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ABSTRACT 

 

 Increasingly, many substantive research questions require a degree of 

information not adequately collected in a single survey. Fortunately, survey organizations 

often repeatedly draw samples from the same population for different surveys and collect 

data on a considerable number of overlapping variables. This dissertation presents a new 

method for combining multiple surveys from a missing data perspective. Two major 

improvements of the new method include: 1) adjusting for the incompatibility among 

different sample designs and 2) combining an unlimited number of surveys.  

The basic proposal is to simulate synthetic populations from which the 

respondents of each survey have been selected. In this process, different sampling designs 

of the multiple surveys will be taken into account.  Once we have the synthetic 

populations, we could treat them as simple random samples with no complex sampling 

design features and borrow information across surveys to adjust for nonsampling errors 

or fill in the variables that are lacking in one or more surveys. Then, we can analyze each 

synthetic population with standard complete-data software for simple random samples 

and obtain valid inference by combining the point and variance estimates, first across 

synthetic populations within each survey, and then across multiple surveys. Existing 

methods borrowed from the disclosure risk field will be used to combine the synthetic 

populations from one survey; combining these results across multiple surveys will require 

the methods developed in this dissertation.  
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The first study develops the combining rule when multiple surveys present and 

proposes a model-based method to impute the unobserved population. The 2006 National 

Health Interview Survey (NHIS) and Medical Expenditure Panel Study (MEPS) are 

combined to estimate health insurance coverage. The second study develops a 

nonparametric method to impute the unobserved population, which is used to generate 

synthetic populations for the 2006 NHIS and MEPS and produce combined estimates of 

health insurance coverage. The third study extends the new method to combine surveys 

with missing variables. A new two-stage combining rule is developed to account for the 

uncertainty due to simultaneously imputing the missing variables and generating 

synthetic populations. The 2006 Behavioral Risk Factor Surveillance System (BRFSS) is 

combined with the NHIS and MEPS to estimate health insurance coverage.
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Objectives 

 Increasingly many substantive research questions require a degree of information 

not adequately collected in a single survey. Fortunately, survey organizations often 

repeatedly draw samples from the same population for different surveys and collect data 

on a considerable number of overlapping variables. In the past decade, many statistical 

methods have been developed to combine information from multiple (mostly two) 

surveys allowing for improved inference. The existing combining survey methods have 

produced improved inference and achieved part of the following goals: 1) to reduce 

biases of the estimates from individual surveys due to sampling and/or nonsampling error 

(noncoverage error, nonresponse error and measurement error); 2) to increase precision 

of estimates from individual surveys by using the information from other surveys; 
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and 3) to produce a complete data set with all variables of interest by borrowing 

information across surveys and filling in the missing variables in individual surveys. 

The objectives of this dissertation are: 1) to develop a new method for combining 

any number of surveys that adjusts for the incomparability among different data sources – 

the complex sampling design features; and 2) to combine the 2006 National Health 

Interview Survey (NHIS), Medical Expenditure Panel Study (MEPS) and Behavioral 

Risk Factor Surveillance System (BRFSS) and to estimate the US population’s health 

insurance coverage.  

The proposal is to simulate synthetic populations from which the respondents of 

each survey have been selected. In this process, different sampling designs of multiple 

surveys will be taken into account.  Once we have the synthetic populations, we can treat 

them as simple random samples with no complex sampling design features and borrow 

information across surveys to adjust for nonsampling errors or fill in the variables that are 

lacking in one or more surveys. Then, we can analyze each synthetic population with 

standard complete-data software for simple random samples. And inference on the 

population quantity of interest can be obtained by combining the point and variance 

estimates first across synthetic populations within each survey using the existing 

combining rules for synthetic data, and then across multiple surveys using the methods 

developed in this dissertation.  

1.2 Organization of this Dissertation  

 This dissertation is organized as follows: Chapter 2 presents the new combining 

survey method and develops the combining rule when multiple surveys are present. A 
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model-based method is proposed to impute the unobserved population and adjust for the 

complex sampling design features, which is then evaluated under two situations when the 

underlying model is linear and when the underlying model is log-linear. Finally, we apply 

the new combining survey method to combine the 2006 NHIS and MEPS and to estimate 

the US population’s health insurance coverage.  

 To protect against model misspecification of the model-based method, Chapter 3 

develops a nonparametric counterpart to impute the unobserved population and adjust for 

the complex sampling design features. We use the well-developed Bayesian bootstrap to 

adjust for stratification and clustering as well as the finite population Bayesian bootstrap 

(FPBB) to adjust for the unequal probability of selection. We provide both a theoretical 

proof and a simulation study to verify the point estimates from synthetic populations 

generated by the nonparametric method are unbiased and the variance estimates simulate 

the actual sampling variance. Finally, we apply the nonparametric method to generate 

synthetic populations for the 2006 NHIS and MEPS and use the new combining survey 

method in Chapter 2 to estimate health insurance coverage.  

 Chapter 4 extends the new combining survey method to the situation where there 

are missing variables in one or more surveys and we have to combine multiple surveys to 

obtain a complete list of variables of interest. A new two-stage combining rule is 

developed to account for the uncertainty due to simultaneously generate synthetic 

populations and impute the missing variables. We also conduct a simulation study to 

evaluate the two-stage combining rule. Finally, we apply the generalized method to first 

fill in the missing information in the 2006 BRFSS and then combine it with the NHIS and 
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MEPS to estimate health insurance coverage. Chapter 5 concludes the dissertation with 

discussions and describes the directions for future research.  
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CHAPTER 2 

COMBINING INFORMATION FROM MULTIPLE COMPLEX SURVEYS  

 

 

This chapter describes the use of multiple imputation to combine information from 

multiple surveys of the same underlying population. The basic proposal is to simulate 

synthetic populations from which the respondents of each survey have been selected. In 

this process, different sampling designs of the multiple surveys will be taken into account.  

We can then analyze each synthetic population with standard complete-data software for 

simple random samples and obtain valid inference by combining the point and variance 

estimates, first across synthetic populations within each survey using the existing 

combining rules for synthetic data, and then across multiple surveys using the methods 

developed in this chapter. A model-based method to produce the synthetic populations is 

discussed and evaluated. It is shown that the method in this chapter combines information 

from multiple surveys and produces more accurate and precise estimates for the statistics 

of interest.  
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2.1 Introduction 

Survey agencies often repeatedly draw samples from the same or similar 

populations for different surveys and collect similar variables, sometimes even using the 

same frame. For example, the National Health Interview Survey (NHIS) and the National 

Health and Nutrition Examination Survey (NHANES) are both conducted by the U.S. 

National Center for Health Statistics. These two surveys have similar target populations - 

the U.S. non-institutionalized population - and have a considerable overlap of questions. 

By combining information from multiple surveys, we hope to obtain more accurate 

inference for the population and be able to perform a variety of more comprehensive 

analysis than if we use the data from a single survey. 

 One of the biggest challenges in combining survey area is the comparability 

among multiple data sources. Surveys could use different sampling designs or modes of 

data collection, which may result in various sampling and nonsampling error properties, 

or surveys could ask the same question in different contexts or even for different 

reference periods. Instead of directly pooling the data from multiple surveys for a simple 

analysis, we need to adjust for the discrepancies among the data to make them 

comparable. 

 For example, suppose that two surveys have the same underlying population and 

the goal is to estimate the population mean, ! = !
!

!!!
!!! . Suppose one survey uses equal 

probability sampling (epsem) and the other one probability proportional to size sampling 

(PPS), and further that, for the second survey, both the variable of interest and the 

probability of selection are proportional to the measure of size, i.e., !! ,!! ∝ !!. The 
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estimate of the mean obtained under PPS sampling will have a much lower mean square 

error than equal probability sampling (Hansen and Hurwitz 1943; Jebe 1952). From an 

efficiency standpoint, the estimate from the PPS sample should be weighted more than 

the estimate from the SRS sample when combining those two surveys. Another example 

is combining data obtained from a face-to-face survey and a telephone survey, in which 

the undercoverage error of the telephone survey must be adjusted to account for the 

sampling frame excluding households without landline telephones (Raghunathan et al. 

2007).  

 Various methods for combining data collected in two surveys have been proposed 

in the survey methodology literature (Hartley 1974; Skinner and Rao 1996; Elliott and 

Davis 2005; Raghunathan et al. 2007; Schenker et al. 2002, 2007, 2009). The most recent 

papers by Raghunathan et al. (2007) and Schenker et al. (2009) applied model-based 

approaches. The basic idea for the model-based approaches is to fit an imputation model 

to the data of better quality and use the fitted model to impute the values in the other 

samples of lower quality. As long as the imputation model is correctly specified, this 

approach can take advantage of the strengths of the multiple data sources and improve the 

statistical inference. However, as suggested by Reiter et al. (2006), when the sample is 

collected using complex sampling designs, ignoring those features could result in biased 

estimates from the design-based perspective. However, fully accounting for the complex 

sampling design features in practice is very difficult. For example, both Raghunathan et 

al. (2007) and Schenker et al. (2009) used a simplified method to adjust for stratification 

and clustering. Raghunathan et al. used a rudimentary concept of design effect and 

Schenker et al. used propensity scores to create adjustment subgroups for modeling. Both 
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of the papers could be improved if the complex sampling design features are better 

accounted for.  

 This chapter proposes a new method for combining multiple surveys from a 

missing data point of view that adjusts for the complex sampling design features in each 

survey. The unobserved population in each survey will be treated as missing data to be 

multiply imputed. The imputation model will account for complex design features. For 

each survey, the observed data and the multiply imputed unobserved population produce 

multiple synthetic populations. Once the whole population is generated, the complex 

sampling design features such as stratification, clustering and weighting will be of no use 

in the analysis and the synthetic populations can be treated as equivalent simple random 

samples. Finally, the estimate for the population quantity of interest will be calculated 

from each synthetic population and then will be combined first within each individual 

survey and then across multiple surveys.  

 This chapter proceeds as follows: Section 2.2 provides an overview of the 

proposed method. Section 2.3 discusses generating synthetic population while accounting 

for complex sampling design features using a model based method. Section 2.4 describes 

methodology to produce combined estimates from these multiple synthetic populations. 

Section 2.5 provides the results of a simulation study that shows the proposed method 

provides a more precise estimate of population mean than the estimate from any single 

survey. In Section 2.6, we apply the proposed method to combine the 2006 NHIS and the 

Medical Expenditure Panel Survey (MEPS) to estimate the health insurance coverage 

rates of the US population. Finally, Section 2.7 concludes with discussion and directions 

for future research. 
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2.2 Overview of Method 

Figure 2.1 is an overview of the proposed method, in which we have two surveys 

covering the same underlying population with ! strata. The samples (denoted by color 

cells) are drawn using different sampling designs. This chapter proposes to fill in the 

unobserved population (denoted by the blank cells) by building an imputation model 

based on the observed data of each survey. The multiple synthetic populations for Survey 

1 and Survey 2 could be analyzed as simple random samples. We then will estimate the 

population quantity of interest from each synthetic population and combine them first 

within surveys then across surveys to produce the combined estimate. In the imputation 

model, we could use additional design variables that are available for the entire 

population. These variables are excluded here and from the figures and related formulas 

in the following sections for simplicity of exposition. 

Figure 2.1 Illustration of data obtained using different sampling designs  

           Syn M…Syn 1           Sample 1        Population     Sample 2       Syn 1 …  Syn M               

 
                    …                                                                                                    … 
                          
 
             

 

2.3 Generating Synthetic Populations from Single Survey Data that Accounts for 

Complex Sampling Designs  

St 
1 

… 

St  
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 We propose to generate synthetic populations using Bayesian finite population 

inference. The basic concept of Bayesian finite population inference involves imputing 

the non-sampled values of the population from the posterior predictive distribution based 

on the observed data. Assume the population values are ! = !!,… ,!!  and the observed 

data, !!"# = !!,… ,!!  is obtained in a survey with sampling indicators ! = !!,… , !! . 

Denote the population quantity of interest as ! ! .  The Bayesian population inference 

allows for the use of parametric model !" !|!   for population data based on the 

posterior predictive distribution for the unobserved elements of the population 

!" !!"#|!!"# : 

!"(!!"# !!"# =
!" !
!" !!"#

 

=
!"(! ! !" ! !"

!" !!"#
 

=
!" !!"# !!"#,! !"(!!"# ! !" ! !"

!" !!"#
 

= !"(!!"#|!!"#,!)!"(!|!!"#)!" 

(Ericson 1969; Holt and Smith 1979; Little 1993; Rubin 1987; Scott 1977; Skinner, Holt 

and Smith 1989). Here we use the model !" !|!  to approximate the entire population 

distribution Pr !  and average over the posterior distribution based on the sampled data 

Pr(θ|!!"#). In the case that there are design variables known for the entire population 

available, the above model can be naturally extended by conditioning on these variables. 

 In the derivation of the posterior predictive distribution, we ignore the sampling 

indicator !. This requires: 
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1. !"(!|!) = !"(!|!!"#) 

2. !"(!!"#|!!"#, !,!) = !"(!!"#|!!"#,!) 

Condition 1 requires the sampling design is ignorable (Rubin 1987), which is usually 

satisfied in probability samples. Condition 2 requires a model for the data !"(!|!) that 

takes into consideration the complex sampling design features and is robust enough to 

capture all aspects of the distribution of Y.  

 Next we will illustrate two applications when the underlying model is linear and 

when the underlying model is log-linear. Other situations can be dealt with using a 

similar approach.   

2.3.1 Linear Model 

 Suppose the population quantity of interest ! !  is related to a normally 

distributed variable ! (possibly transformed from the original scale for normality). A 

simple random sample is drawn from the population, for which we measure the values of 

! denoted by !!"#. Further suppose there is a set of design variables ! = (!!"#,!!"#) 

known for the entire population on which we can regress ! using a linear model. For the 

observed data, we have !!"# = !!"#! + !, where !  is a set of coefficients that relate the 

mean of ! to the covariance matrix !!"#, ! is the error term and has a multivariate normal 

distribution with mean zero and variance !!! and ! is an identity matrix. Suppose 

! = (!, !"#$) has a uniform prior distribution over the appropriate dimensional real 

space. We fit the model using the sample data. Let ! = (!!"#!!!"#)!!!!"#!!!"# be the 

estimated regression coefficients, !!" = !!"# − !!"#! !(!!"# − !!"#!) be the residual 

sum of squares and !" be the residual degrees of freedom. Assume ! is the Cholesky 
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decomposition such that !!! = (!!"#!!!"#)!!. The relevant posterior distributions can 

be derived easily (Gelman, Carlin, Stern and Rubin, 2004), and the following steps draw 

the unobserved values from the posterior predictive distribution. 

1. Generate a chi-square random deviate ! with !" degrees of freedom and define 
!∗! = !!"/!. 

2. Generate a vector ! = !!,… , !!  of dimension ! = !"#$(!) of random normal 
deviates and define !∗ = ! + !∗!".  

3. Let ! denote the covariate matrix of the missing ! values. The unobserved values 
are !!"# = !!"#!∗ + !∗!, where ! is an independent vector of random normal 
deviates.    

 When stratification, clustering and weighting are present, the model cannot be 

specified in such a simple way. For example, to account for clustering, we could include 

contextual variables such as county-level indicator in the imputation models. Or we could 

include random effects for the clusters and specify the covariance matrix correctly to 

capture the intracluster correlations. However, sometimes, we do not have sufficient 

information or large enough sample to fit such models. We propose a simplified and 

approximate approach to impute the unobserved values while adjusting for the complex 

sampling design features.  

1. Estimate coefficients and covariance matrix: 

 Let ! be the maximum likelihood estimates of ! and ! its asymptotic covariance 
matrix after complex design features are taken into account. ! could be calculated using 
Tayor Linearization method or replication method to account for stratification, clustering 
and unequal probabilities of selection.  

2. Approximate the posterior distribution of the coefficients: 

 Let ! be the Cholesky decomposition such that !!! = !. Generate a vector 
! = (!!,… , !!)  of dimension ! = !"#$(!) of random normal deviates and define 
!∗ = ! + !". 

3. Impute the unobserved values of the population as !!"# = !!"#!∗.  
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 This approach results only in approximate draws from the posterior predictive 

distribution (Little and Rubin, 2002) as the draws for the parameter ! are from the 

asymptotic approximation of its actual posterior distribution (Huber, 1967). Since the 

complex sampling design features are taken into account when we estimate the point and 

covariance estimates for the coefficients, the approximate posterior distribution of ! 

reflects the distribution of the coefficients. The synthetic populations generated from the 

!. !.!. draws simulate the underlying population. 

2.3.2 Log-linear Model 

A situation that appears frequently in survey data is the analyzing of a 

multidimensional contingency table since most of the variables collected in surveys are 

categorical. For simplicity of exposition, we assume ! and ! are both categorical, which 

create a two dimensional table. Assume ! is the variable of our interest with ! levels; ! 

is a design variable with ! levels (e.g., gender, race, etc) whose marginal distribution is 

known for the population. Assume !!" , ! = 1,… ,!, ! = 1,…!, represents the cell 

proportion of the !"!! cell,   !!"!
!!!

!
!!! = 1. For this ! ∗ ! contingency table, the goal 

is to model the joint distribution between ! and ! for the actual data and use this model 

to generate the synthetic populations. The log-linear model has been developed to 

analyze multi-dimensional contingency tables (Agresti, 2002). Here, we have the 

following fully saturated model: 

!"# !!" = !! + !!! + !!! + !!"!" , ! = 1,… ,!, ! = 1,…!, 

where !"# !!"  is the log of the probability that one observation falls in cell !" of the 
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contingency table, !!! is the main effect for !, !!! is the main effect for ! and !!"!" is the 

interaction effect for ! and !. We assume !!! , !!! and !!"!" are column vectors. 

 The above model includes all possible one-way and two-way effects and thus is 

saturated as it has the same number of effects as cells in the contingency table. The 

expected cell frequencies will always exactly match the observed frequencies, with no 

degrees of freedom remaining (Knoke and Burke, 1980). To avoid over fitting the data, 

we can consider lower dimensional models that exclude some or all of the interaction 

terms. We choose the model based on likelihood ratio tests or AIC or BIC criteria.  

 Following the idea for the linear model situation, the synthetic populations can be 

generated from the posterior predictive distribution from the model. However, when the 

data is collected under a complex sampling design, there is no existing statistical software 

that can produce both the point estimate and covariance estimate of the regression 

coefficients. We have to use replication method to adjust for stratification, clustering and 

weighting. Specifically, the synthetic populations can be generated from the following 

steps:   

1. Estimate coefficients and covariance matrix: 

 Under the selected model (assume the saturated model here just for illustration), 
estimate the coefficients ! = (!!, !!! , !!! , !!"!")!, ! = 1,… ,! − 1, ! = 1,…! − 1 and the 
covariance matrix of the estimates ! = !!, !!! , !!! , !!"!"

!
 after taking into account the 

complex design features using jackknife repeated replication (JRR).  

• For each replication, withdraw one cluster, and inflate the weights for 
the respondents in the other clusters within the same stratum by 
!!/(!! − 1) (replication weights), where !! denotes the number of 
clusters within stratum ℎ. Assume we have !!!

!!! = ! clusters in 
total, then we have ! replications. For each replication, we fit the log-
linear model and obtain the maximum likelihood estimates (MLE) of 
the coefficients, ! = (!!, !!! , !!! , !!"!")!, ! = 1,… ,! − 1, ! = 1,…! − 1. 
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• For each replication, we use the replication weights to fit the log-linear 
model. Specifically, we use the replication weights to calculate the size 
of each cell of the contingency table, which is used to fit the log-linear 
model. We denote the MLE for the !!! replication by a column vector, 
!! , ! = 1,… , !! for stratum ℎ. Notice that ! = (!!, !!! , !!! , !!"!")!, ! =
1,… ,! − 1, ! = 1,…! − 1 is a !" by 1 column vector. We denote 
! = (!!, !!! , !!! , !!"!")! = (!!, !!,… , !!")!. Similarly, !! , ! =
1,… , !! , ℎ = 1,… ,! are also !" by 1 column vectors denoted by 
(λ!  

!!!
, λ!  

!!!
,… , λ!"  

!!!
)!.  

 The MLE of the coefficients ! = (!!, !!! , !!! , !!"!")!, ! = 1,… ,! − 1, ! = 1,…! −
1 can be obtained by  !!"# = !!

!!
!!!

!
!!! /!. For the !" by !" covariance matrix, 

the jackknife replication estimate of the !"!! (!, ! = 1,… ,!") element is the covariance 
between the !!!and !!!  coefficients, which is given by: 

!! − 1
!!

   !!  !!! − !! !!  !!! − !!

!!

!!!

!

!!!
 

,where !! = !!  
!!!!!

!!!
!
!!! /C and !! = !!  

!!!!!
!!!

!
!!! /C. This gives us the 

correct variance estimate of !!"# .     

2. Approximate the posterior distribution of the coefficients:   

 Let ! denote the Cholesky decomposition such that !!! = !"#(!!"#). Generate 
a vector !  of random normal deviates and define !∗ = !!!" + !". 

3. Impute the unobserved values of the population: 

 Suppose ! draws, !!,… ,!! ,  are made from the approximate posterior distribution 
of !. For each ! = 1,… , !, !! = (!! ! ,!!!

! ,!!!
! ,!!"!"

(!))!, ! = 1,… ,! − 1, ! =
1,…! − 1, we can generate one synthetic table using the assumed model: !"# !!"(!) =
!!(!) + !!!

(!) + !!!
(!) + !!"!"

(!), ! = 1,… ,! − 1, ! = 1,…! − 1. Once the cell proportions 
are determined, we can generate the synthetic table of any size.  

4. Post-stratify/ Constraints on Margins:    

 Survey agencies usually post-stratify the collected data according to some 
auxiliary variables whose population margins are known. The post-stratification adjusts 
for the nonresponse and noncoverage error. If the imputation model does not approximate 
the population well, we could lose a fairly large amount of information, which may bias 
the estimates or inflate the variance estimates from the synthetic populations. As 
suggested by Raghunathan et al. (2003), we can constrain the marginal distribution of the 
design variables in the synthetic populations to match their marginal distributions in the 
population using the iterative proportional fitting (IPF) algorithm.  
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 For example, suppose we denote the cell counts for the actual data, µμ!" and the !!! 
unconstrained synthetic data as µμ!"! , ! = 1,… ,!, ! = 1,… ,!, ! = 1,… , ! and further 
denote the margins of the actual data and synthetic populations as µμ!! = µμ!"!

!!! , µμ!!! =
µμ!"!!

!!! , etc, where µμ!! and µμ!! are known for the population . We constrain the margins 
of the unconstrained synthetic populations using the following algorithm: 

1. µμ!"!
(!) = µμ!"!

(!!!) !!!

!!!
! (!!!)  

2.  µμ!"!
(!!!) = µμ!"!

(!) !!!

!!!
! (!) 

Step a and b are repeated until the fitted table converges, i.e., 1− µμ!!!
! /µμ!!!

(!!!) +

1− µμ!!!
! /µμ!!!

(!!!) < !, where ! is the pre-determined criteria, usually a small number 
like 0.0001.   
 

2.4 Combing Rule for the Synthetic Populations from Multiple Surveys 

Assume that ! = !(!) is the population quantity of interest that may depend 

upon the a set of variables ! which is collected in multiple surveys. It could be a 

population mean, proportion or total, a vector of regression coefficients, etc. For 

simplicity of exposition, in this chapter, ! is assumed to be a scalar and ! is assumed to 

be one variable. Suppose under some sampling design, the analyst would use a point 

estimate ! and an associated measure of uncertainty  !. For example, ! could be the 

maximum likelihood estimate of ! and ! could be the inverse of the Fisher information. 

Alternatively, the Bayesian approach would estimate ! and ! using the posterior mean 

and variance of ! based on the actual sample data observed. A frequentist could construct 

an unbiased estimate ! of ! with ! as its sampling variance. 

 Assuming that we create ! synthetic populations, !!, ! = 1,… , !, denote !!   as the 

corresponding estimate of the population quantity ! obtained from synthetic population !, 

with !! denoting the within-imputation variance of !!. For large samples or a large 
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number of synthetic populations when the sample size is small, the posterior variance of 

! is  

!! = 1+ !
!

!
!!!

!! − !! !! − !! !!
!!! − !

!
!!!

!!!   

            =    1+ !
!
!! − !! ,                                                                                                   (1) 

where !! is the between-imputation variance, !! is the average of the within-imputation 

variance and !! =
!
!

!!   !
!!! is the mean of ! across the ! synthetic populations 

(Raghunathan et al. 2003). Since !! is computed from the whole synthetic population, the 

within-imputation variance could be ignored in the calculation of !!, i.e., expression (1) 

can be reduced to 

!!  = (1+ 1/L)!!                            (2) 

(Raghunathan et al. 2003). From these results, the Monte Carlo method can be used to 

draw inferences for the population quantity of interest, !. In practice, it is unrealistic to 

impute the whole population, which could be hundreds of millions of units. We only need 

to generate the size of the synthetic population large enough compared to the sample size 

so the within-imputation variance !! can be ignored.   

 In the context of combining information from multiple surveys, I will need to 

generate ! synthetic populations for each survey and combine the estimates within each 

survey, and then combine across all S surveys as well. Raghunathan et al. (2003) 

developed a combining rule for synthetic populations from a single survey. But this 

combining rule will not yield valid inference for the parameters of interest for multiple 

surveys, since the models to generate synthetic populations (the predictive distribution of 
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the unobserved values given the observed values, denoted by Raghunathan et al (2003) 

by !"(!!"#|!!"#)) for the multiple surveys are different. Thus, a new rule for combining 

estimates across multiple surveys needs to be developed.  

Table 2.1 Glossary  
Symbol   Notation 

! The population quantity of interest 

!!"#
!  The estimate of ! obtained from the observed 

data of survey ! 

!! The actual sampling variance of survey ! 

!!"#
!  The estimate of the actual sampling variance of 

survey ! 

!!
(!) The !!! synthetic population of survey ! 

!!
(!) Population quantity of interest based on !!

(!) 

!!
(!) =

!
!

!!
(!)  

!

!!!
 

Population quantity of interest from the ! 

synthetic populations of Survey ! 

!!
! = 

!
! − !

!!
(!) − !!

(!) !!
(!) − !!

(!) !
!

!!!

 

The variance of the population quantity of interest 

from the ! synthetic populations of Survey ! 

!!
(!) The estimate of !!

(!) 

!!
(!) The estimate of !!

(!) 

 

 Assume !!
(!) and !!

(!) are respectively the combined estimator of the population 

quantity of interest and its variance for Survey ! obtained using the combining formulas 

for synthetic populations in a single survey setting (Raghunathan et al. 2003) (For 

notation definitions in this section, see Table 2.1.). The approach considers (!!
(!), !!

(!)), 

! = 1,… , !, as sufficient summaries of the synthetic population !!"#
! = {!!

! , ! =
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1,… , !}, ! = 1,… , !. The goal is to approximate the posterior density of ! conditional on 

!!"#
! ,  ! = 1,… , ! or equivalently, (!!

(!), !!
(!)), ! = 1,… , !. To do this, we need to make 

three asymptotic distributional assumptions: 

Assumption 1:   The repeated sampling distribution of the observed data statistic for each 
survey, !!"#

! , ! = 1,… , !, is normal with mean the population quantity ! and some 
sampling variance !!, i.e., !!"#

!   |! ~  !(!, !!), ! = 1,… , !. 
 
Assumption 2:  The posterior distribution of the population quantity of interest ! based 
on the synthetic populations generated from Survey ! is approximately normally 
distributed with mean !!"#

!  and variance !!"#
! , where !!"#

!  is an estimate of the sampling 
variance of !!"#

! : !!
(!)|  !!"#  ~  !(!!"#

!  , !!"#
! ). 

 
Assumption 3:  For Survey s, the variance estimator obtained from the ! synthetic 
populations !!

(!), is unbiased for !! with negligible sampling variability, i.e., !! ≈
!!
(!)= 1+ !

!
!!
(!) − !!

(!). Since the whole population is generated, !!
(!) = 0, which 

means !! ≈    1+
!
!
!!
(!) ≈ !!

(!) (when ! is large). 
  

Assumption 1 can be satisfied for many statistics that follow Central Limit 

Theorem (e.g., means, pseudo maximum likelihood estimates) as long as surveys use 

probability sampling and the statistical inference takes the sampling design into account. 

Assumption 2 can be satisfied by imputing the unobserved part of the population for each 

survey using a model that is consistent with respect to the design of that survey. In other 

words, the complex design features and different survey error properties need to be built 

into the imputation model !"  (!!"#|!!"#).  Assumption 3 is usually satisfied for large 

samples or for a large number of synthetic populations when the sample sizes are small.   

2.4.1 Combining Rule when ! is large 
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When ! is large, we suggest approximating the posterior distribution of ! as a 

normal distribution with mean  

!! =

!!
!

!!
!

!
!!!

!

!!
!

!
!!!

  

and variance 

!! =
!

!

!!
!

!
!!!

. We derive this result as follows: 

Suppose !!
(!)  and !!

(!) are the combined estimator of the population quantity of 

interest and its variance estimator based on the !(= ∞) synthetic populations for Survey 

! respectively. We denote !!,… ,!! as the sampling variance from the observed data of 

the ! surveys (Assumption 2). We assume the sample size is reasonably large, the 

sampling distribution of the sample quantity of interest is approximately normally 

distributed and the approach to generate synthetic populations is consistent with the 

design of each survey. Thus the three assumptions above are satisfied. The goal here is to 

derive the posterior predictive distribution of the parameter of interest, ! given the 

synthetic populations from multiple surveys when the number of synthetic populations is 

large, i.e., !(!,  !!,… ,!!|!!
(!), ! = 1,… , !, ! = 1,… , !). Since the entire population is 

imputed, there is no within-imputation variance. Here we treat (!!
(!),!!

! )  as sufficient 

summaries of the synthetic population !!
! , ! = 1,… , !, ! = 1, . . . , !, so that the posterior 

predictive distribution can be written as !(!,  !!,… ,!!| !!
(!),!!

(!),… ,!!
(!),!!

(!)). 
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 From Bayes’ Theorem, 

 π(Q,!!,… ,!!  | !!
(!),!!

(!),… ,!!
(!),!!

(!)) ∝ π(!!
(!),!!

(!),… ,!!
(!),!!

(!)| !,!!,… ,!!  ) 

π Q,!!,… ,!! , 

where the first part is the likelihood and the second part is the prior distribution.  

The derivation of the likelihood  

From Raghunathan et al. (2003), we have the following approximate sampling 

distribution: 

 (!!
! |!!

! ,Q,!!) ~!(Q,!!) 

(!!
(!)/!!|Q,!!) ~  !!!!! /(! − 1), ! = 1,… , !,                                                                 (3) 

 i.e., we can write the distributions as 

π(!!
! |!!

! ,!,  !!)  ∝ !!
!!/! exp(−

!!
! !!

!

!!!
)      

π(!!
(!)|  !,  !!)  ∝   !!

! (!!!)/!
!!
!(!!!)/!!"#(− !!

!

!!!
), s=1, …, S.           (4) 

When the number of synthetic populations, !, is infinite, !!!!! /(! − 1) converges 

to 1, which implies !!
(!)/!! ≈ 1 or, !! can be approximated by !!

(!), i.e., (!!
! |!!

! ,!,  !!) 

~ !(Q, !!
(!)).  

Since each survey is conducted independently, we have 

π(!!
(!),!!

(!),… ,!!
(!),!!

(!)| !,!!,… ,!!  ) = π(!!
(!),!!

(!)  |  Q,!!)!
!!! . 



	
  22	
  

=   
!

!!!

!(!!
(!)|!!

(!),!,!!)  !(!!
(!)|!,!!)     

=   
!

!!!

  ! !!
! !,!!

! ! !!
! !!  

∝      exp(−
!!
! !!

!

!!!
!

!
!!! ) !!

! (!!!)/!
!!!(!!!)/!!"#(−

!!
!

!!!
)!

!!! , 

where the third equation is because !(!!
(!)|!!

(!),!,  !!) doesn’t involve !! once !!
(!) is 

known and !(!!
! |!,!!) doesn’t involve !.  

The derivation of the posterior predictive distribution 

We use a non-informative prior, π(Q,!!,… ,!!), i.e., π(Q,!!,… ,!!) ∝ 

!!!!!
!!! , though a weak conjugate prior leads to the same conclusion. The posterior 

predictive distribution is 

π(Q,!!,… ,!!  | !!
(!),!!

(!),… ,!!
(!),!!

(!))  

∝ π(!!
(!),!!

(!),… ,!!
(!),!!

(!)| !,!!,… ,!!  ) π(Q,!!,… ,!!)  

∝   exp(−
!!
! !!

!

!!!
!

!
!!! ) !!

! (!!!)/!
!!!(!!!)/!!"#(−

!!
!

!!!
)!

!!! !!!!          (5) 

Then, the marginal posterior distribution of ! can be obtained as: 

!(! | !!
(!),!!

(!),… ,!!
(!),!!

(!))= … π(Q,B    |!!
(!),!!

(!),… ,!!
(!),!!

(!))   d!!… d!! 
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∝   exp(−
!!
(!)!!

!

!!!
!

!
!!! ) … !!

!
!!!
! !!

!!!!! !"#(− !!
!

!!!
)!

!!!   d!!… d!!         (6) 

Notice that the terms within the integration in the last line of expression (6) is the 

kernel of a Chi-square Distribution for 1/!!. From the equality 

… !!
!
!!!
! !!

!!!!! !"#(− !!
!

!!!
)!

!!!   d!!… d!!=  !(!,!!
! ,… ,!!

! ), 

 we obtain, 

! Q !!
! ,!!

! ,… ,!!
! ,!!

!  

∝   !"#(−
!!

! − Q
!

2!!
!

!

!!!

) 

∝ !"#(−(! −

!!
!

!!
!

!
!!!

!

!!
!

!
!!!

)!/ !
!

!!!
!

!
!!!

).                 (7) 

This implies that the posterior predictive distribution !(!  | 

!!
(!),!!

(!),… ,!!
(!),!!

(!)) can be approximated by a normal distribution with the following 

parameters: 

!  ( !!
!

!!
!

!
!!! / !

!!
!

!
!!! , 1/( !

!!
!

!
!!! )).                (8) 
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 Assume an unbiased estimate for !!
(!)  from the synthetic population is !!

(!) and 

that !!
(!) and !!

(!) are the estimates of !!
!  and !!

! . The combined estimate of ! will be 

!!
!

!!
!

!
!!! / !

!!
!

!
!!!  with variance estimate 1/( !

!!
!

!
!!! ).  

2.4.2 T-corrected Distribution for Small/Moderate !  

 Thus far, we have implicitly assumed that the actual posterior distribution of 

!!"#$ for each survey could be simulated perfectly in the sense that inferences have been 

based on a large number of synthetic populations (large !). In practice, it is sometimes 

unrealistic to generate a large number of synthetic populations, especially when the 

sample size is so large that it is computationally intensive to impute the unobserved 

population. In this section, we modify the theory for small or moderate  ! (e.g., ! < 50).  

 Below we show that, for finite !, the posterior distribution of ! follows a t 

distribution with mean !!, scale (1+ !!!)!! and degrees of freedom (! − 1)/

(

!

!!
!

!

!!
!

!
!!!

)!!
!!! . Assume ! synthetic populations are generated for survey !, ! = 1,… , !, 

where ! is small or moderate. Let !!
(!) represent the estimator from the !!! synthetic 

population of Survey  !,  ! = 1,… , !, s=1, … , S. Let !!
(!)  and !!

(!) represent the combined 

estimator of the population quantity of interest and its variance estimator for survey 

!, ! = 1,…    , !. Let !!,   !! represent the combined estimator across the ! surveys when 

we have large or infinite number of synthetic populations, i.e., !! = !!
!

!!
!

!
!!! /

!

!!
!

!
!!!   and !! = 1/( !

!!
!

!
!!! ). Let !! ,!! represent the combined estimator across the 
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! surveys when we have small or moderate number of synthetic populations, i.e., 

!! =
!!
!

!!
!

!
!!! / !

!!
!

!
!!! ,!! = 1/( !

!!
!

!
!!! ). The goal is to approximate the conditional 

distribution: !"(!|!!
! ,!!

! ,… ,!!
! ,!!

! ) from the results for large or infinite !.  

 From 4.1, the posterior distribution of ! is approximated as a normal distribution 

with mean !! and variance !!, i.e.,  

!|  !!  ,!!  ~  !(!!  ,!!). 

 This can be also be written as:  

!|  !!  ,!!,!!  ,!!  ~  !(!!  ,!!). 

The sampling distribution of !! Given (!!  ,!!) 

Within individual surveys, we have the following t-corrected distribution when 

the number of synthetic populations is small or moderate (Raghunathan et al. 2003), 

!|!!
(!), !!

(!)  ~  !!!!(!!
! , (1+ 1/!)!!

(!)). 

 This implies: 

 (!|!!
! ,!!

! ,!!) ~ !(!!
! ,   (1+ 1/!)!!) 

(!!
! /!!|  !!

! ,!!) ~   !!!!! /(! − 1). 

 This implies when ! goes to infinity, !!
(!) ≈   !!. When ! is small or moderate, we 

have (!|!!
! ,!!

! ,!!) ~ !(!!
! ,   (1+ 1/!)!!). This implies !!

(!) ≈   (1+ 1/!)!!) ≈

(1+ 1/!)  !!
(!). 
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 Within individual surveys, it is reasonable to suppose (Rubin 1987) 

!!
(!)|  !!

(!), !!
(!)~!(!!

(!), !!
(!)), ! = 1,… , ! that !!

(!) is the mean of ! i.i.d. draws from 

this distribution.  

The conditional distribution of !! given (!!,!!,!!) 

Since the normal sampling distribution of !!
(!), ! = 1, . . . , !, we have !!

(!) =

!
!

!!
(!)  !

!!! |  !!
(!), !!

(!)~!(!!
(!), !!

(!)/!). If the prior distribution of !!
!  conditional on 

!!
(!) is proportional to a constant, the conditional distribution of !!

!  given !!
(!),  !!

(!)   and 

!!
(!) is normal:  

!!
! | !!

(!),  !!
(!),!!

(!)  ~  !(!!
! ,!!

! /!) 

 Since !!
(!) ≈ 1+ !

!
!!

! ,  this leads to: 

!! = !!
!

!!
!

!
!!! / !

!!
!

!
!!! |  !!  ,!! ,!!  ~    N(!! ,!!/L), 

where !! =
!!
!

!!
!

!
!!! / !

!!
!

!
!!!   and !! = 1/ !

!!
!

!
!!! . 

The conditional distribution of ! given (!!,!!,!!) 

 From !|  !!  ,!!,!!  ,!!  ~  !(!!  ,!!)  and   !!  |!!,!! ,!!  ~  N(!! ,!!/L), we 

have !|  !!,!!  ,!! follows a normal distribution with mean  

!(!|  !!,!!  ,!!) =   !(!(!|  !!,!!  ,!!|!!)) = !(!!|  !!,!!  ,!!) = !!  
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and variance 

!(!|  !!,!!  ,!!) =   !(!(!|  !!,!!  ,!!|!!))+ !(!(!|  !!,!!  ,!!|!!)) =

!(!!|  !!,!!  ,!!)+ !(!!|!!,!!  ,!!) = !!/L+ !!,  

i.e.,  

!|  !!,!!  ,!!  ~  !(!!  , (1+ !!!)!!). 

The conditional distribution of !! given !! 

!!
!!
|  !! = !!/

!
!

!!
!

!
!!!

=!!/
!

!

!!
!
!!
!

!!
!

!
!!!

~!!/
!
!

!!
!

!
!!!

!!!!
!

!!!

= !!
!

!!
!

!
!!!

!!!!
!

!!!
=

!

!!
!

!
!!!

!!!!
!

!!!
/ !

!!
!

!
!!! . 

 The term ( !

!!
!

!
!!! !!!!! )/ !

!!
!

!
!!!  is a weighted sum of ! chi-square 

distributions of the same degree of freedom, which can be approximated by ! ∗ !!!, where 

! and ! are the parameters to be determined. If we denote  !! =
!

!!
! /

!

!!
!

!
!!! , 

then  ( !

!!
!

!
!!! !!!!! )/ !

!!
!

!
!!!  =   !!!

!!! !!!!! .  

 By equating the first and second moments of   !!!
!!! !!!!!  and ! ∗ !!!, we obtain 

! =   !!!!
!!! !"#  ! = (! − 1)/      !!!!

!!! . 

 Thus, !!/!!|  !!  ~  !!!/!, where ! = (! − 1)/      !!!!
!!! . 

The approximate t-corrected distribution for Q 

 From !|  !!,!!  ,!!  ~  !(!!  , (1+ !!!)!!) and !!/!!|  !!  ~  !!!/!, we have 
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!|  !!  ,!!  ~  !!(!!  , (1+ !!!)!!) 

(Gelman et al. 2004), where ! = (! − 1)/   !!!!
!!!  and   !! =

!

!!
!

!

!!
!

!
!!!

. Again replacing 

!!
!  and !!

! with the sample estimates !!
!  and !!

!  yields the desired result. 

2.4.3 Randomization Validity 

2.4.3.1 Unbiasedness of the Combined Estimator  

Under assumptions 1-3, the estimates from the synthetic populations of each 

survey, !!
! , ! = 1,… , !, are unbiased with respect to repeated sampling from the fixed 

population (Raghunathan et al. 2003), i.e., E(!!
! |  !!

(!)) =  !, where !!
(!)  denotes the !!! 

synthetic population for the sth survey. Thus,  

! !! =
Q!

!

B!
!

!

!!!

/
1
B!

!

!

!!!

!!
! , ! = 1,… , !, ! = 1,… , !  

=
E(!!

! |  !!
! )

!!
!

!

!!!

/
1
!!

!

!

!!!

 

=
!
!!

!

!

!!!

/
1
!!

!

!

!!!

 

=  !, 

which implies that the combined estimator across ! surveys is unbiased for the 

population true value. 

2.4.3.2 Gains in Precision 



	
  29	
  

If the synthetic populations are generated properly, !!
! , ! = 1,… , !,  will be close 

to or slightly bigger than the variance estimate from the actual data (Assumption 2 and 3) 

because of the information loss when generating the synthetic populations.  

 Assume the minimum variance estimate among the ! surveys is !!
! . Then the 

variance estimates from the ! surveys can be written as !!
! = !(!) ∗ !!

!  with 

!(!) ≥ 1, ! = 1,… , !. Then the variance estimate of the combined estimator is !! = 1 

/ !

!!
!

!
!!! = !

!

! ! ∗!!
!

!
!!!

= !
!

! !
!
!!!

!!
!  < !!

!  ≤ !!
! , ! = 1,… , !. The largest gain in 

precision happens when the variance estimates from the ! surveys are equal, i.e., 

!(!) = 1, ! = 1,… , !. In this situation, the variance of the combined estimator is 1/! of 

the ones from individual surveys. Even though we may lose information when generating 

the synthetic populations, the combined estimator should still be more precise than those 

from individual surveys. 

2.5 Simulation Study 

In the next two sections, we describe two studies to demonstrate the application of 

the proposed method. There are two purposes of the studies. The first purpose is to 

evaluate the model-based method to generate synthetic populations that adjusts for the 

complex sampling design features. The second purpose is to compare the combined 

estimates with the estimates from individual surveys. In Section 2.5, we conduct a 

simulation study that involves a population with four normally distributed variables. We 

use a linear model to impute the unobserved population. In Section 2.6, we evaluate the 

new approach in a more realistic situation, in which we combine the 2006 National 
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Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS) 

to make inference on people’s health insurance coverage. 

We create a population with strata and clusters within each stratum from the 

following linear model. The estimand of primary interest is the population mean of !, !. 

!!"# = 500+ 7!!!"# + 5!!!"# + 9!!!"# + 4.5 ∗ !  + !!" + !!"#, 
where, !!~!(3, !" = 0.5),  !!~!(8, !" = 0.75), !!~!(10, !" = 1) are the design 
variables known for the entire population, 
! = 1,… ,150, 
!!"~! 0,0.1 , ! = 1,… ,!!,  
!!~!"#$%&' 2,52  is the number of clusters within stratum !,    
!!"#~! 0,1 , ! = 1,… , !!",  
!!"~!"#$%&'(20,120) is the number of units within cluster ! of stratum !. 
 
 The population for the simulation study has 240,785 subjects, denoted 

by  (!,!) =    (!, (!!,!!,!!)). We draw two samples from the population to simulate the 

data obtained from two surveys: one is drawn using simple random sampling (SRS) and 

the other stratified clustering sampling with unequal probabilities of selection. The 

sample size of the simple random sample is 100,000. For the complex sample, we select 

two clusters from each stratum with probabilities proportional to cluster size (PPS). 

Within each selected cluster, we select 1/10 of the population. Thus, the probability that 

unit !"# is selected is  

Pr cluster  ij  is  selected  ∗ Pr unit  ijk  is  selected cluster  ij  is  selected ∝   b!". 

The weights of the sample are calculated by inversing the selection probabilities. Since 

the number of clusters and units are random, the complex sample sizes are slightly 

different across replications, which is approximately 2,000. We denote the samples 

by  (!!"#,!!"#) and the unobserved population by (!!"# ,!!"#). 



	
  31	
  

 For each sample, ! = 100 synthetic populations are created using the proposed 

method: 

1. Estimate the approximated posterior distribution of the regression coefficients, 

!(!, !"#(!)),under the linear model, where ! is the point estimate of the 

regression coefficients obtained from the sample (!!"#,!!"#) after adjusting for 

the sampling design. 

2. Make 100 draws from the posterior distribution,!(!), ! = 1, . . . ,100, where 

!(!) = (!!
(!),!!

(!),!!
(!),!!

(!)). 

3. For !(!), ! = 1, . . . ,100, impute the unobserved population using the underlying 

true model: !!"#
(!) = !!"#(!(!))! and generate one synthetic population of !, 

(!!"#,!!"#
(!) ). 

 The population mean of ! is estimated from the synthetic populations and the estimates 

are combined first within surveys using the combining rule developed by Raghunathan et 

al. (2003) and then across two surveys using the combining rule developed in the chapter. 

We repeat the process 200 times. Specifically, we draw 200 simple random samples and 

200 complex samples from the population. Each pair of simple random sample and 

complex sample is considered to be the observed data from two surveys.  

 We first evaluate the proposed synthetic population generation method by 

comparing the following four statistics, the average of the 200 actual sample estimates of 

!, the average of the 200 actual sample standard error estimates (given in the parentheses 

in Table 2.2), the standard deviation of the 200 actual sample estimates of ! (given in the 

brackets in Table 2.2) and the rate the 95% confidence interval covers population true 

value. The results are summarized in Table 2.2. 
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Table 2.2 Estimates from Population, Sample and Synthetic Populations 

 
 

Survey 1: 
SRS 

Survey 2: 
Stratified 
Clustering 
Sampling 

Population True 
Value 

(!) 

 Sample Syn.pop (100) Sample Syn.pop 
(100) 

972.343 Mean of Point Estimates 
Mean of SE Estimates 
SD of Point Estimates 
95% CI Coverage rate 

972.279 
(0.611) 
[0.608] 

95% 

972.281 
(0.606) 
[0.610] 

95% 

972.341 
(0.297) 
[0.286] 

96% 

972.402 
(0.307) 
[0.304] 

95% 
 

 We see that when the underlying true model is used to impute the unobserved 

values, the synthetic populations preserve the point estimates and variance estimates very 

well for both the simple random sample and the complex sample. And the loss of 

information is trivial. Also, the 95% confidence interval coverage rates between the 

actual data and the synthetic populations are almost identical. This implies the 

approximate model-based method adjusts for the complex sampling design features.  

 In the combining survey context, for each replication, we produce the combined 

point estimate ! and variance estimate using the combining rule developed in Section 2.4. 

And then we compare the coverage rate of the 95% confidence interval as well as the 

empirical mean square error, !"#$ = (!! − !)!!""
!!! /200, where !! is the estimate for 

replication !  (! = 1,… ,200).  The results are summarized in Table 2.3. 

Table 2.3 Individual Survey Estimates and the Combined Estimate 
 Survey 1: 

 SRS  
Survey 2: 

Stratified Clustering 
Sampling 

Combined 
Estimate 

Point Est. 
SE 

95% CI 
eMSE 

972.279 
0.611 
95% 
0.378 

972.341 
0.297 
96% 
0.089 

972.366 
0.265 
95% 
0.076 
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We notice that while the combined estimate has as good 95% CI coverage rate as 

the estimates from individual surveys and that it has a smaller empirical mean square 

error than the estimates from both the simple random sample and the complex sample. 

The gain in precision over the estimate from the simple random sample is very big. This 

implies the proposed method uses the information from both samples and produces a 

more accurate and precise estimator. 

2.6 Application 

In Section 2.5, we use the true model that generates the target population to 

impute the synthetic populations. Thus, the inference from the synthetic populations is 

under the best scenario where the imputer's assumed model is also the correct model. 

 In realistic situations, the exact model that generates the population is not known, 

and the model of interest may not be linear. To evaluate the proposed combining survey 

method in a more realistic setting, we use the 2006 NHIS and MEPS data. The goal is to 

estimate the coverage rate of health insurance for the whole US population and some 

subdomains. There are three types of health insurance status, covered by any private 

insurance, covered by government insurance and uninsured. We choose six demographic 

variables as independent variables: gender, race, census region, education level, age 

(categorical), and income level (categorical). This gives us a 7-dimensional table with 

16,128 cells. The subdomains are created by one demographic variable or the 

combination of 2 or 3 demographic variables.  

 Both the 2006 NHIS and MEPS data are multistage probability sample that 

incorporates stratification, clustering and oversampling of some subpopulations (e.g., 
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Black, Hispanic, and Asian).  We delete the cases with item missing values and focus on 

our simulation on the complete cases. This results in 20,147 and 20,893 cases in the 

NHIS and MEPS respectively. We recode the variables into the same categories. The 

coding of the variables is shown in Table 2.4 below. 

Table 2.4 Variables and Response Categories for the 2006 NHIS and MEPS 
 

 

 If the model that generates the synthetic populations fails to include important 

terms, we could lose a fairly large amount of information. In the other hand, if we include 

too many terms, we may have highly unstable estimates of the log-linear model 

coefficients resulting in spurious variability in the synthetic populations. So we need to 

determine the model that fits the data best.  

 We use a forward model selection approach to decide the level of interaction that 

should be included into the model. The Bayesian information criterion (BIC) is used to 

Variables of Interest Response Categories 
Age 1: [18,24]        2: [25,34] 

3: [35,44]        4: [45,54] 
5: [55,64]        6: >=65 

Census Region  1: Northeast     2: Midwest 
3: South           4: West 

Education 1: Less than high school   2: High 
school 
3: Some college                 4: College 

Gender 1: Male                                        2: 
Female 

Health Insurance Coverage 1: Any Private Insurance 
2: Public Insurance 
3: Uninsured 

Income 1: (0,10000)           2: [10000,15000) 
3: [15000,20000)   4: [20000,25000) 
5: [25000,35000)   6: [35000,75000) 
7: >=75000 

Race 1: Hispanic 
2: Non-Hispanic White 
3: Non-Hispanic Black 
4: Non-Hispanic All other race groups 
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compare different models. Specifically, we start the model with all 7 main effects and all 

2 way interactions. We add one 3 way interaction at a time, choose the most significant 3 

way interactions and then calculate the BIC of this model. Then we add the other 3 way 

interactions into the current model (the one with the most significant 3 way interaction) 

one at a time, choose the most significant one and calculate the BIC. We repeat this until 

the BIC starts to increase. Figure 2.2 below is the BIC versus the number of 3 way 

interactions for the NHIS. As we can see, the BIC is increasing since the first 3 way 

interaction is added, which suggests the model with all main effects and 2 way 

interactions is sufficient. Also, the Pearson Chi-square for this model is close to the 

number of degrees of freedom, which is also a sign of goodness of fit. We get the same 

model for the MEPS data following the same model selection procedure.  

Figure 2.2 Model selection for the NHIS 

 

  

 Following the proposed method, we generate 100 synthetic populations for each 

survey. We analyze them as simple random samples and combine the estimates from the 

synthetic populations within each survey using the combining rules for synthetic data. 

The results are summarized in Table 2.5. 
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Table 2.5 Estimates from Actual Data and from Synthetic Populations for the 2006 NHIS 
and MEPS 
Domain Actual Data (Complex Design) Synthetic Populations 

Types  NHIS MEPS NHIS MEPS 
Whole Proportion 
Population Private 0.746 0.735 0.7457 0.734 

Public 0.075 0.133 0.0757 0.133 
Uninsured 0.179 0.132 0.1785 0.132 

Variance 
 Private 2.46E-05 2.78E-05 2.66E-05 2.86E-05 

Public 6.29E-06 1.44E-05 7.99E-06 1.77E-05 
Uninsured 1.84E-05 1.41E-05 1.81E-05 1.56E-05 

Male Proportion 
Private 0.740 0.735 0.7397 0.735 
Public 0.060 0.101 0.060 0.102 
Uninsured 0.200 0.164 0.2000 0.164 

Variance 
Private 3.32E-05 3.87E-05 3.70E-05 3.52E-05 
Public 6.82E-06 1.53E-05 7.91E-06 1.91E-05 
Uninsured 2.94E-05 2.64E-05 3.19E-05 2.56E-05 

Hispanic Proportion 
Private 0.494 0.506 0.4933 0.506 
Public 0.096 0.161 0.0969 0.161 
Uninsured 0.410 0.333 0.4099 0.333 

Variance 
 Private 1.24E-04 1.73E-04 1.33E-04 2.08E-04 

Public 2.57E-05 8.03E-05 3.28E-05 9.46E-05 
Uninsured 1.23E-04 1.19E-04 1.32E-04 1.67E-04 

Non-
Hispanic 
White 

Proportion 
Private 0.805 0.788 0.8045 0.788 
Public 0.062 0.116 0.062 0.117 
Uninsured 0.134 0.096 0.1337 0.096 

Variance 
Private 2.99E-05 3.35E-05 3.07E-05 3.98E-05 
Public 8.20E-06 1.81E-05 1.10E-05 2.45E-05 
Uninsured 2.02E-05 1.51E-05 1.82E-05 1.82E-05 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827 0.813 0.8404 0.838 
Public 0.039 0.079 0.0371 0.067 
Uninsured 0.134 0.108 0.1225 0.096 

Variance 
Private 1.00E-04 1.39E-04 6.80E-05 8.59E-05 
Public 2.82E-05 6.31E-05 1.79E-05 4.25E-05 
Uninsured 7.24E-05 8.92E-05 4.38E-05 5.79E-05 
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 We see the point estimates and the variance estimates from the synthetic data are 

similar to those from the actual data after complex sampling design features are taken 

into account. However, the correspondence is less exact for the smaller subdomains such 

as the Non-Hispanic white people with Income between 25,000 and 35,000 per year. The 

reason may be that the imputation model that is fitted to the whole sample globally may 

not hold well for this small domain of size 2,193. Next, we produce the combined 

estimates using the combining rules for multiple surveys. The results are summarized in 

Table 2.6. From the table, we notice the variance estimates for the combined estimator 

are much smaller than the ones from individual surveys. For example, the combined 

estimator is 82% more precise than the estimates from the NHIS and 256% more precise 

than the estimates from the MEPS on average. The largest increase in precision over the 

NHIS is by 191% for estimating the proportion of Non-Hispanic white people with 

Income between 25,000 and 35,000 per year who are uninsured and the largest increase 

in precision over the MEPS is by 266% for estimating the proportion of Non-Hispanic 

white people with Income between 25,000 and 35,000 per year 266% who are covered by 

any private insurance.  
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Table 2.6 Estimates from Individual Surveys and the Combined Estimates for the 2006 
NHIS and MEPS 
Domain Actual Data (Complex Design) Combined 

Estimates Types  NHIS MEPS 
Whole Proportion 
Population Private 0.746 0.7348 0.740 

Public 0.075 0.1330 0.094 
Uninsured 0.179 0.1322 0.154 

Variance 
 Private 2.46E-05 2.78E-05 1.38E-05 

Public 6.29E-06 1.44E-05 5.50E-06 
Uninsured 1.84E-05 1.41E-05 8.38E-06 

Male Proportion 
Private 0.740 0.7354 0.737 
Public 0.060 0.1010 0.072 
Uninsured 0.200 0.1636 0.180 

Variance 
Private 3.32E-05 3.87E-05 1.80E-05 
Public 6.82E-06 1.53E-05 5.59E-06 
Uninsured 2.94E-05 2.64E-05 1.42E-05 

Hispanic Proportion 
Private 0.494 0.5057 0.498 
Public 0.096 0.1608 0.113 
Uninsured  0.410 0.3335 0.376 

Variance 
 Private 1.24E-04 1.73E-04 8.11E-05 

Public 2.57E-05 8.03E-05 2.44E-05 
Uninsured 1.23E-04 1.19E-04 7.37E-05 

Non-
Hispanic 
White 

Proportion 
Private 0.805 0.7877 0.797 
Public 0.062 0.1161 0.079 
Uninsured   0.134 0.0962 0.115 

Variance 
Private 2.99E-05 3.35E-05 1.73E-05 
Public 8.20E-06 1.81E-05 7.59E-06 
Uninsured 2.02E-05 1.51E-05 9.10E-06 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827 0.8132 0.839 
Public 0.039 0.0792 0.046 
Uninsured   0.134 0.1076 0.111 

Variance 
Private 1.00E-04 1.39E-04 3.80E-05 
Public 2.82E-05 6.31E-05 1.26E-05 
Uninsured 7.24E-05 8.92E-05 2.49E-05 
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2.7 Discussion 

In this chapter, we propose a new method to combine information from multiple 

complex surveys. We evaluate the new method by using a simulation study and applying 

it to combine information about health insurance status from the 2006 NHIS and MEPS. 

Both show the combined estimate is more precise compared to the estimates from 

individual surveys. The simulation study uses the underlying true model to generate 

synthetic populations while adjusting for the sampling designs. We have no information 

loss in the sense that the sampling properties of inferences from the synthetic population 

and the actual sample are very similar.  Then we combine the estimates from two samples 

and the combined estimate outperforms the estimates from individual surveys with 

respect to mean square error while retaining correct 95% confidence interval coverage. In 

the application, although there is some loss of information due to the imputation model is 

not the underlying true model, the combined estimates of health insurance status that use 

the information from two surveys are still more precise than the ones from individual 

surveys. 

 The quality of inferences of the proposed method clearly depends on the 

imputation models. It is possible to obtain valid inferences from combining multiple 

surveys if relationship is accurately modeled in the imputation models. On the other hand, 

when the imputation model is misspecified, the inference from the synthetic populations 

may not be valid, which implies the combined estimates may not be valid. For example, 

in the second simulation study where we combined the 2006 NHIS and MEPS, the 

inference from the synthetic populations does not simulate that of the actual data well for 
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the smallest domain. When developing an accurate imputation model is impossible due to 

small sample size or complicated data structure, we could use nonparametric methods to 

protect against model misspecification. This will be discussed in Chapter 3.  

 This new combining survey method has two major advantages over the existing 

methods. First, it adjusts for the complex sampling design features when imputing the 

unobserved population. Since the synthetic populations can be analyzed as simple 

random samples, information from other surveys can be used to adjust for the 

nonsampling errors and/or filling in the missing variables. For example, one of the 

greatest interests in combining survey area is in the situation that each survey only covers 

a subset of variables of interest and we have to combine multiple surveys of different 

sampling designs to obtain all the variables of interest.  

 Another advantage of this method is it has no limitation on the number of surveys 

to be combined as long as the surveys have the same underlying population. The 

proposed method that adjusts for the complex sampling design features can be applied to 

each survey independently. After the missing information is imputed, regardless the 

number of surveys to be combined, we just need to combine the estimates from each 

survey using the combing rule developed in this chapter. It would be interesting to see 

how much more gains in precision we could obtain when we combine more than two 

surveys. While this chapter aims at laying down the theoretical foundation, we will 

extend and evaluate the new method in more general situations in the future research. 
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CHAPTER 3 

A NONPARAMETRIC METHOD TO GENERATE SYNTHETIC 

POPULATIONS TO ADJUST FOR THE COMPLEX SAMPLING DESIGN 

FEATURES 

 

 

Outside of the survey sampling literature, samples are often assumed to be generated by 

simple random sampling process that produces independent and identically distributed 

(IID) samples. Many statistical methods are developed largely in this IID world. 

Application of these methods to data from complex sample surveys without making 

allowance for the survey design features can lead to erroneous inferences. Hence, much 

time and effort have been devoted to develop the statistical methods to analyze complex 

survey data and account for the sample design. An alternative to tailor the methods to fit 

the data is to work backwards, tailoring the data to fit the methods. The first method 

developed along these lines is the inverse sampling algorithm (Hinkins, Oh and Scheuren, 

1997). In this chapter, we propose a new nonparametric method to invert the complex 

sampling design features and generate simple random samples from a missing data point 
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of view. This method achieves the same goal as the inverse sampling does, making 

adjustment on the complex data so that they can be analyzed as simple random samples. 

We apply the method to two sample designs, one-stage stratified sampling and stratified 

clustering sampling. Both situations use weighting to adjust for the unequal selection 

probabilities. We use the nonparametric method to generate synthetic populations for the 

2006 National Health Interview Survey (NHIS), the Behavioral Risk Factor Surveillance 

System (BRFSS) and the Medical Expenditure Panel Survey (MEPS). We then apply this 

method in the new combining survey framework developed in Chapter 2 and produce the 

combined estimates of the health insurance coverage rates for the US population.  

3.1 Introduction  

 The development of survey sampling techniques is an extraordinary achievement 

(Hansen 1987, Kish 1995). The richness in modern sampling techniques may isolate the 

analysis of survey data from the classical statistics, which has mainly been developed for 

simple random samples or more recently, one-stage cluster samples without concerning 

for issues such as stratification, unequal probability of selection, nonresponse bias or 

calibration. Major efforts of modern survey statistics focus on developing methods that 

are appropriate to analyze complex survey data (Skinner, Holt and Smith 1989).  Hinkins, 

Oh and Scheuren (1997) proposed an inverse sampling design algorithm that connects the 

survey statistics and the classical statistics from another perspective. Instead of 

developing new statistical techniques to fit the data, the inverse sampling technique 

resample from the data to produce equivalent simple random samples that can be 

analyzed using the classical statistical methods. Adapting a quote from Hinkins, Oh and 

Scheuren (1997): “If you only have a hammer, every problem turns into a nail!”. Their 
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basic idea is to choose a subsample that has a simple random sample structure 

unconditionally. The subsample is often much smaller than the original sample so they 

propose to repeat the process independently many times and average the results to 

increase the precision. They also described the exact or approximate inverse sampling 

schemes under multiple situations such as the stratified simple random sampling, one-

stage cluster sampling and two-stage cluster sampling. However, this new idea is not 

used widely in practice mainly because it is extremely computionally intensive and the 

precision losses are often substantial.  

 In the last chapter, we proposed a new method from a missing data perspective for 

the purpose of combining multiple surveys. Unlike the inverse sampling technique that 

assumes the population is no longer available and we can only draw the subsamples from 

the original sample, the new method assumes the sample is drawn from a finite 

population which can be recovered after we impute the unobserved part of it. We 

developed the imputation model from a Bayesian framework. Specifically, we 

approximate the posterior distribution of the model parameters by the asymptotic normal 

distribution. The mean and covariance matrix of the normal distribution are estimated 

after complex sampling design features are taken into account.  

 However, all statistical models are simplifications and hence subject to some 

degree of misspecification (Little 2004). The major weakness of a model-based method is 

if the model is seriously misspecified, it may yield invalid inferences (Little 2004). 

Model misspecification includes neglecting to include an important covariate, 

misspecifiying its functional form, or making an erroneous distributional assumption. 

Although the general steps to apply the model-based method are the same across 
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situations, the details could vary greatly in practice. First, we need to consider the 

relationships among the variables of interest and determine an appropriate model that fits 

the data, which may be hard if the data contains different types of variables. After we 

determine the model, we also we need to develop specific strategies for both model 

selection and model fitting. This is more challenging when the data that is obtained using 

different complex sampling designs.  

 In this chapter we propose a nonparametric method as a counterpart of the model-

based method to generate synthetic populations. The nonparametric method focuses on 

the design of the survey so we can avoid modeling the complicated relationships among 

the variables in the data. The basic idea is to resample from the actual data to impute the 

unobserved part of the population. Bayesian bootstrap methods are used in this process. 

Since it achieves the same goal of the inverse sampling technique, it can be treated as the 

Bayesian finite population version of inverse sampling.  

 This chapter is organized as follows: Section 3.2 reviews and summarizes 

different bootstrap methods. Section 3.3 presents the proposed method under two 

situations, one-stage stratified sampling and stratified clustering sampling. Both 

situations also have samples obtained with unequal selection probabilities. Section 3.4 

proves that the point estimate from the synthetic populations is unbiased for the 

population true value and that the variance estimate from the synthetic populations is 

approximately unbiased for the one that is obtained from actual data after adjusting for 

the complex sampling design features. Section 3.5 provides a simulation study to evaluate 

the performance of the nonparametric method. Section 3.6 applies the method to estimate 

health insurance coverage rates using the 2006 NHIS, MEPS and BRFSS data. We also 
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applied the combining survey method proposed in Chapter 2 and produced the combined 

estimates of people’s health insurance coverage rates. Concluding remarks are provided 

in Section 3.7. 

3.2 Background 

3.2.1 The Bootstrap 

The bootstrap method is first proposed by Efron (1979) in the case of an 

independent and identically distributed sample. It has great applications in statistics for 

situations where explicit formulae for measuring variances and conducting significance 

tests are intractable. The bootstrap draws multiple simple random samples with 

replacement from the original sample to simulate the sampling distribution of a statistic 

of interest. It essentially assumes the sample cumulative distribution function (cdf) of the 

statistic is the population cdf. 

 Rao and Wu (1988) extend Efron’s bootstrap method to complex survey data, 

especially those obtained from stratified clustering sampling. Suppose a complex sample 

contains ! strata and there are !! clusters within stratum ℎ, ℎ = 1,… ,!. Denote ! as the 

total number of clusters in the data, i.e., ! = !!!
!!! . Suppose the statistic of interest is 

!. The bootstrap method is established in the following steps (Rao and Wu 1988). 

1. In stratum ℎ, ℎ = 1,… ,!, draw a simple random sample with replacement 

(SRSWR) of !! from the !! clusters. Let !!!
∗  denote the number of times that 

cluster !, ! = 1,… , !!  is selected from stratum ℎ, so that  

!! = !!!
∗!!

!!! . 
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 For each element !, ! = 1,… ,!!! within cluster ! from stratum ℎ, we denote its 

 original weight by !!!". Then we create the replicate weight as:  

!!!"∗ = !!!" 1−
!!

!! − 1
+

!!

!! − 1
!!
!!

  !!!
∗ . 

 To ensure all the replicate weights are non-negative , !! ≤ !! − 1 . 

2. Suppose we generate ! bootstrap samples. For each bootstrap sample !, ! =

1,… ,!, calculate the estimate of the statistic of interest ! using the replicate 

weights !!!"∗
(!), denoted by !∗(!). Similarly to Efron’s bootstrap, !∗(!), 

! = 1,… ,!, simulate the sampling distribution of !. The point estimate of ! is 

obtained from 

!!""# = !∗(!)!
!!! /!. 

 

The variance of !!""# is calculated from  

!"#!""# !!""# = !
!

(!∗(!) − !!""#)!!
!!! , 

which reflects the change in variance caused by stratification and clustering. A 

special case is when there are 2 PSUs in each stratum. In this setting, the only 

choice for the value of !! is !! = 1.  

3.2.2 The Bayesian Bootstrap 

The Bayesian Bootstrap is developed by Rubin (1981) as a Bayesian analogue of 

the bootstrap. It is quite similar to the bootstrap operationally and inferentially. For 

example, Lo (1987) showed that the Bayesian bootstrap has the same desirable large 
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sample properties as Efron’s bootstrap. But the Bayesian bootstrap performs better for 

small samples because of its Bayesian justification. In the other hand, the Bayesian 

bootstrap and bootstrap have different interpretations. The bootstrap simulates the 

sampling distribution of a statistic estimating the parameter, while the Bayesian bootstrap 

simulates the posterior distribution of the parameters of interest. Based on this posterior 

distribution, we can obtain the posterior predictive distribution of the unobserved subjects 

given the sample, from which the unobserved subjects of the population can be drawn.   

 The Bayesian bootstrap is established by making draws from a posterior 

distribution of the parameters that is obtained from a Dirichlet prior and a multinomial 

likelihood. It is first developed for simple random sampling with replacement. For 

example, assume the variable of our interest for the population is ! and a sample of size 

! is denoted by (!!,… ,!!). We will see that the Bayesian bootstrap draws the subjects in 

the sample and thus is not variable-specific. Once a subject is selected, all the variables 

are selected. So !! , ! = 1,… ,! actually denote the ! subjects in the sample. Operationally, 

each BB sample is selected by the following two steps (Rubin 1981). 

1. Draw ! uniform random numbers between 0 and 1, and let their ordered values be 

!!,… ,!! and also let !! = 0 and !! = 1. 

2. Draw each of the ! values in the BB sample by drawing from (!!,… ,!!) with 

probabilities ( !! − !! , !! − !! ,… , 1− !!!! ). 

3. Suppose we generate ! BB samples. Then the ! BB replications gives the 

Bayesian bootstrap distribution of ! (or posterior predictive distribution of 

unobserved !) and thus of any parameter of this distribution. For example, for 
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each BB sample !, ! = 1,… ,!, we calculate the estimate of the statistic of 

interest !(!), denoted by !∗(!). Then the point estimate of ! is obtained from 

!!! = !∗(!)!
!!! /!. 

The variance of !!! is calculated from  

!"#!! !!! = !
!

(!∗(!) − !!!)!!
!!! . 

 Consider the similarity between the bootstrap and Bayesian bootstrap, the 

rationale behind how the bootstrap adjusts for complex sampling design features can be 

naturally generalized to the Bayesian bootstrap. However, unlike the bootstrap 

replications simulating the sampling distribution of the statistic of interest, the BB 

samples simulate the posterior distribution of the statistic. We can use the same scheme 

to calculate the replicate weights for the BB samples.  

3.2.3 Finite Population Bayesian Bootstrap  

The finite population bootstrap (FPB) was first proposed by Gross (1980). Bickel 

and Freedman (1984) and Chao and Lo (1985) provided a first-order asymptotic 

justification for the FPB mean. This method assumes (!!,… ,!!) is a simple random 

sample from a finite population (!!,… ,!!) and the population size ! is an integer 

multiple of the sample size !, that is, ! = !". Then, FPB replicates the sample ! times to 

create the FPB population. Each FPB sample is drawn by simple random sampling 

without replacement from the FPB population to obtain (!!∗,… ,!!∗). The FPB is 

developed from a frequentist’s point of view and is equivalent to Efron’s bootstrap for a 

large population.  
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Lo (1986, 1988) developed the finite population Bayesian bootstrap (FPBB) as a 

Bayesian analogue of FPB. He simulated a posterior distribution with respect to a “flat” 

Dirichlet-multinomial prior (Ferguson 1973). However, the FPBB is extremely 

computationally intensive to make draws from the posterior predictive distribution since 

it involves the calculation of the gamma functions. This further requires the calculation of 

the number of possibilities that we choose ! units out of ! and ! and ! are usually huge 

for survey data. To improve its practicability, we make draws from the FPBB posterior 

predictive distribution using a “Pόlya urn scheme” procedure (Lo 1988). Suppose an urn 

contains a finite number of balls. A Pόlya sample of size ! is selected by first selecting a 

ball at random from the urn and returning the selected ball into the urn, then putting one 

same ball into the urn and repeating this process until ! balls have been selected. Each 

replication of the FPBB is drawn using the following steps: 

  Step 1. Draw a Pόlya sample of size ! − !, denoted by (!!∗,… ,!!!!∗ ) from the  

 urn {!!,… ,!!}. 

 Step 2. Form the FPBB population !!,… ,!!,!!∗,… ,!!!!∗ .     

 It appears that the FPBB, FPB, Bayesian bootstrap and Efron’s bootsrap are 

closely related (Figure 3.1). For example, it is shown that the FPBB and FPB share 

similar operational characteristics and small sample properties. The FPBB reduces to the 

Bayesian bootstrap for a large population (Lo 1988). Lo also provided a first-order 

asymptotic equivalence of the FPBB and FPB in his 1988 paper.  
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Figure 3.1 Equivalence of bootstrap, Bayesian bootstrap, finite population bootstrap and 
finite population Bayesian bootstrap 
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Operational and inferential similarity 

 

3.3 Nonparametric Method to Generate Synthetic Populations 

In this section, we present the nonparametric method to generate synthetic 

populations that adjusts for the complex sampling design features. The idea is to treat the 

unobserved part of the population as missing data and impute it by making draws from 

the actual data. Once we have a draw from the posterior predictive distribution of the 

whole population, the complex sampling design features will be of no use and we can 

analyze it as a simple random sample. 

 Cohen (1997) extended the FPBB procedure to adjust for the unequal 

probabilities of selection. Assume (!!,… ,!!) is a sample from a finite population 

(!!,… ,!!) with weights (!!,… ,!!). The procedure has two steps: 

Bootstrap 

Finite 
Population 
Bootstrap Bayesian 

Bootstrap 

Finite 
Population 
Bayesian 
Bootstrap 
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 Step 1. Draw a sample of size ! − !, denoted by !!∗,… ,!!!!∗ , as follows: 

determine !!∗ by drawing from (!!,… ,!!) in such a way that !! is selected with 

probability !!!!!!!,!!!∗(!!!)/!
!!!! !!! ∗(!!!)/!

 , where !! is the weight of unit ! and !!,!!! is the 

number of bootstrap selections of !! among !!∗,… ,!!!!∗ . 

 Step 2. Form the FPBB population !!,… ,!!,!!∗,… ,!!!!∗ .     

 Cohen (1997) provided neither theoretical proof nor empirical research to 

evaluate this procedure. Theorem 1 and its proof below provide theoretical justification 

for FPBB Polya urn scheme.  

Theorem 3.1 Assume (!!,… ,!!) is a sample from a finite population (!!,… ,!!) drawn 

with unequal probabilities, and the weights of the sample are normalized to the 

population size, i.e., !!!
!!! = !. Then, FPBB Polya urn scheme results in the same 

draws for the unobserved part of the population as the values drawn from the posterior 

predictive distribution obtained from FPBB.  

Proof:  

The idea is to prove the posterior predictive distribution of the unobserved values 

given the observed values obtained from FPBB is the same as the posterior predictive 

distribution obtained from the FPBB Polya urn scheme.  

Finite Population Bayesian Bootstrap 

 Assume the observed data has ! unique units, which are selected with unequal 

probabilities and the weights of the sample are normalized to the population size, i.e., 

!!!
!!! = !. For any variable of interest !, denote the observed values by (!!,… ,!!) 
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and denote the unique values of !!,… ,!!  by (!!,… ,!!∗) with !∗≤  !. FPBB is 

constructed by assuming a non-informative Dirichlet prior and a multinomial likelihood 

for the data, i.e.,  

Non-informative Dirichlet prior: ! !!,… ,!!∗ ∝ !!
!!!∗

!!!  

Data: multinomial distribution: ! !!"#|!!,… ,!!∗ ∝ !!
!!!∗

!!! , 

where !! = !(!! = !!)!
!!! !! ,      ! = 1,… ,!∗. 

Without loss of generality, in this proof, we assume (!!,… ,!!) are unique, i.e.,  !! =

!!,  !! = !! ,!! = !! , ! = 1,…, !∗ = !. Then the prior and the likelihood become: 

Non-informative Dirichlet prior: ! !!,… ,!! ∝ !!!!!
!!!  

Data: multinomial distribution: ! !!"#|! ∝ !!
!!!

!!! . 

The posterior predictive distribution is given by 

Pr(  !!  units  of  values  !!,… , !!  units  of  values  !!, !! = !!
!

!!!

|!!"#) 

=
!(!!"#,!!"#)
!(!!"#)

=
…!! ! !!"#,!!"# ,! !!!…!!!

!
!

…!! ! !!"#,! !!!…!!!
!
!

 

=
…!! ! !!"#|!!"#,! ! !!"#|! ! ! !!!…!!!

!
!

…!! ! !!"#|! ! ! !!!…!!!
!
!

 

=
…!! ! !!"#|! ! !!"#|! ! ! !!!…!!!

!
!

…!! ! !!"#|! ! ! !!!…!!!
!
!

 

=
…!! !!

!!!
!!! !!

!!!
!!! !!!!!

!!! !!!…!!!
!
!

…!! !!
!!!

!!! !!!!!
!!! !!!…!!!

!
!

 

=
…!! !!

!!!!!!!!
!!! !!!…!!!

!
!

…!! !!
!!!!!

!!! !!!…!!!
!
!
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=
(! !! + !!

! !!
)!

!!!

!(! + !!)/!(!). 

 However, drawing the unobserved units from this posterior predictive distribution 

is very computationally intensive especially when !! is large.  

Polya Urn Scheme 

The observed data can be viewed as an urn contains !! balls of value !!, …, !! 

balls of value !!, where !!!
!!! = !. The Polya urn scheme draws one ball at random 

from the urn and then replaces it with a ball with the same value along with an additional 

ball with the same value. Since the number of the balls of different values is unequal, the 

selection probability of the ball of value !! is !!
!
, ! = 1,… ,!. Given the observed data, the 

probability that we draw !!balls and that the first !!  balls have value !! through the last 

!! balls have value !! is: 

!! ∗ !! + 1 ∗… ∗ !! + !! − 1
! ∗ ! + 1 ∗… ∗ ! + !! − 1

∗
!! ∗ !! + 1 ∗… ∗ !! + !! − 1

(! + !!) ∗ ! + !! + 1 ∗… ∗ ! + !! + !! − 1
 

∗… ∗
!! ∗ !! + 1 ∗… ∗ !! + !! − 1

! + !!!!!
!!! ∗ ! + !!!!!

!!! + 1 ∗… ∗ ! + !!!
!!! − 1

 

=
(! !! + !!

! !!
)!

!!!

!(! + !!)/!(!). 

 The probability of selecting any permutation of the !! balls that have !!  balls of 

value !! through !! balls of value !! is the same because the ordering only affects the 

permutation of the nominators. So for the FPBB Polya urn scheme, 

Pr(  r!  units  of  values  y!,… , r!  units  of  values  y!, r! = N!
!

!!!

|y!"#)  
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=
(! !! + !!

! !!
)!

!!!

!(! + !!)/!(!)  , 

which is the same as the probability for the FPBB. 

  Now, the goal is to draw the unobserved part of the population from the sample 

(!!,… ,!!), which together with the sample produce the synthetic population. Assume 

the weights of the sample are normalized to the population size, i.e., !!!
!!! = ! and 

that in the unobserved part of the population, there are !! − 1 balls of value !! , ! =

1,… ,!, which implies the probability of selecting the ball of value !! in the sample is 

!!!!
!!!

, ! = 1,… ,!. This can be further converted into a Polya urn problem, where in the 

urn, there are !!!!
!!!

! balls of value !! , ! = 1,… ,!. The FPBB Polya urn scheme suggests 

we draw one ball at random and then replace the selected ball in the urn along with an 

additional ball of the same value. It is straightforward to show that !!∗ out of the 

unobserved population (!!∗,… ,!!!!∗ ) should be selected in such a way that !! is selected 

with probability 

!!!!  
!!! !!!!,!!!
!!(!!!)

= !!!!!!!,!!!∗(!!!)/!
!!!! !!! ∗(!!!)/!

 ,  

where !! is the weight of unit ! and !!,!!! is the number of bootstrap selections of !! 

among !!∗,… ,!!!!∗ . Thus, the ! − ! draws !!∗,… ,!!!!∗  along with the original ! balls in 

the urn, !!,… ,!!, produce one synthetic population. This completes our proof. 

 To adjust for the complex sampling design features, we should apply FPBB Polya 

urn scheme to adjust for both clustering and unequal probability of selection. For 

example, for a one-stage stratified sample, we could use FPBB Polya urn scheme to draw 

the unobserved population from the actual data. Once we have the whole population 
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imputed, the complex sampling design features can be ignored and we can analyze them 

as simple random samples.  

 For a stratified clustering sampling, the idea is to first apply FPBB Polya urn 

scheme to impute the unobserved clusters within each stratum. Then within each cluster, 

we apply FPBB Polya urn scheme to draw the unobserved part of the population. For 

example, suppose a complex sample contains ! strata and there are !! clusters within 

stratum ℎ, ℎ = 1,… ,!. Denote ! as the total number of clusters in the actual data, i.e., 

! = !!!
!!! . We use the capitalized letters to denote the number of clusters in the 

population, i.e., ! = !!!
!!! . The first step is to use FPBB Polya urn scheme to impute 

the unobserved clusters within each stratum, !!∗,… , !!!!!!
∗ , which together with the 

observed clusters provide the clusters in Stratum ℎ in the population. Then within each of 

the !! cluster, we apply FPBB Polya urn scheme to impute the unobserved units so that 

we have the whole population. However, it is very hard in practice to accurately estimate 

the probabilities of selecting clusters based on the information that survey agencies 

typically release to public. Thus, we propose the following approximated steps to 

generate synthetic populations for stratified clustering sampling. 

Step 1: Use the Bayesian Bootstrap to adjust for stratification and clustering  

Assume the sample is obtained using a stratified clustering sampling with unequal 

selection probabilities. We first draw a Bayesian bootstrap sample of the clusters within 

each stratum and then repeat ! times to produce ! Bayesian bootstrap (BB) samples 

denoted by !!,… , !!. Considering the equivalence between the classical bootstrap and 

Bayesian bootstrap, we calculate the replicate weights for each BB sample as Rao and 
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Wu (1988) suggested such that each of the Bayesian bootstrap samples has weights, 

!∗(!) = !!!"
∗(!), ℎ = 1,… ,!, ! = 1,… , !! , ! = 1,… ,!!! , where  ! = 1,… , !, !!!"∗ =

!!!" 1− !!
!!!!

+ !!
!!!!

!!
!!
  !!!

∗ . Assume the weighted estimate of ! for 

replication ! is denoted by  !! , ! = 1,… , !, which simulate the posterior distribution of !. 

Thus, the average across !! , ! = 1,… , !, provides an unbiased estimate for !. The 

between-variance of !! , ! = 1,… , !, is the variance estimate after the complex sampling 

design features are accounted for.  

 If the sample is selected using a stratified sampling mechanism with unequal 

selection probabilities within strata, we apply the Bayesian bootstrap procedure to the 

subjects within each stratum and calculate the replicate weights as Rao and Wu (1988) 

suggested.  

 This step generates ! Bayesian bootstrap samples which essentially are ! draws 

from the posterior predictive distribution of the unobserved clusters given the actual data. 

However, the units for the ! Bayesian bootstrap samples still have weights and cannot be 

analyzed as simple random samples.  

Step 2: Use FPBB Polya urn scheme to adjust for weighting   

  Once we have ! BB samples with replicate weights, the second step imputes the 

unobserved units using the FPBB Polya urn scheme (Theorem 1). In practice, the 

probability of selecting the !!! unit, !!∗, depends on the selection of the first k-1 units, 

!!∗,… ,!!!!∗ . In another words, to determine the probability of selecting a new unit, we 

have to count the number of times that each unit in the sample has been selected among 
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the previous selections. To make it computationally more efficient, we could draw a 

moderate size of population for multiple times and then pool them to simulate the 

posterior predictive distribution.  

 Assume ! FPBB samples of size ! ∗ ! are produced for each BB sample, denoted 

by !!!,… , !!" , ! = 1,… , !, where ! is an integer. We pool the ! FPBB samples to produce 

one synthetic population, !!∗. The size of !!∗ then is ! ∗ ! ∗ !.  

 Figure 3.2 provides a flowchart that summarizes this procedure. !!∗, ! = 1,… , !, 

are the synthetic populations, which can be analyzed using the standard statistical 

methods for simple random samples. We denote the estimate of the statistic of interest ! 

from !!" by !!" , ! = 1,… , !, ! = 1,… ,! and !! =
!!"!

!!!

!
, ! = 1,… , ! is the estimate 

obtained from the synthetic population, !!∗. Inference can be directly made from the 

synthetic data combining rule (Raghunahtan et al 2003), which is essentially the same as 

the combining rule for the bootstrap samples when the number of synthetic populations is 

big.    
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Figure 3.2 Nonparametric method to impute the unobserved population  
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3.4 Randomization Validity 

 In this section, we evaluate the performance of the point estimate and variance 

estimate from the nonparametric method from the randomization perspective. Assume we 

generate ! synthetic populations, !!∗, ! = 1,… , !. The estimate of the population quantity 

of ! obtained from from !!∗ is denoted by !!. Raghunathan et al. (2003) suggest to 

estimate ! by !! =
!!!

!!!
!

 with variance estimate !"# !! = !
!

(!! − !!)!!
!!! .  

!! 

  (!!! ) 

!! 

  (!!!) 

!!! 

(!!!! ) 

!!! 
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(!!!! ) 
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 We first prove !! is unbiased for !. Recall that !!∗ is generated by pooling the ! 

synthetic populations that impute the unobserved units of !! , ! = 1,… , !. From Theorem 1, 

! !!"   !! = !! , ! = 1,… !, ! = 1,… ,!. From the well established bootstrap theories, 

! !! ! = !, where ! is the estimate obtained from the actual data. If !  is estimated after 

adjusting for the complex sampling design features, ! ! Ƥ = !, where ! denotes the 

true population. Thus, 

! !! Ƥ = !  (!  (!  ( !!!
!!!
!

  |!!   )  |!)  |Ƥ) = !  (!  (!  (
!!"  

!
!!!

!
!
!!!

!
  |!!   )  |!)  |Ƥ) =

!(!( !!!
!!!
!

|!)|Ƥ) = ! ! Ƥ = !. 

 The variance of !! is estimated by the between variance !
!

(!! − !!)!!
!!! .     

!"# !!""# = !
!

(!! − !!""!)!!
!!! , where !! is calculated using the replicate weights 

and !!""# =
!
!

!!!
!!! . From the bootstrap theory, !"# !!""# = !"#(!|Ƥ) is the 

variance estimate of ! after the complex sampling design features are adjusted for. In the 

second step when we generate ! synthetic populations, !!∗, ! = 1,… , !, which can be 

analyzed as simple random samples.  If ! and ! are infinite, the estimates from !!∗, 

!! =
!!"!

!!!

!
, is unbiased for !!. Then the variance estimates of ! obtained from the 

synthetic populations, !"# !! = 

!
!

(!! − !!)!!
!!! =!

!
(!! − !!""#)!!

!!! = !"# !!""# = !"#(!|Ƥ), which are the 

variance estimates after complex sampling design features are taken into account.  

 In practice, it is not realistic to set ! and ! to be infinite, which may result in a 

random error for the estimate of ! from the synthetic populations. Assume we have the 
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following random measurement error model, !!=!! + !! , ! = 1,… , ! and !~! 0,!!! , i.e., 

!
!

!!!
!!! = 0, !

!
!!!!

!!! = !!!. This brings in extra variability into the variance estimate. 

Under the assumed measurement error model, 

 !
!

(!! − !!!
!!! /!)!!

!!! = !
!

(!! + !! − !!""#)!!
!!! = !

!
(!! − !!""#)!!

!!! +

!
!

!!!!
!!! + !

!
2 !!!!!

!!! .  

Considering !! , ! = 1,… , ! are the estimates obtained from ! independent draws and 

!!~! 0,!!! , the last term !
!
2 !!!!!

!!!  should be trivial. Thus, the variance estimate 

from the synthetic populations is !"# !! = !
!

(!! − !!""#)!!
!!! + !!!. !!! can be made 

arbitrarily small by increasing the synthetic population size or increasing the number of 

FPBB draws !. From our simulation studies, we suggest the minimum ! and ! are ! = 5 

and ! = 5. 

3.5 Simulation Study 

 In this section, we conduct a simulation study to evaluate the nonparametric 

method that generates synthetic populations while adjusting for the complex sampling 

design features. We use a simulated population in the study so that we can evaluate the 

repeated sampling properties of the nonparametric method.  

We create a population with strata and clusters within each stratum from the 

following bivariate normal distribution: 

!!!"#
!!!"#

  ~  !
500+ 4.5 ∗ ! + !!"
500+ 4.5 ∗ ! + !!"

, 100 50
50 100 , 

where ! = 1: 150 denotes the stratum effect, 


