, it is unknown as to whether the POSH-Shroom3-

ROCK complex is directly regulating myosin II function or if enhanced myosin II 

activity is an effect of a shift in the balance of cytoskeletal forces due to loss of 

POSH/Shroom3 function. 
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 Collectively the research from our laboratory suggests that POSH 

assembles an axon growth inhibitory complex that links through Shroom3 and 

ROCK, directly or indirectly, to the actin-myosin network. However, the upstream 

signaling components relaying growth inhibition through the POSH complex 

remain unknown. Thus, this thesis aims to characterize the upstream molecular 

mechanism of axon growth inhibition mediated by the POSH complex. The 

elucidation of this signaling pathway will increase the knowledge of downstream 

inhibitory events and provide novel targets for therapeutic strategies to overcome 

neurite growth inhibition during development, and also in the adult CNS where 

the regenerative capacity is severely limited. 
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Chapter 2 
 

POSH is an intracellular signal transducer for the axon outgrowth inhibitor 
Nogo66 

 

2.1 Introduction 
 

The regenerative and plastic capacity of the adult mammalian CNS is 

limited, contributing to poor functional recovery after injury or disease. CNS 

axons are capable of regenerating but fail to do so, in part because factors 

present in the CNS actively prevent axon outgrowth [1-4]. Factors that limit axon 

outgrowth and plasticity have been purified from CNS myelin and include myelin 

associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), 

and NogoA [1, 4-6]. In addition to limiting axon outgrowth and plasticity in the 

adult CNS, NogoA also regulates axon outgrowth and plasticity during 

development [6-13].  

Nogo66, an axon outgrowth inhibitory domain of NogoA, engages cell 

surface receptors, Nogo66 Receptor 1 (NgR1) and Paired Immunoglobulin-like 

Receptor B (PirB), to mediate intracellular signal transduction [7, 14-16]. NgR1 

links to Rho and its downstream effector Rho kinase to regulate cytoskeletal 

dynamics associated with growth cone collapse and inhibition of axon outgrowth 

[1, 4]. PirB is a recently identified receptor for myelin-derived inhibitory substrates 

[7, 11]. The signaling pathway activated when myelin derived inhibitors engage 

PirB is not known. However, in hematopoietic cells, where PirB signaling has 

been more extensively studied, phosphorylation of the receptor at specific 

tyrosines by src family kinases recruits SH2-homology-containing protein tyrosine 

phosphatases SHP1 and SHP2 [17, 18].  
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Plenty of SH3s (POSH, also known as SH3rf1) is an intracellular 

multidomain scaffold protein that regulates diverse biological functions, including 

apoptosis, calcium homeostasis, morphogenesis, and neuronal process 

outgrowth [19-25]. POSH contains multiple protein-protein interaction domains, 

including an amino-terminal RING domain, four Src homology 3 (SH3) domains, 

and a Rac binding domain. As a scaffold protein, POSH exerts its function 

through interacting partners, which include the actin-myosin regulatory protein 

Shroom3, the small GTPase Rac, and mixed lineage kinases [21, 22, 24, 26]. 

Our laboratory previously reported that POSH limits axon growth through a 

Shroom3-ROCK-myosin signaling pathway [22]. Here, we demonstrate that the 

scaffold protein POSH, in association with Shroom3 and the mixed lineage 

kinase LZK, relays axon outgrowth inhibition downstream of NogoA and PirB.  

 

2.2 Results 

2.2.1 POSH RNAi neurons are refractory to myelin and Nogo66-mediated 
inhibition of axon outgrowth 

 

In a previous report, we demonstrated that POSH limits axon outgrowth 

through a Shroom3-ROCK-myosin signaling pathway [22]. To determine whether 

myelin inhibitors signal to POSH to limit axon outgrowth, control neurons or 

neurons with RNAi mediated knockdown of POSH function were assessed for 

their ability to extend processes in the presence of CNS myelin.  Mouse primary 

embryonic cortical neurons were nucleofected with control or POSH RNAi 

expression vectors and cultured on poly-L-lysine/laminin (PLL) with or without 

purified myelin. The UI4-SIBR RNAi vectors express a single vector derived 

transcript for RNAi and GFP expression, with GFP expression identifying the 

transfected neurons [22, 27].  Process outgrowth in GFP-labeled cortical neurons 

was analyzed 72 hours after nucleofection and plating. Myelin reduced average 

process length of control RNAi transfected neurons to 66% of the length on PLL 

only (Figure 2.1A-B, G). POSH RNAi neurons exhibited increased process length 

relative to control RNAi neurons, when plated on PLL, as we previously reported 
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 [22], indicating that POSH negatively regulates process outgrowth (Figure 2.1A, 

D, G). Strikingly, process length of POSH RNAi neurons was not reduced when 

plated on myelin (Figure 2.1D-E, G). The observation that POSH RNAi neurons 

are refractory to inhibition by myelin suggests that in primary cortical neurons 

myelin based inhibitors act through a signaling pathway that includes POSH.  

Several proteins in myelin limit process outgrowth, including NogoA [1, 5]. 

We tested whether Nogo66, a soluble domain of the NogoA ligand, inhibits 

process outgrowth of control or POSH RNAi neurons. Primary cortical neurons 

were nucleofected with control or POSH RNAi expression vectors and cultured 

on bacterially expressed and purified Nogo66. Process length was assessed in 

fixed, GFP-stained neurons. Nogo66 inhibited process length of control RNAi 

neurons (Figure 2.1A, C, G). In contrast, POSH RNAi neurons were refractory to 

the inhibitory action of Nogo66 (Figure 2.1D, F-G). This result suggests that 

Nogo66 signals to POSH to inhibit process outgrowth and that the inhibitory 

action of myelin is mediated, at least in part, through a NogoA/POSH signaling 

pathway.  

 

2.2.2 POSH associated proteins, Shroom3 and LZK, negatively regulate 
axon length and are intracellular signal transducers of myelin and 
Nogo66 

 

POSH regulates biological outcomes by assembling a protein interaction 

network, which includes the actin-myosin regulatory protein Shroom3 and the 

mixed lineage kinase LZK [24, 28]. To determine whether these known binding 

partners for POSH mediate myelin inhibition, primary cortical neurons were 

nucleofected with control, Shroom3, or LZK RNAi vectors and process outgrowth 

was analyzed in the presence or absence of myelin. Inhibition of Shroom3 

function by RNAi resulted in increased process length relative to control neurons 

when neurons were plated to PLL (Figure 2.1G), consistent with our previous 

study demonstrating that the POSH-Shroom3 complex inhibits process outgrowth 

[22]. Likewise, LZK RNAi cortical neurons exhibited increased process lengths 

when plated to PLL relative to control neurons (Figure 2.1H and Figure 2.2),  
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consistent with a role for LZK as a negative regulator of process outgrowth. 

Plating to myelin did not inhibit process length of Shroom3 or LZK RNAi neurons 

(Figure 2.1G-H). In addition, process length was not decreased when Shroom3 

or LZK RNAi neurons were plated to Nogo66 (Figure 2.1G-H). Thus, reducing 

Shroom3 or LZK function with RNAi results in neurons that are refractory to 

myelin and Nogo66 inhibition. Taken together, the observations that POSH and 

its binding partners Shroom3 and LZK modulate responsiveness to myelin and 

Nogo66 identify the POSH complex as an intracellular signal transducer for 

myelin-derived inhibitors.  

 

2.2.3 POSH is required for Nogo66 inhibition of axon outgrowth in CGNs 

 

Since different neuronal cell types could utilize different mechanisms for 

Nogo66 inhibition and Nogo66 also inhibits axon outgrowth in cerebellar granule 

neurons (CGNs), we investigated whether POSH mediates inhibition of axon 

outgrowth in response to Nogo66 in postnatal CGNs [7, 29].  Like cortical 

neurons, POSH RNAi CGNs were refractory to the inhibitory action of Nogo66 

(Figure 2.3A-E), suggesting that a POSH-dependent mechanism operates in 

different neuronal cell types to inhibit axon outgrowth in response to Nogo66.  

 

2.2.4 Nogo inhibits axon outgrowth in both a cell-autonomous and non-
cell-autonomous fashion 

 

Like NogoA, POSH is expressed in mouse embryonic cortical neurons in 

vitro (Figure 2.4A) [10, 30, 31]. Given this overlap in expression, RNAi mediated 

reduction of NogoA function was used to investigate the potential for signaling 

from endogenous NogoA to POSH. Cortical primary neurons were nucleofected 

with control or Nogo specific RNAi expression vectors to determine if Nogo 

expression in cortical neurons limits axon outgrowth. The Nogo gene encodes for 

three variants, NogoA-C that share a carboxyl terminal neurite outgrowth 

inhibitory domain, Nogo66 [1,[14, 15]. In addition, NogoA has a unique domain, 

not present in NogoB-C, which inhibits neurite outgrowth [15]. The Nogo-3 RNAi  
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construct targets the exon unique to NogoA, which is absent from NogoB and 

NogoC, and thus this construct specifically targets NogoA (Figure 2.5). Process 

length in Nogo-3 RNAi-depleted neurons was increased relative to control 

(Figure 2.6A), as expected if NogoA limits process outgrowth. Similar results 

were obtained with a second siRNA, Nogo-1, that targets the 3’UTR of the Nogo 

mRNA, reducing the expression of Nogo isoforms, NogoA/B (Figure 2.5). The 

Nogo-1 RNAi construct is also expected to reduce the expression of NogoC 

since the 3’UTR is conserved among the mRNAs for the three Nogo isoforms 

and RT-PCR analysis indicates that NogoC, along with NogoA/B, is expressed in 

cortical neurons (Figure 2.4B). Together, these results support a role for NogoA 

as an inhibitor of process outgrowth of cortical neurons grown in culture, and 

suggest that NogoB and C do not function redundantly with NogoA to regulate 

process outgrowth.  

Since RNAi mediated reduction of NogoA function in neurons enhances 

process length, this result suggests that NogoA acts in a cell autonomous, 

intrinsic fashion to inhibit process outgrowth.  In addition, NogoA can act in a 

non-cell autonomous fashion, as process outgrowth of control cortical neurons is 

inhibited when plated directly onto purified Nogo66 protein (Figure 2.1 and Figure 

2.6B). Finally, purified Nogo66 protein, added externally, reverses the NogoA 

RNAi phenotype (Figure 2.6B), unlike the addition of Nogo66 to PirB RNAi 

neurons (compare Figures 2.6B and Figure 2.1H), indicating that cells in which 

NogoA is reduced can still respond to external Nogo66 as expected. 

 

2.2.5 Suppression of Myosin IIA function reverses the Nogo RNAi 
phenotype 

 

Myosin IIA RNAi reverses the increase in process length associated with 

RNAi-depletion of POSH or the POSH associated proteins, Shroom3 and LZK 

(Figure 2.7A and [22]). However, myosin IIA RNAi does not reverse the increase 

in process length resulting from RNAi-mediated reduction of the neurite 

outgrowth inhibitors Robo1 or Ephrin B2 [22]. The molecular mechanism by 
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which a reduction in myosin IIA function suppresses axon outgrowth in neurons 

deficient in POSH function, but not Ephrin B2 or Robo1, remains to be 

determined.  Nonetheless, these observations suggest that myosin IIA reduction 

of function can distinguish among pathways that negatively regulate axon 

outgrowth, with some pathways sensitive to myosin IIA reduction of function (e.g. 

POSH) and others insensitive (Ephrin B2, Robo), and this provides a useful tool 

to assess whether specific components might be associated with a POSH 

signaling pathway for axon outgrowth inhibition.   

The ability of myosin IIA RNAi to suppress axon outgrowth was used to 

test whether NogoA signals to POSH to regulate process outgrowth. Primary 

cortical neurons were nucleofected with control, POSH or Nogo RNAi expression 

vectors, together with a myosin IIA RNAi expression vector. As reported 

previously, control neuron process length was unaffected by myosin IIA RNAi, 

and POSH RNAi neuron process length was reduced by myosin IIA RNAi (Figure 

2.7B). Process length of Nogo RNAi neurons was also reduced by myosin IIA 

RNAi (Figure 2.7B), consistent with the hypothesis that NogoA signals through a 

POSH dependent pathway to regulate process outgrowth.  

 

2.2.6 LZK is a downstream effector of a Nogo/POSH signaling pathway 

 

Next, suppression analysis was used to test the hypothesis that LZK is a 

functional effector for Nogo signaling and to order the genes in the signaling 

pathway. If increased expression of LZK can compensate for loss of Nogo 

function, then this observation would support a role for LZK as a downstream 

effector of Nogo signaling. Cortical neurons were nucleofected with a Nogo RNAi 

expression vector and a control vector or a vector that expresses catalytically 

active or inactive forms of LZK. The efficiency of nucleofection of both plasmids 

was 94% (data not shown). Ectopic expression of wild type, but not catalytically 

inactive, LZK suppressed the enhanced process length phenotype exhibited by 

Nogo RNAi nucleofected neurons (Figure 2.8A-E). Suppression of the Nogo  
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RNAi knockdown phenotype by increased expression of LZK is consistent with 

a model in which Nogo/POSH signaling is mediated, at least in part, by LZK. It is 

also possible that increased LZK activity suppresses by activating a 

compensatory signaling pathway, not directly linked to NogoA function. However, 

this is unlikely because increased expression of LZK did not suppress process 

outgrowth of POSH RNAi neurons (Figure 2.8F), indicating that LZK suppression 

of process outgrowth requires the POSH scaffold. Together, these observations 

indicate that LZK regulates process outgrowth inhibition in a POSH-dependent 

manner downstream of NogoA.  

 

2.2.7 The PirB receptor transmits inhibitory signal from myelin and 
Nogo66 to the LZK-POSH complex 

 

PirB is a functional receptor for Nogo and MAG in CGNs and dorsal root 

ganglion neurons [7]. If PirB transmits axon outgrowth inhibitory signals in cortical 

neurons, then reducing PirB function with RNAi should lead to increased process 

length. Cortical neurons with an RNAi mediated reduction in PirB function 

exhibited an increase in process length (Figure 2.9A), consistent with PirB 

functioning as a negative regulator of process outgrowth. A second RNAi 

construct, targeting a different PirB sequence, gave a similar result (data not 

shown and Figure 2.9B). Further, if PirB is acting as a receptor to transmit 

inhibitory signals from myelin and NogoA in cortical neurons, then PirB RNAi 

neurons should be refractory to myelin and Nogo66 inhibition. Process length of 

PirB RNAi neurons was unaffected by myelin and Nogo66 (Figure 2.1H), 

supporting a role for PirB in myelin/Nogo mediated inhibition in cortical neurons. 

Moreover, if PirB acts through POSH to inhibit process outgrowth, then myosin 

IIA RNAi is expected to reverse the PirB RNAi phenotype. Indeed, PirB RNAi 

neuronal process length was decreased by RNAi mediated reduction in myosin 

IIA (Figure 2.9C). Finally, if PirB signals to the POSH complex, then ectopic 

expression of LZK is expected to reverse the PirB RNAi phenotype. 

Overexpression of LZK in PirB RNAi-depleted cortical neurons reduced process 

length to control levels (Figure 2.9A), supporting a role for the PirB receptor in  
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transmitting inhibitory cues to the POSH/LZK complex to regulate process 

outgrowth.  

 

2.3 Discussion 
 

Together, these results define a central role for the POSH complex in 

relaying process outgrowth inhibition downstream of NogoA and PirB (Figure 

2.10). Supporting a role for POSH as a downstream effector of myelin-based 

inhibitory signals, RNAi-mediated reduction in POSH function results in primary 

cortical neurons that robustly extend processes in the presence of CNS myelin, 

in contrast to control neurons, which are inhibited by myelin. As a scaffold 

protein, POSH operates through co-associating binding partners. POSH interacts 

with the actin-myosin regulatory protein Shroom3 to regulate process outgrowth 

inhibition  and we demonstrate here that neurons with RNAi-knockdown of 

Shroom3 function are refractory to the inhibitory action of CNS myelin, supporting 

a role for the POSH/Shroom3 complex in process outgrowth inhibition 

downstream of myelin [22]. Neurons with an RNAi-mediated reduction in a 

second POSH interacting protein, the mixed lineage kinase LZK, are also 

refractory to the inhibitory action of myelin, providing further support for a key role 

for the POSH complex in transmitting axon outgrowth inhibitory cues from CNS 

myelin-derived inhibitors.  

PirB is a receptor for Nogo66, and our observations are consistent with 

PirB signaling to POSH to mediate process outgrowth inhibition in cortical 

neurons [7, 32]. First, RNAi-mediated reduction of PirB in primary cortical 

neurons results in increased neuronal process length and prevents inhibition by 

myelin or Nogo66, indicating that PirB, like POSH RNAi, negatively regulates 

process length in cortical neurons. Second, overexpression of the POSH-

associated effector protein LZK suppresses the PirB RNAi-mediated increase in 

process length. Similarly, LZK suppresses increased process outgrowth from  
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Nogo RNAi neurons. However, increased expression of LZK does not suppress 

the POSH RNAi enhanced process outgrowth phenotype, arguing that LZK does 

not suppress by simply activating a compensatory signaling pathway unlinked to 

PirB and POSH, but instead requires the POSH scaffold.  

Finally, inhibition of myosin IIA function reverses the PirB phenotype, as 

well as the Nogo RNAi-mediated enhancement of process outgrowth. MyosinIIA 

RNAi reverses the increase in process length under some conditions but not 

others [22]. The mechanism by which loss of myosin IIA function is able to 

shorten process length under some conditions but not others remains to be 

determined. Nonetheless, that reduction of both ligand and receptor (Nogo/PirB) 

can be reversed by reduction of myosin IIA function, matching what is observed 

for POSH and POSH-associated proteins, further supports the proposed pathway 

of NogoA-PirB-POSH. Collectively, these observations implicate the PirB 

receptor as a critical component in signaling process outgrowth inhibition reliant 

on POSH function. In hematopoietic cells, PirB signals by recruitment of the 

tyrosine phosphatases SHP1/2 [17, 18]. Likewise, in neurons responding to 

myelin inhibition, PirB may recruit SHP2 to signal to POSH, but the identity of 

potential SHP2 substrate(s) in this pathway remains to be determined. 

Further, these studies suggest that neuronally expressed NogoA limits 

axon outgrowth in a cell autonomous, intrinsic fashion, as RNAi-mediated 

reduction in cortical neurons enhances axon outgrowth. In contrast to neurons in 

which PirB or POSH/Shroom3/LZK are inhibited by RNAi, external application of 

Nogo66 to Nogo RNAi knockdown neurons inhibits enhanced process outgrowth. 

This is consistent with the model that the NogoA RNAi phenotype represents a 

loss of an autocrine signal for PirB, whereas disruption of PirB or POSH complex 

function prevents inhibition by either extrinsic or autocrine NogoA. The existence 

of autocrine Nogo inhibition also suggests an explanation for increased process 

outgrowth from POSH RNAi neurons in the absence of external inhibitory 

molecules [22]. Intriguingly, multiple inhibitory domains reside within Nogo, yet 

Nogo66 alone is sufficient to suppress the Nogo RNAi phenotype, highlighting 

the important role of this domain in mediating process outgrowth inhibition. The 
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ability of NogoA to limit process outgrowth in cis may function to limit axon 

outgrowth and plasticity during development [6-13]. Collectively, these results 

indicate that extrinsic and intrinsic mechanisms for impeding axon outgrowth 

converge on the POSH scaffold complex. Whether POSH signaling is 

downstream of CNS axon outgrowth inhibitors, in addition to NogoA/Nogo66, is 

an important question to be addressed in future studies. 

Several Nogo isoforms are expressed in neurons, NogoA-C. All three 

isoforms contain the Nogo66 C-terminal inhibitory domain and are reported to 

localize to the plasma membrane [33]. Surprisingly, RNAi-mediated reduction of 

NogoA function alone is indistinguishable from RNAi-mediated reduction of all 

three Nogo isoforms simultaneously, indicating that NogoB and C fail to 

compensate for NogoA deficiency. Perhaps unique sequences present in NogoA 

enable the protein to fold in a conformation that facilitates binding to a Nogo 

receptor residing in the same membrane (in cis).  

Proteins present in CNS myelin, including NogoA, are a major impediment 

to the repair of the injured CNS. The results presented here demonstrate a novel 

function for the POSH scaffold in signaling process outgrowth inhibition in 

response to NogoA, and delineate a new signaling pathway for process 

outgrowth inhibition, comprised of NogoA, PirB, POSH and LZK. 

Identification of intracellular signaling components mediating myelin 

inhibition provides potential new targets for the development of therapeutics 

aimed at restoring function in the injured CNS. Blockade of POSH scaffold 

function, or the function of POSH associated proteins, has the potential to 

enhance axon outgrowth and plasticity, and functional recovery in the injured 

CNS.   
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2.5 Materials and Methods 

2.5.1 Antibodies 

 

For axon outgrowth assays, cells were stained with anti-green fluorescent 

protein (GFP) rabbit primary antibody (Invitrogen) and Alexa Fluor 488 goat anti-

rabbit secondary antibody (Molecular Probes). For western blots the following 

primary antibodies were used: goat anti-Nogo (N18) (Santa Cruz), anti-ILT-5/PirB 

(C-19) (Santa Cruz), rabbit anti-Actin (Sigma), and rabbit anti-GFP (Invitrogen). 

Secondary antibodies used were: Goat Anti-Rabbit IgG Horseradish Peroxidase  

(HRP) Conjugate (BioRad) and Bovine anti-goat IgG HRP (Santa Cruz).  

 

2.5.2 Expression constructs and RNAi 

 

pUI4-SIBR-GFP is a short interfering RNA (siRNA) expression vector that 

co-expresses the GFP protein and a siRNA from an intronic expression cassette 

(the SIBR cassette) based on the miR-155 microRNA precursor [22, 27]. For 

each siRNA, a pUI4-SIBR-GFP vector expressing one to four identical tandem 

copies of the siRNA SIBR cassette was constructed [22, 27]. POSH-6, luciferase 

(a functional control RNAi vector), Shroom3-3, and myosinIIA-1 are described in 

[22]. The sequences of LZK, Nogo and PirB siRNAs are: LZK-1, 5' 

UUCAUCGGGACUGUUCGAGUGG 3'; LZK-2, 5' 

AUCAAUGUUACAGUAGCCGGAG 3'; Nogo-1, 5' 

AAUCUUUGAAAUGACGGUUACG 3'; Nogo-3, 5' 

UAUACCGUCAUAACUAACUGGA 3'; PirB-294, 5' 

AACAAUAACAGCGAUAUUGCCC 3'; and, PirB-874 siRNA 5' 
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AACAUCGAUAUUGACCUGCAUU 3'. Western blot analysis confirmed knock-

down of endogenous NogoA and PirB (Fig. S4). To construct CS2+NFLAG LZK, 

an N-terminally FLAG tagged construct, LZK was cloned by RT-PCR from RNA 

isolated from adult mouse brain. Kinase dead LZK was constructed by site-

directed mutagenesis, AAG being converted to GCG, substituting lysine 195 to 

alanine. ATP fails to bind at the active site in the mutant protein, resulting in a 

catalytically defective kinase-dead mutant [28]. 

 

2.5.3 Preparation of myelin and recombinant proteins 

 

Myelin extracts were prepared from adult rat brains, as described [34]. 

His-SUMO-conjugated Nogo66 (amino acids 1055-1079) or His-SUMO was 

expressed overnight at 25°C in Escherichia coli purified on Ni-NTA His Bind 

Resin (Qiagen). Briefly, E.coli were lysed by sonication in PBS+ (PBS, 0.1mM 

PMSF, 0.35mg aprotinin, 0.1% -mercaptoethanol, 10mM imidazole, 2nM 

leupeptin). Triton X-100 was added to the lysate at 1% of the final volume. 

Lysates were incubated with Ni-NTA His Bind Resin for 1 hour at 4°C and 

washed three times in PBS+ with 300mM NaCl. Protein was eluted from the 

beads with elution buffer (50mM NaHPO4, 300mM NaCl, 250mM imidazole) and 

25% glycerol was added. Protein concentration was determined by Bradford 

assay (BioRad) and Coomassie gel with Bovine serum albumin (BSA) standards. 

 

2.5.4 Axon outgrowth Assays 

 

4-well chamber slides (Fisher Lab Tek II) were coated for 4 hours with 10 

µg/ml poly-L-lysine then overnight with 2µg/ml laminin (Invitrogen) or overnight at 

4°C with laminin+myelin, laminin+control His-SUMO (2.5µg /cm2), or laminin+His-

SUMO Nogo66 (2.5µg /cm2).  After overnight incubation, unbound substrates 

were removed by rinsing with PBS. Cortical primary progenitors were cultured as 

previously described [22].  Primary progenitors were nucleofected with a total of 

6µg of DNA: 4.5µg of pUI4 vector and 1.5µg of empty vector control, pCS2-
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NFLAG LZK, or pCS2-NFLAG LZK KD.  In Fig. 2B, 4B, and S2B, cells were 

nucleofected with 6µg of DNA: 3µg of pUI4 vector and 3µg of pUI4-myosin IIA 

RNAi expression vector. Cells were fixed in 3.7% formaldehyde 72 hours post-

nucleofection. Cells were stained with an anti-GFP primary antibody (Invitrogen) 

and Alexa Fluor 488 goat anti-rabbit secondary antibody (Molecular Probes). The 

efficiency of co-nucleofection of two different plasmids in primary cortical neurons 

is 94%.  Co-nucleofection efficiency was determined by nucleofecting two 

plasmids expressing different markers (mCherry or GFP) and the percentage of 

cells expressing GFP, mCherry or both markers was determined in two 

independent experiments.  

 

2.5.5 Measurement of Process Length 

 

The length of the longest process per cell was measured in photographs 

of fixed, GFP stained neurons with the polyline function in MicroSuite imaging 

software version 5.0 (Olympus, Tokyo, Japan) [22]. For Fig. 2A-B, 3E-F, 4A-B, 

and S2, processes 50µm (3 times the length of the cell body) or greater were 

measured. In Fig. 1, 2C, and S1, using the box function in the MicroSuite imaging 

software, the longest process per cell for all the cells within the box was 

measured. Results are presented as average process length, determined from 

three independent nucleofections, with a total of 325-810 GFP-positive neurons 

measured per condition, except for Fig. 3E where the total number of neurons 

measured from the three independent nucleofections was 237-312.  Statistical 

significance was assessed using the Students t-test. The data sets analyzed in 

the t-test were the measurements of the total number of GFP-positive neurons 

from three independent nucleofections. 

 

2.5.6 Cerebellular Granule Neurons 

 

Cerebellular Granule neurons (CGNs) were isolated from the cerebellum 

of post-natal day (P) 8 mice as described [35]. CGNs were nucleofected as 
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described [36, 37] with a total of 4µg of DNA: luciferase (control RNAi vector) or 

POSH-6 RNAi vector. Cells were plated onto 4-well chamber slides incubated for 

4 hours with 10 µg/ml poly-L-lysine then overnight with 2µg/ml laminin or 

laminin+myelin at room temperature, laminin+control His-SUMO (2.5µg /cm2) or 

laminin+His-SUMO Nogo66 (2.5µg /cm2) at 4°C. 24 hours post-nucleofection 

cells were fixed with 3.7% formaldehyde. Cells were incubated with rabbit anti-

GFP primary antibody  (Invitrogen) and neuronal class III -tubulin monoclonal 

antibody TuJ1 (Covance), followed by detection with Alexa Fluor 488 goat anti-

rabbit (Molecular Probes) and Alexa Fluor 594 goat anti-mouse secondary 

antibodies (Molecular Probes). Average process length was quantified as 

described above and in [22]. 

 

2.5.7 Reverse Transcription-PCR 

 

RNA was purified from untransfected cortical neuron cultures (RNeasy 

kits, QIAGEN) and genomic DNA was removed from RNA samples using RNase-

Free DNase (QIAGEN), as recommended. Reverse transcription (RT) was 

performed using SuperScript II (Invitrogen) and Random Primer 12 (NEB) at 

25°C for 10 min, 42°C for 1 hr, and 72°C for 15 min. cDNA samples were 

analyzed by PCR (Expand High Fidelity PCR system; Roche) with the following 

primers: POSH F1, 5’ CAGGTCCATATAAGCACCACTG 3’; POSH R1, 5’ 

GGTAGGGGACATCTGAAGGGA 3’; POSH F2, 5’ 

GTGACTAAAGAGCACAAAGCAG 3’; POSH R2, 5’ 

CAAGGCACACTTTACACATCAG 3’; Nogo F1, 5’ GTGCCCTTATTGCTTCCAAA 

3’; Nogo R3, 5’ TCTGGATAGCTTGGATCACACCCTTA 3’; Nogo F3 5’ 

CAGGGGCTCGGGCTCAGT 3’; Nogo F-C 5’ 

ATGGACGATCAGAAGAAACGTTGGAA 3’; HPRT forward, 5’ 

CAAACTTTGCTTTCCCTGGT 3’; HPRT reverse, 5” 

CAAGGGCATATCCAACAACA 3’. Nogo F1, Nogo F3 and Nogo R3 have been 

previously described [38].  PCR products were analyzed by agarose gel 
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electrophoresis. Similar results were obtained with two independent RNA 

samples.  

 

2.5.8 Western Blot Analysis to test efficacy of RNAi constructs 

 

Western blot analysis was performed to test the ability of the siRNAs to 

target endogenous Nogo. Cellular extracts were prepared from transiently 

transfected, puromycin selected P19 cells, as previously described [22, 39]. To 

test the efficacy of the vector expressed PirB siRNAs, HEK 293 cells were 

transfected with a PirB expression construct together with a control or PirB RNAi 

vector. Western analysis was performed on the extracts prepared 36 hours after 

transfection.  
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Chapter 3  

The Shp2 phosphatase suppresses axon outgrowth by regulating the 
function of the mixed lineage kinase LZK 

 

3.1 Introduction 
 

Traumatic injury or disease to the adult central nervous system (CNS) often 

results in severed neuronal axons, leading to cell death and a loss of neuronal 

signaling and connectivity. Deficits in functional connectivity between neurons 

can lead to severe physical and mental impairments. Recovery after these 

injuries is rare, due to the limited capacity of the CNS to regenerate damaged 

neurons and their axons [1, 2]. Myelin-associated inhibitors (MAIs) of axonal 

growth and regeneration play a crucial role in the inability of the adult central 

nervous system to recover after injury or disease. The three major MAIs are: 

MAG, NogoA, and OMgp [1-3]. Blocking the action of these proteins and/or their 

receptors leads to enhanced regeneration of axons after injury, suggesting that 

circumventing the action of these inhibitors could be a strategy to enhance axon 

outgrowth of injured neurons [3, 4]. Complicating therapeutic strategies is the 

presence of multiple receptors for the inhibitory proteins including the Nogo-66 

receptor (NgR1) and paired immunoglobulin-like receptor B (PirB). Additionally, 

NgR1 and PirB receptors bind all three MAIs [3, 5-7]. The complexity at the 

neuronal cell surface suggests that blocking the intracellular signaling pathways 

regulated by MAIs may be a complementary and perhaps more efficacious 

strategy to enhance axon growth after injury.  

Previous studies in our laboratory have revealed a novel role for the 

intracellular scaffold protein POSH as a regulator of axon outgrowth in neurons 

[8, 9]. POSH mediates this function by facilitating the assembly of a signaling 
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module composed of the actin myosin regulatory protein Shroom3, Rho-

associated kinase (ROCK), and leucine zipper kinase (LZK) [8, 9]. Loss of 

function of any member of the complex or inhibition of complex assembly leads 

to an enhancement of axon length, indicating the POSH module negatively 

regulates axon length [8]. Through the receptor PirB, the POSH complex relays 

inhibitory signals from NogoA, specifically a 66-amino acid loop of NogoA termed 

Nogo66 [8]. These studies delineated a novel intracellular signaling pathway for 

process growth inhibition by Nogo66, comprised of NogoA, PirB, POSH, LZK, 

Shroom3, and ROCK. However, the molecular mechanism by which growth 

inhibitory signals are relayed from the receptor PirB to the POSH complex is 

unknown.  

Shp2 is an ubiquitously expressed, mammalian, non-transmembrane, 

protein tyrosine phosphatase. Shp2 contains two N-terminally located src-

homology 2 (N-SH2 and C-SH2) domains, a central phosphotyrosine 

phosphatase domain (PTP), a C-terminal tail with tyrosyl phosphorylation sites, 

and a proline-rich motif [10]. In the absence of a tyrosine-phosphorylated binding 

partner, the N-terminal SH2 domain binds the phosphatase domain blocking its 

active site [11, 12]. Shp2 is involved in many signaling pathways including 

Ras/ERK MAP kinase pathway and the JAK/Stat pathway [10, 13]. In 

macrophages, immunoprecipitation experiments using Shp1 (a Shp2 family 

member) discovered a 130-kDa phosphotyrosyl protein that was constitutively 

associated with Shp1 through its SH2 domains [14]. In further experiments, the 

identity of the 130-kDa protein was determined to be PirB and it was shown that 

Shp2 associates with PirB in a similar mechanism as Shp1 [15]. The cytoplasmic 

domain of PirB contains three potential immunoreceptor tyrosine based inhibitory 

motifs (ITIM), I/V-X-pY-X-X-L/V/I which are known binding sites for Shp1, Shp2, 

and SH2 domain-containing inositol phosphatase (SHIP)  [16-18]. PirB‟s third 

and fourth ITIMs are important for recruitment of Shp2 and downstream 

signaling[19]. In immune cells, PirB has been classified as an inhibitory receptor; 

the recruitment and activation of Shp1/2 leads to disruption of signaling cascades 

initiated by the activating receptor PirA [20, 21].  
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In neurons, PirB and Shp2 associate and the interaction is dependent on 

the intracellular domain [22]. PirB is a receptor for myelin-derived inhibitory 

substrates and studies using a truncated mutant of PirB have shown that the 

intracellular domain is important for relaying myelin inhibitory cues [22]. 

Additionally, a transgenic mouse for the truncated form of PirB displays 

increased ocular-dominance plasticity suggesting that PirB acts as a negative 

regulator of neuronal stability/plasticity [5, 22]. Recent studies have also shown 

that PirB and Shp2 together with p75, a co-receptor for NgR1, negatively 

regulate TrkB signaling to modulate axon outgrowth [23, 24]. Together these 

studies highlight the role of PirB and Shp2 as regulators of signaling both in the 

nervous system and in the immune system.   

 In this study, we report that Shp2 relays Nogo66-growth inhibitory signals 

downstream from the receptor PirB and its activity as a phosphatase is required 

for this function. Nogo66 stimulation induces an enhancement in the association 

of tyrosine-phosphorylated proteins with Shp2. LZK is tyrosine phosphorylated 

and binds to a Shp2 substrate trap mutant, suggesting that LZK is a Shp2 

substrate and its function is regulated by phosphorylation events. Interestingly, a 

close family member of LZK, DLK, is also a negative regulator of axon length and 

an intracellular signaling protein for Nogo66, suggesting functional redundancy of 

the kinases. However, DLK cannot compensate for the loss of PirB in CGNs and 

is not trapped by Shp2, suggesting that DLK and LZK undergo selective 

regulation. Finally, the POSH complex also relays inhibitory signals from MAG, 

indicating that the POSH complex may be a convergence point for MAIs. 

Collectively, this study places Shp2 in the NogoA-PirB-POSH complex signaling 

pathway. 
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3.2 Results 

3.2.1 The Shp2 phosphatase is required for NogoA-mediated growth 
inhibition 

 

In neurons and in immune cells, PirB and Shp2 associate and the 

interaction is required for downstream signaling of the myelin-inhibitory protein 

MAG [20-23]. PirB is a functional receptor for NogoA in cerebellar granule 

neurons (CGNs) as reducing PirB function by RNA interference (RNAi) leads to 

increased process length and the neurons are refractory to Nogo66 inhibition 

(Figure 3.1). To determine if PirB is facilitating Nogo66 growth inhibition through 

Shp2, the ability of Shp2 to compensate for the loss of PirB function was tested. 

Specifically, we tested whether overexpression of Shp2 would suppress the PirB 

long axon phenotype or restore growth inhibition to PirB RNAi neurons on 

Nogo66. To perform these suppression analysis experiments, constitutively 

active or catalytically inactive Shp2 was expressed in PirB RNAi CGNs. In the 

absence of a receptor or activating protein, Shp2 is held in an inactive, folded-

conformation through the interaction of its N-terminal SH2 domain with the 

protein tyrosine phosphatase domain [12, 25].  Interaction of Shp2 with specific 

phosphorylated residues on activating proteins relieves this auto-inhibition [10, 

11]. To mimic activation, a glutamate 76 to lysine mutation was made which 

disrupts the ability of the SH2 domain from interacting with its tail, resulting in a 

constitutively active or receptor independent Shp2 mutant [10-12]. Ectopic 

expression of Shp2 E76K in PirB RNAi neurons reduced process length to 

control levels and was able to restore growth inhibition on Nogo66 (Figure 3.1). 

These results indicate that Shp2 function is downstream of PirB and is involved 

in mediating inhibitory signals from Nogo66. 

 To extend this analysis, a phosphatase dead Shp2 mutant was 

constructed by mutating arginine 465 to methionine (RM). This invariant arginine 

is located in the active site of the phosphatase where it coordinates and 

stabilizes the phosphate group on the substrate [11, 12, 25].  The RM mutant 

was constructed in the E76K background to create a double mutant that resides 

in the open, active conformation but is phosphatase dead.  Ectopic expression of  
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Shp2 RM/E76K was not able to complement the loss of PirB by RNAi or restore 

Nogo66 growth-inhibition (Figure 3.1). Collectively, these results show that Shp2 

is downstream of NogoA/PirB signaling and the phosphatase activity of Shp2 is 

necessary for mediation of NogoA/PirB growth inhibition in CGNs.  

 

3.2.2 Regulation of axon outgrowth by Shp2 is dependent on the POSH 
complex 

 

The assembly of the POSH complex, consisting of POSH, LZK, and 

Shroom3, is crucial for the regulation of axon outgrowth and NogoA mediated 

growth inhibition [8, 9]. To determine whether Shp2 relays growth inhibitory 

signals through the POSH module, the ability of Shp2 to compensate for the loss 

of POSH or LZK was tested. The loss of POSH or LZK function in CGNs by RNAi 

results in a long process phenotype (Figure 3.1 and [8, 9]). Overexpression of 

Shp2 E76K is not able to complement the loss of POSH or LZK function (Figure 

3.1). Also, Nogo66-mediated growth inhibition is not restored by ectopic 

expression of activated Shp2, indicating Shp2 requires the presence of POSH 

and LZK to mediate inhibitory signals and is not functioning through a separate 

inhibitory pathway. Importantly, these results show that Shp2 signaling occurs 

upstream of or in concert with the POSH/LZK signaling module.  

 

3.2.3 Nogo66 enhances Shp2 association with tyrosine-phosphorylated 
proteins 

 

Since the phosphatase activity of Shp2 and the presence of the POSH 

complex members are required for Shp2 to relay NogoA mediated growth 

inhibition, we hypothesized that Shp2 is acting on a member of the POSH 

complex. A widely used method for identifying physiological substrates of protein 

tyrosine phosphatases (PTPs) is to create a “substrate trap” by mutating specific 

amino acids in the catalytic domain of PTPs [15, 26, 27]. The trapping mutants 

are able to bind substrates but cannot dephosphorylate them.  Shp2 contains a 

conserved catalytic domain, which contains twenty-seven invariant residues, and 
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mutation of D425A and C459S has been reported as an effective substrate trap 

[15, 26, 27]. The cysteine residue acts as a nucleophile on the phosphorus atom 

of the substrate, followed by cleavage of the scissile P-O bond, which is 

facilitated by the aspartate [11, 12, 25]. The suppression of P-O cleavage is 

thought to stabilize and enhance the phosphatase-substrate interaction. To 

identify substrates of Shp2 downstream of NogoA, the DA/CS mutation was 

generated in the isolated PTP domain of Shp2, as well as in full-length Shp2.  

Using the substrate trap method, Nogo66 dependent increases or 

decreases in tyrosine phosphorylated proteins were assessed. CGNs were 

stimulated with Nogo66 for 15 minutes followed by pull-down analysis with Shp2 

Wild-type (WT) and DA/CS PTP domains purified from E.coli as GST fusion 

proteins. Western blot analysis was performed to examine levels of tyrosine 

phosphorylated proteins (Figure 3.2A). In the native assay, no interacting 

proteins were trapped or detected with or without Nogo66 treatment. To increase 

the pool of phosphorylated proteins in the cells and to enhance the sensitivity of 

the assay, CGNs were pretreated with the phosphatase inhibitor pervanadate 

and trapped Shp2 substrates were detected (Figure 3.2A).  Shp2 PTP DA/CS 

trapped at least eight tyrosine-phosphorylated proteins of differing molecular 

weights. No phosphorylated proteins were detected using WT PTP, indicating 

that the substrate trap was functioning as expected. Upon Nogo66 treatment, 

there is enhanced trapping of the tyrosine-phosphorylated proteins, suggesting 

potential Shp2 substrates. Three bands which correspond with the molecular 

weights of 200kDa, 120kDa, and 80kDa could be Shroom3 (198kDa), LZK 

(100kDa), and/or POSH (89kDa). Endogenous POSH, Shroom3, or LZK were 

not detected using protein specific antibodies in either the pull downs or in 

cellular extracts, the latter suggesting endogenous protein levels may be below 

the level of detection for the available commercial antibodies (data not shown).   
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3.2.4 LZK is a novel Shp2 interacting protein 
 

To test the hypothesis that a POSH complex member is a substrate of 

Shp2, a candidate approach using the trapping method was taken. CGNs were 

nucleofected with expression constructs for myc-tagged LZK. To examine the 

effects of Nogo66 stimulation on phosphorylation status of LZK, CGNs were 

plated to PLL or Nogo66. 24 hours after transfection, CGNs were treated with or 

without pervanadate for 30 minutes prior to harvest. Preliminary results of pull 

downs with full length Shp2 RM (catalytically inactive, but non-trapping) or Shp2 

DA/CS (catalytically inactive trapping) showed that stimulation with Nogo66 

results in decreased trapping of LZK (Figure 3.2B, comparison of lane 2 to lane 

4). This result suggests that in neurons LZK is phosphorylated, and upon Nogo66 

stimulation, LZK is targeted for dephosphorylation by Shp2. Consistent with this 

hypothesis, inhibition of endogenous phosphatases with pervanadate treatment 

leads to enhanced Shp2 trapping of LZK upon Nogo66 stimulation, indicating that 

Nogo66 is promoting the association of LZK with Shp2 (Figure 3.2B, comparison 

of lane 6 to lane 8). Collectively, these results show that ectopically expressed 

LZK is trapped by Shp2 in a Nogo66 dependent manner. 

 

3.2.5 In HEK 293 cells, LZK is trapped by Shp2 and is tyrosine 
phosphorylated 

 

To confirm and extend the observations in primary neurons, Shp2 trapping 

experiments were performed in the immortalized and readily transfectable HEK 

293 cell line. 293 cells were transfected with expression constructs for myc-

tagged POSH or LZK and were treated with pervanadate for 30 minutes prior to 

harvest. Pull downs with full length Shp2 RM or Shp2 DA/CS showed that only 

LZK is trapped by inactive Shp2 (Figure 3.3A). These results confirm the results 

observed in CGNs and suggest that HEK 293 cells can be used to examine the 

molecular mechanism of Shp2 trapping of LZK. 

To further analyze the Shp2-LZK interaction, the tyrosine-phosphorylation 

status of LZK was assessed. HEK 293 cells were transfected with Myc-LZK,  
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treated with pervanadate, and analyzed by western blot for the presence of 

phosphorylated tyrosine residues. Indeed, when phosphatases are globally 

inhibited, LZK is tyrosine phosphorylated (Figure 3.3B). These results, taken 

together with the ability of LZK to be trapped by Shp2, highlight the potential for 

direct regulation of LZK function by Shp2.  

 

3.2.6 DLK, an additional MLK family member, is also a negative regulator 
of axon length 

 

LZK belongs to the second subfamily of mixed lineage kinases (MLKs), 

which also includes dual leucine zipper kinase (DLK). The two proteins contain a 

kinase domain followed by two leucine-zipper motifs that are separated by a 31 

amino acid spacer. LZK and DLK share 87% homology in their kinase domains 

and 76% homology in their zipper domains (Figure 3.4A) [28, 29]. The N and C-

terminal ends are distinct, however, both proteins associate with POSH and 

activate JNK signaling [28-32]. Since LZK and DLK contain homology, both bind 

to POSH, and activate JNK, we wanted to investigate whether DLK regulates 

axon outgrowth. To address this question in CGNs, RNAi constructs targeting 

DLK were nucleofected into CGNs plated to PLL or Nogo66. Reduction of DLK 

function by RNAi results in enhanced process length identical to the loss of LZK 

function (Figure 3.4B), suggesting DLK is also a negative regulator of axon 

length. To determine whether DLK is downstream of Nogo66 growth inhibition, 

DLK RNAi-expressing neurons were plated to Nogo66. DLK RNAi neurons are 

refractory to growth inhibition by Nogo66 (Figure 3.4B), indicating a role for DLK 

as a signaling protein for myelin-associated proteins. 

The above result suggested that DLK and LZK may be able to 

compensate for each other. To further examine this hypothesis, LZK or DLK were 

ectopically expressed in either DLK or LZK RNAi neurons. Expression of LZK in 

LZK RNAi neurons or DLK in DLK RNAi neurons reverses the long process 

phenotype, indicating specificity of the RNAi constructs (Figure 3.4B). 

Interestingly, LZK was able to complement the loss of DLK and conversely, DLK 

was able to complement the loss of LZK (Figure 3.4B).  These results suggest  
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that either kinase can function to regulate axon outgrowth and growth inhibition of 

Nogo66.   

Since both kinases are expressed in CGNs and they both negatively 

regulate axon outgrowth, we hypothesized that loss of both kinases will enhance 

the long process phenotype. Surprisingly, removal of both DLK and LZK function 

by RNAi does not result in further enhancement of axon length (Figure 3.4C).  

This result suggests that DLK and LZK operate on the same pathway or both 

kinases may regulate a downstream, rate limiting step in axon outgrowth. From 

these studies, we conclude that DLK or LZK can modulate axon length, 

responsiveness to Nogo66-induced growth inhibition, and DLK or LZK are able to 

compensate for the loss of each other‟s function when overexpressed. 

 

3.2.7 CGNs from DLK hypomorph mice display long process phenotype 
and are refractory to growth inhibition by Nogo66 

 

To further examine the role of DLK in the cerebellum, DLK hypomorph 

mice were obtained from the Lawrence Holzman laboratory. Previous studies 

using DLK knockout mice demonstrated that DLK-/- mice progressed through 

embryogenesis but died soon after birth [33, 34].  Thus, the Holzman group 

generated a hypomorph that displayed decreased levels of DLK rather than 

complete removal of DLK [35]. The hypomorphs were viable and survived 

through adulthood. At the time of this dissertation, complete phenotypic studies 

of the DLK hypomorph were incomplete; however studies are ongoing in the 

Holzman laboratory. To determine whether constitutively decreased levels of 

DLK in hypomorphs behaved similar to decreasing levels of DLK in CGNs by 

nucleofection with RNAi constructs, CGNs from DLK hypomorph mice and wild-

type litter mate controls were isolated and plated on control substrate or Nogo66. 

CGNs isolated from DLK hypomorph mice show enhanced process outgrowth 

when compared to wild-type CGNs (Figure 3.5). Additionally, DLK hypomorph 

CGNs were refractory to Nogo66, confirming the results seen with DLK RNAi 

constructs (Figure 3.4-3.5). These results suggest that DLK regulates of axon 

outgrowth and growth inhibition mediated by Nogo66.  
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3.2.8 Reduced DLK expression does not affect cerebellar morphology 
 

We next wanted to assess the effect of the loss of DLK on the 

development of the cerebellum. The cerebellum is highly ordered, which allows 

for easy identification of cell types and morphology [36]. Briefly the cerebellum is 

organized into a molecular layer that contains the axons of the CGNs and the 

dendrites of the Purkinje cells, a Purkinje cell body layer, and an inner granule 

cell layer, containing CGN cell bodies and the axons of the Purkinje cells. The 

Purkinje cell axons continue into the deep nuclei, relaying further neuronal 

signals. Previous studies in DLK-/- embryos showed that loss of DLK function 

resulted in defects in radial migration and axon projection [34, 37, 38]. 

Additionally, genetic disruption of MKK4, a MAPKK which is activated by DLK, 

results in misalignment of the Purkinje cells of the cerebellum [39]. DLK is 

expressed in both the molecular layer of the cerebellum (CGN location) and in 

the Purkinje cells [40]. Thus, we hypothesized that loss of DLK in the cerebellum 

may also result in changes in granule layer formation or Purkinje cell alignment. 

To examine cerebellar morphology, post-natal day 10 brains were isolated 

from wild-type and DLK hypomorphs and sagittal cryogenic slices were stained 

with calbindin (Purkinje cells) and Hematoxylin and eosin (H&E stain: general 

histology stain). As seen in Figure 3.6, there are no significant differences in 

cerebellar morphology; Purkinje cells were aligned correctly and granule layers 

were of comparable thicknesses in the DLK hypomorph (D-F) compared to wild-

type (A-B). This was not unexpected as the mice did not exhibit any traditional 

cerebellar behavioral deficits such as circling or altered gait (data not shown). 

There may be changes in morphology at a smaller scale, such as the number of 

synaptic connections between CGNs and Purkinje cells and/or aberrant axon 

growth; however we were unable to visualize these differences with our current 

tools. It is also possible that LZK expression in the cerebellum is able to  

compensate for the loss of DLK, preventing any significant morphological 

differences. An inducible knock-out of DLK, LZK, and both proteins would provide  

 



83 
 

 



84 
 

valuable insight into the role of each kinase during development and after 

neuronal injury. 

 

3.2.9 Unlike LZK, DLK is not able to compensate for the loss of PirB in 
CGNs 

 

Our findings indicate that DLK and LZK are negative regulators of axon 

length and are members of the signaling pathway downstream from Nogo66-

induced growth inhibition. Thus, we asked whether DLK is downstream of the 

Nogo66 receptor, PirB. To address this question, DLK or LZK constructs were 

expressed in PirB RNAi CGNs. As seen previously, overexpression of LZK in 

PirB RNAi expressing neurons reverses the long process phenotype observed 

with a loss of PirB function (Figure 3.7A). However, ectopic expression of DLK 

fails to complement the loss of PirB or restore growth inhibition by Nogo66 

(Figure 3.7A). This result was unexpected given the previous results suggesting 

that either kinase can suppress the loss of the other when overexpressed in 

CGNs and the result that  both mediate Nogo66 signaling (Figure 3.4B). It is 

possible that DLK is not downstream of PirB and is relaying Nogo66 signaling 

through a distinct signaling pathway. An alternative hypothesis is that DLK is 

regulated by PirB to be incorporated into the MAI signaling pathway, and 

therefore, a loss of PirB prevents DLK incorporation and subsequent function in 

regulating axon outgrowth. 

 

3.2.10 DLK is not trapped by Shp2 
 

LZK is trapped by Shp2 and Shp2 mediates downstream signaling from Nogo66 

and PirB. Therefore, we hypothesized that DLK is regulated in a distinct method 

from LZK, allowing for the selection of LZK in the NogoA-PirB-POSH pathway. 

To assess this hypothesis, Shp2 trapping experiments with overexpressed Myc-

DLK in HEK 293 cells were performed. Following pervanadate treatment, unlike 

LZK, DLK is not trapped by Shp2 (Figure 3.7B). This result suggests that DLK is 

not tyrosine phosphorylated under the same conditions as LZK, and therefore is  
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not a substrate of Shp2. Collectively, these results suggest that DLK and LZK are 

both negative regulators of axon outgrowth, yet LZK is specific to the PirB-Shp2-

POSH pathway.  The mechanism of regulation of DLK/LZK function is still poorly 

understood and it will be interesting to determine how the neuron distinguishes 

between the kinases and how DLK is relaying Nogo66 inhibitory signals.  

 

3.2.11 POSH is a convergence point for MAI signaling 
 

The PirB receptor binds all three MAI family members, therefore we 

hypothesized that the POSH complex mediates inhibitory signals from MAG as 

well as NogoA. To address our hypothesis, CGNs were nucleofected with 

control, POSH, and PirB RNAi constructs and plated to PLL, Nogo66, and MAG. 

Loss of PirB function relieves growth inhibition mediated by MAG, similar to what 

we previously observed for Nogo66 (Figure 3.8). Consistent with our hypothesis, 

POSH RNAi expressing CGNs are also refractory to growth inhibition by MAG. 

This result suggests that POSH is a convergence point for MAI signaling. 

Collectively, the studies presented here highlight the importance in characterizing 

the molecular signaling mechanism of the POSH complex as targeting the POSH 

complex may be an efficacious strategy to enhance axonal regeneration in the 

damaged CNS. 

 

3.3 Discussion  
 

Studies from our laboratory have revealed a role for the POSH complex, 

composed of LZK and Shroom3, as downstream components of the NogoA-PirB 

pathway mediating axon growth inhibition [8, 9]. However, the signaling 

mechanism from PirB to the POSH complex was not known. In these studies, we  

define a role for Shp2 as a transmitter of NogoA mediated inhibitory signals to 

the POSH complex and suggest that Shp2 operates, at least in part, through the 

regulation of LZK function (Figure 3.9). We found that the phosphatase activity of 

Shp2 is required for mediating Nogo66-PirB growth inhibition, suggesting that a  
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downstream dephosphorylation event may be required for Nogo66 signaling. 

Consistent with this hypothesis, we demonstrated that upon Nogo66 stimulation 

of CGNs there is enhanced Shp2 trapping of tyrosine phosphorylated proteins 

and we identified LZK, but not POSH, as a potential Shp2 substrate. 

Interestingly, we show that DLK, a MLK family member, is a negative regulator of 

axon length and relays Nogo66-mediated growth inhibition. Additionally, ectopic 

expression of DLK can overcome the loss of LZK. However, DLK cannot 

suppress the PirB RNAi phenotype and is not trapped by Shp2, indicating DLK 

and LZK might undergo distinct regulation to facilitate their function. In summary, 

our studies suggest a model in which, in the absence of Nogo66 signaling, LZK is 

phosphorylated preventing its function in an unknown mechanism. Nogo66-PirB 

mediated inhibitory signals facilitate the dephosphorylation of LZK by Shp2 

promoting LZK function to inhibit axon length.  Collectively, the studies presented 

here further define the intracellular signaling pathway downstream from NogoA. 

Our studies indicate that POSH is a convergence point for MAI signaling. 

Reduction of POSH function by RNAi allows axonal outgrowth on Nogo66 and 

MAG. The PirB receptor binds all three MAIs and its function is required for 

growth inhibition, therefore we hypothesize that POSH is also relaying inhibitor 

signals from the third MAI, OMgp. There are additional receptors for MAIs and 

we are specifically interested in determining if the Nogo66 receptor, NgR1, is 

also signaling through POSH. NgR1 also binds all three MAIs and removal of 

NgR and PirB functions provides enhanced growth on myelin [3, 13, 17, 41]. 

Therefore, it is possible that they work in concert or on converging pathways to 

mediate inhibitory signals. If POSH is found to be a convergence point for all 

three MAIs and their receptors, strategies to block POSH function or complex 

formation could provide more efficacious regeneration of axons after injury or 

disease than targeting only one MAI or receptor. 

The findings that Shp2 relays signals from NogoA through PirB and the 

requirement of its phosphatase activity suggest that Shp2 is a critical component 

of the NogoA signaling pathway.  Additionally, these studies show that Nogo66 

stimulation induces the trapping of several tyrosine phosphorylated proteins by 



90 
 

Shp2. This suggests that Shp2 has multiple substrates upon Nogo66 stimulation. 

Recently, it has been shown that upon MAG stimulation, Shp2 associates with 

PirB, binds to the tropomyosin receptor kinase B (TrkB) receptor, and promotes 

dephosphorylation of TrkB after activation by BDNF stimulation [23]. Thus, it 

appears that MAG may inhibit axon growth by promoting the deactivation of 

growth-promoting pathways. Shp2 has also been shown to dephosphorylate 

ROCK, promoting its activation[42]. Hence, TrkB or ROCK could be two of the 

proteins whose association with Shp2 is enhanced following Nogo66 stimulation. 

Analysis of Shp2 associated proteins by mass spectrometry from neuronal cell 

cultures would allow for identification of these substrates. It would also be 

interesting to determine whether inhibitory cues by MAG or NogoA promote Shp2 

action on distinct substrates and how this links to POSH complex function. 

Our studies indicate that Nogo66 stimulation promotes the trapping of LZK 

by Shp2.  The mechanism behind LZK phosphorylation is not known. It is 

possible that LZK is phosphorylated by a growth promoting pathway to keep LZK 

from inducing growth inhibition.  It is also possible that changes in 

phosphorylation status affect the localization or stability of LZK. LZK forms 

dimers to facilitate activation and requires the presence of POSH to relay axon 

growth inhibition [15, 28]. Therefore, we hypothesize that phosphorylation of LZK 

prevents dimerization or association with POSH. Experiments to map the site of 

phosphorylation may help determine how phosphorylation is affecting LZK 

function. 

Our analyses of DLK and LZK reveal that both kinases are negative 

regulators of axon growth and can mediate growth inhibitory signals from 

Nogo66. Thus, it will be interesting to determine whether additional MLK family 

members (MLK1-4 and ZAK) can also regulate axon outgrowth. However, LZK, 

but not DLK, is able to complement the loss of PirB and is trapped by Shp2, 

indicating that there is differential regulation of MLKs promoting their function in 

distinct signaling pathways. Our results suggest that LZK is somehow 

preferentially selected over DLK to relay inhibitory signals from PirB. It is possible 

that association with Shp2 is sufficient to select LZK rather than DLK. DLK may 
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function in a distinct NogoA growth inhibitory pathway, perhaps from an 

unidentified Nogo66 receptor. It is also possible that DLK may require the 

presence of PirB to allow DLK to function, perhaps in a feed forward mechanism, 

and subsequently DLK would not be activated in the PirB RNAi neuron.  

Finally, the DLK hypomorph studies suggest the loss of DLK does not affect 

Purkinje cell morphology or general cerebellar cellular organization. However, we 

did not examine differences in granule cell axon projection or changes in synaptic 

connections between granule cells and Purkinje cells. Thus, there may be 

differences between the DLK hypomorph and wild-type mice that we were not 

able to observe. Further animal studies, using conditional, double DLK/LZK 

knockouts along with a more in-depth phenotypic analysis would address 

functional redundancy of DLK or LZK and their role in development.  

 MAIs are a major impediment to regeneration and functional recovery of 

the injured CNS. The results presented by these studies demonstrate a signaling 

pathway downstream of NogoA composed of the receptor PirB, Shp2, LZK and 

POSH. Combined with our previous studies, which also showed the involvement 

of Shroom3 and ROCK in this signaling pathway, our studies delineate a novel 

intracellular signaling pathway downstream of NogoA. Additionally, these studies 

indicate that POSH is a convergence point for MAI signaling, highlighting the 

importance of POSH as an inhibitory axon outgrowth molecule. The findings 

presented here increase the knowledge of intracellular signaling mechanisms 

impeding neuronal growth in CNS. Our results also highlight that blocking the 

function of the POSH complex may promote enhanced axon outgrowth, plasticity, 

and functional recovery after injury or disease of the CNS. 
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3.5 Materials and Methods 

3.5.1 Antibodies and Reagents 
 

For axon outgrowth assays, cells were stained with anti-green fluorescent 

protein (GFP) rabbit primary antibody (Invitrogen) and Alexa Fluor 488 goat anti-

rabbit secondary antibody (Molecular Probes). For western blots the following 

primary antibodies were used: mouse anti-myc (9E10: purified from hybridomas), 

mouse anti-phosphotyrosine (Millipore), rabbit anti-actin (Sigma), rabbit anti-GFP 

(Invitrogen), and High Sensitivity NeutrAvidin-HRP (Pierce). Secondary 

antibodies used were: Goat Anti-Rabbit IgG Horseradish Peroxidase  (HRP) 

Conjugate (BioRad) and Goat Anti-Mouse IgG Horseradish Peroxidase  (HRP) 

Conjugate (BioRad). MAG-Fc (R&D Systems) was diluted to 100µg/mL in PBS 

and stored at -20°C. 

 

3.5.2 Expression Constructs and RNAi 
 

pUI4-SIBR-GFP is a short interfering RNA (siRNA) expression vector that 

co-expresses the GFP protein and a siRNA from an intronic expression cassette 

(the SIBR cassette) based on the miR-155 microRNA precursor [43]. For each 

siRNA, a pUI4-SIBR-GFP vector expressing one to four identical tandem copies 

of the siRNA SIBR cassette was constructed. POSH-6, luciferase (a functional 

control RNAi vector), PirB-874, LZK-1, LZK-2 are previously described [8, 9]. The 

sequence of DLK siRNA is 5‟ UUAUUCGGUAAUUGGUCAGGGG 3‟. CS2+MT 

POSH and CS2+NFLAG-LZK are described previously [8, 9, 44]. CS2+Myc-LZK 

was subcloned from CS2+NFLAG-LZK using BglII and EcoRI as cloning sites. 

CS2+NFLAG-DLK and CS2+Myc-DLK were subcloned from pcDNA3-DLK, a gift 

from Lawrence Holzman. CS2+3xHA-Shp2 and CS2+3xHA-Shp2 CS were 
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subcloned from pcDNA3+Shp2 and pcDNA3+Shp2 CS, generous gifts from Dr. 

Christin Carter-Su. Constitutively active CS2+3xHA-Shp2 E76K was constructed 

by site-directed mutagenesis, GAG being converted to AAG, substituting 

glutamate 76 to lysine.  Phosphatase dead CS2+3xHA-Shp2 E76K/R465M and 

CS2+3xHA-Shp2 R465M was constructed by site-directed mutagenesis, CGG 

being converted to ATG, substituting arginine to methionine. The Shp2 trapping 

mutant D425A/C459S was constructed by site-directed mutagenesis, GAC being 

converted to GCC, substituting aspartate to alanine. Full length and the isolated 

phosphatase domain (PTP) of wild-type Shp2, the DA/CS trapping mutant, and 

catalytically inactive Shp2 R465M were subcloned into the bacterial expression 

construct pGST3. C-terminally tagged POSH-biotin binding domain was 

constructed by subcloning full length POSH into pEBB-cTB [45] using BamHI and 

NotI restriction sites. 

 

3.5.3 Preparation of recombinant proteins 
 

GST-Shp2 PTP WT, GST-Shp2 PTP DA/CS, GST-Shp2 RM, and GST-

Shp2 DA/CS were produced in Escherichia coli using a pGST3 expression 

system. Briefly, E.coli cells were grown at 37°C until an OD600 of 0.8 was 

reached.  Cells were induced overnight at 4°C with 0.3mM IPTG and lysed by 

sonication in PBS+ (PBS, 100µM PMSF, 14µg/mL aprotinin, 0.1% β-

mercaptoethanol, 1µM leupeptin, 1µM pepstatin). Triton X-100 was added to the 

lysate at 1% of the final volume. Lysates were incubated with prewashed 

glutathione agarose (Pierce) for 1 hour at 4°C and washed three times in PBS+ 

with 300mM NaCl + 1% Triton X-100. The purified proteins, immobilized to the 

beads, were stored in PBS+ with 25% glycerol at -20°C.  Purification of His-

SUMO-conjugated Nogo66 (amino acids 1055-1079) was described previously 

[8].  
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3.5.4 Cerebellar granule neurons (CGNs) 
 

4-well glass chamber slides or 12-well plates were coated for 4 hours with 

10 µg/ml poly-L-lysine then overnight with 2µg/ml laminin (Invitrogen) or 

overnight at 4°C with laminin+control His-SUMO (2.5µg /cm2), laminin+His-

SUMO Nogo66 (2.5µg /cm2), or laminin+MAG-Fc (500ng/cm2).  After overnight 

incubation, unbound substrates were removed by rinsing with PBS. CGNs were 

isolated from the cerebellum of post-natal day (P) 8 mice as described [46]. 

CGNs were transfected using AAD-1001 Nucleofector (Amaxa Biosystems) set 

to program O-03. CGNs were nucleofected with a total of 6µg of DNA: 4.5µg of 

pUI4 vector and 1.5µg of empty vector or CS2+3xHA-Shp2 E76K, CS2+3xHA-

Shp2 E76K/RM, CS2+NFLAG-LZK, or CS2+NFLAG-DLK. CGNs isolated from 

wild-type and DLK hypomorph mice were plated with a final concentration of 

100,000 cells/cm2. Cells were fixed in 3.7% formaldehyde 24 hours post-

nucleofection. Cells were stained with an anti-GFP primary antibody (Invitrogen) 

and Alexa Fluor 488 goat anti-rabbit secondary antibody (Molecular Probes).  

 

3.5.5 Measurement of process length 
 

Process length was measured as described previously [8, 9]. Briefly, using 

the box function in the MicroSuite imaging software version 5.0 (Olympus, Tokyo, 

Japan), the longest process per cell for all the cells within the box was measured. 

Results are presented as average process length, determined from three 

independent nucleofections with an average of 120 neurons measured per 

experiment per condition. Statistical significance was assessed using the 

Students t-test. All measurements of GFP-positive neurons from three 

independent nucleofections were included in the t-test, except for Figure 3.8 

which was two independent nucleofections. 
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3.5.6 Shp2 trapping assays 
 

In Figure 3.2A, 24 hours prior to harvest 4-10cm dishes of 100,000 

CGNs/cm2 were treated with or without 100µM pervanadate and/or 2.5µg/cm2 

Nogo66. Cells were harvested in Triton IP buffer (10mM HEPES pH 7.4, 2mM 

EDTA, 50mM NaF, 1% Triton X-100, 1mM PMSF, 150mM NaCl, 0.01% 

Aprotinin, 1mM Na3VO4) and incubated with 20µg of GST-Shp2 PTP WT, GST-

Shp2 PTP DA/CS, GST-Shp2 RM, or GST-Shp2 DA/CS immobilized on 

glutathione agarose overnight at 4°C. Beads were washed 3 times with Triton IP 

buffer and resuspended in 40µL of 2x Sample Buffer. 10µL of sample were 

separated on a SDS-PAGE gel followed by western blot analysis for tyrosine 

phosphorylated proteins.  In Figure 3.2B, 7x106 CGNs were nucleofected with 

5µg of CS3+MT LZK and 1µg of CS2+eGFP. Each nucleofection was split onto 

2-60mm dishes coated with PLL or PLL+2.5µg/cm2 of Nogo66, for a total of 4 

nucleofections and 8-60mm dishes. Prior to harvest, CGNs were treated with or 

without 100µM pervanadate and harvested in Triton IP Buffer. Shp2 pull downs 

proceeded as described above. 

In HEK 293 cells, 32,000 cells/cm2 were transfected with 3ug of DNA of 

CS3+MT POSH, CS3+MT LZK, or CS3+MT DLK. 24 hours after transfection, 

cells were treated with or without 100µM pervanadate for 30 minutes, harvested 

in Triton IP Buffer, and incubated with 20µg of GST-empty, GST-Shp2 RM, or 

GST-Shp2 DA/CS immobilized on glutathione agarose for 1 hour at 4°C. Beads 

were washed 3 times with Triton IP buffer and resuspended in 40µL of 2x 

Sample Buffer. 10µL of sample were separated on a SDS-PAGE gel followed by 

western blot analysis for the myc-epitope tag. 

 

3.5.7 DLK mice/staining 
 

All procedures involving the use of mice were approved by the University of 

Michigan committee on the Use and Care of Animals (UCUCA). DLK hypomorph 

transgenic mice were obtained from Lawrence Holzman and maintained on a 

C57BL/6J background (unpublished data). The DLK transgene was detected 
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using forward primer 5‟-GGTGGTTGTTATCATAGTTCCATCATG-3‟ and reverse 

primer 5‟-GCTAGTCATGGAGTAGTAGG-3‟. Whole brains from P10 mice from 

wild-type and DLK hypomorph mice were harvested and fixed in 4% 

paraformaldehyde overnight at 4°C. Brains were embedded in Optimal Cutting 

Temperature embedding medium (Sakura Finetek, Torrance, CA), cryosectioned 

(15µm) and stored at -80°C. For Calbindin staining, slides were fixed in 4% 

paraformaldehyde, blocked for 2 hours in Tyramide signal amplification (TSA) kit 

block (Invitrogen), and stained overnight at 4°C with mouse anti-Calbindin 

(Swant) at 1:10,000. Slides were developed using DAB reagent (Sigma), 

followed by mounting with mounting media. Hematoxylin and eosin stain was 

performed as described previously [41]. 
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Chapter 4 

 

Identification of Chemical Inhibitors of the Shroom3-ROCKII interaction  
 

4.1 Introduction 
 

The adult mammalian central nervous system (CNS) is limited in its ability 

to regenerate or replace the axons of neurons lost in response to injury or 

disease. A crucial contributor to this lack of regeneration is myelin and its three 

associated proteins termed myelin associated inhibitors (MAIs): Myelin-

associated glycoprotein (MAG), NogoA, and Oligodendrocyte-myelin glycoprotein 

(OMgp) [1, 2]. Blocking the function of MAIs, with antibodies or receptor 

antagonists promotes axon growth and plasticity, and results in enhanced 

functional recovery after stroke or spinal cord injury in rodent models [3-10]. 

Thus, functional recovery after CNS injury is limited by MAIs, and small molecule 

compounds that can circumvent MAI inhibition are likely to enhance functional 

recovery after stroke or spinal cord injury. 

A complicating factor in developing small molecules for CNS regeneration 

is the complexity of signaling at the neuronal cell surface. There are multiple and 

overlapping receptors for MAIs, and targeting individual MAIs may not fully 

relieve growth inhibition [11-17]. A complementary and perhaps more efficacious 

strategy to enhance axon growth after injury might be to target MAI intracellular 

signaling pathways. We have previously shown that the POSH complex 

consisting of LZK and Shroom3 is downstream of NogoA and its receptor PirB 

[18]. Loss of function of POSH, or any one of the POSH associated proteins, 

leads to enhanced process growth and refraction to inhibition by NogoA. POSH 

is also downstream of MAG (Chapter 3, Figure 3.8) suggesting that the POSH 

complex is a convergence point for MAI signaling. Thus, we sought to identify 
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chemical inhibitors that target specific protein-protein interactions of the POSH 

complex, and we propose that these inhibitors will circumvent NogoA or MAG-

mediated growth inhibition. 

Correct formation of protein-protein interactions (PPIs) is required for 

nearly all cellular processes and a protein‟s function can directly rely on its 

interacting protein. Indeed, the role of a signaling protein in the CNS can be 

distinct from its role elsewhere in the body [19]. Targeting the enzymatic activity 

of a protein will affect all signaling pathways in which the protein is involved, 

potentially leading to severe side effects. On the other hand, inhibiting the ability 

of an enzyme to bind a specific substrate would allow the overall activity of the 

enzyme to persist, but limit the downstream effects. Furthermore, specifically 

disrupting the interaction of an enzyme with a substrate that only occurs in the 

CNS would be an even more efficacious drug development strategy.  Thus, there 

is much interest in targeting non-enzymatic, PPIs for therapeutic purposes as this 

strategy may limit off target side effects elsewhere in the body. 

Current strategies to inhibit PPIs involve the use of antibodies, dominant 

negative peptides, or antisense constructs. However, all of these strategies are 

expensive to manufacture, lack oral bioavailability, and in the case of antibodies, 

are not cell permeable [20]. Therefore, strategies for treating spinal cord or stroke 

injury have relied on implants, which secrete antibodies, or direct injection of 

therapeutics into the spinal cord tract. Thus, the use of small “drug-like” 

compounds to target intracellular PPIs has attracted the attention of scientists 

both in the pharmaceutical industry and academia as tools to develop more 

efficient and cost effective therapies.  

Development of chemical inhibitors of PPIs has proven more difficult than 

targeting the enzymatic activity of a protein. The major obstacle in targeting PPIs 

is the sheer size and geometry of the interaction interface. The contact surface 

involved in a PPI is typically large (~800-3,000 Å), while the contact surface of a 

protein-small molecule is small (~300-1000 Å) [21, 22]. Also, the interface of two 

interacting proteins may be flat compared to the grooves and pockets present at 

the active site of an enzyme or at the hydrophilic surface of a protein, thus not 
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providing a ideal surface for small molecule binding [21, 23, 24]. Additionally, 

unlike most enzymatic proteins and receptors, most PPIs do not have natural or 

known small molecule partners, and rational design of chemical inhibitors without 

structural knowledge of a PPI is difficult. Lastly, a surprisingly common inhibitory 

mechanism has been discovered in which small molecules inhibit the PPI without 

binding to the interaction site. Examples of these include: allosteric inhibitors, 

denaturants, or amphipathic small molecules that can form micelles around a 

protein, preventing the interaction from forming [25-28]. For example, DnaK is a 

molecular chaperone whose ATPase activity provides energy for bacterial 

chaperone machinery and complex formation of DnaK with DnaJ and GrpE are 

essential for the ATPase activity of DnaK [29, 30].  In a high-throughput screen 

for inhibitors of the DnaK-DnaJ interaction, myricetin was identified [31]. 

However, it was determined that myricetin bound to DnaK at a site 20-30Å away 

from the DnaJ binding region and structural studies support the hypothesis that 

myricetin binding may alter the confirmation of DnaK in a way that prevents DnaJ 

binding [31].  

A breakthrough in targeting PPIs occurred when alanine scanning 

mutations along the interaction site of PPIs led to the discovery of „hot spots‟ on 

protein interaction surfaces [32, 33]. Hot spots are small regions of the PPI that 

contribute a disproportionate amount to the binding energy of the PPI. For 

example, alanine scanning revealed that glutamate 62 and phenylalanine 42 on 

the cytokine IL-2 are critical residues for its association  with its receptor IL-2Rα 

[34]. Small molecules were discovered which bound within this region and 

tethering these molecules together provided a more potent inhibitor to disrupt the 

cytokine-receptor interaction [35]. Thus, identifying hot spots on a protein 

provides knowledge for rational design of chemicals to enhance the disruption of 

PPIs with small molecules.  

In the absence of „hot spot‟ information or structural knowledge of the PPI 

interface, high-throughput screening (HTS) is often performed to efficiently 

identify chemical inhibitors. There are many approaches to the discovery of small 

molecule inhibitors of PPIs that are amenable to HTS. The most direct and 



103 
 

common method is a competitive binding assay in which one or more of the 

proteins is labeled, such as enzyme linked immunosorbant assay (ELISA) or 

Forster resonance energy transfer (FRET). In the following studies, we describe 

the development of a modified ELISA platform for the identification of chemical 

inhibitors of the POSH complex, specifically the Shroom3-ROCK interaction. 

Using this platform, 20,000 small molecules were screened in the Center for 

Chemical Genomics (CCG) at the University of Michigan. Significantly, 36 

inhibitors of the Shroom3-ROCK interaction have been confirmed by dose 

response. Further validation and characterization of these compounds will 

provide valuable tools to examine the importance of PPIs in the POSH complex 

and their role in growth inhibition mediated by MAIs.  

 

4.2 Results 

4.2.1 The Shroom3-ROCK interaction is direct and biologically 
significant 

 

The aim of this study is to identify chemical inhibitors of the POSH 

complex that relieve axon growth inhibition on MAIs. Thus, the chosen protein-

protein interaction (PPI) must be both direct and biologically significant. The 

ASD2 domain of the POSH interacting protein Shroom3 is required for Shroom3 

to regulate process outgrowth inhibition [36]. ROCKI and II interact with the 

ASD2 domain of Shroom3 through regions denoted R1C1 and R2C1, 

respectively [37]. In epithelial cells, ectopic expression of R1C1 or R2C1 acts in a 

dominant negative manner to block apical constriction by interfering with the 

ability of endogenous ROCK to bind Shroom3 [37]. To determine whether ROCK 

functions with Shroom3 to inhibit axon outgrowth, P19s were transfected with 

R1C1 and its effects on process length were assessed. Process length is 

enhanced in R1C1 expressing neurons relative to control, suggesting that 

Shroom3 acts through ROCK to inhibit process outgrowth (Figure 4.1A). 

Additionally, inhibition of ROCK with the pharmacological inhibitor Y-27632 

enhances neuronal process outgrowth in control neurons, consistent with  
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previous studies that demonstrate a role for ROCK as an inhibitor of axon 

outgrowth and regeneration after injury [38-40]. This result also suggests that 

ROCK can mediate growth inhibition in both a Shroom3 dependent and 

independent mechanism. These results indicate process outgrowth inhibition is 

mediated, in part, through the Shroom3-ROCK interaction.  

In order for the Shroom3-ROCK interaction to be an ideal candidate for 

chemical inhibition, the interaction needs to be direct. Therefore, bacterial 

expression constructs for the individual domains ASD2, R1C1, and R2C1 were 

generated (Figure 4.1B). GST-ASD2 and HisSUMO-R1C1 were purified from 

Escherichia coli and pull-down analysis was performed. HisSUMO-R1C1 bound 

to GST-ASD2 and the interaction was direct and specific (Figure 4.1C). 

Subsequent experiments with R2C1 indicate that the ASD2-R2C1 interaction is 

also direct and specific (data not shown). These results indicated that the ASD2-

Rho kinase interaction is an attractive site for interference by a small molecule 

and, combined with the result that the Shroom3-ROCK interaction is biologically 

significant, highlights the PPI as a plausible target for chemical inhibition. 

 

4.2.2 Development of Fluorescence Quench Assay (FQA)  
 

To initiate a screen for potential inhibitors of the Shroom3-ROCK 

interaction, we investigated several high-throughput methodologies. Non-

fluorescent Forster resonance energy transfer (FRET) is a common methodology 

to study interactions between proteins. FRET is a non-radiative energy transfer 

that occurs when the emission spectrum of a donor overlaps with the absorption 

spectrum of an acceptor [41]. As the donor and acceptor are brought within a 

certain distance of one another (<10nm), the interaction is characterized by a 

reduction in donor fluorescence and an increase in acceptor fluorescence. 

However, FRET is not ideal when performing binding titrations due to an overlap 

of the acceptor and donor fluorescence spectra [42]. Therefore, non-fluorescent 

acceptors have been employed to remove the need for spectral isolation, 

improve the sensitivity of the assay, and simplify binding experiments [31, 42].  
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A Fluorescence Quench Assay (FQA) which employs these non-

fluorescent acceptors was initially chosen to examine the Shroom3-ROCK 

interaction [31, 42]. FQA was chosen based on the fact that it is highly amenable 

to HTS, as the assay only entails mixing of the two proteins with no wash steps 

or addition of detection reagents. FQA requires the labeling of one protein with a 

fluorescence molecule and the other with a quencher. An interaction is visualized 

by a quench in fluorescence. This is due to the fluorescent-tagged protein 

coming within distance of the protein tagged with the quencher. To develop the 

reagents necessary for this assay, GST-ASD2 was labeled with the fluorescent 

donor Alexa-488 (emission 525nm), subsequently referred to as Alexa-ASD2. 

Additionally, HisSUMO-R1C1 was labeled with Black Hole Quencher-10 (BHQ-

10), a FRET acceptor that absorbs strongly around 507nm, henceforth referred 

to as BHQ-R1C1. When Alexa-ASD2 comes into contact with BHQ-R1C1, the 

fluorescence emission from the Alexa label should be quenched (Figure 4.2A).  

Inhibition of this PPI by a chemical or with unlabeled R1C1 will result in a loss of 

quenching (Figure 4.2A).  

To characterize the Alexa-ASD2 and BHQ-R1C1 interaction, we first 

varied the time of incubation and monitored the percent quench in fluorescence. 

Using the FQA, the apparent Kd was calculated to be 1 ± 0.1µM (data not 

shown). However, the change in fluorescence was saturated almost immediately 

(less than five minutes) following the addition of the two proteins, and this signal 

did not change even up to two hours (Figure 4.2B). Thus, this rate of association 

may be too fast for identifying inhibitors effectively by HTS. Further, as there are 

no known chemical inhibitors of the Shroom3-ROCK interaction, unlabeled R1C1 

was used as a positive control for blocking the ASD2-R1C1 interaction. A 

competition experiment with increasing concentrations of unlabeled R1C1 was 

performed to determine whether the observed quenching was due to specific 

ASD2-R1C1 binding. Surprisingly, unlabeled R1C1 was unable to compete with 

BHQ-R1C1 for association with Alexa-ASD2 (Figure 4.2C). Additionally, 

switching the orientation of the labels, BHQ-ASD2 and Alexa-R1C1, did not allow 

for competition or affect the time to saturation (data not shown). Furthermore we  
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also observed quenching with labeled BHQ-GST epitope tag. BHQ-GST 

quenched Alexa-R1C1 fluorescence to nearly the same extent as BHQ-ASD2, 

suggesting that a non-specific interaction is responsible for quenching (Figure 

4.2D). These results clearly indicate that the observed quench is due to non-

specific association of GST, and not due to a specific ASD2-R1C1 interaction.  

Together with the lack of time dependent quenching, these data suggest that 

non-specific binding is affecting our assay. 

 To verify that the Alexa- or BHQ-tagged proteins were still capable of 

interacting, pull-down analysis was performed. Surprisingly, the proteins were no 

longer able to associate, suggesting that the Alexa and BHQ tags were 

interfering with the interaction (data not shown). Given this data, we further 

proposed that the addition of the tags may result in a conformational change or a 

decrease in solubility. To investigate this hypothesis, size exclusion 

chromatography was performed on BHQ-ASD2 and the fractionation pattern of 

protein was analyzed by SDS-PAGE. BHQ-ASD2 has an expected molecular 

weight of 73Kda and size exclusion chromatography showed that BHQ-ASD2 

eluted off the column in fractions 5-17, with the highest amount of protein in 

fraction 9-13. This is consistent with a molecular weight of 400-600kda (Figure 

4.2E). Similar data was seen for Alexa-R1C1, which has an expected molecular 

weight of 38kDa and eluted off the column in fractions 13-19, indicating a 

molecular weight of 150-400kDa (data not shown). These results indicate that 

application of the Alexa and BHQ tags to ASD2 or R1C1 results in protein 

aggregation. Collectively, these studies suggest that an HTS platform that 

requires labeling of R1C1 or ASD2 with a fluorescent tag may not be plausible for 

identifying chemical inhibitors of our PPI. Therefore, we next pursued an ELISA-

based assay in which both proteins could be detected without the addition of 

fluorescent labels. 

 

 

 

 



109 
 

4.2.3 Development and optimization of ELISA platform 

4.2.3.1 Selecting a detection method for ELISA assay 

Although initial studies were carried out with ROCKI, ROCKII is the 

prominent isoform in the brain and displays higher affinity to Shroom3; therefore 

all further studies were performed with R2C1, the Shroom3 binding region of 

ROCKII (Figure 4.1B) [37]. The ELISA platform requires that one protein be 

immobilized or captured on a microplate, followed by addition of the second, 

interacting protein. Toward this goal, we took advantage of a high-binding 

polystyrene surface on clear 96 or 384-well microplates, which allowed GST-

ASD2 to be directly immobilized on the surface. Briefly, our initial ELISA protocol 

(Figure 4.3A, left) began with immobilization of GST-ASD2 on the 96-well 

microplate surface, followed by addition of HisSUMO-R2C1. There are no known 

antibodies against ASD2 or R2C1, therefore to detect the proteins we used 

antibodies directed against the epitope tags. Thus, binding of HisSUMO-R2C1 

was detected using an anti-SUMO antibody, followed by application of an HRP-

conjugated secondary antibody. Detection of HRP was carried out using turnover 

of the HRP substrate tetramethylbenzidine (TMB, absorbance at 450 nm). 

HisSUMO-R2C1 bound to GST-ASD2 in a promising dose-dependent manner 

(Figure 4.3B). However, even at a 20:1 ratio of ASD2:R2C1, the maximum signal 

was < 1 absorbance units at 450nm, suggesting the need for a more sensitive 

detection system. 

In order to enhance efficiency and improve the signal-to-noise ratio of the 

ELISA, HisSUMO-R2C1 was biotinylated and detected with NeutrAvidin-HRP 

(Figure 4.3C). The advantage of this detection system is three-fold:  first,  the 

biotin label is smaller than the fluorescent labels (589 Da to 703-885 Da, 

respectively) and,  second, the polyethylene glycol (PEG) linker on the biotin 

label enhances solubility of the protein, preventing the aggregation that was seen 

when the proteins were labeled with the fluorescent tags.  Third, the high-affinity 

biotin-avidin interaction is extremely sensitive and efficient relative to the use of 

primary and secondary antibodies (Figure 4.3B). Further, this approach reduces  
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the number of steps necessary for detection, making the assay more amenable 

for HTS. As expected, detection using NeutrAvidin-HRP increased the 

absorbance signal over 3-fold, allowing for an enhanced signal-to-noise ratio of 

3.5:0.1 (Figure 4.3A, left). Therefore, all further optimization was performed with 

Biotin-HisSUMO-R2C1 (termed Biotin-R2C1) and was detected with NeutrAvidin-

HRP.  

4.2.3.2 Removal of GST epitope tag and affinity determination 

 

As previously observed in the FQA assay, non-specific binding between 

epitope tags was again observed, despite improvements in signal-to-noise. Using 

the ELISA platform, we determined the apparent Kd for GST-ASD2 and Biotin- 

R2C1 using 0.5µg immobilized GST-ASD2 and varying concentrations of Biotin-

R2C1. The apparent Kd was calculated to be 3.2 ± 0.2 nM (Figure 4.4A). 

However, interaction of Biotin-R2C1 with the same amount of isolated GST 

immobilized on the plate resulted in an apparent of Kd of 290 ± 19 nM (Figure 

4.5A). Additionally, untagged R2C1 was unable to compete with 100ng of Biotin-

R2C1 for binding 0.5µg GST-ASD2 (Figure 4.4B). Together, these data indicate 

that non-specific binding between GST and HisSUMO-R2C1 is contributing to the 

interaction. As a first attempt to remedy this, the concentrations of salt and 

detergent in the wash buffers were varied. We varied Tris, Phosphate, and 

HEPES buffers with amounts of salt, detergent, and carrier protein (data not 

shown). However, no significant reduction in non-specific binding was observed. 

The HTS screen could be run at protein concentrations just at the Kd of the 

specific ASD2-R2C1 interaction (3.2 nM). At this concentration, we do not 

observe non-specific binding of R2C1 to GST (Figure 4.4A). However, the fact 

that we are not able to compete with the ASD2-R2C1 interaction using unlabeled 

R2C1 is more problematic. Collectively, these results necessitate the removal of 

the GST tag altogether. 

Removal of the GST tag by TEV protease digestion did not significantly alter 

the apparent Kd of the ASD2 interaction with Biotin-R2C1 (7.9 ± 0.9 nM) (Figure 
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 4.4C). Importantly, removal of the GST tag allowed unlabeled R2C1 to compete 

with Biotin-R2C1 for association with ASD2 (Figure 4.4D). Significantly, this is the 

first interaction between ASD2 and R2C1 that could specifically be disrupted by 

titration of an unlabeled competitor. Thus, the ELISA platform using Biotin-R2C1 

and untagged ASD2 is appropriate for screening for chemical inhibitors. 

 

4.2.3.3 Optimization of ELISA platform for 384-well HTS 

 

Prior to optimization of assay conditions and HTS protocol, it is necessary to 

first transition a 96-well assay to a 384-well microplate format for efficient HTS. In 

order to achieve the highest signal-to-noise ratio, we varied concentrations of 

salt, detergent, and carrier proteins in the interaction and wash buffers (Figure 

 4.5A). It was determined that the signal resulting from the ASD2-R2C1 

interaction was highest when in Tris- buffered saline (TBS) supplemented with 

0.05% Triton X-100, 150mM KCl, and 0.5% BSA. The wash buffer that removed 

any remaining background binding was TBS with 300mM KCl and 0.5% Triton X-

100 (Figure 4.5A).  

The stability of a PPI in the presence of DMSO must also be known, as the 

diverse chemical libraries in the CCG are stored in DMSO. For our screen and 

subsequent dose response confirmation, the highest amount of compound that 

may be added to a sample is 2µL, which in our assay volume of 30µL is 6.7% 

DMSO. For the desired compound concentration of 10µM in the primary screen, 

200nL of compound will be added to each well, which is 0.7% DMSO. Therefore, 

the ASD2-R2C1 interaction was monitored in 0-10% DMSO. The ASD2-R2C1 

interaction is unaffected by the presence of DMSO up to a concentration of 10% 

of the final volume of the assay and this lies within the range of our assay (Figure 

4.5B).  

To finalize the screening protocol, the stability of ASD2 immobilized on the 

384-well microplate was determined, as the duration of the assay in screening 

centers such as the CCG is often driven by the rate of compound addition by 

robotics. Further, during compound addition and incubation, it is not feasible to  
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store plates at 4°C. Thus, the stability of immobilized ASD2 was determined at 

25°C from 0.5-6 hours. Immobilized ASD2 is stable at 25°C for up to 2 hours 

without significant loss of signal (Figure 4.5C). After 2 hours, the signal is nearly 

halved, indicating that compound addition followed by R2C1 addition must occur 

within 2 hours. The ASD2-R2C1 interaction is stable up to 8 hours (data not 

shown). Fully optimized conditions and protein concentrations based on these 

collective data are described in detail in the Materials and Methods. 

 

4.2.4 Primary Screen for inhibitors of Shroom3-ROCKII interaction 
 

 The Chem Div 20,000 compound collection from the CCG at the 

University of Michigan was used as the source of the small molecules for the 

primary screen. The collection was chosen based on the availability of 

compounds for potential follow-up and the structural diversity of the compounds. 

Since our target is a protein-protein interaction with no known inhibitors to use as 

reference, it was especially important to screen a library that sampled a large 

amount of chemical space to increase the probability of hits. 

Briefly, 150ng of ASD2 was immobilized on 384-well high-binding plates 

for 16 hours at 4°C prior to the screen. Plates were washed, blocked, and then 

200 nL of chemical compound was added to columns 3-22 for a final 

concentration of 10µM. One compound is added per well with no replicates for 

the primary screen. The concentration of Biotin-R2C1 used in the screen was 

chosen to be 7nM (10ng) which is at the apparent Kd of 7.9 nM. This 

concentration of Biotin-R2C1 was chosen as it yielded an adequate signal for 

detection (~ 1-1.5 absorbance units at 450nm). Also, it is important to screen at 

concentrations at or below the Kd, as an excess of ASD2 or R2C1 in the assay 

could raise the IC50 values of the chemicals above the threshold used to identify 

active compounds, therefore preventing them from being identified as hits [43]. 

Biotin-R2C1 was added to all columns (1-24). The negative control for inhibition 

by a compound, located in columns 1 and 2, was defined as the absorbance 

signal from ASD2 with 10ng Biotin-R2C1 in 0.67% DMSO. As a positive control 
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for inhibition we used unlabeled HisSUMO-R2C1. Thus, in columns 23 and 24, 

the positive control was defined as the absorbance signal with 5µM HisSUMO-

R2C1 and 10ng Biotin-R2C1 (Figure 4.6A-B).  

As an official gauge of signal-to-noise in HTS, a Z-factor (Z‟) is calculated 

using both the positive and negative control terms and the error associated with  

these terms. A Z‟ value between 0.5-1 is considered an excellent assay [44]. In 

our primary screen, the negative and positive controls displayed average signals 

of 1.25 and 0.14 respectively, resulting in an overall average Z-factor of 

approximately 0.74. Data is fit at percentage change in signal relative to the 

negative control (Figure 4.6C). Hits were defined as showing a signal that is 

greater than or equal to 3 standard deviations (3SD) away from the mean 

negative control per individual plate, roughly greater than 20- 30% inhibition (red 

line in Figure 4.6C). In Figure 4.6D, a sample plate is shown as a „heat map,‟ 

where the negative controls (columns 1-2) show no signal (0% inhibition, blue) 

and the positive controls (columns 23-24) represent 100% inhibition (red). A 

representative hit is observed in well A11, yielding inhibition of 53.3% (yellow 

square). Of the 20,000 compounds tested, 180 compounds were identified as 

hits using the 3SD cutoff (hit rate = 0.9%) (Figure 4.6E). The ELISA assay was 

developed to be highly stringent, and non-enzymatic protein-protein interactions 

have proven difficult to inhibit, therefore the low hit-rate was not unexpected.  

4.2.5 Confirmation by dose response 
 

To analyze and further rank initial hits, a primary screen is often followed by 

dose-response characterization. Thus, our 180 compounds proceeded to a round 

of confirmation by dose-response. Briefly, compounds were titrated from stock 

plates of 5mM to concentrations of 3-100µM using the Mosquito X1 in the CCG. 

For the dose-response round of HTS, we used more stringent criteria to define 

compounds as active. Two requirements were used: (1) compounds with 

inhibition greater than 30% compared to the negative control and (2) pAC50 of 

greater than 3.5 (IC50 < 300 µM) (Figure 4.7A). The CCG uses pAC50 values as  
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an estimate of the IC50 value (pAC50 = -log (IC50)). From the 180 compounds, 74 

chemicals were identified as active using these dual criteria (Figure 4.7A).  

Additional selection criteria were applied to prioritize the pool of hits. Small 

molecules that yielded less than 60% maximum efficacy (defined as inhibition at 

the highest concentration screened, 100 M) were eliminated, reducing positive 

hits to a collection of 52 compounds. Next, we used additional data available in 

the CCG to eliminate potentially promiscuous compounds. Briefly, we defined the 

number of other protein targets that a compound has hit from previous screens 

as the promiscuity index. Thus, compounds that were identified as hits in greater 

than 22% of screens performed at the CCG were eliminated as promiscuous 

inhibitors of PPIs. Promiscuous molecules may be general inhibitors of PPIs such 

as denaturants or hydrophobic molecules, which form micelles to inhibit PPIs. 

Application of these criteria resulted in 36 chemical inhibitors of the ASD2-R2C1 

interaction (Figure 4.7A). The highest rated compound by our criteria, termed 

Compound A, displayed an IC50 value of 7.3 ± 1.1 µM with a maximum efficacy of 

100% at 35.9 µM (Figure 4.7B). Further, compound A hit only 3.2% of other 

targets screened in the CCG. 

Finally, DataMiner software using Tripos algorithm OptiSim software was 

used to structurally classify and cluster the remaining 36 hits. Interestingly, 

clustering of compounds with 65% structural similarity in scaffold structure 

yielded: 2 clusters of 5, 1 cluster of 4, 1 cluster of 3, 3 clusters of 2, and 13 

unique compounds (Figure 4.7A). Significantly, if a scaffold is found multiple 

times within a screen, it strongly indicates a real disruption to the PPI, rather than 

an artifact. Further, it offers initial data for structure-activity analysis, the next step 

in analyzing a class of small molecule inhibitors. However, a cluster is not 

indicative of equivalent efficacy or potency, as one of these clusters of 5 

compounds yields a range of IC50 values from 11-60 µM (Figure 4.7C). 

Additionally, we only screened 20,000 compounds which is a small collection of 

chemicals and the collection is structurally diverse to begin with; therefore, the 

fact that 13 of the hits did not cluster does not imply that they are less ideal 

inhibitors than those which cluster. 
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4.3 Discussion 
 

In summary, these studies describe a modified ELISA platform that is 

amenable for screening chemical libraries to identify small molecule inhibitors of 

the Shroom3-ROCK interaction. Screening of the 20,000 ChemDiv library in the 

Center for Chemical Genomics (CCG) at the University of Michigan yielded 180 

active compounds of which 74 titrated in dose response. A total of 36 inhibitors of 

the Shroom3-ROCK interaction were selected to proceed to the next stages of 

development through the application of the following criteria: greater than 60% 

efficacy and less than 22% promiscuity (Figure 4.7A). The next step is to 

establish confidence in the structural identity, purity, and activity of our confirmed 

active compounds by repeating the dose-response using fresh powder samples 

with a larger titration, as not all compounds reached maximum/minimum 

inhibition. Compounds that are re-confirmed in dose-response with fresh sample 

will proceed to secondary assay confirmation to ensure that inhibition was not 

due to general interference in the ELISA assay rather than inhibiting the ASD2-

R2C1 interaction. Lastly, active compounds will then proceed to functional 

assays in primary neuronal cells. 

The modified ELISA assay yields an average Z-factor of 0.74. The Z-factor 

is a measure of statistical effect size and is used in high-throughput screening to 

judge whether the response in an assay is large enough to proceed, and also to 

assess the quality of an assay. The Z-factor is determined from the means and 

standard deviations of both the positive and negative controls. An ideal Z-factor 

is 1, 1-0.5 is defined as an excellent assay, 0.5-0 a marginal assay, and anything 

less than 0 suggests there is too much overlap between the positive and 

negative controls to be useful. A Z-factor of 0.74 indicates that our ELISA 

platform is statistically an ideal assay. 

However, relative to more current methods, an ELISA is not an ideal 

platform for high-throughput screening. The ELISA is highly labor intensive with 

multiple additions, incubations, and wash steps. The protocol limits the amount of 

compounds that can be tested per day to 5,000. NIH defines a high-throughput 
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screening platform as one that is capable of 10,000 compounds per day and 

recent advances in technology have allowed for 100,000 compounds per day 

[45]. Therefore, our assay is not considered high-throughput by industry 

standards. Finally, one of our proteins is immobilized on polystyrene. This could 

influence the conformation of the protein and the interaction site. Indeed, there is 

precedent for a difference in affinity between two proteins, depending upon 

whether the interaction is measured on solid-phase or in solution [46]. Therefore, 

inhibitors identified in this platform may not necessarily translate in solution. A 

secondary confirmation assay in solution is discussed below.      

Despite these disadvantages, there exist several benefits of performing an 

ELISA for HTS. The requirement for multiple wash steps removes chemicals with 

low affinity or non-specific binding, creating a highly stringent assay. The wash 

steps also allow for the removal of compound prior to TMB addition, preventing 

potential oxidation by the compound, and as a result, removing potential false-

positive hits. Removal of the compound prior to detection further reduces the 

possibility of false-positive hits because the compound is absent when 

absorbance is read. Thus, any compounds that absorb light at 450 nm will not 

interfere with detection, unlike an assay without wash steps, which would require 

an additional round of hit confirmation to screen for false-positives. In our assay, 

the only potential false-positive hit could occur from a chemical that inhibits the 

biotin-avidin interaction.  

The apparent Kd for the ASD2-R2C1 interaction using the ELISA platform 

was determined to be 7.9 ± 0.9 nM. This is the first time the binding affinity for 

the ASD2-R2C1 interaction has been defined and, surprisingly, this is a high 

affinity interaction. However, several interactions between signaling proteins 

have been calculated in the nanomolar range. For example, the Kd for the Ras-

Raf interaction is 50nM [47]. The Kd for Shroom3-ROCK was determined using 

the isolated interacting domains and it will be necessary to determine the affinity 

of the full length proteins. Additionally, as mentioned, the apparent Kd could also 

be affected by immobilization of ASD2 on the plate and could be different in 

solution.  
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The ELISA platform was developed after attempts at labeling ASD2 and 

R1C1/R2C1 resulted in changes in protein solubility and conformation. Labeling 

R2C1 with biotin did not affect solubility, which is likely due to the presence of a 

polyethylene glycol (PEG) linker on the biotin molecule, which can facilitate 

solubility. Current applications for non-enzymatic high-throughput screening 

require either that one protein be labeled with a tag, or that primary antibodies 

are available for at least one of the proteins of interest. Our results with epitope-

tagged ASD2 and R1C1/R2C1, coupled with the lack of primary antibodies to the 

individual protein domains, significantly limit techniques we can employ to further 

examine the Shroom3-ROCK interaction in an efficient way. In addition, there are 

an additional 130,000 purified compounds and 25,000 natural product extracts 

available in the CCG for screening. Therefore, we are currently developing an 

AlphaLISA platform (Perkin Elmer) as a secondary assay for use in confirmation 

of our hits from the primary screen and for further primary screening of these 

additional libraries.  

AlphaLISA is a bead-based technology that uses luminescent oxygen-

channeling chemistry [48]. Donor and acceptor beads with various epitope tags 

are used and the formation of the PPI brings the beads into proximity. Laser 

irradiation of the donor beads generates a flow of singlet oxygen which results in 

chemical events in the nearby acceptor beads resulting in a chemiluminescent 

emission [49]. The AlphaLISA assay provides an assay that is more amenable 

for high-throughput screening, will allow for secondary confirmation of our current 

hits, and additional screening of chemical libraries [50].  

The aim of HTS-assay development was to identify chemical inhibitors of 

the Shroom3-ROCK interaction that will be used as probes to examine PPIs in 

the POSH complex regulating axon outgrowth. Following confirmation in the 

AlphaLISA, primary neuronal cells will be treated with the validated hits and 

changes in axon outgrowth will be examined. An inhibitor of the Shroom3-ROCK 

interaction should yield neurons with enhanced axon length, similar to results 

seen with ectopic expression of the isolated R1C1 domain (Figure 4.1A). The 

Shroom3-ROCK interaction is crucial for growth inhibition mediated by myelin 
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associated inhibitors (MAIs); therefore a validated chemical inhibitor should also 

relieve growth inhibition on MAIs. Following confirmation in the functional axon 

length assays, identified compounds could be translated for use in stroke models 

to determine whether inhibition of the Shroom3-ROCK interaction is sufficient to 

support functional recovery after stroke. 
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4.5 Materials and Methods 

4.5.1 Antibodies and reagents 

Primary antibodies used were neuronal β-III-tubulin (Covance Research 

Products), green fluorescent protein (GFP) (Invitrogen), and SUMO from yeast 

(Rockland). Secondary antibodies included Alexa 488 and 594-conjugated 

antibodies (Invitrogen) and Goat anti-rabbit IgG Horseradish peroxidase 

conjugate (BioRad). For the ELISA assays, High Sensitivity NeutrAvidin-HRP 

(Pierce) was used. The ROCK1/2 inhibitor, Y-27632, was purchased from 

Calbiochem. For the FQA assays, proteins were labeled with BHQ-10 carboxylic 

acid, succinimidyl ester (BHQ-10S) (Biosearch Technologies) and Alexa Fluor 

488 Carboxylic Acid, 2,3,5,6 Tetrafluorophenyl ester (Invitrogen). For biotin 

labeling, Pierce EZ-Link NHS-PEO4-Biotinylation Kit (#21455) was used. 
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4.5.2 Expression Constructs 

pUI4-SIBR-GFP luciferase (a functional control RNAi) sequence is 

described previously [36]. pUS2-R2C1 expressing the Shroom3 binding domain 

of human Rock1 (amino acids 726-926) was cloned from human ROCKI. pGST1-

ASD2 (1563-1986aa) was cloned from human Shroom3. ppSUMO-R1C1 was 

subcloned from pUS2-R1C1 using BamHI and NotI as cloning sites. ppSUMO-

R2C1 (698-957aa) was cloned by RT-PCR with RNA isolated from mouse brain.  

4.5.3 Axon outgrowth experiments 

P19 cells, grown in minimal essential medium-α supplemented with 7.5% 

calf serum, 2.5% fetal bovine serum, and penicillin-streptomycin were plated the 

day before transfection to a density of 9 X 103 cells/well of a 12-well dish and 

transfected the next day with 2µg of total DNA (0.75µg of Ngn2, 1.25µg of 

pUI4/UI5 RNAi expression vector). pUS2-R1C1 was transfected at 850ng/12-

well. 4-6 hours after transfection, cells were resplit 1:5 or 1:6 on laminin-coated 

dishes. 18-20 hours later, the cells were transferred into Opti-mem supplemented 

with 1% FBS and penicillin-streptomycin. 72 hours after transfection, cells were 

fixed in 3.7% formaldehyde in PBS and stained for GFP or neuronal markers of 

differentiation.  

4.5.4 Measurement of Process Length 

To measure process length, photographs of fixed, stained neurons were 

captured with a digital camera, and the length of the longest process per cell was 

measured using the polyline function in MicroSuite Special Edition imaging 

software version 5.0. Processes 50µm or greater were measured: 50µm is ~3 

times the length of the cell body. Process length is determined in two or more 

independent experiments for a total of 224-315 neurons measured per condition. 

Similar results for process length measurements are obtained if neurons are 

fixed and stained for GFP or for neuronal markers of differentiation (β-III-tubulin). 
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4.5.5 Preparation of recombinant proteins 
 

GST-ASD2, HisSUMO-R1C1, and HisSUMO-R2C1 were produced in 

Escherichia coli. Briefly, E.coli were lysed by sonication in PBS+ buffer (GST 

purification: PBS with 0.1mM phenylmethylsulfonyl fluoride, 14µg/mL aprotinin, 

0.1% β-mercaptoethanol, 1µM leupeptin, 1µM pepstatin) (His purification: PBS 

with 0.1mM phenylmethylsulfonyl fluoride, 14µg/mL aprotinin, 0.1% β-

mercaptoethanol, 1µM leupeptin, 1µM pepstatin, 25mM Imidazole). Triton X-100 

was added to the lysate at 1% of the final volume. Lysates were incubated with 

prewashed glutathione agarose or HisPur Ni-NTA resin (Thermo Scientific) for 1 

hour at 25°C. Purified protein was eluted 3 times with 1mL of GST elution buffer 

(50mM Tris buffer with 100mM reduced glutathione, pH 8) or His elution buffer 

(PBS+ with 250mM Imidazole). HisSUMO-R1C1 and R2C1 were dialyzed 

overnight at 4°C in PBS and stored in 25% glycerol at -20°C. GST-ASD2 was 

dialyzed for 3 hours at 4°C in PBS with 3 buffer changes. The GST epitope tag 

was removed using His-TeV (S219V)-Arg Protease overnight at a concentration 

of 1µg TeV per 100µg of GST-ASD2. TeV and free GST was removed from 

purified ASD2 by incubation overnight at 4°C with prewashed glutathione 

agarose and HisPur Ni-NTA resin. ASD2 was stored at -20°C in 25% glycerol.  

 

4.5.6 Labeling with AlexaFluor 488 5-TFP and BHQ-10 carboxylic acid 
 

Labeling of GST-ASD2 or HisSUMO-R1C1 with BHQ-10 carboxylic acid 

(Biosearch Technologies) or AlexaFluor 488 5-TFP (Invitrogen) was performed 

as per manufacturer‟s instructions. Briefly, labeling reactions were carried out at 

a 10:1 molar ratio of dye to protein in bicarbonate buffer (100mM NaHCO3, 5mM 

MgCl2, 10mM KCl, pH 9.5). Proteins were labeled for 1 hour at 25°C under a 

constant low vortex. After the incubation, the unreacted dye was removed and 

the buffer was exchanged to PBS (pH 7.4) using ZebaTM Desalt Spin Columns 

(2mL, MWCO= 7000Da) (Pierce). The average extent of labeling for GST-ASD2 

and HisSUMO-R1C1 was determined to be approximately 6.5 fluorophore/dye 
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per protein, respectively, using the ε495= 71,000 M-1cm-1 (Alexa Fluor 488) and 

ε507= 30,000 M-1cm-1 (BHQ-10). Labeled proteins were stored at -80°C. 

 

4.5.7 Biotinylation of HisSUMO-R2C1 
 

HisSUMO-R2C1 was biotinylated as described with the NHS-PEO4-

Biotinylation Kit (Pierce). Briefly, biotinylation reactions were carried out at a 20:1 

molar ratio of NHS-PEO4-biotin to HisSUMO-R2C1 in PBS (pH 7.4). HisSUMO-

R2C1 was labeled for 2 hours at 4°C. After the incubation, the unreacted NHS-

PEO4-biotin was removed with buffer exchange in PBS (pH 7.4) using ZebaTM 

Desalt Spin Columns (2mL, MWCO= 7000Da) (Pierce). The average extent of 

labeling for HisSUMO-R2C1 was estimated to be 4 biotin molecules per 1 mole 

of protein using the HABA assay, a measurement of the extent of biotinylation, as 

per the manufacturer‟s protocol. Biotin-R2C1 was stored at -20°C in 25% 

glycerol. 

 

4.5.8 Pull down assay 
 

5µg of GST or GST-ASD2 and 5µg of HisSUMO or HisSUMO-R1C1 were 

incubated for 1 hour in 10µL prewashed glutathione agarose. Pull-downs were 

washed 2 times in PBS+0.1% Triton X-100 and 1 time with PBS. Proteins were 

eluted from beads with 20µL of sample buffer and 15µL of samples were 

analyzed by SDS-PAGE followed by staining with GelCode Blue (Pierce).  

 

4.5.9 Fluorescence Quench Assay (FQA) 
 

To determine the Kd (Figure 4.2B and C), 250nM of Alexa-ASD2, diluted in 

PBS (pH 7.4), was added to 384-well, black round bottom plates (Corning). BHQ-

R1C1 (20nM-60µM) was added in triplicate to appropriate wells and the samples 

were incubated for 30 minutes, 1 hour, or 2 hours. After incubation, the 

fluorescence at 525nm (excite 480nm, cut-off 515nm) was measured using a 

SpectraMax M5 microplate reader. The results were analyzed by GraphPad 
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Prism 4.0 using a hyperbolic fit with a non-zero intercept 

(∆F=∆Fmax*[R1C1]/(Kapp+[R1C1])+b). ∆F= fluorescence change; ∆Fmax= 

maximum fluorescence change; Kapp= apparent Kd; [R1C1] = R1C1 

concentration. For competition assays, 100nM of BHQ-R1C1 and varying 

concentrations of unlabeled HisSUMO-R1C1 were added to 250nM Alexa-ASD2. 

Samples were incubated for 1 hour and then read at 525nm (Figure 4.2D). To 

determine if non-specific quenching was being observed, 250nm of BHQ-GST or 

BHQ-ASD2 was incubated for an hour with varying concentrations of Alexa 488-

HisSUMO or Alexa-R1C1 (Figure 4.3A and B). 

 

4.5.10 Size exclusion chromatography 
 

BHQ-ASD2 and Alexa 488-R1C1 were fractionated by size exclusion 

chromatography over a Superose 6 HR10/30 column (GE Healthcare) 

equilibrated and run in PBS with 300mM NaCl. Eluted fractions containing the 

protein peak were subjected to SDS-PAGE followed by detection using GelCode 

Blue (Pierce).  

 

4.5.11 ELISA assay, detection methods, and affinity determination  
 

For the anti-SUMO detection system (Figure 4.3B), 1µg of GST or GST-

ASD2 diluted in 75µL PBS was immobilized for 16 hours at 4°C on 96-well 

Immulon 2B high binding plates (Thermo Scientific). Plates were blocked for 1 

hour at 25°C in 200µL SuperBlock T20 (TBS) Blocking buffer (Thermo Scientific). 

0.1µg, 1µg, and 10µg HisSUMO-R2C1 was added to wells in 40µL TBS-1 (20mM 

Tris HCl, 150mM KCl, 0.5% Triton X-100, pH 7.9) with 0.5% Bovine Serum 

Albumin (BSA) for 1 hour at 25°C. Unbound protein was removed with 4 washes 

in TBS-2 (20mM Tris HCl, 300mM KCl, 0.5% Triton X-100, pH 7.9). Anti-SUMO 

antibody was added at a dilution of 1:1000 in 40µL TBS-3 (25mM Tris HCl, 

8.25mM Tris Base, 154mM NaCl, 2% BSA, 0.05% Tween-20) for 1 hour at 25°C. 

Excess SUMO antibody was removed with 2 washes in TBS-T (25mM Tris HCl, 

137mM NaCl, 2.7mM KCl, 0.1% Tween-20). Goat anti-rabbit IgG HRP (BioRad) 
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was added at a dilution of 1:1000 in 40µL TBS-3 for 1 hour at 25°C. Following 2 

washes in TBST, 40µL TMB substrate (Pierce) was added for 15 minutes and 

quenched with 40µL 0.18 M H2SO4. Absorbance was measured at 450 nm using 

a SpectraMax M5 microplate reader. 

For the biotin-avidin detection system (Figure 4.3C), the ELISA assay was 

performed as just described except that Biotin-R2C1 was used in place of 

HisSUMO-R2C1 and High Sensitive NeutrAvidin-HRP was added at a dilution of 

1:40,000 for 1 hour in TBS-3, followed by detection using TMB substrate. 

Apparent binding affinity (Kd) was determined by immobilizing 0.5 µg of 

GST-ASD2 or ASD2 on 96-well plates. Concentrations of Biotin-R2C1 were 

added from 0-1778 nM for a total of 11 concentration points. ELISA was 

performed as described for the biotin-avidin detection system. The Kd was 

calculated using GraphPad Prism 4.0 using a hyperbolic fit with a non-zero 

intercept (∆A=∆Amax*[R2C1]/(Kd+[R2C1]). ∆A= absorbance change; ∆Amax= 

maximum absorbance change; [R2C1]= R2C1 concentration. Competition 

ELISAs were performed as described above with 100 ng of Biotin-R2C1 being 

combined with varying concentrations of unlabeled R2C1 (0-10µg) followed by 

incubation on plates for 1 hour at 25°C. 

 

4.5.12 High-throughput primary screen and dose-response in the CCG 
 

The 20,000 Chemical Diversity Library (ChemDiv) was screened in the 

Center for Chemical Genomics at the University of Michigan. All reagent 

additions were performed using Thermo Labsystems Multidrop and plate washes 

were performed using Bio Tek EL406 washer/aspirator. 150 ng of ASD2 diluted 

in 20 µL PBS (pH, 7.4) was immobilized for 16 hours at 4°C on 384-well high-

binding plates (Perkin Elmer). Unbound protein was removed with 2-80µL 

washes of PBS (pH, 7.4). Plates were blocked for 1 hour at 25°C in 80µL 

SuperBlock T20 (TBS) Blocking buffer (Thermo Scientific), followed by 2-80µL 

washes of PBS (pH, 7.4).  20 µL of Buffer A (20mM Tris HCl, 150mM KCl, 0.05% 

Triton X-100, 0.5% BSA, pH 7.9) was added to all wells. 200 nL of compounds 
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were pin-tooled (one per well) into columns 3-22 resulting in a final concentration 

of 10 µM using the Biomex FX (Beckman). 200nL of DMSO was added to control 

columns 1-2 (negative control) and 23-24 (positive control). 5 µg of unlabeled 

R2C1 in 20µL of Buffer A was added to columns 23-24 as a positive control for 

inhibition. After 30 minutes at 25°C, 10 ng of Biotin-R2C1 in 10µL of Buffer A was 

added to all wells and incubated for 1 hour at 25°C. Unbound protein was 

removed with 3 washes in 80µL wash buffer (Buffer A supplemented with 300mM 

KCl and 0.5% Triton X-100).  40µL of 1:40,000 NeutrAvidin-HRP diluted in TBS-3 

was added to all wells and incubated for 45 minutes at 25°C. Plates were 

washed 3 times in 80µL TBS-T, followed by the addition of 20 µL of TMB 

substrate for 5 minutes. The TMB reaction was quenched with 20 µL 0.18 M 

H2SO4. Absorbance was measured at 450 nm using an automated PHERAstar 

plate reader (BMG Labs). Positive hits were defined as having a percent 

inhibition greater than 3 standard deviations (3SD) away from the mean of the 

negative control for inhibition. 

 

4.5.13 Dose response and hit selection criteria 
 

Dose-response confirmation (180 compounds) was performed following the 

ELISA screening platform. Compound dilutions of 100µM, 59.8µM, 35.9µM, 

21.5µM, 12.9µM, 7.69µM, 4.61µM, and 2.70µM were delivered using the 

Mosquito X1 (TTP Labtech) in duplicate. Compounds with at least 30% inhibition 

and a pAC50 of 3.5 were considered active (74 compounds). Compounds with 

greater than 22% promiscuity and less than 60% efficacy were removed. The 

application of these selection criteria resulted in 36 compounds. The IC50 values 

for Compounds A-F were calculated using GraphPad Prism 4.0 using nonlinear 

regression and the log (inhibitor) vs. response, variable slope equation. 

Clustering was performed using DataMiner by the Tripos algorithm OptiSim 

under the criteria of 65% or greater similarity. 
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Chapter 5 

 
Conclusion 

 

5.1 Background and Significance 
 

The regenerative capacity in the injured adult mammalian CNS is limited, in 

part, by an inhibitory extracellular environment in which myelin associated 

inhibitors (MAIs) contribute. The primary focus of this body of work has been the 

identification of a signaling pathway downstream of MAIs organized by the 

scaffold protein POSH. Further, high-throughput screening was performed to 

identify chemicals with the potential to inhibit POSH complex function to promote 

axonal growth in the presence of MAIs.  

In this dissertation, we have defined a signaling pathway downstream of the 

PirB receptor upon activation by the MAIs, Nogo66 and MAG. The activity of the 

PirB associated phosphatase Shp2 is required to inhibit axon length and LZK 

was identified as a potential Shp2 substrate. LZK co-associates with POSH and, 

together with Shroom3 and ROCK, relays MAI-mediated growth inhibition. The 

identification of the POSH complex as a signaling component of MAI pathways 

has provided insight into MAI intracellular signaling mechanisms.  The POSH 

complex provides novel targets for therapeutics to enhance regeneration after 

injury or disease in the CNS. Additionally, by selectively inhibiting the function of 

the POSH complex, axon growth in the CNS may be promoted without disrupting 

other inhibitory signaling pathways, allowing for regeneration and maintenance of 

intact neuronal connections. 
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5.2 The POSH complex mediates MAI growth inhibition 
 

Our studies define a central role for the POSH complex in relaying process 

growth inhibition downstream of MAG and NogoA and their receptor PirB 

(Chapter 3, Figure 3.8). MAG and NogoA, along with OMgp have been termed 

prototypic myelin inhibitors as they are highly expressed and have been well 

characterized as inhibitory proteins within myelin [1]. All three MAIs associate 

with the receptor PirB and the POSH complex relays NogoA signaling through 

PirB (Chapter 2 and [2]. We demonstrated that POSH is downstream of MAG 

and NogoA, thus we predict OMgp is also signaling through the POSH complex. 

There are additional receptors for MAIs including NgR1 and NgR2, as well as the 

integrin receptors [3-5]. NgR1 is a high affinity receptor for all three MAIs, while 

NgR2 has only been shown to bind MAG [3, 5, 6]. The question can then be 

raised: Is the POSH complex only a scaffold for MAI signaling through the 

receptor PirB or is POSH a convergence point for all MAI receptors?  

NgR1 does not contain an intracellular domain and must associate with a 

co-receptor to mediate intracellular signaling (p75, LINGO1, or Taj/TROY) [7-9]. 

PirB has been shown to complex with p75 upon MAG stimulation to promote 

activation of Shp2 function [10]. As we have linked Shp2 to the POSH complex, it 

is possible that POSH may be also be downstream of p75 signaling and thus 

POSH could also mediate signals emanating from NgR1 when it is coupled to 

p75. Interestingly, studies in NgR1 null mice have shown that a combinatorial 

approach of removing NgR1and PirB facilitates more robust axon extension in 

the presence of crude myelin in cell culture [2]. Therefore, if POSH is indeed a 

convergence point for MAIs, blocking POSH function may be more productive 

than targeting multiple MAI receptors for enhancement of axon outgrowth after 

injury. 

In addition to the prototypical MAIs, there are other classes of growth 

inhibitory proteins present in the CNS: canonical axon guidance molecules (ex. 

semaphorins, ephrins, netrins) and chondroitin sulfate proteoglycans (CSPGs) 

[11]. Our laboratory has previously determined that reduction of Robo1 and 
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EphrinB2 function in P19 neurons results in enhanced axon length indicative of 

their function as negative regulators of axon length and our data suggests that 

they do not signal through the POSH complex [12]. Given these results, it is 

unlikely that POSH is functioning in all pathways. Rather, we propose that POSH 

is a convergence point for MAIs.  

 

5.3 The role of POSH as a scaffold protein 
 

POSH is a multi-domain scaffold protein [13]. As a scaffold POSH regulates 

many diverse biological functions from apoptosis, to membrane trafficking, and 

our studies define a role for POSH as a negative regulator of axon outgrowth [12, 

14-20]. Complex formation by scaffold proteins can regulate selectivity in 

pathways, shape signaling outputs, and achieve new functions for preexisting 

signaling proteins [21]. Thus, examining the role of POSH as a scaffold protein 

may provide additional insight into MAI signaling and regulation. 

One function of a scaffold protein is to promote spatial organization of a 

signaling complex to the desired location in the cell [21]. For example, in 

differentiated PC12 cells, POSH exhibits a widespread punctate pattern in 

neurites and the cell body [22]. Upon growth factor deprivation or camptothecin 

treatment to induce apoptosis, POSH localizes to the perinuclear region of the 

neuron to promote JNK followed by cJun activation [22]. The change in 

localization of POSH to the perinuclear region is hypothesized to facilitate the 

translocation of JNK into the nucleus to activate cJun.  The same rationale can 

be applied to the role of POSH as a mediator of growth inhibition. In the axon of 

neurons, the growth cone responds to extracellular cues and relays these signals 

to cytoskeletal components to promote or inhibit growth [23]. Thus, a model could 

be proposed where upon stimulation by a MAI, the POSH complex becomes 

localized at the growth cone and promotes cytoskeletal rearrangements leading 

to inhibition of growth. Furthermore, the POSH-associated protein Shroom3 

associates with actin, and promotes the localization of ROCK to sites of apical 

constriction in epithelial cells [24]. Therefore, it is possible that MAI stimulus 
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leads to Shroom3 promoting localization of POSH at the growth cone through 

Shroom’s association with the actin-myosin cytoskeleton. This dissertation did 

not address spatial organization of the POSH complex, and it will be of interest to 

determine if MAI signaling promotes changes in sub-cellular location of POSH 

and/or its associated proteins to facilitate its role as a negative regulator of axon 

length. Another hypothesis that was not addressed is whether MAIs induce 

changes in expression of POSH complex proteins, and this could be examined 

by looking at changes in mRNA or protein expression over time in the presence 

of MAIs. 

The formation of distinct protein complexes by POSH also suggests that 

regulation of POSH function via post-translational modifications may promote or 

inhibit complex formation, and subsequent biological pathways. For example, Akt 

regulates POSH’s apoptotic function. Akt2 associates with POSH through its third 

SH3 domain and disassembles the complex through phosphorylation of MLK3 

[25]. Additionally, Akt1 and Akt2 have been shown to promote phosphorylation of 

POSH in the Rac-binding domain preventing Rac association and subsequent 

activation of JNK [26]. Inactivation of PTEN and, subsequent activation of PI3K 

and Akt, promotes axon growth and facilitates regeneration after injury in retinal 

ganglion cells [27, 28]. Collectively, these studies raise the hypothesis that Akt 

may regulate the POSH complex by promoting disassembly. Therefore, the 

stimulation of Akt activity may promote axon regeneration on multiple levels: (1) 

directly regulating the POSH complex and (2) through its role in other growth-

promoting pathways.  

 

5.4 The role of POSH as an E3 ubiquitin ligase 
 

POSH contains six domains promoting protein-protein interaction: a RING 

domain, 4-SH3 domains, and an activated Rac binding domain.  Truncation 

mutations in POSH removing the RING domain and the 3rd and 4th SH3 domain 

reveal that these domains are crucial for mediating axon length regulation [12].  

Consistent with this, Shroom3 associates with POSH through the 3rd SH3. The 
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necessity of the RING domain is interesting. The RING domain gives POSH a 

function as an E3 ligase. E3 ligases promote ubiquitination by bringing E2 

ubiquitin conjugating enzymes in contact with substrates [29]. Ubiquitination 

results in the formation of an isopeptide bond between ubiquitin’s C-terminal 

glycine residue (G76) with a lysine residue on the target protein [30]. Ubiquitin 

can form poly-ubiquitin chains with diverse structures through G76-K linkages 

with one of seven lysine residues present in ubiquitin. K48 linkages have been 

typically associated with targeting substrates for degradation by the proteasome, 

while K63 linkages regulate protein-protein interactions, kinase activation, and 

protein trafficking[31].  In other biological systems, there is evidence that POSH 

is able to mediate ubiquitination of substrates, using both K48 and K63 linked 

ubiquitination [14, 17, 19, 20]. K63 ubiquitination of the protein Herp causes a 

change in localization from the trans Golgi network to the endoplasmic 

reticulum[20].  Collectively, these studies, together with our finding that the RING 

domain of POSH is required for regulating axon outgrowth, support the 

hypothesis that ubiquitination events are playing a role in MAI growth inhibition.   

There is no precedent in the literature for ubiquitination events regulating 

the current known POSH complex members supporting axon outgrowth 

inhibition, Shroom3, ROCK, or LZK. Performing in vitro ubiquitination 

experiments in the presence of POSH would address their potential for 

ubiquitination. However, a more biologically relevant question is whether MAI 

stimulation promotes K63 or K48 ubiquitination on POSH complex members. 

POSH-mediated ubiquitination may facilitate protein-protein interactions or target 

a substrate for proteosomal degradation to inhibit axon length.  

Recently, it has been shown that upon MAG stimulation, PirB and Shp2 

along with p75 bind to the tropomyosin receptor kinase B (TrkB) receptor and 

promote the dephosphorylation of TrkB after activation by BDNF stimulation. This 

study proposes a model where growth inhibition by MAG is due, in part, to the 

inactivation of growth-promoting pathways. It is unknown whether Nogo66 also 

induces association with and dephosphorylation of TrkB. However, TrkB 

receptors have been shown to be regulated by ubiquitination and the E3 ligase 
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responsible for TrkB ubiquitination has yet to be identified. The E3 ligase activity 

of POSH is required for the negative regulation of axon outgrowth, and therefore 

it raises the hypothesis that POSH could be facilitating ubiquitination of TrkB 

following activation by NogoA-PirB [12]. It would be interesting if inhibitory cues 

were regulating TrkB on multiple levels, dephosphorylation and ubiquitination, 

and further studies will need to be performed to investigate this hypothesis. 

 

5.5 Shp2 and ROCK function downstream of MAIs 
 

Our results suggest that Nogo66 activation of CGNs results in an 

enhanced Shp2 trapping of multiple tyrosine phosphorylated proteins (Chapter 3, 

Figure 3.2). The identity of these proteins has yet to be determined, although as 

stated above Shp2 is linked to TrkB regulation, therefore TrkB is likely to be 

trapped by Shp2 in response to MAIs. Additionally, Shp2 also dephosphorylates 

ROCK, providing another link from Shp2 to the POSH complex. In a myeloid 

leukemia cell line, ROCKII is negatively regulated by tyrosine phosphorylation to 

promote cell adhesion. Shp2 dephosphorylates ROCKII, promoting its activation, 

and the deadhesion of cells [32]. Further, ROCK has previously been linked to 

MAI signaling as the ROCK antagonist, Y-27632, can promote neurite growth on 

MAI substrates in vitro and enhanced regeneration in rats subjected to 

corticospinal tract transection [33-35]. Additionally, our studies show that the 

association of ROCK and Shroom3 is crucial for axon length regulation. 

Collectively, these studies raise the hypothesis that Shp2 dephosphorylation of 

ROCK may be regulating its activity or association into the POSH-Shroom3 

complex downstream of MAI activation. 

Investigation into the molecular mechanism of ROCK signaling 

downstream of MAIs revealed that upon NogoA stimulation ROCK translocates 

to the cellular membrane and phosphorylation of myosin light chain is enhanced 

[36].  As stated previously, phosphorylation of MLC regulates myosin II function 

by promoting its interaction with actin, thereby activating myosin ATPase and 

enhancing cell contractility [37-39]. Additionally, ROCK can regulate actin 
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dynamics and microtubule stability through activation of LIM kinases and 

collapsing response mediator protein-2 (CRMP2), a neuronal protein that is 

involved in growth cone collapse [40, 41]. Therefore, it will be interesting to 

determine if association with POSH and Shroom3 promote ROCK’s activity on 

these substrates. Shroom3 associates with F-actin through its ASD1 domain and 

regulates myosin II function through its ASD2 domain [24, 42]. Thus, it is possible 

that Shroom3 may act as a scaffold protein tethering together the actin-myosin 

cytoskeleton with ROCK to promote efficient MAI signaling.  

Lastly, ROCK and RhoA, the upstream activator of ROCK, have been 

implicated in multiple inhibitory pathways such as chondroitin sulfate 

proteoglycans, semaphorin, ephrin, and repulsive guidance molecule (RGMa) 

[33, 34, 36, 43-45]. These findings highlight the complexity and redundancy of 

signaling molecules downstream of inhibitory cues. Thus, regulation or blocking 

unique protein-protein interactions, distinct for each signaling pathway, such as 

scaffold proteins, may provide more selective regeneration in the CNS. 

 

5.6 The role of Shp2 in POSH dependent MAI-mediated growth inhibition 
 

In these studies, we show that the phosphatase activity of Shp2 is required 

to regulate axonal outgrowth and mediate inhibitory signals from Nogo66 

downstream of the receptor PirB (Chapter 3, Figure 3.1). Ectopic expression of 

Shp2 is not able to suppress the POSH and LZK RNAi phenotype, suggesting 

that Shp2 is upstream of the POSH complex or it is regulating a protein at the 

same level as the complex (Figure 3.1). Collectively, these results indicated that 

Shp2 may be dephosphorylating a member of the POSH complex to inhibit axon 

outgrowth. Consistent with this hypothesis, we found that LZK is trapped by Shp2 

and Nogo66 stimulation promotes this association (Chapter 3, Figure 3.2).  

LZK is a member of the mixed-lineage kinase family whose activity is 

facilitated by dimerization and association with POSH. To our knowledge, 

regulation of LZK activity by phosphorylation has not been shown and these 

results raised several hypotheses as to the effect of phosphorylation events on 
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LZK in axon outgrowth regulation. Phosphorylation of LZK may be preventing 

dimer formation and thereby impeding its activation. Additionally, phosphorylation 

may prevent LZK association with POSH, preventing an active POSH signaling 

module. Therefore, our proposed model is that NogoA activation of the receptor 

PirB facilitates Shp2 phosphatase activity on LZK allowing correct formation of 

the POSH complex and/or promotes LZK kinase activity to mediate axon growth 

inhibition. This hypothesis also supports a secondary theory that growth-

promoting pathways induce phosphorylation of LZK, thereby negatively 

regulating the function of LZK as an inhibitor of axon length. 

 

5.7 The DLK conundrum 
 

Our studies suggest a role for DLK as a negative regulator of axon length 

and a mediator of NogoA growth inhibition (Chapter 3, Figure 3.4B). However, 

only LZK is trapped by Shp2 and signals downstream from PirB (Chapter 3, 

Figure 7). One hypothesis for this distinction between the kinases is that Shp2 

regulation is promoting the selection of LZK rather than DLK to relay Nogo66 

signaling through PirB. Elucidation of the mechanisms promoting phosphorylation 

events of LZK may provide insight into the differences between the kinases. 

Another possibility is that DLK is relaying MAI signaling through another receptor, 

such as NgR1.  

 

5.8 Promoting regeneration through POSH complex inhibition 
 

In these studies, we have shown that the POSH complex is downstream of 

NogoA, MAG, and PirB-mediated growth inhibition (Chapter 3, Figure 3.8). Thus, 

we hypothesized that small molecule inhibitors of the POSH complex formation 

would circumvent NogoA or MAG-mediated growth inhibition to promote 

regeneration of the injured CNS. To begin to address this hypothesis we 

performed a high-throughput screen to identify chemical inhibitors of the 

Shroom3-ROCK interaction. We have identified 36 potentially active molecules 
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and will test these molecules in primary neuronal cells for their ability to promote 

growth over NogoA or MAG (Chapter 4, Figure 4.7A). Due to POSH promoting 

the formation of a multi-protein complex, there are additional protein-protein 

interactions that could be tested. Inhibiting the direct association of Shroom3 and 

POSH was decided against due to the binding occurring through an SH3 domain, 

which may be of low affinity and contain a large, flat binding surface which may 

be difficult to inhibit with small molecules. However, blocking LZK function may 

be an ideal target for inhibition. Our laboratory has shown its kinase activity and 

association with POSH is required for process length and MAI growth inhibition 

(Chapter 2, Figures 2.1 and 2.7 and [15]). Thus, chemical inhibitors which block 

the ability of LZK to dimerize and subsequently activate or associate with POSH 

could be valuable tools to investigate growth inhibition mediated by the POSH 

complex. 

Extrinsic inhibitory proteins are only one factor limiting regeneration of the 

CNS, as a lack of intrinsic growth-promoting factors and a robust immunological 

response after injury also impedes CNS recovery [11, 46, 47]. Chondroitin sulfate 

proteoglycans (CSPGs) are basally present and upregulated by astrocytes after 

CNS damage and are both membrane bound and secreted into the extracellular 

space [48-50]. CSPGs can be cleaved with the bacterial enzyme Chondroitinase 

ABC and administering this enzyme promotes growth in the presence of CSPGs 

in cell culture and enhances functional recovery after spinal cord injury [51, 52]. 

Therefore, using a combination of chemical inhibitors which target MAI signaling 

and block CSPG function may be more efficacious. Additionally, chemicals that 

promote intrinsic growth, such as inhibitors of PTEN to promote mTOR 

activation, might also be beneficial in combination with MAIs [27, 53, 54].  As we 

continue to characterize the adult mammalian CNS, new and enhanced 

strategies for treatment after injury or disease can be developed and tested. 
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5.9 Concluding remarks 
 

In the past thirty years, there has been an explosion in our understanding of 

brain plasticity. The canonical model of the CNS as a stable and static structure 

has been modified to one that is more dynamic, but yet more controlled when 

compared directly to the developing CNS.  It is now acknowledged that to 

robustly regenerate the injured CNS a combinatorial strategy will need to be 

employed to target extrinsic inhibitory molecules and enhance intrinsic growth 

properties of neurons. Additionally, a goal of therapeutics for CNS injury is to 

promote the correct amount of regeneration without disrupting the connectivity of 

uninjured brain regions.  Towards this aim, this dissertation has identified the 

POSH complex as a novel target for therapeutics downstream of MAIs. By 

selectively inhibiting the POSH complex, axon outgrowth in the CNS may be 

promoted without disrupting other inhibitory signaling pathways, such as those 

required for maintaining uninjured neuronal connections, suggesting that fully 

characterizing inhibitory signaling pathways in the intact CNS is important for 

effective drug and therapeutic design. 
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