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CHAPTER I

Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. The Frobenius

map F : R → R, defined by r 7→ rp, is a ring homomorphism with no analog in

characteristic zero. Its existence gives rise to many powerful tools in commutative

algebra and algebraic geometry. For example, the Frobenius map may be used to

define several numerical invariants which measure the singularity of a point on an

algebraic variety. These include the F -threshold ([MTW05]), the Hilbert-Kunz mul-

tiplicity ([Mon83]), and the F -signature ([HL02]). We will study the F -signature in

this thesis.

The F -signature of R is a real number between 0 and 1 which gives information

about the singularity of R. It is equal to 1 precisely when R is regular, i.e., when

R corresponds to a nonsingular point on an algebraic variety. It is positive if and

only if R is strongly F -regular ([AL03]), a property arising in tight closure theory.

The F -signature arose naturally in the study of differential operators in positive

characteristic ([SVdB97]) and, starting with [HL02], has been studied as an object

of independent interest. It is intimately related to the Hilbert-Kunz multiplicity; in

fact, it has been characterized as a minimal relative Hilbert-Kunz multiplicity of R

([WY04]).

1



2

The thesis has two main goals. First, we consider the local setting: we compute

the F -signature of a point on a toric variety. Toric varieties are mildly singular

varieties, commonly studied in algebraic geometry, which may be described using

combinatorial data. Our first main theorem (Theorem 3.2.3) gives a formula for

the F -signature of the coordinate ring of an affine toric variety as the volume of an

explicit polytope associated to this combinatorial data.

Second, we consider the global setting: we define a new F -signature function on

the divisor class group of a projective variety (Definition 4.1.4). We compute this

function in the case of a projective toric variety and show that it is a continuous

and piecewise rational function on the interior of its domain of definition (Corollary

4.4.6).

1.1 Statement of Results and Motivation

1.1.1 Affine Toric F -Signature

There are many different characterizations of F -signature; we will describe several

at the start of Chapter II. The simplest definition is the original one, which char-

acterizes the F -signature of R, denoted s(R), as a real number that determines the

asymptotic growth rate of the rank of a maximal free Rpe-module summand of R.

The F -signature is generally difficult to compute. Rings for which it has previously

been computed include Veronese subrings of polynomial rings and finite quotient sin-

gularities ([HL02], [Tuc11]), Segre products of polynomial rings ([Sin05]), and toric

rings with no nontrivial units ([WY04]).

A toric variety is a normal variety which contains, as an open dense subset, an

algebraic torus T ' Spec k[x1, x
−1
1 , . . . , xn, x

−1
n ], so that the group action of T on it-

self extends to an action of T on X. Toric varieties were first mentioned explicitly in

[Dem70], but the concepts underlying their use arose informally much earlier. They
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are natural objects of study in large part because their geometric properties can be

easily understood in terms of simple combinatorial data. In particular, their coordi-

nate rings are monomial rings which may be studied using the perspective of convex

polyhedral geometry ([Ful93], [CLS11]). In addition to providing geometers with a

rich, easily understood class of algebraic varieties, toric varieties have been used to

answer questions about polytopes. A notable result of this sort is Stanley’s proof of

McMullen’s conjecture on the number of faces of a simplicial polytope ([Sta80]).

Our first main theorem is a formula for the F -signature of an affine toric variety.

Recall that an affine toric variety is determined by a lattice N and a cone σ inside

the real vector space NR = N ⊗Z R (see, e.g., [Ful93]).

Theorem 3.2.3. Let Xσ be an affine toric variety without torus factors. Let ~v1, . . . ,

~vr ∈ N be primitive generators for the cone σ. Define a polytope Pσ in the dual space

MR = N∗R:

Pσ := {~w ∈MR | ∀i, 0 ≤ ~w · ~vi < 1}.

Then s(k[Xσ]) = Volume(Pσ).

More generally, suppose X = X ′ × T , where X ′ is a toric variety without torus

factors and T is an algebraic torus. Let N ′R ⊂ NR be the vector subspace spanned by

σ, and let σ′ be σ viewed as a cone in N ′R. Then s(k[X]) = s(k[X ′]) = Volume(Pσ′).

We will devote much of this thesis to further generalizing Theorem 3.2.3, which

is itself a slight generalization of a formula of Watanabe and Yoshida [WY04].

In Chapter III, we will compute the F -signature of toric pairs and triples. The

notion of singularities of pairs is an important one in birational geometry. Instead of

studying the singularities of a variety X, or the singularities of a Q-divisor D on X,

one studies the pair (X,D), for example by considering how D changes under various
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resolutions of X. More generally, it is often useful to study triples (X,D, at), where

D is a Q-divisor, a an ideal sheaf on X, and t a real parameter. This perspective

first arose in the Minimal Model Program in algebraic geometry; see [Kol97] for an

introduction to pairs in this setting.

Recently, commutative algebraists have begun to adapt the pairs and triples per-

spective for their own use. Working from the point of view that the F -signature can

be understood via certain algebras of pe-linear maps, Blickle, Schwede, and Tucker

have defined the F -signature of pairs and triples ([BST11]). That is, they define

the F -signature of a pair (R,D), where D is a Q-divisor on SpecR, and of a triple

(R,D, at), where a is an ideal of R and 0 ≤ t ∈ R. They show that the F -signature

of a pair is nonzero precisely when the pair is strongly F -regular. Moreover, they

use the F -signature of pairs to show the existence of the so-called F -splitting ratio, a

generalization of the F -signature to rings which are not strongly F -regular ([BST11],

Theorems 3.18 and 4.2).

1.1.2 A Projective F -Signature Function

We aim to use the F -signature to define a new function on the class group of a

projective variety. A starting point for this definition is as follows:

Definition 4.1.1. Let X be a normal projective variety and D an ample Cartier

divisor onX. We define the F -signature of D, denoted s(X,D), to be the F -signature

of the section ring Sec(X,D) = ⊕n≥0Γ(X,OX(nD)).

In Chapter IV, we will prove Theorem 4.1.3, which allows us to extend the F -

signature function of Definition 4.1.1 to a much broader subset of the space of Q-

divisors on X. In particular:

Definition 4.1.4. Let X be a normal projective variety over a field k of posi-
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tive characteristic. Let D be a Q-divisor on X, and suppose that Sec(X,D) =⊕
n Γ(X,OX(nD)) is a finitely generated k-algebra of dimension at least two. Choose

c ∈ N≥0 sufficiently divisible so that Sec(X, cD) is a normal section ring. We define

the F -signature s(X,D) to be c · s(X, cD).

This point of view—in which a numerical invariant of graded rings is used to

construct a function on a subspace of the space of Q-divisors on X—arose relatively

recently but has been applied to other invariants with great success. One important

invariant of this sort is the volume of a divisor (see [Laz04], 2.2C). Recall:

Definition 1.1.1. Let X be a projective variety of dimension d and D a Q-divisor

on X. The volume of D is 1
d!

limn→∞
dim Γ(X,OX(nD))

nd
.

A divisor is big if its volume is nonzero. The volume of divisors on X is in-

variant under numerical equivalence and gives rise to a function on the cone of big

Q-divisors on X which may be used to study the geometry of X. This function is

in fact continuously differentiable ([LM09]) and scales according to Volume(nD) =

ndimX Volume(D). When X is a projective toric variety, the volume function is

piecewise polynomial on the big cone of X ([Laz04]).

Theorem 3.2.3 will allow us to compute our new F -signature function on the space

of Q-divisors of a projective toric variety as the volume of an associated polytope.

We will be able to show that the F -signature function shares analogous properties

to the volume function in the toric setting, though the F -signature function is only

piecewise rational rather than piecewise polynomial:

Corollary 4.4.6. Let X be a projective toric variety over a field k of positive char-

acteristic. Then the F -signature function D 7→ s(X,D) is a continuous, piecewise

rational function of degree −1 on the set of big Q-divisors of X.
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1.2 Outline

In Chapter II, we first define the F -signature and review some of its basic prop-

erties. Next, we prove a series of general facts about the F -signature, mostly in

preparation for later chapters. Although the F -signature is well-defined over both

local and graded rings, previous work on the F -signature has historically focused on

the local case. We relate the local and graded settings by showing that when R is an

appropriately graded ring with homogeneous maximal ideal m, s(R) = s(Rm) (The-

orem 2.2.1). We also give formulas for the F -signature of products (Theorems 2.3.1

and 2.3.4), which will later assist us in computing the F -signature of toric varieties

which contain torus factors.

Several of our main results concern the F -signature of the section ring of a divisor

on a projective variety. An essential ingredient of these results is the following formula

for the F -signature of Veronese subrings of certain graded rings.

Theorem 2.6.2. Let S be a normal section ring over a perfect field of positive

characteristic, of dimension at least two. Let n be any positive integer, and let S(n)

denote the nth Veronese subring of S. Then s(S(n)) = 1
n
s(S).

The methods used to compute this formula generalize; we apply them to compute

the F -signature of certain ring extensions which are étale in codimension one (The-

orem 2.6.5). Finally, we define the F -signature of pairs and triples in preparation

for computing formulas for these invariants on affine toric varieties in Chapter III

(§2.7).

In Chapter III, we compute the F -signature of an affine toric variety Xσ, or more

precisely of its coordinate ring k[Xσ]. We begin by reviewing the machinery of affine

toric varieties, in particular the correspondence between an affine toric variety X and
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a convex polyhedral cone σ. This machinery enables us to compute the F -signature

s(k[Xσ]) as the volume of a polytope Pσ (Theorem 3.2.3).

Previously, Watanabe and Yoshida computed the minimal relative Hilbert-Kunz

multiplicity (which is equal to the F -signature) of a toric singularity in the case

where X has no torus factors ([WY04]). We rederive their formula using different

methods, as well as handling the case where X has torus factors. Furthermore, our

methods allow us to give a formula for the F -signature of certain monomial rings

which are not presented “torically” (Corollary 3.3.2). Armed with this formula, we

rederive a formula of Singh for the F -signature of a normal monomial ring [Sin05].

We use the methods introduced in the proof of Theorem 3.2.3 to compute the

F -signature of a toric pair s(R,D) as the volume of a polytope PD
σ , and we compute

s(R,D, at) as the volume of a polytope PD,at

σ (Theorems 3.4.10 and 3.4.13). When the

pair (R,D) has Q-Gorenstein singularities, we show that our F -signature formulas

are especially simple (Corollary 3.4.17). Finally, we indicate how to generalize our

computations to the case of imperfect residue field (Remark 3.5.3).

In Chapter IV, we investigate the F -signature s(Sec(X,D)) of the section ring of

a divisor D on a projective toric variety X. This F -signature will not be analogous

to the F -signature of pairs s(R,D) discussed above. The F -signature of pairs of

[BST11] is a “local” invariant which measures the singularity of the pair. The new

F -signature is a “global” invariant which contains data about the images of X under

rational maps. We show that the F -signature function D 7→ s(Sec(X,D)), after a

slight modification, may be extended to an F -signature function s(X,D) on a larger

subset of the group of Q-divisors on X (Definition 4.1.4).

As a consequence of Theorem 3.2.3, we give a formula for the F -signature s(X,D)

of a Q-divisor on a toric variety as the volume of a polytope. Our formula will be
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slightly simpler when D is a big divisor (Corollary 4.4.5), though we generalize our

formula to apply to all divisors (Corollary 4.4.7). Our formula demonstrates that

s(X,D) is a piecewise rational function on the cone of big Q-divisors of X (Corollary

4.4.6). Finally, we will compute a few examples, including a complete description of

the F -signature function on P1 × P1 (Example 4.4.10).



CHAPTER II

F -Signature

This chapter has two main goals. First, we introduce the F -signature; review

some of its basic properties; and prove a few straightforward results about the F -

signature of graded rings (§2.2) and products (§2.3). Second, we investigate the

behavior of the F -signature under finite extensions. In particular, we give a formula

for the F -signature of Veronese subrings of certain graded rings:

Theorem 2.6.2. Let S be a normal section ring over a field of positive characteristic,

of dimension at least two. Let n be any positive integer. Then s(S(n)) = 1
n
s(S).

Theorem 2.6.2 will allow us to define an F -signature function for divisors on

projective varieties in Chapter IV. The same methods that we use to prove this

theorem also show that the F -signature behaves well under certain extensions which

are étale in codimension one:

Theorem 2.6.5. Let (R,mR, k)→ (S,mS, k) be a module-finite inclusion of normal

local rings, where the residue field k has positive characteristic. Suppose that R→ S

is split and étale in codimension one and that the maximal rank of a free R-submodule

splitting from S is equal to one. Then s(R) = 1
[Frac(S):Frac(R)]

· s(S).

At the end of the chapter, we will define the F -signature of pairs and triples in

9
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preparation for computing formulas for these invariants on toric varieties in Chapter

III (§2.7).

2.1 Preliminaries

We begin by defining the F -signature. Let R be a ring containing a field k of

characteristic p > 0. Let F e
∗R be the R-module whose underlying abelian group is R

and whose R-module structure is given by Frobenius: for r ∈ R, s ∈ F e
∗R, r ·s = rp

e
s.

If R is reduced, it is easy to see that F e
∗R is isomorphic to R1/pe , the R-module of peth

roots of elements of R. (Incidentally, this also gives F e
∗R a natural ring structure.)

Recall that R is said to be F -finite if F∗R is a finitely generated R-module. For

example, every finitely generated algebra over a perfect field is F -finite.

Remark 2.1.1. (Conventions.) All rings are assumed to be Noetherian F -finite do-

mains whose residue field k has prime characteristic p > 0. We assume that k is

perfect unless stated otherwise, though by Remark 3.5.3, this assumption is mostly

unnecessary. Moreover, all rings over which we compute F -signature will be either

local with residue field k; N-graded with zeroth graded piece ring-isomorphic to k;

or Zn-graded for some n ∈ N, with each nonzero graded piece a one-dimensional

k-vector space.

Definition 2.1.2. Let R be a Noetherian local or graded ring as in Remark 2.1.1.

Let M be a finitely generated R-module, which is assumed to be graded if R is

graded, and consider a decomposition of M as a direct sum of indecomposable R-

modules. The free rank of M as an R-module is the maximal rank of a free R-module

appearing in this decomposition.

Remark 2.1.3. In general (if R is not local or N-graded over a field), different de-

compositions may have free summands of different ranks. In the local or N-graded
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setting, however, free rank is independent of decomposition (see, e.g., Remark 2.1.9

and Lemma 2.2.2).

Definition 2.1.4. [HL02] Let R be a ring (either local or graded, as in Remark 2.1.1)

of dimension d. For each e ∈ N, let ae be the free rank of R1/pe as an R-module,

so that F e
∗R 'R−mod R⊕ae ⊕Me, where Me has no free summands. We define the

F -signature of R to be the limit

s(R) = lim
e→∞

ae
ped

.

Remark 2.1.5. Tucker [Tuc11] showed that the limit given in Definition 2.1.4 exists

when R is a local ring. It follows from Theorem 2.2.1, below, that the F -signature

is well-defined when R is N-graded as in Remark 2.1.1.

More generally, we may define the F -signature of an module:

Definition 2.1.6. Let R be a ring (either local or graded, as in Remark 2.1.1) of

dimension d. Let M be a finitely generated R-module. For each e ∈ N, let aM,R
e be

the free rank of F e
∗M as an R-module, so that F e

∗M 'R−mod R⊕a
M,R
e ⊕Me, where Me

has no free summands. We define the F -signature of M to be the limit

s(M) = sR(M) = lim
e→∞

aM,R
e

ped
.

In fact, the F -signature of an R-module depends only on the F -signature of R

and the generic rank of the module:

Theorem 2.1.7 ([Tuc11], Theorem 4.11). Let R be a d-dimensional local domain,

as in Remark 2.1.1, and let M be a finitely generated R-module. Then

sR(M) = rankR(M) · s(R),

where rankR(M) = dimFrac(R) M ⊗R Frac(R) is the generic rank of M .
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Theorem 2.1.7 is very useful for studying the behavior of the F -signature under

module-finite ring maps. We will make use of it in section 2.6 to compute the F -

signature of Veronese subrings.

Next, we consider several different characterizations of the F -signature.

Lemma 2.1.8 (cf. [Tuc11], Prop 4.5). Let (R,m) be a local or N-graded ring as

in Remark 2.1.1. Let M be a finitely generated local (or N-graded) R-module. Let

Q ⊂ M be the subset {x ∈ M | ∀φ ∈ HomR(M,R), φ(x) ∈ m}. Then Q is an R-

submodule of M ; in fact, if M is an S-module, where S is any R-algebra, then Q

is an S-submodule of M . Moreover, the free rank of M as an R-module is equal to

l(M/Q).

Proof. It is easily checked that if M is an S-module, then Q is an S-submodule of

M . In particular, if x ∈ Q, s ∈ S, suppose for the sake of contradiction that sx /∈ Q.

Then there exists φ ∈ HomR(M,R) such that φ(sx) = 1, so φ(s · −) : M → R maps

x 7→ 1, a contradiction. It is also easy to see that if M ' R⊕a ⊕N , where N has no

free R-module summands, then Q ' m⊕a⊕N , so that l(M/Q) = l((R/m)⊕a) = a is

the free rank of M as an R-module.

Remark 2.1.9. The F -signature of a local ring (R,m, k) may also be characterized

as follows ([Tuc11], Prop 4.5): define Ie ⊂ R to be the ideal

Ie = {r ∈ R | ∀φ ∈ HomR(R1/pe , R), φ(r1/pe) ∈ m}.

In other words, Ie is the ideal of elements of R whose peth roots do not generate a

free summand of R1/pe . Lemma 2.1.8 implies that ae = l(R/Ie), so

s(R) = lim
e→∞

l(R/Ie)

ped
.
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The F -signature of a finitely generated R-module may be characterized similarly.

Define Ne ⊂ M to be the submodule {x ∈ M | ∀φ ∈ HomR(F e
∗M,R), φ(F e

∗x) ∈ m}.

Then

sR(M) = lim
e→∞

l(M/Ne)

ped
.

Lemma 2.1.10. Let (R,m) be a local or N-graded ring as in Remark 2.1.1. Let M

be a finitely generated R-module (which is graded if R is graded). Then the free rank

of M may be characterized as the length l(HomR(M,R)/HomR(M,m)). It follows

that in the notation of Definition 2.1.6,

aM,R
e = l(HomR(F e

∗M,R)/HomR(F e
∗M,m)).

Proof. We will prove this statement in the case that R is N-graded over a field,

referring the reader to ([Tuc11], Proposition 4.5) for the local case. Suppose that

as a graded R-module, M 'R−mod R⊕a ⊕ N , where N has no graded free sum-

mands, hence no free summands as an ungraded R-module by Lemma 2.1.11 below.

Then HomR(M,R) ' R⊕a ⊕ HomR(N,R). Since N has no free summands, for all

φ ∈ HomR(N,R), imφ does not contain any nonzero elements of degree zero. It

follows that imφ ⊂ m, so that HomR(N,R) = HomR(N,m). Thus, HomR(M,m) '

m⊕a ⊕ HomR(N,R). Taking quotients, we find that HomR(M,R)/HomR(M,m) '

(R/m)⊕a, so that lR(HomR(M,R)/HomR(M,m)) is the free rank of M as an R-

module. The statement of the lemma follows.

Lemma 2.1.11. Let A be an abelian semigroup and R an A-graded ring whose zeroth

graded piece is ring-isomorphic to a field k. Let M be a finitely generated graded R-

module. Then M has a free summand as a graded R-module if and only if it has a

free summand as an ungraded R-module.
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Proof. Suppose that M has a free summand as an ungraded R-module. Let x ∈ M

be a generator of this summand. Then there exists a surjective R-module homomor-

phism φ ∈ HomR(M,R) such that φ(x) = 1. Now we decompose φ and x as sums of

homogeneous terms: φ =
∑

d φd, x =
∑

e xe. Then
∑

d,e φd(xe) = 1. In particular,

for some d and e, φd(xe) is a nonzero degree zero element of R. Hence, φd(xe) is a

unit, so xe generates an A-graded free summand of R.

2.2 F -Signature of Graded Rings

In this section, we compare the local and graded versions of the F -signature. In

particular, we show that if R is N-graded with homogeneous maximal ideal m, then

the (graded) F -signature of R and the (local) F -signature of Rm are equal. Moreover,

the ideal Ie ⊂ Rm has a “graded counterpart” Igre ⊂ R which may be used to define

F -signature in the graded category.

Theorem 2.2.1. Let R be an N-graded ring over a field k as in Remark 2.1.1, with

homogeneous maximal ideal m. Then s(R) = s(Rm).

Proof. We apply Lemma 2.2.2, which demonstrates the existence of a sequence of

ideals Igre which serve an analogous role to the ideals Ie in the local case. In particular,

Lemma 2.2.2.5 shows that the sequences ae(R) and ae(Rm) are equal. It follows that

the F -signatures s(R) and s(Rm) are equal.

Lemma 2.2.2. Let R be an N-graded ring over a field k as in Remark 2.1.1, with

homogeneous maximal ideal m. Set Igre = {r ∈ R | ∀φ ∈ HomR(R1/pe , R), φ(r1/pe) ∈

m}. Let Ie ⊂ Rm be the ideal defined in Remark 2.1.9, and i : R → Rm the natural

localization map. Then:

1. F e
∗ I

gr
e is the kernel of the map ψ : F e

∗R→ HomR(HomR(F e
∗R,R), R/mR) given

by x 7→ [φ 7→ φ(x) +mR].



15

2. Igre is homogeneous.

3. Igre = i−1Ie = Ie ∩R.

4. If ae(R) is defined as in 2.1.4, then ae(R) = l(F e
∗R/F

e
∗ I

gr
e ).

5. For each e, ae(R) = ae(Rm).

Proof. 1. This follows immediately from the definition.

2. Since F e
∗R, R, and R/m are graded R-modules, so are the modules of homo-

morphisms between them. The map ψ from (1) is degree-preserving, that is,

it is homogeneous of degree zero. It follows that F e
∗ I

gr
e = kerψ is a graded

submodule. Hence, Igre is homogeneous.

3. Clearly F e
∗ Ie = ker(ψ ⊗R Rm). It follows that F e

∗ Ie ' F e
∗ I

gr
e ⊗R Rm (by the

flatness of localization). Thus, Ie = Igre Rm = i(Igre ). Also, i : R → Rm is

injective. (If i(x) = 0, then wx = 0 for w /∈ m. If xi is the lowest-degree term

of x, and w0 is the degree-zero term of w, then w0xi = 0, but 0 6= w0 ∈ k, so

xi = 0. Thus, x = 0.) We conclude that Igre = Ie ∩R.

4. Suppose F e
∗R = R⊕ae ⊕Me, where the decomposition is graded and Me has no

graded free summands. We will show that F e
∗ I

gr
e = mR⊕ae ⊕Me, from which

the claim follows immediately. Since Igre is homogeneous, to compute Igre or

F e
∗ I

gr
e , we need only check which homogeneous elements they contain. Suppose

x ∈ F e
∗ I

gr
e is homogeneous. Then φ(x) /∈ m for some φ. Without loss of

generality, we may assume that φ is homogeneous. Then φ(x) is homogeneous

and not in m, hence φ(x) ∈ k, so x generates a direct summand Rx of F e
∗R.

This cannot occur if x ∈ mR⊕ae ⊕Me, so mR⊕ae ⊕Me ⊂ F e
∗ I

gr
e . On the other

hand, suppose x is homogeneous and x /∈ mR⊕ae ⊕Me. This occurs precisely
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when x is a generator of one of the copies of R in the decomposition. In that

case, clearly x /∈ F e
∗ I

gr
e . We conclude that F e

∗ I
gr
e = mR⊕ae ⊕Me.

5. It is easily checked that m[pe]Rm ⊂ Ie, so m[pe]R ⊂ Igre . Thus, Rad Igre = m, so

R/Igre ' Rm/I
gr
e Rm as k-vector spaces. We conclude that l(R/Igre ) = l(Rm/Ie).

It follows that ae(R) = l(F∗R/F∗I
gr
e ) = l(F∗Rm/F∗Ie) = ae(Rm), as we desired

to show.

2.3 F -Signature of Products

Now we will show that the F -signature of a product of varieties (i.e., the F -

signature a tensor product of rings over the appropriate field) is the product of the

F -signatures. We will give proofs in both the local and graded cases.

Theorem 2.3.1. Let A and B be abelian semigroups (e.g., N or Zn). Let R and

S be A- and B-graded rings, respectively, over a field k, such that the zeroth graded

piece of each is ring-isomorphic to k. Then s(R⊗k S) = s(R) · s(S).

Proof. First, note that since k is perfect, (R ⊗k S)1/pe ' R1/pe ⊗k S1/pe by Lemma

2.3.3. Suppose that as graded R- and S-modules, R1/pe 'R−mod R⊕ae ⊕ Me, and

S1/pe 'S−mod S⊕be ⊕Ne. As an (A⊕B)-graded (R⊗k S)-module,

(R⊗k S)1/pe ' (R⊕ae ⊕Me)⊗k (S⊕be ⊕Ne)

' (R⊗k S)⊕aebe ⊕ (R⊗k Ne)
⊕ae ⊕ (Me ⊗k S)⊕be ⊕ (Me ⊗k Ne).

By Lemma 2.3.2, (R ⊗k Ne), (Me ⊗k S), and (Me ⊗k Ne) have no free summands

as (A ⊕ B)-graded (R ⊗k S)-modules. It follows immediately that the free rank

of (R ⊗k S)1/pe is aebe. Since dim(R ⊗k S) = dimR + dimS, we conclude that

s(R⊗k S) = lime→∞
aebe

pe(dimR+dimS) = s(R) · s(S).
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Lemma 2.3.2. Let A,B be abelian semigroups, and let R and S be A- and B-

graded rings, respectively, over a field k, such that the zeroth graded piece of each is

ring-isomorphic to k. Let M and N be finitely generated graded R- and S-modules,

respectively. Suppose M ⊗k N has a free summand as an (A ⊕ B)-graded R ⊗k S-

module. Then both M and N have free summands as graded R- and S-modules.

Proof. Suppose that M ⊗k N has a free summand as an (A ⊕ B)-graded R ⊗k S-

module. Then we have a homogeneous map φ : M ⊗k N � R ⊗k S. In particular,

1 ∈ imφ. Since imφ is generated by the images of homogeneous simple tensors in

M ⊗kN , it follows that there is an homogeneous simple tensor x⊗ y ∈M ⊗kN such

that deg φ(x⊗y) = 0 but φ(x⊗y) 6= 0. The degree zero part of R⊗k S is isomorphic

to k, so (after replacing φ by 1
φ(x⊗y)

φ) we may assume that φ(x⊗ y) = 1 ∈ R⊗k S.

Now, 1 generates a free summand R ⊗ 1 of the free R-module R ⊗k S, so there

is an R-module map ψ : R ⊗k S � R sending φ(x ⊗ y) 7→ 1. Consider the map

ψ ◦ φ : M → R ⊗k S → R. This map sends x 7→ φ(x ⊗ y) 7→ 1. We conclude that

M has a free summand as an R-module. By a symmetric argument, N has a free

summand also.

Lemma 2.3.3. Let R and S be reduced k-algebras, where k is a perfect field. Then

as R⊗k S-modules, (R⊗k S)1/pe ' R1/pe ⊗k S1/pe.

Proof. Since k is perfect, R⊗k S is reduced (see, e.g., [Bou03], Chapter 5, Theorem

15.5.3). Consider the R⊗k S-module map φ : R1/pe ⊗k S1/pe → (R⊗k S)1/pe given by

a⊗ b 7→ (ap
e ⊗ bpe)1/pe . Clearly φ is surjective. Since R⊗k S is reduced, φ is injective

as well. We conclude that φ is an isomorphism.

As for the local case:
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Theorem 2.3.4. Suppose (R,mR, k) and (S,mS, k) are local rings, each of which is

a k-algebra. Let m ⊂ R⊗k S be the maximal ideal mR⊗k S+R⊗kmS. Suppose that

(R⊗k S)m is Noetherian. Then s((R⊗k S)m) = s(R) · s(S).

Proof. Since k is perfect, (R ⊗k S)1/pe ' R1/pe ⊗k S1/pe by Lemma 2.3.3. Suppose

that R1/pe 'R−mod R⊕ae ⊕Me, and S1/pe 'S−mod S⊕be ⊕Ne. As (R⊗k S)m-modules,

(R⊗k S)1/pe

m ' ((R⊕ae ⊕Me)⊗k (S⊕be ⊕Ne))m

' (R⊗k S)⊕aebem ⊕ (R⊗k Ne)
⊕ae
m ⊕ (Me ⊗k S)⊕bem .

By Lemma 2.3.5, (R ⊗k Ne)m and (Me ⊗k S)m have no free summands. It follows

immediately that the free rank of (R ⊗k S)
1/pe

m is aebe. Since dim(R ⊗k S)m =

dimR+dimS, we conclude that s((R⊗kS)q) = lime→∞
aebe

pe(dimR+dimS) = s(R)·s(S).

Lemma 2.3.5. Let (R,mR, k) and (S,mS, k) be local rings with residue field k, and

suppose (R ⊗k S)m is Noetherian. Let m ⊂ R ⊗k S be the maximal ideal mR ⊗k

S + R ⊗k mS. Let M and N be finitely generated R- and S-modules, respectively.

Suppose (M ⊗k N)m has a free summand as an (R ⊗k S)m-module. Then both M

and N have free summands as R- and S-modules.

Proof. Suppose that (M ⊗k N)m has a free summand. Then we have an (R⊗k S)m-

module map φ : (M⊗kN)m � (R⊗kS)m. Since φ ∈ Hom((R⊗kS)m)((M⊗kN)m, (R⊗k

S)m) ' (HomR⊗kS(M ⊗k N,R ⊗k S))m, by clearing denominators we may assume

that φ maps M ⊗k N → R ⊗k S so that imφ 6⊂ m(R ⊗k S). It follows that there

is a simple tensor x⊗ y ∈ M ⊗k N such that φ(x⊗ y) 6∈ m(R ⊗k S). In particular,

φ(x ⊗ y) 6∈ mR(R ⊗k S). Recall that if A is a free module over a Noetherian local

ring (R,mR), then each element of A\mRA generates a free summand of A. Thus,

φ(x ⊗ y) generates a free summand of the free R-module R ⊗k S, and there is an

R-module map ψ : R⊗k S � R sending φ(x⊗ y) 7→ 1.
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Now consider the map ψ◦φ : M → R⊗kS → R. This map sends x 7→ φ(x⊗y) 7→ 1.

We conclude that M has a free summand as an R-module. By a symmetric argument,

N has a free summand also.

2.4 Background on Étale Maps and Reflexive Modules

This section, and the following one on section rings, will prepare us for our in-

vestigation into the behavior of the F -signature under finite extensions. A good

introduction to étale morphisms and their properties and applications may be found

in [Mil80].

Definition 2.4.1. Let R→ S be an extension of rings. We say that R→ S is étale,

or equivalently that the map SpecS → SpecR is étale, if S is a finitely presented

R-algebra and R→ S is flat and unramified. Recall that R→ S is flat if S is a flat

R-module, and it is unramified if the module of relative differentials ΩS/R is equal

to 0.

Definition 2.4.2. Let R→ S be a module-finite extension of rings. The étale locus

of this extension is the set U = {P ∈ SpecR |RP → S ⊗R RP is étale}. We say that

R→ S is étale in codimension one if the closed set SpecR\U is codimension two or

greater.

We note that étaleness is an open property:

Proposition 2.4.3. Let R → S be a module-finite ring extension. Then the étale

locus of this extension is open, and the extension is étale if and only if the étale locus

is all of SpecR.

Recall that when K ↪→ L is a finite field extension, the field trace TrL/K ∈

HomK(L,K) is the map sending α ∈ L to the trace of the K-vector space automor-

phism of L given by multiplication by α.
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Lemma 2.4.4. ([ST12], Prop. 7.4) Let R ↪→ S be a module-finite, étale in codi-

mension one extension of normal local rings. Then HomR(S,R) is a free S-module

of rank one, generated by the restriction to S of the trace map of function fields from

Frac(S)→ Frac(R).

Proposition 2.4.5 ([HH90], 6.3). Suppose that R → S is an étale (or, more gen-

erally, smooth), module-finite ring map. Then the natural map R1/q ⊗R S → S1/q is

an isomorphism.

We also recall some well-known facts about reflexive modules.

Definition 2.4.6. Let R be a ring and M an R-module. Then M is reflexive if the

natural map M → HomR(HomR(M,R), R) is an isomorphism.

Proposition 2.4.7. ([Har94], Corollary 1.8) Let R be a domain and M a finitely

generated R-module. Then HomR(M,R) is a reflexive R-module. More generally, if

N is a reflexive R-module, then so is HomR(M,N).

Theorem 2.4.8. ([Har94], Theorem 1.9) Let R be a normal ring and M a finitely

generated R-module. Then M is reflexive if and only if it satisfies Serre’s S2 condi-

tion: that is, for each prime of R, depth MP ≥ min(2, ht P ). In particular, if R→ S

is a module-finite inclusion of normal rings, then S is a reflexive R-module.

Proposition 2.4.9. ([Har94], Proposition 1.11) Let X be a normal scheme, with

U ⊂ X an open subset whose complement is codimension at least two. Let F be a

reflexive sheaf on U . Then F extends uniquely to a reflexive sheaf on X, namely i∗F.

In particular, if X = SpecR, M and N are reflexive R-modules, and f : M → N is

an R-module homomorphism which is an isomorphism on an open set U ⊂ SpecR

whose complement is codimension at least two, then f is an R-module isomorphism.
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Let X be a normal variety with function field K(X) and D a Weil divisor on

X. We denote by OX(D) the OX-module given by OX(D)(U) = {f ∈ K(X) :

(div f +D)U ≥ 0}. Then:

Proposition 2.4.10 (see, e.g., [CLS11], Theorem 8.0.4). Let X be a normal variety

and D a Weil divisor on X. Then OX(D) is a reflexive OX-module.

2.5 Background on Section Rings and Veronese Subrings

Excellent discussions of section rings and their properties may be found in [HS04],

§2 and in [Smi97]. Recall:

Definition 2.5.1. A Q-divisor on a variety X is a formal Q-linear sum of prime

Weil divisors. A Q-divisor is Q-Cartier if some integer multiple of D is an integral

Weil divisor which is Cartier.

Definition 2.5.2. Let X be a normal algebraic variety. Let L be an ample invertible

sheaf on X. Then the section ring Sec(X,L) of L is the finitely generated graded

ring
⊕

nH
0(X,Ln). (Here, multiplication is induced by the tensor product map

Li × Lj → Li+j : (s, t) 7→ s⊗ t.)

Definition 2.5.3. Let S be a finitely generated N-graded ring. We will say that S

is a section ring if S ' Sec(X,L) for some projective variety X and ample invertible

sheaf L on X.

Definition 2.5.4. Let X be a normal algebraic variety and D any Q-divisor on X.

The generalized section ring of D is taken to be
⊕

nH
0(X,OX(nD)), where OX(nD)

is the reflexive sheaf given by OX(nD)(U) = {f ∈ K(X) : (div f + nD)|U ≥ 0}.

The following is well-known:
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Proposition 2.5.5. (cf. [HS04], §2) Let X be a projective variety and L an ample

invertible sheaf on X. Then Sec(X,L) is normal if and only if X is normal.

More generally, we have:

Proposition 2.5.6. Let X be a normal variety and L an integral Weil divisor on

X. Then Sec(X,D) is normal.

Proof. Let Xreg ⊂ X be the regular locus of X. Since X is normal, Xreg is an

open subset of X whose compliment has codimension ≥ 2. Since OX(nD) is re-

flexive by Proposition 2.4.10, it follows that Γ(X,OX(nD)) ' Γ(Xreg, OX(nD)),

and Sec(X,D) ' Sec(Xreg, D|Xreg). Without loss of generality, set X = Xreg and

D = D|Xreg , so that D is a Cartier divisor on X.

Recall that the normalization of an N-graded (not necessarily Noetherian) ring

is also N-graded ([HS06], Theorem 2.3.2). Thus, to prove that Sec(X,D) is normal,

it suffices to show that if f, g ∈ Sec(X,D) are homogeneous elements with deg f ≥

deg g, and f
g

is integral over Sec(X,D), then f
g
∈ Sec(X,D).

Suppose that f ∈ Γ(X,OX((m+d)D)) and g ∈ Γ(X,OX(mD)), where d ≥ 0, and

that f
g

is integral over Sec(X,D). Fix an open set U ⊂ X on which OX(D) is trivial,

say OX(D)|U = OX |U · τ ⊂ K(X), and OX(rD)|U = OX |U · τ r for any r ∈ Z. For

some a, b ∈ OX(U), f |U = aτm+d and g|U = bτm, so that f
g

= a
b
τ d. By hypothesis,

f
g

satisfies a monic polynomial F (x) = xn +
∑

n>i≥0 six
i = 0, where si ∈ Sec(X,D).

Without loss of generality we may assume that each si is homogeneous of degree

d(n− i), so that for some ci ∈ OX(U), si|U = ciτ
d(n−i). Then a

b
τ d satisfies F (x), so

(
a

b
)nτ dn +

∑
n>i≥0

ciτ
d(n−i)(

a

b
)iτ di = 0.

Dividing through by τ dn, we see that a
b

is integral over OX(U). Since X is normal,

we conclude that a
b
∈ OX(U), so that f

g
∈ OX(U) · τ d = Γ(U,OX(dD)). Since D is
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Cartier, this holds for open sets U covering X, so f
g
∈ Γ(X,OX(dD)) ⊂ Sec(X,D),

as we desired to show.

In subsequent sections we will take advantage of the special properties of section

rings. In particular:

Proposition 2.5.7. (cf. [HS04], Prop 2.1.4) Let X be a projective variety and L an

ample invertible sheaf on X. Set S = Sec(X,L). Fix any homogeneous element x ∈ S

such that L is free on D+(x), and any degree-one element t ∈ Sx. Then there is an

isomorphism of Z-graded rings Sx ' (Sx)0[t, t−1], where (Sx)0 denotes the subring of

degree zero elements of Sx. The set of such homogeneous elements x ∈ S generates

an mS-primary ideal of S.

In §2.6, we will be interested in computing the F -signature of the nth Veronese

subring of a section ring.

Notation 2.5.8. Let R be an N-graded ring and n ∈ N. We denote by R(n) the nth

Veronese subring of R. That is, R(n) is the subring of R generated by elements of

degree congruent to 0 (mod n).

Note that Sec(X,Ln) = Sec(X,L)(n) as rings, though not as graded rings: the

degree k component of Sec(X,Ln) is the degree kn component of Sec(X,L).

Corollary 2.5.9. Let X be a projective variety and L an ample invertible sheaf on

X. Set S = Sec(X,L). Fix n ∈ N. Choose x ∈ S to which Proposition 2.5.7 applies.

Then under the same notation as in Proposition 2.5.7, S
(n)
xn ' (Sx)0[tn, t−n].

Proof. We apply Proposition 2.5.7 to the sheaf Ln. Since L is free on D+(x), so is Ln.

Since tn is a degree one element of S(n), we have S
(n)
xn ' (S

(n)
xn )0[tn, t−n]. Moreover,

(Sx)0 ' (S
(n)
xn )0 ' OX(D+(xn)). Thus, S

(n)
xn ' (Sx)0[tn, t−n].
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All normal graded rings are somewhat close to being section rings, up to taking

Veronese subrings:

Proposition 2.5.10. ([Smi97], §1) Let S be any normal, N-graded, finitely generated

k-algebra. Choose n sufficiently large and divisible so that S(n) is finitely generated

in degree one. Then S(n) is the section ring of the very ample invertible sheaf O(1)

on ProjS(n) ' ProjS.

2.6 Behavior of the F -Signature Under Finite Extensions

We next give a formula for the F -signature of a Veronese subring of a graded ring

(Theorem 2.6.2). This formula will be useful in Chapter IV when we consider the

F -signature of a line bundle on a projective variety. We also give a formula for the

behavior of the F -signature under certain extensions which are finite and étale in

codimension one (Theorem 2.6.5). Both formulas are consequences of the following:

Lemma 2.6.1. Let (R,mR, k) → (S,mS, k) be a module-finite inclusion of local

rings, where the residue field k has positive characteristic. Suppose that the free rank

of S as an R-module is equal to one; that HomR(S,R) is a free rank-one S-module,

generated by Φ ∈ HomR(S,R); and that for all e ∈ N, the natural S1/pe-module map

Φ∗ : HomS(S1/pe , S)→ HomR(S1/pe , R),

defined by ψ 7→ Φ ◦ ψ, is an isomorphism. Then s(R) = 1
[Frac(S):Frac(R)]

· s(S).

Proof. By Theorem 2.1.7, sR(S) = (dimFrac(R) S ⊗R Frac(R))s(R) = [Frac(S) :

Frac(R)]s(R). Thus, to prove the lemma, it suffices to show that sR(S) = sS(S). In

particular, we will show that aS,Re = aSe . By Remark 2.1.10,

aS,Re = lR(HomR(S1/pe , R)/HomR(S1/pe ,mR)),
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and

aSe = lS(HomS(S1/pe , S)/HomS(S1/pe ,mS)).

We wish to show that

HomR(S1/pe , R)/HomR(S1/pe ,mR) 'S1/pe−mod HomS(S1/pe , S)/HomS(S1/pe ,mS),

so that these S1/pe-modules have the same length. If so, they will have the same

length as S-modules. Since R and S have the same residue field, R− and S-module

length are equivalent, so it will follow that aS,Re = aSe .

By our hypotheses, HomR(S1/pe , R) 'S1/pe−mod HomS(S1/pe , S) via Φ∗. It remains

only to check that Φ∗ identifies HomR(S1/pe ,mR) with HomS(S1/pe ,mS). The preim-

age of HomR(S1/pe ,mR) under Φ∗ is the S-module

{ψ ∈ HomS(S1/pe , S) : Φ(imψ) ⊂ mR}.

For each such ψ, imψ is an S-module. Thus, if Φ(imψ) ⊂ mR, then for all s ∈

imψ,Φ(sS) ⊂ mR. Let J ⊂ S be the ideal {s ∈ S | Φ(sS) ⊂ mR} = {s ∈ S∀φ ∈

HomR(S,R), φ(s) ∈ mR}. By Lemma 2.1.8, J ⊂ S is an ideal, and lR(S/J) is the

free rank of S as an R-module, which is one. Thus, S/J 'R−mod k, so J = mS. We

conclude that HomR(S1/pe ,mR) ' HomS(S1/pe , J) = HomS(S1/pe ,mS), as we desired

to show.

Now we are ready to prove our two F -signature formulas.

Theorem 2.6.2. Let S be a normal section ring over a field of positive characteristic,

of dimension at least two. Let n be any positive integer. Then s(S(n)) = 1
n
s(S).

Proof. Our goal is to apply Lemma 2.6.1. By Lemma 2.6.3 below, the free rank of S

as an S(n)-module is equal to one. By Lemma 2.5.7, the generic rank of S as an S(n)-

module is equal to n. Let Φ ∈ HomS(n)(S, S(n)) be the S(n)-module homomorphism
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defined as follows: for x ∈ S homogeneous of degree d,

Φ(x) =

 x n| deg x

0 n - deg x

Consider the S1/pe-module map Φ∗ : HomS(S1/pe , S) → HomS(n)(S1/pe , S(n)), given

by φ 7→ Φ ◦ φ. In order to apply Lemma 2.6.1, it remains to show that Φ∗ is an

isomorphism for each e ≥ 0.

The S(n)-modules HomS(S1/pe , S) and HomS(n)(S1/pe , S(n)) are reflexive by Propo-

sition 2.4.7 and Theorem 2.4.8, so by Proposition 2.4.9, it suffices to show that Φ∗

is an isomorphism in codimension one. Clearly, Φ∗ is injective, since no ideal of S

lies in the kernel of Φ, so we need only show that it is surjective in codimension

one. Since dimS ≥ 2, it suffices to show surjectivity away from the homogeneous

maximal ideal mS ∈ SpecS(n).

Fix x ∈ S to which Lemma 2.5.7 applies, so that Sx ' (Sx)[0][t, t
−1]. Set T =

(Sx)[0], so that Sx ' T [t, t−1]. By Corollary 2.5.9, S
(n)
xn ' T [tn, t−n]. Under these

isomorphisms, we view Φ∗ as a T 1/pe [x1/pe , 1
x1/p

e ]-module map,

Φ∗ : HomT [x, 1
x

](T
1/pe [x1/pe ,

1

x1/pe
], T [x,

1

x
])→ HomT [xp, 1

xp
](T

1/pe [x1/pe ,
1

x1/pe
], T [xp,

1

xp
]).

The image of a homomorphism φ under this map is the homomorphism Φ ◦φ, which

applies φ to an input, then kills all terms whose degree in x does not divide n.

Given φ ∈ HomT [xp, 1
xp

](T
1/pe [x1/pe , 1

x1/p
e ], T [xp, 1

xp
]), set φ = Σ0≤i<px

iφ( 1
xi
· −). We

leave it to the reader to check that φ ∈ HomT [x, 1
x

](T
1/pe [x1/pe , 1

x1/p
e ], T [x, 1

x
]), and

Φ ◦ φ = φ. It follows that Φ∗ is surjective on D(xn) ⊂ SpecS(n). By Lemma 2.5.7,

these sets D(xn) cover SpecS(n)\{mS(n)}. Thus, by our reflexivity argument, Φ∗ is

an isomorphism.
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Lemma 2.6.3. Let S be a normal section ring of dimension at least two. Let n be

a positive integer. Then the free rank of S as an S(n)-module is equal to one.

Proof. For 0 ≤ i < n, let Si (mod n) be the S(n)-submodule of S generated by homo-

geneous elements of degree congruent to i (mod n). Clearly,

S 'S(n)−mod

⊕
0≤i<n

Si (mod n) = S(n) ⊕ (
⊕

0<i<n

Si (mod n)).

It suffices to check that for i > 0, Si (mod n) has no free S(n)-module summands.

Fix 0 < i < n. Note first that for each i, Si (mod n) is an S(n)-module of generic

rank equal to one. To see this, fix any homogeneous f ∈ S of degree congruent to i

(mod n). Then the map S
(n)
fn → (Si (mod n))fn given by s 7→ fs is an isomorphism. It

follows that Si (mod n) has a free summand if and only if Si (mod n) ' S(n) as a graded

S(n)-module.

Suppose for the sake of contradiction that Si (mod n) ' S(n), generated by a homo-

geneous element x ∈ S of degree i. Then Si (mod n) generates an ideal I of S which

is contained in the principal ideal xS. It follows that I is of height one. On the

other hand, Si (mod n) includes all elements of S of degree i. It follows that mi
S ⊂ I,

so I is of height equal to the dimension of S, contradicting our assumption that

dimS ≥ 2.

Remark 2.6.4. Theorem 2.6.2 does not hold in the one-dimensional case. If S = k[x],

then for any n, S(n) = k[xn]; the free rank of S as an S(n)-module is equal to n;

and s(S(n)) = s(S) = 1. Likewise, if S is not a section ring, then the theorem

may not hold. For example, if S = k[x, y2], then S(2) = k[x2, y2], and we see that

s(S) = s(S(2)) = 1.

Next, we prove a similar F -signature formula for certain ring extensions which

are étale in codimension one.
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Theorem 2.6.5. Let (R,mR, k)→ (S,mS, k) be a module-finite inclusion of normal

local rings, where the residue field k has positive characteristic. Suppose that R→ S

is split and étale in codimension one, and the free rank of S as an R-module is equal

to one. Then s(R) = 1
[Frac(S):Frac(R)]

· s(S).

Proof. Our goal is to apply Lemma 2.6.1. By Lemma 2.4.4, HomR(S,R) 'S−mod S.

Fix e > 0. Let Φ be an S-module generator for HomR(S,R). Consider the S1/pe-

module map Φ∗ : HomS(S1/pe , S)→ HomR(S1/pe , R) given by φ 7→ Φ◦φ. In order to

apply Lemma 2.6.1, we wish to show that Φ∗ is an isomorphism for each e ≥ 0. Since

R ↪→ S splits, HomR(S,R) contains a surjective homomorphism. In particular, Φ is

surjective, so Φ∗ is injective.

To check surjectivity, we first give an S-module isomorphism from HomR(S1/pe , R)

to HomR(R1/pe ⊗R S,R). These R-modules are reflexive by Proposition 2.4.7 and

Theorem 2.4.8. By Lemma 2.4.5, the S-module map R1/pe⊗RS → S1/pe induces an S-

module isomorphism between them in codimension one. It follows from Proposition

2.4.9 that the induced map on Hom sets is an R-module isomorphism, hence an

S-module isomorphism:

HomR(S1/pe , R) 'S−mod HomR(R1/pe ⊗R S,R).

By the adjointness of tensor and Hom, along with Lemma 2.4.4, we conclude that

as R-modules,

HomR(S1/pe , R) ' HomR(R1/pe ⊗R S,R)

' HomR(R1/pe ,HomR(S,R))

' HomR(R1/pe , S).

Likewise, HomS(S1/pe , S) 'S−mod HomS(R1/pe ⊗R S, S). Thus, it suffices to show

that the induced R-module map HomS(R1/pe ⊗R S, S) → HomR(R1/pe , S) is sur-
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jective. This map, given by φ 7→ [x 7→ φ(x ⊗ 1)], is surjective: a homomorphism

φ ∈ HomR(R1/pe , S) has preimage φ⊗ 1.

Remark 2.6.6. When R → S is finite local, and f is the free rank of S as an R-

module, then s(R) ≤ f
[Frac(S):Frac(R)]

s(S) ([Tuc11]). Theorem 2.6.5 proves that this

inequality is an equality when R→ S is étale in codimension one, in the special case

f = 1.

Remark 2.6.7. Theorem 2.6.2 is almost a special case of the graded version of Theo-

rem 2.6.5. When p - n, the inclusion S(n) ↪→ S is étale in codimension one. However,

when p divides n, this inclusion is not étale in codimension one, so our Veronese

F -signature formula does not follow from Theorem 2.6.5.

2.7 F -Signature of Pairs and Triples

The F -signature of pairs and triples was recently defined in [BST11]. First, we

recall:

Definition 2.7.1. Let R be a normal domain. Let D be a Weil divisor on X =

SpecR. We define R(D) to be the module of global sections of OX(D). That is,

R(D) = {f ∈ Frac(R) | div f +D ≥ 0}.

Remark 2.7.2. Note that when D is effective, R ⊂ R(D). moreover,if D is the

principal divisor div g for some g ∈ R, then R(D) = R · 1
g

is the cyclic R-module

generated by 1
g
.

Now we can define the F -signature of a pair or triple:

Definition 2.7.3. Let (R,m) be a normal local (or N-graded) domain over k, of di-

mension d. LetD =
∑

i aiDi be an effective Q-divisor onX = SpecR, a an ideal of R,

and 0 ≤ t ∈ R. We define the F -signature of the triple (R,D, at) as follows. For each
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e, define IDe ⊂ R to be the ideal {r ∈ R |∀φ ∈ HomR(R(d(pe−1)De)1/pe , R), φ(r1/pe) ∈

m}. Then the F -signature of the pair s(R,D) is lime→∞
l(R/IDe )
ped

.

Define Iae ⊂ R to be the ideal {r ∈ R | ∀φ ∈ HomR(R(d(pe − 1)De)1/pe , R),∀a ∈

ad(p
e−1)te, φ(a1/per1/pe) ∈ m}. The F -signature of the triple s(R,D, at) is defined to

be lime→∞
l(R/Iae )
ped

.

Remark 2.7.4. The limits given in Definition 2.7.3 have been shown to exist in

[BST11], in the case of a local ring.

Remark 2.7.5. It is easily checked that the F -signature of the triple (R,D, (1)) (with

a as the unit ideal) is the F -signature of the pair (R,D). Likewise, the F -signature

of the pair (R, 0) (with D as the zero divisor) is the F -signature of R.

Just like the “usual” F -signature, the F -signature of pairs may be viewed as a

measure of the number of splittings of the Frobenius map, or as a measure of the

number of free summands splitting off from R1/pe , though the F -signature of pairs

only counts certain summands:

Lemma 2.7.6. ([BST11], Proposition 3.5.) Suppose that we are in the setting of

Definition 2.7.3. Set aDe = l(F∗(R/I
D
e )), so that s(R,D) = lime→∞

aDe
pe(d+α)

. Then aDe

is the maximum rank of a free summand of R1/pe that is simultaneously a free sum-

mand of R(d(pe − 1)De)1/pe. Moreover, any k-vector space basis for R1/pe/(IDe )1/pe

lifts to a set of generators in R1/pe for such a free summand of maximum rank, and

(IDe )1/pe is the submodule of elements of R1/pe which do not generate such a free

summand.

Minor modifications can be made to the definition, without changing the F -

signature ([BST11], Lemma 4.17). In particular:
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Lemma 2.7.7. ([BST11], discussion following Lemma 4.17.) Let R,D, a, t be as in

Definition 2.7.3.

1. We may replace (pe−1)D by peD in the limits given in Definition 2.7.3 without

changing the F -signature.

2. If we write D =
∑

i aiDi, then s(R,D, at) is continuous in the ai.

3. Likewise, we may replace (pe − 1)t with pet in the definition without changing

s(R,D, at). Moreover, s(R,D, at) is continuous in t.

4. Replacing at
′
e with its integral closure at′e does not change the F -signature.

Lemma 2.7.7 will allow us to simplify our computations later by, for example,

assuming that t and the coefficients ai of D are rational numbers with denominator

a power of p.

We also have, in the triples case:

Lemma 2.7.8. Suppose that we are in the setting of Definition 2.7.3. Then Iae =

(IDe : adt(p
e−1)e). Equivalently, set aae = l(F e

∗R/F
e
∗ I

a
e ), so s(R,D, at) = lime→∞

aae
pe(d+α)

.

Then Iae = (IDe :R adt(p
e−1)e), and

aae = l(F e
∗R/(F

e
∗ I

D
e :R1/pe F e

∗ a
dt(pe−1)e)).

Proof. Requiring that r ∈ (IDe : adt(p
e−1)e) is the same as requiring that multipli-

cation by an element a ∈ (adt(p
e−1)e)1/pe sends r1/pe into (IDe )1/pe , so that for all

φ ∈ De, φ(a ·r1/pe) ∈ m. Equivalently, for all φ ∈ HomR(R(d(pe−1)De)1/pe , R),∀a ∈

(adt(p
e−1)e)1/pe , φ(r1/pe) ∈ m. We conclude that r ∈ (IDe : adt(p

e−1)e) ⇐⇒ r ∈ Iae . We

have proved our first claim; the second claim follows immediately.



CHAPTER III

The F -Signature of Affine Toric Singularities

An affine toric variety is determined by a lattice N and a cone σ inside the real

vector space NR = N ⊗Z R. Its coordinate ring k[Xσ] is a normal monomial ring. In

this chapter, we will give a formula for the F -signature of this coordinate ring as the

volume of a polytope Pσ which lies in MR, the dual vector space to NR.

Theorem 3.2.3. (cf. [WY04], Theorem 5.1) Let Xσ be an affine toric variety with-

out torus factors. Let ~v1, . . . , ~vr ∈ N be primitive generators for σ. Let Pσ ⊂MR be

the polytope {~w ∈MR | ∀i, 0 ≤ ~w · ~vi < 1}. Then s(k[Xσ]) = Volume(Pσ).

More generally, suppose X = X ′ × T , where X ′ is a toric variety without torus

factors and T is an algebraic torus. Let N ′R ⊂ NR be the vector subspace spanned by

σ, and let σ′ be σ viewed as a cone in N ′R. Then s(k[X]) = s(k[X ′]) = Volume(Pσ′).

Here, all notation is standard as in Fulton’s book [Ful93]; we will review this

notation in the next section.

Our formula is equivalent to the one given in [WY04] in the case where X has

no torus factors; when X does have torus factors, our formula corrects the one given

in [WY04], which does not hold in that case. Our method of proof uses the usual

machinery of toric geometry and in this respect is closer in spirit to the computation

of toric Hilbert-Kunz multiplicities in [Wat99]. Singh gives a “non-toric” formula

32
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for the F -signature of a normal monomial ring in [Sin05]. The methods used in this

chapter allow us to give an easy proof of Singh’s result (Theorem 3.3.6).

We also compute the F -signature of pairs and triples in the toric case:

Theorem 3.4.10. Let R be the coordinate ring of an affine toric variety, with con-

ventions as in Remark 3.2.1. Let D be a torus-invariant Q-divisor, with associated

polytope PD
σ as in Definition 3.4.9. Then s(R) = Volume(PD

σ ).

Theorem 3.4.13. Let R be the coordinate ring of an affine toric variety, with con-

ventions as in Remark 3.2.1. Let D be a torus-invariant Q-divisor as in Definition

3.4.9. Let a ⊂ R be a monomial ideal, with associated polytope PD,at

σ as in Definition

3.4.12. Then s(R,D, at) = Volume(PD,at

σ ).

Corollary 3.4.17. Let R be the coordinate ring of an affine toric variety, D a Q-

divisor on SpecR, and a a monomial ideal, presented as in Theorem 3.4.13. Let

Newt(a) denote the Newton polyhedron of a as in Definition 3.4.4. Suppose that the

pair (R,D) is Q-Gorenstein. Then s(R,D, at) = Volume(PD
σ ∩ t · Newt(a)).

3.1 Affine Toric Varieties

Here, we present enough background on toric varieties to prove Theorem 3.2.3.

Almost all notation is standard as in Fulton’s book [Ful93], which the reader may

consult for further details.

A toric variety X may be defined as a normal variety which contains an algebraic

torus T = Spec k[x1, x
−1
1 , . . . , xn, x

−1
n ] as an open dense subset, so that the action of

T on itself extends to an action of T on X. Toric varieties can be presented in terms

of simple combinatorial data, making algebro-geometric computations easier on toric

varieties.
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Let N be a free abelian group of rank n. Let M = N∗ = HomZ(N,Z) the dual

group to N . Consider M as a lattice, called the character lattice, in the R-vector

space MR := M ⊗Z R. Let k[M ] be the semigroup ring on M , so that up to non-

canonical isomorphism, k[M ] ' k[x±1
1 , . . . , x±1

n ] is the coordinate ring of an “algebraic

torus.” Elements of the semigroup M are called characters but may also be thought

of as exponents; the injective group homomorphism χ : M+ ↪→ (k[M ])× is called the

exponential map and is written m 7→ χm. Elements χm ∈ k[M ] are called monomials.

A monomial ring R is a k-subalgebra of k[M ], finitely generated by monomials:

R = k[S], where χS is the set of monomials in R. Of course, the set of monomials in

R forms a semigroup under multiplication which is naturally isomorphic to S. We

denote by L = Lattice(S) the (additive) subgroup of M generated by S, which is

isomorphic under the exponential map to the (multiplicative) group of monomials in

Frac(R).

In what follows, let σ ⊂ NR be a strongly convex rational polyhedral cone. By

rational polyhedral cone we mean that σ is the cone of vectors {
∑

i ai~vi |0 ≤ ai ∈ R},

where ~vi ∈ N are a collection of finitely many generators for σ. Moreover, we require

that σ be strongly convex : that is, if 0 6= ~v ∈ σ then −~v /∈ σ.

A minimal set of generators of a cone is uniquely determined up to rescaling. (For

each i, R≥0 · ~vi is a ray which forms one edge of the cone σ ⊂ NR.) It is often useful

to take the vectors ~vi to be primitive generators : that is, we replace each ~vi with

the shortest vector in N that lies on the same ray. The primitive generators of σ are

themselves uniquely determined.

A face of σ is F = σ ∩H, where H ⊂ Rn is a hyperplane that only intersects σ

on its boundary ∂σ. (Equivalently, H = ~w⊥, where ~w · ~v ≥ 0 for all ~v ∈ σ. Such

H is called a supporting hyperplane.) A codimension-one face is called a facet. As is
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(hopefully) intuitively clear, one can show that the union of the facets of σ is equal

to the boundary of the cone, ∂σ. Every face of σ is itself a strongly convex rational

polyhedral cone, whose generators are a subset of the generators of σ.

A strongly convex rational polyhedral cone σ in the vector space V has a dual

cone, σ∨ = {~u ∈ V ∗ |~u ·~v ≥ 0∀~v ∈ σ}. It is a basic fact of convex geometry that σ∨ is

also a rational polyhedral cone, and that σ = (σ∨)∨. Moreover, σ is full-dimensional

if and only if its dual cone σ∨ is strongly convex ([Ful93], §1.2).

Remark 3.1.1. Let σ be a polyhedral cone. Then there is a one-to-one order-reversing

correspondence between faces of σ and faces of σ∨, given by τ 7→ τ∨ ∩ σ∨.

Now we define affine toric varieties in the language of cones. Every affine toric

variety may be presented in the following form:

Definition 3.1.2. Let N be an n-dimensional lattice, N ⊂ NR = N ⊗Z R. Let

M = N∗, and MR = M ⊗ R. Let σ ⊂ NR be a strongly convex rational polyhedral

cone, and S = σ∨ ∩M , where σ∨ ⊂ MR is the dual cone to σ. Let R = k[S]. The

affine toric variety corresponding to σ is defined to be X = SpecR.

Remark 3.1.3. Only normal monomial rings arise as the coordinate rings of toric

varieties. Since strongly F -regular rings are normal, there will be no loss of generality

in restricting our F -signature computations to only those monomial rings arising from

toric varieties. (If a monomial ring does not arise in this fashion, it is not normal,

hence not strongly F -regular, so we already know that its F -signature is zero.)

The following fact will be useful later. It says that the group Lattice(S) generated

by the semigroup S is equal to the character lattice M .

Lemma 3.1.4. ([Ful93], §1.3) Let N be a rank-n lattice, M = N∗, σ ⊂ NR a strongly

convex rational polyhedral cone, and S = σ∨∩M (so that Spec k[S] is the affine toric
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variety corresponding to σ). Then Lattice(S) = M . More generally, if L′ ⊂ MR is

any n-dimensional lattice, σ∨ ⊂MR any n-dimensional cone, and S = σ∨ ∩L′, then

Lattice(S) = L′, that is, L′ is the group generated by the semigroup S.

It will be convenient, during our F -signature computations, to temporarily assume

that the cone σ defining our toric variety Xσ is full-dimensional. Equivalently, we

assume that our toric variety contains no torus factors, i.e, is not the product of

two lower-dimensional toric varieties, one of which is a torus. The following (easily

checked) facts about products of cones will allow us to reduce to the case of a toric

variety with no torus factors:

Lemma 3.1.5. ([CLS11], Proposition 3.3.9) Let X = SpecR be the affine toric

variety corresponding to the cone σ, so that R = k[σ∨ ∩M ]. Let N ′R ⊂ NR be the

vector subspace spanned by σ. Let N ′ = N ′R ∩ N . Let σ′ be σ, viewed as a full-

dimensional cone in N ′R. Let N ′′ = N/N ′. Then X ' X ′ × TN ′′, where X ′ is the

affine toric variety (with no torus factors) corresponding to σ′ and TN ′′ = Spec k[M ′′]

is an algebraic torus.

Finally, we recall the definition of a polytope.

Definition 3.1.6. A polytope in Rn is the convex hull of a finite set of points, which

we will call extremal points. Equivalently, a polytope is a bounded set given as the

intersection of finitely many closed half-spaces H = {~v |~v ·~u ≥ 0} (see, e.g., [CLS11],

§2.2), or a bounded set defined by finitely many linear inequalities.

Remark 3.1.7. We will abuse notation by allowing polytopes to be intersections of

half-spaces which are either open (H = {~v |~v ·~u > 0}) or closed. (We will compute F -

signatures to be the volumes of various polytopes. Since the volume of an intersection

of half-spaces is the same whether the half-spaces are open or closed, this technicality
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will not affect our arguments.)

3.2 Toric F -Signature Computation

3.2.1 The Formula, and an Example

Remark 3.2.1. (Conventions.) For the remainder of this section, N is a lattice;

M = N∗ is the dual lattice; σ ⊂ NR is a strongly convex rational polyhedral cone;

S = M ∩ σ∨, so that k[S] is the coordinate ring of an affine toric variety in the

notation of [Ful93], and ~v1, . . . , ~vr are primitive generators for σ.

Definition 3.2.2. Let σ be a cone as in Remark 3.2.1, with primitive generators

~v1, . . . , ~vr. We define Pσ ⊂ σ∨ to be the polytope {~w ∈MR | ∀i, 0 ≤ ~w · ~vi < 1}.

Theorem 3.2.3. Let R be the coordinate ring of an affine toric variety X with no

torus factors, with the conventions of Remark 3.2.1. Then s(R) is the volume of

Pσ. More generally, suppose X = X ′ × T , where X ′ is a toric variety without torus

factors and T is an algebraic torus. Let N ′R ⊂ NR be the vector subspace spanned by

σ, and let σ′ be σ viewed as a cone in N ′R. Then s(k[X]) = s(k[X ′]) = Volume(Pσ′).

We will prove this theorem in Section 3.2.3. For now, we provide an example

computation:

Example 3.2.4. Figure 3.1(a) shows the cone σ corresponding to a plane quadric

V(xy − z2), with primitive generators ~v1, ~v2. Figure 3.1(b) shows the dual cone σ∨.

The coordinate ring k[σ∨ ∩M ] is k[x, xy, xy2]. In this case, Pσ, shaded in the figure,

is the parallelogram {〈x, y〉 | 0 ≤ y < 1, 0 ≤ 2x − y < 1}. The F -signature is

s(R) = Volume(Pσ) = 1
2
.

3.2.2 R-module Decomposition of R1/q

The main supporting result proved in this section is Lemma 3.2.8, which gives a

formula for the free rank of R1/q as an R-module in terms of the number of monomials
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(a) The cone σ ⊂ NR. (b) The dual cone σ∨ ⊂MR.

Figure 3.1: Computing the F -signature of the coordinate ring k[x, xy, xy2] of a quadric cone.

in R1/q having a certain property. That lemma will be integral to our proof of the

main theorem. Lemma 3.2.8 follows immediately from Lemma 3.2.7, which describes

how R1/q decomposes as a direct sum of indecomposable R-modules.

We will be able to compute the F -signature of a monomial ring R because the

R-module R1/q has an especially nice graded structure. In particular:

Lemma 3.2.5. Let R be a monomial ring, with q = pe, and with character lattice

M ' Zn. Then:

1. R1/q is finitely generated, as an R-module, by qth roots of monomials in R of

bounded degree.

2. R1/q admits a natural 1
q
M-grading which respects the M-grading on R ⊂ R1/q.

Each graded piece of R1/q a one-dimensional k-vector space.

Proof. 1. If R is generated by a finite set of monomials τi, we can pick a minimal

set of t generators from among {
∏

i τ
ai/q
i | 0 ≤ ai < q}.

2. We consider R as a graded subring of the M -graded ring k[M ]. The grading
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on R1/q is inherited in the obvious way: deg(χm)1/q = 1
q

degχm = 1
q
m. We

conclude that R1/q has a natural 1
q
M -grading. Each graded piece consists of the

set of k-multiples of a single monomial χm/q.

It is well-known that relations on graded modules over monomial rings are gener-

ated by so-called “binomial” relations. We supply a proof here, for lack of a better

reference:

Lemma 3.2.6. Let W be a G-graded R-module, G an abelian group, with each

nonzero graded piece a one-dimensional k-vector space. (For example, when R is a

monomial subring of k[x1, . . . , xn], W = R1/q is (Z/q)n-graded.)

1. We can write W as a quotient of a free module so that the relations are generated

by “binomial” relations, of the form r · ρ = s · µ, for r, s nonzero homogeneous

elements of R and ρ, µ homogeneous elements of W such that deg r + deg ρ =

deg s+ deg µ.

2. We will say that two monomials ρ, µ ∈ W are related if they satisfy a binomial

relation. Then being related is an equivalence relation.

Proof. 1. Let µi be graded generators for W . Let
∑

i riµi = 0 be a relation. Since

W is graded,
∑

i riµi may be written as a sum of graded pieces, each of which is

itself equal to 0. In other words, the relations on W are generated by relations

with the property that riµi has the same degree for each i. In that case, since

each graded piece of W is a one-dimensional k-vector space, we have that for

each i, and each j for which riµi 6= 0, riµi = cijrjµj for some cij ∈ k. This is

a binomial relation on µi and µj, and binomial relations of this form generate

the original relation
∑

i riµi = 0.
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2. If rρ = sµ, and s′µ = tτ , then rs′ρ = stτ , so ρ ∼ τ .

The following lemma essentially indicates how to decompose R1/q as a direct sum

of R-submodules generated by monomials. It also gives a condition describing which

monomials generate free summands of R1/q.

Lemma 3.2.7. Let W be a finitely generated G-graded R-module, G an abelian

group, with each nonzero graded piece a one-dimensional k-vector space. (For exam-

ple, W = R1/q, G = Zn.) Let H be a set of homogeneous generators for W . Let

A1, . . . , Ak ⊂ H be the distinct equivalence classes of elements of H which are related

(in the sense of Lemma 3.2.6). Then:

1. W '
⊕

iR · Ai is a direct sum of submodules generated by the sets Ai.

2. Each of the submodules R · Ai is rank one (hence indecomposable even as an

ungraded R-module).

3. Finally, a homogeneous element µ ∈ W generates a free summand of W if and

only if the only homogeneous elements of W that are related to µ are R-multiples

of µ.

Proof. 1. Suppose that A,B ⊂ H, and C = A
∐
B. Since the corresponding sub-

modules R ·A and R ·B are graded, their intersection must also be graded. In

particular, in order for these modules to have nonempty intersection (equiva-

lently, for the sum R · A + R · B = R · C to fail to be direct), we should have

a binomial relation rµ = sτ for some µ ∈ A, τ ∈ B, and r, s ∈ R, by Lemma

3.2.6. However, we constructed the sets Ai so that no binomial relations exist

between them. We conclude that the sum is direct, and W = R ·H '
∑

iR ·Ai.
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2. Suppose that we have a subset A ⊂ H of homogeneous elements which are

are all related to one another (for example, A = Ai for some i). Then pick

a homogeneous µ ∈ A. For any τ ∈ A, we have that rµ = sτ for r, s ∈ R;

equivalently, τ = r
s
µ ∈ Frac(R) · µ. We conclude that R · A has rank 1, that is,

R · A⊗R Frac(R) ' Frac(R).

3. Fix µ ∈ W . Let A1, . . . , Ak be the equivalence classes of related monomials in

W . Without loss of generality, we may assume that µ ∈ A1. Then R ·A1 is free

of rank one if and only if it is generated by a single monomial. Thus, R · µ is

a free summand of W if and only if µ generates R · A1, that is, if and only if µ

divides every homogeneous element of W that is related to µ.

The following lemma will be essential in the next section when we compute the

free rank ae of R1/q as an R-module. (We will also use this lemma in Section 2.7

when computing the F -signature of pairs and triples.)

Lemma 3.2.8. Let R = k[S] be a monomial ring, S a semigroup, and let L =

Lattice(S) be the group generated by S. Fix q = pe. Let H ⊂ 1
q
L be a finitely gener-

ated S-module, so that k[H] ⊂ k[1
q
L] is an R-module finitely generated by monomials.

Let ae be the free rank of k[H] as an R-module. Then the set of monomials in H

which generate a free summand of k[H] is {χ~v | ~v ∈ H, and ∀~k ∈ L\S,~v + ~k /∈ H}.

Moreover, if 0 is the only unit in H, then ae is the size of this generating set.

Proof. By Lemma 3.2.7, a monomial µ ∈ k[H] generates a free summand of k[H] if

and only if it is unrelated to all monomials in k[H] that are not R-multiples of itself.

We may characterize τ being related to µ (but not a multiple of it) by τ = r
s
µ, with

r
s
∈ (FracR)\R. Thus, the set of monomial generators for k[H] which generate a
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free summand of k[H] is {µ ∈ χH | for all monomials r
s
∈ (FracR)\R, r

s
µ /∈ k[H]}.

We may rewrite this set as {χ~v |~v ∈ H, and ∀~k ∈ L\S,~v+~k /∈ H}, which is precisely

the set described in the statement of the lemma. If 0 is the only unit in H, then

there is a one-to-one-correspondence between monomials in the generating set and

free summands of W . In that case, ae is the size of the generating set.

Remark 3.2.9. As we will see shortly, when we apply Lemma 3.2.8 to the case of the

R-module R1/q, the technical requirement that 0 ∈ H be the only unit corresponds

to the cone σ being full-dimensional.

3.2.3 Derivation of the Formula

Remark 3.2.10. (An aside on computing volumes.) Consider M ⊂ MR, a lattice

abstractly isomorphic to Zn contained in a vector space abstractly isomorphic to Rn.

Choosing a basis for M gives us an identification of MR with Rn, hence a way to

measure volume on MR. It is easily checked that this volume measure depends only

on M and not on our choice of basis for M . (Such a measure is uniquely determined

by the fact that with respect to it, the measure of a fundamental parallelepiped

for M , also called the covolume of M , is 1.) Thus, it makes sense to talk about

measuring volume “relative to the lattice M ,” denoted VolumeM , or simply Volume

when there is no risk of ambiguity.

Now we are ready to prove our main result.

Proof of Theorem 3.2.3. Suppose first that X has no torus factors. We apply Lemma

3.2.8, with H = σ∨ ∩ 1
pe
M , k[H] = R1/pe . Since σ is full-dimensional, σ∨ is strongly

convex, so H contains no nontrivial units. Then

ae = #{~v ∈ (σ∨ ∩ 1

pe
M) | ∀~k ∈M\σ∨, ~v + ~k /∈ σ∨}.
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Let P
′
σ be the set {~v ∈ σ∨ |∀~k ∈M\σ∨, ~v+~k /∈ σ∨}. Then ae = #{~v ∈ P ′

σ∩ 1
pe
M}.

By Lemma 3.2.11, P
′
σ = Pσ. Set q = pe. Then s(R), defined to be lime→∞

ae
pen

, is equal

to limq→∞
#(Pσ∩ 1

q
M)

qn
. We apply Lemma 3.2.12 to conclude that s(R) = Volume(Pσ).

Suppose now that X has torus factors. By Lemma 3.1.5, X ' X ′ × TN ′′ , where

X ′ = Spec k[σ′ ∩ M ′] and TN ′′ is the algebraic torus Spec k[M ′′]. In particular,

R ' k[X ′]⊗k k[M ′′]. We apply Theorem 2.3.1 on the F -signature of products to see

that s(R) = s(k[X ′]) · 1 = s(k[X ′]) = Volume(Pσ′). (It is easy to check directly that

s(k[M ′′]) = 1: writing M ′′ ' Zd′′ , we see that k[Zd′′ ]1/q is a free k[Zd′′ ]-module of

rank qd
′′
.)

It remains to prove the two lemmas referenced in the proof of Theorem 3.2.3.

Lemma 3.2.11. Suppose that we are in the situation of Remark 3.2.1. Then

P
′

σ := {~v ∈ σ∨ | ∀~k ∈M\σ∨, ~v + ~k /∈ σ∨} = {~v ∈MR | ∀i, 0 ≤ ~v · ~vi < 1} =: Pσ.

Proof. Recall that σ∨ = {~u | ~u · ~vi ≥ 0 for all i}.

Suppose ~v ∈ Pσ, so that for each i, 0 ≤ ~v · ~vi < 1. Fix ~k ∈ M\σ∨. Since ~k /∈ σ∨,

we know that ~k · ~vj < 0 for some j. For such j, since ~k · ~vj ∈ Z, we know that

~k · ~vj ≤ −1. It follows that (~v + ~k) · ~vj < 0. Thus, ~v + ~k /∈ σ∨. We conclude that

~v ∈ P ′
σ. Hence, Pσ ⊂ P

′
σ.

Conversely, suppose that ~v /∈ Pσ, so that for some j, ~v · ~vj ≥ 1. Set ~k0 to be

any vector in M such that ~k · ~vj = −1. (Such ~k0 exists since by Lemma 3.1.4,

Lattice(S) = M .) Choose ~k1 to be any vector in M that also lies in the interior of

the facet Fj = ~v⊥j ∩ σ∨ of σ∨. Then ~k1 · ~vi > 0 for each i 6= j. Thus, for sufficiently

large m, (~k0 + m~k1) · ~vi ≥ 0 for i 6= j, while (~k0 + m~k1) · ~vj = 0. Set ~k = ~k0 + m~k1.

Then ~k ∈ M , but ~v /∈ \σ∨, since ~k · ~vj = −1 < 0. On the other hand, ~v + ~k ∈ σ∨,

since (~v + ~k) · ~vi ≥ 0 for each i. We conclude that ~v /∈ P ′
σ.
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Hence, P
′
σ ⊂ Pσ. We conclude that Pσ = P

′
σ, as we desired to show.

Lemma 3.2.12. Let M be a lattice and P ⊂M⊗ZR a polytope (or, more generally,

any set whose boundary has measure zero). Then limq→∞
#{P∩ 1

q
M}

qn
= Volume(P ).

Proof. In fact, when P is a polytope, it can be shown that the quantity #{P ∩ 1
q
M}

is polynomial in q of degree n, known as the Ehrhart polynomial of P , and that its

leading coefficient limq→∞
#{P∩ 1

q
M}

qn
is Volume(P ) ([MS05], Thm 12.2). Even without

this fact, however, it is easy to sketch a proof of the special case that we require:

the quantity limq→∞
#{P∩ 1

q
M}

qn
is a limit of Riemann sums measuring the volume of

P with respect to the lattice M . (See, for example, [Fol99], Theorem 2.28.)

3.3 Alternative Monomial Ring Presentations

3.3.1 A Slightly More General F -Signature Formula

Theorem 3.2.3 can be made to apply to alternative presentations of monomial

rings. In particular, suppose R = k[S], where S = L ∩ σ∨ for any lattice L, not

just L = M . We may apply a slightly modified version of Theorem 3.2.3 to compute

s(R).

Definition 3.3.1. Let σ be a cone as in Remark 3.2.1, with primitive generators

~v1, . . . , ~vr. Let L be a lattice. For each i, let ci = min~v∈L |~v ·~vi|. We define PL
σ ⊂ σ to

be the polytope {~w ∈MR | ∀i, 0 ≤ ~w · ~vi < ci}. (Note that if L = M , then PL
σ = Pσ,

as ci = 1 for each i.)

Corollary 3.3.2. (We use the conventions of Remark 3.2.1.) Let L ⊂ M be a

sublattice, and set S = σ∨ ∩ L. (By Remark 3.1.4, L = Lattice(S).) If σ is a full-

dimensional cone, then s(R) = Volume(PL
σ ), with the volume measured with respect

to the lattice L. Moreover, for each e, ae = #(PL
σ ∩ 1

pe
L).
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Proof. The proof is essentially the same as that of Theorem 3.2.3 with M replaced by

L, except that in the supporting Lemma 3.2.11, for each i, we replace the condition

0 ≤ ~vi < 1 with 0 ≤ ~vi < ci. (In the original proof, we made use of the fact that

ci = 1 for L = M . It is easily checked that the proof holds in this more general case

if we just replace each 1 with ci as necessary.)

Example 3.3.3. Proposition 3.3.2 may be used to recover the F -signature of a Veronese

subring R(n) of a polynomial ring R = k[x1, . . . , xn]. (This computation has already

been performed in [HL02] and [Sin05]; it also follows from Theorem 2.6.2.) In partic-

ular, R(n) = k[σ∨ ∩L], where σ is the first orthant and L ⊂M = Zn is the lattice of

vectors whose coordinates sum to a multiple of n. It is easily checked that for such

L and σ, ci = 1 for all i, so that PL
σ = Pσ. Moreover, #(M/L) = n, so VolumeL =

1
n
·VolumeM . We conclude that s(R(n)) = VolumeL(Pσ) = 1

n
VolumeM(Pσ) = 1

n
s(R).

3.3.2 A New Proof of an Old F -Signature Formula

Now we can provide an elementary proof of the F -signature formula given by

Singh. First, we will need to discuss a few relevant properties of monomial rings.

Definition 3.3.4. Let S be a semigroup of monomials contained in the semigroup

T generated by monomials x1, . . . , xn. (So k[A] is the polynomial ring k[x1, . . . , xn].)

Then S is full if Frac k[S] ∩ k[x1, . . . , xn] = k[S]. Equivalently, Lattice(S) ∩ T = S.

Definition 3.3.5. Let S be a semigroup of monomials contained in the semigroup

T generated by monomials x1, . . . , xn. Then we say that S satisfies property (∗)

if the following holds: consider any variable xi ∈ T . Then there exist monomials

ζ, η ∈ k[S] such that ζ
η
, as a fraction in Frac k[T ] in lowest terms, can be written as

τ
xi

(where τ is a monomial in S but not necessarily in T ). Equivalently, the lattice

L ⊂ Zn generated by S should contain, for each i, an element with ith coordinate
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equal to -1.

Theorem 3.3.6 ([Sin05]). Let R ⊂ A = k[x1, . . . , xn] be a subring generated by

finitely many monomials, R = k[S], where S is a finitely generated semigroup. Let

mA be the homogeneous maximal ideal of A. Assuming that R is presented so that S

is full and satisfies property (∗), the F -signature of R is s(R) = lime→∞
l(R/(m

[pe]
A ∩R))

ped
.

In particular, ae = l(R/(m
[pe]
A ∩R)).

Proof. We are given that S = Lattice(S) ∩ T = Lattice(S) ∩ σ∨, where σ is the first

orthant, with primitive generators ~vi equal to the unit vectors in Rn. Thus, we may

apply Proposition 3.3.2 to the cone σ and the lattice L = Lattice(S). It remains only

to show that l(R/(m
[pe]
A ∩R)) = #(PL

σ ∩ 1
pe
L). Since ci = 1 for each i, the right-hand

side is #{~v ∈ 1
pe
L |0 ≤ ~v ·~vi < 1}. The left-hand side is equal to the number of ~v ∈ L

whose coordinates are all less than pe, which is #{~v ∈ L | 0 ≤ ~v · ~vi < pe}. Dividing

all elements of the left-hand side by q, we see that the left-hand side and right-hand

side are equal. Thus, s(R) = lime→∞
ae
ped

= lime→∞
l(R/(m

[pe]
A ∩R))

ped
.

3.4 Toric F -Signature of Pairs and Triples

3.4.1 Toric Preliminaries

For our pair and triple computations, we will require some understanding of divi-

sors on toric varieties. (Unless stated otherwise, proofs of these results may be found

in [Ful93].)

Definition 3.4.1. A prime Weil divisor D on a toric variety X is torus-invariant if

it is invariant under the action of the embedded torus on X. More generally, a Q-

divisor D is torus-invariant if D =
∑

i aiDi, where Di are the torus-invariant prime

divisors of X.
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The torus-invariant prime divisors of X are in bijective correspondence with prim-

itive generators ~vi of the cone σ ⊂ NR of X. (In particular, the prime divisor corre-

sponding to ~vi is Di = V(Ii), where Ii is the ideal generated by monomials ~u such

that ~u · ~vi 6= 0.) It can be shown that νi : Frac(R) → Z, the discrete valuation

corresponding to Di, is given by νi(~u) = ~u · ~vi. From this, it follows that:

Lemma 3.4.2. Let X = SpecR be an affine toric variety, R = k[S], S = σ∨ ∩

M ⊂ MR. Let D =
∑

i aiDi be a torus-invariant Q-divisor on X, where each Di

corresponds to a primitive generator ~vi of σ. Then R(D) =
∑

~uR ·x~u, where the sum

is taken over all ~u ∈ S such that ~u · ~vi ≥ −ai.

For our F -signature of triples computation, we will require the concept of the

Newton polyhedron of a monomial ideal.

Definition 3.4.3. A polyhedron is a possibly unbounded intersection of finitely many

half-spaces in Rn.

Definition 3.4.4. Let R = k[S] be a monomial ring, with S ⊂ MR, as above. Let

a ⊂ R be a monomial ideal (i.e., an ideal generated by monomials). The Newton

polyhedron of a, denoted Newt(a), is the polyhedron in MR which is the convex hull

of the set of monomials in a.

The Newton polyhedron is closely related to the integral closure of monomial

ideals:

Lemma 3.4.5. (see, e.g., [Vil01], Proposition 7.3.4) Let R = k[S] be a monomial

ring as above. Let a ⊂ R be a monomial ideal. Then the integral closure a of a in R

is a monomial ideal generated by those monomials in the set Newt(a) ∩M .

Definition 3.4.6. Let Q1, Q2 be subsets of Rn. The Minkowski sum of Q1 and Q2,
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denoted Q1 +Q2, is the set {~u1 + ~u2 | ~u1 ∈ Q1, ~u2 ∈ Q2}. We denote by Q1 −Q2 the

set Q1 + (−Q2) = {~u1 − ~u2 | ~u1 ∈ Q1, ~u2 ∈ Q2}.

It is easy to see that the Minkowski sum of two polyhedrons is itself a polyhedron,

and that the sum of two polytopes is a polytope. (See, for example, [Grü03], §15.1.)

As Corollary 3.4.17 is a statement about Q-Gorenstein pairs, we recall the defini-

tion of the Q-Gorenstein condition.

Definition 3.4.7. If D is an effective Q-divisor on X = SpecR, the pair (R,D) is

Q-Gorenstein if, fixing a canonical divisor KX on X, the divisor KX+D is Q-Cartier;

that is, some integer multiple of KX +D is Cartier.

It happens that on a toric variety, a canonical divisor may be given by KX =

−
∑

iDi, where the sum is taken over all torus-invariant prime divisors on X. It is

also a fact that Cartier divisors on an affine toric variety are principal. We conclude:

Lemma 3.4.8. Let X = Spec k[S] be an affine toric variety with a corresponding

strongly convex polyhedral cone σ. Let D =
∑

i aiDi be a Q-divisor. Then (R,D) is

Q-Gorenstein if and only if for some ~w ∈M ⊗Q, ~w · ~vi = −1 + ai for each i.

Proof. Given ~u ∈ M , div x~u =
∑

i(~u · ~vi)Di. This operation extends linearly to

Q-divisors, so that for ~u ∈ M ⊗Z Q, div xn~u = n(
∑

i ciDi) if and only if ~u · ~vi = ci

for each i. Thus, KX + D is Q-Gorenstein if and only if for some ~w ∈ M ⊗ Q,

~w · ~vi = −1 + ai for each i.

3.4.2 Pairs Computation

Now we will compute the F -signature of pairs and triples. We begin with the pairs

case, in which our proof requires little modification from that of Theorem 3.2.3.

Definition 3.4.9. Let σ be a cone as in Remark 3.2.1, with primitive generators

~v1, . . . , ~vr. Let D =
∑

i aiDi be a torus-invariant Q-divisor on SpecR, with Di
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the prime divisor corresponding to ~vi. We define PD
σ ⊂ σ∨ to be the polytope

{~v ∈MR | ∀i, 0 ≤ ~v · ~vi < 1− ai}.

Theorem 3.4.10. Let R be the coordinate ring of an affine toric variety, with con-

ventions as in Remark 3.2.1. Let D be a torus-invariant Q-divisor, with associated

polytope PD
σ as in Definition 3.4.9. Then F e

∗ I
D
e is generated by the monomials in the

set (σ\PD
σ ) ∩ 1

pe
M , and s(R) = Volume(PD

σ ).

Proof. First, we apply Lemma 2.7.7 to replace (pe − 1)D by peD without changing

the F -signature. By the same lemma, s(R,D) is continuous as a function of the ai,

so we may assume that ai ∈ 1
pe
Z. (Proving the claim on that dense subset will prove

it for all divisors by continuity.) We also assume that e is sufficiently large, so that

peD is an integral divisor, and dpeDe = peD. As a result of all this simplification,

we may ignore the rounding-up operation.

By Lemma 3.4.2, R(peD) is an Nn-graded R-module, generated by {χ~v | ~v ∈ M ,

and ~v · ~vi ≥ −peai}. It follows that R(peD)1/pe is Nn/q-graded: it is generated by

{χ~v | ~v ∈ 1
pe
M , and ~v · ~vi ≥ −ai}.

Thus, we may apply Lemma 3.2.7. The graded module R(peD)1/pe decomposes as

a direct sum of graded submodules, where each submodule is generated by related

monomials. Each submodule splits off from R(peD)1/pe if and only if it is generated

by a single monomial; likewise, each submodule generated by monomials in R1/pe

splits off from R1/pe if and only if it is generated by a single monomial.

Set σ′ = {~v ∈ MR | ∀i, ~v · ~vi ≥ −ai}, so that if S ′ := M ∩ σ′, then χS
′

is the

set of generators for R(D). By Lemma 3.2.8, ae = #{~v ∈ 1
pe
S | ∀~k ∈ M\S,~v + ~k /∈

1
pe
S ′}. Note that F e

∗ I
D
e is generated by those monomials in R1/pe whose corresponding

characters are not in this set.

Following the proof of Theorem 3.2.3, we find that ae = #{~v ∈ 1
pe
S |∀~k ∈M\S,~v+
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~k /∈ 1
pe
S ′}. Equivalently, ae = #{~v ∈ σ∨ ∩ 1

pe
M | ∀~k ∈M\σ∨, ~v + ~k /∈ σ′}. That is,

ae = #{ 1

pe
M ∩ P ′},

where P ′ = {~v | ~v · ~vi ≥ 0, and ∀~k ∈ M\σ∨, (~v + ~k) · ~vi < −ai for some i}. (By

the same argument, F e
∗ Ie is generated by the monomials whose characters lie in

σ∨\P ′.) By Lemma 3.4.11 (the pairs analogue to Lemma 3.2.11), P ′ = PD
σ . Our

claim then follows from our lemma on volumes of polytopes, Lemma 3.2.12, just as

in our original proof of Theorem 3.2.3.

Lemma 3.4.11. Suppose that we are in the situation of Lemma 3.4.10, and that

P ′ = {~v |~v ·~vi ≥ 0, and ∀~k ∈M\σ∨, (~v+~k) ·~vi < −ai for some i}. Then P ′ = PD
σ =

{~v ∈MR | ∀i, 0 ≤ ~v · ~vi < 1− ai}.

Proof. We follow the proof of Lemma 3.2.11. Suppose that ~v ∈ PD
σ , ~k ∈ M , and

~k · ~vi < 0. Then (~v + ~k) · ~vi < (1 − ai) + (−1) = −ai, so ~v + ~k /∈ σ′. It follows that

PD
σ ⊂ P ′. On the other hand, suppose ~v /∈ PD

σ . Either ~v ·~vi < 0 for some i, in which

case ~v /∈ P ′, or ~v · ~vi ≥ 1 − ai for some i. In the latter case, we may, as in Lemma

3.2.11, choose ~k ∈M such that ~k · ~vi = −1 and ~k · ~vj ≥ 0 for all j 6= i. Then ~k /∈ σ∨,

but (~v + ~k) · ~vj ≥ −aj for all j. It follows that ~v /∈ P ′.

We conclude that P ′ = PD
σ .

3.4.3 Triples Computation

Definition 3.4.12. Let σ be a cone as in Remark 3.2.1 and D a torus-invariant

Q-divisor, with corresponding polytope PD
σ as in Definition 3.4.9. Let a ⊂ R be

a monomial ideal, and 0 ≤ t ∈ R. We define PD,at

σ to be the polytope (PD
σ − t ·

Newt(a)) ∩ σ∨.

Theorem 3.4.13. Let R be the coordinate ring of an affine toric variety, with con-

ventions as in Remark 3.2.1. Let D be a torus-invariant Q-divisor as in Definition
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3.4.9. Let a ⊂ R be a monomial ideal, with associated polytope PD,at

σ as in Definition

3.4.12. Then s(R,D, at) = Volume(PD,at

σ ).

Proof of Theorem 3.4.13. As in our proof of Lemma 3.4.10, we apply Lemma 2.7.7

to replace (pe − 1)D by peD, and to assume that ai ∈ 1
pe
Z. Likewise, we assume

that t ∈ 1
pe
Z, and we replace (pe − 1)t with pet, so that for sufficiently large e,

dpete = pet, and dpeDe = peD. We also replace ap
et with its integral closure apet,

which is generated by monomials in the set pet · Newt(a).

We will use the characterization of F -signature of triples given in Lemma 2.7.8.

Thus, we study (Iae )
1/pe = ((IDe )1/pe : (apet)1/pe). By Lemma 3.4.10, (IDe )1/pe is

generated by the monomials whose characters lie in (σ∨\PD
σ ) ∩ 1

pe
M . The set of

characters ~v with χ~v ∈ (atpe)1/pe is (t · Newt(a)) ∩ 1
pe
M . Thus, the monomials in

R1/pe\(Iae )1/pe are those χ~v, ~v ∈ 1
pe
M∩σ∨, such that for some ~w ∈ 1

pe
M∩t·Newt(a), ~v+

~w ∈ PD
σ . This set of characters can be written as a Minkowski sum, so that the size

aae of the set is:

aae = #(((PD
σ ∩

1

pe
M)− ((t · Newt(a)) ∩ 1

pe
M)) ∩ σ∨).

We obtain a slightly larger (but easier-to-count) set if we intersect with the lattice

1
pe
M only after taking the Minkowski sum. In particular, set

a′e := #((PD
σ − t · Newt(a)) ∩ σ∨ ∩ 1

pe
M).

Note that a′e = #(PD,at

σ ∩ 1
pe
M). Now, a′e may be larger than aae. However, we apply

Lemma 3.4.15 applied to the polytopes P = PD
σ and Q = −t · Newt(a) to conclude

that lime→∞
aae
ped

= lime→∞
a′e
ped

.

Thus, s(R,D, at) = lime→∞
a′e
ped

. We can apply Lemma 3.2.12 (with M = Zn,

P = PD,at

σ , and a′e = #(P ∩ 1
pe
M)) to conclude that the F -signature of triples is the

volume of the polytope PD,at

σ .
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All that remains is to prove Lemma 3.4.15, which implies that in the proof of

Theorem 3.4.13, the quantities aae and a′e are “close enough” that either one may

be used to compute F -signature. These two quantities are obtained similarly: to

compute aae, we start with the polytopes PD
σ and −t · Newt(a); intersect each with

the lattice 1
pe
M ; then take the Minkowski sum of these two sets. To compute a′e, we

take the Minkowski sum of the two polytopes, then intersect with the lattice 1
pe
M .

Our plan will be to approximate the polytopes in our problem as unions of small

cubes. To that end, we introduce some notation:

Notation 3.4.14. Let M be a lattice of rank n. Fix an isomorphism M ' Zn.

Every vector ~v ∈MR is contained in a cube of side length 1 whose vertices are those

lattice points obtained by rounding each of the coordinates v1, . . . , vn of ~v either up

or down. We will call this cube the M-unit cube containing ~v.

Lemma 3.4.15. Let M be a lattice. Let P and Q be polytopes in MR. Let Se be the

set of lattice points {((P+Q)∩ 1
pe
M)\((P∩ 1

pe
M)+(Q∩ 1

pe
M)}. Then lime→∞

#Se
ped

= 0.

Proof. Fix an isomorphism M ' Zn. For each e, let Pe ⊂ P be the union of all

1
pe
M -unit cubes which are entirely contained within P . Similarly, let Qe ⊂ Q be

the union of all 1
pe
M -unit cubes which are entirely contained within Q. By Lemma

3.4.16, (Pe + Qe) ∩M = (Pe ∩M) + (Qe ∩M). Thus, Se ⊂ (P + Q)\(Pe + Qe), so

#Se
ped

< Volume((P + Q)\(Pe + Qe)). It remains to the show that the limit of these

volumes is zero. But every interior point of P lies in some Pe, and likewise for Q

and Qe. Thus, every interior point of P +Q lies in some Pe +Qe. We conclude that

lime→∞Volume((P +Q)\(Pe +Qe)) = 0, and the claim is proved.

Lemma 3.4.16. Let M be a lattice of rank n. Fix a basis for M , so that without

loss of generality M ' Zn. Let each of A,B ⊂MR be a union of M-unit cubes. Then
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(A+B) ∩M = (A ∩M) + (B ∩M).

Proof. Say ~v ∈ (A + B) ∩M , so that ~v = ~a +~b with ~a ∈ A,~b ∈ B. Let ~a′ be the

vector obtained by rounding up the coordinates of ~a; let ~b′ be the vector obtained

by rounding down the coordinates of ~b. Since A and B are unions of M -unit cubes,

~a′ ∈ A and ~b′ ∈ B. Since ~a+~b ∈M , it is easily checked that ~a′+~b′ = ~a+~b ∈M .

3.4.4 Q-Gorenstein Triples

Finally, we prove Corollary 3.4.17, which gives a particularly nice characterization

of PD,at

σ when (R,D) is a Q-Gorenstein pair.

Corollary 3.4.17. Let R be the coordinate ring of an affine toric variety, D a Q-

divisor on SpecR, and a a monomial ideal, presented as in Theorem 3.4.13. Suppose

that the pair (R,D) is Q-Gorenstein. Then s(R,D, at) = Volume(PD
σ ∩ t ·Newt(a)).

Proof of Corollary 3.4.17. Since the pair (R,D) is Q-Gorenstein, for some ~w ∈M ⊗

Q, ~w ·~vi = 1−ai for each i. (Just let ~w be the negative of the vector given by Lemma

3.4.8.) Set φ to be the map ~u 7→ ~w − ~u. We claim that φ is a volume-preserving

bijection from PD,at

σ to (t · Newt(a)) ∩ PD
σ . The corollary will follow immediately.

Before we prove the claim, we first check that φ maps PD
σ to itself. Suppose

~z ∈ PD
σ . Then 0 ≤ ~z · ~vi, so (~w − ~z) · ~vi = (1 − ai) − (~z · ~vi) ≤ 1 − ai. Similarly,

0 ≤ (~w − ~z) · ~vi. We conclude that φ(~z) ∈ PD
σ .

Returning to our claim: the map φ is clearly linear, volume-preserving, and self-

inverse, so it suffices to show that φ(PD,at

σ ) = (t ·Newt(a))∩ PD
σ . Suppose ~u ∈ PD,at

σ .

In particular, ~u ∈ PD
σ , so (as we just showed) φ(~u) ∈ PD

σ .

Since ~u ∈ PD,at

σ , we may write ~u = ~x − ~y, with ~x ∈ PD
σ , ~y ∈ (t · Newt(a)) ∩ PD

σ .

Then ~w − ~u = ~y + (~w − ~x). Since (~w − ~x) · ~vi ≥ (1− ai)− (1− ai) = 0, we conclude

that ~w − ~x ∈ σ∨. Since t · Newt(a) is closed under addition by vectors in σ∨, we
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conclude that φ(~u) = ~y + (~w − ~x) ∈ t · Newt(a).

So far, we have shown that φ(PD,at

σ ) ⊂ PD
σ ∩ t · Newt(a). On the other hand,

suppose that ~y ∈ PD
σ ∩ t · Newt(a). We wish to show that ~w − ~y ∈ PD,at

σ . Since

~w ∈ PD
σ , ~w − ~y ∈ PD

σ − ((t · Newt(a)) ∩ PD
σ ). Moreover, since ~y ∈ PD

σ , we have that

φ(~y) ∈ PD
σ . We conclude that φ(~y) ∈ (PD

σ − ((t · Newt(a)) ∩ PD
σ )) ∩ PD

σ = PD,at

σ .

It follows that φ is a volume-preserving bijection. Thus,

s(R,D, at) = Volume(PD,at

σ ) = Volume(PD
σ ∩ t · Newt(a)),

as we desired to show.

3.5 The Case of Imperfect Residue Field

Thus far we have assumed that we are working over a perfect field. In fact, F -

signature may be defined over an field which is imperfect but still F -finite, and our

F -signature computations generalize to that setting.

Let R be a ring, either local or graded, as in Remark 2.1.1, but over a possibly

imperfect field k. Set d = dimR, and α = logp[k
p : k] <∞.

Definition 3.5.1. For each e ∈ N, let ae be the free rank of R1/pe as an R-module.

We define the F -signature of R to be the limit

s(R) = lim
e→∞

ae
pe(d+α)

.

Our definition of the F -signature of an R-module generalizes similarly.

Remark 3.5.2. ([Tuc11], Prop 4.5) As in Remark 2.1.9, define Ie ⊂ R to be the ideal

Ie = {r ∈ R | ∀φ ∈ HomR(R1/pe , R), φ(r1/pe) ∈ m}.

Then ae = l(F e
∗ (R/Ie)), so

s(R) = lim
e→∞

l(F e
∗ (R/Ie))

pe(d+α)
.
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Since l(F e
∗M) = [kp : k]el(M), we arrive at the following definition of F -signature,

which does not depend on α:

s(R) = lim
e→∞

l(R/Ie)

ped
.

Remark 3.5.3. We wish to extend Theorem 3.2.3 to the case of an imperfect (but still

F -finite) residue field. One can show using [Yao06] (Remark 2.3) that F -signature

is in a precise sense residue field independent. We give an less general but more

concrete argument. Suppose k is not perfect. The arguments of Theorem 3.2.3 still

compute the asymptotic growth rate of the number of splittings of k[ 1
pe
S]:

lim
e→∞

free rank(k[ 1
pe
S])

ped
= Volume(Pσ).

But for imperfect k, R1/pe = k1/pe [ 1
pe
S] ' k1/pe ⊗k k[ 1

pe
S]. In particular, R1/pe is a

free k[ 1
pe
S]-module of rank [k1/pe : k] = peα. It follows that the free rank of R1/pe

is peα times the free rank of k[ 1
pe
S]. Thus, by Definition 2.1.4, as well as the above

formula, we see immediately that s(R) = Volume(Pσ).

This approach generalizes to the case of pairs and triples. In the pairs case, let

ΣD
e denote the set of monomials in R(peD)1/pe . Regardless of whether k is perfect,

the arguments of Theorem 3.4.10 still compute the asymptotic growth rate of the

number of splittings of k[ΣD
e ] that also split from k[ 1

pe
S] to be Volume(PD

σ ). However,

R(peD)1/pe ' k1/pe⊗k k[ΣD
e ], so the number of splittings of R(peD)1/pe that also split

from R1/pe is pe(d+α) · Volume(PD
σ ), and s(R,D) = Volume(PD

σ ), as we desired to

show.

In the triples case, let ΣD,a
e denote the set of monomials in ((IDe )1/pe : (apet)1/pe).

Regardless of whether k is perfect, the arguments of Theorem 3.4.13 still compute

the asymptotic growth rate of k[ 1
pe
S]/(ΣD,a

e ) to be Volume(PD,at

σ ). Now consider

Lemma 2.7.8. We see that F e
∗R/((I

D
e )1/pe : (apet)1/pe) ' k1/pe ⊗k k[ 1

pe
S]/(ΣD,a

e ).
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Thus, aae = pe(d+α) ·Volume(PD,at

σ ), and s(R,D, a) = Volume(PD,at

σ ), as we desired to

show.



CHAPTER IV

An Interpretation of F -Signature for Projective Varieties

In this chapter, we propose a definition for the F -signature of a Q-divisor on a

projective variety:

Definition 4.1.4. Let X be a normal projective variety over a field k of posi-

tive characteristic. Let D be a Q-divisor on X, and suppose that Sec(X,D) =⊕
n Γ(X,OX(nD)) is a finitely generated k-algebra of dimension at least two. Choose

c ∈ N≥0 sufficiently divisible so that Sec(X, cD) is a normal section ring. We define

the F -signature s(X,D) to be c · s(X, cD).

We will show that this F -signature is a well-defined function on the set of Q-

divisors of X with finitely generated section rings, which is invariant under Q-linear

equivalence (Theorem 4.1.3).

Using Theorem 3.2.3, we will give a formula for the F -signature of a Q-divisor

on a projective toric variety (Corollary 4.4.5). As a consequence of this formula, we

show:

Corollary 4.4.6. Let X be a projective toric variety over a field k of positive char-

acteristic. Then the F -signature function D 7→ s(X,D) is a continuous, piecewise

rational function of degree −1 on the set of big Q-divisors of X.

57
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We illustrate our formula by computing several examples; this includes a complete

description of the F -signature function on the class group of P1 × P1 (Proposition

4.4.10).

4.1 The F -Signature of a Projective Variety

The F -signature may be used to construct a function on a subset of the divisor

class group of a projective variety. We begin by proposing the following definition:

Definition 4.1.1. Let X be a normal projective variety and D an ample Cartier

divisor onX. We define the F -signature ofD, denoted s(X,D), to be the F -signature

of the section ring Sec(X,D) =
⊕

n Γ(X,OX(nD)).

Remark 4.1.2. We will shortly generalize this definition to apply to Q-divisors on X.

We could set s(X,D) = s(Sec(X,D)) for all (not necessarily ample Cartier) divisors

D. However, we will see shortly that a slightly modified function has more desirable

properties.

In any case, we suspect that the F -signature s(Sec(X,D)) may be of greatest

interest when D is ample, as in that case s(X,D) contains information about the

geometry of projective embeddings of X.

A natural question is: how does the F -signature behave as the divisor D varies?

We have already shown in Theorem 2.6.2 that when R is a normal section ring

(of dimension at least two), the F -signature of R scales predictably when we take

Veronese subrings: s(R(n)) = 1
n
s(R). Thus we obtain the following theorem, which

will allow us to generalize Definition 4.1.1:

Theorem 4.1.3. Let X be a normal projective variety over a field k of positive char-

acteristic. Let D be a Q-divisor on X; that is, D is a formal Q-linear combination of

prime Weil divisors on X. Suppose that Sec(X,D) is a finitely generated k-algebra
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of dimension at least two. Choose c, c′ sufficiently divisible so that Sec(X, cD) is a

normal section ring in the sense of Definition 2.5.3. Then c·s(X, cD) = c′ ·s(X, c′D).

Proof. Since Sec(X,D) is finitely generated, so is the Veronese subring Sec(X, cD)

for each c ∈ N. By Proposition 2.5.6, for any c such that cD is an integral Weil

divisor, Sec(X, cD) is normal. Moreover, since Sec(X, cD) is finitely generated,

by Lemma 2.5.10, there exists c such that Sec(X, cD) is a section ring. Sup-

pose that cD, c′D both satisfy the conditions given above. We wish to check that

c ·s(X, cD) = c′ ·s(X, c′D), so that our definition is choice-independent. By Theorem

2.6.2, 1
c′
s(Sec(X, cD)) = 1

c
s(Sec(X, c′D)) = s(Sec(X, cc′D)). Multiplying by cc′, we

obtain the desired equality.

As an immediate consequence, we obtain the following generalization of Definition

4.1.1:

Definition 4.1.4. Let X be a normal projective variety over a field k of positive

characteristic. Let D be a Q-divisor on X, and suppose that Sec(X,D) is a finitely

generated k-algebra of dimension at least two. Choose c ∈ N≥0 sufficiently divisible

so that Sec(X, cD) is a normal section ring in the sense of Definition 2.5.3. We define

the F -signature s(X,D) to be c · s(X, cD).

Remark 4.1.5. The function D 7→ s(X,D) is clearly invariant under linear equiva-

lence of integral Weil divisors, since linearly equivalent divisors have isomorphic sec-

tion rings. By construction, it is also invariant under Q-linear equivalence. Indeed,

suppose that D and D′ are linearly equivalent Q-divisors, so that for some a ∈ N, aD

and aD′ are linearly equivalent integral Weil divisors. Then for sufficiently divisible

c,

s(X, acD) = s(Sec(X, acD)) = s(Sec(X, acD′)) = s(X, acD′).
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Thus, s(X,D) = 1
ac
s(X, acD) = s(X,D′).

Remark 4.1.6. When Sec(X,D) is not a section ring, Definition 4.1.4 does not nec-

essarily define the F -signature s(X,D) as being equal to s(Sec(X,D)). Thus, under

this definition, we might have s(X,D) 6= s(Sec(X,D)). We will have to take this fail-

ure of equality into account in Section 4.4 when we compute the F -signature function

on projective toric varieties. It is the price that we pay for extending our F -signature

function to Q-divisors. Of course, whenever D is an ample Cartier divisor, the two

notions of F -signature agree.

Remark 4.1.7. We are not missing much by restricting to the dimension ≥ 2 case:

when dim Sec(X,D) = 1, Sec(X,D) is isomorphic to a polynomial ring in one vari-

able, and s(Sec(X,D)) = 1.

Remark 4.1.8. Recall that a Cartier divisor D is semiample if some integer multiple

is basepoint-free. If D is a semiample Cartier divisor on a projective variety X, its

generalized section ring is finitely generated ([Laz04], 2.1.30). Theorem 4.1.3 demon-

strates that we may view the F -signature as a function on the cone of semiample

Q-Cartier divisors on X, or more generally on the set of Q-divisors on X with finitely

generated generalized section rings.

There are as yet many questions still to be answered regarding the function

D 7→ s(X,D). Motivated by the promise of the volume situation described in the

introduction, we ask:

Question 4.1.9. What can be said about the F -signature function on the set of Q-

divisors on X with finitely generated section rings? Is this function continuous, so

that it extends to a function defined on a subset of the space of R-divisors on X?

Is it invariant under numerical equivalence—that is, does F -signature, like volume,
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induce a function on the Neron-Severi space of X?

Remark 4.1.10. Given a projective variety X over a field of positive characteristic,

it seems reasonable that we might be especially interested in the behavior of the F -

signature function on the ample cone of X. In fact, if the F -signature of any ample

divisor on X is nonzero, then X is globally F -regular, hence has log Fano singularities

([SS10]. Thm 1.1). Recall that a variety X is Q-factorial if every Weil divisor on

X is Q-Cartier. In characteristic zero, is is known that every Q-factorial log Fano

projective variety is a so-called Mori Dream Space ([BCHM10]). Mori Dream Spaces

have many good properties; in particular, the generalized section ring of any divisor

on a Mori Dream Space is finitely generated. (For an introduction to Mori Dream

Spaces, see [McK10] or [LV09].)

The question of whether globally F -regular varieties are Mori Dream Spaces is

open in positive characteristic. Still, we observe:

Proposition 4.1.11 ([SS10], Theorem 1.1; [BCHM10], Corollary 1.3.1). Let X be a

globally F -regular Mori Dream Space over a field k of positive characteristic. Then

the generalized section ring of any divisor on X is a finitely generated k-algebra.

Consequently, the F -signature function given in Definition 4.1.4 is a well-defined

function on the cone of effective Q-divisors on X.

4.2 Projective Toric Varieties

Here we present enough background on projective toric varieties to compute the

F -signature of a divisor on a projective toric variety. As in §3.1, almost all of the

notation is standard as in [Ful93], which the reader may consult for further details.

Definition 4.2.1. A fan Σ is a finite set of (strongly convex rational polyhedral)

cones such that if σ, τ ∈ Σ then σ ∩ τ is a face of each of σ and τ ; and if σ ∈ Σ, then
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all faces of σ are cones in Σ.

As before, let N be a free abelian group of rank n. Its dual lattice M = N∗ will be

the character lattice of our (not necessarily affine) toric variety X. In what follows,

let Σ ⊂ NR be a fan.

The intersection of any two cones σ, σ′ ∈ Σ is a cone τ = σ ∩ σ′ ∈ Σ, which is

itself a face of both σ and σ′. Moreover, it may be shown that faces of a cone σ

correspond to open affine subsets of Xσ. In particular:

Lemma 4.2.2 ([Ful93],§1.3). Let τ ⊂ σ ⊂ NR be (strongly convex, rational poly-

hedral) cones such that τ is a face of σ. Then the inclusion of τ into σ induces

an inclusion of Xτ into Xσ as an open affine subset. These inclusions induce an

order-preserving bijection between faces of σ and torus-invariant open affine subsets

of Xσ.

As a consequence, the fan Σ provides gluing data for a abstract toric variety.

Definition 4.2.3. Let N be an n-dimensional lattice, M = N∗. Let Σ be a fan of

cones in NR. Then we denote by XΣ the n-dimensional toric variety obtained by

gluing together the affine toric varieties {Xσ : σ ∈ Σ} in the manner suggested by

Lemma 4.2.2. That is, open affine sets Xσ, X
′
σ are glued along the open affine subsets

Xσ∩σ′ .

The fan of a toric variety encodes global data about the variety. For example, let

Σ be a fan in NR. Then the toric variety XΣ is complete if and only if every point

of NR lies in a cone of Σ. We call such a fan complete. In particular, the fan of a

projective toric variety is complete ([Ful93], §2.4).

As in the affine case, the torus-invariant prime Weil divisors of XΣ are in one-to-

one correspondence with the rays ρi of Σ, or equivalently with the primitive gener-
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ators ~vi of these rays. Given a torus-invariant divisor D on XΣ, we may compute

sections of the sheaf OX(D) on any toric affine open subset of X using Lemma

3.4.2. From these computations, it is not difficult to determine the global sections of

OX(D):

Lemma 4.2.4. [[Ful93], §3.4] Let Σ ⊂ NR be a fan with primitive generators ~vi.

Let D = ΣiaiDi be a torus-invariant Weil divisor on XΣ. Then Γ(X,OX(D)) is

generated by the monomials {x~u ∈M | ~u · ~vi ≥ −ai}.

When Σ is complete, it may be shown that the set {x~u ∈ MR | ~u · ~vi ≥ −ai} is a

polytope in MR. Lemma 4.2.4 motivates the following definition:

Definition 4.2.5. Let Σ ⊂ NR be a complete fan with primitive generators ~vi. Let

D = ΣiaiDi be a torus-invariant divisor on XΣ. We define the polytope associated to

the divisor D, denoted PD ⊂MR, to be the polytope {~u ∈MR | ~u · ~vi ≥ −ai}. Thus,

Γ(X,OX(D)) is generated by monomials χ~u such that ~u ∈ PD ∩M .

Remark 4.2.6. Note that PD may not be a lattice polytope; that is, its vertices may

not lie in the lattice M . Any polytope PD corresponding to a globally generated

Cartier divisor is a lattice polytope ([CLS11], Theorem 6.1.7). In any case, since

the vertices of PD are certainly M -rational, it is clear that kPD = PkD is a lattice

polytope for sufficently divisible k ∈ N.

Notation 4.2.7. The polytope PD may not be full-dimensional. In general, assuming

without loss of generality that PD contains the origin, it spans a vector subspace PD·R

of MR. We denote by MD the lattice M ∩ (PD ·R). Equivalently, for sufficiently large

k ∈ N, MD is the lattice spanned by M ∩ kPD. We denote by ND the lattice M∗
D

dual to MD. Of course, if PD is full-dimensional, then ND = N and MD = M .

Remark 4.2.8. The split inclusion of lattices MD ↪→ M induces a surjective lattice
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homomorphism N � ND. That is, elements of N pair naturally with elements of

MD.

Lemma 4.2.4 allows us to easily compute the generalized section ring of a torus-

invariant divisor:

Definition 4.2.9. Let V be an R-vector space and U ⊂ V any set. The cone over

U is the set {t~v | ~v ∈ U, 0 ≤ t ∈ R}.

Lemma 4.2.10. Let N be a lattice of rank n. Let Σ ⊂ NR be a complete fan with

primitive generators ~vi. Let D = ΣiaiDi be a torus-invariant effective divisor on XΣ.

Then the generalized section ring Sec(X,D) is the coordinate ring of the affine toric

variety Xσ, where σ∨ is the cone over PD×{1} lying in the (dimPD+1)-dimensional

space (MD × Z)R. This cone is

σ∨ = {(~v, t) | (~v, t) · (~vi, ai) ≥ 0}.

Proof. The cone σ∨ over PD × {1} is easily seen to be {(~v, t) | ~v · ~vi ≥ −tai, t ≥ 0},

which we may rewrite as {(~v, t) | (~v, t) · (~vi, ai) ≥ 0, t ≥ 0}.

The degree k part of Sec(X,D) is Γ(X,OX(kD)), which is generated by the

monomials χ~u with exponents such that ~u ∈ kPD ∩ M = kPD ∩ MD. These are

precisely those exponents (~u, k) ∈ σ∨ ∩ (MD ×Z) such that t = k. We conclude that

Sec(X,D) = k[σ∨ ∩MD].

All that remains to be proven is our characterization of σ∨. In particular, we show

that the inequality t ≥ 0 is superfluous in defining σ∨. Since ai ≥ 0 for all i, for fixed

t < 0, the set {~v |~v ·~vi ≥ −tai} is contained in the set {~v |~v ·~vi ≥ 0}, which is equal to

{~0}. To see this, note that for fixed nonzero ~v, each inequality ~v · ~vi ≥ 0 determines

that ~vi must lie in a particular half-space in NR. However, since Σ is complete, the

vectors ~vi are not confined to any half-space. We conclude that ~v must equal ~0.
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It follows that σ∨ = {(~v, t) | (~v, t) · (~vi, ai) ≥ 0}, as we desired to show.

Now that we have characterized σ∨, we characterize the cone σ in terms of the

fan Σ and the divisor D = ΣiaiDi.

Lemma 4.2.11. Let σ ⊂ ND×Z be the cone described in Lemma 4.2.10, so that Xσ is

the affine toric variety with coordinate ring Sec(X,D). If PD is full-dimensional, then

the primitive generators for σ are those (~vj, aj) such that the hyperplane {~u | ~u ·~vj =

−aj} determines a facet of PD. If PD is not full-dimensional, primitive rays for σ

are generated by the images, under the projection N → ND, of those same (~vj, aj).

Proof. The primitive generators of σ correspond to normal vectors of facets of σ∨

([Ful93], 1.2.10). By Lemma 4.2.10, σ∨ = {(~v, t) | (~v, t) · (~vi, ai) ≥ 0}. Each facet of

σ∨ corresponds to an inequality from this list which actually determines a half-space

bounding σ∨ ⊂ (MD)R along a facet. For fixed j, a half-space Hj = {(~v, t) | (~v, t) ·

(~vj, aj) ≥ 0} bounds σ∨ along a facet precisely when Hj∩{t = 1} bounds σ∨∩{t = 1}

along a facet. This occurs precisely when {~v ∈ PD | ~v · ~vj ≥ −aj} is a facet of PD.

The claim follows.

4.3 Polytope Volumes are Piecewise Rational Functions of Facet Data

Consider a polytope in Rn cut out by linear inequalities of the form ~v · ~vi ≥ ci.

The volume of this polytope is clearly a continuous function of the parameters ~vi, ci.

In preparation for Corollary 4.4.6, on the rationality of the F -signature function of

a projective toric variety, we will show that the volume of such a polytope is in fact

a piecewise rational function of these parameters.

Definition 4.3.1. Let P ⊂ Rn be a polytope. A triangulation T of P is a finite set

of n-simplices with pairwise disjoint interiors whose union is P . The vertices of T

are the vertices of simplices in T .
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Definition 4.3.2. Let P, P ′ ⊂ Rn be polytopes.We say that P, P ′ are combinatorially

equivalent if there is an inclusion-preserving bijection between the faces of P and

those of P ′.

Remark 4.3.3. Let X be a set, and let {P (x) | x ∈ X} be a family of polytopes in

Rn which are combinatorially equivalent. Suppose that we fix x0 ∈ X as well as a

face F (x0) ∈ P (x0). This face, along with the combinatorial equivalence, determines

a unique face F (x) for each x ∈ X. In this way, we may refer to a face F (x) of the

family, by which we mean a choice of equivalent faces, one for each x ∈ X.

Intuitively, two polytopes are combinatorially equivalent if they are “the same

shape.” For a more careful (if slightly more technical) development of this notion of

combinatorial equivalence, see [KR12].

Proposition 4.3.4. Let X ⊂ (Rn+1)r be the space of size-r families of linear in-

equalities in Rn whose solution set is a polytope. In particular, given ~v1, . . . , ~vr ∈ Rn

and c1, . . . , cr ∈ R, set x = ((~v1, c1), . . . , (~vr, cr)), corresponding to the system of lin-

ear inequalities ~v · ~vi ≥ ci, 1 ≤ i ≤ r. Then x ∈ X if these linear inequalities define

a bounded polytope, in which case we denote that polytope by P (x). Let V : X → R

be the function V (x) = Volume(P (x)). Then V is a continuous, piecewise rational

function on X, in the sense that X is a finite union of cells such that on each cell,

V restricts to a quotient of polynomial functions with coefficients in Q.

Proof. Continuity is obvious; it remains to check piecewise rationality. Given x, x′ ∈

X, there is a natural correspondence between the linear equations defining P (x) and

those defining P (x′), given by (~vi, ci) 7→ (~v′i, c
′
i). Fix a cell U ⊂ X on which, with

respect to this correspondence, the polytopes {P (x) | x ∈ U} are combinatorially

equivalent. Note that there are only finitely many such cells.
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Let ~u(x) be a vertex of P (x). Then for some i1, . . . , in ∈ {1, . . . , r}, ~u(x) is the

intersection of the i1st,. . . , inth facets of P (x). We claim that the coordinates of

~u(x) are rational functions of x with coefficients in Q. In particular, if M(x) is the

invertible matrix whose jth row is ~vij(x), then ~u = M−1〈c1, . . . , cr〉. By Cramer’s

rule, the entries of M−1 are rational functions of the entries of M . It follows that

the entries of ~u are rational functions of x.

Next, we triangulate each P (x) simultaneously, according to the method in Lemma

4.3.5 below. Let S be the set of simplices in our triangulation. Then V (x) =∑
S(x)∈S Volume(S(x)). By Lemma 4.3.6, for each S ∈ S, Volume(S(x)) is a polyno-

mial function with coefficients in Q of the vertices ~u0(x), . . . , ~un(x) of S. By Lemma

4.3.5, the vertices of S are themselves rational functions of x, so V (x) is a rational

function of x, with coefficients in Q.

Lemma 4.3.5 (cf. [Grü03], Theorem 6.2.4). Let X be a set, and let {P (x) | x ∈ X}

be a family of polytopes in Rn which are combinatorially equivalent. Then we may

triangulate each P (x) simultaneously, as a finite union of simplices {Si(x) | i ∈ I},

compatibly with the combinatorial equivalence on P (x). Moreover, for each i, the

vertices of Si(x) are each given by a linear function in the vertices of P (x), with

coefficients in Q.

Proof. Let ~v1(x), . . . , ~vl(x) be the vertices of P (x). We will inductively triangulate

each of the d-dimensional faces of P (x). When d = 0, the zero-dimensional faces

of P (x) are the points ~v1(x), . . . , ~vl(x); triangulating these zero-dimensional faces is

trivial. Suppose we have triangulated the (d−1)-dimensional faces of P (x), and let F

be a d-dimensional face with k vertices. Set p(x) =
∑

~vi(x)∈F (x)
1
k
~vi(x). (The precise

coefficients 1
k

are not important, merely the fact that all coefficients are nonzero

and lie in Q.) Then p(x) is in the relative interior of F (x); that is, it does not lie
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on a proper face of F (x). Let G(x) be any proper face of F (x); by our inductive

hypothesis, we have already triangulated G(x) as a union of simplices. For each

such simplex SGi (x) ⊂ G(x), let SG,pi (x) be the convex hull of SGi (x) with p(x). It

is easily checked that the simplices SG,pi (x) together form a triangulation of F , as

desired. Moreover, by construction, each vertex of each simplex is a linear function

of ~v1(x), . . . , ~vl(x) with coefficients in Q.

Lemma 4.3.6. Let ~u0, . . . , ~un ∈ Rn be the vertices of an n-simplex S. Then the

volume of S is a polynomial function of the coordinates of ~u0, . . . , ~un, with coefficients

in Q.

Proof. We leave it to the reader to check (say, by basic multivariable calculus) that

Volume(S) is equal to 1
n!

times the determinant of the matrix whose ith row is

~ui − ~u0.

4.4 The F -Signature Function of a Projective Toric Variety

4.4.1 A Projective Toric F -Signature Formula

Armed with Theorem 3.2.3 and Lemma 4.2.11, we may easily compute the F -

signature function on a projective toric variety.

Remark 4.4.1. (Conventions.) For the remainder of this section, N is a lattice of

dimension d; M = N∗ is the dual lattice; and Σ ⊂ NR is the fan associated to the

d-dimensional projective toric variety X = XΣ, with primitive generators ~v1, . . . , ~vr.

Remark 4.4.2. Let D =
∑

i aiDi be a Q-divisor on XΣ. As we have previously dis-

cussed, each primitive generator ~vi of Σ, along with the coefficient ai ∈ Q, determines

a linear equation of the form ~u ·~vi = −ai which determines a hyperplane in NR. The

facets of PD are determined by these hyperplanes; however, not all hyperplanes de-

termine facets. They may intersect PD in a lower-dimensional face, or not at all.
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We will need to pay attention to this technicality when we compute our F -signature

formula.

Definition 4.4.3. Let Σ be a fan as in Remark 3.2.1. Let D =
∑

i aiDi be a torus-

invariant Q-divisor on X. Let MD ⊂M be as defined in §4.2. We define PΣ,D to be

the polytope {(~v, t) ∈ ((MD) × Z)R | ∀i such that the hyperplane {~u | ~u · ~vi = −ai}

determines a facet of PD, we have 0 ≤ (~v, t) · (~vi, ai) < 1}.

We begin by computing the F -signature s(Sec(X,D)) of the section ring of a

torus-invariant divisor on a projective toric variety.

Theorem 4.4.4. Let Σ be the fan of a projective toric variety X = XΣ of dimension

d over a field k of positive characteristic. Let ~v1, . . . , ~vr be the primitive generators

of Σ. Let D = Σr
i=1aiDi be an effective torus-invariant Weil divisor on XΣ. Let

PD ⊂MR be the polytope corresponding to D. Suppose that PD is a full-dimensional

lattice polytope. Then s(Sec(X,D)) = Volume(PΣ,D).

Proof. Let I = {i ∈ N | the hyperplane {~u | ~u · ~vi = −ai} determines a facet of PD}.

By Lemma 4.2.11, Sec(X,D) = k[σ∨ ∩M ], where σ ⊂ (N × Z)∗R has rays which are

generated by the vectors {(~vi, ai) | i ∈ I}. Note that since ~vi is N -primitive, (~vi, ai)

is an (N ×Z)-primitive generator for the ray on which it lies. Since σ∨ ⊂ (M ×Z)R

is full-dimensional, σ is strongly convex. Thus, we may apply Theorem 3.2.3. We

conclude that s(Sec(X,D)) = Volume(Pσ) = Volume(PΣ,D).

Recall that by our definition, s(X,D) need not equal s(Sec(X,D)) if Sec(X,D)

is not a section ring. However:

Corollary 4.4.5. Let Σ be a the fan of a projective toric variety X = XΣ of dimen-

sion d over a field k of positive characteristic. Let D be any torus-invariant Q-divisor
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on X such that PD is full-dimensional (equivalently, D is big). Let s(X,D) be de-

fined as in Definition 4.1.4. Let PΣ,D be defined as in the statement of Theorem

4.4.4. Then

s(X,D) = Volume(PΣ,D).

Proof. Fix D =
∑

i aiDi. For sufficiently divisible n ∈ N, Sec(X,nD) is a section

ring, by Lemma 2.5.10, and PD is a lattice polytope, by Remark 4.2.6. In that

case, s(X,nD) = Volume(PΣ,nD). By our definition, for any Q-divisor D, s(X,D) =

n · s(X,nD). It remains to show that Volume(PΣ,D) = n · Volume(PΣ,nD).

Let I = {i ∈ N | the hyperplane {~u |~u ·~vi = −ai} determines a facet of PD}. Then

PΣ,D = {(~v, t) ∈ ((MD)× Z)R | ∀i ∈ I, 0 ≤ (~v, t) · (~vi, ai) < 1},

and

PΣ,nD = {(~v, t) ∈ ((MD)× Z)R | ∀i ∈ I, 0 ≤ (~v, t) · (~vi, n · ai) < 1}.

Observe that the linear transformation (~v, t) 7→ (~v, nt) transforms PΣ,nD into PΣ,D.

It follows that

Volume(PΣ,D) = n · Volume(PΣ,nD),

as we desired to show.

Recall that a Q-divisor on a variety X of dimension d is big if its generalized

section ring has dimension d+ 1. It is easy to see in the toric case that a big divisor

D is one such that PD is full-dimensional, and the set of big Q-divisors of X is the

interior of the set of effective Q-divisors on X.

Corollary 4.4.6. Let Σ be the fan of a projective toric variety X = XΣ of dimen-

sion d ≥ 2 over a field k of positive characteristic. Let ~v1, . . . , ~vr be the primitive

generators of Σ. Then the F -signature function 〈a1, . . . , ar〉 7→ s(X,
∑

i aiDi) is a
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continuous, piecewise rational function, of degree −1, with coefficients in Q, on the

set of big Q-divisors of X.

Proof. We apply Proposition 4.3.4 to the polytope

PΣ,D = {(~v, t) ∈ Ad+1
R | (~v, t) · (~vi, ai) ≥ 0, (~v, t) · (−~vi,−ai) ≥ −1},

concluding that Volume(PΣ,D) is a continuous, piecewise rational function of the ai,

with coefficients in Q.

Over an infinite field k, it is easily checked that the homogeneous rational functions

of degree d on An
k are characterized by the property that for each c ∈ k, f(cx) =

cdf(x). In our case, s(X,
∑

i(nai)Di) = 1
n
s(X,

∑
i aiDi) for each n ∈ Z, hence the

same holds for each c ∈ Q. We conclude that D 7→ s(X,D) is homogeneous of degree

-1.

If PD is not full-dimensional, it is possible that for some vertex ~vi of PD, the

projection of (~vi, ai) to ND may not be primitive. In that case, the formula of

Corollary 4.4.5 need not compute s(Sec(X,D)). The formula is easily corrected,

however:

Corollary 4.4.7. Suppose that we are in the situation of Theorem 4.4.4, except that

PD is not necessarily a full-dimensional lattice polytope. For each i, let ci ∈ Q be

such that ci times the projection of ~vi ∈ N to ND is a primitive generator for its

ray. Let P ′Σ,D be the polytope {(~v, t) ∈ ((MD) × Z)R | ∀i such that the hyperplane

{~u | ~u · ~vi = −ai} ⊂ (MD)R determines a facet of PD, 0 ≤ (~v, t) · ci(~vi, ai) < 1}. Then

s(X,D) = VolumeMD
(P ′Σ,D).

Proof. The argument here is identical to the proof of Theorem 4.4.4 and Corollary

4.4.5, except that we first rescale the vectors (~vi, ai) by ci. When the divisor D
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is sufficiently divisible, the vectors ci · (~vi, ai) are primitive generators for σ, and

we conclude that s(X,D) = s(Sec(X,D)) = Volume(PΣ,D)′. As in Corollary 4.4.5,

once we have proved that the formula holds for sufficiently divisible divisors D, it

immediately generalizes to hold for all divisors.

4.4.2 Example F -Signature Computations

Now we consider a few examples which illustrate the subtleties arising in our toric

F -signature formulas.

Example 4.4.8 (The blowup of P2 at a point). Let X be the blowup of the toric

variety P2 at a torus-fixed point. The fan of X has four primitive generators ~v1, . . . , ~v4

(Figure 4.1(a)). Set D = D3. Then PD is a simplex with height and width 1 (Figure

4.1(b)). From the figure, we easily compute the set I = {i ∈ N | the hyperplane

{~u | ~u · ~vi = −ai} determines a facet of PD}. Notice that the primitive generator

~v4 gives rise to the equation ~v · 〈1, 1〉 ≥ 0, which does not determine a facet of PD.

Thus, I = {1, 2, 3}.

(a) The fan Σ ⊂ NR of the blowup of P2 at a point. (b) The polytope PD3 ⊂MR.

Figure 4.1: The blowup of P2 at a torus-fixed point.
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It follows from Theorem 4.4.4 that s(X,D) is the volume of the polytope

Pσ = {(x, y, t) ∈ R3 | 0 ≤ (x, y, t) · (~vi, ai) < 1, 1 ≤ i ≤ 3}

= {(x, y, t) ∈ R3 | 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ −x− y + t < 1}.

We leave it to the reader to check that the volume of this polytope is equal to 1.

This is not surprising, as the divisor D3 gives rise to the blowup map X → P2.

The generalized section ring of D3 is the polynomial ring k[x, y, z] in three variables,

which has F -signature equal to 1.

This example illustrates the necessity, in defining PΣ,D, of keeping track of the set

I of primitive generators which actually determine facets of PD. The equation that

we omitted when defining PΣ,D, corresponding to i = 4, was 0 ≤ x + y ≤ 1. Note

that had we (incorrectly) included this equation when applying Theorem 4.4.4, the

resulting polytope would have been strictly smaller than PΣ,D, and in computing its

volume we would have obtained the incorrect F -signature.

Example 4.4.9 (The F -signature of a non-full-dimensional polytope). Let Σ ⊂ R2 be

the fan given in Figure 4.2(a). The fan Σ has four primitive generators ~v1, . . . , ~v4, cor-

responding to torus-invariant divisors D1, . . . , D4. We will compute the F -signature

of the divisor D4 on XΣ. It is easily checked that PD4 is the line segment {(x, y) |y =

0,−1
2
≤ x ≤ 0} (Figure 4.2(b)).

We adopt the notation of Corollary 4.4.7. The primitive generators ~v1 and ~v2 do

not determine facets of PD4 , but the vectors ~v3 and ~v4 do. Note that MD ⊂ M is

the one-dimensional sublattice Z× {0}, with basis {〈1, 0〉}. Let π : N � ND be the

natural projection map, so that a dual basis for ND is {π(〈1, 0〉)}.

Since ~v3 ·〈1, 0〉 = −1, we see that π(~v3) generates ND, hence π(~v3) is ND-primitive,

and c3 = 1. On the other hand, ~v4 · 〈1, 0〉 = 2. Consequently, π(~v4) is not primitive,
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(a) The fan Σ ⊂ NR. (b) The polytope PD4 ⊂ MR is the line segment

{(x, y) | y = 0,− 1
2
≤ x ≤ 0}.

Figure 4.2: The F -signature of a polytope which is not full-dimensional.

and c4 = 1
2
. We leave it to the reader to check that Volume(PΣ,D4) = 1, while

Volume(P ′Σ,D4
) = 2. Thus, s(X,D4) = 2.

We conclude that the F -signature s(X,D) of an integral Weil divisor need not lie

between 0 and 1. Moreover, the F -signature of a projective toric variety need not

be a continuous function on its domain. In our case, for big divisors D approaching

D4, s(X,D) approaches Volume(PΣ,D4) = 1, while s(X,D4) = 2.

Example 4.4.10 (The F -signature function on P1 × P1). Now we compute a more

complicated example. Consider the projective toric variety X = P1×P1. Then H =

P1×{pt} and H ′ = {pt}×P1 are divisors on X which generate the class group of X.

Denote by OX(a, b) the invertible sheaf OX(aH + bH ′). To compute the F -signature

function on the class group of X, it suffices to compute s(aH+bH ′) = s(X,OX(a, b))

for a, b ∈ N.
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Proposition 4.4.11. Let X = P1 × P1. Fix 0 < a ≤ b ∈ N. Then

s(X,OX(a, b)) =


a
b2

b ≥ 2a

4
b

+ b
3a2
− 5a

3b2
− 2

a
a ≤ b ≤ 2a

Moreover, for 0 < b ∈ N, s(X,OX(0, b)) = 1
b
.

Proof. It is easily checked that Sec(X,OX(0, 1)) ' k[x, y] is the coordinate ring of P1,

which has F -signature equal to 1. Thus, for b 6= 0, Sec(X,OX(0, b)) = 1
b

by Theorem

2.6.2. It remains to compute the F -signature when a and b are both positive.

The fan Σ of P1 × P1 has four primitive generators ~v1, . . . , ~v4 (Figure 4.3(a)). Set

D = aD3 + bD4, so that OX(D) ' OX(a, b). Then PD is a rectangle with height

a and width b (Figure 4.3(b)). In particular, every primitive generator corresponds

to a facet of PD. It follows from Theorem 4.4.4 that s(X,D) is the volume of the

polytope

Pσ = {(x, y, t) ∈ R3 | 0 ≤ (x, y, t) · (~vi, ai) < 1, 1 ≤ i ≤ 4}

= {(x, y, t) ∈ R3 | 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ −x+ at < 1, 0 ≤ −y + bt < 1}

= {(x, y, t) ∈ R3 | 0 ≤ x < 1, 0 ≤ y < 1, at− 1 ≤ x < at, bt− 1 ≤ y < bt}.

Now we compute the volume of Pσ via a series of integrals. Note that the volume

remains unchanged if we replace Pσ with its closure (replacing all instances of < with

≤).

For 0 ≤ t ≤ 1
b
, so that at− 1 ≤ bt− 1 ≤ 0, we have 0 ≤ x ≤ at, 0 ≤ y ≤ bt. The

volume of this subset Pσ ∩ {0 ≤ t ≤ 1
b
} is

∫ 1/b

t=0

∫ at
x=0

∫ bt
y=0

dV =
∫ 1/b

t=0
abt2dt = a

3b2
.

Since bt − 1 ≤ y ≤ 1, we must have t ≤ 2
b
. Similarly, t ≤ 2

a
. Now we have two

cases. First, suppose b ≥ 2a, so that 1
b
≤ t ≤ 2

b
≤ 1

a
≤ 2

a
. Then the volume of the

subset Pσ ∩ {1
b
≤ t ≤ 2

b
} is ∫ 2/b

t=1/b

∫ at

x=0

∫ 1

y=bt−1

dV =
2a

3b2
.
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(a) The fan Σ ⊂ NR of P1 × P1. (b) The polytope PaD3+bD4
⊂MR.

Figure 4.3: The F -signature of a divisor on P1 × P1.

We conclude that for b ≥ 2a, Volume(Pσ) = a
3b2

+ 2a
3b2

= a
b2

.

Now suppose that a ≤ b ≤ 2a, so that 1
b
≤ t ≤ 1

a
≤ 2

b
≤ 2

a
. Then the volume of

the subset Pσ ∩ {1
b
≤ t ≤ 1

a
} is∫ 1/a

t=1/b

∫ at

x=0

∫ 1

y=bt−1

dV =
1

a
− 2a

3b2
− b

3a2
.

And the volume of the subset Pσ ∩ { 1
a
≤ t ≤ 2

b
} is∫ 2/b

t=1/a

∫ 1

x=at−1

∫ 1

y=bt−1

dV =
4

b
− 3

a
− 4a

3b2
+

2b

3a2
.

We conclude that for a ≤ b ≤ 2a,

Volume(Pσ) =
a

3b2
+ (

1

a
− 2a

3b2
− b

3a2
) + (

4

b
− 3

a
− 4a

3b2
+

2b

3a2
)

=
4

b
+

b

3a2
− 5a

3b2
− 2

a
.
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