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CHAPTER 1 

Introduction 

With the first chapter of this dissertation, I would like to introduce to the reader relevant 

concepts and share my appreciation for the complex intra-cellular transport process. An 

ensuing discussion of the current literature will lead us to open questions in the field, 

some of which are addressed in this thesis. Questions I hope to answer in this section are: 

What is intra-cellular transport and why is it important? 

What do we know about cargo-carrying motor proteins? 

What do we know about microtubules, the cytoskeletal highways? 

What do we know about post-translational modifications (PTMs) of microtubules

What is Intra-Cellular Transport and Why is it Important? 

Every cell requires a targeted transport system in order to efficiently transport proteins, 

vesicles and organelles to specific locations through its dense and crowded cytoplasm. 

This targeted transport is achieved by the synchronized orchestration of cytoskeletal 

filaments and transport machinery (1-3). Cytoskeletal filaments in the cell serve as tracks 

to which different motor proteins performing specific functions are recruited. Some 

motor proteins function as freight carriers while others are engaged in maintenance of the 

tracks (4). It has been previously shown in vivo that cells are able to preferentially 

localize cargo specifically to certain regions but not others (5-9). From this point of view, 

polarized cells such as neurons or epithelial cells make ideal model systems for the study 

of targeted transport because their functionality and survival depends on the ability to 

localize proteins, a process that generates the desired polarity (10-11). For example, in 

neurons, pre-synaptic vesicles carrying specific neurotransmitters to be released at the 

synapse, must make their way specifically down the axon but not the dendrites. Mis-

localization of these vesicles is hypothesized to be an underlying cause of several 

neurodegenerative disorders (12-17). From a mechanistic standpoint, cargo mis-
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localization could occur from a deficit in any of the following major factors: the motor 

protein, the cytoskeletal filament, linkages between motor proteins or the interaction 

between motor proteins and cytoskeletal filaments. I am particularly interested in how the 

interaction between motor proteins and cytoskeletal filament is regulated to allow for 

targeted transport. Once we establish a framework for the intra-cellular transport system 

by identifying known key elements of the transport machinery, we will be directed 

towards the most likely mechanisms by which targeted transport in cells can be achieved. 

 

Figure1: Cartoon of a cell. The figure shows the nucleus in the center, membrane-bound 

vesicles, centrioles, mitochondria, actin filaments and microtubules 

There are three types of cytoskeletal filaments that form the structural framework of a 

cell - actin filaments, microtubules and intermediate filaments. Actin filaments play an 

important role in cellular processes such as muscle contraction, cell division, cell 

motility, vesicle and organelle movement, cell signaling, etc. (18). Microtubules are 

integral to cell division, maintaining cell structure and in the long-range intracellular 

transport of cargo (2, 19-20). Intermediate filaments are a broad class of fibrous proteins 

that play a key role in the functional organization of structural elements and are believed 

to be a mechanical stress absorber (21-22). 

Different families of cytoskeletal motor proteins that utilize actin filaments or 

microtubules as their tracks for cargo transport have been identified (see Figure 2). The 
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myosin family of motors has been shown to traverse actin filaments while kinesin and 

dynein families utilize microtubules. Some transport events have been clearly associated 

with specific filament-motor systems, for example, long-distance transport of 

mitochondria requires microtubules with the activity of kinesin-1 and dynein motor 

proteins while short-range transport occurs along actin filaments using myosin as the 

motor (23-24). While we do not have the complete picture on transport-related activities, 

research has unraveled the workings of many a motor protein and provided much insight 

into the mechanics of how these fascinating molecules function (25). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Transport machinery. a. Image of a membranous vesicle attached to a 

microtubule by a kinesin (indicated by arrow) from a quick frozen, deep-etched axon 

(26). b. Cartoon of a membrane-bound vesicle on a motor moving along a microtubule. 

What Do We Know About Cargo-Carrying Motor Proteins? 

Motor proteins are force-generating nucleotide-dependent proteins that can operate on 

either actin filaments or microtubules in the cell to enable active cargo-transport (27). 

Myosins are actin-based motors involved in short-range transport whereas certain dyneins 

and kinesins are the major types of motor proteins responsible for long-range minus-end 

and plus-end directed cargo transport along microtubules, respectively (see Figure 3). 

Because I am particularly interested in targeted transport which is likely to be determined 

by the choice of the long-range carrier, I will hereon focus my discussion on kinesin 

motors. Kinesin was first identified kinesin in 1985 based on its motility in cytoplasm 

extruded from squid giant axon and then further characterized upon purification from 

a. b. 
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bovine brain (28-29). Based on consensus monophyletic groups conserved among past 

phylogenetic analyses, kinesin have been divided into 14 families as described in 

Lawrence et al. (30). They play important roles in both cargo-transport and microtubule 

dynamics by acting as either transporters or microtubule depolymerizing (and possibly 

polymerizing) agents. Of these, kinesin-1, kinesin-2 and kinesin-3 are the most widely 

studied kinesins (see Table 1); they are all responsible for cargo transport. Although there 

are some hints on how kinesin can be regulated in vivo, it is not clear how different 

cargos are linked to the same motors to ensure that they are transported to the correct 

destinations (31). In considering how kinesin may take biochemical cues from its 

microtubule tracks in order to correctly select its path, it seems ideal to begin the 

investigation with the most widely studied kinesin motor, kinesin-1. 
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Figure3: Cartoon for kinesin, dynein and myosin (32) 

 

Table1: Kinesin super-families. 

Three of the fourteen kinesin super-families (adapted from Lawrence et al. (30)) 

Standardized 
Name 

Example 
sequences Other names for this group of sequences 

Kinesin-1 KHC (J05258) KHC, N-I, Kinesin-I, conventional 

  
KIF5A 
(AF067179)   

  KHC (L47106)   

  K7 (U41289)   

Kinesin-2 KRP85 (L16993) 
KRP85/95, N-IV, Kinesin-II, Hetero-
trimeric 

  KRP95 (U00996)   

  KIF3A (D12645)   

  KIF3B (D26077)   

  FLA10 (L33697)   

Kinesin-3 KIF1A (D29951) Unc-104/Kif1, N-III, monomeric 

  
UNC104 
(M58582)   

  KIN (L07879)   

  
Unc104 
(AF245277)   

 

Kinesin-1 

Kinesin-1 is a hetero-tetramer composed of two identical heavy chains and two identical 

light chains. The heavy chains together form a homo-dimer, each consisting of a motor 

domain, neck-linker, neck, coiled-coil stalk and tail domain (33-34). In the past 20 years, 

much progress has been made in demystifying the binding, stepping and regulatory 
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mechanisms for this particular member of the kinesin super-family. The two motor 

domains sequentially undergo conformational changes to alternate their steps along the 

microtubule with a corresponding alternating hydrolysis of ATP to release energy (35). 

ATP hydrolysis is 100-fold enhanced in the presence of tubulin or microtubules (36). 

Because the chemo-mechanical cycle of kinesin-1 has been studied in much detail, we 

know that as part of its stepping mechanism, every 8 nm step that kinesin-1 takes is 

coupled with the hydrolysis of a single ATP (adenosine triphosphate) (37). Kinesin-1 

moves processively, which means that it takes several consecutive steps along a 

microtubule before detaching (38). There is evidence for a front-head gating mechanism 

to explain the tight chemo-mechanical coordination between the two motor domains but 

the model is still under debate (39-40). As regards the structure-function relationship, the 

ATP-binding and microtubule-binding regions of the motor domain have been previously 

identified (41-42). For cargo-binding, it is believed that the light chains are instrumental 

in connecting the motor to its cargo and they have been shown to associate with 

scaffolding proteins to do so (43).. Structural studies documenting the binding of kinesin-

1 to microtubules are in support of the generally proposed walking mechanism (42, 44-

46). Broadly accepted motility characteristics measured in vitro for mammalian kinesin-1 

on bovine brain microtubules are a velocity of 0.6 μm/s, processive run length of 1 μm 

and maximum stall force of 5 pN (47). Binding of kinesin-1 to microtubules is believed 

to cause a conformational change in tubulin (48) and hence it is plausible to hypothesize 

that a regulation of this conformational change might regulate motor binding and/or 

motility. The binding event between kinesin-1 and the microtubule is based on an 

electrostatic interaction as has been demonstrated by adding positive charges to the neck 

coiled-coil region and modulating the ionic strength (49). Following this, the processivity 

of kinesin-1 was shown to change with removal of tubulin C-terminal tails (CTTs) (50). 

From these observations, it is clear that the motor-microtubule binding interaction can be 

regulated to affect motor motility. Specific regions of the kinesin-1 motor domain are 

responsible for ATP-binding and hydrolysis, self-inhibition or microtubule binding (51). 

While mechanistic details of the kinesin-microtubule interaction have been elucidated, it 

is still unclear how targeted transport can be achieved. To answer this question, we must 
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consider the possibility of how kinesin is able to specifically identify one microtubule 

from others and thus select the correct path for cargo-transport.  

 

 

 

 

 

 

 

Figure 4. Kinesin and its crystal structure. a. Schematic representations for kinesin-1, 2 

and 3 structure highlighting the highly conserved region of kinesin (up to the first hinge) 

including the motor domain and in contrast, the variation in structure between different 

super-families upon moving further towards the C-terminal (4).  b. Crystal structure for 

truncated kinesin (42) 

What Do We Know About Microtubules, the Cytoskeletal Highways? 

Microtubules are 25nm-diameter, long hollow tubular assemblies of protofilaments 

composed of alpha and beta tubulin heterodimers that self-assemble in the presence of 

GTP (guanosine tri-phosphate) (52-53). Tubulin assembly is dynamic and microtubules 

 

a. 

b. 
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have been shown to undergo continuous cycles of growth and shrinkage which is 

achieved by an ongoing polymerization and depolymerization of the constituent dimers 

(54). The tubulin heterodimers are assembled such that the microtubule is polarized, with 

the plus end being the one that has a higher turnover than the minus-end. This polarity is 

useful in establishing the directionality of motor-based transport. Microtubular motors 

move either to the plus end or the minus end of a microtubule. Microtubule polarity has 

also been shown to enable the dynamic accumulation of plus-end-tracking proteins 

selectively at the plus ends of microtubules (9). In combination with the dynamics, it 

plays a vital role in kinetochore assembly and activity during cell division. Microtubule 

dynamics can be arrested by the addition of anti-mitotic drugs such as paclitaxel and this 

makes them an ideal target for chemotherapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. b. 
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Figure 5. Microtubules and the crystal structure of tubulin. a. Cartoon of a 

depolymerizing microtubule. b. Tubulin dimer structure from electron microscopy 

(55) 

 

We know from crystal structure studies that tubulin monomers share 40% amino acid 

sequence identity with each α and β-tubulin having a GTP-binding site (see Figure 5). 

While the intra-dimer interface was shown to contain a non-exchangeable GTP, the inter-

dimer interface was shown to contain GDP at the E-site (55). Polarity determined by 

fitting the atomic structure into a 3-D reconstruction also obtained from cryo-EM on 

intact microtubules, showed that the nucleotide in β is on the surface of the plus end of a 

microtubule, accounting for the exchangeability of the nucleotide at the microtubule plus 

end (56). The nucleotide-binding state of tubulin was shown to contribute to the curvature 

of intra-dimer and inter-dimer contacts in microtubules (57). Thus, a growing 

microtubule is believed to have a GTP-cap which keeps the tubulin in a conformation 

stable for incorporation into the microtubule. Once the GTP-cap is lost, the microtubule 

tip starts to depolymerize through an event known as ‘catastrophe’. If a GTP-cap is once 

again generated at the tip, the microtubule starts to grow again and this event is called 

‘rescue’ (54). In vivo, there are several microtubule-associated proteins (MAPs) that 

serve in stabilizing microtubules and regulating their interactions with other proteins (58-

59). One such example is the MAP tau, which has been shown to stabilize microtubules 

in a sub-stoichiometric manner, bundle them and even regulate their interactions with 

motor proteins (60-62). There are although, conflicting studies that indicate tau does not 

directly affect microtubule-based vesicle motility (63). Thus, it seems that there is much 

complexity in the many proteins that bind to and interact with microtubules.  

Motor proteins bind microtubules and use them as tracks along which cargo is 

transported but it is unclear what mechanisms the motor uses to select the right track. It 

has been shown through negative-EM studies that tubulin in microtubules undergoes a 

conformational change upon the binding of motors (48) and so this is a promising mode 

of communication between motors or MAPs and microtubules. Moreover, as we shall see 

in the following text, tubulin heterogeneity is not limited by the number of genes 

encoding it because tubulin in cells is found to be post-translationally modified, often 
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after incorporation into microtubules. This process allows for the dynamic and reversible 

modification of microtubules by one or many enzymes present in the cytosol.  

What Do We Know About Post-Translational Modifications (PTMs) of Tubulin? 

In most organisms, multiple genes encode for α- and β-tubulins, resulting in a variety of 

isotypes that are highly conserved (64). For example, in humans, eight genes encode for 

α-tubulin and seven genes for β-tubulin; the resulting tubulin isotypes are differentially 

distributed in tissues (65-67). On the other hand, in Tetrahymena thermophila, there is 

only a single gene for α-tubulin (68-69) and two genes encode identical β-tubulins (70). 

Yet, there are at least 17 different microtubule systems in Tetrahymena (71), suggesting 

that many of these are the result of PTMs. Thus, the small number of genetic tubulin 

isoforms in Tetrahymena presents a clear opportunity for the role of PTMs in microtubule 

function. Tubulin PTMs have been implicated in the regulation of various cellular 

functions of microtubules (reviewed by (72-74)). Most PTMs are found on the CTTs of 

tubulins (75), except for a frequently acetylated lysine residue (K40) that is located close 

to the amino-terminus of α-tubulin in the lumen of the microtubule (76). Interestingly, 

both the CTTs and the loops in the microtubule lumen, show the greatest divergence 

among tubulin isotypes. The most widely-studied PTMs are acetylation, detyrosination, 

polyglutamylation and polglycylation. The locations of these modifications on the tubulin 

subunits are shown in Figure 6 and their proposed cellular functions are described in 

Table 2. 
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Figure 6: PTM locations on α- and β- tubulin. Adapted from (77). Residues of the C-

terminal tails (as translated) are shown in gray while residues added or removed through 

PTMs are shown in color. 

 

Acetylation 

Acetylation of Lysine-40 on α-tubulin is a unique modification in terms of its location 

being near the N-terminal region of tubulin. The lysine is on a loop between H1 and S2 in 

the α-tubulin structure that extends into the lumen of the microtubule, presumably 

inaccessible by proteins that bind to the surface of the microtubule (78). While this 

residue and those immediately surrounding it are highly conserved (79) in α-tubulin, 

other residues in the region show large differences in variability between α and β-tubulins 

(80). Proposed roles for K-40 acetylation on α-tubulin include microtubule stability, 

regulation of cargo transport, control of MAP-binding to microtubules and involvement 

in the process of cell-division. 

It was shown in 1985 that the 40
th
 residue on α-tubulin, a lysine, is acetylated on its γ-

carbon molecule when the tubulin has already been incorporated into microtubules (76, 

81). The acetyl group can be removed from the tubulin once it is depolymerized and 

present in its soluble form in the cytoplasm. The enzyme responsible for acetylation, 

MEC17, was recently identified by Akella et al. and Shida et al. (82-83). The 
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deacetylases HDAC6 and SIRT2 from the enzyme family of histone deacetylases 

(HDACs) were both shown to deacetylate α-tubulin and other cytoplasmic substrates (84-

86). Purified as recombinant proteins, both the acetyl transferase and deacetylase can 

catalyze their respective reactions on K-40 on α-tubulin in microtubules in vitro. 

Recently, a novel acetylation site on β–tubulin at lysine 252 was reported (87). There are 

no corresponding cell biological observations yet. 

Detyrosination 

Detyrosination involves the removal of a tyrosine exposing an underlying glutamate 

residue at the α-tubulin CTTs. It is believed that in vivo, tyrosinated tubulin is the nascent 

form of tubulin. Tubulin is detyrosinated while in the polymerized form and then re-

tyrosinated once it is in its soluble form in the cytosol. The enzyme for tyrosination was 

identified as the tubulin tyrosine ligase (TTL) and was first purified from porcine brain 

(88-90). The ligase adds a tyrosine residue to the CTT of a detyrosinated α-tubulin. Szyk 

et al. recently showed through small angle x-ray scattering studies that TTL binds α-

tubulin on the surface that would form an interface with beta tubulin when incorporated 

into a microtubule (91). Following this, they showed that TTL inhibits tubulin 

polymerization in vivo and in vitro. The enzyme for removal of the tyrosine residue is an 

unknown carboxypeptidase remaining to be identified. 

Polyglutamylation and Polyglycylation 

Polyglutamylation and polyglycylation are both poly-modifications that occur on α and β- 

tubulin CTTs, giving rise to a more variable form of modifications unlike the binary 

acetylation and detyrosination. Polyglutamylation refers to the addition of more than one 

glutamate residue on to the γ-carboxyl group of one of the several Glu residues on the 

tubulin CTTs (92-94). Polyglycylation involves the addition of one or more glycine 

residues on similar CTT sites (95-96). There is even some evidence that this modification 

may compete with polyglutamylation for modification sites on the tubulin CTTs (97). 

While polyglutamylation is observed on microtubules from different cell types, 

polyglycylation is primarily found on flagellar and ciliary tubulin, thus mostly confining 

it to cells that contain cilia and flagella (95). 
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In cells, polyglutamylation and polyglycylation are both catalyzed by the family of 

enzymes known as the tubulin tyrosine ligase like (TTLL) family. Regnard et al. were the 

first to show the existence of different types of polyglutamylases followed by the 

identification of TTLL1 by Janke et al. (98-100). Since then, different TTLLs have been 

identified to show varying substrate specificity for α or β-tubulin and in the length of the 

side chains they can generate. Six autonomously active polyglutamylases were identified 

that all share the extended TTLL domain with TTLL1 (101). Less was known about the 

deglutamylases for a long time but recently, cytosolic carboxypeptidases CCP6 and 

CCP1 have been identified as deglutamylating enzymes (102-103). It is not yet 

understood how the activity of these different enzymes is coordinated in the cell so as to 

generate and maintain specific patterns and levels of polyglutamylation. Rogowksi et al. 

identified TTLL3 and TTLL8 proteins as initiating glycylases in Drosophila, with 

different substrate preferences whereas TTLL10 was identified as an elongating 

polyglycylase responsible for subsequent glycine additions leading to the poly-

modification (104). Wloga et al. independently identified TTLL3 as a tubulin 

polyglycylase in Tetrahymena (105). Both poly-modifications are believed to cycle 

between their modified and de-modified states through the continuous intra-cellular 

activity of modification and de-modification enzymes (96, 101). 

The broad effects of PTMs on cellular functions have been outlined nicely in previous 

review papers (74-75, 106-108). A figure from one of these papers showing the sub-

cellular distribution of modifications in cells is shown in Figure 7. In the next section, I 

will focus on discussing relevant experiments from literature that have enabled a better 

understanding of the role of PTMs in intra-cellular targeted transport.  



14 
 

 

Figure 7: PTM distribution in cells. Adapted from (77). The dynamic nature of PTMs 

allows cells to tailor their PTM distributions as per requirement enabling the spatial and 

temporal distribution of microtubule PTMs in cells. Differentiation also leads to cells 

adopting specific PTM patterns 

Do Microtubule PTMs Affect Kinesin-Based Transport? 

The functional diversity of microtubules in a cell is not accounted for by the limited 

number of genetic isotypes of tubulin available to the cell. Yet, motors and MAPs must 

recognize specific microtubules to interact with them and thus enable a multitude of well-

regulated cellular processes. In vivo single molecule experiments performed by Cai et al. 
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showed that a 560 amino-acid heavy chain truncation of kinesin-1 is sufficient for the 

motor to selectively translocate along a subset of microtubules in a COS cell (109). This 

observation raises the fundamental question of how microtubule identity can be 

selectively recognized by the kinesin-1 heavy chain. Maximum heterogeneity in tubulin 

is seen either on the CTTs or on the loops in the lumen of the microtubule (56). These 

also happen to be sites for tubulin PTMs, the modulation of which could provide a 

powerful and dynamic means for designating microtubule identity. Interestingly, while 

motor and MAP binding sites are on the external surface of the microtubule, sites for 

paclitaxel and colchicine binding are on the inside (56). In addition, conformational 

changes in tubulin upon kinesin binding, observed through negative stain electron 

microscopy using tubulin sheets, were visible only when looking at tubulin monomers on 

the interior surface of the microtubule (48). This is a reminder that the interior surface of 

microtubules may be just as important as the exterior, in events of binding and 

conformational-change. 

Kinesins appear to selectively bind a subset of microtubules and in polarized cells, 

microtubules are shown to compartmentalize into sections of the cell based on their 

PTMs. Thus targeted transport of cargoes in cells has recently been correlated with 

microtubule PTMs (for recent reviews see (72-74, 77, 110-111)). According to this 

hypothesis, different kinesin motors interact selectively with microtubules that are 

marked by different PTMs such that they, along with associated cargo, can be 

preferentially transported along certain subsets of modified microtubules. In this way, 

PTMs on microtubules could de facto serve as “road-signs” to direct polarized trafficking 

such as axonal and dendritic transport in neuronal cells.  

PTMs of tubulin were first discovered in 1973 when Arce et al. found that α-tubulin in rat 

brain homogenate could be tyrosinated in an ATP-dependent, RNA-independent manner 

(112). Tubulin is particularly abundant in brain tissue and its role in neurons has therefore 

been studied extensively. A majority of in vitro studies also use brain tissue as their 

source for tubulin purification. Another characteristic property of neurons is that their 

structural polarization is essential to their function and not surprisingly, the first clues for 

selective, targeted transport came from observations in neurons (113-115). To show 

motor-based selectivity for cargo transport, Nakata et al. used confocal laser scanning 
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microscopy in neurons to show that post-golgi transport of the VSV-G protein (carried by 

KIF-5B) was biased towards axons, indicating polarized transport. When tailless KIF5-

GFP (shown to transport VSV-G) was expressed, they accumulated at the tips of axons. 

Chimeric studies with switched KIF17 and KIF5 domains further suggested that the 

motor domain is the key in determining KIF5 preference for axons. Other studies have 

shown similar results for the selective localization of kinesin-1 or its cargo specifically to 

axons (116-118). Recently, Huang et al. compared the translocation selectivity of kinesin 

from four different super-families to find that different kinesin showed differential 

preferential selectivity in their translocation to axons, but not dendrites (119). 

Early on, it was shown that acetylated α-tubulin is preferentially enriched in axons and 

that these acetylated axonal microtubules are also detyrosinated (120-121). In 2007, 

Dunn et al. observed in both neuronal and non-neuronal (COS) cells that fluorescently 

labeled full length kinesin-1 localized to a subset of stable microtubules. In COS cells, it 

was shown that only 0.5% of the total microtubules are marked by α-tubulin 

detyrosination. Yet, upon immunofluorescence labeling for acetylated, tyrosinated and 

detyrosinated microtubules, it appeared that kinesin-1 specifically localized to this small 

subset of microtubules that were predominantly detyrosinated (122). They also confirmed 

by using FRAP (fluorescent recovery after photo-bleaching) that the observed 

distribution of fluorescently labeled kinesin was not from static aggregation but instead a 

result of the motor’s dynamic behavior. Further, Cai et al. showed through single 

molecule in vivo TIRF imaging followed by immunofluorescence, that in COS cells the 

kinesin-1 motor domain is sufficient for preferential translocation of the motor along a 

subset of microtubules that is marked by α-tubulin acetylation and detyrosination (109). 

These experiments clearly demonstrate a correlation between specific PTMs, either 

independently, or in combination, and the microtubule- selectivity of kinesin-1-based 

transport. On the other hand, there have been few observations to indicate the effects of 

polyglutamylation and polyglycylation on kinesin-1 motility. 

Multiple studies have observed the preferential selectivity of kinesin for specific subsets 

of microtubules and some have even shown a correlation with specific PTMs. Yet, our 

knowledge of what factors are required for the motor to differentiate between one PTM 

and another is very limited. The direct effects of PTMs on kinesin motility and their 
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mechanisms are yet to be studied. I have attempted to summarize the specific 

motor/MAP- PTM correlations in Table 2. The next section will list out in more detail the 

experiments that lead to our current understanding of the correlation that has been 

established between targeted transport and tubulin PTMs. 

 

Table 2: Cellular functions of PTMs (75, 106) 

Modification Function 

Acetylation Regulation of cell motility; exists in stable long-lived microtubules; 

guidance cue for selected motors (109, 117); regulation of katanin 

activity (123) 

Detyrosination Role in cell differentiation; exists on stable long-lived 

microtubules; contributes to microtubule stabilization; regulation of 

+TIPs binding (124-125) and motor binding (109, 122, 126) 

Polyglutamylation/ 

polyglycylation 

Centriole maturation and stability; Flagellar and ciliary motility; 

cytokinesis; axonemal organization; regulation of interactions 

between microtubules and MAPs ; regulation of spastin (127)  

 

The Role of Acetylation in Kinesin-1 Motility 

Tubulin acetylation of the lysine-40 site on α–tubulin has been postulated to play 

different roles in microtubule-based activities including dynamics, motor-binding and 

MAP-binding. Many of these hypotheses are still being debated and the exact role of the 

modification remains unclear. After it had been demonstrated that α–tubulin acetylation 

and detyrosination are preferentially distributed in the axons of neurons, Verhey et al. 

showed that the concentration of JIPs at nerve terminals requires kinesin (116). This was 

followed by observations of kinesin-1 and JIP-1 localization in neurites by Jacobson et al. 

and Reed et al., respectively (117-118). In fact, Jacobson et al. observed that kinesin-1 

could dynamically be localized to different neurite-tips before the future axon was 

established, indicating that the kinesin-1 were being recruited to different neurites by a 

dynamic process. Evidence was presented in support of acetylation-enhanced motility of 

kinesin-1 in vitro by using tubulin from genetic mutants of the Tetrahymena thermophila 
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species (117). Further evidence for the up-regulation of kinesin-1 activity due to hyper-

acetylation came from Dompierre et al. who showed that in cells afflicted with 

Huntington’s disease, inhibition of the deacetylase HDAC6 could rescue the transport 

deficit typical in the diseased cells (128). But this result has found itself in conflict with 

recent findings by Bobrowska et al. who in turn proved that while HDAC6 modification 

causes hyper-acetylation, it does not rescue the transport deficit occurring in 

Huntington’s disease and also does not modify disease progression (129). The 

interpretation of these results was not altogether straightforward owing to the use of the 

deacetylase inhibitor, which has been shown to affect cells in a way that would create 

interference in these experiments (130-133). 

The studies discussed above provide valuable correlations specifically between α–tubulin 

acetylation and kinesin-1-based transport. To understand the role of acetylation, we must 

look at the mechanism by which acetylation is recognized by the motor. Since this is a 

modification that resides in the lumen of the microtubule, it is difficult to imagine how 

the motor would be able to directly interact with the modified region. On the other hand, 

there is much tubulin heterogeneity in the intra-lumenal loops of tubulin in microtubules 

and the action of stabilizing drugs that bind in the lumen is also well-established (56). 

Keeping in mind the current literature for the effect of α–tubulin acetylation on kinesin-1 

motility, it would be ideal to perform an in vitro experiment with completely acetylated 

or completely deacetylated microtubules, homogenous in every other way, to test the 

motility of kinesin-1 in vitro and measure changes in motility parameters, presumably 

resulting from only a change in the acetylation state. Performed with purified 

components, such an experiment would test the direct effect of α–tubulin acetylation on 

kinesin-1 motility. 

The Role of Detyrosination in Kinesin-1 Motility 

Detyrosination of α-tubulin CTTs has also been implicated in recruiting kinesin-1 motors 

and promoting higher velocity for the motor. Dunn et al. showed that the distribution of 

full length kinesin-1 in vivo is preferentially localized to a narrow subset of microtubules 

in which the α–tubulin is both acetylated and detyrosinated (122). In contrast when they 

compared velocities in an in vitro gliding assay for tyrosinated and detyrosinated 
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microtubules with kinesin-1, they found a higher gliding velocity for tyrosinated 

microtubules then for detyrosinated microtubules. Following this, Cai et al. used in vivo 

single-molecule imaging to reveal that truncated kinesin-1 translocate preferentially 

along microtubules that are marked by α–tubulin acetylation and detyrosination (109). 

More recently, Konishi et al. showed that kinesin-1 is preferentially recruited to 

detyrosinated microtubules in neuronal cells and that, in an in vitro AMPPNP-binding 

assay, more kinesin-1 binds to detyrosinated microtubules (126). While these findings 

confer a second layer of complexity to the question of how PTMs affect kinesin-1, it is 

interesting to note that an overlap between α–tubulin acetylation and detyrosination of 

microtubules has been consistently observed in experiments wherein the in vivo motility 

of kinesin-1 was shown to localize preferentially to a particular subset of microtubules. 

This observation raises the question of interplay between microtubule PTMs. Controlling 

the extent of more than a single PTM at a time would allow us to not only isolate the 

independent roles of PTMs, but also understand if and how they might act in 

combination. 

The Role of Poly-modifications in Kinesin-1 Motility 

The two poly-modifications, polyglutamylation and polyglycylation, form heterogeneous 

branches extending out from the flexible tubulin CTTs. Their location and complexity 

makes them the most likely modifications to interact with motor proteins binding the 

outside surface of the microtubule. Yet, there is little data to indicate what their effect on 

kinesin motility might be. Ikegami et al. showed that the distribution of Kif1A (kinesin-3) 

motors was altered upon mutating a functional subunit of the tubulin polyglutamylase 

whereas Kif5 (kinesin-1) or Kif3A (kinesin-2) distributions remain unchanged (134). Cai 

et al. showed through single  molecule in vivo motility assays that the path for kinesin 

motility in COS cells reproduced by measuring and plotting the standard deviation in 

fluorescence intensity from one frame to the next, when overlaid on immunofluorescence 

images from an anti-polyglutamylated tubulin antibody staining the same cell, indicated 

that kinesin-1 motility does not correlate with polyglutamylated microtubules (109). For 

polyglycylation, there is no identified role in the motor-microtubule interaction yet. This 
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is likely because the modification is abundant primarily in ciliary tubulin. Consequently, 

polylgycylation has been proposed to play a role specifically in ciliary functions (95-96). 

Summary of the Problem 

Taken together, there exists significant evidence for subsets of cellular microtubules to be 

marked with specific PTMs that serve as traffic signals to regulate kinesin-based 

transport in cells. It seems that in vivo, a subset of microtubules is modified and within 

this subset, acetylated and detyrosinated microtubules are distinctly concurrent with one 

another. It is not clear what independent effects tubulin PTMs have on kinesin motility, 

what the combined effects of multiple PTMs might be and finally, what could be the 

mechanism for regulation of kinesin motility by PTMs, independently or in combination. 

The best approach to this problem, therefore, would be to create a system wherein the 

levels of PTMs can be independently controlled, to test their independent and combined 

effects on kinesin motility. Results from current literature suggest a role for acetylation 

and detyrosination of tubulin in modulating kinesin-1 motility. However, all of the 

previous experiments were either performed in vivo or with the introduction of genetic 

mutations. A first step, therefore, would be to look at the overlapping modifications, i.e., 

acetylation and detyrosination, in isolation and in concurrence. To understand the 

mechanism by which these modifications act, we must seek to make a direct observation 

of their effects using a reductionistic approach. In trying to do so, this thesis will address 

the question of the direct effects of these α-tubulin acetylation and detyrosination on 

kinesin-1 motility by performing in vitro experiments to observe the same. 
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THESIS STATEMENT

This thesis aims to answer the question of how post-translational modifications (PTMs) 

of tubulin regulate kinesin-1 motility. The hypothesis being tested is that PTMs of tubulin 

in microtubules directly act as traffic signals for the regulation of kinesin motility. This 

means that a change in tubulin PTMs would result in a change in kinesin-1 motility.  To 

begin, kinesin-1 was selected as the motor and α-tubulin K-40 acetylation as the 

modification of interest. Microtubules polymerized from either acetylated or deacetylated 

tubulin were used in single molecule in vitro TIRF assays to observe changes in the 

motility of kinesin-1 on the differentially modified microtubules. The scope of the thesis 

was further expanded to consider the additional effect of α-tubulin CTT detyrosination on 

kinesin-1 motility. The combination of α-tubulin acetylation and detyrosination is 

commonly found on microtubules frequented by kinesin-1 in vivo and so experiments 

were performed to observe changes in kinesin-1 motility due to detyrosination with and 

without the presence of acetylation. 

The motivation for this study is seeded by findings that changes in tubulin PTMs show a 

marked correlation with cell pathogenesis such as in the case of neurodegenerative 

disorders and tumor progression. The results from our experiments provide the first 

single-molecule observations for the direct effect of tubulin PTMs on kinesin-1 motility. 

Moreover, the quantitative and reductionistic theme of these experiments presents a new 

approach to the traffic-regulation problem and thus offers a new platform for future 

studies on this subject. 

The work undertaken in this thesis was performed in collaboration with Kristen Verhey 

of the Cell and Developmental Biology Program at the University of Michigan, Ann 

Arbor. 
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CHAPTER 2

The Effect of Tubulin Acetylation on the in vitro Motility of Kinesin-1 

Targeted delivery of a large range of materials, including lipids, proteins and RNA, to 

specific  domains within cells through intracellular trafficking networks is essential to 

cellular function (23, 135-136). Neurons with their selective, long-range transport into 

dendrites and axons serve as particularly illustrative and well-studied examples of these 

mechanisms, but every eukaryotic cell requires highly targeted transport mechanisms.  

Fundamentally, these transport mechanisms are widely believed to be based on a network 

of microtubules (137) that assemble and disassemble from α-β-tubulin heterodimers to 

form a dynamic network  of polarized tracks along which long-range transport by 

molecular motors from the kinesin and dynein families takes place (138). In recent years, 

much has been learned about the general mechanisms by which motors and microtubules 

interact and hydrolyze ATP to generate force and movement (39-40, 47, 138-141). While 

this work provides critical insights into the chemomechanical energy transduction 

mechanism and mechanistic details of how the movement of motors and cargoes along 

microtubules is generated, the mechanism by which molecular motors and specific cargo 

select microtubules to reach a desired destination remains fundamentally unexplained 

(31).  

In cells, microtubules are characterized by a number of dynamic PTMs such that 

temporal and spatial variations in the degree of each modification generate sub-

populations of microtubules (73, 142-143). A number of studies, mostly based on cell 

biological observations, have led to first lines of evidence suggesting that tubulin PTMs 

are involved in regulating microtubule function and modulating the interactions of 

microtubules with molecular motors, MAPS and various proteins and complexes (75, 77, 

107-108, 144-145). Of particular interest for this work are the interactions with kinesin 

motors, which are responsible for the anterograde transport along microtubules and 

ability to selectively localize cargo to  specifiic destination in cells  (13, 23, 30, 116). 
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Based on the variety of proposed functions for PTMs and the broad requirements for 

complex, targeted transport mechanisms in cells, one hypothesis that has recently been 

gaining popularity is that different members of the kinesin super-family selectively 

interact with specific combinations of microtubule PTMs such that intra-cellular transport 

along the microtubular network is temporally and spatially regulated through this PTM-

code. 

A number of investigations,  in support of the PTM-code hypothesis, have 

established correlations between PTMs of microtubules and specific kinesin-based 

transport processes. For example, in neurons the distribution patterns of microtubule 

PTMs are different in axons than in dendrites, possibly to maintain neuronal polarity 

(106). Kinesin-1 locates to axons and not dendrites, whereas the motors KIF1A (kinesin-

3) and  KIF17 (kinesin-2) are bidestination transporters (5, 126). Acetylation of the α-

tubulin residue K40 in microtubules is believed to enhance kinesin-1 motility in regard to 

binding, velocity or both. Specifically, Reed et al. presented detailed evidence that 

kinesin-1 binding and velocity is enhanced on α-tubulin K40 acetylated microtubules 

(117), and  Dompierre et al. demonstrated  that α-tubulin K40 acetylation enhances in 

vivo cargo-transport to compensate for effects associated with the  neurodegenerative 

Huntington’s disease (128). In addition to acetylation, other modifications such as 

polyglutamylation and detyrosination have been shown to influence transport by different 

members of the kinesin super-family in vivo and in vitro (122, 126, 146-147). The 

possible interplay between PTMs was clearly demonstrated by Cai et al. through single-

molecule in vivo observations showing that kinesin-1 selectively binds to and translocates 

along a subset of microtubules that are found to be marked by acetylation of the residue 

K40 of α-tubulin and detyrosination (109). Nonetheless, it remains unclear whether the 

PTMs directly regulate motor molecules or if they exert their effect through other 

proteins, like MAPS, or if the PTMs work in combinatorial fashion, and there is little 

known as to which PTMs are actually guiding kinesin-based transport, and which 

molecular mechanisms are responsible for the observed targeted transport. 
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2.1 Preliminary Studies with Doublet Microtubules 

Tetrahymena is a unicellular protozoan ciliates (see Figure 8) possessing hundreds of 

motile cilia and a variety of microtubular systems. The cilia are constructed from doublet 

microtubules in a 9+2 arrangement as shown in Figure 8. Doublet microtubules from 

wild-type (WT) Tetrahymena are mostly acetylated on K40 of α-tubulin. This acetylation 

can be prevented in a viable mutant where the K40 residue is substituted by an arginine, 

which cannot be acetylated (71, 117). Before the acetyl transferase for K40 α-tubulin 

acetylation was identified, we decided to extract doublet microtubules from Tetrahymena 

thermophila, taking advantage of the difference in acetylation levels between doublets 

extracted from WT and K40R mutant cells. The benefit of using doublets from 

Tetrahymena is that there is only a single type of α-tubulin gene (68, 148) which 

eliminates any variation in tubulin arising from its genetic isoforms.  

 

 

 

 

 

Figure 8. Tetrahymena and their cilia. a. Image of Tetrahymena thermophila (by Aswati 

Subramanian, Miami University) and b. electron micrograph of Tetrahymena cilium in 

cross-section (from cell image library) 

The goal of this preliminary study was to observe any changes in motility for kinesin-1 

between normally acetylated doublets from WT cells and un-acetylated doublets from 

K40R mutant cells. To do this we first performed multi-motor gliding assays to compare 

the velocity of WT doublets with K40R doublets. This was followed by single-molecule 

in vitro TIRF (Total internal reflection fluorescence) motility assays for kinesin-1 on WT 

and K40R doublets. All data was analyzed manually yielding measurements for velocity, 

run length and binding.  

 

a. b. 
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Materials and Methods 

Cloning and Preparation of Proteins 

Bacterially Purified Motor: Constructs consisting only of the N-terminal 560 amino 

acids of the kinesin-1 heavy chain containing the neck and the neck linker were used in 

our assays. NKHK560 was expressed and purified from BL21DE3 cells as described in 

Lakamper et al. (50). 

Mammalian Lysates: An RnKHC560 kinesin construct was C-terminally tagged with a 

3x-mcit sequence to produce RnKHC560-3xmcit and transfected into mammalian COS 

cells as described in Cai et al. (149). Transfected cells were allowed to over-express the 

recombinant kinesin for 4-10 hours. Cells were detached using trypsin-EDTA and excess 

trypsin was quenched with fetal calf serum. The cells were washed and then lysed using 

lysis buffer (40 mM HEPES/KOH, 120 mM NaCl, 1 mM EDTA, 10 mM pyrophosphate, 

10 mM β- glycerophosphate, 50 mM NaF, pH 7.5) supplemented with 0.5% Triton X-

100, protease inhibitors (PMSF and CLEP) and 1 mM ATP. The lysate was separated 

from cell bodies by centrifugation, aliquoted and flash-frozen for storage at -80 ºC. 

Tetrahymena Doublet Purification: 4L cultures of Tetrahymena cells were grown over 

16 hours at 170 rpm.  At a cell density of 2 x 10
5
 – 3 x 10

5
 cells/mL, the cells were 

pelleted to separate them from the media. After discarding the supernatant, the cells were 

washed in 10 mM tris buffer three times. Following this, they were resuspended in 100 

mL deciliation buffer (10 mM Tris, 50 mM sucrose, 10 mM CaCl2), pH 8.0 with added 

protease inhibitors (PMSF and CLEP). The solution was chilled to prepare for a pH drop 

from 7.8 to 5.0 and then back to 7.3. Cells were checked under the microscope to ensure 

they were not swimming. Cell bodies were centrifuged and discarded. The supernatant 

with the cilia was centrifuged so that the cilia were pelleted. Cilia were resuspended in 

demembranation buffer (0.5% Triton X-100, 30 mM Tris, 3 mM MgCl2, 1 mM EGTA, 

0.1 mM DTT, pH 8.0 with HCl) + 0.2 mM DTT and incubated on ice for 10’. Axonemes 

were pelleted and resuspended in deciliation buffer. The axonemes were dialyzed 

overnight against 1 mM Tris, 0.1 mM EGTA, 20 μL BME, pH 8.0. The resulting 

doublets were pelleted and resuspended in PMG (10 mM K-phosphate, 10 mM MgCl2, 

0.1 mM GTP, pH 7.0 with KOH). 
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Labeling of Doublets 

Doublets were labeled by incubating them with a 5-fold excess of Cy5 succinimidyl ester 

(GE Lifesciences, Piscataway, NJ) in the presence of 10% DMSO. The excess dye was 

quenched with 20 mM glycine. The doublets were airfuged through a 60% glycerol 

cushion and resuspended in 20 μM taxol in PMG. 

Gliding Assays 

Gliding asays were performed with TMR-labeled doublets that were labeled with the 

same procedure as outlined above using TAMRA, SE (Invitrogen, Grand Island, NY). 

The assay chamber was pre-coated with 94 μg/mL casein and then coated with 50 μg/mL 

NKHK560 in BRB80. Microtubules were flowed through in a solution of 0.2 mg/mL 

catalase, 1.7 mg/mL glucose oxidase, 22 mM glucose, 10mM DTT in BRB80 

supplemented with 1mM ATP. Gliding microtubules were visualized after a 20 min 

incubation period. BP450-490, FT510, BP515-565 filters were used for visualizing TMR-

labeled microtubules 

Single-molecule TIRF Motility Assays 

Motility assays were performed on a Zeiss Axiovert microscope modified to allow TIRF 

microscopy using a 488nm Ar-ion laser for excitation (50). The resulting  images were 

chromatically separated  using a commercial dual view device (Photometrics, Tucson, 

AZ,) with a T585lpxr dichroic and HQ510, ET525/50m filters (Chroma Technology 

Corp., Bellows Falls, VT, USA) such that kinesin-1 events and the doublets could be 

visualized side-by-side using a single CCD camera chip. Flow chambers were made 

using cover slips (Corning, Lowell, MA) that were cleaned with deionized distilled water. 

Doublets were allowed to adsorb to the cover-slip for 5 min, following which, 1 mg/mL 

BSA was introduced into the chamber so as to reduce nonspecific binding of kinesin to 

the glass surface. The final flow-through for the assay was ~10 nM kinesin in P12 buffer 

(12 mM PIPES, 2 mM MgCl2, 1 mM EGTA, pH 6.8) containing 1 mM MgCl2, 2 mM 

ATP, 1 mg/mL BSA, 10 mM glucose, 1.65 mg/mL glucose oxidase, 0.27 mg/mL 

catalase, 143 mM BME. 
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Data Collection and Analysis 

Movies were recorded at a rate of 1frame/s for gliding assays and 10 frames/s for single-

molecule TIRF motility assays. Data was manually analyzed in ImageJ by selecting 

microtubule ends and tracking them in gliding assays or selecting fluorescent kinesin and 

tracking them through multiple frames in single-molecule assays. Velocity for data from 

the gliding assays and additionally run length for data from the single-molecule TIRF 

assays was calculated from the displacements measured manually. A test version of the 

program described in chapter 4 was used to analyze data from the control assays. 

Velocity data generated from single-molecule assays was tested for normality using the 

k-s test (Kolmogorov-Smirnov test) at the 0.05 level in OriginLab (Northampton, MA, 

USA). Data that was significantly drawn from a normal distribution was then compared 

for statistical significance using a paired t-test. For data that did not fit a normal 

distribution, a two-sample k-s test was used to determine the statistical significance of 

any changes observed in the measured parameters between WT and K40R doublets. All 

statistical analysis was performed in OriginLab (Northampton, MA, USA). 

Results 

Samples from the Tetrahymena doublet purification procedure were run on a 7.5% SDS-

PAGE gel. The results are shown in Figure 9. Lanes 2-5 contain WT ciliary proteins at 

different stages of the purification and lanes 6-9 contain K40R ciliary proteins. Lane 5 

contains the purified WT doublets while lane 9 contains the purified K40R mutant 

doublets. Lane 10 contains 1mg/mL BSA for comparison of protein mass. The final 

product is enriched in doublets but contains other proteins as well. 
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Figure 9: SDS-PAGE for doublet purification. S1 = cilia, P2 = axonemes, S3 = soluble 

axonemal protein after dialysis, P4 = microtubule doublets, 1 mg/mL BSA standard 

 

Gliding Assays 

To begin our analysis, we performed multiple-motor gliding assays on NKHK560cys 

with WT (N = 26) and K40R (N = 9) doublet microtubules labeled with TMR dye. 

Velocity for WT (acetylated) doublets was found to be 1.11 μm/s, almost twice the 

velocity for K40R (unacetylated) doublets which was found to be 0.69 μm/s as shown in 

Figure 10. A k-s normality test showed that the data was significantly drawn from a 

normally distributed population (p>0.05). Based on this, a paired-sample t-test was 

performed to show that the 0.42 μm/s difference in velocities is statistically significant 

(p<0.05) with a 95% confidence interval for a difference of 0.28- 0.59 μm/s. To further 

investigate this difference in motility between the WT and K40R doublets, we went 

ahead to perform in vitro single-molecule motility assays for the doublets with kinesin-1. 

In these assays, we hoped to capture changes in other motility parameters, such as run 

length and binding that might be altered due to a change in the acetylation state of α-

tubulin. 
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Figure 10: Velocity of WT and K40R doublets in gliding assays with NKHK560 kinesin. 

Wild-type doublet microtubules moved at 1.11 ± 0.31 μm/s and K40R doublet 

microtubules moved at 0.69 μm/s ± 0.13 

Single-molecule TIRF Motility Assays 

Single-molecule motility of RnKHC560-3xmcit was observed on labeled WT or K40R 

mutant doublets. Individual events were tracked and the data was manually analyzed to 

compute the velocity and run length for the motor on (WT) acetylated and (K40R) 

unacetylated doublet microtubules, as summarized in Figure 11. We found that 

RnKHC560 moves at the same velocity of 0.63 μm/s with standard deviations of ± 0.16 

μm/s on WT and ± 0.13 μm/s K40R mutant doublets. The run length on WT doublets is 

0.17 ± 0.06 μm (mean ± s.e.) and on K40R doublets, it is 0.18 ± 0.08 μm. These 

measurements were made from 172 data points for WT doublets and 105 data points for 

K40R doublets in ten assays for each type of doublet. It was clearly observed in the 

single-molecule motility assays that over time, kinesin-1 tends to accumulate on and 

decorate Tetrahymena doublet microtubules by sticking to them. The high number of 

non-moving kinesin observed in these assays could explain the lower velocities recorded 

here as compared to velocities from our gliding assay results. It is unclear what the cause 

for kinesin decoration of doublet microtubules might be. We cannot rule out other PTMs 

or doublet-associated proteins. 
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Figure 11: Velocity and run length of RnKHC560 on WT and K40R doublets. 

a. Velocity: WT doublets = 0.63 ± 0.16 μm/s, K40R doublets = 0.63 ± 0.13 μm/s; 

b. Run length: WT doublets = 0.17 ± 0.06 μm, K40R doublets = 0.18 ± 0.08 μm 

 

Control Experiment 

To avoid assay-specific differences in kinesin-concentration, we performed single-

molecule TIRF motility assays with simultaneous observations on WT and K40R 

doublets by flowing them through the same assay chamber. To do this, the doublets had 

to be differentially labeled. WT doublets were labeled with a 15-fold molar excess of 

Atto590 (Attotech, Amherst, NY) and K40R mutant doublets were labeled with a 3-fold 

molar excess of Alexa488 (Invitrogen, Grand Island, NY) following the procedure 

outlined in the methods section. An image of the Alexa-labeled doublets was captured 

within the first few seconds of exposure, after which the signal rapidly photo-bleached 

away, allowing the visualization of single fluorescent kinesin in the same imaging 

channel. Data was analyzed using a preliminary version of the image processing program 

described in Chapter 4. Results from 136 events were identified on WT doublets and 206 

on K40R doublets are summarized in Figure 12. We found that RnKHC560 runs at a 

velocity of 0.67 ± 0.22 μm/s on WT doublets and 0.69 ± 0.26 μm/s on K40R mutant 

doublets (mean ± s.d.). A k-s normality test showed that, at the 0.05 level, the velocity 

data was not significantly drawn from a normal distribution (p = 0.002). A two-sample k-

s test showed that the velocity data for RnKHC560 on WT and K40R doublets are not 

significantly different at the 0.05 level (p = 0.20). The run length on WT doublets is 0.36 

± 0.06 μm and on K40R doublets, it is 0.37 ± 0.09 μm (mean ± s.e.). A two-sample k-s 

Velocity of RnKHC560 on 

microtubule doublets 

Run length of RnKHC560 on 

microtubule doublets 
a. b. 
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test showed that the run lengths are not significantly different on WT and K40R doublets 

(p = 0.15). Binding was inferred from the landing rate, calculated as the number of events 

per μm microtubule length per minute. The landing rate was found to be 1.59 

events/μm/min on WT doublets and 1.38 events/μm/min on K40R doublets. 

 

 

c. d. 

a. b. 
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Figure 12: Motility parameters for RnKHC560 on WT and K40R doublets in the same 

assay. Motility on WT doublets: a. velocity = 0.67 ± 0.22 μm/s, c. run length = 0.36 ± 

0.06 μm; Motility on K40R doublets: b. velocity 0.69 ± 0.26 μm/s, d. run length = 0.37 ± 

0.09 μm. e. Landing rate on WT doublets = 1.59 events/μm/min; K40R doublets = 1.38 

events/μm/min 

Discussion of Preliminary Studies 

We performed multiple-motor gliding assays and single-molecule TIRF motility assays 

for kinesin-1 with doublet microtubules extracted from the cilia of WT or K40R mutant 

Tetrahymena thermophila. While our results from the multiple-motor gliding assay 

showed that kinesin-1 moves with at 1.11 μm/s on (WT) acetylated doublets but only 

0.69 μm/s on K40R doublets, results from the single-molecule assay did not follow the 

same trend. In single-molecule assays, there was no significant difference between 

motility on wild-type and mutant doublet microtubules. Identical mean velocities of 0.63 

μm/s were recorded for kinesin-1 on wild-type and mutant doublets with slightly different 

standard deviations of ± 0.16 μm/s and ± 0.13 respectively. Run lengths of 0.17 ± 0.06 

μm and 0.18 ± 0.08 μm were recorded on wild-type and mutant doublet microtubules 

respectively. In assays performed with differentially labeled doublets in the same flow 

chamber, landing rate of kinesin-1 on mutant microtubules was found to be reduced by a 

moderate 13%. In my observations of kinesin-1 motility in the single molecule assays 

performed with doublets, mammalian kinesin did not unbind from doublet microtubules 

readily. Instead, it showed a tendency to remain bound, eventually decorating the 

microtubules. This persistent delay in unbinding, which seems to be characteristic of 

doublet microtubules but not bovine brain microtubules, could create a hidnerance in 

e. 
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motility and lower the mean values of the measured parameters. Despite this consistent 

underlying observation, the data should still highlight any major differences in binding or 

motility of kinesin-1 that arise from the absence of acetylation in the K40R mutant 

doublets. Instead, based on the preliminary results presented here, it appears that kinesin-

1 motility does not depend on the presence of the K40 group on  α-tubulin. Aside from 

the observed difference in the interaction of kinesin-1 with doublet microtubules, it is 

known that axonemal tubulin differs from mammalian neuronal tubulin in many ways. It 

is rich in poly-modifications charactersitic of axonemal tubulin; for example, 

microtubules extracted from doublets carry a special axonemal motif (150). Another 

important difference is that ciliary tubulin has been shown to bind microtubule-inner 

proteins (MIPs) that play a role in ciliary motility (151-152). Keeping in mind all of the 

known and observed species- specific differences, it is not completely surprising that our 

observations do not correlate particularly well with previous in vivo observations from 

literature citing the effect of tubulin acetlyation on kinesin-1 motility in mammalian cells. 

In my opinion, due to the observed hinderance in motility characteristics for mammalian 

kinesin, Tetrahymena tubulin does not offer a robust substrate to test for the effect of 

acetylation on kinesin-1 motility. As a result, we revised our strategy and proceeded to 

work with purified mammalian tubulin which could then be modified with recombinant, 

purified enzymes. While we began the study by generating deacetylated tubulin through 

the in vitro treatment of bovine brain tubulin with the deacetylase SIRT2, we were 

fortunate that the acetyl transferase MEC-17, was identified (82). With this new finding, 

tubulin from a single pool of bovine tubulin could be treated with a deacetylase (SIRT2) 

or an acetyl transferase (MEC-17) and used to generate two distinct populations of 

tubulin that were identical in every other way except for their state of acetylation. 

Microtubules could be polymerized from these populations of tubulins allowing for 

complete control over the extent of acetylation. We took this opportunity in transitioning 

over exclusively to observations on mammalian proteins. 

2.2 Acetylated and Deacetylated Microtubules 

In our preliminary studies, we were faced with the limitation of using doublet 

microtubules from Tetrahymena in our assays. While this provided a stepping stone to 
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begin the project with, in our observations, we could not rule out effects from doublet-

associated MAPs or MIPs and a species-dependent difference in the PTMs. To address 

our hypothesis that acetylation of α-tubulin K40 alone enhances or upregulates the 

motility of kinesin-1, we believe that a reductionistic and direct approach is required.  

While we began working on this approach by using in vitro treatment of bovine brain 

tubulin with the deacetylase SIRT2 to generate deacetylated tubulin (85), we were 

fortunate that the acetyl transferase MEC-17, was identified (82). With this new finding, 

tubulin from a single pool of bovine tubulin could be treated either with a deacetylase 

(SIRT2) or an acetyl transferase (MEC-17) and used to generate two distinct populations 

of completely acetylated or completely deacetylated tubulin that were homogenized in 

terms of other modifications or tubulin isotypes. Microtubules could be polymerized from 

these populations of tubulins allowing for complete control over the state and extent of 

acetylation. We took this opportunity in transitioning over exclusively to observations on 

mammalian proteins. 

Using microtubules polymerized from the purified and enzyme-treated tubulins, we 

performed in vitro experiments to test our hypothesis. We were able to observe the 

motility of kinesin-1 on completely acetylated or completely deacetylated microtubules 

and compare the measured motility parameters. This is the first time that α-tubulin K40 

acetylation has been studied in isolation and the direct effect of this modification on 

kinesin-1 velocity, run length and binding has been recorded. 

SIRT2 and MEC17 constructs for the modifying enzymes were gifts from B.J. North and 

J. Gaertig respectively. Both enzymes were purifed by Virupakshi Soppina. Enzyme-

treatment and AMPPNP microtubule-binding experiments were performed by him. Any 

lysate used in the following experiments was extracted from COS cells by Virupakshi 

Soppina and Steve Norris. 

Materials and Methods 

Cloning, Purification and Preparation of Proteins 

Mammalian Cell Lysates for Kinesin: The RnKHC560-3xmcit lysate was extracted as 

described in the previous section. 
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Bacterial Expression of Kinesin: NKHK560cyshis was purified as described in the 

previous section. The RnKHC560 sequence was C-terminally tagged with a 6x-histidine 

tag and transformed into BL21(DE3) cells. Protein expression was induced by addition of 

0.4 mM IPTG to a 2L culture in an Erlenmeyer flask. Expression was allowed to proceed 

for 10 hours at 22 ºC, 225 rpm in a floor incubator. Bacterial lysate was loaded on to a 

C10 AKTA column packed with Ni-NTA superflow resin (Qiagen, Valencia, CA). The 

column was washed with 60 mM imidazole and kinesin eluted with 500 mM imidazole 

on an AKTA FPLC following the purification procedure previously outlined by Hancock 

and Howard (38).  

Enzyme Purification 

The MEC17 construct was expressed in a Rosetta strain of E. Coli cells and purified as 

described in Akella et al. (82) using a column packed with GST beads (GE Lifesciences, 

Piscataway, NJ). Following elution with 10 mM reduced glutathione, the protein was 

dialyzed in dialysis buffer (20 mM Tris-HCl, pH 8.0, 0.2 mM DTT) overnight at 4 
o
C. 

Recombinant SIRT2 was bacterially expressed in BL21(DE3) cells and purified using the 

Ni affinity chromatography procedure from North et al. (85). Expression of the SIRT2 

enzyme was induced by IPTG over 3 hours at 37C, 250rpm. The bacterial lysate was 

loaded on a Ni-NTA agarose bead column (Qiagen, Valencia, CA) and the column was 

washed with 20 mM imidazole. Following elution with 300 mM imidazole, the protein 

was dialyzed in a Tris-HCl buffer (20 mM Tris-HCl, pH 8.0, 0.2 mM DTT) overnight at 

4 
o
C. 

Tubulin Purification 

Tubulin was purified bovine brain through three cycles of polymerization and 

depolymerization using a modified procedure of the purification protocol from Castoldi 

and Popov (153). 

In vitro Enzyme Treatment of Tubulin 

Acetylated tubulin was prepared by incubating purified bovine brain tubulin with purified 

MEC17 enzyme in the presence of 10 µM Acetyl coenzyme A for 2 hrs at 28
o
C under 

constant mixing at 100 rpm on a floor incubator. To obtain deacetylated tubulin, purified 

bovine brain tubulin was incubated with purified SIRT2 enzyme in the presence of 1 mM 

NAD (nicotinamide adenine dinucleotide) for 2 hrs at 37
o
C with constant mixing at 100 
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rpm on a floor incubator. The resulting modified tubulin was cycled through 

polymerization and depolymerization to remove any incompetent tubulin generated 

during enzyme treatment. Acetylation and deacetylation of tubulin was confirmed by 

using immunoblotting with mouse anti-acetylated tubulin (T6793, Sigma-Aldrich, St. 

Louis, MO). 

Labeling of Tubulin 

The two pools of tubulin thus generated were labeled by incubating them with 10-fold 

excess amine-reactive fluorescent dye at 4C. Excess dye in labeling reactions was 

quenched with 50 mM K-glutamate after which the tubulins were cycled to remove any 

incompetent tubulin generated during the labeling procedure. Deacetylated tubulin was 

labeled with Alexa Fluor 488 carboxylic acid, succinimidyl ester (Invitrogen, Grand 

Island, NY) with a resulting labeling ratio of 0.90 while acetylated tubulin was labeled 

with Atto590 carboxylic acid, succinimidyl ester (ATTO-TEC GmbH, Amherst, NY) 

with a resulting labeling ratio of 0.57.  

Kinesin Binding Assay  

Increasing concentrations of kinesin lysates were incubated with 0.1mg/mL taxol-

stabilized microtubules and 1 mM AMPPNP for 30 minutes at room temperature with 

constant mixing. The kinesin-microtubule complexes were pelleted at 18
o
C for 30 min 

through a 60% glycerol cushion. The pellet and supernatant was dissolved in SDS-PAGE 

sample buffer and used for immunoblotting as previously described (117). Mouse anti-

acetylated tubulin (T6793Sigma), anti-myc antibody and anti-β-tubulin antibody were 

used for Western-blotting. The blots were scanned and used for quantification in ImageJ 

(NIH) software.  

Gliding Assays 

Gliding assays were performed as described in the previous section on Tetrahymena 

doublet microtubules. Motors used for gliding assays were bacterially expressed 

NKHK560cys his and RnKHC560cyshis. BP450-490, FT510, BP515-565 filters were 

used for visualizing Alexa488-labeled microtubules and Q555LP, HQ590/50m, 

HQ525/50x filters were used for visualizing Atto590- labeled microtubules. 
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Single-molecule TIRF Motility Assays 

Motility assays were performed on a Zeiss Axiovert microscope modified to allow TIRF 

microscopy using a 488nm Ar-ion laser for excitation (50). The resulting  images were 

chromatically separated  using a commercial dual view device (DV2, Photometrics, 

Tucson, AZ) with a T585lpxr dichroic and HQ510, ET525/50m filters (Chroma 

Technology Corp., Bellows Falls, VT, USA) such that motility events on acetylated and 

deacetylated microtubules in the same assay could be visualized side-by-side using a 

single CCD camera chip. Flow chambers were made using cover slips (Corning) that 

were cleaned with deionized distilled water and then coated with poly-lysine. 

Microtubules were polymerized in the presence of 1 mM GTP using 4mg/mL tubulin 

such that labeled: unlabeled tubulin ratios were 1:60 and 1:15 for deacetylated and 

acetylated microtubules respectively. Polymerized deacetylated and acetylated 

microtubules were mixed together and then flowed through the same flow chamber. 

Microtubules were allowed to adsorb to the cover-slip for 5 min before 1mg/mL BSA 

was introduced into the chamber as to reduce nonspecific binding of kinesin to the cover-

glass surface. The final flow-through for the assay was ~10 nM kinesin in P12 buffer (12 

mM PIPES, 2 mM MgCl2, 1 mM EGTA, pH 6.8) containing 1 mM MgCl2, 2 mM ATP, 1 

mg/mL BSA, 10 mM glucose, 1.65 mg/mL glucose oxidase, 0.27 mg/mL catalase, 143 

mM BME, 10 mM phosphocreatine, 0.05 mg/mL creatine phosphokinase. Control 

experiments were performed with unlabeled microtubules to account for any effects the 

different dyes may have had or in the presence of 1 mM GMPCPP instead of GTP to 

avoid the use of taxol for stabilization. We also repeated the assays in the presence of 

high ionic strength buffer (25 mM HEPES, 115 mM KOAc, 5 mM NaOAc, 5 mM 

MgCl2, 0.5 mM EGTA, pH 7.4) instead of P12 to mimic physiological environmental 

conditions. 

Data Collection and Analysis 

Movies were recorded at a rate of 10 frames/s and analyzed using a custom-written 

single-molecule tracking Matlab (Mathworks Inc., Natick, MA) program. The program 

identifies fluorescent peaks within a selected region of interest and then determines the 

exact location for the centroid of each peak based on its fit to a Gaussian profile. It then 

tracks these identified points if they are consistently progressing from one frame to the 
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next and records a series of points for each motility event. Finally, it calculates individual 

velocities and run lengths for each of the recorded events. All runs above 0.15 µm were 

included in the analysis. To obtain a distribution for the velocity and run length 

measurements, histograms were generated by plotting the number of events observed 

against binned values. The velocity profile was fit to a Gaussian distribution with the 

centroid of the Gaussian specifying the mean velocity. The run length profile was fit to an 

exponential distribution with the decay constant of the exponential specifying the mean 

run length. The R
2
 value of the fits indicates the proportion of variability that the fit is 

able to account for. Histograms for the velocity data were fit to Gaussian distributions 

with R
2 

>95% and histograms for the run length were fit to single exponential 

distributions with R
2 

>80% in Origin Lab. Binding was estimated by measuring the 

landing rate on microtubules. The number of events on a selected microtubule in a 

recorded movie was counted and then divided by the length of the microtubule and the 

length of the movie in order to obtain a landing rate with the units of events/µm/min. 

Velocity data generated from single-molecule assays was tested for normality using the 

k-s test at the 0.05 level. A two-sample k-s test was used to determine statistical 

significance in the comparison of velocities and also that of run lengths. 

Results 

In vitro assays performed using microtubules polymerized from the generated pools of 

completely acetylated or completely deacetylated tubulin allowed us to isolate the effect 

of K40 α-tubulin acetylation on kinesin-1 motility. The distinct populations of acetylated 

and deacetylated tubulin were generated by in vitro enzyme-treatment of tubulin with 

bacterially purified deacetylase SIRT2 (85) and acetyl-transferase MEC17 (82). While 

purified bovine brain tubulin used for in vitro modifications already contains some 

amounts of α-tubulin that is acetylated on the ε-amino group of K40, when treated with 

MEC17 in the presence of Acetyl coenzyme A, an acetyl group is transferred from 

coenzyme A to those K40 α-tubulins whose ε-amino groups are not already acetylated. 

The same acetyl group is completely removed upon treatment with SIRT2, an NAD
+
-

dependent deacetylase. Results obtained from the enzyme treatment are confirmed by 

blotting with an antibody specific to the K40 acetylation site on α-tubulin (T6793 sigma) 
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as shown in Figure 13. We expect that a comparison of the binding and motility 

parameters of the motor on completely acetylated and completely deacetylated 

microtubules through in vitro experiments would unambiguously answer the question of 

whether the kinesin-1 directly recognizes K40 α-tubulin acetylation. 

 

Figure 13: Western blot for acetylation and deacetylation of tubulin. Acetylated tubulin 

was detected using the 6-11B-1 antibody after enzyme treatment with different 

concentrations of acetyl transferase or deacetylase enzymes (treatment and Western blot 

by Virupakshi Soppina). Assuming that untreated bovine tubulin is a reference for 50% 

acetylated tubulin, completely acetylated tubulin is nearly 100% acetylated while 

completely deacetylated tubulin is ~5% acetylated 

Binding Assays 

To confirm that the motor was able to bind to microtubules polymerized from either the 

pool of acetylated tubulin or deacetylated tubulin, we performed binding experiments in 

the presence of AMPPNP, a non-hydrolyzable analog of ATP. The kinesin-microtubule 

complex was pelleted by centrifugation followed by SDS-PAGE analysis of the 

supernatant and pellet. The extent of binding was then measured by quantifying the 

kinesin content of the supernatant and pellet on the gel (data not shown). Both 

mammalian-expressed and bacterially expressed RnKHC560 were tested in these assays. 

We observed that the fully acetylated and fully deacetylated microtubules were equally 

competent in binding to kinesin-1 in the presence of AMPPNP. In fact, as expected from 
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the known kinetic characteristics of kinesin-1, with an excess of microtubules, all the 

kinesin-1 binds in the AMPPNP state.  

Single-molecule TIRF Motility Assays 

To determine if acetylation and deacetylation of tubulin directly modulate the motility of 

single kinesin motors on microtubules, we performed in vitro motility assays with 

fluorescently labeled, acetylated and deacetylated microtubules and rat kinesin 

(RnKHC560-3xmCit) using TIRF microscopy.  In particular, we wanted to determine if 

K40 α-tubulin acetylation affects the velocity, run length (processivity) and binding of 

kinesin-1 on microtubules. To avoid any assay-specific differences in motor 

concentration when comparing the motile properties on acetylated and deacetylated 

microtubules, events were simultaneously observed on differentially labeled (acetylated 

and deacetylated) microtubules in the same flow chamber. Initially, for each field of 

view, a still image of the microtubules made from either acetylated tubulin labeled with 

Atto590 dye or deacetylated tubulin labeled with Alexa488 dye was captured using dual-

color imaging. This initial image was later used for identifying microtubule tracks for 

each kinesin event traced during data analysis. Motility events for fluorescent kinesin in 

the same field of view were recorded a few seconds later when the Alexa488 dye 

marking the microtubules had completely photo-bleached. Fluorescent kinesin could be 

continuously observed as they were binding, moving along microtubules and unbinding 

on one half of the image produced by the dual view. To represent the range of velocities 

and run length, all data were compiled in histograms as shown in Figure 14. 

The velocity data fit to Gaussian distributions and the run length data fit to exponential 

distributions as shown in Figure 14. RnKHC560 moved with a mean velocity of 0.67 ± 

0.15 µm/s on acetylated (N = 1151) microtubules and 0.69 ± 0.19 µm/s on deacetylated 

(N = 1132) microtubules. A k-s normality test showed that the data was not significantly 

drawn from a normally distributed population (p<0.05). Based on this, a two-sample k-s 

test was performed to show that the 0.02 μm/s difference in mean velocities is statistically 

significant with p = 0.001. However, the 3% decrease in velocity on deacetylated 

microtubules is not sufficient to explain the exclusive selectivity of kinesin-1 motility 

along acetylated microtubules observed in vivo. Run length was 0.55 ± 0.33 µm on 
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acetylated microtubules and 0.50 ± 0.43 µm on deacetylated microtubules, also shown in 

Figure 14. A two-sample k-s test resulted in a p = 0.21, indicating that the difference in 

run length means is not statistically significant. Landing rate for the motors, calculated as 

the number of events observed on a given length of microtubules per unit time was found 

to be 3.84 ± 1.00 events/µm/min on deacetylated microtubules and 3.72 ± 1.48 on 

acetylated microtubules (see Figure 14). The landing rate data distributions were found 

not to be significantly different in a two-sample k-s test with a p = 0.19. Data obtained 

from two separate batches of treated tubulin showed that there was no significant change 

induced in RnKHC560 motility due to the presence of α-tubulin K40 acetylation.  

 

 

 

 

c. d. 



42 
 

 

 

 

 

 

 

 

Figure 14: Motility parameters for RnKHC560 on acetylated and deacetylated 

microtubules in the same assay. A comparison of motility on acetylated and deacetylated 

microtubules shows no change in motility parameters. Motility on deacetylated 

microtubules: a. velocity = 0.67 ± 0.15 μm/s, c. run length = 0.50 ± 0.43 μm; Motility on 

acetylated microtubules: b. velocity = 0.69 ± 0.19 μm/s, d. run length = 0.55 ± 0.33 μm. 

e. Landing rate on acetylated microtubules =  
3.84 ± 1.00 events/μm/min; deacetylated microtubules = 3.72 ± 1.48 events/μm/min 

 

Control Experiments 

To be able to visualize events on both acetylated and deacetylated microtubules 

simultaneously in our assays, the acetylated and deacetylated microtubules were 

differentially labeled. While deacetylated microtubules were labeled with Alexa488, 

acetylated microtubules were labeled with the longer Atto590, both using with the same 

labeling chemistry. Even though the microtubules were minimally labeled with a labeling 

ratio of 1.5 - 3.8%, different fluorescent dyes may have different properties, including 

some related to the electrical charge they carry. The concern was that this might interfere 

with any existing electrostatic or structural interactions between the kinesin and the 

microtubule. Controls for possible effects of the Alexa488 and Atto590 dyes on the 

kinesin-microtubule interaction were performed by repeating measurements for velocity, 

run length and binding in separate assays for unlabeled acetylated or deacetylated 

microtubules. These assays confirmed that the dyes used in our experiments did not 

change our results. Figure 15 shows histograms to compare the measured velocities and 

run lengths, and a bar graph to compare landing rates. Kinesin-1 on unlabeled acetylated 

and deacetylated microtubules had a velocity of 0.61 ± 0.14 µm/s and 0.67 ± 0.13 µm/s 

e. 
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respectively. While a two-sample k-s test showed that the two distributions are 

significantly different at the 0.05 level (p << 0.05), the 9% difference in mean velocities 

is not sufficient to explain kinesin-1 selectivity for acetylated microtubules as observed in 

vivo. Run length on unlabeled acetylated and deacetylated microtubules was 0.47 ± 0.29 

µm and 0.46 ± 0.33 µm respectively. A two-sample k-s test showed that the run length 

distributions are not significantly different (p = 0.54). Landing rate on unlabeled 

acetylated and deacetylated microtubules was 4.38 events/µm/min and 6.69 

events/µm/min respectively. 

 

 

a. b. 

c. d. 
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Figure 15: Motility parameters for RnKHC560 on unlabeled acetylated and deacetylated 

microtubules. The use of different dyes to label acetylated and deacetylated microtubules 

does not affect motility. Motility on deacetylated microtubules: a. velocity = 0.67 ± 0.13 

μm/s, c. run length = 0.46 ± 0.33 μm; Motility on acetylated microtubules: b. velocity 

0.61 ± 0.14 μm/s, d. run length = 0.47 ± 0.29 μm. e. Landing rate on deacetylated 

microtubules = 6.69 events/μm/min; acetylated microtubules = 4.38 events/μm/min 

 

The K40 acetylation site is in the lumen of the microtubule (56), similar to the taxol-

binding site and so an associated concern was the possibility of interference from the use 

of taxol to stabilize microtubules in our motility assays. Because we do not know how 

acetylation affects microtubules, it is possible that taxol may somehow mask that effect 

and thus conceal the ability of kinesin to distinguish acetylated and deacetylated 

microtubules from one another. Controls were performed to exclude this possibility by 

using taxol-free GMPCPP microtubules. As shown in Figure 16, we found no significant 

change in the motility properties of kinesin on acetylated or deacetylated microtubules 

stabilized without taxol. Kinesin-1 on GMPCPP acetylated and deacetylated microtubules 

had a velocity of 0.74 ± 0.14 µm/s and 0.73 ± 0.16 µm/s respectively. Run length on 

GMPCPP acetylated and deacetylated microtubules was 0.77 ± 0.14 µm and 0.79 ± 0.10 

µm respectively. A two-sample k-s test showed no statistically significant difference in 

the distributions with p = 0.91 for velocity data compared and p = 0.23 for run length data 

compared. Landing rate on GMPCPP acetylated and deacetylated microtubules was 3.23 

events/µm/min and 5.00 events/µm/min respectively. 

e. 
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Figure 16: Motility parameters for RnKHC560 on GMPCPP-stabilized acetylated and 

deacetylated microtubules. The use of taxol to stabilize microtubules does not 

differentially affect acetylated and deacetylated microtubules. Motility on deacetylated 

microtubules: a. velocity = 0.73 ± 0.16 μm/s, c. run length = 0.79 ± 0.10 μm; Motility on 

acetylated microtubules: b. velocity 0.74 ± 0.14 μm/s, d. run length = 0.77 ± 0.14 μm. e. 

Landing rate on deacetylated microtubules = 5.00 events/μm/min; acetylated 

microtubules = 3.23 events/μm/min 

The kinesin-microtubule interaction has been shown to be dependent on the ionic strength 

of the motility buffer (154). In order to ensure that our observations were not affected by 

a. b. 

c. 

e. 

d. 
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assay buffer conditions, we conducted experiments using PERM buffer (25 mM HEPES, 

115 mM KOAc, 5 mM NaOAc, 5 mM MgCl2, 0.5 mM EGTA, pH 7.4) to mimic the 

physiological environment in vivo. Figure 17 shows a comparison of the velocity, run 

length and landing rate measurements. Under these conditions as well, there was no 

appreciable change in kinesin-1 motility due to a difference in the acetylation state of the 

microtubules. Kinesin-1 on acetylated and deacetylated microtubules in a high ionic 

strength buffer had a velocity of 0.78 ± 0.15 µm/s and 0.81 ± 0.18 µm/s respectively. Run 

length on acetylated and deacetylated microtubules in a high ionic strength buffer was 

0.57 ± 0.30 µm and 0.62 ± 0.37 µm respectively. A two-sample k-s test showed that the 

distributions are not significantly different with p = 0.22 for velocity data compared and p 

= 0.78 for run length data compared. Landing rate on acetylated and deacetylated 

microtubules in a high ionic strength buffer was 0.82 events/µm/min and 1.26 

events/µm/min respectively. 

Our results are not influenced by the use of dyes, microtubule-stabilizing agents or buffer 

ionic strength. In conclusion, the results show that that enzymatic acetylation of α-tubulin 

K40 by itself cannot directly account for the highly preferential transport of kinesin-1 on 

acetylated microtubules observed in vivo.  

 

a. b. 

c. 
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Figure 17: Motility parameters for RnKHC560 on acetylated and deacetylated 

microtubules in a physiological buffer. Our results are consistent when the assays are 

repeated in a high ionic strength buffer. Motility on deacetylated microtubules: a. velocity 

= 0.81 ± 0.20 μm/s, c. run length = 0.62 ± 0.32 μm; Motility on acetylated microtubules: 

b. velocity 0.78 ± 0.16 μm/s, d. run length = 0.57 ± 0.26 μm. e. Landing rate on 

deacetylated microtubules = 1.26 events/μm/min; acetylated microtubules = 0.82 

events/μm/min 

To make a direct comparison to our results from gliding assays performed with the 

Tetrahymena doublet microtubules in the previous section of this chapter, we performed 

gliding assays with an NKHK560 chimera using our purified, labeled acetylated and 

deacetylated bovine brain microtubules. Deacetylated microtubules moved at a mean 

velocity of 1.18 ± 0.06 μm/s while acetylated microtubules moved at a mean velocity of 

0.93 ± 0.06 μm/s on NKHK560 kinesin. When this assay was repeated using RnKHC560 

kinesin, we found the mean velocity for deacetylated microtubules was 0.50 ± 0.03 μm/s 

and for acetylated microtubules it was 0.49 ± 0.02 μm/s. N = 24 for all measurements 

shown in Figure 18. The values are in agreement with previously published data for these 

e. 

d. 
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two motors. While, a two-sample k-s test indicates statistically significant differences in 

velocity data distribution for NKHK560 (p << 0.05), the increase in velocity observed 

with this chimeric motor does not correspond with the trend seen for Tetrahymena 

doublets. Velocity data distribution was not significantly different for RnKHC560 (p = 

0.90) and these results indicate that K40 acetylation of α-tubulin does not affect kinesin-1 

velocity in a multiple-motor gliding assay. 

 

Figure 18: Velocity of acetylated and deacetylated microtubules in gliding assays with 

NKHK560. There is no significant change in the gliding velocity between acetylated and 

deacetylated microtubules using either a. RnKHC560 or b. NKHK560 kinesin constructs. 

The trend for NKHK560 is not consistent with that previously observed for doublets 

(compare with Fig. 10). 

 

Discussion 

PTMs of tubulin are postulated to play many different roles in regulating cellular 

processes. The goal of our work is to determine if PTMs of tubulin are able to directly 

modulate the interactions of kinesin with microtubules and thus enable selective, targeted 

transport in cells. To do this, we compared the binding and motility of kinesin-1 on 

completely acetylated and completely deacetylated microtubules through in vitro 

experiments. Microtubules were polymerized from purified, enzyme treated tubulin 

obtained from treating bovine brain tubulin with either the MEC17 or SIRT2 enzymes in 

vitro. Results of enzyme-catalyzed acetylation and deacetylation were confirmed by 



49 
 

using an anti-body specific for acetylation of K-40 on α-tubulin. Based on our hypothesis 

that acetylation of K40 on α-tubulin directly affects kinesin-1 motility, we expect that any 

change in the state of acetylation will result in a corresponding change in the motor 

velocity, run length or binding. We therefore quantified these parameters by observing 

kinesin-1 motility on acetylated and deacetylated microtubules together in a single-

molecule TIRF motility assay. Because the kinesin-1 motility is stochastic in nature, 

results from the measured motility parameters follow a statistical distribution, from which 

the means can be estimated. In order to ensure that our results were robust, we made our 

data sets large enough (n>1000) to comfortably perform stastical analysis such as fitting 

of Gaussian or exponential profiles to velocity and run length histograms respectively. 

Our results have shown that the in vitro motility of kinesin-1 is indistinguishable on 

microtubules polymerized from completely acetylated versus completely deacetylated 

tubulin. A two-sample k-s test performed to show that the 0.02 μm/s difference in mean 

velocities is statistically significant with p = 0.001. However, the 3% decrease in velocity 

on deacetylated microtubules is not sufficient to explain the exclusive selectivity of 

kinesin-1 motility along acetylated microtubules observed in vivo. A 10% decrease in run 

length on deacetylated microtubules was shown to be statistically insignificant with a p = 

0.21 for run length data comparison. Mean landing rate for the motors was found to be 

nearly 4.0 events/µm/min on both acetylated and deacetylated microtubules. This was 

also statistically insignificant as per analysis. We also performed control assays to test for 

the effect of differential labeling, taxol-stabilization and ionic strength on the motility 

parameters being measured. From our experiments, we conclude that kinesin-1 motility is 

not directly influenced by acetylation or deacetylation of K40 on α-tubulin of 

microtubules. 

Ours is the first study of its kind because having been conducted in an in vitro 

environment comprising of only the interacting proteins of interest, it eliminates any 

effects from interactions with the global transport machinery, MAPs or changes in other 

PTMs. A working example of the effect of such interactions was recently shown by Sudo 

and Baas through their observation that in cells, the MAP ‘tau’ inhibits acetylation-based 

enhancement of katanin binding (123). At first glance, our findings may be surprising 

because simplistically, they appear to be in conflict with previous literature on the same 
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subject. But a closer investigation reveals that the experimental conditions for these 

related observations are distinctly different. For the reader’s benefit I will briefly discuss 

the most closely related previously published studies and how the differences between 

our experiment and theirs lead us a step closer to understanding the mechanism by which 

tubulin PTMs might function. 

The Reed et al. paper was a turning point in establishing a strong correlation between 

acetylation of K40 on α-tubulin and kinesin-1 motility (117). A majority of the results in 

this paper were based on cell biological studies using neurons to show that acetylation 

upregulates the motility of kinesin-1 in vivo. In an extension of the results to an in vitro 

assay, microtubules were polymerized from purified WT and mutant Tetrahymena 

axonemal tubulin to show that gliding velocity of K40R microtubules was reduced by 

17% on kinesin-1, when compared with the gliding velocity of WT microtubules. A bulk 

AMPPNP-binding assay showed that significantly less kinesin-1 bound to K40R tubulin 

than to bovine or WT tubulin. It was concluded that acetylation of α-tubulin K40 

promotes anterograde transport of kinesin-1 cargo and that kinesin-1 binding and motility 

is directly enhanced by acetylation of α-tubulin K40. We have seen a similar increase in 

velocity for WT (acetylated) microtubules over K40R (unacetylated microtubules) in our 

gliding assays but subsequent results from motility assays with enzyme-treated acetylated 

and deacetylated tubulin did not follow the same trend. This apparent conflict could be 

explained by a number of reasons. It is possible that the difference in kinesin-1 velocity 

between WT and K40R microtubules is dependent on the multi-motor configuration. 

Also, WT Tetrahymena axonemal tubulin carries vastly different modifications than 

neuronal (bovine- brain) tubulin and consists of different tubulin isotypes (150). WT 

axonemal α-tubulin, for example, runs faster on an SDS-PAGE gel than bovine brain α-

tubulin (117). For example, axonemal tubulin is known to specifically carry a conserved 

axonemal motif (EGEFXXX), essential for ciliary beating. Upon genetic mutation, 

axonemal tubulin in the K40R mutant could have experienced changes in the levels of the 

other PTMs (155) and so it is possible that mutating the K40 residue could produce 

different results than the in vitro acetylation and deacetylation techniques used in our 

current work. In our work, we found that the difficulty in working with sticky axonemal 

tubulin which does not cycle particularly well imposes practical limitations on the 
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performance of motility assays. While there exist some differences in motility between 

wild-type and K40R doublet microtubules, the differences are not commensurate with 

microtubule selectivity observed in vivo for kinesin-1. These differences do not repeat in 

single-molecule motility assays with Tetrahymena doublets and most importantly, are not 

observed in a thorough comparison of kinesin-1 motility on completely acetylated and 

completely deacetylated microtubules generated by in vitro enzyme treatment of bovine 

tubulin. Our results with purified components conclusively show that acetylation of K40 

on α-tubulin does not directly affect the single-molecule motility of kinesin-1. 

Another extensive study on the effect of tubulin acetylation on kinesin-1 motility was 

performed by treating neurons with a deaceatylase inhibitor. Trichostatin A (TSA) is a 

small molecule that has been shown to inhibit 11 known human histone deacetylases 

(HDACs) and cause hyper-acetylation in cells (133). Dompierre et al. treated neurons 

with TSA to show that the kinesin-1 dependent BDNF-vesicle transport deficit resulting 

from Huntington’s disease could be rescued by TSA- treatment (128). An increase in 

both anterograde and retrograde axonal transport upon TSA-induced hyper-acetylation of 

microtubules  was shown and it was concluded that increased acetylation by HDAC6 

inhibitors acts as a general mechanism to regulate microtubule-based transport in cells. 

Contrary to our experiments, these experiments do not isolate the effect of (K40) α-

tubulin acetylation on kinesin-1 motility to focus on the direct interaction between two 

proteins of interest. In fact, Zilberman et al. showed that specifically the TSA-induced 

inhibition of HDAC6 (and not siRNA mediated knock-down) in cells affects microtubule 

dynamics (130). Another recent paper on the effect of HDAC6 on Huntington’s disease 

shows that while HDAC6 knock-out increases tubulin acetylation in neuronal cells 

throughout the brain, it does not, in fact, modify kinesin-1 dependent BDNF transport or 

disease progression (129). In co-existence with these conflicting studies, there have been 

constistent reports of overlapping tubulin PTMs (156), one of which was recently shown 

to play a more direct role in kinesin-1 motility, as described below. 

Konishi et al. showed that in neurons, mutation of a 4-amino-acid sequence in the β5-L8 

region of the kinesin-1 motor domain abolished its preferential selectivity towards axonal 

(detyrosinated) microtubules over dendritic (tyrosinated) ones (126). They further 
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performed bulk in vitro assays to test the binding of kinesin-1 to tyrosinated and 

detyrosinated microtubules in the presence of AMPPNP. These binding assays were 

performed in the presence of high tubulin concentrations and with incubation times far 

exceeding the time for attaining equilibrium in a kinesin-microtubule binding reaction of 

this nature. For detyrosinated microtubules, they observed increased binding of WT but 

not mutant kinesin whereas for acetylated microtubules obtained from TSA-treated HeLa 

cells, they reported an increase in the binding of both WT and mutant kinesin. From this 

they concluded that tubulin detyrosination in microtubules enables selective binding of 

kinesin-1 while acetylation may increase overall binding. It is useful here to note that in 

vivo acetylation and detyrosination of microtubules is believed to be concurrent even 

among different cell types, thus generating a subset of acetylated and detyrosinated 

microtubules (121, 157-159). Cai et al. and Dunn et al., both observed that kinesin-1 

shows preferential motility on this subset of modified microtubules (109, 122), but Dunn 

et al. observed higher gliding velocities for purely tyrosinated microtubules in vitro. 

Clearly, before the acetyl transferase MEC17 was identified and isolated, it was not easy 

to isolate the effect(s) of acetylation. 

It is for the first time ever that we are presenting results from the direct observation of 

kinesin-1 motility with specific control over the level of α-tubulin K40 acetylation. We 

have shown that the motility of kinesin-1 in vitro is not directly affected by acetylation of 

the α-tubulin K-40 residue. From this we conclude that kinesin-1 cannot directly 

recognize the acetylation state of α-tubulin K40. We have taken the first step in 

presenting a new approach to understand the functions of PTMs- one that avoids 

ensemble effects in altering PTMs, global intra-cellular changes occurring from altering 

one (or more) of the modifications and the influence of MAPs. As is evident from the 

discussed literature, in vivo, PTMs are seldom found in isolation. In this context, 

acetylation and detyrosination are found to be concurrent modifications. Since we do not 

yet know why PTMs occur concurrently or how they might influence each other, it would 

be interesting to investigate the combined effect of α-tubulin acetylation and 

detyrosination on kinesin-1 motility, such that each modification can be controlled 

independently. This would help us correctly identify their independent effects and learn 

how the modifications influence one another to understand their collective effect. 



53 
 

CHAPTER 3

The Combined Effect of Tubulin Acetylation and Detyrosination on the in vitro 

Motility of Kinesin-1 

In the previous chapter we have shown through in vitro single molecule motility assays, 

that acetylation of K40 on α-tubulin has no direct effect on the binding and motility of 

kinesin-1 on microtubules. Our study was robust consisting of a large data set with 

additional control experiments to test for interference from dyes used to label tubulin, the 

use of taxol for stabilizing microtubules and the assay buffer conditions used. The result 

was surprising because it appeared to contradict previous results from literature which 

suggested an increase in kinesin-1 binding and velocity due to acetylation of K40 on α-

tubulin. Upon carefully examining the experimental conditions from previous studies, it 

became clear that the common denominator for these experiments was the presence of 

additional tubulin PTMs. In seeking to bridge the gap between their observations and 

ours, we must take a few steps back to look at the other PTMs that might be involved in 

the kinesin-microtubule interaction being investigated. It is important to recollect from 

the introduction to this thesis, that α-tubulin acetylation of microtubules in cells has long 

been associated with another modification- detyrosination of α-tubulin CTTs. The 

overlap of these two modifications has been recorded separately in a variety of cell types 

including neurons, cochlear epithelial cells, chondrocytes and osteoclasts (121, 157-159). 

In experiments directly related to the PTM hypothesis for kinesin, both Dunn et al. and 

Cai et al. observed that in COS cells, fluorescently labeled kinesin-1 translocates along 

microtubules that are marked by anti-bodies for both acetylation and detyrosination of α-

tubulin (109, 122). Konishi et al. showed that in neuronal axons, it is α-tubulin 

detyrosination that leads to the preferential recruitment of kinesin-1 through its motor 

domain. This led us to speculate that the physiologically relevant state of these two 

modifications i.e., for them to be concurrent on the same microtubule, could be the 

related to the observed changes in motility indicated in previous literature. As a result, we 
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decided to adopt a combinatorial approach by investigating the effect of α-tubulin 

acetylation plus detyrosination of microtubules on kinesin-1 motility. Since there is no 

recombinant form of the tyrosine ligase enzyme or the enzyme for detyrosination, we 

purified tubulin from HeLa cells. This tubulin is >90% tyrosinated (160) and can be 

acetylated in vitro using MEC17 or detyrosinated using a carboxypeptidase (161). An 

added benefit of using HeLa tubulin is that purified native HeLa tubulin has low levels of 

polyglutamylation and this alleviates concerns about interference from this PTM in our 

assays (99). Our new hypothesis is that α-tubulin detyrosination in addition to acetylation 

affects kinesin-1 motility behavior. To test this hypothesis, we used purified HeLa tubulin 

and treated it with enzymes to control levels of α-tubulin acetylation and detyrosination. 

Motility of kinesin-1 was observed on acetylated detyrosinated or acetylated tyrosinated 

microtubules in single-molecule TIRF motility assays. Changes in the velocity, run 

length and binding of kinesin-1 on purified populations of acetylated- tyrosinated and 

acetylated-detyrosinated microtubules were quantified to measure a direct effect of 

acetylation and detyrosination on kinesin-1 motility. 

Materials and Methods 

Cloning and Preparation of Proteins 

Motors 

Mammalian Lysate: RnKHC560-3xmcit in lysate form was extracted from over-

expression in mammalian COS cells as described in Chapter 2 

Bacterial Expression: RnKHC560 motors were expressed in BL21(DE3) cells and 

purified as described in Chapter 3 with the only difference being that the RnKHC560 

construct was C-terminally tagged with an EGFP sequence inserted before the his-tag. 

Following Ni-NTA column purification, the RnKHC560-EGFP motor was further 

purified using microtubule-affinity purification. To do this, GTP- microtubules were 

polymerized at 4 mg/mL and then stabilized with 100 μL 11 μM taxol in BRB80. The 

microtubules were centrifuged in the airfuge rotor at 30 psi for 35 s and resuspended in 

100 μL 11 µM taxol in BRB80. 20 μL of column-purified kinesin was incubated the 

microtubules in the presence of 1 mM AMPPNP, 1 mM MgCl2 in BRB80 (80 mM 

PIPES, 1 mM EGTA, 1 mM MgCl2, pH 6.8) on ice for 40 min. The kinesin-microtubule 



55 
 

complex was centrifuged at 4 ºC, 80,000 rpm in the TLA 120.1 rotor for 5 min and the 

pellet was resuspended in 25 μL release buffer (BRB80, 10% sucrose, KCl, 5 mM 

MgCl2, 2 mM EGTA, 12 µM taxol, 5 mM ATP). The microtubule-motor complex was 

incubated on ice for 20 min and then centrifuged in the TLA 120.1 rotor at 80,000 rpm 

for 5 min to spin down the microtubules. The kinesin-containing supernatant was 

aliquoted and flash-frozen for storage at -80ºC. 

Enzyme Purification 

MEC17 used for acetylation of tubulin was also purified as described in Chapter 3. 

Carboxypeptidase A (CPA) was purchased from Sigma-Aldrich (St. Louis, MO). 

Tubulin Purification 

Tubulin was purified from HeLa S3 cells (ATCC, Manassas, VA) using the method of 

Bulinski et al. (161). Cells were initially plated as adherent cells in F-12K medium 

(ATCC) supplemented with 10% FBS (Invitrogen, Carlsbad, CA) or Fetalclone III 

(Thermo Scientific, Waltham, MA) and allowed to grow at 37ºC in a 5% CO2 incubator. 

They were then trypsinized and transferred into suspension medium at 37ºC, 5% CO2, 

200 rpm in a floor incubator. Suspension cultures were grown by sequential dilution of 

cells in minimum essential medium- Joklik modification (Sigma-Aldrich) with 10% FBS. 

All cells were grown in the presence of 50units/mL pen/strep. 10L of suspension culture 

yielded 2.5 mg of soluble HeLa tubulin. Tubulin was resuspended in BRB80 before it 

was aliquoted and flash-frozen for storage at -80ºC. A 7.5% SDS-PAGE gel was run with 

samples from the purification procedure to demonstrate the purity of the tubulin (see 

Figure 19). 

In vitro Enzyme Treatment of Tubulin 

For acetylation of tubulin, purified HeLa tubulin was incubated with purified MEC17 

enzyme as described in chapter 2. To detyrosinate the tubulin, it was further incubated 

with 10ug/mL CPA (Sigma-Aldrich, St. Louis, MO) on ice for 20min. The reaction was 

quenched with 20 mM DTT and the resulting modified tubulin was processed through 

two cycles of polymerization and depolymerization to remove any incompetent tubulin 

generated during enzyme treatment. The effectiveness of the cycling was verified by 
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running out samples from the cycling procedure on a 7.5% SDS-PAGE gel as shown in 

Figure 19. 

Acetylation and detyrosination of tubulin were confirmed by using immunoblotting with 

mouse anti-acetylated tubulin (T6793, Sigma-Aldrich, St. Louis, MO) and anti-

detyrosinated tubulin AB3201 (Millipore, Billerica, MA) antibodies, respectively.  

Single-molecule TIRF Motility Assays 

Motility assays were performed on a Zeiss Axiovert microscope modified to allow TIRF 

microscopy using a 488nm Ar-ion laser for excitation (50). Flow chambers were made 

using cover slips (Corning) that were cleaned with a small amount of detergent and then 

with 3 cycles of deionized distilled water in a sonicator. Microtubules polymerized in the 

presence of 1 mM GTP using 4mg/mL tubulin were stabilized with 10µM taxol in 

BRB80. The assay chamber was coated with a mono-layer of anti-tubulin antibody 

(T8328 Sigma-Aldrich) by flowing through a chamber-volume of 0.3 mg/mL anti-body 

and allowing the chamber to incubate on ice for 3min. Following a wash step at room 

temperature, microtubules were allowed to bind to the anti-body monolayer for 5 min 

before 15mg/mL BSA was introduced into the chamber as a blocking agent. The final 

flow-through for the assay was ~10 nM kinesin in P12 buffer (12 mM PIPES, 2 mM 

MgCl2, 1 mM EGTA, pH 6.8) supplemented with 1 mM MgCl2, 2 mM ATP, 1 mg/mL 

BSA, 10 mM glucose, 1.65 mg/mL glucose oxidase, 0.27 mg/mL catalase and 143 mM 

BME.  

Data Collection and Analysis 

Movies were recorded at a rate of 10 frames/s and analyzed in the same way as was 

described in Chapter 2. An additional feature of the program was tested and included that 

allows the program to concatenate pieces of one single event otherwise separated during 

analysis due to a photo-blinking event. To obtain a distribution for the velocity and run 

length measurements, histograms were generated by plotting the number of events 

observed against binned values. The velocity profile was fit to a Gaussian distribution 

with the centroid of the Gaussian specifying the mean velocity. The run length profile 

was fit to an exponential distribution with the decay constant of the exponential 

specifying the mean run length. The R
2
 value of the fits indicates the proportion of 
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variability that the fit is able to account for. Histograms for the velocity data were fit to 

Gaussian distributions with R
2
 >93% and histograms for the run length were fit to single 

exponential distributions with R
2
 >99% in Origin Lab. Binding was estimated by 

measuring the landing rate on microtubules. The number of events on a selected 

microtubule in a recorded movie was counted and then divided by the length of the 

microtubule and the length of the movie in order to obtain a landing rate with the units of 

events/µm/min. 

Results 

Tubulin was purified from HeLa cells using high salt buffer to remove MAPs and 

competent tubulin was obtained by performing two cycles of polymerization and 

depolymerization. Purity of the tubulin was estimated using an SDS-PAGE gel as shown 

in Fig. 19. The cycling and analysis was repeated after treatment with modifying 

enzymes. 

 

 

 

 

 

 

 

 

Figure 19. SDS-PAGE and Western Blot for HeLa tubulin purification and CPA 

treatment. a. purified soluble HeLa tubulin in lane 6 (dashed circle); b. cycled, soluble 

HeLa tubulin in lane 7 after CPA treatment for detyrosination (dashed circle); c. Western 

blot results for before and after CPA treatment (lanes 1 and 2) compared with untreated 

bovine brain tubulin (lane 3) showing no detyrosination of HeLa tubulin before CPA 

treatment and extensive detyrosination after treatment. 

a. 

b. 

c. 
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Single- molecule TIRF Motility Assays 

We performed single molecule in vitro TIRF motility assays to observe the motility of 

kinesin-1 on acetylated microtubules that are either tyrosinated or detyrosinated. Pools of 

tyrosinated-acetylated or detyrosinated-acetylated tubulin were generated by sequential in 

vitro enzyme treatment with CPA only or MEC17 and CPA, respectively. Detyrosination 

was confirmed through immunoblotting as shown in Figure 19. The motility of GFP-

labeled purified kinesin-1 was recorded on microtubules polymerized from each pool of 

differentially modified tubulin. The resulting data was analyzed using a custom-written 

matlab program for identifying and tracking single-molecule motility events. The 

analysis was used to compare velocity, run length and binding measurements for the 

motor were on tyrosinated-acetylated and detyrosinated-acetylated microtubules. 

Our results indicate that kinesin-1 does not show any change in velocity, run length or 

landing rate due to the combination of detyrosination and acetylation of microtubules (see 

Figure 20). Mean velocity for RnKHC560 on acetylated-tyrosinated microtubules, for n = 

1461 events was found to be 0.53 ± 0.19 μm/s. For acetylated-detyrosinated 

microtubules, velocity of kinesin-1 was found to be 0.46 ± 0.18 μm/s from a total of 854 

events. A two-sample k-s test showed that the distributions for velocity are statistically 

difference with a p << 0.05. But a 13% decrease in velocity on tyrosinated microtubules 

is insufficient to account for the selectivity of kinesin-1 towards a subset of microtubules 

in vivo. The mean run length for kinesin-1 on acetylated-tyrosinated microtubules for the 

same set of data was found to be 0.54 ± 0.42 μm. For acetylated-detyrosinated 

microtubules, it was 0.52 ± 0.41 μm. These run length distributions were not found to be 

significantly different based on a two-sample k-s test with a p = 0.61. Landing rate for 

kinesin-1 on acetylated-tyrosinated microtubules, averaged over multiple microtubules in 

five different assays was found to be 1.50 ± 0.40 events/ μm/ min. For acetylated-

detyrosinated microtubules, the landing rate was 1.70 ± 0.51 event/ μm/ min. The 

distribution of data for the landing rates was also not found to be significantly different 

based on a two-sample k-s test with a p = 0.099. 
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Figure 20: Motility parameters for RnKHC560 on acetylated tyrosinated and acetylated 

detyrosinated microtubules. Motility is not significantly affected by the state of 

tyrosination for acetylated microtubules. Motility on acetylated tyrosinated microtubules: 

a. b. 

c. 

e. 

d. 



60 
 

a. velocity = 0.53 ± 0.19 μm/s, c. run length = 0.54 ± 0.42 μm; Motility on acetylated 

detyrosinated microtubules: b. velocity = 0.46 ± 0.18 μm/s, d. run length = 0.52 ± 0.41 

μm. e. Landing rate on acetylated tyrosinated microtubules = 1.50 ± 0.40 events/μm/min; 

acetylated detyrosinated microtubules = 1.70 ± 0.51 events/μm/min 

Control Experiments 

A major concern, also voiced in the chapter 2, is the interplay between different tubulin 

modifications. This was in fact, the motivation for studying the combination of α-tubulin 

acetylation and detyrosination. Considering this, we could not ascertain the role of α-

tubulin detyrosination on kinesin-1 motility by simply discounting a combinatorial effect 

from α-tubulin acetylation. In order to study the effect of detyrosination independently, 

we performed in vitro enzyme treatment on HeLa tubulin with only CPA and not 

MEC17. The tubulin treatment and cycling was carried out as before and the resulting 

detyrosinated microtubules are expected to have acetylation levels of WT HeLa tubulin 

(<4%). We compared the motility of kinesin-1 on these detyrosinated microtubules with 

microtubules polymerized from WT HeLa tubulin (99.5% tyrosinated) by repeating the 

single-molecule TIRF motility assays to characterize motility of RnKHC560-EGFP on 

the tyrosinated and detyrosinated microtubules. Data analysis revealed no change in 

velocity, run length and binding, parameters to indicate change in motility behavior. Our 

data showed that RnKHC560 moved at a velocity of 0.43 ± 0.18 μm/s on tyrosinated 

microtubules and at a velocity of 0.47 ± 0.19 μm/s on detyrosinated microtubules. The 

velocity data distributions were found to be significantly different as per a two-way k-s 

test with a p << 0.05. Run length on tyrosinated microtubules was found to be 0.46 ± 0.38 

μm and on detyrosinated microtubules it was 0.51 ± 0.53 μm. Run length data 

distributions were not found to be significantly different with a p = 0.45. Landing rates 

for the kinesin were 1.29 ± 0.16 events/μm/min on tyrosinated microtubules and 1.55 ± 

0.08 events/μm/min on detyrosinated microtubules. The landing rate data distributions 

were not found to be significantly different (p = 0.1). Figure 21 shows histograms for 

distributions of these measurements. 
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Figure 21: Motility parameters for RnKHC560 on tyrosinated and detyrosinated 

microtubules. Without modifying the state of acetylation, motility is not significantly 

affected by changing the state of detyrosination. Motility on tyrosinated microtubules: a. 

velocity = 0.43 ± 0.18 μm/s, c. run length = 0.46 ± 0.38 μm; Motility on detyrosinated 

microtubules: b. velocity = 0.47 ± 0.19 μm/s, d. run length = 0.51 ± 0.53 μm. e. Landing 

a. b. 

c. 

e. 

d. 
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rate on tyrosinated microtubules = 1.29 ± 0.16 events/μm/min; detyrosinated 

microtubules = 1.55 ± 0.08 events/μm/min 

As a test for the kinesin motor purified from bacterial expression, we decided to use the 

mammalian-expressed RnKHC560-3xmcit COS-cell lysate, as in previous chapters, with 

microtubules polymerized from tyrosinated and detyrosinated tubulin. To do this, we 

repeated the above single-molecule TIRF motility assays with 10-fold diluted lysate. 

While measurements in the velocity and run length again showed little significant change 

upon α-tubulin detyrosination, the binding of kinesin-1 in lysate form was two-fold 

reduced upon detyrosination. We found that the velocity of RnKHC560 from lysate on 

tyrosinated microtubules was 0.46 ± 0.18 μm/s and on detyrosinated microtubules it was 

0.42 ± 0.17 μm/s. Run length on tyrosinated microtubules was 0.36 ± 0.23 μm and on 

detyrosinated microtubules it was 0.29 ± 0.17 μm. Figure 22 shows histograms for 

distributions of these measurements. For both velocity and run length measurements, a 

two-sample k-s test indicated that the data distribution is significantly different. To our 

surprise, the landing rate for RnKHC560 was 1.63 ± 0.13 events/μm/min on tyrosinated 

microtubules and only 0.71 ± 0.09 events/μm/min on detyrosinated microtubules as 

shown in Figure 22.  

 

a. b. 
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Figure 22: Motility parameters for RnKHC560 lysate on tyrosinated and detyrosinated 

microtubules. While velocity and run length of kinesin-1 in lysate do not change 

significantly due to detyrosination, landing rate shows a 2-fold change in favor of 

tyrosinated microtubules. Motility on tyrosinated microtubules: a. velocity = 0.46 ± 0.18 

μm/s, c. run length = 0.36 ± 0.23 μm; Motility on detyrosinated microtubules: b. velocity 

= 0.42 ± 0.17 μm/s, d. run length = 0.29 ± 0.17 μm. e. Landing rate on tyrosinated 

microtubules = 1.63 events/μm/min; detyrosinated microtubules = 0.71 events/μm/min 

Taken together, our experiments confirm that detyrosination of α-tubulin independently 

does not cause a change in kinesin-1 motility, with or without the presence of the 

additional α-tubulin K-40 acetylation. Interestingly, the addition of 10-fold diluted cell 

lysate in the assay affects the binding of kinesin-1 such that it there is a two-fold increase 

in kinesin-1 landing rate on tyrosinated microtubules in the presence of lysate. There are 

several possible explanations for this statistically significant difference in landing rates 

and therefore interpretation of this result requires careful analysis of the factors in our 

c. 

e. 

d. 
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experiments that need to be accounted for and addressed, as is discussed in the following 

section. 

Discussion 

In the previous chapter, we showed that acetylation of K40 on α-tubulin does not directly 

affect the motility behavior of kinesin-1. Although this appeared surprising initially, 

closer investigation revealed differences between previous experimental studies and ours 

that could well account for the difference in results. In vivo, PTMs most often co-exist on 

the same subset of microtubules. In particular, α-tubulin acetylation and detyrosination 

are concurrent modifications, frequently occurring on a subset of microtubules which 

have, in recent years, been shown to preferentially recruit kinesin-1 motors. While 

acetylation resides in the lumen of the microtubule, detyrosination is a modification on 

the CTT of α-tubulin, thus presenting itself on the surface. It is believed that removal of 

the terminal tyrosine residue reveals a glutamate residue beneath (162). In this chapter 

our goal was to resolve the effects of α-tubulin acetylation, detyrosination and their 

combination on kinesin-1 motility behavior. To do this, we purified tubulin from HeLa 

cells and enzyme-treated the tubulin to obtain combinations of detyrosinated and 

acetylated forms. Kinesin-1 motility on differentially modified microtubules was 

observed through single-molecule in vitro TIRF assays. Velocity, run length and binding 

measurements for the motors were selected as parameters to characterize changes in the 

kinesin-1 motility. Upon analysis of our data, we did not see any significant change in 

kinesin-1 motility due to detyrosination alone or a combination of acetylation and 

detyrosination together. Velocities and run lengths remained comfortably within a 

standard deviation of the measurements. We did, however, observe a change in the 

binding of kinesin-1 upon the addition of COS-cell lysate. Addition of the lysate caused a 

two-fold decrease in the landing rate of kinesin-1 to detyrosinated microtubules, as 

compared to tyrosinated microtubules. 

We have shown that in the absence of MAPs or other proteins, kinesin-1 cannot identify 

detyrosination of α-tubulin CTTs, in the presence or absence of α-tubulin acetylation. 

Based on previous in vivo studies from Dunn et al., Cai et al. and Konishi et al. (109, 122, 

126) which provide fundamental clues to the preferential motility of kinesin-1 on 
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detyrosinated microtubules, our results raise interesting questions about the PTM-

recognition mechanism responsible for this observed preferential motility. Interpretations 

from in vivo observations cannot exclude the effect of MAPs. On the other hand, our 

study focuses on the use of purified components to perform in vitro motility assays and 

evaluate the direct effect of α-tubulin acetylation and detyrosination only. 

Dunn et al. showed that the distribution of GFP-labeled full length kinesin-1 in neuronal 

and non-neuronal (COS) cells was localized to a subset of microtubules in the cells (122). 

When the microtubules were visualized by immuno-staining with anti-bodies for 

acetylation, detyrosination and polyglutamylation, it was clear that microtubules in the 

subset that kinesin-1 preferred for motility were acetylated and detyrosinated. FRAP 

(fluorescence recovery after photo-bleaching) was used to show that the observed 

decoration of microtubules with kinesin-1 was due to the dynamic accumulation of 

kinesin-1 and not simply from aggregation of the motors. Thus, they showed that kinesin-

1 motility in the cells is localized to a subset of microtubules that is acetylated and 

detyrosinated. Further, AMPPNP-binding assay results analyzed by SDS-PAGE 

suggested that 1.5 times more kinesin-1 binds to detyrosinated microtubules than to 

tyrosinated microtubules but this difference is not likely to account for the stark contrast 

in binding preference in vivo. On the other hand, they showed in an in vitro microtubule 

gliding assay that the velocity of tyrosinated microtubules was higher than that of 

detyrosinated microtubules on kinesin-1. Neither result can account for the highly 

preferential motility of kinesin-1 along acetylated and detyrosinated microtubules in vivo. 

If we look at the docking studies from 3D reconstruction of cryo-EM images of kinesin 

on microtubules, it is clear that the α-tubulin surface is out of the way for kinesin-1 motor 

domains when they bind to the microtubule (163). It is plausible that the CTTs, 

particularly poly-modified, could contribute to regulating kinesin traffic along a 

microtubule. The docking results also suggest that a small fraction of the MAP tau, binds 

with a regular 8nm-periodicity such that it is centered on the α-tubulin subunit. Therefore 

it is possible that the binding of MAPs but not kinesin-1 motors is regulated by α-tubulin 

PTMs. The observation from our in vitro single-molecule assay showing that kinesin-1 

binding shifts in favor of tyrosination upon the addition of lysate, needs to be looked at in 
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closer detail. There could be several reasons for this observation and we will discuss 

some of the possibilities here. One explanation is that detyrosination provides a signal for 

the binding of MAPs or other proteins in the lysate which may bind to or compete with 

the kinesin-1 motor, demonstrating an effect that we would not see in using the purified 

kinesin. The purified kinesin, although is obtained by bacterial expression followed by 

affinity purification using a c-terminal his-tag. The motor is further purified using 

microtubule-affinity purification but the his-tag remains. It is possible that either point 

mutations are introduced during bacterial expression due to limitations with codon usage 

or that the his-tag in our end product interferes with normal electrostatics in the kinesin-

microtubule interaction. An experiment to purify kinesin-1 motor directly from the lysate 

and compare it with bacterially purified motor without a his-tag would provide us 

answers to these questions. We have already begun cloning to introduce a cleavable 

thrombin site before the his-tag which will allow the tag to be cleaved off prior to 

microtubule-affinity purification of the motor. 

We have shown that kinesin-1 does not directly recognize tubulin acetylation, 

detyrosination or a combination, thereof as a cue for a change in its motility along 

microtubules. While previous studies have used either an in vivo approach or one with 

partially purified proteins, our approach was to extract only the proteins of interest, purify 

them and then reproduce the kinesin-microtubule interaction in vitro, in an effort to 

identify how kinesin-1 might be able identify differentially modified microtubules. Our 

results are in good agreement with results from multiple-motor studies performed by 

Dunn et al. (122). An intermediate step was clearly shown by Konishi et al. wherein 

microtubules extracted from HeLa cells were detyrosinated to perform in vitro binding 

assays in the presence of 50% AMPPNP and 50% GTP with kinesin but without cycling 

or purification of the tubulin. They showed that truncated kinesin-1 binds more 

effectively to microtubules that are detyrosinated. Our assays contain only completely 

purified proteins of interest and therefore allow us to draw conclusions specifically on the 

direct interaction of kinesin-1 with tyrosinated or detyrosinated microtubules. We believe 

that in light of our findings, previous results indicate that the nascent state of the HeLa 

microtubules, likely from the presence of native MAPs, contributes to the specific 

microtubule identity that kinesin-1 is able to recognize. In this regard, it would be 
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interesting to pursue the introduction of specific MAPs in the in vitro assays that we have 

performed. 

Microtubules in neuronal axons that have been shown to accumulate kinesin-1 are 

acetylated, detyrosinated and polyglutamylated. An important difference between brain 

tubulin and HeLa tubulin is that glutamylated β-tubulin accounts for >50% of tubulin 

extracted from brains but only <4% of the total tubulin in HeLa cells (99). By controlling 

α-tubulin modifications of microtubules in our experiments, so far we have found that 

kinesin-1 does not directly recognize either acetylation or detyrosination or a 

combination of both. Yet, in vivo, kinesin-1 shows preferential motility along a subset of 

microtubules marked by α-tubulin acetylation and detyrosination. It seems that the 

mechanism by which preferential motility occurs in vivo such that it is concurrent with 

the α-tubulin modifications, depends on finding the identity of other proteins and PTMs 

associated with these microtubules. To do this using an in vitro approach, we would 

begin with introducing the most prominent β-tubulin CTT modification, 

polyglutamylation. With the addition of this modification, we would have covered all the 

major modifications that axonal microtubules are enriched in. 

Previous experiments with subtilisin treatment for complete removal of microtubule 

CTTs have shown that kinesin-1 motility is affected by the absence of the CTTs (50, 164-

165) but results appear to vary under different conditions. While Wang and Sheetz 

showed a 5-fold decrease in multi-motor run length for full length native kinesin upon 

subtilisin treatment of microtubules, Thorn et al. observed a modest 30% decrease in the 

run length of single truncated human kinesin upon subtilisin treatment and Lakamper et 

al. showed a 50% decrease in run length for Neurospora kinesin. Although there may not 

be complete agreement on the extent of the observed effect, these studies suggest the role 

of an electrostatic mechanism in regulating kinesin-1 run length. We do not know 

anything about the modification states of acetylation or detyrosination for the 

microtubules used in these experiments. We expect that the addition of 

polyglutamylation, a charged CTT poly-modification nearer to the binding site of the 

kinesin-1 motor domain than any other modification, is most likely to yield clues as to the 

preferential motility of kinesin-1 on a subset of microtubules. Looking at this new 
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modification in combination with the previous modifications we have looked at will also 

provide insight on the inter-play between different tubulin modifications which will 

eventually help us establish cause and effect roles for the effect of each PTM on intra-

cellular transport machinery. 
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CHAPTER 4

Device and/or Software Development 

During the course of performing experiments towards my thesis work, I found it 

extremely useful to leverage my mechanical engineering skills to design new setups or 

software. This has allowed me to design customized experiments that would not be 

possible to undertake with commercially available products. Three of the most promising 

developments will be described in this chapter.  

1. Novel Dual- color Imaging Device 

Background 

A dual color imaging device allows the simultaneous visualization of two different 

wavelengths emitted from a sample. The fundamental requirement in doing this is for the 

emitted beam to be chromatically split into two components and the split components to 

be re-positioned for side-by-side imaging. Thus, the simultaneous imaging of two 

wavelengths requires some optical manipulation of the beam emitted from the sample.  

Dual-color imaging is particularly useful in observing two interacting proteins labeled 

with different fluorophores. For high temporal fidelity in the observation of dynamic 

processes, it is best to image the two wavelengths on two halves of the same ccd chip. On 

the other hand, for high spatial fidelity, it is required that the two images can be 

accurately aligned with each other. Either way, an essential requirement is that the two 

wavelengths be properly focused with minimal optical aberrations. If the emitted beam 

suffers optical aberrations before it is split into the desired wavelength components, those 

aberrations are carried over into the dual view optical system, and depending on the 

optics mechanism offered by the system, they can either be eliminated or amplified. For 

example, if the two wavelength components have inherited their chromatic aberration 

from the optics in the microscope, something that is common for a high numerical 
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aperture (n.a.) objective lens such as that employed in objective-type TIRF microscopy, 

then an offset in their focal planes along the optical axis exists from before they enter the 

dual view device (see Figure 23). Commercial devices such as the one employed in our 

own laboratory (Photometrics Inc., Tucson, AZ) use a single collimating lens placed in 

the focal plane of the microscope tube lens in order to collimate the emitted beam before 

performing any other optical manipulation (see Figure 23). In the case of TIRF 

microscopy, where a high n.a. objective is required, the pre-existing offset in focal planes 

of two wavelength components means that there are two focal planes along the optical 

axis, both of which must somehow lie in the back-focal plane of the first collimating dual 

view lens, in order for both wavelength components to be collimated simultaneously. 

Thus, depending on where the lens is positioned, either the shorter wavelength 

component will be converged or the longer wavelength component will be diverged by 

the first collimating lens in the dual view device. Other designs for dual-color imaging 

have been proposed (166). 
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Figure 23: Chromatic aberration in the commercial dual-color optical setup. Optical 

components of the dual-color-device are contained in the dashed box 

Once the beam has been collimated in the dual view device, it is split into its two 

wavelength components by a dichroic beam splitting mirror. The separated wavelength 

components are passed through the appropriate emission filter for each one, before they 

are focused again with the help of a second lens. Along their paths through the dual-color 

imaging device, the two wavelength components are reflected with the use of silvered 

mirrors such that they can be focused side-by-side on two halves on the ccd chip of a 

camera for visualization. 
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Design Goals 

It is clear that chromatic aberration that is generated due the requirement of a high n.a. 

objective can be potentially transmitted through and even amplified with the addition of a 

dual-color imaging device. Also, this problem is compounded each time a new pair of 

wavelengths needs to be used. Our two main goals were: 

1. Use optical design ideas to eliminate the chromatic aberration instead of 

transmitting it through the optical system. 

2. Use mechanical design ideas to create a versatile setup that can easily 

accommodate different pairs of wavelengths. 

Optical Design 

The novelty of this device is in its optical configuration. Optical manipulation of the 

beam emerging from the microscope tube lens is required to be able to image its two 

wavelength component images on the adjacent halves of the ccd chip of a camera. The 

only way to accommodate the same image in two different colors on a single ccd chip, is 

to start with taking only half the image produced by the microscope, separate it into its 

two wavelength components and then lay the separated halves side-by-side on the ccd 

chip. To do this, the beam emerging from the tube lens must be partially shuttered so that 

only half the image from the microscope is processed through the dual-color imaging 

optics. We have done this by placing an aperture in the focal plane of the microscope 

tube lens (see Figure 24). The defining change in our optical design is that the emitted 

beam coming from the microscope tube lens is split into its two wavelength components 

by a dichroic beam splitter even before it is collimated. This allows the two wavelengths 

to then be collimated by two separate lenses that can be focused independently of each 

other. Each collimating lens can now be independently positioned such that its 

wavelength component is focused exactly in its back focal plane (see Figure 24). After 

this, the two wavelength components are reflected into the right position using silvered 

mirrors, passed through separate emission filters and finally re-focused by a single lens 

on adjacent halves of a ccd chip. 
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Figure 24: Novel dual-color optical setup. Optical components of the dual-color device 

are contained in the dashed box 

Mechanical Design 

The optical components for the dual-color imaging device were housed in a light-tight 

aluminum mounting chamber, which was mounted on the underside of the microscope 

table (see Figure 25). The design for the housing requires the parts to be light, yet rigid so 

as to avoid distortion due to bending under its own load once it is mounted under the 

microscope. Another requirement was to accommodate modular design for parts mating 

with the housing and still allow convenient access to the inside of the housing without 

major disassembly. 
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Figure 25: Mechanical design of the custom dual-color setup 

The position of the device can be adjusted in x, y and z to ensure that the optical path of 

the microscope is aligned with that of the device and that the aperture can be positioned 

in the focal plane of the tube lens. The aperture itself is made of two blades, the 

adjustment of which allows the user to adjust the field of view between full-chip and 

dual-color mode. The position of each blade can be independently adjusted to place it at 

the desired location and at the correct angle (see Figure 26). 
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Figure 26. Mechanism for adjustment of field of view in the new dual-color setup: A cut-

away view shows that the aperture comprises of two blades, the positions of which can be 

independently adjusted through slider assemblies 

The first collimating lens for each wavelength component is mounted on a spring-assisted 

slider mechanism and can be adjusted independently through two separate 80TPI 

micrometer adjusters. The angle of the silvered mirrors can be adjusted by a tip- tilt 

mechanism based on the motion of three differential adjuster screws pushing on sapphire 

bearings against two extension springs behind the tip-tilt (see Figure 27). Each 

differential adjuster screw has a fine adjustment mechanism that enables a displacement 

of 25 μm/rev. The focusing lens is also mounted on a lens slider and its position can be 

adjusted with a micrometer adjuster if required for the initial alignment when two new 

wavelengths are used. Finally, the camera is mounted such that it lies in the focal plane of 

the focusing lens. The position of the camera can be adjusted in x, y and z to enable 

proper alignment with the optical output from the dual-color imaging device. 

Removable mounts holding the two dichroic beam splitters are positioned against the 

setup housing with dowel pins to ensure repeatable mounting. If desired, new dichroic 

beam-splitters corresponding to a different pair of wavelengths can easily be switched out 

in this style of modular assembly (see Figure 27). The emission filters can also be 

switched out in a similar fashion. 
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Figure 27. Mechanical design for dichroic holders and silvered mirror tip-tilt adjustment 

mechanism. Left: One of the two removable dichroic holders. Right: One of the two tip-

tilt assemblies mounted with three bearings and two springs (one bearing is behind the 

mirror and cannot be seen here) 

 

2. Sample-heater Device 

Background 

The function of a sample heater device on the microscope is to be able to regulate the 

temperature of a sample both spatially and temporally, during an experiment. There are 

two types of experiments that motivated the development of our sample heater device. 

The first is to allow in vivo observations of motility events under a microscope. We have 

previously designed and built specialized sample holders that allow the visualization of 

adherent cells directly in the culture plate (149). If a culture plate is sealed when it is 

removed from the CO2 incubator, the sample heater would then allow us to maintain the 

temperature of the plate at 37ºC during observation. The CO2 level in a typical culture 

dish, which is only 5-10% filled with medium, should remain relatively unchanged over a 

few hours. Thus, our sample heater will allow observations of cells in their 

physiologically relevant state. 
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An important aspect of performing in vitro biophysics experiments in the laboratory is to 

maintain the environment in as physiological a state as is possible. This ensures that the 

observations made are physiologically relevant, which is ultimately what makes such an 

experiment interesting. One of the challenges in working with microtubules and motor 

proteins is that microtubules are stable (but still dynamic) only at physiological 

temperature. With our sample heater, we will be able to control the temperature to allow 

for regular microtubule dynamics, either to study the dynamics itself or to study the 

behavior of motors in this physiologically relevant environment. 

Commercially available sample heater devices consist of relatively bulky setups that heat 

a large portion of the microscope stage. This translates to more power for heating the 

sample, longer time for equilibration and high thermal inertia. The goal in building a 

customized setup was to localize the effect of heating to the sample by keeping it 

thermally disconnected from adjoining parts of the microscope and to provide more than 

one source of heat so as to set up temperature gradients. We have done this by building a 

3-point heating system which heats the two ends of a sample and the center without 

conducting heat to other parts of the microscope. This heating arrangement gives us 

several advantages over the commercially available system. Due to lower thermal inertia, 

the temperature of the system can be cycled to allow for observations of temperature-

dependent phenomena, for e.g. growth and shrinkage of microtubules. With the 3-point 

heating system, we can set up temperature gradients along the sample. This would allow 

us to observe effects of temperature on different parts of the same sample for e.g. in 

observing cells at different temperatures in the same culture plate. Finally, thermally 

isolation of the heating system from the microscope eliminates problems associated with 

thermal expansion of parts in the microscope- a challenging problem especially since 

many microscope parts are made of brass. Thermal drift from heating the microscope 

could easily compromise the accuracy of single-molecule observations. Temperature 

control is achieved through a digital temperature controller (Omega Engineering Inc., 

Stamford, CT) for each point of heating in the setup. This temperature controller can 

operate in an on/off or PID (proportional integral derivative) mode. Feedback to the 

temperature controller is provided through thermocouple temperature sensors- one for 

each independent point of heating in our setup. Thus, once the target temperature is set on 
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the controller, it can continuously measure the temperature of the sample and accordingly 

provide the appropriate output to the resistance wires for heating the sample. 

Simulation for Heat Transfer 

In order to establish the most basic requirements for a sample heater device, the first step 

was to look at a heat transfer simulation. In a simple, using  a stationary heat transfer 

model (COMSOL Inc., Burlington, MA), it was clear that in order to maintain a 

minimum temperature gradient in the sample for constant temperature studies, it was 

required to have a three-point heating device (see Figure 28). 

 

Figure 28: Heat transfer simulation for the sample heater device. Temperature is marked 

in degrees Kelvin. 

Mechanical Design 

The sample heater consists of two major mechanical components- an objective collar and 

a modified slide-mount. The objective collar, which mounts on our microscope objective, 

is made of brass with resistance-wire windings on the outside for resistance heating. The 

microscope objective is mounted to the microscope turret through a macor plug. With a 
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thermal conductivity of 1.46 W/mK, macor is a machineable glass-ceramic that has ideal 

properties for thermal insulation. Thus the heat transmitted to the objective is conducted 

only to the center of the sample and not to the rest of the microscope. To heat the ends of 

the sample, the modified slide mount bears a brass plate at each end against which a slide 

can be held down by stage clips. Resistance wire is wound on the underside of the brass 

plates and the brass plates are fixed on the slide mount by screws acting against 

compression springs. This minimizes the area of contact between the end heaters and the 

slide mount, again conducting minimal heat to the microscope body (Figure 29). For 

temperature feedback to the controller, a thermocouple for the objective heater is fixed on 

the objective collar and one thermocouple for each of the end heaters is fixed on each of 

the brass plates. All wires fixed on metal surfaces were electrically insulated using 

thermally conductive epoxy (Aavid Thermalloy, Concord, NH). 

 

Figure 29: Mechanical design for the sample heater device. The spring-loading of the 

brass plates is shown in cross-section on the right hand side 

Electrical Design 

To achieve the desired 3-point heating system, we built an electrical layout with three 

separate temperature controllers connected to their respective heating points in the setup 

such that the temperature controllers draw current from a single power supply while 

receiving independent temperature feedback from their target areas in the sample. 

Separation of the temperature circuits allows us to setup gradients if desired. The 

resistance wire used for generating heat is a nichrome wire (Omega Engineering Inc., 
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Stamford, CT) with a resistivity of 4.25 Ω/ft. All three heaters are connected to the same 

5V dc power supply (TDK-Lamda Americas Inc., San Diego, CA) but through 

independent circuits. The diagram for one of these circuits is shown in Figure 30. A 

maximum power of 2 W is dissipated when all three heaters are actively engaged. 

Temperature feedback from each heating point in the setup to its respective temperature 

controller is provided by a T-type thermocouple wire attached with thermal epoxy to the 

area being heated.  Thus, depending on the target temperature and heat dissipated, each 

circuit may draw a different amount of current to maintain its target temperature. 

  

Figure 30: Electrical circuit design for the sample heater device 

 

3. Image Processing Single-particle Tracking Program  

Background 

Kinesin stepping along microtubules is a stochastic process. The steps, being 8nm in size, 

are well below the diffraction limit of visible light and the motor may take 50 steps or 

500 steps before it detaches. In order to determine mean motility parameters for such a 
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process, we need to look at the full range of measurements for the motility parameter of 

interest and study the distribution of these measurements. In single molecule motility 

assays, this is often done by collecting information from each motility event in an assay 

and plotting a histogram for the parameter of interest. The profile of the histogram then 

gives us an idea of the distribution of events in the assay, i.e. 5% of the motors run up to 

5µm before detaching. In order to use statistical tools and calculate a mean from the fit of 

an appropriate mathematical function to the histogram, we require a large data set. This 

means tracking single molecules by hand to obtain 1000 or more data points- an activity 

that not only lacks creativity but can be very time consuming. When I began performing 

single molecule motility assays, I decided to write a simple computer program to track 

events and consolidate the information for individual events in a format that can be easily 

used as input to a commercial statistical program such as OriginLab (Northampton, MA). 

The requirements for such a program to be successful would be for it to 

1. Accurately identify the fluorescent particle of interest 

2. Track its position through several frames and 

3. Store the positional information in a useful format, all within a reasonable 

amount of time. 

Other important features would be that different sized particles can be tracked, 

different signal-to-noise ratios can be accommodated, photo-blinking can be overlooked 

and multiple movie sequences recorded in the same field of view can be analyzed 

sequentially without requiring user input for each of the movies. 
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Figure 31: Algorithm for single particle tracking image-processing program in matlab 

Algorithm 

The process outline for identifying the first point and consecutive points in a single run is 

shown in Figure 31. The idea is that within a selected region of interest, the program will 

filter out noise below a certain threshold, identify points of interest, track each one 

through several frames (if they are, in fact, moving) and record the tracked position for 

each event. In the end the program calculates the velocity and run length for each event, 

generates an ASCII file with the data and also a graphical output for the distribution of 

events and where the events were observed on a microtubule. The running time for 

tracking events in a minute-long single molecule assay movie is about 1 minute. The 

program can also correctly identify events that are separated by photo-blinking and 

concatenate them together. It is easy to change thresholds for filtering, size limit for 

particles and if desired, criteria for recording measurements. 
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CHAPTER 5

Conclusions and Future Work 

In cells, kinesin-1 preferentially translocates along a subset of microtubules that are 

decorated by a combination of PTMs. It has long been hypothesized that these PTMs are 

a cause for preferential motility along the microtubules. The goal of our study was to 

identify the means by which kinesin-1 differentiates between microtubules based on their 

PTMs. Our hypothesis was that intra-cellular cargo traffic along microtubules is regulated 

by the direct interaction of cargo-carrying kinesin with PTMs on microtubules. In vivo, 

the PTMs most commonly associated with the preferential motility of kinesin-1 are α-

tubulin acetylation and detyrosination. We therefore set out to investigate the direct 

effects of α-tubulin acetylation and detyrosination on kinesin-1 motility. The theme of 

our experiments was to perform in vitro motility assays with purified components such 

that we would be able to isolate the effects of individual PTMs before looking at them in 

combination. This is a challenging task because the modifications seldom exist in 

isolation in vivo. This is also the aspect of studying PTMs in vivo that has made it 

difficult to ascertain the role of each one with complete certainty. We were able to 

independently control α-tubulin acetylation and detyrosination with the use of in vitro 

enzyme treatment. Combinatorial use of modifying enzymes allowed us to generate 

differentially modified pools of tubulin, which were then used to polymerize modified or 

unmodified microtubules. 

In our study, we performed in vitro single-molecule motility assays using TIRF to 

directly observe kinesin-1 motility on modified and unmodified microtubules. The assays 

allow us to work with limited quantities of material to obtain large, robust data sets that 

can accurately represent the stochastic stepping nature of kinesin-1. Measurements of 

velocity, run length and binding of the motor were used as parameters to characterize 

changes in motility behavior. No significant change in motility behavior for kinesin-1 on 
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acetylated or deacetylated microtubules was observed. We measured a mean velocity of 

0.67 ± 0.15 μm/s on acetylated microtubules and 0.69 ± 0.19 µm/s on deacetylated 

microtubules. Mean run lengths were measured to be 0.55 ± 0.33 μm on acetylated 

microtubules and 0.50 ± 0.43 μm on deacetylated microtubules. Mean landing rate, 

indicating kinesin-binding, was measured to be 3.84 ± 1.00 events/µm/min on 

deacetylated microtubules and 3.72 ± 1.48 on acetylated microtubules. We further 

extended our study to investigate the combined effects of α-tubulin acetylation and 

detyrosination on kinesin-1 motility. Our results indicate that there is no significant 

change in kinesin-1 motility directly resulting from a combination of acetylation and 

detyrosination. Mean velocity on acetylated detyrosinated microtubules was 0.53 ± 0.19 

μm/s and on acetylated-detyrosinated microtubules, it was 0.46 ± 0.18 μm/s. The mean 

run length for kinesin-1 on acetylated-tyrosinated microtubules was 0.54 ± 0.42 μm and 

on acetylated-detyrosinated microtubules, it was 0.52 ± 0.41 μm. Mean landing rate on 

acetylated tyrosinated microtubules was 1.50 ± 0.40 events/ μm/ min and on acetylated-

detyrosinated microtubules, the landing rate was 1.70 ± 0.51 event/ μm/ min. In contrast 

to previous work, the only change observed was upon addition of 10-fold diluted COS 

cell lysate in the assay which appeared to cause an increase in the binding for kinesin-1 to 

tyrosinated microtubules. From our results so far, it appears that the kinesin-1 motor 

domain itself is not capable of recognizing α-tubulin acetylation or detyrosination, 

independently or in combination, as stand-alone traffic signals. Components from the 

lysate such as MAPs may contribute to the changes in kinesin motility by preferentially 

binding to differentially modified microtubules at sub-stoichiometric ratios. As far as the 

direct effects of tubulin PTMs on kinesin-1, presumably there are other associated 

modifications, likely polyglutamylation of α- and β-tubulin CTTs that are more likely to 

interact with the motor due to their spatial reach. This is the only other modification 

found to be highly enriched in the axonal subset of microtubules where α-tubulin 

acetylation and detyrosination are concurrent and kinesin-1 motility is preferentially 

recruited. 

In order to take the study further, it is likely necessary to modify the tubulin for our 

assays so as to incorporate α- and β-tubulin polyglutamylation. Polyglutamylation has 

previously been shown to influence the distribution of kinesin-13 in cells (147) and the 
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activity of microtubule-severing protein, spastin in vitro (127). It is also quite possible 

that specific combinations of the right PTMs and the right MAPs are required to enable 

preferential motility and particularly in neuronal cells- the observed 

compartmentalization of kinesin-1. This means that each of the modifications, 

independently or in combination with other modifications, could alter the binding of 

kinesin-1 or MAPs to affect motility along the microtubule-based transport system. 

Potentially, such a mechanism would provide many more levels of regulation which 

could be fine-tuned through both, the extent of the modifications and the concentration of 

the MAPs. This will have to be tested methodically, one modification and one MAP at a 

time.  
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