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!!"~!(0,10) denotes the random cluster effect, 
!!~!"#$%&' 2,52  is the number of clusters within stratum !,    
!!"~!"#$%&'(10,20) is the number of units within cluster ! of stratum !. 
 
 The population for the simulation study has 61,324 subjects. We draw a stratified 

clustering sampling with unequal probabilities of selection. Specifically, we select two 

clusters from each stratum with probabilities proportional to cluster size (PPS). Within 

each selected cluster, we select 1/5 of the population. Thus, the probability that unit !"# is 

selected is  

Pr cluster  ij  is  selected  ∗ Pr unit  ijk  is  selected cluster  ij  is  selected ∝   b!". 

The weights of the sample are calculated by inversing the selection probabilities. Since 

the number of clusters and units are random, the complex sample size is slightly different 

across replications, which is approximately 770.  

 For stratified clustering sample, we generate ! = 100 synthetic populations 

following the exact two steps proposed in Section 3.3. Each synthetic population is about 

10,000 times (! = 100, ! = 100) as large as the sample. 

The estimands of interest are the marginal means for !! and !! and the regression 

coefficients of !! on !!. We perform ordinary linear regression analyses to obtain the 

estimates for the regression coefficients and the standard errors based on the actual data 

and each synthetic population. The estimates from the synthetic populations are then 

combined using the synthetic data combining rule developed by Raghunathan et al. 

(2003). We obtain the 95% confidence intervals for the statistics of interest from the 

synthetic populations and from the actual data.  
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We repeat the process 200 times to evaluate the repeated sampling properties of 

the nonparametric method. Specifically, we draw 200 complex samples from the 

population and generate 100 synthetic populations for each sample and analyze them as 

simple random samples.  

Figure 3.3 displays the scatter plot of the 200 pairs of estimated mean, intercept 

and slope from the actual samples and the corresponding synthetic populations along with 

a 45-degee line. The sampling distributions of the actual sample and synthetic population 

estimates are practically the same. Table 3.1 compares the inference of descriptive and 

analytic statistics from the actual data and the multiple synthetic populations. The point 

estimates for both types of statistics are identical across the imputed and actual data. The 

average of standard errors across 200 replications and the standard deviation of the point 

estimates across 200 replications for mean, intercept and slope are identical. The 95% 

confidence interval coverage rate for all three statistics is nominal. As we can see, the 

proposed nonparametric method focuses on the design variables and does not assume 

models to capture the relationships among the variables. This suggests it is robust for 

model misspecification, especially in the situations that the relationships among the 

variables are complicated or the sample size is too small to correctly fit the model. 

Table 3.1 Descriptive and Analytic Statistics Estimated from the Actual Data and the 
Synthetic Populations in the Simulation Evaluation of the Nonparametric Method 

Type Actual Data Synthetic Populations No. 
of 

Est. 
Estimate SE SD Coverage 

(%) 
Estimate SE SD Coverage 

(%) 
Mean 836.701 0.461 0.491 93.25 836.793 0.476 0.493 93.75 400 

Intercept 1.013 1.768 1.848 93.5 1.014 1.775 1.846 92.5 200 
Slope 0.999 0.002 0.002 92.0 0.999 0.002 0.002 91.5 200 
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Figure 3.3 Scatter plot of the descriptive and analytic statistics from the actual and 
synthetic populations 

  

3.6 Applications 

In Section 3.6.1 and 3.6.2, we use genuine data (2006 NHIS, MEPS and BRFSS) 

to evaluate the performance of the nonparametric method under two common sampling 

designs, stratified clustering sampling and stratified sampling.  Then in Section 3.6.3, we 

produce the combined estimates of people's heath insurance coverage rates by using the 

information from all three surveys. 

3.6.1 Estimation of Health Insurance Coverage from the NHIS and MEPS 

 Most survey data collected under area probability sampling are prepared and 

released in the format of a stratified clustering sample with weights. For example, both 

the 2006 NHIS and MEPS data are multistage probability sample that incorporates 
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stratification, clustering and oversampling of some subpopulations (e.g., Black, Hispanic, 

and Asian in later years).  In this simulation study, we will use the nonparametric method 

to adjust for the stratified clustering sampling used by the 2006 NHIS and MEPS and 

generate synthetic populations that can be analyzed as simple random samples. Then we 

evaluate the method by comparing the estimates of the health insurance coverage rate for 

the whole population and some subdomains obtained from the synthetic populations to 

those obtained from the actual data. 

 Both NHIS and MEPS ask respondents whether they are covered by any health 

insurance and if so what type health insurance they are using. So there are three health 

insurance statuses, covered by any private insurance, covered by government insurance 

and uninsured. We are also interested in estimating the health insurance coverage rates in 

sub population. So in this study, we choose six demographic variables: gender, race, 

census region, education level, age (categorical), and income level (categorical) and the 

subdomains are created by one demographic variable or the combination of 2 or 3 

demographic variables.  

 We delete the cases with item-missing values and focus on our simulation on the 

complete cases. This results in 20,147 and 20,893 cases in the NHIS and MEPS data 

respectively. We recode the variables into the same categories. The coding of the 

variables is shown in 3.2 below. 
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Table 3.2 Variables and Response Categories for the 2006 NHIS and MEPS 
 

  
 Using the nonparametric method, we generate 200 synthetic populations for each 

survey. Specifically, we generate ! = 200 BB samples and for each BB sample, we 

generate ! = 10 FPBB of size 5n (! = 5). Thus, each synthetic population is 50 times as 

big as the actual sample (1,007,350 for NHIS, 1,044,650 for MEPS). Each synthetic 

population is analyzed as a simple random sample and the estimates are combined using 

the combining rule for synthetic data (Raghunathan, et al. 2003).      

 The results are summarized in Table 3.3, from which we see the estimates of 

people’s health insurance coverage rates from the synthetic data are almost identical to 

those obtained from the actual data after complex sampling design features are accounted 

for. For the NHIS, the variance estimates of the health insurance coverage rates across 

almost all domains from the synthetic populations are about 30% larger than these from 

the actual data and less than 10% larger for the MEPS. This implies that this 

Variables of Interest Coding 
Age 1: [18,24]        2: [25,34] 

3: [35,44]        4: [45,54] 
5: [55,64]        6: >=65 

Census Region  1: Northeast     2: Midwest 
3: South           4: West 

Education 1: Less than high school   2: High school 
3: Some college                 4: College 

Gender 1: Male                                        2: Female 
Health Insurance Coverage 1: Any Private Insurance 

2: Public Insurance 
3: Uninsured 

Income 1: (0,10000)           2: [10000,15000) 
3: [15000,20000)   4: [20000,25000) 
5: [25000,35000)   6: [35000,75000) 
7: >=75000 

Race 1: Hispanic 
2: Non-Hispanic White 
3: Non-Hispanic Black 
4: Non-Hispanic All other race groups 
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nonparametric method adjusts for the complex sampling design features with some 

information loss. 

 Comparing the results with the ones obtained using the model-based method in 

Chapter 2, we notice that the nonparametric method does a better job to simulate the 

actual data for small domains. For example, for the smallest subdomain we consider, the 

Non-Hispanic white people with Income between 25,000 and 35,000 per year, both the 

point estimates and the variance estimates from the model-based method are quite 

different from these from the actual data. For the whole population and other sub 

domains, the model-based method has less information loss compared to the 

nonparametric method. This is consistent with our hypothesis. When the model fits the 

data well, the model-based method is more efficient than the nonparametric method. 

However, when the assumed model does not fit the data well, the model-based method 

may produce invalid inference. In such situation, the nonparametric method is robust to 

model misspecfication. 
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Table 3.3 Estimates from Actual Data and from the Synthetic Populations for the 2006 
NHIS and MEPS 
Domain Actual Data (Complex Design) Synthetic Populations 

Types  NHIS MEPS NHIS MEPS 
Whole Proportion 
Population Private 0.746 0.735 0.746 0.736 

Public 0.075 0.133 0.075 0.132 
Uninsured 0.179 0.132 0.179 0.132 

Variance 
 Private 2.46E-05 2.78E-05 3.15E-05 3.31E-05 

Public 6.29E-06 1.44E-05 8.06E-06 1.59E-05 
Uninsured 1.84E-05 1.41E-05 2.29E-05 1.71E-05 

Male Proportion 
Private 0.740 0.735 0.740 0.736 
Public 0.060 0.101 0.060 0.100 
Uninsured  0.200 0.164 0.200 0.164 

Variance 
Private 3.32E-05 3.87E-05 3.93E-05 4.31E-05 
Public 6.82E-06 1.53E-05 8.81E-06 1.63E-05 
Uninsured 2.94E-05 2.64E-05 3.29E-05 2.79E-05 

Hispanic Proportion 
Private 0.494 0.506 0.495 0.508 
Public 0.096 0.161 0.097 0.158 
Uninsured 0.410 0.334 0.409 0.334 

Variance 
 Private 1.24E-04 1.73E-04 1.94E-04 1.97E-04 

Public 2.57E-05 8.03E-05 3.88E-05 8.43E-05 
Uninsured 1.23E-04 1.19E-04 1.90E-04 1.61E-04 

Non-
Hispanic 
White 

Proportion 
Private 0.805 0.788 0.804 0.788 
Public 0.062 0.116 0.062 0.116 
Uninsured 0.134 0.096 0.134 0.096 

Variance 
Private 2.99E-05 3.35E-05 3.79E-05 4.12E-05 
Public 8.20E-06 1.81E-05 1.04E-05 2.00E-05 
Uninsured 2.02E-05 1.51E-05 2.35E-05 1.80E-05 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827 0.813 0.827 0.814 
Public 0.039 0.079 0.039 0.079 
Uninsured 0.134 0.108 0.134 0.107 

Variance 
Private 1.00E-04 1.39E-04 1.48E-04 1.63E-04 
Public 2.82E-05 6.31E-05 3.86E-05 7.28E-05 
Uninsured 7.24E-05 8.92E-05 9.55E-05 1.11E-04 
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3.6.2 Estimation of Health Insurance Coverage from the BRFSS 

 Another commonly used data collection method is the random digit dialing (RDD) 

telephone survey. The RDD samples are usually not clustered. For example, the 2006 

BRFSS is collected within each state independently and the telephone numbers are 

randomly selected within state.  

 In the second simulation study, we will use the nonparametric method to adjust 

for the 1-stage stratified sampling used by the 2006 BRFSS and generate synthetic 

populations that can be analyzed as simple random samples. We are still interested in 

estimating the health insurance coverage rate for the whole population and some 

subdomains. However, the BRFSS only asks whether one is insured or not. There is no 

information about the type of insurance that one uses. So we only calculate the proportion 

of respondents who are not covered by any insurance. The demographic variables and the 

coding are the same as in Table 3.2.  

 We delete the cases with item missing values and focus on our simulation on the 

complete cases. There are 294,559 complete cases in the 2006 BRFSS data.  

 Using the proposed method for the 1-stage stratified sampling, we generate 200 

synthetic populations for the BRFSS data. Specifically, we generate ! = 200 BB 

samples and for each BB sample, we generate ! = 10 FPBB of size 5n (! = 5). Thus, 

each synthetic population is 50 times as big as the actual sample (around 14,727,950). 

Each synthetic population is analyzed as a simple random sample and the estimates are 

combined using the combining rule for synthetic data (Raghunathan, et al. 2003).    
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 The results are summarized in Table 3.4, from which we see the estimates of the 

proportion of uninsured people obtained from the synthetic data are almost identical to 

those obtained from the actual data after complex sampling design features are adjusted, 

so are the variance estimates. This implies that this nonparametric method adjusts for the 

complex sampling design features with little information loss. 

Table 3.4 Estimates from Actual Data and from Synthetic Populations for the 2006 
BRFSS  

Domain 
Actual Data 

(Complex Design 
Features) 

Synthetic Populations 

Whole population 

Proportion 
0.154 0.153 

Variance 
3.32E-06 3.44E-06 

Male 

Proportion 
0.167 0.167 

Variance 
8.88E-06 8.92E-06 

Hispanic 

Proportion 
0.371 0.370 

Variance 
7.18E-05 6.72E-05 

Non-Hispanic White 

Proportion 
0.106 0.106 

Variance 
2.15E-06 2.33E-06 

Non-Hispanic White 
& Income [25,000, 

35,000) 

Proportion 
0.173 0.173 

Variance 
2.78E-05 3.10E-05 

 
3.6.3 Combined Estimates of Health Insurance Coverage from the NHIS, MEPS and 

BRFSS 

 After we generate the synthetic populations for the three surveys, we produce the 

combined estimates of people’s health insurance coverage rates using the combining 

survey method in Chapter 2. Since all three surveys have the information about whether 

people have insurance or not, we can combine the NHIS, BRFSS and MEPS to estimate 
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the proportion of uninsured people. However, the BRFSS does not ask people what 

insurance they have, private or public. For these proportions, we can only combine the 

NHIS and MEPS. The results are summarized in Table 3.5. The variance estimates for 

the combined estimator are much smaller than the ones obtained from the actual data. 

Specifically, the precision of the estimates obtained from the NHIS is increased by 43% 

on average, with the largest increase of 98% obtained by combining the NHIS and MEPS. 

The gains in precision for the MEPS are even more. The average increase in precision for 

the MEPS is 101%, with the largest increase being 202%. The precision is further 

increased when we combine all three surveys. For example, for the proportion of people 

who have no coverage, on average the precision is increased by 5 times for the NHIS, 0.5 

times for the BRFSS and 4.2 times for the MEPS. This implies gains in precision by 

making use of the information from multiple surveys can be significant, and the more 

information we combine, the larger the gains are in precision.  
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Table 3.5 Estimates from Individual Surveys and the Combined Estimates before Missing 
Information is imputed for the 2006 NHIS, MEPS and BRFSS 
Domain Actual Data (Complex Design) Combined Estimates 

Types  NHIS BRFSS MEPS NHIS and 
MEPS 

NHIS, BRFSS 
and MEPS 

Whole  Proportion  
Population Private 0.746  0.735 0.741  

Public 0.075  0.133 0.094  
Uninsured 0.179 0.154 0.132 0.152 0.153 

Variance 
 Private 2.46E-05  2.78E-05 1.61E-05  

Public 6.29E-06  1.44E-05 5.35E-06  
Uninsured 1.84E-05 3.32E-06 1.41E-05 9.80E-06 2.55E-06 

Male Proportion 
Private 0.740  0.735 0.738  
Public 0.060  0.101 0.074  
Without  0.200 0.167 0.164 0.181 0.172 

Variance 
Private 3.32E-05  3.87E-05 2.06E-05  
Public 6.82E-06  1.53E-05 5.72E-06  
Uninsured 2.94E-05 8.88E-06 2.64E-05 1.51E-05 5.61E-06 

Hispanic Proportion 
Private 0.494  0.506 0.5014  
Public 0.096  0.161 0.1157  
Without  0.410 0.371 0.334 0.3684 0.3689 
Variance 

 Private 1.24E-04  1.73E-04 9.76E-05  
Public 2.57E-05  8.03E-05 2.66E-05  
Uninsured 1.23E-04 7.18E-05 1.19E-04 8.71E-05 3.79E-05 

Non-
Hispanic 
White 

Proportion 
Private 0.805  0.788 0.796  
Public 0.062  0.116 0.081  
Without  0.134 0.1059 0.096 0.113 0.107 

Variance 
Private 2.99E-05  3.35E-05 1.97E-05  
Public 8.20E-06  1.81E-05 6.86E-06  
Uninsured 2.02E-05 2.15E-06 1.51E-05 1.02E-05 1.90E-06 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827  0.813 0.821  
Public 0.039  0.079 0.053  
Without  0.134 0.173 0.108 0.122 0.154 

Variance 
Private 1.0E-04  1.39E-04 7.74E-05  
Public 2.82E-05  6.31E-05 2.52E-05  
Uninsured 7.24E-05 2.78E-05 8.92E-05 5.14E-05 1.93E-05 
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3.7 Discussion 

 In this chapter, we propose and evaluate a nonparametric method to generate 

synthetic populations as a counter part of the model-based method in Chapter 2. This 

method adjusts for the complex sampling design features without assuming any models to 

the observed data so it is robust to model-misspecification. Also, unlike the model-based 

method that needs to develop separate imputation models for different variables of 

interest, the nonparametric method only uses the design variables to generate synthetic 

populations and thus is not variable-specific.  

 In the simulation studies where we generate synthetic populations for the 2006 

NHIS, BRFSS and MEPS, the estimates of people’s health insurance coverage rates and 

their variance estimates from the synthetic population and from the actual data are very 

similar. The nonparametric method does not lose much information when imputing the 

unobserved units and/or clusters. When compared to the model-based method, the 

nonparametric method outperforms the model-based method for small domains where the 

assumed model does not fit the data accurately. For the domains where the imputation 

model is good, both the nonparametric method and the model-based method produce 

synthetic populations that simulate the actual data well. The model-based method 

preserves more information from the actual data compared to the nonparametric method. 

 Beside the fact that the nonparametric method is robust to model misspecification, 

another advantage is that the nonparametric method only uses the design variables such 

as stratum, cluster and weight to impute the unobserved part of the population. Unlike the 
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model-based method, it does not need to model the complicated relationships among the 

variables of interest, which becomes impossible if there are item missing values in the 

actual data. The synthetic populations generated by the nonparametric method still 

preserve the item missing values in the actual data. This potentially fills in a gap in the 

multiple imputation area that existing imputation methods typically ignore the complex 

sampling design features in the data and impute the missing values as if they are simple 

random samples.  

 A third practical advantage of the nonparametric method is that it is easier to be 

implemented into the existing statistical software (R, SAS, etc) because it focuses on the 

design variables and thus need not to develop strategies for various types of variables and 

data structures.  

 In the combining survey framework, as we see in the application, combining 

information from multiple surveys increase the precision of the estimates. Also, when we 

combine all three surveys to estimate the proportion of people who have no health 

insurance, the combined estimate is even more precise than the estimates when we only 

combine the NHIS and MEPS. However, since the BRFSS does not have the information 

about the types of health insurance, we cannot use the BRFSS data when estimating the 

proportions of people covered by private or public insurance.  

 As we mentioned earlier, since we cannot accurately estimate the probabilities of 

selecting clusters based on the information that survey agencies released to public, we 

only use an approximated Bayesian bootstrap method to adjust for stratification and 

clustering. To ensure the replicate weights to be positive, the Bayesian bootstrap method 
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can only produce fewer clusters within strata than in the actual data. Future research 

should focus on evaluating the FPBB method in imputing the unobserved clusters.  
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CHAPTER 4 

COMBINING INFORMATION FROM MULTIPLE COMPLEX SURVEYS 

WHEN THERE IS MISSING INFORMATION IN AT LEAST ONE SURVEY 

 

 

As there are more and more data collected from multiple sources for the same underlying 

population, there is an increasing demand to make use of all of the information contained 

in these data sets to produce improved inference. Two statistical techniques have been 

developed and investigated during the past several decades. The first is data 

fusion/linkage through statistical matching. The main objective of data fusion is to 

integrate multiple data collecting different levels of variables into a single complete data 

set that covers a broader range of variables. The second statistical technique is the 

combining survey method, which concentrates on reducing the survey errors by making 

use of the information from multiple surveys. In Chapter 2, we proposed a method that 

combines information from multiple surveys of different sampling designs. We also 

provided a simplified simulation study to evaluate the new method in which there is no 

missing information in both surveys that we combined. However, quite often in practice 
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multiple surveys using different sampling designs or modes of data collection cover 

various levels of variables and we need to merge the datasets from these surveys to 

produce a data file with all the variables of interest. Neither the existing data fusion 

methods nor the existing combining survey methods can achieve this goal. In this chapter, 

we extend the new combining survey method proposed in Chapter 2 to this general 

situation and apply this method to estimate health insurance coverage rates by combining 

the 2006 National Health Interview Survey (NHIS), the Behavioral Risk Factor 

Surveillance System (BRFSS) and the Medical Expenditure Panel Survey (MEPS). The 

combined estimates are shown to be more precise than the estimates from individual 

surveys. 

4.1 Introduction  

In marketing research and public opinion area, we sometimes gather data from 

multiple sources for the same group of people. For example, some of the data may be 

collected by survey agencies. Administrative data that are from external sources such as 

census data may also be available. Linking these data and analyzing them collectively 

broaden the scope of our analysis and help us understand the targeting population better 

and deeper.  

One concern of combining data from multiple sources is the discrepancy in data 

quality. For example, newer data collection methods such as smart phone surveys or web 

surveys are usually cheaper than the traditional data collection methods such as mail 

surveys (Cobanoglu, Warae and Morec 2001; Couper 2000; Couper, Traugott and Lamias 

2001). However, data obtained from web surveys may have larger nonsampling errors, 
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such as noncoverage error and nonresponse error. Many methods have been developed to 

combine data from two surveys to reduce the nonsampling errors in individual surveys. A 

thorough literature review of the existing combining survey methods can be found in 

Chapter 2.   

Another concern is that the data from multiple sources may collect various levels 

of variables and thus have different structures. For example, assume a company has one 

million customers. For each customer, 20 variables are stored in the customer database. 

Furthermore, a market survey interviews 1000 customers of the company and asks 

questions corresponding to 50 variables, including 10 variables that overlap those in the 

customer database. The question is how to make adjustment on the data structure of both 

the customer database and the market survey data to create a virtual survey with each 

customer. The most straightforward procedure to perform this kind of data fusion is 

statistical matching.  

Suppose there are two data sets, A and B. Suppose further that A contains 

variables ! and !, whereas B contains variables ! and !. !, ! and ! could be vector-

valued variables. Statistical matching is proposed to combine these two files to obtain at 

least one file containing !, ! and !. In contrast to record linkage or exact matching 

(Fellegi and Sunter 1969), the two samples to be combined are not assumed to have 

records for the same entities. Statistical matching assumes the two samples have little or 

no overlap, and hence records for similar entities are combined instead of records for the 

same entities.  
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There are two basic types of statistical matching, constrained and unconstrained 

(Radner et al. 1980). Constrained statistical matching uses all records in the two samples 

and preserves the marginal distribution for Y and Z (e.g., see Barr and Turner 1980). 

Unconstrained matching doesn’t have these requirements (Okner 1972).   

The inherent assumption in statistical matching is that the random vector Y given 

X is independent of the random vector Z given X. This is a rather strong assumption that 

limits the application of statistical matching techniques. For example, statistical matching 

may not in general be an acceptable procedure for estimating relationships between Y 

and Z, or for any type of multivariate analysis involving both Y and Z (Rodgers 1984). 

Only two procedures in the existing literatures can assess the effect of alternative 

assumptions of the inestimable covariance between Y and Z, the file concatenation 

method proposed by Rubin (Rubin 1986) and the variance-covariance method proposed 

by Kadane and supplemented by Moriarity (Kadane 1978; Moriarity and Scheuren 2001).  

Another inherent assumption for the statistical matching methods is all samples to 

be matched are obtained using simple random sampling (SRS) that results in independent 

and identically distributed (IID) observations. Current methods for stratified matching 

cannot accommodate complex sampling design features such as stratification, clustering 

and weighting.  

Also, statistical matching has to assume that the bridging variables X in all the 

samples to be combined do not contain nonsampling errors (Cohen 1991; Ingram et al. 

2000). None of the existing methods adjusts for the different survey error properties for 

either the bridging variables X or the variables of interest Y and Z. If the nonsampling 



	
  79	
  

errors are not taken into account before the samples are combined, the matched data may 

result in invalid inferences.  

In summary, the current combining survey methods concentrate on reducing the 

survey errors. Statistical matching is proposed to merge datasets from multiple surveys to 

achieve a complete data file when there is no existing data file containing all variables of 

interest. Both combining survey methods and statistical matching methods have 

difficulties when the data to be combined are not comparable in sampling design or 

nonsampling errors.  

In Chapter 2, we propose a new combining survey method that adjusts for the 

different sampling designs of multiple surveys. We also provided a simplified simulation 

study in which there is no missing information in both surveys that we combined. This 

lay out the foundation for the unified combing survey framework that achieves the goals 

of both the combining survey methods and statistical matching methods. It converts any 

combining survey situation into a missing data problem that can be handled using the 

well-established missing data theories. In this chapter, we provide the specific steps of 

the new combining survey method, develop its theoretical foundation, conduct a 

simulation study and consider an application to evaluate this new method.  

This chapter is organized as follows: Section 4.2 provides a motivating example 

that covers a broad range of combining survey situations. Section 4.3 provides the 

proposed steps to produce complete datasets and procedures for combining inference 

from the complete datasets. In Section 4.4, we derive the combining rule that is 

appropriate for the two-stage imputation procedure. We also conduct a simulation study 
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to show that the inferences based on the complete data sets after the missing information 

is filled and the actual data are very similar. Section 4.5 applies this new method to 

estimate health insurance coverage rates by combining the data collected from the 2006 

BRFSS, NHIS and MEPS. It is shown that the combined estimates are more precise than 

the estimates from individual surveys. Concluding remarks and discussions are provided 

in Section 4.6. 

4.2 An Motivating Example  

In this section, we first present a motivating example that covers a large variety of 

combining survey situations. Figure 4.1.a describes a general combing survey situation, 

in which the rows represent three surveys that have the same underlying population, i.e., 

! = {X!,Y!, Z!, ! = 1,2,… ,N}. Suppose that the actual observed data for each survey is 

!(!) = {X!,Y!, ! = 1,2,… ,!!} (Survey 1), !(!) = {X!, Z!, ! = 1,2,… ,!!}  (Survey 2) and 

!(!) = {Y!, Z!, ! = 1,2,… ,!!} (Survey 3), respectively. The blank cells in the figure 

denote the missing variables and the shaded cells represent the observed variables. If we 

are interested in estimating a population quantity that is related to !,! and !, we have to 

combine data from all three surveys. We assume that background variables, including 

design and administrative records, are available in all three surveys and are observed for 

the whole population. To simplify the notation, the additional background variables are 

excluded from the figures and the related formulas in the following sections. 
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Figure 4.1 Data structure in different phases of combining surveys: raw data from surveys 
with missing variables, synthetic populations after sampling designs are adjusted for, 
complete data after the missing variables are filled in      

                   a. Missing Data             b. Synthetic Population   c. Complete Data                                 
                    X        Y        Z               X       Y         Z                 X        Y        Z                            

Survey 1 
 
 
 
Survey 2 
 
Survey 3 
 
  

4.3 Methods 

4.3.1 Creating the Complete Datasets and Combining Multiple Surveys 

For the situation in Figure 4.1, we can combine the three surveys using the 

following steps illustrated in the flowchart in Figure 4.2: 

Step 1:  For each survey, generate ! synthetic populations that can be analyzed as simple 

random samples. Then stack the synthetic populations from the 3 surveys so that we 

have ! data sets with a structure as in Figure 4.1.b. We use the nonparametric method 

(Chapter 3) to generate synthetic populations. 

Step 2:  Once the sampling design features are adjusted for, the next step is to fill in the     

missing information. We could multiple impute the ! data sets with a structure in 

Figure 4.1.b so that we have ! ∗! complete data sets as in Figure 4.1.c. For example, 
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we could use sequential regression (Raghunathan et al 2001) to multiple impute the 

missing variables. 

Step 3:  Analyze each of the ! ∗! complete data sets using the statistical methods for 

simple random samples and denote the estimates for !(!,!,!) as !!
(!), ! =

1,… . , !,! = 1,… ,!. 

Step 4:  For each survey, combine !!
(!), ! = 1,… . , !,! = 1,… ,!, using the two-stage 

combining rule developed later in this chapter and denote the combined point and 

variance estimate as !!
!  and !!

! , s = 1,2, 3 respectively. 

Step 5:  Combine the estimate from each survey using the combining rule for multiple 

surveys developed in Chapter 2 to produce the final combined point and variance 

estimate.  
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Figure 4.2 Flowchart for combining surveys with missing variables 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

4.3.2 Analyzing the Complete Datasets 

In presence of missing information in some survey, we have to impute ! times 

for the item-missing data after we generate the synthetic populations. This procedure 
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involves two-stage imputation and produces ! ∗! complete data. However, neither the 

standard multiple imputation inference (Rubin 1987) nor the multiple synthetic data 

inference (Raghunathan et al 2003) will result in valid inference because both of them 

ignore the fact that it is a two-stage imputation, imputing the nonsampled units to 

produce synthetic populations and imputing the item-missing values to produce complete 

data, which brings in two separate sources of variability. Therefore, a new combining rule 

is needed. We propose to estimate ! by  

! =
1
!" !!

!   
!

!!!
  

!

!!!
=
1
!   

!

!!!
!! 

with variance 

! = 1+
1
!

1
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   = 1+ !
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!! + 1+ !

!
!
!

!!!
!!! , 

where !!
!  is the computed value of the population quantity of interest ! from the 

complete dataset, !! =
!
!

!!
!   !

!!! is the combined point estimate for synthetic 

population !, !! =
!

!!!
!! − ! !!

!!!  is the between-variance for the estimates from the 

! synthetic populations and !! =
!

!!!
!!
! − !

!
!!
!   !

!!!
!

!
!!!  is the between-

variance for the estimates from the ! multiple imputed datasets for synthetic population !.  
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For small or moderate number of synthetic populations, the inference about ! is 

made by approximating its posterior distribution by a ! distribution with degree of 

freedom !! = (! − 1)((1+ !!!)!!/!)!!. 

4.4 Evaluating the Two-stage Combining Rule 

In this section, we derive the combining rule for the two-stage imputation in a 

single survey setting. Then we conduct a simulation study to evaluate the inference from 

the complete datasets obtained using the two-stage imputation procedure.  

4.4.1 Theoretical Justification for the Two-stage Combining Rule 

Assume we generate ! synthetic populations, denoted as !"# = !"#!,… , !"#!  

from the observed data.  The next step is to multiply impute the missing information in 

each synthetic population, i.e., for !"#! , ! = 1,… !, we generate ! complete data 

!" = {!"!
! ,! = 1,… ,!}. The goal is to derive the posterior predictive distribution of 

population quantity of interest ! based on the complete datasets, i.e., 

! ! !" = {!"!
! ,! = 1,… ,!} . 

The conceptual framework for creating the complete datasets !" outlined in 

Section 4.3.1 suggests the following natural decomposition, 

! ! !" = [ ! !   !"#,!",!"#)! !"#   !"#,!")  !"#$]  ! !"#   !")!"#$, 

where !"# denotes the observed data. Obviously, !"# and !" are irrelevant after 

conditioning on !"# because both are random functions of !"#. Similarly, !" is 
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irrelevant after conditioning on !"#. Thus, ! !   !"#,!",!"#) = ! !   !"#) and 

! !"#   !"#,!") = ! !"#   !"#). Thus, the expression for ! ! !"  simplifies to 

! ! !" = [ ! !   !"#)! !"#   !"#)  !"#$]  ! !"#   !")!"#$ 

                 = ! !   !"#)   ! !"#   !")!"#$. 

Throughout this chapter, we assume that ! and ! are large enough to permit 

normal approximations for these posterior distributions. Thus, we only require the first 

two moments for each distribution. To derive these conditional moments, we use standard 

large sample Bayesian arguments. For example, to derive ! !   !"!), we treat the first 

two moments of ! given !"# as unknown and use !"# as the data. Similarly, for the first 

two moments of ! !"#   !"), we treat the first two moments based on !"# as unknown 

and use !" as the data. Diffuse priors are assumed for all parameters. 

First-stage inference: !(!|!"#!,… ,!"#!) 

Let {!!,… ,!!} denote the estimator of the population quantity ! from the 

synthetic populations. The nonsampled units can be treated as missing data and the 

standard multiple imputation framework (Rubin 1987) can be applied. Since each 

synthetic data is an entire population, the within-imputation variance can be ignored. 

Then based on Equations (3.1.5) and (3.1.6) from Rubin (1987, pp. 76-77), we have 

!|!"#~!!!! !, (1+ 1/!)!! , 

where ! = !
!

!!   !
!!! and !! =

!
!!!

!! − ! !! − ! !!
!!! . When ! is large, it becomes 

a normal distribution. 



	
  87	
  

Second-stage inference: ! !! !"!
! ,! = !,… ,! , ! = !,… ,! 

Assume the computed values of the population quantity ! from the ! complete 

data {!"!
! ,! = 1,… ,!} are denoted by {!!

! ,! = 1,… ,!}. Since each !"!
! ,! =

1,… ,!, is an entire complete population, we can ignore the within-imputation variance. 

Based on the combining rule for multiple imputation inference (Rubin 1987), we have  

!!   |  {!"!
! ,! = 1,… ,!}  ~!!!! !! , (1+ 1/!)!! , 

where !! =
!
!

!!
!   !

!!! and !! =
!

!!!
!!
! − !! !!

! − !!
!

!
!!! . When ! is large, 

it becomes a normal distribution. And the posterior distribution of ! becomes !(!, (1+

1/!) !!
!
), where ! = !

!
!!!

!!! = !
!"

!!
!   !

!!!
!
!!! . 

Derivation of !(!|!"!
! , ! = !,… ,!,! = !,… ,!) 

Since both ! !   !"#) and ! !   !") are approximated by a normal distribution 

under the assumption that we generate a large number of synthetic populations and 

multiple imputed datasets, the posterior distribution !(!|!") can be approximated by a 

normal distribution with mean !(!|!") and variance !"#(!|!").  

Using the results in the first and second stage approximation,  

! ! !" = ![! ! !"# |!"] = ! ! !" = !.  

Since  !!
!!!(!!!/!)!!

|!"  ~  !!!!! /(! − 1) (Raghunathan, Reiter and Rubin 2003) 

and when ! is large,   !!!!! /(! − 1) ≈ 1, we can approximate !! by  !!. Here we omit 
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(1+ 1/!)!! because the missing information due to the nonresponse is trivial compared 

to the missing information from the nonsampled part of the population. Thus, we have 

!"# ! !" = ! !"# ! !"# !" + !"# ! ! !"# !" = 1+
1
! !! + 1+

1
!

!!
! . 

For small or moderate number of synthetic populations, the inference about ! is 

made by approximating its posterior distribution by a t distribution with degree of 

freedom !! = (! − 1)((1+ !!!)!!/!)!!. 

4.4.2 Simulation Validation for the Two-stage Combining Rule 

This section presents a simulation study for the two-stage combining rule. We 

first generate a population of size ! = 1,000 from a 5-variate normal distribution with 

means equal to 0, variances equal to 1 and a common covariance of 0.5. We denote the 5 

variables as !!, !!, !!, !!, !!, respectively. Then we draw 500 independent actual samples 

of size ! = 100 using simple random sampling. For each sample, we create item-missing 

data on !! and !! and the missing data pattern simulates the situation in Figure 4.1, i.e., 

we simple random sample 80 subjects from the sample and make !! missing for the first 

60 subjects and make !! missing for the last 20 subjects. Then for each sample with item 

missing data, we generate ! = 5 synthetic populations of size 1000. For each synthetic 

population, we multiple impute the item missing data ! = 5 times using Markov chain 

Monte Carlo (MCMC) method (Schafer, 1997) which is realized by the proc mi function 

in SAS. Thus, we obtain 500*5*5=12500 data sets, which will be combined using the 

two-stage combining rule.  

Generating synthetic data 
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We use the same synthetic data generation model as described in the Simulation 

Study 1 in Raghunathan et al (2003). The imputation model assumes multivariate normal 

distribution with unknown mean µμ and covariance matrix Ʃ. A noninformative Jeffrey 

prior, ! µμ, Ʃ ∝    Ʃ !!/!, is applied (Jeffreys, 1961). Suppose ! is the sample mean and ! 

is the sample covariance matrix for a particular sample. Standard Bayesian calculations 

lead to the following procedure for creating synthetic data sets: 

• Generate a random variate, !, from a Wishart distribution with ! − 1 degrees of 

freedom and the associated matrix !
!!

!!!
. Define Ʃ∗ =!!!. 

• Generate µμ∗ from a multivariate normal distribution with mean ! and covariance 

matrix Ʃ∗/!. 

• Generate ! = 1000  independent multivariate normal random vectors with mean 

µμ∗ and covariance matrix Ʃ∗. 

• Repeat this process ! = 5 times to create five synthetic populations of size 1000 

each. 

For the part of the sample with missing !!, we impute the nonsampled part of  the 

population for (!!, !!, !! !!) from a 4-vairate normal distribution using the same steps 

and set  !! as missing in the synthetic populations. We use the same approach for 

generating synthetic populations for the part of the sample with missing !!. Since the 

imputation model matches the underlying true model, the synthetic data are created under 

the best scenario. This setup allows for the evaluation of our inference method without 

unnecessary implications from other factors.  
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Simulation results 

The estimands of interest are the marginal means for all five variables and the 

regression coefficients of !! on (!!, !!, !! !!). We perform ordinary linear regression 

analyses to obtain the estimates for the regression coefficients and the standard errors 

based on the actual data and each imputed data set. We obtain the 95% confidence 

intervals for the statistics of interest from the imputed data sets using the combining rule 

and from the actual data using the standard t-distribution. 

Figure 4.3 displays the scatter plot of the 500 pairs of estimated mean, intercept 

and slope from the actual samples and the corresponding imputed data sets along with a 

45-degee line. The sampling distributions of the actual sample and imputed sample 

estimates are practically the same. Table 4.1 compares the inference of descriptive and 

analytic statistics from the actual data and the multiple imputed data. The point estimates 

for both types of statistics are very similar across the imputed and actual data. The 

standard errors from the imputed data are a little bigger than the standard errors from the 

actual data suggesting some loss of efficiency. Also provided in Table 4.1 are the 

proportions of 95% confidence intervals that contain the true value. Consistent results are 

found with the coverage rates as the imputed data provides an over nominal coverage 

than the actual sample for both descriptive and analytic statistics. The 95% confidence 

intervals from the imputed data are wider than those from the actual samples as the 

average interval lengths are 0.39 for the actual data and 0.79 for the imputed data. Based 

on this new combining rule, the repeated sampling properties of the inference from the 

actual and imputed data are almost identical as predicted. In conclusion, the combining 

rule yields valid inference.  
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Table 4.1 Descriptive and analytic statistics estimated from the actual data and the 
imputed data in the simulation evaluation of combining rule 

Type Actual Imputed No. of 
estimates Estimate SE Coverage 

(%) 
Estimate SE Coverage 

(%) 
Mean -0.025 0.101 95.8 -0.026 0.132 96.56 2500 

Intercept 0.0399 0.081 95.6 0.0391 0.106 97.0 500 
Slope 0.197 0.101 96.25 0.198 0.171 96.1 2000 

 

Figure 4.3 Scatter plot of the descriptive and analytic statistics from the actual and 
imputed data sets  

 

4.5 Application 

In this section, we apply the new method to combine three surveys to make 

inference on health insurance coverage. The surveys we consider are the 2006 Behavioral 

Risk Factor Surveillance System (BRFSS), the 2006 National Health Interview Survey 
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(NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS). The three surveys use 

different modes of data collection and have different sampling designs, but they have 

similar target populations and share a considerable amount of questions. 

4.5.1 Data Sources 

The Behavioral Risk Factor Surveillance System is an ongoing telephone survey 

of the health behaviors of U.S. adults and was established in 1984 by Centers for Disease 

Control and Prevention (CDC). The BRFSS was designed to provide state-specific 

estimates of the prevalence of risk behaviors. By 1994, all states and the District of 

Columbia (DC) participated. The BRFSS sample households are obtained using a list-

assisted random digit dial (RDD) telephone sampling and thus are not clustered. The 

BRFSS allows the states to implement their own protocols, though some features have 

been standardized. It interviews more than 350,000 adults each year and thus is able to 

produce reliable estimates on both state level and national level. 

The National Health Interview Survey is a principle source of national health 

information for the U.S., non-institutionalized, civilian population. It has been conducted 

annually since 1957 by National Center for Health Statistics (NCHS) and Centers for 

Disease Control and Prevention (CDC). The NHIS utilizes a stratified, multi-stage 

probability sampling design. The sample is drawn from a geographic frame designated 

using the most recent decennial Census. Names and addresses are derived in a separate 

listing activities conducted specifically for NHIS. From 1995 through 2005, African 

American and Hispanic households were oversampled in order to facilitate better 

estimates for these populations. Beginning in 2006, households with at least one Asian 

member are also oversampled. The NHIS is currently conducted via a personal household 
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interview with a knowledgeable adult household representative using computer-assisted 

personal interviewing (CAPI) technology.  

A third data source is the Medical Expenditure Panel Survey. The MEPS has been 

conducted annually since 1996 by Agency for Healthcare Research and Quality (AHRQ). 

It currently has two major components: the Household Component and the Insurance 

Component. The Household Component collects data from a sample of families and 

individuals in selected communities across the United States. The sample is drawn from a 

nationally representative subsample of households that participated in the prior year's 

National Health Interview Survey. The MEPS household survey is also conducted via a 

personal household interview. The Insurance Component collects data from a sample of 

private and public sector employers on the health insurance plans they offer their 

employees. Thus, MEPS provides a very rich database that includes medical care 

utilization data.  

Both the NHIS and MEPS ask people whether they are covered by insurance and 

if so what type of insurance (government vs private) they use, while the BRFSS does not 

have information about the type of insurance people use. However, the sample size of the 

BRFSS is about 10 times as big as the NHIS and MEPS and it has small area identifier 

available to public. For example, the sample sizes for the 2006 BRFSS, the 2006 NHIS 

and the 2006 MEPS are 355,710, 75,716 and 34,145 respectively. Thus, the NHIS and 

MEPS may not be able to produce precise estimates for health insurance coverage 

especially for small domains of the population. If we impute the missing information 

about the types of insurance that people use in the BRFSS data, we could use the 

complete data to produce precise estimates on a small area or small domain level.  
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4.5.2 Combining the NHIS, BRFSS and MEPS 

Following the proposed steps in Section 4.3.1, we first use the nonparametric 

approach to generate synthetic populations to adjust for the different sampling designs 

that the three surveys used. Then we stack the synthetic populations from the three 

surveys and create a missing data problem as in Figure 4.1.b. Next we fill in the missing 

information in the BRFSS by using the sequential regression method (Raghunathan et al. 

2001) implemented by IVEware software (Raghunathan, Solenberger and Van Hoewyk 

2002). Finally, we compute the health insurance coverage rates for the whole population 

and some sub-domains from each complete dataset and combine the estimates using the 

two-stage combining rules developed in this chapter. The results are summarized in Table 

4.2. Since the BRFSS has a much larger sample than the NHIS and MEPS, after the 

missing information in the BRFSS is imputed, we have more precise estimates compared 

to the ones from the NHIS and MEPS.  

Then we apply the combining rule for multiple surveys developed in Chapter 2. 

The combined estimates are summarized in Table 4.3. By making use of the large sample 

of the BRFSS, we produce the combined estimates with much smaller variance estimates 

than the ones from the NHIS and MEPS. 
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Table 4.2 Estimates from Actual Data and from Synthetic Populations after Missing 
Information is Imputed for the 2006 NHIS, MEPS and BRFSS 
Domain Actual Data (Complex Design) Synthetic Populations 

Types  NHIS BRFSS MEPS NHIS BRFSS MEPS 
Whole Proportion 
Population Private 0.746  0.735 0.746 0.769 0.736 

Public 0.075  0.133 0.075 0.078 0.132 
Uninsured 0.179 0.154 0.132 0.179 0.153 0.132 

Variance 
 Private 2.46E-05  2.78E-05 3.15E-05 7.52E-06 3.31E-05 

Public 6.29E-06  1.44E-05 8.06E-06 5.39E-06 1.59E-05 
Uninsured 1.84E-05 3.32E-06 1.41E-05 2.29E-05 3.52E-06 1.71E-05 

Male Proportion 
Private 0.740  0.735 0.740 0.770 0.736 
Public 0.060  0.101 0.060 0.063 0.100 
Uninsured 0.200 0.167 0.164 0.200 0.167 0.164 

Variance 
Private 3.32E-05  3.87E-05 3.93E-05 1.31E-05 4.31E-05 
Public 6.82E-06  1.53E-05 8.81E-06 5.66E-06 1.63E-05 
Uninsured 2.94E-05 8.88E-06 2.64E-05 3.29E-05 9.17E-06 2.79E-05 

Hispanic Proportion 
Private 0.494  0.506 0.495 0.519 0.508 
Public 0.096  0.161 0.097 0.112 0.158 
Uninsured 0.410 0.371 0.334 0.409 0.369 0.334 

Variance 
 Private 1.24E-04  1.73E-04 1.94E-04 7.24E-05 1.97E-04 

Public 2.57E-05  8.03E-05 3.88E-05 3.39E-05 8.43E-05 
Uninsured 1.23E-04 7.18E-05 1.19E-04 1.90E-04 6.84E-05 1.61E-04 

Non-
Hispanic 
White 

Proportion 
Private 0.805  0.788 0.804 0.831 0.788 
Public 0.062  0.116 0.062 0.063 0.116 
Uninsured 0.134 0.106 0.096 0.134 0.106 0.096 

Variance 
Private 2.99E-05  3.35E-05 3.79E-05 7.55E-06 4.12E-05 
Public 8.20E-06  1.81E-05 1.04E-05 6.26E-06 2.00E-05 
Uninsured 2.02E-05 2.15E-06 1.51E-05 2.35E-05 2.44E-06 1.8E-05 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827  0.813 0.827 0.755 0.814 
Public 0.039  0.079 0.039 0.072 0.079 
Uninsured 0.134 0.173 0.108 0.134 0.173 0.107 

Variance 
Private 1.00E-04  1.39E-04 1.48E-04 6.53E-05 1.63E-04 
Public 2.82E-05  6.31E-05 3.86E-05 3.15E-05 7.28E-05 
Uninsured 7.24E-05 2.78E-05 8.92E-05 9.55E-05 3.25E-05 1.11E-04 
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Table 4.3 Estimates from Individual Surveys and the Combined Estimates after the 
Missing Information is Imputed for the 2006 NHIS, MEPS and BRFSS 
Domain Actual Data (Complex Design) Combined Estimates 

Types  NHIS BRFSS MEPS 
Whole Proportion 
Population Private 0.746  0.735 0.760 

Public 0.075  0.133 0.086 
Uninsured 0.179 0.154 0.132 0.153 

Variance 
 Private 2.46E-05  2.78E-05 5.13E-06 

Public 6.29E-06  1.44E-05 2.68E-06 
Uninsured 1.84E-05 3.32E-06 1.41E-05 2.59E-06 

Male Proportion 
Private 0.740  0.735 0.758 
Public 0.060  0.101 0.069 
Uninsured 0.200 0.167 0.164 0.172 

Variance 
Private 3.32E-05  3.87E-05 8.01E-06 
Public 6.82E-06  1.53E-05 2.84E-06 
Uninsured 2.94E-05 8.88E-06 2.64E-05 5.71E-06 

Hispanic Proportion 
Private 0.494  0.506 0.512 
Public 0.096  0.161 0.114 
Uninsured 0.410 0.371 0.334 0.369 

Variance 
 Private 1.24E-04  1.73E-04 4.16E-05 

Public 2.57E-05  8.03E-05 1.49E-05 
Uninsured 1.23E-04 7.18E-05 1.19E-04 3.83E-05 

Non-
Hispanic 
White 

Proportion 
Private 0.805  0.788 0.822 
Public 0.062  0.116 0.071 
Uninsured 0.134 0.106 0.096 0.107 

Variance 
Private 2.99E-05  3.35E-05 5.46E-06 
Public 8.2E-06  1.81E-05 3.27E-06 
Uninsured 2.02E-05 2.15E-06 1.51E-05 1.97E-06 

Non-
Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827  0.813 0.785 
Public 0.039  0.079 0.062 
Uninsured 0.134 0.173 0.108 0.153 

Variance 
Private 1.00E-04  1.39E-04 3.54E-05 
Public 2.82E-05  6.31E-05 1.40E-05 
Uninsured 7.24E-05 2.78E-05 8.92E-05 1.99E-05 
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4.6 Discussion 

In this chapter, we present the steps to combine any number of surveys of 

different sampling designs and survey error properties. The biggest advantage of this new 

method is that it could combine surveys that use different sampling designs and share 

disjointed subsets of information. This actually fulfills the objects of both combining 

surveys and statistical matching.  

To make valid inference from the two-stage imputation procedure, we develop a 

new combining rule from a Bayesian perspective and verify it via a simulation study.  

Then we apply this approach to combine the NHIS, BRFSS and MEPS after we fill in the 

missing information in the BRFSS. The combined variance estimates are reduced 

dramatically due to the use of the large sample size in the BRFSS and the estimates for 

small domains are more precise than the ones from the NHIS and MEPS. Since the 

BRFSS has county-level indicator in its data, we can produce the county-level estimates 

for the three types of health insurance coverage rates using the complete BRFSS data, 

something impossible to estimate from any of the three individual surveys.  

Even though this approach generates a large number of synthetic populations and 

multiply imputes the missing information, the computational burden is manageable. Our 

stacked data contains about 17 millions observations and it takes less than a day to 

produce the final results.  

 One limitation is that in the application where we combine the 2006 BRFSS, 

NHIS and MEPS to estimate health insurance coverage rates, we only focus on filling in 
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the missing information about the type of the health insurance in the BRFSS data. We 

ignore the fact that the BRFSS is a telephone survey and has noncoverage error because it 

excludes people without telephone from the sample and may have larger nonresponse 

error because of the lower response rates compared to the NHIS and MEPS. A more 

comprehensive application of this new combining survey method that adjusts for all the 

discrepancies in the data from multiple surveys will be the focus of our future research.  
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CHAPTER 5 

DISCUSSIONS AND FUTURE WORK 

5.1 Summary of this Dissertation 

This dissertation develops a new method for combining information from multiple 

complex surveys from a missing data perspective. This method could be applied to 

combine multiple surveys that are conducted independently but cover the same 

underlying population. The new method first imputes the unobserved population and 

generates synthetic populations to adjust for the complex sampling design features of the 

multiple surveys. Then the synthetic populations from multiple surveys can be treated as 

simple random samples from the same population and thus can be stacked to impute the 

missing variables. Also, we could adjust for nonsampling errors of individual surveys by 

borrowing information from the surveys with smaller or no error. Once we have the 

complete data, we could estimate the population quantity of interest from each of them 

and combine the estimates using the appropriate combining rules to produce the 

combined estimates.  

Since the imputation models for multiple surveys could be different, the current 

combining rule for the synthetic populations that are generated from one imputation 

model is not appropriate. This dissertation derives the posterior predictive distribution of 

the population quantity of interest given the data from multiple surveys, which is 

approximated by a normal distribution when the number of synthetic populations is 

infinite and by a t distribution when we generate a limited number of synthetic 
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populations. The combined estimate is a weighted average of the estimates from 

individual surveys. This suggests that after we adjust for the nonsampling error to 

eliminate the biases from individual surveys, the combined estimate is unbiased. The 

combined estimate is also more precise than the ones from individual surveys. The 

combining rule is then evaluated via a simulation study, which shows that the combined 

estimate is unbiased for the population true value and has nominal coverage rate even 

though it has smaller variance estimate and empirical mean square error (eMSE) 

compared to the estimates from individual surveys. 

In situations where there are missing variables in one or multiple surveys, we first 

impute the unobserved population and then fill in the missing variables by borrowing 

information from other surveys. This dissertation derives a two-stage combining rule to 

adjust for the extra uncertainty due to simultaneously generating synthetic populations 

and imputing the missing variables. We prove the randomization validity of the combing 

rule and evaluate it using a simulation study. This simulation study shows the two-stage 

combining rule produces identical point estimates for both descriptive statistic and 

analytical statistics. The variance estimates are also well maintained despite there is a 

little inflation over the ones from the actual data that results in slightly wider confidence 

interval coverage.  

This dissertation develops both a model-based method and a nonparametric 

method to generate synthetic populations from the observed data of each survey. The 

model-based method uses the asymptotic normal distribution of the model parameters to 

approximate the posterior distribution of the model parameters given the observed data. 

We use a jackknife repeated replication method to adjust for stratification, clustering and 
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unequal probability of selection when estimating the point estimate and covariance 

matrix of the model parameters. We evaluate the model-based method under two 

situations: when the underlying model is linear and when the underlying model is log-

linear. The simulation study shows that when the imputation model that generates the 

synthetic populations is the exact model that generates the population, the model-based 

method adjusts for the sampling design features without losing any information. In 

applications, as long as we correctly specify the imputation model, i.e., selecting the 

correct type of model, including the important variables and taking into consideration the 

sampling design features, the model-based method does a good job in adjusting for the 

complex sampling design features when generating synthetic populations. However, 

when the imputation model fails to capture the variability in the data for small domains, 

the model-based method could have problems in adjusting for the complex sampling 

design features. This suggests the model-based method may fail when the relationship 

among the variables of interest is too complicated to be specified by models or when we 

have samples too small to fit the imputation models.  

A nonparametric method is developed to overcome the potential model 

misspecification for the model-based method. The nonparametric method only focuses on 

the design variables such as stratum, cluster and weight in the observed data and does not 

specify any model. Once the unobserved units are drawn from the observed data, all the 

variables of the selected units will be drawn. When the synthetic populations are analyzed 

as simple random samples, we prove the point estimate obtained from the combining rule 

for synthetic data is unbiased and the variance estimate is unbiased for the actual 

sampling variance. We also show the sampling properties of inferences on population 
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mean and regression coefficients from the synthetic populations are very similar to the 

actual sample. We then apply this method to generate synthetic populations for a 

stratified clustering sample and a clustering sample. For both sampling designs, the 

method adjusts for the complex sampling design features even for small domains. For the 

whole population and large domains where the imputation model performs well, the 

nonparametric is a little less efficient than the model-based method.  

Then we apply the new combining survey method to estimate the percentage of 

the population that is covered by private insurance, is covered by public insurance and is 

uninsured by combining the 2006 NHIS, MEPS and BRFSS. When we combine the 

NHIS and the MEPS, we see the increase in precision for the combined estimates could 

be as high as 191% over the NHIS and 266% over the MEPS. The BRFSS has a sample 

about 15 times as large as the ones from the NHIS and MEPS. However, it only asks 

whether one is insured or not. When we combine the BRFSS with the NHIS and MEPS, 

we first adjust for the different sampling designs of the three surveys and then impute the 

missing information in the BRFSS by borrowing from the NHIS and MEPS. The 

combined estimates are more precise than the ones from any individual surveys and more 

precise than the combined estimates from only the NHIS and MEPS.    

5.2 Future Work 

5.2.1 Hierarchical Bayesian Model-based Method to Fully Adjust for Complex 

Sampling Design Features 

In Chapter 2, we use the asymptotic normal distribution to approximate the 

posterior distribution of the imputation model parameters. This method captures the 
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relationship of the variables on national level. However, it does not consider the 

relationships of the clusters within strata and the intracluster correlation. To fully 

consider these relationships and adjust for stratification, clustering and unequal 

probability of selection, a hierarchical Bayesian approach will be developed. Under the 

Bayesian approach, the prior distribution can be of a hierarchical form, the Bayesian 

formulation provides a natural setting for hierarchical modeling, which allows for sharing 

information across clusters and provides a convenient means of incorporating clustering 

and stratification. This hierarchical Bayesian model will adjust for the complex sampling 

design features on both national level and subdomain level.  

5.2.2 Applying the Method to Adjust for the Nonsampling Errors 

This dissertation mainly focuses on adjusting for the different sampling designs of 

multiple surveys. It ignores the fact that data collected by different modes (face-to-face, 

telephone, web, etc.) could have different survey error properties. The generation of 

equivalent synthetic populations for multiple surveys makes it possible to convert many 

combining survey situations into missing data problems to adjust for the nonsampling 

errors by using the information from the data of higher quality. In future research, the 

new method will be extended to adjust for nonsampling errors. A comprehensive 

simulation study will be conducted, from which we will evaluate the new method in a 

variety combining survey scenarios that aim to fix different types of nonsampling errors. 

Both accuracy and precision of the combined estimates will be evaluated in the 

simulation study. The method will also be applied to combine real survey data to correct 

deficiencies in each data source and produce more precise estimates.  
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Next, we describe how to convert common problems of combining surveys into a 

unified missing data problem that can be combined using the method in this dissertation. 

We provide two scenarios where combining information from multiple surveys could 

adjust for noncoverage error, nonresponse error and measurement error. 

5.2.2.1 Reducing Noncoverage Error/Nonresponse Error 

The last 50 years have seen a gradual replacement of face-to-face (FTF) surveys 

with telephone surveys as the dominant mode of data collection in the United States. The 

main reason is that telephone surveys are much cheaper (Hochstim 1967; Groves and 

Kahn 1979) because they don’t require interviewers to travel to the respondent’s location 

to conduct a personal interview. Thus, they are able to produce a large sample that is 

widely distributed geographically and is suitable for small area estimation. However, 

telephone surveys cannot contact people without a phone. When people with telephones 

and people without telephones have different mean values for the quantity of interest, 

telephone surveys could introduce noncoverage error. Also, the response rate of a 

telephone survey is usually lower that that of a face-to-face survey (de Leeuw and Edith 

Desiree 1992), which means telephone surveys could potentially introduce larger 

nonresponse error. One reason that researchers combine telephone surveys with face-to-

face surveys is that the information obtained by face-to-face surveys can be used to 

reduce the noncoverage error and nonresponse error in telephone data. We can then use 

the adjusted telephone data to produce statistics of interest on a small area level (Elliott 

and Davis 2005; Raghunathan 2007).    

Assume the telephone coverage rate is 95%, the sample size of the telephone 

survey is !. To adjust for the noncoverage error in a telephone survey, we could add 
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!
!"%

− ! rows below the telephone sample with all variables missing to represent the 

sample without telephones. Figure 5.1 shows the missing data structure for this 

combining survey situation in which we also exclude the background variables that are 

observed for the whole population. Then we can borrow the face-to-face survey data to 

impute the missing data using the new method proposed in this chapter. 

Figure 5.1 Converting a combining surveys problem into a missing data problem to adjust 
for noncoverage error 

                  X     Y 
 
 
 
 

 

 

5.2.2.2 Reducing Measurement Error 

Measurement errors are deviations of respondents’ answers from their true values 

on the measure. Respondents tend to misreport when they are asked sensitive questions. 

For example, respondents tend to over-report socially desirable behaviors and under-

report socially undesirable behaviors. This effect is more likely to happen in interviewer-

administered surveys than self-administered surveys (Aquilino and Losciuto 1990; 
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Hochstim 1967; Locander, Sudman and Bradburn 1976; Turner, Lessler and Devore 

1992).  

One way to reduce measurement error is to combine the survey with larger error 

with the one with smaller or no error (Schenker et al. 2009). For example, assume there 

are two variables of interest, ! and ! and there are two surveys collecting the variables. 

Further assume both surveys measure ! accurately. However, since ! collects sensitive 

information, one survey measures ! with error and the other one measuring ! without 

error. We could treat the variable of interest measured with error as missing so that we 

have a missing data problem as in Figure 4.1.  

Figure 5.2 Converting a combining survey problem into a missing data problem to adjust 
for measurement error 
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5.2.3 Developing Relevant Statistical Packages 
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One advantage of this new combining survey method is that it is possible to 

implement it as a standard package for the existing statistical software – especially for the 

nonparametric method that only focuses on the design variables and thus has the same 

general approach for all types of data structure. An R package (tentatively called 

“CombineSurvey”) and a new module for the Imputation and Variance Estimation 

Software (tentatively called “COMBINE”) will be developed to improve the usability and 

practicality, which will have two functions: 1) to generate synthetic populations to adjust 

for the sampling designs; and 2) to produce combined estimates using the appropriate 

combining rule.   
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