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Rifampin (a semi-synthetic rifamycin derivative) is one of the first-line anti-

tuberculosis drugs.  Rifampin inhibits transcription by binding to the !-subunit of the 

RNA polymerase (RNAP).  The majority of the clinically-relevant Mycobacterium 

tuberculosis (MTB) rifamycin-resistant (RifR) mutations result from amino acid 

substitutions of one of the following three residues: !Asp435, !His445, and !Ser450 in a 

highly conserved 27 amino acid region of the RNAP !-subunit. 

The core subunits of wild-type and RifR mutants (Asp435Val, His445Tyr, 

Ser450Leu) of MTB RNAP were overexpressed in and purified from E. coli.  The 

rifamycins were all found to bind tightly (IC50) to the wild-type MTB and E. coli RNAPs, 

whereas dramatic (~10
2
-10

5
 fold) losses of affinity for rifamycins were observed for the 

RifR mutants from both bacteria.  Additional studies with efflux pump-deficient E. coli 

(EC2880) confirm that the differential sensitivity of MTB and E. coli to rifamycin 

antibiotic activity is due to rifamycin efflux from E. coli, rather than any differences in 



! xiii 

the target RNAPs.  The activities of C-8 modified rifamycins are consistent with X-ray 

crystal structures that show Ser450 acting as a hydrogen bond donor to the C-8 hydroxyl 

of rifamycins and that rifamycin resistance in the Ser450 mutants is likely due to loss of 

this hydrogen bond and loss of affinity.  A series of novel benzoxazinorifamycin 

analogues displayed superior affinity toward wild-type and RifR mutants of the MTB 

RNAP than rifampin and rifalazil (RifR mutants, but not WT), but the IC50 values were 

still in the 10
-6

 M (!M) range with the RifR MTB RNAPs. 

Rifampin exhibits significant drug-drug interactions via potent induction of 

cytochrome P450 3A4 (CYP3A4).  Selected commercially available rifamycins and our 

synthetic analogues were screened in the human pregnane X receptor (hPXR) activation 

assay to determine their extents of hPXR activation as an indicator of potential for 

CYP3A4 induction.  One of our analogues exhibited very low (similar to rifalazil) 

activation of hPXR, while the others did show significant activation and some 

cytotoxicity. 

The results of these studies have provided encouraging evidence that rifamycins 

with improved activity against RifR MTB RNAP and lower drug-drug interaction 

liabilities can be developed. 
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CHAPTER I 

Introduction 

 

Even after successful prevention and control efforts, infectious diseases remain 

the second leading cause of death in developing countries and the third leading cause of 

death in developed countries (1, 2).  These diseases include tuberculosis, HIV/AIDS, 

diarrheal diseases, and acute lower respiratory infections (1).  After the “era of antibiotics” 

(1930-1970s), infectious diseases seemed to be controlled and the attention was shifted to 

the threat of chronic diseases.  In the 1980s, pharmaceutical companies considered the 

number of antibiotics to be sufficient, and the development of new drugs was redirected 

away from antibiotics (2, 3).  Unfortunately due to antimicrobial resistance, infectious 

diseases have reemerged as important human health threats.  This has become an issue of 

great global concern because antimicrobial resistance reduces the effectiveness of current 

antibiotics leading to a greater risk of death and the possibility of returning to the pre-

antibiotic era.  Many factors may enhance antibiotic resistance including the incorrect use 

of antimicrobials (i.e., not completing the full course; poor quality antibiotics are used at 

sub-therapeutic dosing) (4).  Three major mechanisms of resistance are: inability of an 

antibiotic to permeate through cell wall or increased efflux, modification of the target that 

reduces the affinity for antibiotics, and inactivation of antibiotics by molecular 

modification (3).  Since infectious diseases have been neglected for the past few decades, 

the development of new antibiotics has been a slow process.  It is crucial to understand 
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the mechanisms of resistance and interactions of antibiotics with the resistance targets to 

allow for more potent and effective antibiotics to be designed and synthesized. 

Mycobacterium tuberculosis and Tuberculosis 

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis 

(MTB), is a worldwide health threat being one of the most widespread and persistent 

bacterial infections (5, 6).  In 2009, approximately 9.4 million new cases of TB were 

reported, along with 1.7 million deaths caused by TB.  Furthermore, the emergence of 

antibiotic resistant MTB strains has increased to half a million cases (5, 7).  TB is the 

leading cause of death in persons with HIV infection due to the fact that the one infection 

accelerates the progression of the other (5, 8, 9). 

 

Figure I-1:  Stages of Mycobacterium tuberculosis (MTB) Infection.  TB exists as either 

latent or active infection.  There is a 5-10% chance of the latent form 

developing into the active infection.  Patients with the drug-susceptible TB 

recover 95% of the time (denoted by two asterisks) with a 5% chance of 

relapse.  If TB is untreated this results in high mortality (50%; denoted by 

two asterisks). 
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The TB infection exists in two forms (Figure I-1), active TB and latent TB, with 

one-third of the world’s population being infected with the latent/dormant form where 

there is ~5% (~10% for HIV/AIDs patients) chance of it converting to the active form (9, 

10).  Latent TB is not infectious and exists in a nonreplicative metabolic state in hypoxic 

environments thus making it difficult for antibiotics to be effective against it.  On the 

other hand, active TB is infectious and can be transmitted from the infected host to a 

healthy individual via air by coughing, sneezing, and talking (5, 9). 

Anti-TB Drugs and Resistant TB 

The hydrophobic and waxy cell wall that is rich in mycolic acids, provides a 

formidable barrier to the penetration of drugs through the MTB cell envelop, thus 

limiting the number of effective anti-TB drugs.  The current anti-TB treatment includes 

the following first-line drugs: rifampin, isoniazid, pyrazinamide, ethambutol, and 

streptomycin (Table I-1) (8, 11-14).  Due to the high rate of spontaneous mutations (10
-8

 

to 10
-9

 per bacterium per cell division), the anti-TB drugs are given in combination and 

the extensive treatment usually lasts six to nine months (12-16).  The recommended 

regimen for a drug-susceptible strain is the combination of isoniazid, rifampin, 

pyrazinamide, and ethambutol (optional) for the first two months.  During the next four to 

seven months (continuation phase), only rifampin and isoniazid (the two most potent 

anti-TB drugs) are administered (12, 17, 18).  Approximately 95% of patients infected 

with a drug-susceptible strain can be cured in six months with only these four first line 

anti-TB drugs with only a 5% chance of relapse (10).  

Unfortunately, alternative regimens have to be implemented for multidrug-

resistant TB (MDR-TB) strains that are resistant to both rifampin and isoniazid (7, 19).  
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This therapy (usually lasting 18-24 months) consists of second line antibiotics (Table I-1) 

that are usually more expensive, more difficult to administer, less effective, and have 

more toxic side effects than first line drugs, which limit their usefulness (11-14, 18).  

Some of the side effects include nephrotoxicity, hepatotoxicity and dysglycaemia (20).  

The cure rate of MDR-TB with suboptimal therapy is only 50-70%, with 30% exhibiting 

treatment failure (10, 19).  Furthermore, strains that are MDR and resistant to any 

fluoroquinolone and at least one of the injectable drugs (kanamycin, capreomycin, or 

amikacin) are classified as extensively drug-resistant TB (XDR-TB) with very high 

mortality rates (7, 19).  Treatment failure is usually observed due to nonadherence to drug 

regimen, drug resistance, or malabsorption of drugs (18).  To improve patient compliance, 

the directly observed therapy short course (DOTS) has been introduced where the 

patients are observed to ingest each dose in order to complete therapy and decrease the 

chance of acquired resistance (5). 

Table I-1:  Anti-Tuberculosis Drugs, MICs, Mechanism of Action 

 

Drugs  MIC (!M) Mechanism of Action 

(First line)    

Rifampin 0.06 – 0.12 Inhibition of RNA synthesis 

Isoniazid 0.15 – 1.5 Inhibition of cell wall mycolic acid 

synthesis 

Pyrazinamide 130 – 410 Disrupts membrane potential via 

accumulation of pyrazinoic acid 

Streptomycin 3.4 – 13.8 Inhibition of protein synthesis 

Ethambutol 4.9 – 25 Inhibition of cell wall arabinogalactan 

synthesis 

(Second line)    

Amikacin/kanamycin 3.7 – 7.5 Inhibition of protein synthesis 

Fluoroquinolones 1.1 – 5.7 Inhibition of DNA gyrase/DNA synthesis 

Ethionamide 15 – 60 Inhibition of mycolic acid synthesis 

Capreomycin/viomycin 2.9 – 5.9 Inhibition of protein synthesis 

p-aminosalicylic acid 3.3 – 50 Inhibition of folate biosynthesis pathway 

and mycobactin synthesis (unclear) 
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Recently, a new resistant strain has been identified as totally drug-resistant (TDR) 

TB; therefore, the issue of resistance and the necessity for new antibiotics is becoming of 

even greater concern (21).  The existing anti-TB drugs are inadequate to address the issue 

of resistance; furthermore, anti-TB drugs with a new mechanism of action have not been 

introduced since rifampin in the 1960s (10, 19).  The classes of anti-TB drugs currently in 

clinical trials (Phase 1 and 2; Figure I-2) include the following: diarylquinolines, 

nitroimidazoles, diamines, !-lactams, oxazolidinones, fluoroquinolones, and rifamycins, 

with only a 10% chance of any of these agents advancing to Phase 3 (10, 13, 14, 21).  

Unfortunately, mutations that confer resistance have already been identified for some of 

these drugs (13). 

 

 

Figure I-2:  The nine current anti-TB drugs in the clinical pipeline.  The different classes 

the antibiotics belong to are listed in parentheses.  (Reproduced and modified 

with permission from Koul 2011 (10)) 
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Targeting the RNAP 

An alternative to determining new classes of antibiotics/novel targets that are 

more potent is to chemically modify existing anti-TB drugs since their targets are already 

known.  Rifampin (one of the most effective anti-TB drugs) inhibits RNA synthesis by 

binding to the bacterial DNA-dependent RNA polymerase (RNAP), a nucleotidyl 

transferase enzyme (22-25).  RNAP is a vital enzyme responsible for transcription, an 

essential cellular process responsible for translating DNA into RNA in all organisms (3, 

26).  The core RNAP is composed of four different subunits (!2""’#); whereas, the 

holoenzyme is formed upon the binding of the sigma factor (!) to the core enzyme (Table 

I-2) (24, 25).  The inhibition of bacterial RNAP leads to cell death thus making RNAP an 

attractive target.  Additionally, bacterial RNAP is highly conserved among other 

prokaryotes but not eukaryotes hence allowing for therapeutic selectivity (16, 27).  

Furthermore, a bacterial RNAP inhibitor has the potential of being a broad-spectrum 

antibacterial drug because of the high level of conservation (27).  The best characterized 

bacterial RNAP is the E. coli enzyme and to a lesser extent that of Bacillus subtilis (22).  

Other selective and non-selective RNAP inhibitors include the following: streptolydigin, 

myxopyronin, sorangicin, CBR703, guanosine tetraphosphate, tagetitoxin, lipiarmycin, 

daunomycin, marcellomycin, and microcin J25; however, rifampin was the first 

rifamycin to be approved for clinical use (23-25, 27).  
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Table I-2:  Composition of the DNA-dependent RNAP holoenzyme 

 

 

History and Development of Rifampin and Rifamycins 

Rifampin is a semi-synthetic rifamycin derivative.  Rifamycins belong to the 

greater ansamycin class of polyketide natural products (16, 25, 28-31).  The generic 

ansamycin structure is composed of a flat aromatic ring system (naphthalene or benzene) 

and a 17-atom aliphatic ansa bridge connecting two non-adjacent atoms of the ring 

system (29).  A mixture of rifamycins (Rifamycins A – E) was first isolated from 

Amycolatopsis mediterranei (previously classified as Streptomyces mediterranei and 

Nocardia mediterranea) where rifamycin B was the only stable product isolated in pure 

crystalline form (5-10% of the mixture) (16, 28, 29).  The pathway from the weakly 

active rifamycin B to the more active rifamycin SV is illustrated in Figure I-3.  In brief, 

rifamycin B is spontaneously oxidized to rifamycin O that is then hydrolyzed to 

rifamycin S with the loss of glycolic acid, and under mild reduction conditions, the more 

active rifamycin SV is formed (28, 31).  Rifamycin SV is also a biosynthetic precursor of 

rifamycin B in the polyketide synthesis pathway (16, 25).   

Subunit Gene MW of MTB 

subunits (kDa) 

Function 

! rpoA 37.7 Assembly of the enzyme and the 

recognition of regulatory factors 

" rpoB 129.9 Chain initiation and elongation 

 "' rpoC 146.7 Binds to the DNA template and 

contains most of the active site 

# rpoZ 11.8 Aids !’ binding and restores denatured 

RNAP 

$
A
 rpoD 57.8 Recognizes and initiates transcription 

from promoters of house-keeping 

genes (SigA, note there are 13 sigma 

factors in MTB) 
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Figure I-3:  Biological Transformation of rifamycin B into rifamycin SV 

Although rifamycin SV was active, an improved rifamycin derivative was 

required with better oral absorption, prolonged antibacterial levels in blood, and greater 

antimicrobial activity (28).  Several rifamycin derivatives have been synthesized, and the 

following relationships between structures of rifamycins and their antibacterial activities 

have been determined (some of the positions mentioned below are numbered on the 

rifamycin S structure in Figure I-3) (32):  

• Both naphthohydroquinone and naphthoquinone rifamycin derivatives were 

equally active 

• Acetylation of the hydroxyl group at position C8 resulted in an inactive rifamycin 

• Opening of the ansa bridge resulted in loss of all activity 

• Hydrogenation of the double bonds of the ansa bridge decreased activity 

• Epoxidation of the C16-C17 and C18-C19 double bonds reduced activity 
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• Acetylation of –OH groups C21 and C23 led to inactive derivatives 

• Hydrolysis of the acetoxyl group at C25 involved no loss of activity  

• Substituents added to C3 and/or C4 position increased activity 

Certain modifications of critical groups resulted in a decrease or loss of activity, 

and the minimal requirements for an active rifamycin were the hydroxyl groups at C21 

and C23 of the ansa ring, the polar groups at C1 and C8 of the naphthol ring, and the 

specific ansa configuration (29, 30, 32).  Modifications at C3 and C3/C4 of the aromatic 

ring are well tolerated and such derivatized rifamycins are active (29, 32).  Rifampin (a 

C3 derivative) was found to be the most active with the following favorable qualities: 

broad-spectrum antibiotic, unique mechanism of action, good oral absorption, active 

against latent TB, and reduced TB therapy from 18 to 9 months (28, 30, 33). 

Rifampin was first reported to inhibit the initiation of E. coli RNA synthesis by 

Hartmann and colleagues (34, 35).  Rifampin binds tightly to the RNAP to form a stable 

noncovalent 1:1 complex with a binding constant in the range of 10
-8

 M (36).  The 

binding of rifampin had no effect on promoter binding or the formation of the first 

phosphodiester bond but decreased the binding affinity of NTPs (by a factor of two) 

under in vitro conditions (36-38).  Rifampin was able to bind to both the core RNAP and 

the holoenzyme (with a slightly higher affinity for the holoenzyme); therefore, the sigma 

factor is not required for binding (39).  The rate of inhibition decreased in the presence of 

DNA template since the enzyme was protected to a certain degree.  No inhibition was 

observed when rifampin was added after the addition of nucleotides since transcription 

was already in the elongation phase and the rifamycin binding site was inaccessible (40, 

41). 
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Figure I-4:  A cartoon of the “steric occlusion” model.  In this overlay of two structures, 
rifampin (carbon atoms, orange; oxygen, red; nitrogen, blue) is bound to the 
! subunit of the RNAP (RNAP and nucleic acids are omitted for clarity).  
The active site is indicated by the Mg2+ ion (the magenta sphere) and the 9bp 
RNA/DNA hybrid (+1 to -8) is only numbered from +1 to -5.  The first 
nucleotide (green) binds at the +1 position as the chain grows, it is able to 
translocate to positions -1 and -2 (seen in yellow).  However, the triphosphate 
of the first nucleotide clashes with the rifampin (illustrated in pink; -3 to -8) 
upon the addition of another nucleotide thus inhibiting RNA synthesis and 
releasing dinucleotides.  (Reproduced with permission from Campbell 2001 
(41)) 

 
McClure and Cech proposed the “steric occlusion” model as the principal 

mechanism of action.  The 5’ phosphates of the 5’ NTP clash with the bound rifampin 

thus inhibiting the formation of the second phosphodiester bond.  The RNAP is unable to 

translocate and dinucleotides are released.  If transcription is initiated by NDP or NMP, 

the third phosphodiester bond is inhibited.  The 3.3 Å crystal structure of Thermus 

aquaticus core RNAP in complex with rifampin supports the steric occlusion theory 

(Figure I-4) (41). 
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Figure I-5:  The two pathways involved in the inhibition of RNAP via “allosteric 

mechanism”.  The ! pathway (on the left) is activated when the ansa bridge 

and the ! subunits interact.  The allosteric signal (blue lightning bolt) from 

this pathway inhibits the formation of the second phosphodiester bond.  

The signal from the " pathway (the purple lightning bolt; on the right) is 

activated when the C3/C4 rifamycin tail interacts with the hairpin loop of 

the " factor ("HL) and inhibits the formation of the first phosphodiester 

bond.  Both pathways release the catalytic Mg
2+

 ion (magenta sphere; bent 

arrow) thus releasing unstably bound RNAs (yellow) from the initiation 

complex.  (The other components of the complex are as follows: core 

RNAP, gray; DNA template strand, red; DNA nontemplate strand, blue; 

RNA, yellow; " and hairpin loop; magenta.)  (Reproduced with permission 

from Artsimovitch 2006 (46)) 

 

However, the steric occlusion theory alone is not sufficient to explain the 

difference in activity with different rifamycin derivatives that only vary at the C3 and 

C3/C4 positions (42-45).  It was observed that the rifamycin analogues with C3 tail 

modifications inhibited the formation of the second phosphodiester bond; whereas, the 

analogues with C3/C4 tail modifications inhibited the formation of the first 
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phosphodiester bond.  Artsimovitch and colleagues proposed the “allosteric inhibition 

mechanism” with two pathways (the ! pathway and the " pathway) to explain these 

differences (Figure I-5) (44).  The ! pathway is activated by the interactions of the ansa 

bridge with the ! residues and inhibits the formation of the second or third 

phosphodiester bond.  Whereas, the " pathway inhibits the formation of the first 

phosphodiester bond where the C3/C4 tail interacts with the hairpin loop of the " factor 

("HL) and this induces an allosteric signal (over 19 Å) and decreases the affinity for the 

catalytic Mg2+ ion thus slowing down transcription (44, 46).  These two pathways were 

supported by the crystal structures of Thermus thermophilus RNAP in complex with 

rifapentine (C3 rifamycin; ! pathway) and rifabutin (C3/C4 rifamycin; " pathway). 

Feklistov et al. reinvestigated the “allosteric mechanism” and found no evidence 

to support the hypothesis.  The predominant effect of rifamycins was the inhibition of the 

formation of the second or third phosphodiester bond, consistent with the original steric 

occlusion model theory (37, 47).  The results of Feklistov et al. are compelling and the 

steric occlusion model seems to be the most logical working hypothesis.  This model 

suggests that if one were to incorporate new binding interactions between the rifamycin 

and the RNAP, one could achieve higher affinity and efficacy. 

Rifamycin-resistance 

The rifamycin-resistant (RifR) mutations arise spontaneously at a frequency of  

10-8 where approximately 95% of these mutations are within 4 regions of the ! subunit 

(N-terminal cluster and clusters I, II, III; Figure I-6) (16, 41, 48).  Rifamycin resistance is 

mainly due to single amino acid substitutions and a few deletions or insertions of residues 

that alter the rifamycin binding site thus reducing the affinity for rifamycins (43, 49, 50).  
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All but one of the 15 different residues that have been identified from MTB RifR clinical 

isolates mapped to the 27 amino acid region of cluster I (also known as the Rifamycin 

Resistance Determining Region (RRDR)), a highly conserved region among prokaryotic 

RNAPs (42, 49). 

 

Figure I-6:  Selected Sequences from Rifamycin-resistance Determining Regions of the 
RNAP ! Subunits from E. coli, Thermus aquaticus (Taq), and 
Mycobacterium tuberculosis (MTB) (Cluster N and Clusters I, II, and III).  
The 12 amino acids of the ! subunit that interact directly with rifampin are 
indicated with + above the E. coli sequence.  The 15 RifR mutation positions 
that have been identified in MTB RifR clinical isolates are indicated with * 
below the MTB amino acid sequence.  The three most frequently mutated 
residues are seen within the boxes.  (Data from Campbell 2001) 

 
From the co-crystal structure of Taq RNAP and rifampin, it was determined that 

the rifamycin binding site is located ~12.1 Å away from the active site (38, 41).  

Rifampin binds to the ! subunit and directly interacts with twelve ! subunit residues (via 

hydrogen bonding or van der Waals interactions) as can be seen in Figure I-7 (41, 51).  

The four critical groups at C1, C8, C21, and C23 of the rifamycins (discussed earlier) are 

involved in hydrogen bond interactions to ensure protein binding.  Most of these twelve 

residues are found within the RRDR, and mutations of 11 out of the 12 residues result in 

RifR strain (Figure I-6) (16, 41). 
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Figure I-7:  Interaction of Rifampin with the Amino Acids of Thermus aquaticus RNA 

polymerase (RNAP) in the Antibiotic-Enzyme Complex.  The amino acid 

numbering is for MTB rpoB.  The amino acids interact with rifampin via 

van der Waals and hydrogen-bonding interactions.  The oxygens of rifampin 

that form hydrogen bonds are numbered as in Figure I-3.  The three most 

prevalent RifR mutation sites (re: Figure I-6) are circled.  (Reproduced and 

modified with permission from Campbell 2001 (41)) 

 

Among these residues, the individual substitutions of three residues (Asp435, 

His445, and Ser450; MTB numbering; Figures I-6 and I-7) together account for more 

than 84% of MTB RifR strains found in clinical isolates.  The most abundant amino acids 

substituted in place of these residues are as follows: 435 Val, 445 Tyr, and 450 Leu, 

respectively (42, 49).  The three wild-type residues interact with the critical groups of 

rifampin via hydrogen bonds (Figure I-7): Asp435 and His445 H-bond with the hydroxyl 

at C21 and Ser450 H-bonds with the hydroxyl at C8.  Mutations of these residues lead to 

the loss of important interactions; therefore, rifampin is unable to bind as tightly to the 

RifR RNAP, consistent with the results and conclusions of Feklistov et al. (47).  These 
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resistant mutants are able to survive well with little decrease in fitness, most likely due to 

the distance between the rifamycin binding site and the RNAP active site (52). 

 
 

Figure I-8:  The hPXR ligand-binding pocket with rifampin bound.  The hPXR residues 

are shown in magenta.  (Reproduced with permission from Chrencik 2005 

(53)) 

 

One of the drawbacks of rifampin is that it is a potent agonist of the human 

pregnane X receptor (hPXR), which is responsible for transcriptional regulation of certain 

drug metabolizing enzymes and transporters (54).  Most importantly, the activation of 

hPXR by rifampin leads to the up-regulation of expression of cytochrome P450 3A4 

(CYP3A4), which results in metabolic clearance of drugs, failure of therapy, and reduced 

efficacy (53, 54).  The relative potency of CYP3A4 induction is rifampin > rifapentine > 

rifabutin > rifalazil (a benzoxazinorifamycin derivative) where rifalazil does not induce 

the expression of CYP3A4 at ~10
5
 x its IC50 for WT RNAP (55).  Additionally, not all 

PXRs from different species are activated by rifampin (e.g., mouse and rat PXRs).  

Recently, the x-ray crystal structures of activators bound to the ligand-binding domain of 
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hPXR have been determined including one with RMP bound (Figure I-8)!  From these 

structures, it was concluded that the hPXR ligand-binding pocket is large, flexible, and 

capable of adapting itself to bind a large variety of ligands (53).  Also, rifampin is one of 

the largest hPXR activators and fills the binding pocket quite well, most likely the reason 

for its very potent activation of hPXR. 

Due to the existence of resistant mutants and other unfavorable properties of 

rifampin (i.e., heptatoxicity, flu-like syndrome, induction of cytochrome p450, and 

inhibition of hepatic transporters), a more effective rifamycin that will shorten treatment 

time, target resistant strains, be active against the latent form of TB, and eliminate drug-

drug interactions is highly desirable (10, 55).  In the past 40 – 50 years several rifamycin 

derivatives have been synthesized with the focus on C3 or C3/C4 modified rifamycin 

derivatives to produce a more effective antibiotic (29)!  However, there have been only 

three other rifamycins approved in the United States along with rifampin: rifapentine, 

rifabutin, and rifaximin (Figure I-9).  While these rifamycins have improved antibacterial 

activity, they still exhibit cross-resistance with RifR mutants (42, 55).  Recently, a new 

class of rifamycin derivatives, the benzoxazinorifamycins, have been shown to 

demonstrate more potent activity against mycobacteria and are effective against certain 

RifR strains, especially rifalazil (56, 57).  But due to serious side effects during clinical 

trials, the development of rifalazil has been halted (55). 

Although many rifamycin derivatives have been synthesized, it has been observed 

that the pharmacokinetic properties of rifamycins can be improved, the drug-drug 

interactions can be reduced/eliminated, levels of toxicities can be changed, and potency 
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against resistant strains can be improved.  Most importantly the availability of the crystal 

structure allows for a structure-based approach to develop improved rifamycins (55).!!

!

Figure I-9:  Rifamycins approved in the United States.  The C3 rifamycin derivatives are 

shown on top and the C3/C4 derivatives are on the bottom. 

 

Research Objectives 

There is an urgent need for anti-TB drugs that are effective against antibiotic 

resistant strains.  The current treatment consists of anti-TB drugs that are 50 years old and 

that are ineffective against antibiotic resistant TB strains (MDR and XDR).  Due to the 

difficulties of discovering new drugs against novel targets, in many cases focus has 
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returned to modifying existing antibiotics interacting with known, effective targets.  In 

order to modify antibiotics to control the resistant strains, a better understanding of 

resistance needs to be achieved at the molecular level.  The resistance mechanisms of 

known drugs (i.e., rifampin and other rifamycins) need to be thoroughly understood, thus 

leading to improved drug design and better understanding of the RifR mutants to guide 

further research. 

The overall focus of this dissertation is to understand the molecular interactions 

between rifampin and rifamycin analogues and the wild-type and RifR mutant MTB 

RNAPs.  Although studies have been conducted previously using the E. coli RNAP, it is 

important to characterize the MTB RNAP with rifampin and other rifamycins.  Even 

though there is a high level of conservation of the rpoB gene and the rifamycin binding 

site among prokaryotes, the sensitivity toward rifampin has been observed to be different 

for different bacterial strains (41, 58).  Harshey et al. were able to purify MTB RNAP 

from MTB H37Rv strain and reported that MTB RNAP was 1000 times more sensitive to 

rifampin than E. coli RNAP (58).  Furthermore, the three most prevalent RifR mutations 

(D435V, H445Y, and S450L) have been clinically isolated and studied in resistant MTB 

strains, but no in vitro studies of purified RifR MTB RNAPs with rifamycins have been 

reported. 

This dissertation is focused on the detailed in vitro characterization of wild-type 

and RifR mutants of the MTB RNAP to elucidate the molecular interactions that are 

responsible for resistance.  The ultimate goal is to provide information that can help drive 

the development of novel rifamycins that overcome the issue of resistance.  The primary 

questions addressed in each chapter of this dissertation are listed below. 
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• Chapter II:  How does the sensitivity of the MTB RNAPs (WT and selected RifR 

mutants) to rifamycins compare to that of E. coli RNAPs and how does this 

correlate with the differential sensitivities of MTB and E. coli to rifamycins?  

• Chapter III:  Do any of our novel C8 rifamcyin analogues (probing the interaction 

between S450 and the C8 OH) result in a more potent/effective rifamycin against 

the RifR MTB RNAP (S450L)? 

• Chapter IV:  Do any of our novel, structure-based designed benzoxazinorifamycin 

analogues result in a more potent/effective rifamycin against the wild-type and 

RifR MTB RNAPs? 

• Chapter V:  Can a dansyl-conjugated rifamycin be used as a fluorescent probe for 

a direct binding assay? 

• Appendix:  Can a MTB promoter based plasmid assay be developed for use in a 

high throughput screening assay to search for inhibitors representing novel 

chemotypes? 
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CHAPTER II 

In vitro Investigation of Wild-type and Rifamycin-resistant Mutants  

of the Mycobacterium tuberculosis RNA polymerase 

 

Rifampin (RMP) is a first line anti-tuberculosis drug that inhibits the prokaryotic 

RNA polymerase (RNAP) by binding to the ! subunit.  Previously, the interaction of 

RMP with various prokaryotic RNAPs has been investigated but in vitro data for wild-

type (WT) and rifamycin-resistant (RifR) MTB RNAPs is lacking (1-6).  The various 

bacterial RNAPs have been reported to possess different levels of sensitivity towards 

RMP (1, 3, 4, 7).  Even though the rifamycin-binding site is conserved among 

prokaryotes, differences in key residues that directly interact with RMP lead to 

differential inhibition (1).  RMP is a broad spectrum antibiotic with more potent activity 

against Gram-positive bacteria (particularly mycobacteria) than Gram-negative bacteria 

(6, 8).  Additional factors include permeability issues where the reduced penetration of 

RMP through the outer membrane of Gram-negative bacteria has been invoked to explain 

the lower sensitivity to RMP (6). 

Even though the RifR mutations in MTB have been clinically isolated and studied 

in RifR MTB strains, no in vitro studies of purified RifR MTB RNAPs with rifamycins 

have been reported (9, 10).  Previously, Harshey and colleagues have isolated WT MTB 

RNAP (!""’#) from MTB H37RV cells and reported that RMP is a thousand-fold more 

potent against MTB RNAP than E. coli RNAP and the difference in sensitivity to 
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RMP could be due to the differences in the beta subunits (7).  Recently, the MTB RNAP 

(!""’#) has been reconstituted as recombinant proteins expressed in E. coli, but the 

activity of the MTB RNAP in the presence of rifamycins was not assessed (11).  In order 

to understand rifamycin resistance further, it is important to obtain in vitro data for WT 

and the three most prevalent RifR MTB RNAPs.  The individual substitutions of three 

residues (Asp435, His445, and Ser450; MTB numbering) together account for more than 

84% of MTB RifR strains found in clinical isolates.  The most abundant amino acids 

substituted in place of these residues are as follows: 435 Val, 445 Tyr, and 450 Leu, 

respectively (9, 10). 

Due to the increase of RifR strains, the focus has been on synthesizing improved 

rifamycins that are active against RifR mutations.  Many of the modifications on 

rifamycin resulted in decrease or loss of activity, but alterations at C3 and C3/C4 

positions of the aromatic ring are well tolerated (6).  Therefore, the focus over the past 40 

or so years has been to synthesize C3 or C3/C4 modified rifamycin derivatives to produce 

a more effective antibiotic.  However, there have only been three other rifamycins 

approved in the United States along with RMP: rifapentine (RPN), rifabutin (RBN), and 

rifaximin (RFX), where these rifamycins have improved antibacterial activity but still 

exhibit cross-resistance with RifR mutants (Figure II-1) (12-18). 
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Figure II-1:  Structures of Key Rifamycins (typical rifamycin numbering system is shown 

with Rifamycin S). 

 

To better understand the interaction between the rifamycins and wild-type/RifR 

mutant MTB RNAPs, we report here the cloning and expression and in vitro activity of 

MTB RNAP.  The three most prevalent RifR mutations (Asp435Val, His445Tyr, 

Ser450Leu) found in the MTB clinical isolates were generated to express the mutant ! 

subunit of the RNAP in the rpoB gene via site directed mutagenesis.  We also report the 

results of the in vitro screen of three key rifamycins (RMP, RBN, and RFX) along with 

the MICs of these rifamycins in MTB and E. coli.  These results will help to inform the 

development of novel rifamycins with enhanced activity against RNAPs containing 

single amino acid substitutions. 
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Materials and Methods 

Reagents 

Unless otherwise specified, all reagents were purchased from Sigma-Aldrich (St. 

Louis, MO).  Gelase
TM

 Agarose-Gel Digesting Preparation and Kool
TM

 NC-45
TM

 

Universal RNA Polymerase template were from Epicentre (Madison, WI).  The QIAprep 

Spin Miniprep and Maxiprep Kit were from Qiagen (Valencia, CA).  Carbenicillin 

(disodium salt), Corning microplates, bactotryptone, and yeast extract were from Fisher 

Scientific (Hampton, NH).  The E. coli BL21 (DE3) CodonPlus-RIPL and Epicurian coli 

XL2-Blue Ultracompetent cells were from Agilent Technologies (Santa Clara, CA).  All 

restriction enzymes and Vent! DNA polymerase were from New England Biolabs 

(Ipswich, MA).  SeaPlaque! Agarose was from Lonza (Rockland, ME).  T4 DNA Ligase, 

Quanti-iT
TM

 RiboGreen RNA Reagent, RNaseOUT
TM

 Recombinant Ribonuclease 

Inhibitor, pEXP-5-NT/TOPO! TA Expression Kit, and all synthetic oligonucleotides 

were from Invitrogen (Carlsbad, CA).  Lysonase
TM

 Bioprocessing Reagent and Ni-NTA 

His•Bind! resin were from Novagen (San Diego, CA).  The nucleotide triphosphates 

(NTPs) were from Roche Applied Science (Indianapolis, IN).  PhastGel Precast Gels and 

SDS Buffer Strips were from VWR (Arlington Heights, IL).  The Bio-Rad Protein Assay 

kit was from Bio-Rad (Hercules, CA).  The avirulent Mycobacterium tuberculosis strain 

(H37Ra) was a generous gift from the TB center of Colorado State University.  The 

pVS10 vector, containing the E. coli rpo genes encoding the RNAP subunits, was a 

generous gift from Professor Irina Artsimovitch (Ohio State University).  The plasmids 

containing the individual MTB rpo genes (pSR52 (rpoA ), pJF09 (rpoB), pJF10 (rpoC)) 

were a generous gift from Dr. Sébastien Rodrique (MIT).  The EC2880 strain (permeable 
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strain with tolC
-
 and imp

-
 mutations) was a generous gift from Dr. Michael Hubband 

(Pfizer Scientific). 

Cloning MTB rpo Genes into an E. coli Co-overexpression Plasmid 

For in vitro studies, the wild-type MTB core RNAP was obtained from the co-

overexpression plasmid pMTBRP-5 (Figure II-4).  The MTB core RNAP subunit 

encoding genes (rpoA  (!), rpoB ("), rpoC ("’), and rpoZ (#)) were amplified from 

pSR52, pJF09, pJF10, and genomic MTB H37Ra DNA, respectively (Figure II-2).   

 

Figure II-2:  PCR amplified MTB genes on 1% agarose gel: lane 1, 100 bp DNA ladder; 

lane 2, MTB rpoA  (1044 bp); lane 3, MTB rpoZ (333 bp); lane 4, MTB 

rpoB (3519 bp); lane 5, MTB rpoC (3951 bp); lane 6, 1 kb DNA ladder 

 

The individual genes were then cloned into pEXP5-NT/TOPO vector to generate 

pEXP5-NT/TOPO(rpoA ), pEXP5-NT/TOPO(rpoB), pEXP5-NT/TOPO(rpoC), pEXP5-

NT/TOPO(rpoZ).  Reactions were performed according to the manufacturer’s 

instructions and then chemical transformation of the resulting plasmids into host cells 

was carried out.  Each one of the MTB RNAP genes was PCR amplified with Vent$ 

DNA polymerase using specific primers introducing unique restriction enzyme sites to 

assist in gene cloning.  The oligonucleotides used for PCR amplification are listed in 
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Table II-A2 in Appendix II-1.  The pVS10 plasmid encodes the E. coli rpoA -rpoB-

rpoC[His6]-rpoZ ORFs under the control of a single T7 promoter and terminator 

sequence and was used as the template where the E. coli rpo genes were replaced with 

MTB rpo genes following the scheme presented in Figure II-3.  The PCR product of the 

1.0 kb MTB rpoA  was digested with NcoI and NdeI and cloned into pVS10 treated with 

NcoI and NdeI replace of E. coli rpoA.  The E. coli rpoB and rpoC genes were replaced 

with a 165 bp linker in order to facilitate the incorporation of the smaller MTB rpoZ gene.  

The resultant plasmid, pMTBRP-1 and the 0.3 kb rpoZ gene were treated with AflII and 

NotI.  The ribosome-binding site (RBS) was introduced to the beginning of the rpoZ ORF 

producing pMTBRP-3.  Additional alterations had to be made to the ORFs of rpoC and 

rpoB to eliminate internal restriction sites and/or to correct PCR induced mutations by 

site directed mutagenesis before being amplified with PCR primers.  The amplification of 

rpoB gene was divided into two parts where a hexahistidine tag was introduced first and 

then the unique restriction site to the 3’ end of the rpoB ORF.  After these changes the 

plasmid containing the 4.0 kb rpoC gene and pMTBRP-3 were treated with AvrII and 

AscI.  The rpoC cassette was subcloned into the treated plasmid to form pMTBRP-4.  

The plasmid containing the 3.5 kb rpoB gene and pMTBRP-4 were digested with AvrII 

and BmtI.  Sequences confirmed that the resultant plasmid, pMTBRP-5, contained the 

four MTB rpo genes in the following order: rpoA -rpoB[His6]-rpoC-rpoZ (Figure II-4). 
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Figure II-3:  Construction Scheme for expression vectors for wild-type MTB RNAP 

(pMTBRP-5) and rifamycin-resistant mutants (pMTBRP-6, 7, 8). 

 

Construction and Preparation of MTB RNAP Mutant Plasmids 

The single nucleotide mutations (D435V (GAC-GTC), H445Y (CAC-TAC), and 

S450L (TCG-TTG)) were independently incorporated into pEXP-5/TOPO (rpoB) by 

PCR site-directed mutagenesis using the primers listed in Table II-A2 in Appendix II-1.  

The resultant plasmids were transformed into Epicurian coli XL2-Blue ultracompetent 

cells.  After verification of mutant rpoB by DNA sequencing, the plasmids containing the 

mutant rpoB genes and the wild-type pMTBRP-5 were digested with AvrII and SbfI and 

ligated to create the MTB mutant RNAP vectors: pMTBRP-6(D435V), -7(H445Y), and -

8(S450L) (Figure II-3 and II-4). 
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Figure II-4:  Co-overexpression Vector pMTBRP-5 Containing the MTB rpoA (!)-

rpoB(")-rpoC("’)-rpoZ(#) Genes Encoding the 4 Subunits of the Wild-

type MTB Core RNAP.  The hexahistidine tag is fused to the C-terminus 

of rpoB gene for purification.  Artsimovitch and colleagues’ co-

overexpression plasmid, pVS10 (expressing the E. coli core RNAP), was 

used as a template for the construction of pMTBRP-5. 

 

Expression and Purification of MTB Core RNAPs 

The co-expression vectors (pMTBRP-5, 6, 7, 8) were transformed into E. coli 

BL21(DE3) CodonPlus-RIPL cells.  The cells were grown in 500 mL of 2xTY liquid 

cultures containing 100 !g/mL carbenicillin and 30 !g/mL chloramphenicol at 37
o
C with 

vigorous shaking until cell density reached OD600nm=0.5-0.6.  The protein was induced by 

the addition of isopropyl "-D-thiogalactoside (IPTG) to a final concentration of 1 mM.  

The cultures were allowed to incubate for an additional 20-24 hours at 19
o
C.  The cells 

were harvested by centrifugation (6000xg, 15 min, 4
o
C).  The cell pellet of each 500 mL 



 34 

culture was re-suspended in 10 mL of Ni
2+

-NTA bind buffer (300 mM NaCl, 50 mM 

NaH2PO4, 10 mM imidazole, pH 8.0).  The freeze/thaw method was followed to lyse the 

cells, and it was repeated a total of three times.  The sample was supplemented with 10 

!L of Lysonase
TM

 Bioprocessing Reagent and 100 !M of phenylmethylsulfonyl fluoride 

(PMSF), and then the resulting lysate was cleared by centrifugation (21,000xg, 30 min, 

4
o
C).  All further purification steps were performed at 4

o
C.  The lysate was incubated 

with 2 mL Ni
2+

-NTA His•Bind Resin overnight with gentle shaking.  Each supernatant-

resin mixture was applied to individual columns.  The columns were washed twice with 4 

mL of Ni
2+

-NTA wash buffer (300 mM NaCl, 50 mM NaH2PO4, 20 mM imidazole, pH 

8.0), and the protein was then eluted in 6 mL of Ni
2+

-NTA elute buffer (300 mM NaCl, 

50 mM NaH2PO4, 250 mM imidazole, pH 8.0).  The MTB RNAPs were concentrated to a 

final volume of ~500 !L and then sterile-filtered with 0.22-!m syringe before being 

applied to a HiPrep 16/60 Sephacryl S-200 HR (GE Healthcare) column and the running 

buffer was RNAP storage buffer (10 mM Tris-HCl (pH 7.9), 0.1 mM EDTA, 0.1 mM 

DTT, 0.1 M NaCl).  The fractions containing the MTB RNAP were pooled together and 

concentrated to a final volume of ~100-200 !L using Amicon Centrifugal Filter Units 

(MWCO=100 kDa).  The enzyme was mixed with one volume of 100% glycerol and 

stored in liquid nitrogen.  The final concentration of the enzymes was determined via 

Bradford assay using the Bio-Rad Protein Assay Kit. 

Construction, Expression and Purification of Wild-type and Mutant E. coli RNAPs 

The corresponding RifR mutations (D516V (GAC-GTC), H526Y (CAC-TAC), 

and S531L (TCG-TTG); E. coli numbering) were introduced to the wild-type E. coli 

rpoB gene of pVS10 via site-directed mutagenesis.  For the construction of the E. coli 
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mutant RNAP expression vectors, the plasmids containing the mutant rpoB genes and the 

wild-type pVS10 were digested with XbaI and SbfI and ligated to create pVS10 (D516V), 

pVS10 (H526Y), and pVS10 (S531L) following the general laboratory protocol.  These 

plasmids were then confirmed by DNA sequencing.  The E. coli RNAPs were purified in 

the same fashion as the MTB RNAPs with a few modifications.  The E. coli expression 

vectors were transformed into E. coli BL21 (DE3) strain.  The cells were grown in 500 

mL of 2xTY liquid culture containing 100 !g/mL carbenicillin at 37
o
C until OD600nm 

reached ~0.6, at which point the protein production was induced with 1 mM IPTG.  The 

cells were grown for an additional 4 hours at 37
o
C and harvested by centrifugation 

(6000xg, 15 min, 4
o
C).  The cell pellets were resuspended in 10 mL of bind buffer and 

supplemented with 10 !L Lysonase
TM

 Bioprocessing Reagent and 100 !M PMSF.  The 

cell suspension was incubated at room temperature for 20 min before the cells were 

disrupted by sonication (seven 13-sec pulses) on ice.  The resulting lysate was cleared as 

described above.  The lysate was incubated with 2 mL Ni
2+

-NTA His•Bind Resin with 

gentle shaking for 1 h.  The mixture was then applied to the column.  The protein was 

purified from the column as described above and then concentrated before being applied 

to a size exclusion column.  The fractions containing the E. coli RNAP were pooled 

together and concentrated to a final volume of ~300-500 !L using Amicon Centrifugal 

Filter Unit (MWCO=100 kDa).  The enzyme was mixed with one volume of 100% 

glycerol and stored in liquid nitrogen.  The concentration of the enzymes was determined 

as stated before for MTB RNAPs. 
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Determination of the in vitro Transcriptional Activity of MTB RNAPs 

The activity of the WT and RifR mutant MTB and E. coli RNAPs was measured 

via rolling circle transcription assay using the Kool
TM

 NC-45
TM

 Universal RNA 

Polymerase template in the absence and presence of rifamycins (Figure II-5).  The 

supplier’s protocol for end-point detection using RiboGreen (a fluorescent nucleic acid 

dye) was followed.  The assays were performed on a SpectraMax M5 (Molecular 

Devices) microplate reader using 96-well half-area black plates.  The in vitro 

transcription conditions were as follows for a 25 !L reaction: RNAP (10 nM), E. coli 

RNAP 5X reaction buffer (200 mM Tris-HCl (pH 8.0), 250 mM KCl, 50 mM MgCl2, 

0.05% Triton X-100), DTT (8 mM), RNase inhibitor (1.12 U/!L), Kool NC-45 template 

(80 nM), and NTP solution (500 !M of each NTP).  The reaction was initially incubated 

at 37
o
C for 10 min in the absence of Kool NC-45 template and NTP solution to ensure 

the binding of RNAP and rifamycin.  Then the template was added and the reaction was 

initiated upon the addition of the NTPs.  Aliquots were taken every 30 min for 2 h from 

each reaction and quenched in TE buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA).  The 

amount of RNA synthesized was measured by the addition of 1:200 diluted RiboGreen 

(an ultrasensitive fluorescent nucleic acid stain).  The excitation and emission 

wavelengths for RiboGreen were 480 nm and 520 nm, respectively. 
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Figure II-5:  RNAP Rolling Circle Transcription Assay.  RNAP is pre-incubated with 

varying concentrations of rifamycins.  The 45mer DNA nanocircle, Kool 

NC-45 Template, binds to the free bacterial RNAP.  In the absence of 

rifamycins, the RNAP is able to transcribe multiple copies of the 45 base 

template (indicated by the green ticks on the growing RNA strand).  The 

concentration of RNA is detected using a fluorescent dye, RiboGreen and 

an RNA concentration standard curve as described in Materials and 

Methods. 

 

Inhibitory Effect of Rifamycins on MTB and E. coli RNAPs 

Dose response studies with different rifamycins were performed on WT and RifR 

RNAPs after it had been confirmed that the enzymes were active.  Each of the rifamycins 

(RMP, RBN, RFX-Figure II-1) was tested in duplicate where the concentration ranges 

were as follows for the different enzymes: for wild-type MTB RNAP (1.56-100 nM 

rifamycins); for wild-type E. coli RNAP (3.12-200 nM rifamycins); for MTB RNAP 

(D435V) (78-5000 !M RMP and 39-5000 !M RBN/RFX), for MTB RNAP (H445Y) 

(19.5-2500 !M RMP and 78-5000 !M RBN/RFX), for MTB RNAP (S450L) (19.5-2500 

!M RMP and 4-2500 !M RBN/RFX), for E. coli RNAP (D516V and S531L) (78-10000 

!M RMP, 4-2500 !M RBN, and 39-5000 !M RFX), for E. coli RNAP (H526Y) (78-

20000 !M RMP and 39-10000 !M RBN/RFX). 
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An RNA standard curve was made using varying concentrations of tRNA, and the 

curve was used to convert the fluorescence values to the amount of RNA synthesized.  

The replicate data points were averaged and both the original data points and the average 

values were plotted as function of log concentration versus percent activity.  The average 

values were then fit by non-linear regression to a modified four parameter logistic 

equation (below) as described (http://www.curvefit.com/introduction89.htm) using 

Kaleidagraph (Synergy Software, Essex, VT): 

y = M3 + [(100 – M3)/(1 + 10
[(M0-M1)*M2]

)], 

where M3 is the lower limit of the assay, and 100 is the upper limit of the assay, M0 is 

the log of the rifamycin concentration, M1 is the log of the IC50, and M2 is the Hill slope.  

The data were normalized such that the upper limit of the raw data (manually set to either 

the no inhibitor value or to the average of the first two-three data points) was 100% 

activity.  M1, M2 and M3 were fit by the regression.  The logIC50s and their standard 

errors (of the fit) are reported in Table II-A4 in Appendix II-1. 

Determination of Minimal Inhibitory Concentration (MIC) of Rifamycins Against 

MTB and E. coli Strains 

The MIC values of RMP for Mycobacterium tuberculosis (H37Rv) were 

determined by Dr. Scott Franzblau (Institute for Tuberculosis Research, University of 

Illinois, Chicago) using two different assays (Table II-2).  The Microplate Alamar Blue 

Assay (MABA) was conducted as described earlier (19).  The second assay was Low 

Oxygen-Recovery Assay (LORA) where MTB was adapted to low oxygen conditions 

and kept under an anaerobic environment for 10 days to resemble the conditions for the 
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latent form of MTB (20).  The RMP concentration ranged from 0.04-4.9 !M for MABA 

and 0.15-19 !M for LORA. 

The MIC of each rifamycins was also determined for E. coli by the microdilution 

method described previously (21).  In brief, the wild-type E. coli strains (DH5! and TG2) 

and mutant E. coli strain (EC2880) were grown on LB plates.  A colony was grown in 

2xTY media at 37
o
C for 3-4 h until the culture reached the McFarland 0.5 standard 

(OD625nm 0.08-0.13) corresponding to approximately 1 x 10
8
 cfu/mL.  The susceptibilities 

of these strains to rifamycins (Rifamycin SV, RMP, RBN, RFX) were determined by 

adding 50 !L aliquots of culture to 50 !L serial two-fold dilutions of rifamycins.  

Concentrations of the rifamycins were 0.049-100 !M for DH5! and TG2 strains and 

0.006-12.5 !M for EC2880 strain.  Rifamycins were initially dissolved in DMSO and the 

two-fold dilutions were made in 2xTY media.  Drug-free controls consisted of 50 !L 

culture and 2xTY media; whereas, the positive control consisted of 50 !L culture and 20 

!g/mL carbenicillin.  The assays were performed on a SpectraMax M5 (Molecular 

Devices) microplate reader using sterile 96-well polystyrene plates.  The plates were 

covered and incubated at 37
o
C for 20 hours.  OD600nm absorbance was measured on the 

SpectraMax M5 microplate reader.  MIC90 values were defined as the concentration of 

rifamycin that results in 90% inhibition of growth. 

Results 

Construction of pMTBRP-5, 6, 7, and 8 vectors 

To investigate the activity and inhibition of MTB RNAP, we have constructed a 

co-overexpression vector to express the MTB RNAP, pMTBRP-5 (Figure II-4).  To allow 

for simple expression, assembly, and purification of MTB RNAP, the co-overexpression 
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vector pVS10 (expressing the E. coli RNAP) was used as the template.  The MTB rpo 

genes (encoding the MTB RNAP subunits) were initially modified to introduce unique 

restriction sites to the ends of each rpo gene open reading frame (ORF) and then 

subcloned into pVS10, replacing the E. coli rpo genes.  To facilitate cloning further, 

additional modifications were made to the rpoB and rpoC ORFs to introduce silent 

mutations to eliminate internal restriction sites and/or to correct PCR induced mutations 

(see Materials and Methods).  A hexahistidine tag was introduced to the 3’ end of the 

rpoB ORF, which allowed for the purification of the assembled MTB RNAP from other 

proteins.  The resultant pMTBRP-5 vector contained a single T7 RNAP promoter before 

the rpoA  ORF and a T7 terminator following the rpoZ ORF where each rpo gene was 

preceded by a ribosome-binding site.  To assess the affect of the three most prevalent 

amino acid substitutions found in clinical isolates (D435V, H445Y, S450L), point 

mutations were introduced to the MTB rpoB gene.  The altered genes were subcloned 

individually, replacing the wild-type MTB rpoB gene in the pMTBRP-5, resulting in the 

following mutant vectors: pMTBRP-6 (D435V), pMTBRP-7 (H445Y), and pMTBRP-8 

(S450L). 

Expression of MTB RNAPs 

Initially when the pMTBRP-5 plasmid was transformed into an expression cell 

line only a single distinct band was observed corresponding to the MTB ! subunit with a 

molecular weight of approximately 38 kDa (Figure II-6).  (The identity of MTB ! 

subunit was confirmed by Michigan Proteome Consortium via mass spectrometry, Table 

II-A3 in Appendix II-1.) Along with testing different expression cell lines (BL21(DE3), 

HMS174(DE3), and JM109(DE3)), the temperature and IPTG concentration was also 
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varied, but the MTB ! subunit was the only over-expressed subunit observed.  Since the 

wild-type and RifR MTB RNAPs are heterologous proteins, the plasmids were then 

expressed in E. coli BL21 (DE3) CodonPlus-RIPL strains.  During the expression trials, 

the lower temperature induction (19
o
C) was found to be optimal for greater protein 

expression levels. 

 
Figure II-6: SDS-PAGE of pMTBRP-5 expressed in HMS174(DE3) cells at 25

o
C. Lane 1, 

LMW; lane 2, uninduced sample; lane 3, 0.5 mM IPTG induced sample; lane 

4, 1 mM IPTG induced sample; lane 5, 2.5 mM IPTG induced sample; lane 6, 

5 mM IPTG induced sample, lane 7, sample via autoinduction  

 

The freeze/thaw method was preferred over sonication for cell lysis because that 

resulted in a greater yield of protein.  Although impurities were present, the specific 

activity was comparable (Figure II-7B); therefore, these contaminating proteins did not 

affect the activity of the enzyme.  The purities of these MTB enzyme preparations after 

chromatography were confirmed by SDS-PAGE analysis (Figure II-7C left), and the 

concentration of each enzyme was determined via Bradford assay.  This approach yielded 

~0.05 to 0.3 mg MTB RNAP which was sufficient for the assay which only required 0.1 

!g of enzyme for each reaction. 
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Figure II-7.  (A) SDS-PAGE of wild-type MTB and E. coli RNAPs prepared via 

sonication or freeze/thaw method: lane 1, LMW std; lane 2, MTB RNAP 

(sonication) [0.5 !M]; lane 3, MTB RNAP (freeze/thaw) [3.5 !M]; lane 4, 

E. coli RNAP (sonication) [4.1 !M]; lane 5, E. coli RNAP (freeze/thaw) 

[2.2 !M].  (B) Activity of wild-type MTB and E. coli RNAPs prepared 

using different purification methods (red: sonication method; blue: 

freeze/thaw method).  (C) SDS-PAGE of WT and Mutant RNAPs After 

Size Exclusion Chromatography. (On the left) lane 1, LMW std; lane 2, 

MTB RNAP (WT) [2.2 !M]; lane 3, MTB RNAP (D435V) [3.5 !M]; lane 

4, MTB RNAP (H445Y) [0.8 !M]; lane 5, MTB RNAP (S450L) [2.0 !M] 

(On the right) lane 1, LMW std; lane 2, E. coli RNAP (WT) [4.1 !M]; 

lane 3, E. coli RNAP (D516V) [1.6 !M]; lane 4, E. coli RNAP (H526Y) 

[4.4 !M]; lane 5, E. coli RNAP (S531L) [4.1 !M] (Note the intensity of ! 

and !’ band on SDS-PAGE is due to the larger size and the overlapping of 

these two subunits.) 
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Additionally, the corresponding RifR mutations were introduced to the E. coli 

rpoB gene in pVS10 and the E. coli RNAPs were expressed in E. coli BL21 (DE3) strains.  

For E. coli RNAPs, lower temperature induction was not necessary because optimal 

protein yield was obtained after 4 h induction at 37
o
C.  The cells were disrupted via 

sonication, and the enzyme was purified by metal ion affinity chromatography and gel 

filtration (Figure II-7C right).  The highest yield of E. coli RNAP was obtained via the 

sonication method; whereas, the lowest yield was obtained of MTB RNAP for this same 

method.  The expression levels of MTB core RNAP subunits in the E. coli host were 

lower even with freeze/thaw method compared to levels observed for the E. coli core 

RNAP subunits. 

Activity of the RNAPs and Determination of IC50 values 

The activities of the overexpressed enzymes were assessed using an in vitro 

rolling circle transcription assay (Figure II-5).  The core RNAP transcribed a small 45 

base single-stranded DNA nanocircle, the Kool
TM

 NC-45
TM

 Universal RNA Polymerase 

template.  To achieve optimal RNAP activity, the pH of the reaction buffer was varied 

where the optimal pH was determined to be 8.0 (data not shown).  The MTB RNAPs 

from pMTBRP-5, 6, 7, and 8 were active; however, the magnitude of activity of the MTB 

RNAPs was approximately 10 fold less than the corresponding E. coli RNAPs (data not 

shown).  Although the activity was lower, the fluorescent dye (RiboGreen) was sensitive 

enough to detect the RNA synthesized by the MTB RNAPs. 
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Figure II-8:  Example Dose-Response Plot for Rifampin–MTB RNAP (WT) IC50 

Determination.  All of the individual data points (x) and the average data 

points (•) were plotted.  The average data were fit by nonlinear regression 

to determine the IC50 values.  The concentrations of rifampin were 1.56-

100 nM. 

 

The inhibition of the different MTB RNAPs by rifamycins was investigated via 

dose-response studies with three of the rifamycins shown in Figure II-1: RMP, RBN, and 

RFX.  Each compound was tested in duplicate in dilutions ranging in concentrations 

specified in Materials and Methods.  The data were plotted (% activity vs log rifamycin 

concentration) and then fit by nonlinear regression (Figure II-8).  This was then repeated 

with the E. coli RNAPs.  The logIC50 values and their standard errors (of the fit) are 

reported in Table II-A4 in Appendix II-1.  The standard errors of the logIC50s roughly 

translate into a 20-25% error in the IC50 values.  The Hill slopes are all very close to one 

(mean Hill slope = 1.07).  Note that for seven of the inhibitor•enzyme combinations, the 

data plateaued above zero.  In these cases the regression was allowed to fit the lower limit.  

The reason for the lack of complete inhibition in these cases is unclear, but may have to 

do with the processive nature of the RNAP reaction.  That is, a small fraction of enzyme 
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may enter the elongation phase and, due to the insensitivity of the elongation phase to 

rifamycin inhibition, it may generate a long enough strand of RNA to give an above-zero 

lower limit. 

The apparent IC50 values are listed on Table II-1.  As shown in Table II-1, 

rifamycins inhibit the wild-type MTB and E. coli RNAPs in the 10
-9

 M (nM) range.  

Whereas, the IC50 values for the RifR mutants of MTB and E. coli were in the 10
-6

 M 

(!M) range.  The most frequently observed MTB RifR mutant in clinical isolates, S450L 

(9, 10), was inhibited at lower concentrations of rifamycins relative to the other MTB 

mutants.  Additionally, the MTB D435V and S450L mutants were the most sensitive to 

RBN.  Overall, the E. coli enzymes followed a similar inhibition trend compared to their 

MTB counterparts. 
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Table II-1.  In vitro RNAP IC50 Values (!M) for Selected Rifamycins 

RNAP Rifampin Rifabutin Rifaximin 

MTB (WT) 0.017 0.023 0.007 

MTB !(D435V) 465 171 506 

MTB !(H445Y) 610 1200 506 

MTB !(S450L) 109 20 113 

E. coli (WT) 0.012 0.042 0.058 

E. coli !(D516V) 233 13 296 

E. coli !(H526Y) 1130 1360 1520 

E. coli !(S531L) 171 4.9 85 

IC50 is the concentration of rifamycin resulting in 50% inhibition of transcription.  Errors 

of the logIC50 values are reported in Table II-A4 in Appendix II-1 as described in 

Materials and Methods.  The errors of the IC50 values are approximately ±25%. 

Comparative data for Rifampin: E. coli (wt): <12.2 nM
1
, 2 nM

2
; E. coli (D516V): 12.2 

!M
1
, 4 !M

2
; E. coli (H526Y): > 122 !M

1
; E. coli (S531F): 12.2 !M

1
. 

1
 Jin et al., J. Mol. Biol 202 , 45-58, 1988. (only observed S531F mutation in E. coli RifR 

strains rather than S531L) 
2
 Feklistov et al., PNAS 105 (39) , 14820-14825, 2008 

MICs of Rifamycins 

The MICs of rifamycins against the MTB H37RV strain were determined using 

two different assays (Microplate Alamar Blue Assay (MABA) and Low Oxygen-

Recovery Assay (LORA)) and are reported in Table II-2.  Higher MIC values for RMP 

were observed for LORA compared to MABA, where the former assay resembled the 

environment in which the latent MTB resides. 
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Table II-2. MIC Values (!M) for Selected Rifamycins Against MTB Clinical Isolates 

!

MTB Strain Rifampin Rifabutin 

H37RV
1
 MABA

 

             LORA 

0.24 - 

3.3 - 

H37RV
2
 0.3 " 0.018 

RNAP !(D435V)
2
 38.9 " 0.6 

RNAP !(H445Y)
2 > 78 # 37.8 

RNAP !(S450L)
2
 > 78 37.8 

1
 MIC90 is the concentration of rifamycin that results in 90% inhibition of growth. 

(Data from Prof. Scott G. Franzblau (UIC).) 
2
 MIC99 is the concentration of rifamycin that results in 99% inhibition of growth. 

(Williams et al., Antimicrobial Agents and Chemotherapy 42 (7) , 1853-1857, 1998.) 

 

The susceptibility of E. coli wild-type strains (DH5" and TG2) and mutant strain 

(EC2880) to rifamycins is summarized in Table II-3.  The MIC values of the different 

rifamycins were analyzed and correlated to what has been previously reported for MTB 

and E. coli (Tables II-2 and II-3).  The MICs of rifamycins against wild-type E. coli 

strains were approximately 100-500 fold greater than the MICs observed for EC2880.  

RMP and RBN had comparable MICs to one another when assayed in the wild-type and 

mutant E. coli strains; whereas, MICs of RFX were 2-4 fold higher compared to RMP 

and RBN against these strains. 
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Table II-3.  MIC Values (!M) for Selected Rifamycins Against E. coli 

!

E. coli 

strains 
Rifamycin S Rifampin Rifabutin Rifaximin 

WT 

TG2 > 92 6.25 6.25 25 

DH5! > 100 25 12.5 50 

DH5!
1 573 (Rif SV) 7.60 14.76 NR 

"tolC 

EC2880 0.78 0.05 0.10 0.20 

D21f/tolC
1 

1.12 (Rif SV) 0.12 0.06 NR 

MIC90 is the concentration of rifamycin that results in 90% inhibition of growth.  Results 

from this study are in bold.  NR: not reported. 

Comparative data for Rifampin in E. coli isolates
2
: E. coli (wt): <12.2 !M; E. coli 

(D516V): " 1220 !M; E. coli (H526Y): " 1220 !M; E. coli (S531F): " 1220 !M. 
1
 Feklistov et al., PNAS 105 (39) , 14820-14825, 2008. 

2
 Jin et al., J. Mol. Biol 202 , 45-58, 1988. 

 

Discussion 

The three aforementioned RifR mutants have been identified from clinical isolates 

and these strains have been studied.  However, no in vitro studies of purified MTB RifR 

RNAPs have been reported.  Herein, we describe a co-overexpression system for wild-

type and RifR MTB RNAPs in E. coli and its use to investigate the effect of the mutation 

on inhibition by rifamycins.  Artsimovitch and colleagues developed a co-overexpression 

plasmid for the E. coli core RNAP (pVS10, !2##’$) (22).  We adopted the same concept 

and used pVS10 as the template to construct our co-overexpression plasmid for the MTB 

core RNAP (pMTBRP-5; Figure II-4).  However, we encountered a few obstacles using 

the co-overexpression method.  Due to the enormous size of the plasmid (~14.4 kb), the 

number of unique sites present was limited.  After multiple trials, optimal PCR conditions 

were obtained to modify the MTB ORFs to incorporate unique sites.  Additionally, the 

large size of the plasmid made the integration of the MTB rpoZ gene (~0.3 kb) difficult.  

Therefore, a 165 bp linker was designed (containing the unique restriction enzyme sites 
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required to subclone in MTB rpoB and rpoC genes) and introduced to replace the E. coli 

rpoB and rpoC genes.  The reduced size of the plasmid facilitated the incorporation of 

MTB rpoZ.  After following the multi-step scheme illustrated in Figure II-3, the E. coli 

rpo genes were replaced by MTB rpo genes.  The resulting plasmid, pMTBRP-5, was 

verified via DNA sequencing.  The plasmid was then transformed into an expression cell 

line and successfully purified via nickel affinity chromatography and gel filtration.  A 

hexahistidine tag fused to the C-terminus of the ! subunit allowed for the separation of 

the target enzyme from contaminating E. coli RNAP.  The resulting MTB RNAP was 

pure enough for a microtiterplate-based in vitro transcription assay.  In previous studies, 

the wild-type MTB RNAP has been obtained from crude extracts of MTB H37RV cells 

and from in vitro reconstitution by renaturation of mixtures of denatured subunits (7, 11).  

Altogether, the co-overexpression method allowed for the purification of the assembled 

core RNAP in a convenient manner avoiding the denaturing and renaturing steps required 

to obtain RNAP from crude extracts or via reconstitution from individual subunits.  To 

determine how the RifR mutants influence inhibition by rifamycins, the three most 

prevalent mutations found in clinical isolates (D435V, H445Y, S450L) were introduced 

individually to the MTB rpoB ORF to yield the following vectors: pMTBRP-6 (D435V), 

-7 (H445Y), -8 (S450L) (Figure II-3 and II-4).  The mutations were also introduced to the 

corresponding residues in E. coli rpoB (D516V, H526Y, S531L) of pVS10.  The activity 

of the wild-type and RifR RNAPs of MTB and E. coli was assessed via in vitro rolling 

circle transcription assay (Figure II-5), which confirmed that these enzymes were active.  

A single-stranded nanocircle is used as the DNA template.  Previously, nanocircle 

templates have proven to be efficient substrates for various bacterial and phage RNAPs 
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(23, 24).  The RNAP produced long RNA repeats of the nanocircle in the absence of 

RNAP inhibitor, and RiboGreen was used to measure the amount of RNA transcribed. 

It has been reported that MTB is more sensitive to RMP than E. coli and other 

prokaryotes (25).  Previously, Zenkin et al. reconstituted a chimeric E. coli RNAP 

containing MTB Clusters I and II of ! subunit and concluded that the difference in 

sensitivity of MTB and E. coli to rifamycins was not due to these regions of MTB RNAP 

involved in forming the rifamycin binding pocket (4).  Here, the co-overexpression of 

MTB and E. coli RNAPs allowed for the direct comparison of the sensitivity of these 

enzymes to rifamycins.! !The activity of the wild-type and RifR RNAPs of MTB and E. 

coli was assessed in the presence of rifamycins via dose-response studies (Figure II-8).  

The representative rifamycins evaluated in this study included: RMP (a C3 rifamycin 

derivative) and RBN and RFX (C3/C4 modified rifamycins).  As can be seen from the 

IC50 values in Table II-1, rifamcyins bind tightly to the wild-type MTB and E. coli 

RNAPs and inhibit the enzymes in the 10
-8

 M (10 nM) range.  Whereas for the RifR 

mutants of both MTB and E. coli, a dramatic ~10
2
-10

5
 fold loss of affinity for all four 

rifamycins was observed where these different mutants were inhibited at much higher 

concentrations of rifamycins (10
-4

 M range).  The three residues mutated in these RifR 

mutants are among the twelve amino acid residues of the ! subunit that directly interact 

with RMP via hydrogen bonds (1).  The single amino acid substitutions disrupt critical 

interactions that contribute to rifamycin binding and potentially change the shape and 

conformation of the rifamycin-binding site.  This leads to the weaker binding of the 

rifamycins, explaining the decreased susceptibility of the enzyme to inhibition by 

rifamycins.  Even though the C3/C4 modified rifamycins (RBN and RFX) have enhanced 



 51 

antibacterial activity (17), they still inhibit RifR mutant RNAPs only in the 10
-5

 M (1-100 

!M) range in vitro.  Therefore, cross-resistance still exists between these rifamycins for 

these RifR mutant RNAPs.  Our results are similar to what has previously been reported 

for wild-type E. coli RNAP and RMP with IC50 values in 10
-9

 M (nM) range; however, 

our data for resistant mutants indicates lower affinity for RMP, where the values are ~100 

fold higher for the mutants (Table II-1) (2, 5).  Feklistov et al. conducted in vitro 

transcription assays using a system containing an E. coli holoenzyme (with a sigma factor 

bound to the E. coli core RNAP) and a promoter-containing DNA fragment (2).  The 

sigma factor recruits the RNAP to bind to the specific DNA promoter.  In our studies, we 

used the isolated core RNAP and a nanocircle template (a nonnative template without a 

specific promoter).  Even with these differences, Feklistov and colleagues observed a 

high increase in the IC50 value (2000-fold) for RMP with the RifR E. coli RNAP 

(D516V) compared to WT E. coli RNAP (2). 

The MICs were greater than the IC50 values reported with these rifamycins for the 

different RifR mutants, which could be due to permeation, stability, or other factors.  The 

MICs of RMP for wild-type MTB H37RV strains were determined at the Institute for 

Tuberculosis Research (ITR/UIC) using Microplate Alamar Blue Assay (MABA) and 

Low Oxygen-Recovery Assay (LORA), where the latter assay is a model for the latent 

form of MTB.  Williams et al. reported the MICs for rifamycins against the wild-type 

MTB H37RV strain and the clinical isolates containing the specific prevalent mutations 

(Table II-2) (26).  The group also generated recombinant clones with only the specific 

mutations and obtained similar values as the ones reported with the clinical isolates, 

which confirmed that any additional mutations that might be present in the clinical 
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isolates did not affect the MICs of rifamycins.  Yang et al. conducted a similar study and 

obtained comparable MICs for these three prevalent mutant isolates and found that 8% of 

RifR strains are susceptible to RBN (17). 

Comparing MTB RifR mutants, the most frequently observed mutation in clinical 

isolates (S450L) had the lowest IC50 values for the different rifamycins compared to the 

other MTB mutants; whereas, H445Y mutant resulted in the highest IC50 values (Table 

II-1).  The D435V mutant had intermediate IC50 values, but the lowest MIC values 

among the different mutants.  As seen in Table II-2, D435V was the most sensitive to 

RBN from the MIC data; whereas the other two mutants (H445Y and S450L) were still 

resistant to these rifamycins.  RBN has better antibacterial activity against rifamycin 

sensitive strains and some rifamycin resistant strains but still exhibit substantial cross 

resistance in vitro (17, 26). 

Our data are consistent with the structural model for rifamycin binding to RNAP 

(1).  In this model, hydrogen bonds are predicted between the rifamycin core and each of 

the three amino acids probed in this study.  Mutations of aspartate 435 and histidine 445 

(if it is protonated) would be expected to generate the greatest loss of binding energy due 

to the loss of a hydrogen bond between a charged moiety and an uncharged moiety.  

While mutation of serine 450 would be expected to exhibit less loss of binding energy 

because no charged moieties are involved.  The effects of these mutations (e.g., the 

magnitude of binding energy lost) could be modified depending on the geometry of the 

hydrogen bonds lost.  However, our data does qualitatively correlate with the proposed 

loss of binding energy as the aspartate and histidine mutants are 6 to 10-fold less 

sensitive to the rifamycins (Table II-1), consistent with a greater loss of binding energy.  



 53 

This correlation suggests that the structural model is fairly robust and can help to 

interpret biochemical data such as in our study.  (We should note that a new, complete 

model for the E. coli RNAP has been reported (27); however, this report does not discuss 

the rifamycin-binding pocket.  Sequence comparisons indicate that the rifamycin-binding 

pocket is highly conserved and therefore the thermophilic RNAP structure (1) should be a 

robust model for interpreting our biochemical data.) 

It is generally perceived that the differential sensitivities of eubacterial organisms 

(e.g., E. coli vs. MTB) towards rifamycins are not due to changes in the RNAP itself but 

are due to other factors.  Our results, along with those of Zenkin and colleagues with the 

chimeric (! subunit) E. coli/MTB RNAP, provide experimental evidence consistent with 

this perception.  Our results reported herein show that the E. coli and MTB RNAPs 

exhibit similar sensitivities to rifamycins.  Therefore, the differential sensitivity must be 

due to off-target activity or other factor(s).  It is well estalblished that efflux pumps (i.e., 

TolC) are responsible for the active export of antibiotics in Gram-negative bacteria (28).  

Therefore, to experimentally assess the relationship between the E. coli TolC protein and 

the export of rifamycins, the MIC values for wild-type E. coli strains (DH5" and TG2) 

and mutant E. coli strain (EC2880-permeable strain with tolC
-
 and imp

-
) were determined 

for this same set of rifamycins.  As reported in Table II-3, the MIC values of these 

rifamycins are significantly lower for the mutant EC2880 strain compared to the wild-

type strains (DH5" and TG2), suggesting that TolC efflux pumps are involved in the 

export of rifamycins explaining the lower sensitivity of E. coli towards rifamycins.  The 

tolC knockout leads to retention of rifamycins therefore resulting in lower MICs.  The 

EC2880 MIC values were comparable to what has been reported previously for E. coli 
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D21f/tolC (Table II-3) (2) and to the MIC values observed for the wild-type MTB H37RV 

strain (Table II-2) (26).  The wild-type MTB H37RV strain was more sensitive to C3/C4 

modified rifamycins (RBN).  Whereas, the wild-type E. coli strains had higher MIC 

values for all rifamycins studied (Table II-3).  RMP and RBN had similar MICs in each 

instance (e.g., wild-type and mutant). 

Conclusions 

We have developed a system where we can perform in vitro inhibition assays 

using the M. tuberculosis RNAP and three Rif-resistant mutants.  This system was used 

to characterize the in vitro activity of a series of known rifamycins, with results 

consistent with MIC data and previous reports.  We have also provided experimental 

evidence that the differential sensitivity of E. coli vs MTB organisms to rifamycins 

results from E. coli efflux pump activity, consistent with previous general perceptions. 
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rifabutin; RFX, rifaximin; NTP, ribonucleotide triphosphate; ORF, open reading frame; 

RBS, ribosome binding site; PCR, polymerase chain reaction; IPTG, isopropyl !-D-

thiogalactoside; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; 

PMSF, phenylmethylsulfonyl fluoride; EDTA, ethylenediaminetetraacetic acid; DTT, 

dithiothreitol; RNA, ribonucleic acid; MABA, Microplate Alamar Blue Assay; LORA, 

Low Oxygen-Recovery Assay; IC50, concentration of rifamycin resulting in 50% 

inhibition of transcription; MIC90, concentration of rifamycin that results in 90% 
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Appendix II-1 

 

Table II-A1.  Plasmids and Bacterial Strains. 

       Description 

Plasmids 

pVS10
1
     pET21 vector containing E. coli rpoA, rpoB, rpoC, and rpoZ genes encoding  

the wild-type E. coli RNAP subunits 

pVS10 (D516V)    pVS10 plasmid containing D516V mutation in E. coli ! subunit 

pVS10 (H526Y)    pVS10 plasmid containing H526Y mutation in E. coli ! subunit 

pVS10 (S531L)    pVS10 plasmid containing D516V mutation in E. coli ! subunit 

pSR52
2
     pET16b vector containing the MTB rpoA gene 

pJF09
2
      pET16b vector containing the MTB rpoB gene 

pJF10
2
      pET30a vector containing the MTB rpoC gene 

pMTBRP-5     Overexpression vector containing MTB rpoA, rpoB, rpoC, and rpoZ genes encoding  

the wild-type MTB RNAP subunits 

pMTBRP-6     pMTBRP-5 plasmid containing D435V mutation in MTB ! subunit 

pMTBRP-7     pMTBRP-5 plasmid containing H445Y mutation in MTB ! subunit 

pMTBRP-8     pMTBRP-5 plasmid containing S450L mutation in MTB ! subunit 

 

Bacterial Strains 

Mycobacterium tuberculosis H37Ra
 

 Avirulent strain 

Mycobacterium tuberculosis H37Rv
 

 Virulent strain 

XL2-Blue Ultracompetent Cells endA1 supE44 thi-1 hsdR17 recA1 gyrA96 relA1 lac [F’ proAB lacI
q
 Z!M15 Tn10 (Tet

r
) 

Amy Cam
r
] 

E. coli BL21(DE3) F
-
 ompT gal dcm

+
 hsdS(rB

-
 mB

-
) "(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 

E. coli BL21(DE3) CodonPlus-RIPL B F
-
 ompT hsdS(rB

-
 mB

-
) dcm

+
 Tet

r
 gal "(DE3) endA Hte [argU proL Cam

r
] [argU ileY 

leuW Strep/Spec
r
] 

1
 Belogurov et al., Molecular Cell 26, 117-129, 2007. 

2
 Jacques et al., FEMS Microbiol Lett 255, 140-147, 2006.
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Table II-A2.  Oligonucleotides Used for Plasmid Construction. 

Oligonucleotides   Primer Sequence (5’-3’) 

(MTB PCR Primers) 

NdeI FWD rpoA  gaagctCATATGctgatctcacagcgccccaccctgtccg 

NcoI REV rpoA   gaagctCCATGgctaaagctgttcggtttcggcgtagtcc 

AvrII FWD rpoB  cagcgaCCTAGGaaccctatggcagattcccgccagagcaaaacagccg 

Histag REV rpoB (A)  gcgacagctttaATGGTGATGGTGATGGTGcgcaagatcctcgacacttgcgg 

BmtI REV rpoB (B)  cttGCATGCtagcgggtttagtaattttgcgacagctttaatggtgatgg 

AvrII/NheI FWD rpoC cagcgaCCTAGGgtactaGCTAGCgttaggggaaagggagttacatgctcgacgtcaacttcttcgatg 

AscI REV rpoC   gagctGGCGCGCCtagcggtagtcgctgtagccgtagtcgtcc 

AflI FWD rpoZ  gaagctCTTAAGgtgagtatctcgcagtccgacgcgtcgttggccg 

AflI FWD rpoZ (+RBS) agctCTTAAGaaggagattaagtatgagtatctcgcagtccgacgcgtcgt 

NotI REV rpoZ  gaagctGCGGCCGCtactcgccctcggtgtgctcgagcag 

 

(B-C Linker) 

(NcoI/AvrII/AscI/HindIII) aacagaCCATGGatccccgatccgtcgacttgtcagcgagctgaggaacCCTAGGaattggccttaacc 
ggGGCGCGCCtcaaataacgtaaaaacccgcttcggcgggtttttttatggggggagtttagggaaaga
gcatttgtcagaatcAAGCTTcaatga 

 

(MTB Quik-Change Primers) 

rpoB(1) FWD   gacgccggaggagcggctgctgcgtgccatcttcggtgagaaggcccgcg 

rpoB(1) REV   cgcgggccttctcaccgaagatggcacgcagcagccgctcctccggcgtc 

rpoB(2) FWD (-StuI)  gagatggagtgctgggccatgcaggcGtacggtgctgcctacaccctgcag 

rpoB(2) REV (-StuI)  ctgcagggtgtaggcagcaccgtaCgcctgcatggcccagcactccatctc 

rpoC(1) FWD (-NcoI)  cggcgagtacttcaccggtgGcatgggcgcggagtcgatcc 

rpoC(1) REV (-NcoI)  ggatcgactccgcgcccatgCcaccggtgaagtactcgccg 

rpoC(4) FWD (-NcoI)  gcgtgtgcgcgacctgctacgggcgttcGatggccaccggcaagctggtcg 

rpoC(4) REV (-NcoI)  cgaccagcttgccggtggccatCgaacgcccgtagcaggtcgcgcacacgc 

rpoB(C552R) FWD   gacggtcgcttcgtcgagccgCgcgtgctggtccgccgcaag 

rpoB(C552R) REV  cttgcggcggaccagcacgcGcggctcgacgaagcgaccgtc 
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Table II-A2.  (Continued) 

Oligonucleotides   Primer Sequence (5’-3’) 

(MTB Quik-Change Primers) 

rpoB(D435V) FWD  cagctgagccaattcatggTccagaacaacccgctgtcggg 

rpoB(D435V) REV  cccgacagcgggttgttctggAccatgaattggctcagctg 

rpoB(H445Y) FWD  ccgctgtcggggttgaccTacaagcgccgactgtcggcg 

rpoB(H445Y) REV   cgccgacagtcggcgcttgtAggtcaaccccgacagcgg 

rpoB(S450L) FWD  ccacaagcgccgactgtTggcgctggggcccggcg 

rpoB(S450L) REV  cgccgggccccagcgccAacagtcggcgcttgtgg 

(E. coli Quik-Change Primers) 

rpoB(D516V) FWD  cagctgtctcagtttatggTccagaacaacccgctgtctg 

rpoB(D516V) REV  cagacagcgggttgttctggAccataaactgagacagctg 

rpoB(H526Y) FWD  caacccgctgtctgagattacgTacaaacgtcgtatctccgcac 

rpoB(H526Y) REV   gtgcggagatacgacgtttgtAcgtaatctcagacagcgggttg 

rpoB(S531L) FWD  gattacgcacaaacgtcgtatctTGgcactcggcccaggcggtctgac 

rpoB(S531L) REV  gtcagaccgcctgggccgagtgcCAagatacgacgtttgtgcgtaatc 
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Table II-A3.  Confirmation of MTB ! Subunit by Mass Spectrometry. 

 

N
a 

%Cov
b 

Conf
c 

Prec m/z
d 

Accession
e 

Protein Name
f 

Sequence
g 

1 31.1 99.0 1266.72 sp|P66701|RPOA_

MYCTU 

DNA-directed RNA polymerase subunit 

alpha OS=Mycobacterium tuberculosis 

(strain ATCC 25177/ H37Ra) GN=rpoA 

PE=3 SV=1 

EGVHTVGELVAR 

 

1 31.1 99.0 1003.56 same as above same as above GYVPAVQNR 

1 31.1 99.0 1611.93 same as above same as above IDGVLHEFTTVPGVK 

1 31.1 99.0 1330.79 same as above same as above IPVDSIYSPVLK 

1 31.1 99.0 2088.15 same as above same as above MLISQRPTLSEDVLTDNR 

1 31.1 99.0 1954.02 same as above same as above SLVVSSEEDEPVTMYLR 

1 31.1 99.0 1485.91 same as above same as above TLLSSIPGAAVTSIR 

1 31.1 99.0 1118.68 same as above same as above TLVELFGLAR 

1 31.1 99.0 1248.70 same as above same as above EGVHTVGELVAR 
 

a
The rank of the specified protein relative to all other proteins in the list of detected proteins 

b
The number of matching amino acids (from peptides) divided by the total number of amino acids in the sequence (expressed as a 

percentage) 
c
The confidence for the peptide identification (expressed as a percentage) 

d
The monoisotopic m/z for the ion fragmented in this cycle and experiment, as determined by the instrument 

e
The accession number of the detected protein 

f
The name of the detected protein 

g
The sequence of the peptide with the highest confidence that was identified by the search 
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Table II-A4.  Log IC50 Values and Standard Errors of the Fits for Known Rifamycins with RNAP 

 

 Log IC50
1
 (standard error of fit

2
, Hill slope

3
) 

RNAP Rifampin Rifabutin Rifaximin 

MTB (WT) -1.759 (±0.059, 1.41) -1.639 (±0.059, 1.19) -2.131 (±0.076, 0.84) 

MTB !(D435V) 2.667 (±0.095, 1.13) 2.233 (±0.109, 0.81) 2.704 (±0.101, 0.87) 

MTB !(H445Y) 2.785 (±0.496, 1.0)
 4
 3.08 (±0.113, 1.06)

 4
 2.929 (±0.087, 1.03) 

MTB !(S450L) 2.037 (±0.062, 1.35) 1.291 (±0.104, 1.15)
 4
 2.053 (±0.075, 1.85)

 4
 

E. coli (WT) -1.912 (±0.069, 1.10) -1.377 (±0.050, 1.34) -1.239 (±0.061,0.73) 

E. coli !(D516V)  2.368 (±0.055, 0.76) 1.111 (±0.039, 1.21)
 4
 2.471 (±0.089, 0.68) 

E. coli !(H526Y) 3.052 (±0.058, 1.04) 3.133 (±0.513, 0.70)
 4
 3.183 (±0.049, 0.88) 

E. coli !(S531L) 2.233 (±0.060, 0.82) 0.693 (±0.037, 1.81)
 4
 1.931 (±0.098, 0.82) 

 
1
 The log IC50 values are such that the IC50 values will be in !M.  Negative log IC50 values reflect IC50 values less than !M (e.g., in 

the nM range).  Values were fit to a four parameter logistic regression model with the top and bottom limits set at 100 and 0 

respectively. 
2
 The average error is ~10 %, which roughly translates to 20-25% in the IC50. 

3
 The average Hill slope is 1.07. 

4
 For these IC50s, the regression model was allowed to fit the bottom limit as the data plateaued above zero (see discussion in text). 
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CHAPTER III 

Synthesis and Structure-Activity Relationships of Novel Substituted 8-amino, 8-thio, 

and 1,8-pyrazole Congeners of Antituberculars Rifamycin S and Rifampin 

 

Rifamycins have been used to treat tuberculosis (TB) for the past 40 years.  

Rifampin (RMP), along with other rifamycins, is a potent inhibitor of DNA-dependent 

RNA polymerase (RNAP), an essential enzyme involved in gene expression (1-3).  Since 

first introduced in the 1960’s, RMP has been effectively used to treat both forms of TB 

(active and latent) and has reduced TB treatment from 18 to 9 months (4-6).  

Unfortunately, RMP has a number of shortfalls that include issues of resistance, 

hepatotoxicity, flu-like syndrome at higher doses, and drug-drug interactions (1, 7). 

Due to these limiting characteristics of RMP, it is necessary to develop new 

derivatives that are: 1) successful against resistant strains (MDR and XDR); 2) effective 

against both forms of TB; 3) able to reduce the length of TB therapy; 4) unable to induce 

cytochrome P450 (CYP) (1, 8).  Previously, structure-activity relationship studies have 

led to the synthesis of numerous rifamycin derivatives; however, only a few rifamycins 

have been approved in the United States with improved potency and antibacterial activity 

than RMP (1, 9). 

Although many rifamycin derivatives have been investigated, the recent 

availability of crystal structures (RMP bound to Thermus aquatic RNAP; rifabutin and 

rifapentine bound to Thermus thermophilus RNAP) provides information on how to 
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improve the design of rifamycins (10, 11).  There are twelve ! subunit residues that 

directly interact with RMP via hydrogen bonds and van der Waals interactions (10).  The 

most frequently mutated residue in clinical isolates that results in rifamycin-resistant 

(RifR) RNAP is Ser450, which forms a hydrogen bond with the rifamycin hydroxyl at C-

8.  Previously, acetylation of the C-8 hydroxyl resulted in an inactive rifamycin 

derivative; however, this position has not been fully investigated (1, 12). 

To further investigate the C-8 position, a series of novel rifamycin S (Rif S) and 

RMP analogues incorporating 8-amino, 8-thio, and 1,8-pyrazole substituents were 

synthesized (Figure III-1 and III-2).  The analogues were screened against the virulent 

strain, MTB H37RV, to quantify their antitubercular activity under both aerobic and 

anaerobic conditions.  The inhibition of wild-type (WT) Mycobacterium tuberculosis 

(MTB) RNAP and RifR MTB RNAP (S450L) by select C-8 analogues was assessed via 

an in vitro rolling circle transcription assay.  The MIC90 values were determined for these 

analogues against E. coli strains.  Additionally, representative analogues were evaluated 

in the human pregnane X receptor (hPXR) activation assay.  Our goal is to use this 

information to not only investigate the molecular mechanisms responsible for resistance 

but also to guide the development of new analogues with potential for enhanced activity 

against RifR RNAP. 
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Figure III-1:  Synthesis of C-8 analogues of Rifamycin S.  (The detailed synthesis of 

these analogues is described in Appendix III-1) 

 

 
 

Figure III-2:  Synthesis of C-8 analogues of Rifampin and Rifampin S.  (The detailed 

synthesis of these analogues is described in Appendix III-1) 
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Materials and Methods 

Reagents 

All of the reagents were the same as the ones specified in Chapter II.  The hPXR 

activation and cell viability in 96-well format assay was from Puracyp, Inc.  Rifamycin S 

was from AAPharmaSyn LLC.  Rifampin was from Boche Scientific. 

Determination of Minimal Inhibitory Concentration (MIC) of C-8 Analogues Against 

MTB H37Rv Strains 

The analogues were screened against the MTB virulent strain (H37Rv) under both 

aerobic and anaerobic conditions (Table III-1).  Briefly, the 8-day Microplate Alamar 

Blue Assay (MABA) (13) was used to give an assessment of activity against replicating 

MTB.  The 11-day high-throughput, luminescence-based Low-Oxygen-Recovery Assay 

(LORA) (14) was used to measure activity against bacteria in a non-replicating state that 

models clinical persistence.  Minimum inhibitory concentrations (MIC90) are defined as 

the lowest compound concentration effecting >90% growth inhibition. 

Expression and Purification of WT MTB RNAP and RifR MTB RNAP (Ser450Leu) 

Both the WT and RifR MTB RNAP (Ser450Leu) were expressed and purified as 

described in Chapter II. 

Inhibition Studies via Rolling Circle Transcription Assay 

The IC50 values were determined for RMP (1), Rif S (2), and RMP S (6) and the 

following C-8 rifamycin analogues: 3, 4a, 4c, 4i, 4j, 7, 9b (Figures III-1 & III-2, Table 

III-1).  The dose response curves (Figure III-3) were constructed by using the in vitro 

rolling circle transcription assay as described in Chapter II.  The assays were performed 

on Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek) using 96-well half-area 
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black plates.  Each of the rifamycin analogues was tested in duplicate against the wild-

type MTB RNAP and the MTB RNAP (S450L) mutant.  The concentration ranges used 

for the wild-type MTB RNAP were as follows: for 1 (1.56-100 nM); for 2 (3.13-200 

nM); for 3 (6.25-400 nM); for 4a (1.56-100 !M); for 4c (0.08-5 !M); for 4i (0.1-800 

!M); for 4j (3.13-200 nM); for 6 (1.56-100 nM); for 7 (25-1600 nM); for 9b (12.5-800 

nM).  The concentration ranges used for the MTB RNAP (S450L) mutant were as 

follows: for 1 (0.02-2.5 mM); for 2 (0.01-2.5 mM); for 3 (0.08-5 mM); for 4a (0.08-5 

mM); for 4c (0.04-2.5 mM); for 4i (0.04-2.5 mM); for 4j (0.01-2.5 mM); for 6 (0.01-2.5 

mM); for 7 (0.01-2.5 mM); for 9b (0.01-2.5 mM).  The reaction was allowed to continue 

for 2 h for WT MTB RNAP or 1.5 h for RifR MTB RNAP (S450L) and aliquots were 

taken every 30 min and quenched in TE buffer.  RiboGreen (an ultrasensitive fluorescent 

nucleic acid stain) was used to determine the amount of RNA synthesized (!ex=480 nm; 

!em=520 nm).  The IC50 value for each rifamycins was calculated by non-linear 

regression as described in Chapter II, and the logIC50s and their standard errors (of the fit) 

are reported below in Table III-A1 in Appendix III-3. 

Minimal Inhibitory Concentration 90% (MIC90) Against E. coli Strains 

Initially all analogues were assayed against a WT E. coli strain (TG2), a mutant E. 

coli strain (EC2880), and an avirulent strain of Shigella (BS103), data not shown.  Then 

the MIC90 values of selected rifamycins (reported in Table III-2) were determined for E. 

coli strains DH5" and TG2 (wild-type lab strains) and EC2880 (tolC
-
 mutant, gift of Dr. 

M. Hubband, Pfizer Inc.).  The strains were grown on LB plates.  A colony was grown in 

2xTY media at 37
o
C for 3-4 h until the culture reached OD625nm 0.08-0.13.  The assays 

were performed using sterile 96-well polystyrene plates.  Each well contained 50 !L 
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aliquots of culture and 50 !L serial two-fold dilutions of rifamycin analogues (1, 2, 3, 4a, 

4c, 4i, 4j, 6, 7, 9b).  The compounds were initially dissolved in DMSO and then serial 

dilutions were made in 2xTY media.  The concentrations of the rifamycins were 0.049-

100 !M for DH5! and TG2 strains and 0.006-12.5 !M for EC2880 strain.  The plates 

were covered and incubated at 37
o
C for 16-20 h.  OD600nm absorbance was measured on 

Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek).  The error of the reported 

MIC90 values is within one 2-fold dilution. 

Human Pregnane X Receptor (hPXR) Activation Assay 

The manufacturer’s protocol for the hPXR activation and cell viability assay was 

followed for the 96 well plate assay.  Briefly, the DPX2 cells were thawed in a 37°C 

water bath and mixed thoroughly with culture media.  Then 100 !L of cell mixture was 

transferred into each well and the plate was incubated overnight in a 5% CO2 incubator at 

37°C.  The following day, the dosing media was thawed in a 37ºC water bath.  The 

dilutions of rifamycin derivatives (8a, 9a, and 10a) and RMP (1, positive control) were 

prepared as described in the manual.  The 96 well plate was removed from the incubator 

and liquid from each well was discarded before adding 100 !L of the dilutions to the 

specific wells.  Each dilution of the rifamycin derivative was tested in triplicate.  The 

plate was placed in the 5% CO2/37ºC incubator again for 24 h.  The next day, the 

CellTiter-Fluor Buffer and CellTiter-Fluor
TM

 were thawed at room temperature before 

adding 5 !L of CellTiter-Fluor
TM

 to 10 mL of CellTiter-Fluor Buffer.  The wells of the 

96 well plate were emptied again and 100 !L of CellTiter-Fluor
TM

 reagent was added to 

each well.  The plate was incubated for 1 h in the 5% CO2/37ºC incubator.  The Synergy 

H1 Hybrid Multi-Mode Microplate Reader (BioTek) was used to measure fluorescence 
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(!ex=390 nm; !em=505 nm).  To obtain luminescence readings, the contents of ONE-

Glo
TM

 Assay Buffer were added to the ONE-Glo
TM

 Assay Substrate and then 100 !L of 

mixture was transferred into each well.  The plate was read after 5 min where the 

luminometer was set for 5 sec pre-shake with 5 sec/well read time.  The Relative 

Luminescence Units (RLU) and Relative Fluorescence Units (RFU) were determined as 

outlined under the “Quantitation of PXR Receptor Activation” section of the manual.  

The normalized luciferase activity (RLU/RFU) was divided by the normalized DMSO 

control to represent the data as ‘fold activation’ relative to the control.  The replicate data 

points were averaged and both the original data points and the average values were 

plotted as a function of log concentration versus hPXR Activation.  The average values 

were then fit by non-linear regression to a modified four parameter logistic equation 

using Kaleidagraph (Synergy Software, Essex, VT): 

y = 1+ [(M3– 1)/(1 + 10
[(M1-M0)*M2]

)], 

where M3 is the EMAX, and 1 is the lower limit of the assay, M0 is the log of the 

rifamycin concentration, M1 is the log of the EC50, and M2 is the Hill slope.  The data 

were normalized such that the lower limit was set to 1.  M1, M2, and M3 were fit by the 

regression. 

Chemistry and Synthesis of C-8 Analogues 

All of the C-8 rifamycin analogues were synthesized by Ms. Yafei Jin and Prof. 

Hollis Showalter.  See Appendix III-1 for details. 

Structure-based Modeling Studies 

The structure-based modeling was performed by Dr. Paul Kirchhoff.  See 

Appendix III-2 for details. 
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Results 

MIC90 values of C-8 Analogues Against MTB H37Rv Strains 

The antitubercular activity of these C-8 Rif S and RMP analogues was assessed 

via MABA and LORA (Table III-1).  Under aerobic conditions within the Rif S series 

(MABA), analogues incorporating C-8 amine substituents (4a – 4j) displayed modest 

MIC90 values (1.4 – >5.6 !M) relative to the parent Rif S (2) (0.03 !M).  A similar 

pattern of activity was observed under anaerobic conditions (LORA).  The LORA MIC90 

values were ~3 to 16 fold greater than the MABA MIC90 values, and only analogue 4c  

displayed modest activity (5.4 !M).  The thioether derivative (4j) within the Rif S series 

was the only analogue with modest (and essentially equivalent) potency in both MABA 

and LORA (2.0 !M vs. 1.3 !M, respectively).  Amine adducts within the RMP S (8a – 

8f) and RMP (10a – 10f) series displayed similar potencies as the Rif S series in the 

MABA (MIC90 values 3.6 – >4.7 !M) and the LORA (MIC90 values 13.7 – >19.2 !M), 

with a 3.5 – > 5 fold differential between the two assays.  Core-modified pyrazole 

analogues within both Rif S (5) and RMP S (9a, 9b) series are weakly to moderately 

active with MIC90 values of 3.9 – >5.4 !M in the MABA and >18.6 !M in the LORA.  

Surprising and especially noteworthy are the potencies of the tosylated intermediates.  Rif 

S tosylate (3) exhibited MIC90 values of 0.20 !M in the MABA and 3.0 !M in the 

LORA, and the MIC90 values for RMP S tosylate (7) were 0.24 !M and 4.8 !M, 

respectively.  To determine if these values were due to a prodrug effect from simple 

sulfonate hydrolysis to parent compounds 2  and 6 , respectively, we subjected each 

tosylate to conditions utilized for MIC determinations (2xTY media, 37ºC, 24 h) and the 

RNAP assay (RNAP 5X reaction buffer, 37ºC, 2 h).  At the end of the assay period, the 
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medium was extracted with ethyl acetate and the organic extract was analyzed by thin-

layer chromatography for the presence of either parent phenol or corresponding tosylate.  

In all cases, only the presence of tosylate was observed. 

Table III-1.  Screening Results of Rifamycin Analogues vs. MTB 

No. Class C-8 Substituent MTB MIC90 (!M)
a 

   MABA LORA 

2 Rif S hydroxyl 0.03 0.4 

3 Rif S tosyloxy 0.20 3.0 

4a Rif S amino 1.41 22.2 

4b Rif S methylamino > 5.6 20.6 

4c Rif S dimethylamino 1.8 5.4 

4d Rif S ethylamino 5.5 21.4 

4e Rif S methoxyamino 3.8 12.5 

4f Rif S N-(2-propenyl)amino 5.2 18.3 

4g Rif S (2-hydroxyethyl)amino 5.32 > 21.7 

4h Rif S benzylamino 2.4 > 20.4 

4i Rif S cycloheptylamino 2.2 > 20.2 

4j Rif S methylthio 2.0 1.3 

5 Rif S pyrazole 2-hydroxyethyl > 5.4 > 21.7 

6 RMP S hydroxyl 0.07 0.5 

7 RMP S tosyloxy 0.24 4.8 

8a RMP S methylamino 3.64 > 19.2 

8b RMP S ethylamino > 4.7 > 18.9 

8c RMP S N-(2-propenyl)amino > 4.7 > 18.6 

8e RMP S (2-hydroxyethyl)amino > 4.6 > 18.5 

8f RMP S benzylamino > 4.4 > 17.6 

8g RMP S cycloheptylamino 3.9 13.7 

9a RMP S 

pyrazole 

methyl > 4.8 > 19.3 

9b RMP S 

pyrazole 

2-hydroxyethyl 3.9 > 18.6 

10a RMP methylamino 4.0 > 19.1 

10b RMP ethylamino > 4.7 > 18.8 

10c RMP N-(2-propenyl)amino > 4.6 > 18.6 

10d RMP (2-hydroxyethyl)amino > 4.6 > 18.5 

10e RMP benzylamino > 4.4 > 17.5 

10f RMP cycloheptylamino 3.8 > 17.4 

1 (RMP) hydroxyl 0.13 1.9 

Isoniazid N/A
b 

0.39 > 128 

PA824 N/A 0.66 2.3 

Moxifloxacin N/A 0.64 4.3 
a
 The MIC90 is defined as the minimum concentration of the compound required to 

inhibit 90% of bacterial growth; 
b
 N/A = not applicable 
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Inhibition Studies via Rolling Circle Transcription Assay 

The inhibition of WT MTB RNAP and RifR MTB RNAP (S450L) by these novel 

C-8 rifamycin derivatives was assessed via dose-response studies.  Each analogue was 

tested in duplicate in dilutions ranging in concentrations specified in the Materials and 

Methods section.  The data were plotted (log rifamycin concentration vs. % activity) and 

then fit by nonlinear regression (Figure III-3), and the apparent IC50 values are listed in 

Table III-2.  For the WT MTB RNAP, RMP (1), Rif S (2), thioether 4j and RMP S (6) 

show the highest potency with IC50 values in the low nM range.  The IC50 values for 

RMP (1) and Rif S (2) were determined to be less than 10 nM.  However, the amount of 

enzyme used in each reaction was 10 nM (the lowest concentration that could be used 

confidently).  Under these conditions, it is possible that a 10 nM IC50 value may simply 

reflect the “titration” of the enzyme by an inhibitor with a much lower true IC50 value.   

 
 

Figure III-3:  Example of a Dose-Response Curve.  All of the individual data point (x) 

and the average data points (!) were plotted.  The average data were fit by 

nonlinear regression to determine the IC50 values. 
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Therefore, any IC50 value determined to be less than 10 nM was reported simply as “< 

0.01” !M. 

As mentioned above, the tosylated intermediates 3 & 7 have comparable MTB 

MIC90 values for both MABA and LORA; however, the IC50 value with WT MTB RNAP 

for 7 was ~7-fold greater than that for 3.  The IC50 value of 3 (21 nM) was >2-fold greater 

than the IC50 value of Rif S (<10 nM) with the WT MTB RNAP.  Owing to the fact that 

the MABA MIC90 value for 3 was 5-fold greater than that for Rif S, a parallel decrease in 

potency was observed for both the MIC90 and IC50 values for 3 in comparison with Rif S.  

However for compound 7, this trend was not as quantitative.  The IC50 value with WT 

MTB RNAP for 7 (142 nM) was more than 10-fold greater than the IC50 value for RMP S 

(13 nM); whereas, the MABA MIC90 value of 7 was only ~3-fold greater than that for 

RMP S.  Surprisingly for the MTB RNAP (S450L) mutant, a lower IC50 value was 

observed for 7 (~9 fold lower) than the IC50 value of 3.  Within the Rif S series, the 

amino analogues (4a, 4c, and 4i) that had exhibited modest MIC90 values under aerobic 

conditions have much more variable IC50 values (~70-2000 fold greater than Rif S).  

These analogues have comparable IC50 values against the MTB RNAP (S450L) mutant, 

which are still 3-8 fold greater than Rif S.  The thioether derivative (4j) also exhibited 

modest MABA MIC90 values, but the IC50 values are comparable to the IC50 values 

observed for the controls (1, 2, 6) with both WT MTB RNAP and the mutant.  Although 

the pyrazole analogue (9b) was weakly active microbiologically with higher MTB MIC90 

values, the IC50 value is comparable to that observed for 7 for WT MTB RNAP (both 

about 10-20 fold higher than those for RMP, RMP S and Rif S).  In general, all rifamycin 
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analogues have MTB MIC90 values that are higher than their IC50 values for the MTB 

RNAP with the exception of 4i. 

Table III-2.  Selected Rifamycins vs. MTB RNAP and E. coli 

No. 
IC50  (!M)

a 

(WT MTB 

RNAP) 

IC50 (!M)
a 

(MTB RNAP 

(S450L)) 

E. coli MIC90 (!M)
b 

   TG2 DH5!  EC2880 

1 < 0.01  52.1 12.5 12.5 0.1 

2 < 0.01  36.0 100 > 100 0.78 

3 0.021 982 > 100 > 100 3.125 

4a 4.4 186 > 100 > 100 12.5 

4c 0.503 270 > 100 > 100 12.5 

4i 15.4 127 > 100 > 100 > 12.5 

4j 0.015 37.5 > 100 > 100 > 12.5 

6 0.013 46.5 12.5 25 0.1 

7 0.142 111 > 100 > 100 12.5 

9b 0.139 29.9 > 100 > 100 > 12.5 
a
 The IC50 is defined as the concentration that results in 50% inhibition of transcription.  

The log IC50 values and their standard errors (of the fit) are reported in Table III-A1 in 

Appendix III-3. 
b
 The MIC90 is defined as the minimum concentration of the compound required to 

inhibit 90% of bacterial growth 

 

MIC90 values of C-8 Analogues Against E. coli Strains 

The MIC90 values of a subset of C-8 analogues were determined using WT E. coli 

strains (TG2 and DH5!) and a mutant E. coli strain (EC2880-“permeable” strain, tolC
-
 

and imp
-
) (Table III-2).  The E. coli MIC90 value for compound 3 was only 4-fold greater 

than that observed for Rif S, which parallels compound 3’s IC50 value that is 3-4 higher 

than that for Rif S.  Interestingly, the analogues with MTB MABA MIC90 values of 1.8 

!M or lower had E. coli MIC90 values of 12.5 !M or less for the mutant strain but no 

correlation could be made for WT E. coli strains. 
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Human Pregnane X Receptor (hPXR) Activation Assay 

To assess the ability of specific rifamycins to activate the human pregnane X 

receptor (hPXR), the hPXR activation assay system from Puracyp, Inc. was used.  The 

results are shown in Figure III-4 and Table III-3 for analogues 8a, 9a, and 10a. 

 
Figure III-4:  The hPXR Activation Assay.  Concentrations of positive control (RMP, 

red) and selected rifamycin analogues (8a, 9a, and 10a, blue, green and 

black respectively) versus fold PXR activation. 

 

RMP exhibited a high maximal degree of activation (9.5 fold) and an EC50 of 5.6 

!M (Figure III-4 left).  The methylamino derivatives of RMP S (8a) and RMP (10a) were 

fit to a dose-response curve that revealed a 6.9 and 8.9-fold maximal activation of hPXR 

and an EC50 of 2.1 and 4.1 !M, respectively (Figure III-4 right; Table III-3).  These 

analogues did exhibit loss of cell viability at 25 !M (such that the 100 !M data point was 

not used in the dose-response curve fit).  The RMP S pyrazole derivative (9a) showed ~2 

fold hPXR activation at 6.25 !M and dramatic loss of cell viability above 6.25 !M (such 
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that no hPXR activation was seen).  The loss of cell viability could be observed from the 

lower RFU values obtained from the assay (Table III-4). 

Table III-3.  PXR Activity of Selected Rifamycin Analogues  

No. 
EC50  (!M)

a 
EMAX

b
  

(fold increase) 

1  5.6 9.5 
8a 2.1 6.9 
9a - - 
10a 4.1 8.9 

a EC50 is defined as the half maximal effective concentration. 
b ECMAX is the maximal effective concentration of the compound. 
 

Table III-4.  Mean Relative Fluorescence Units (RFU)a for RMP (1) and C-8 Analogues 
(8a, 9a, 10a) in the hPXR Activation Assay 

 
Conc  

(!M) 

RMP (1)  

(n=2) 

Conc  

(!M) 

8a  

(n=3) 

9a 

(n=3) 

10a  

(n=3) 

20 39860 100 10339 5139 4510 

10 43506 25 29469 6083 20902 

5 46648 6.25 46186 33527 38109 

1 45714 1.56 44676 39444 39274 

0.5 42223 0.39 49578 48660 41326 

0.1 46084 0.098 48519 47122 44851 
a RFU is a measure of cell viability in the assay.  For controls, 1% DMSO = 46021; 
Dosing media = 42907. 
 

Structure-based Modeling Studies 

Modeled poses were generated by Dr. Kirchhoff for each of the analogues listed 

in Table III-2.  Modeling was based on the 2.5 Å resolution structure of rifabutin 

complexed with the Thermus thermophilus RNAP holoenzyme (PDB ID: 2a68) (11) and 

described more in detail in Appendix III-2.  Modeled poses for Rif S (2) and amino 

analogue (4i) are shown in Figure III-5.  RNAP is shown as a molecular surface within 5 

Å of the inhibitors and shaded to indicate areas of lipophilicity (green), hydrogen bonding 
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(magenta) and mild polar (blue).  This figure illustrates how the loss of the C-8 hydroxyl 

is a potential loss of a hydrogen bond contact with RNAP. 

 

 
 
Figure III-5:  RNAP is shown as a molecular surface within 5 Å of the inhibitors (carbon 

atoms shown in gray) and shaded to indicate areas of lipophilicity (green), 
hydrogen bonding (magenta) and mild polar (blue).  (A) Rif S (2).  (B) 
Cycloheptylamino analogue (4i). 

 

Discussion 

Previously, the acetylation of the C-8 hydroxyl has led to an inactive rifamycin 

derivative (12); however, this position has not been fully investigated.  No C-8 rifamycin 

analogues derived from amine or sulfur nucleophiles have been reported other than the 

synthesis of Rif S ammonia adduct 4a reported in the patent literature (15).  Additionally, 

there is no account of any ring fusions onto the 1,8-carbon positions.  Hence the 

syntheses of pyrazoles 5 , 9a, and 9b represent the first reports of such a core 

modification.  Herein, we explore the SAR of the C-8 position by incorporating 8-amino, 

8-thio, and 1,8-pyrazole substituents. 
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The MIC90 values of these C-8 analogues against WT MTB H37RV strains were 

determined at the Institute for Tuberculosis Research (ITR/UIC) using Microplate 

Alamar Blue Assay (MABA) and Low Oxygen-Recovery Assay (LORA), where the 

latter assay is a model for the latent form of MTB.  The MIC90 values (for both MABA 

and LORA) were higher for the amine and pyrazole derivatives compared to their parent 

scaffolds.  The unsubstituted NH2 analogue (compare 4a vs. 4b – 4i) was observed to be 

the best within this small series, although there is no significant variation from the 

smallest to the largest substituent.  The addition of small polar functionality (e.g., 4e , 4g) 

or bulky lipophilic moieties (e.g., 4h, 4i) seemed to impart minimal effect on potency.  

However, the tosylated (3  and 7) and thioether (4j) derivatives displayed surprisingly 

low MIC90 values (but still higher than parent scaffolds), which are corroborated by 

excellent potency toward the target RNAP enzyme.  In general, enhanced antitubercular 

activity was not observed with these C-8 analogues. 

From the crystal structure of RMP bound to Thermus aquaticus RNAP, it was 

observed that there are twelve ! residues in close proximity that directly interact with 

RMP (10).  Mutations of most of these residues lead to RifR RNAPs.  The most 

frequently mutated residue found in MTB clinical isolates is the Ser450 residue, which 

directly interacts with the C-8 hydroxyl via hydrogen bond (10, 16).  Therefore, these C-8 

rifamycin analogues were screened against both WT MTB RNAP and RifR RNAP 

(Ser450Leu) via an in vitro rolling circle transcription assay.  As shown in Table III-2, 

the control rifamycins (1, 2, and 6) inhibited WT MTB RNAP in the 10
-9

 M (nM) range; 

whereas, the IC50 values for the RifR MTB RNAP (Ser450Leu) were in the 10
-6

 M ("M) 

range (consistent with what has been observed previously (17)).  Unfortunately, no 
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analogues tested here resulted in a more potent rifamycin derivative against the RifR 

MTB RNAP (S450L) mutant. 

All rifamycin analogues have MTB MIC90 values that are higher than their IC50 

values for the MTB RNAP with the exception of 4i.  This differential between IC50 and 

MTB MIC90 may be due in some cases (where the differential is large) to the molecules 

not equilibrating efficiently across the cell envelop or to the more trivial explanation (in 

cases where the differential is small) that the IC50 is a 50% inhibition point whereas the 

MIC90 is a 90% inhibition point.  In the case of 4i, the analogue has an MTB MIC90 that 

is approximately 8-fold smaller than the IC50.  One possibility is that the cycloheptyl 

moiety of 4i may help to concentrate the analogue within the MTB cell. 

In addition to determining the MTB MIC90 values, the MIC90 values for WT E. 

coli strains (DH5! and TG2) and mutant E. coli strain (EC2880-tolC deficient) were 

determined for select C-8 analogues (Table III-2).  The MIC90 values were lower for the 

mutant strain compared to the WT strains, but these values were still higher than the 

values observed for the control compounds (1, 2, and 6).  This observation is consistent 

with previous postulates that the lower sensitivity of Gram-negative bacteria to 

rifamycins is due to the removal of rifamycins from the interior of the cell via TolC-

dependent efflux pumps. 

One of the clinical liabilities of RMP (1) includes its induction of cytochrome 

P450 3A4 (CYP3A4), which is mediated by the human pregnane X receptor (PXR) (1, 

8).  Activation of hPXR was seen for the representative analogues (8a, 9a, and 10a) to a 

certain concentration before cytotoxicity was observed at higher concentrations.  From 

this data, it seems unlikely that any of these analogues are Cyp inhibitors. 



 

 81 

To gain better understanding of the SAR, structure-based modeling studies were 

conducted.  Modeling was based on the 2.5 Å resolution structure of rifabutin complexed 

with the Thermus thermophilus RNAP holoenzyme (PDB ID: 2a68) (11). Since the 

rifamycin binding site is highly conserved among bacteria, this structure provides a good 

foundation for understanding how proposed rifamycin analogues may interact with the 

MTB RNA polymerase. 

Conclusions 

In summary, a novel series of rifamycin S and rifampin analogues incorporating 

substituted 8-amino, 8-thio, and 1,8-pyrazole substituents were synthesized.  The 

compounds were screened for inhibition of WT MTB RNAP and RifR MTB RNAP 

(S450L) as well as antitubercular effects under both aerobic and anaerobic conditions.  

The data show that our modification of the C-8 position of the parent scaffolds resulted in 

diminished activity.  The enzymatic and microbiological data are consistent with 

modeling and computational studies which support the C-8 hydroxyl acts as a hydrogen 

bond acceptor/donor with S450 and that Rif resistance in the S450L mutant is due to loss 

of this hydrogen bond. 
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Abbreviations used:  TB, tuberculosis; RMP, rifampin; RNAP, DNA-dependent RNA 

polymerase; Rif S, rifamycin S; RMP S, rifampin S; WT, wild-type; RifR, Rifamycin-

resistant; MTB, Mycobacterium tuberculosis; MDR, multi-drug resistant TB strain; XDR, 

extensively-drug resistant TB strains; NTP, ribonucleotide triphosphate; IPTG, isopropyl 

!-D-thiogalactoside; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis; PMSF, phenylmethylsulfonyl fluoride; EDTA, 

ethylenediaminetetraacetic acid; DTT, dithiothreitol; RNA, ribonucleic acid; MABA, 

Microplate Alamar Blue Assay; LORA, Low Oxygen-Recovery Assay; IC50, 

concentration of rifamycin resulting in 50% inhibition of transcription; MIC90, 

concentration of rifamycin that results in 90% inhibition of bacterial growth; CYP3A4, 

cytochrome P450 3A4; hPXR, human pregnane X receptor; EC50, half maximal effective 

concentration; ECMAX, maximal effective concentration of the compound; RFU, relative 

fluorescence units; RLU, relative luminescence units 
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Appendix III-1 

Chemistry 

Our strategy was to first activate the C-8 peri-phenolic functionality of readily 

available Rif S (2) as a sulfonate ester, and then displace this with selected nitrogen 

nucleophiles through an addition-elimination mechanism (Figure III-1).  Given that the 

rifamycin framework is embellished with so much functionality, including free hydroxyl 

groups at C-21 and C-23 (Figure III-5), we first needed to work out conditions for 

selective functionalization of the C-8 phenolic moiety.  Thus, the reaction of Rif S (2) 

with sulfonyl chlorides representing a range of reactivity (p-toluenesulfonyl, p-

chlorosulfonyl, methanesulfonyl) and triflic anhydride was evaluated under different 

temperature and solvent conditions.  Of these, only p-toluenesulfonyl and p-

chlorosulfonyl sulfonate esters formed cleanly under optimum conditions (Hunig’s base, 

acetonitrile, room temperature) with tosylate 3  formed in 84% yield.  Subsequent 

reactions of these with amines and hydrazines indicated that the p-chlorosulfonate ester 

was susceptible to cleavage to Rif S, whereas the p-toluenesulfonate ester provided the 

desired C-O bond displacement.  With this finding, condensation of 3  was then carried 

out with a range of amines to provide adducts 4a-4i  in 11-51% yields, and with (2-

hydroxyethyl)hydrazine to give annulated pyrazole product 5  in very low (5%) yield.  

We also tested tosylate displacement with a single thiol (methanethiol sodium salt), 

which provided analogue 4j in poor yield.  Having developed the chemistry for Rif S, we 

then applied it toward making related analogues of RMP (1 , Figure III-2).  Thus, 

oxidation of RMP with potassium ferricyanide provided rifampin S (RMP S, 6) in 65% 

yield.  Tosylation of the 8-hydroxyl function was conducted as described above to give 
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key intermediate 7  in nearly quantitative yield.  Amination of 7  was then carried out with 

several of the same amines utilized above to give adducts 8a – 8f  in 35-60% yields and 

pyrazoles 9a (33% yield) and 9b (40% yield).  Disappointingly, an attempt to make the 

simple unsubstituted pyrazole congener derived from hydrazine was unsuccessful.  

Similarly, we were unable to secure a highly sought for analogue derived from ammonia 

displacement of tosylate 7 .  Utilizing the same conditions that gave 4a led to a product in 

46% yield that both mass spec and NMR data showed incorporation of the NH2 function, 

but without loss of the C-8 tosyloxy moiety.  The NMR spectrum was too complex to 

make a definitive structural assignment.  Candidate possibilities include Michael addition 

of ammonia to the dienone function or to the imino double bond of the side chain 

hydrazone.  The quinone function of each RMP S amine adduct was then reduced with 

ascorbic acid to the hydroquinone form, providing corresponding RMP C-8 amine 

congeners 10a – 10f  in 51 – 93% yield.  The full range of synthesized compounds is 

shown in Table III-1. 

No effort was made to optimize the reaction conditions that provided amine, thiol, 

or pyrazole adducts from tosylates 3  or 7 , and product yields in general represent a single 

run for each target compound.  All compounds were rigorously purified by preparative 

silica gel chromatography, and their structural assignments were supported by diagnostic 

peaks in the 
1
H NMR spectra and by mass spectrometry. 

General Chemical Methods.  

1
H NMR spectra were recorded on Bruker 500 MHz and Varian 300 MHz 

spectrometers.  Chemical shifts are reported in ! (parts per million: ppm), by reference to 

the hydrogen residues of deuterated solvent as internal standard (CDCl3: ! = 7.28 ppm; 
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CD3OD: ! = 3.31).  Signals are described as s, d, t, dd, m, and dt for singlet, doublet, 

triplet, doublet of doublets, multiplet, and doublet of triplets, respectively.  All coupling 

constants (J) are given in Hertz (Hz).  Mass spectra were recorded on a Micromass LCT 

time-of-flight instrument utilizing the electrospray ionization mode.  Reactions were 

monitored by thin-layer chromatography (TLC) using pre-coated silica gel 60 F254 

plates.  Chromatography was performed with silica gel GHLF plates (250 microns).  

Rifamycin S was obtained from AAPharmaSyn, Ann Arbor, MI, and rifampin from 

Bosche Scientific.  Reagents and monomers were purchased from common vendors and 

were used without purification.  Glassware was oven-dried before use for reactions run 

under anhydrous conditions.  

8-( p-Toluenesulfonyloxy)rifamycin S (3) 

Into an ice-cold solution of rifamycin S (2, 696 mg, 1.0 mmol) in acetonitrile (5 

mL) was added diisopropylethylamine (155 mg, 1.2 mmol).  Then, p-toluenesulfonyl 

chloride (210 mg, 1.1 mmol) was added to the reaction mixture portion-wise.  This 

resultant mixture was slowly warmed to room temperature.  After stirring for 2 h, it was 

diluted with dichloromethane (40 mL).  This solution was washed with 1N aqueous 

NH4Cl (3 x 30 mL), followed by saturated brine (30 mL), dried over anhydrous sodium 

sulfate and evaporated in vacuo to dryness to yield 3 as a light brown solid (717 mg, 

84%).  The compound was utilized without further purification.  ESI MS: m/z 872.2 

(M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 8.28 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.84 (s, 

1H), 7.41 (d, J = 8.1 Hz, 2H), 6.39 (dd, J = 10.5, 15.7 Hz, 1H), 6.24 (d, J = 10.5 Hz, 1H), 

6.15 (dd, J = 6.8, 15.3 Hz, 1H), 5.98 (d, J = 12.3 Hz, 1H),  5.10 (dd, J = 4.8, 12.3 Hz, 

1H), 4.95 (d, J = 10.3 Hz, 1H), 3.88 (d, J = 4.3 Hz, 1H), 3.69 (d, J = 9.7 Hz, 1H), 3.37 (br 
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s, 2H), 3.07 (s, 3H), 3.00 (d, J = 7.7 Hz, 1H), 2.50 (s, 3H), 2.34 (m, 1H), 2.18-2.02 

(complex pattern), 1.78 (s, 3H), 1.67 (m, 2H), 1.26 (m, 1H), 1.08 (d, J = 6.7 Hz, 3H), 

0.87 (d, J = 6.9 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H), 0.06 (d, J = 7.0 Hz, 3H). 

8-(Methylamino)rifamycin S (4b) 

Methylamine (105 !L of 2 M solution in THF, 0.21 mmol) was added drop-wise 

to an ice-cold solution of 8-(tosyloxy)rifamycin S (3; 170 mg, 0.2 mmol) in acetonitrile 

(5 mL).  The resulting mixture was stirred at room temperature for 18 h before being 

diluted with dichloromethane (25 mL).  This solution was washed with 1 N aqueous 

NH4Cl (2 x 15 mL) followed by saturated brine (15 mL), dried over anhydrous sodium 

sulfate and concentrated to yield a crude black solid (150 mg).  Purification by 

preparative TLC (1:3 hexanes / ethyl acetate, v/v) afforded 4b as a dark purple solid (57 

mg, 40 %).  ESI MS m/z 709.1 (M+H
+
).  

1
H NMR (300 MHz, CDCl3): ! 10.02 (m, 1H), 

8.55 (s, 1H), 7.74 (s, 1H), 6.41 (dd, J = 10.6, 15.6 Hz, 1H), 6.24 (m, 2H), 6.02 (dd, J = 

6.6, 15.4 Hz, 1H), 5.06 (dd, J = 7.6, 8.3 Hz, 1H), 4.72 (d, J = 10.5 Hz, 1H), 3.88 (d, J = 

4.3 Hz, 1H), 3.65 (d, J = 9.7 Hz, 1H), 3.55 (s, 1H), 3.37 (d, J = 5.4 Hz, 3H), 3.13 (s, 3H), 

3.00 (m, 1H), 2.53 (s, 3H), 2.39 (m, 1H), 2.13 (m, 1H), 2.07 (s, 3H), 2.05-1.90 (complex 

pattern), 1.79 (m, 3H), 1.71 (s, 3H), 1.64-1.49 (complex pattern), 1.03 (d, J = 7.0 Hz, 

3H), 0.86 (d, J = 6.9 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H), 0.28 (d, J = 7.1 Hz, 3H). 

Prepared in similar fashion were the following rifamycin S analogues: 

8-Aminorifamycin S (4a) 

From 7N ammonia in methanol, crude product was obtained as a deep red solid.  

Purification by preparative TLC (1:1 hexanes / ethyl acetate) gave 4a as an orange solid 

(15 mg, 11%).  ESI MS: m/z 717.3 (M+Na
+
).  

1
H NMR (300 MHz, CDCl3): ! 8.62 (s, 
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1H), 7.79 (s, 1H), 6.40 (dd, J = 10.2, 15.6 Hz, 1H), 6.25 (d, J = 10.4 Hz, 1H), 6.20 (d, J = 

12.4 Hz, 1H), 6.01 (dd, J = 6.7, 15.5 Hz, 1H), 5.07 (dd, J = 7.1, 12.4 Hz, 1H), 4.71 (d, J = 

10.8 Hz, 1H), 3.81 (d, J = 3.7 Hz, 1H), 3.65 (m, 2H), 3.39 (dd, J = 2.5, 7.6 Hz, 1H), 3.11 

(s, 3H), 2.99 (m, 3H), 2.40-1.59 (complex pattern), 1.03 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 

6.9 Hz, 3H), 0.69 (d, J = 6.8 Hz, 3H), 0.24 (d, J = 7.0 Hz, 3H). 

8-(Dimethylamino)rifamycin S (4c) 

From dimethylamine (5.6M in ethanol), crude material was obtained as a purple 

solid.  Purification by preparative TLC (1:1 hexanes / ethyl acetate) gave 4c as a purple-

red solid (29 mg, 80%).  ESI MS: m/z 723.0 (M+H
+
).  

1
H NMR (300 MHz, CD3Cl): ! 

8.59 (s, 1H), 7.76 (s, 1H), 6.53 (dd, J = 11.9, 15.8 Hz, 1H), 6.26 (d, J = 12.1 Hz, 1H), 

6.23 (dd, J = 6.9, 15.8 Hz, 1H), 6.10 (d, J = 12.3 Hz, 1H), 5.10 (dd, J = 5.1, 12.3 Hz, 1H), 

5.00 (d, J = 10.3 Hz, 1H), 4.03 (d, J = 4.1 Hz, 1H), 3.74 (d, J = 9.6 Hz, 1H), 3.60 (s, 1H), 

3.51 (m, 1H), 3.11 (s, 3H), 3.05 (s, 6H), 3.01 (m, 1H), 2.37 (s + m, 3H + 1H), 2.09 (s, 

3H), 2.08 (s, 3H), 1.83-1.69 (complex pattern), 1.03 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.9 

Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H), 0.20 (d, J = 7.0 Hz, 3H). 

8-(Ethylamino)rifamycin S (4d) 

From ethylamine, crude product was obtained as a purple solid.  Three 

purifications by preparative TLC (1:1 hexanes / ethyl acetate) gave 4d as a deep red solid 

(46.4 mg, 29 %).  ESI MS: m/z 723.1 (M+H
+
).  

1
H NMR (300 MHz, CD3OD): ! 7.60 (s, 

1H), 6.32 (m, 1H), 6.31 (s, 1H), 6.27 (d, J = 11.9 Hz, 1H), 6.02 (m, 1H), 5.22 (dd, J = 

6.5, 11.2 Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 4.95 (d, J = 6.5 Hz, 1H), 4.83 (s, 1H), 3.82 

(m, 4H), 3.33 (m, 2H), 3.14 (m, 1H), 3.10 (s, 3H), 2.51 (s, 3H), 2.35 (m, 1H), 2.12 (m, 

1H), 2.05 (s, 3H), 1.99 (s, 3H), 1.85-1.56 (complex pattern), 1.36 (tr, d = 7.1 Hz, 3H), 
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1.02 (d, J = 7.1 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H), 0.72 (d, J = 6.9 Hz, 3H), 0.16 (d, J = 

7.1 Hz, 3H). 

8-(Methoxyamino)rifamycin S (4e) 

From methoxylamine hydrochloride and N,N-diisopropylethylamine, crude 

product was obtained as a deep red solid.  Purification by preparative TLC (1:1 hexanes / 

ethyl acetate) gave 4e as a deep red solid (9 mg, 27 %).  ESI MS: m/z 725.0 (M+H
+
).  

1
H 

NMR (500 MHz, CDCl3): ! 11.86 (s, 1H), 8.50 (s, 1H), 7.78 (s, 1H), 6.42 (dd, J = 10.0, 

15.6 Hz, 1H), 6.28 (d, J = 10.0 Hz, 1H), 6.23 (d, J = 12.5 Hz, 1H), 6.01 (dd, J = 6.6, 15.6 

Hz, 1H), 5.10 (dd, J = 7.5, 12.3 Hz, 1H), 4.74 (d, J = 10.4 Hz, 1H), 4.25 (m, 1H), 3.86 (s, 

3H), 3.72 (m, 3H), 3.63 (m, 2H), 3.50 (m, 1H), 3.39 (m, 1H), 3.14 (s, 3H), 3.01 (m, 1H), 

2.50 (s, 3H), 2.37 (m, 1H), 2.10-1.27 (complex pattern), 1.04 (d, J = 6.9 Hz, 3H), 0.87 (d, 

J = 6.9 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.25 (d, J = 7.0 Hz, 3H). 

8-(Allylamino)rifamycin S (4f) 

From allylamine, 120 mg of crude deep brown solid was obtained.  Purification 

by preparative TLC (1:1 hexanes / ethyl acetate) gave 4f as a deep red solid (19 mg, 13 

%).  ESI MS: m/z 735.1 (M+H
+
).  

1
H NMR (300 MHz, CDCl3): ! 9.99 (m, 1H), 8.53 (s, 

1H), 7.76 (s, 1H), 6.44 (dd, J = 10.3, 15.6 Hz, 1H), 6.26 (d, J = 9.1 Hz, 1H), 6.18 (d, J = 

12.4 Hz, 1H), 6.02 (m, 2H), 5.35 (dd, J = 10.4, 16.8 Hz, 2H), 5.05 (dd, J = 7.1, 12.4 Hz, 

1H), 4.77 (d, J = 10.3 Hz, 1H), 4.31 (m, 1H), 3.89 (d, J = 4.3 Hz, 1H), 3.67 (d, J = 9.8 

Hz, 1H), 3.56 (s, 1H), 3.41 (dd, J = 1.8, 6.7 Hz, 1H), 3.19 (m, 1H), 3.10 (s, 3H), 3.05 (m, 

2H), 2.46 (s, 3H), 2.37 (m, 3H), 2.19-1.50 (complex pattern), 1.02 (d, J = 7.0 Hz, 3H), 

0.87 (d, J = 6.9 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H), 0.25 (d, J = 7.1 Hz, 3H). 
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8-((2-Hydroxyethyl)amino)rifamycin S (4g) 

From (2-hydroxyethyl)amine, 150 mg of crude deep red solid was obtained.  

Purification by preparative TLC (1:1 hexanes / ethyl acetate) gave 4g as a deep red solid 

(70 mg, 48 %).  ESI MS: m/z 739.1 (M+H
+
).  

1
H NMR (300 MHz, CDCl3): ! 10.19 (m, 

1H), 8.56 (s, 1H), 7.73 (s, 1H), 6.32 (dd, J = 10.5, 15.8 Hz, 1H), 6.21 (m, 2H), 6.00 (dd, J 

= 6.8, 15.8 Hz, 1H), 5.10 (dd, J = 6.0, 12.3 Hz, 1H), 4.74 (d, J = 10.5 Hz, 1H), 3.87 (m, 

5H), 3.67 (d, J = 9.5 Hz, 1H), 3.48 (m, 1H), 3.56 (s, 1H), 3.40 (dd, J = 2.4, 7.5 Hz, 1H), 

3.12 (s, 3H), 3.03 (m, 2H), 2.50 (s, 3H), 2.34 (m, 1H), 2.19-1.50 (complex pattern), 1.03 

(d, J = 7.0 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H), 0.69 (d, J = 6.8 Hz, 3H), 0.25 (d, J = 7.0 Hz, 

3H). 

8-(Benzylamino)rifamycin S (4h) 

From benzylamine hydrochloride and N,N-diisopropylethylamine, 130 mg of 

crude black solid was obtained.  Purification by preparative TLC (1:1 mixture of hexanes 

/ ethyl acetate) afforded 4h as a deep red solid (80 mg, 51 %).  ESI MS: m/z 785.2 

(M+H
+
).  

1
H NMR (300 MHz, CDCl3): ! 10.28 (m, 1H), 8.48 (s, 1H), 7.76 (s, 1H), 7.37 

(m, 5H), 6.38 (dd, J = 10.2, 15.6 Hz, 1H), 6.24 (d, J = 10.3 Hz, 1H), 6.15 (d, J = 12.4 Hz, 

1H), 6.06 (dd, J = 7.0, 15.4 Hz, 1H), 5.06 (dd, J = 6.6, 12.4 Hz, 1H), 4.93-4.81 (m, 2H), 

3.96 (d, J = 4.3 Hz, 1H), 3.69 (d, J = 9.8 Hz, 1H), 3.61 (s, 1H), 3.44 (dd, J = 1.6, 6.5 Hz, 

1H), 3.12 (s, 3H), 3.06 (m, 2H), 2.46 (s, 3H), 2.35 (m, 3H), 2.20-1.61 (complex pattern), 

1.05 (d, J = 7.2 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H), 0.25 (d, J = 

7.1 Hz, 3H). 
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8-(Cycloheptylamino)rifamycin S (4i) 

From cycloheptylamine, 160 mg of crude deep red solid was obtained.  

Purification by preparative TLC (1:1 hexanes / ethyl acetate) gave 4i as a deep red solid 

(70 mg, 44%).  ESI MS: m/z 791.2 (M+H
+
).  

1
H NMR (300 MHz, CDCl3): ! 10.03 (d, J = 

8.5 Hz, 1H), 8.51 (s, 1H), 7.74 (s, 1H), 6.46 (dd, J = 10.6, 15.8 Hz, 1H), 6.26 (d, J = 9.8 

Hz, 1H), 6.15 (dd, J = 6.8, 15.7 Hz, 1H), 6.10 (d, J = 11.9 Hz, 1H), 5.06 (dd, J = 5.9, 12.4 

Hz, 1H), 4.90 (d, J = 10.6 Hz, 1H), 4.17 (m, 1H), 3.90 (d, J = 4.2 Hz, 1H), 3.73 (d, J = 

9.3 Hz, 1H), 3.56 (s, 1H), 3.46 (dd, J = 1.9, 6.6 Hz, 1H), 3.11 (s, 3H), 3.01 (m, 2H), 2.41 

(s, 3H), 2.36 (m, 2H), 2.18-1.52 (complex pattern), 1.03 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 

6.9 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.17 (d, J = 7.0 Hz, 3H). 

8-Methylthiorifamycin S (4j) 

From reaction with sodium methanethiol in place of an amine.  Purification by 

preparative TLC (7:3 hexanes / ethyl acetate) gave 4j as an orange solid (5 mg, 13%). 

ESI MS: m/z 726.3 (M+H
+
). 

1
H NMR (500 MHz, CDCl3): ! 8.46 (s, 1H), 7.83 (s, 1H), 

6.41 (dd, J = 9.9, 15.8 Hz, 1H), 6.25 (d, J = 9.6 Hz, 1H), 6.16 (d, J = 12.4 Hz, 1H), 6.06 

(dd, J = 7.4, 15.7 Hz, 1H), 5.11 (dd, J = 6.4, 12.4 Hz, 1H), 4.75 (d, J = 10.3 Hz, 1H), 3.73 

(d, J = 4.1 Hz, 1H), 3.58 (m, 2H), 3.45 (d, J = 6.5 Hz, 1H), 3.12 (s, 3H), 2.98 (m, 1H), 

2.65 (s, 3H), 2.49 (s, 3H), 2.36-1.58 (complex pattern), 1.02 (d, J = 7.0 Hz, 3H), 0.88 (d, 

J = 6.9 Hz, 3H), 0.69 (d, J = 6.8 Hz, 3H), 0.21 (d, J = 7.1 Hz, 3H). 

1-(2-Hydroxyethyl)-1H-benzo[cd]indazol-5-one congener of rifamycin S (5) 

From (2-hydroxyethyl)hydrazine hydrochloride and N,N-diisopropylethylamine, 

158 mg of crude deep orange solid was obtained.  Two purifications by preparative TLC 

(8:92 methanol / dichloromethane) gave 5 as an orange solid (7 mg, 5 %).  ESI MS: m/z 
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736.2 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 8.12 (s, 1H), 7.33 (s, 1H), 6.35 (dd, J = 

10.5, 15.5 Hz, 1H), 6.26 (d, J = 10.5 Hz, 1H), 6.06 (m, 2H), 4.98 (dd, J = 7.1, 12.4 Hz, 

1H), 4.77 (m, 1H), 4.69 (m, 1H), 4.45 (d, J = 9.7 Hz, 1H), 4.42 (m, 1H), 4.23 (m, 1H), 

3.64 (br s, 1H), 3.52 (d, J = 10.0 Hz, 1H), 3.28 (dd, J = 2.1, 6.9 Hz, 1H), 3.18 (br s, 1H), 

3.03 (s, 3H), 2.90 (d, J = 9.6 Hz, 1H), 2.76 (s, 3H), 2.34 (m, 1H), 2.19 (s, 2H), 2.15 (s, 

3H), 2.05 (m, 2H), 2.00 (s, 3H), 1.79 (s, 3H), 1.78-1.60 (complex pattern), 1.27 (m, 4H), 

0.99 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H), 0.55 (d, J = 6.9 Hz, 3H), -0.30 (d, J = 

7.0 Hz, 3H). 

Rifampin S (6) 

To a solution of rifampin (1; 200 mg, 0.24 mmol) in ethyl acetate (4 mL) was 

added aqueous 0.1 M sodium phosphate buffer (pH = 7.4, 4 mL) followed by potassium 

ferricyanide (400 mg, 1.2 mmol).  The suspension was stirred vigorously at room 

temperature for 1.5 h, and then diluted with dichloromethane (50 mL).  This solution was 

washed with phosphate buffer (3 x 30mL) followed by saturated brine (30 mL), dried 

over anhydrous sodium sulfate and concentrated in vacuo to dryness to give 6 as a purple 

black solid (128 mg, 65%).  The compound was pure enough to be utilized directly in the 

next step.  ESI MS: m/z 821.1 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.77 (br s, 1H), 

10.56 (br s, 1H), 7.80 (s, 1H), 7.23 (m, 1H), 6.84 (m, 1H), 6.39 (d, J = 10.8 Hz, 1H), 6.10 

(d, J = 12.0 Hz, 1H), 5.94 (dd, J = 5.8, 15.0 Hz, 1H), 5.15 (d, J = 9.2 Hz, 1H),  5.08 (dd, J 

= 5.3, 12.0 Hz, 1H), 3.97 (br s, 1H), 3.89 (d, J = 7.8 Hz, 1H), 3.44 (s, 1H), 3.29 (m, 3H), 

3.10 (s, 3H), 3.02 (m, 4H), 2.58 (s, 3H), 2.44 (m, 2H), 2.37 (s, 3H), 2.30 (s, 3H), 2.11-

1.34 (complex pattern), 1.06 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H), 0.56 (d, J = 6.7 

Hz, 3H), 0.16 (d, J = 6.5 Hz, 3H). 
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8-(p-Toluenesulfonyloxy)rifampin S (7) 

This compound was prepared from 6 by the same procedure described above to 

make 8-(p-toluenesulfonyloxy)rifamycin S (3).  The product (194 mg, quantitative yield) 

was a deep brown solid and pure enough to use directly in the next step.  ESI MS: m/z 

997.2 (M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 11.11 (s, 1H), 8.11 (d, J = 7.5 Hz, 2H), 

7.82 (s, 1H), 7.41 (d, J = 7.9 Hz, 2H), 6.81 (dd, J = 11.3, 15.4 Hz, 1H), 6.46 (d, J = 10.9 

Hz, 1H), 6.05 (d, J = 12.3 Hz, 1H), 5.96 (dd, J = 5.2, 15.8 Hz, 1H), 5.09 (dd, J = 5.3, 12.5 

Hz, 1H), 5.03 (d, J = 10.1 Hz, 1H), 3.81 (d, J = 9.5 Hz, 1H), 3.45 (d, J = 4.1 Hz, 1H), 

3.20 (m, 4H), 3.04 (s, 3H), 2.99 (d, J = 7.5 Hz, 1H), 2.56 (br s, 4H), 2.49 (s, 3H), 2.39 (br 

s, 4H), 2.35 (s, 3H), 2.10-1.84 (complex pattern), 1.80 (s, 3H), 1.67 (m, 1H), 1.64 (m, 

1H), 1.36 (m, 1H), 1.02 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H), 0.53 (d, J = 6.6 Hz, 

3H), -0.01 (d, J = 6.7 Hz, 3H). 

The following compounds were prepared in similar fashion to that described for 

8-(methylamino)rifamycin S (4b) described above: 

8-(Methylamino)rifampin S (8a) 

From methylamine, 180 mg of crude red-purple solid was obtained.  Purification 

by preparative TLC (8:92 methanol / dichloromethane) gave 8a as a deep red solid (100 

mg, 60 %).  ESI MS: m/z 834.2 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 10.77 (s, 1H), 

9.37 (s, 1H), 7.79 (s, 1H), 6.82 (dd, J = 11.4, 15.0 Hz, 1H), 6.34 (d, J = 11.0 Hz, 1H), 

6.12 (d, J = 12.5 Hz, 1H), 5.90 (dd, J = 4.7, 15.7 Hz, 1H), 5.18 (d, J = 10.1 Hz, 1H), 5.09 

(dd, J = 5.9, 12.4 Hz, 1H), 3.98 (d, J = 7.9 Hz, 1H), 3.40 (d, J = 5.7 Hz, 1H), 3.32 (d, J = 

5.4 Hz, 3H), 3.25 (m, 4H), 3.10 (s, 3H), 2.98 (d, J = 10.3 Hz, 1H), 2.60 (br s, 4H), 2.51 

(m, 1H), 2.47 (s, 3H), 2.37 (br s, 4H), 2.12 (s, 3H), 2.09 (s, 3H), 1.81 (m, 1H), 1.78 (s, 
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1H), 1.73 (m, 1H), 1.46-1.25 (complex pattern), 1.06 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.5 

Hz, 3H), 0.52 (d, J = 6.8 Hz, 3H), 0.27 (d, J = 7.0 Hz, 3H). 

8-(Ethylamino)rifampin S (8b) 

From ethylamine, 170 mg of crude purple solid was obtained.  Two purifications 

by preparative TLC (7.5:92.5 methanol / dichloromethane) gave 8b as a purple-black 

solid (80 mg, 47.0 %).  ESI MS: m/z 848.1 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 

10.69 (s, 1H), 9.21 (s, 1H), 7.78 (s, 1H), 6.81 (dd, J = 11.2, 15.9 Hz, 1H), 6.32 (d, J = 

10.6 Hz, 1H), 6.13 (d, J = 12.5 Hz, 1H), 5.90 (dd, J = 4.8, 16.0 Hz, 1H), 5.18 (d, J = 9.8 

Hz, 1H), 5.08 (dd, J = 6.0, 12.5 Hz, 1H), 4.05 (d, J = 4.6 Hz, 1H), 3.98 (d, J = 8.3 Hz, 

1H), 3.59 (s, 1H), 3.38 (d, J = 5.8 Hz, 2H), 3.24 (m, 4H), 3.09 (s, 3H), 2.98 (dd, J = 5.8, 

10.5 Hz, 1H), 2.59 (m, 4H), 2.52 (m, 1H), 2.43 (s, 3H), 2.36 (s, 3H), 2.13 (s, 3H), 2.09 (s, 

3H), 1.80 (m, 1H), 1.75 (s, 3H), 1.69 (m, 1H), 1.46-1.27 (complex pattern) 1.36 (t, J = 

7.1 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 7.2 Hz, 3H), 0.51 (d, J = 6.8 Hz, 3H), 

0.27 (d, J = 7.0 Hz, 3H). 

8-(Allylamino)rifampin S (8c) 

From allylamine, 170 mg of crude purple-red solid was obtained.  Purification by 

preparative TLC (7.5:92.5 methanol / dichloromethane) gave 8c as a purple-black solid 

(60 mg, 35 %).  ESI MS: m/z 860.2 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 10.73 (s, 

1H), 9.35 (s, 1H), 7.79 (s, 1H), 6.80 (dd, J = 11.4, 15.6 Hz, 1H), 6.33 (d, J = 10.7 Hz, 

1H), 6.13 (d, J = 12.5 Hz, 1H), 6.00 (m, 1H), 5.90 (dd, J = 5.8, 16.0 Hz, 1H), 5.37 (d, J = 

17.1 Hz, 1H), 5.29 (d, J = 10.3 Hz, 1H), 5.18 (d, J = 9.9 Hz, 1H), 5.09 (dd, J = 6.0, 12.5 

Hz, 1H), 4.04 (d, J = 4.5 Hz, 1H), 3.98 (d, J = 8.4 Hz, 1H), 3.57 (br s, 1H), 3.39 (d, J = 

6.0 Hz, 2H), 3.25 (m, 4H), 3.09 (s, 3H), 2.98 (dd, J = 3.6, 10.6 Hz, 1H), 2.59 (m, 4H), 
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2.52 (m, 1H), 2.41 (s, 3H), 2.37 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 1.82 (m, 1H), 1.75 (s, 

3H), 1.69 (m, 1H), 1.46-1.27 (complex pattern), 1.06 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 7.1 

Hz, 3H), 0.52 (d, J = 6.8 Hz, 3H), 0.27 (d, J = 7.0 Hz, 3H). 

8-((2-Hydroxyethyl)amino)rifampin S (8d) 

From (2-hydroxyethyl)amine, 180 mg of crude deep purple solid was obtained.  

Two purifications by preparative TLC (7.5:92.5 methanol / dichloromethane) gave 8d as 

a purple-black solid (72 mg, 41%).  ESI MS: m/z 864.1 (M+H
+
).  

1
H NMR (500 MHz, 

CDCl3): ! 10.90 (s, 1H), 8.66 (m, 1H), 7.77 (s, 1H), 6.79 (dd, J = 10.9, 15.8 Hz, 1H), 

6.35 (d, J = 10.8 Hz, 1H), 6.19 (dd, J = 0.9, 12.5 Hz, 1H), 5.91 (dd, J = 5.1, 15.9 Hz, 1H), 

5.18 (d, J = 9.9 Hz, 1H), 5.15 (dd, J = 6.3, 12.5 Hz, 1H), 3.99 (d, J = 5.8 Hz, 2H), 3.74 

(m, 1H), 3.68 (m, 1H), 3.63 (m, 2H), 3.41 (d, J = 6.5 Hz, 2H), 3.26 (m, 4H), 3.07 (s, 3H), 

2.98 (dd, J = 5.1, 10.4 Hz, 1H), 2.60 (m, 4H), 2.55 (m, 1H), 2.37 (br s, 6H), 2.14 (s, 3H), 

2.08 (s, 3H), 1.80 (m, 1H), 1.76 (s, 3H), 1.37 (m, 1H), 1.06 (d, J = 7.0 Hz, 3H), 0.96 (d, J 

= 7.2 Hz, 3H), 0.50 (d, J = 6.8 Hz, 3H), 0.27 (d, J = 7.0 Hz, 3H). 

8-(Benzylamino)rifampin S (8e) 

From benzylamine hydrochloride and N,N-diisopropylethylamine, 180 mg of 

crude black solid was obtained.  Purification by preparative TLC (7.5:92.5 methanol / 

dichloromethane) gave 8e as a purple-black solid (84 mg, 42 %).  ESI MS: m/z 910.2 

(M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 10.71 (s, 1H), 9.61 (m, 1H), 7.79 (s, 1H), 7.38 

(m, 4H), 7.31 (m, 1H), 6.88 (dd, J = 10.8, 15.1 Hz, 1H), 6.33 (d, J = 10.7 Hz, 1H), 6.09 

(dd, J = 1.0, 12.5 Hz, 1H), 5.92 (dd, J = 4.9, 15.9 Hz, 1H), 5.18 (d, J = 10.1 Hz, 1H), 5.07 

(dd, J = 5.8, 12.5 Hz, 1H), 4.81 (m, 2H), 4.09 (d, J = 4.6 Hz, 2H), 4.01 (d, J = 8.2 Hz, 

1H), 3.64 (br s, 1H), 3.39 (d, J = 5.7 Hz, 2H), 3.25 (m, 4H), 3.07 (s, 3H), 3.00 (dd, J = 
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4.6, 10.1 Hz, 1H), 2.59 (m, 4H), 2.53 (m, 1H), 2.40 (s, 3H), 2.37 (s, 6H), 2.11 (s, 3H), 

2.09 (s, 3H), 1.83 (m, 1H), 1.74 (s, 3H), 1.41 (m, 1H), 1.07 (d, J = 6.9 Hz, 3H), 0.95 (d, J 

= 7.1 Hz, 3H), 0.54 (d, J = 6.8 Hz, 3H), 0.21 (d, J = 7.0 Hz, 3H). 

8-(Cycloheptylamino)rifampin S (8f) 

From cycloheptylamine, 180 mg of deep red solid was obtained.  Two 

purifications by preparative TLC (7.5:92.5 methanol / dichloromethane) gave 8f as a 

purple-black solid (80 mg, 44 %).  ESI MS: m/z 938.4 (M+Na
+
).  

1
H NMR (500 MHz, 

CDCl3): ! 10.59 (s, 1H), 9.35 (d, J = 8.6 Hz, 1H), 7.78 (s, 1H), 6.84 (dd, J = 10.6, 15.6 

Hz, 1H), 6.33 (d, J = 10.5 Hz, 1H), 6.15 (d, J = 12.5 Hz, 1H), 5.90 (dd, J = 5.0, 15.9 Hz, 

1H), 5.17 (d, J = 9.8 Hz, 1H), 5.09 (dd, J = 6.1, 12.5 Hz, 1H), 4.03 (d, J = 4.5 Hz, 1H), 

3.99 (d, J = 9.0 Hz, 1H), 3.58 (br s, 1H), 3.38 (d, J = 5.9 Hz, 1H), 3.24 (m, 4H), 3.09 (s, 

3H), 2.98 (dd, J = 3.6, 10.1 Hz, 1H), 2.59 (m, 4H), 2.52 (m, 1H), 2.38 (s, 3H), 2.37 (s, 

3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.04 (m, 4H), 1.82 (m, 1H), 1.76 (s, 3H), 1.69 (m, 1H), 

1.73-1.23 (complex pattern), 1.06 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 7.4 Hz, 3H), 0.51 (d, J 

= 6.8 Hz, 3H), 0.26 (d, J = 7.1 Hz, 3H). 

1-Methyl-1H-benzo[cd]indazol-5-one congener of rifampin S (9a) 

From methylhydrazine hydrochloride and N,N-diisopropylethylamine, a crude 

deep brown was obtained.  Two purifications by preparative TLC (8:92 methanol / 

dichloromethane) gave 9a as a black solid (27 mg, 33%).  ESI MS: m/z 831.2 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 13.06 (s, 1H), 8.27 (s, 1H), 6.96 (dd, J = 11.8, 15.4 Hz, 

1H), 6.62 (d, J = 11.3 Hz, 1H), 6.17 (d, J = 12.5 Hz, 1H), 6.02 (dd, J = 5.2, 15.6 Hz, 1H), 

5.09 (dd, J = 5.9, 12.6 Hz, 1H), 4.91 (d, J = 10.6 Hz, 1H), 4.43 (s, 3H), 3.84 (d, J = 9.9 

Hz, 1H), 3.63 (m, 1H), 3.51 (s, 1H), 3.42 (m, 1H), 3.15 (m, 4H), 3.04 (s, 3H), 3.00 (m, 
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1H), 2.78 (s, 3H), 2.56 (m, 4H), 2.41 (m, 1H), 2.35 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H), 

1.82 (s, 3H), 1.73-1.53 (complex pattern), 1.04 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 7.0 Hz, 

3H), 0.52 (d, J = 6.8 Hz, 3H), -0.53 (d, J = 6.9 Hz, 3H). 

1-(2-Hydroxyethyl)-1H-benzo[cd]indazol-5-one congener of rifampin S (9b) 

From (2-hydroxyethyl)hydrazine hydrochloride and N,N-diisopropylethylamine, 

200 mg of crude black solid was obtained.  Two purifications by preparative TLC (8:92 

methanol / dichloromethane) gave 9b as a black solid (76 mg, 40 %).  ESI MS: m/z 861.2 

(M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 13.11 (s, 1H), 8.26 (s, 1H), 6.92 (dd, J = 11.5, 

15.4 Hz, 1H), 6.59 (d, J = 11.1 Hz, 1H), 6.17 (d, J = 12.6 Hz, 1H), 6.03 (dd, J = 5.3, 15.3 

Hz, 1H), 5.09 (dd, J = 6.0, 12.5 Hz, 1H), 4.89 (d, J = 10.3 Hz, 1H), 4.79 (m, 2H), 3.85 (d, 

J = 9.5 Hz, 1H), 3.64 (m, 1H), 3.51 (m, 1H), 3.41 (d, J = 5.6 Hz, 2H), 3.08 (m, 4H), 3.03 

(s, 3H), 3.00 (m, 1H), 2.78 (s, 3H), 2.56 (m, 4H), 2.41 (m, 1H), 2.35 (s, 3H), 2.09 (s, 3H), 

2.05 (s, 3H), 1.82 (s, 3H), 1.80-1.52 (complex pattern), 1.03 (d, J = 7.0 Hz, 3H), 0.90 (d, 

J = 7.0 Hz, 3H), 0.52 (d, J = 6.8 Hz, 3H), -0.54 (d, J = 7.0 Hz, 3H). 

8-(Methylamino)rifampin (10a) 

Ascorbic acid (74 mg, 0.42 mmol) was added to a solution of 8-

(methylamino)rifampin S (8a; 35 mg, 0.04 mmol) in methanol (1.5 mL).  The resulting 

mixture was stirred at room temperature for 2 h and then diluted with dichloromethane 

(15 mL).  This solution was washed with 0.2 N aqueous NH4Cl (3 x 10 mL) followed by 

saturated brine (10 mL), dried over anhydrous sodium sulfate and evaporated in vacuo to 

dryness to give 10a as an orange solid (18 mg, 51%).  ESI MS: m/z 858.3 (M+Na
+
).  

1
H 

NMR (500 MHz, CDCl3): ! 12.91 (s, 1H), 12.78 (s, 1H), 12.00 (s, 1H), 10.15 (s, 1H), 

8.36 (s, 1H), 6.68 (dd, J = 11.4, 14.9 Hz, 1H), 6.41 (d, J = 10.8 Hz, 1H), 6.18 (d, J = 12.5 
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Hz, 1H), 5.93 (dd, J = 4.7, 15.2 Hz, 1H), 5.10 (dd, J = 6.3, 12.5 Hz, 1H), 4.98 (d, J = 10.4 

Hz, 1H), 3.81 (d, J = 9.3 Hz, 1H), 3.31 (d, J = 5.0 Hz, 3H), 3.27 (m, 4H), 3.07 (s, 3H), 

3.01 (m, 1H), 2.71 (br s, 4H), 2.42 (m, 4H), 2.38 (s, 3H), 2.37 (m, 1H), 2.09 (s, 3H), 1.42-

1.27 (complex pattern), 1.04 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.61 (d, J = 6.8 

Hz, 3H), -0.17 (d, J = 6.9 Hz, 3H). 

Prepared in similar fashion were the following rifampin analogues: 

8-(Ethylamino)rifampin (10b) 

From 8-(ethylamino)rifampin S (8b), 10b was obtained as an orange solid (41 mg, 

84 %).  ESI MS: m/z 872.3 (M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.90 (br s, 1H), 

12.80 (s, 1H), 12.01 (s, 1H), 10.11 (s, 1H), 8.37 (s, 1H), 6.68 (dd, J = 11.9, 15.5 Hz, 1H), 

6.41 (d, J = 11.1 Hz, 1H), 6.18 (d, J = 12.6 Hz, 1H), 5.94 (dd, J = 4.8, 15.5 Hz, 1H), 5.09 

(dd, J = 6.5, 12.6 Hz, 1H), 4.98 (dd, J = 10.5 Hz, 1H), 3.82 (m, 2H), 3.72 (m, 1H), 3.57 

(m, 1H), 3.51 (d, J = 6.4 Hz, 2H), 3.25 (m, 4H), 3.06 (s, 3H), 3.01 (m, 1H), 2.72 (m, 4H), 

2.47 (s, 3H), 2.41 (m, 1H), 2.35 (m, 3H), 2.08 (m, 6H), 1.79 (s, 3H), 1.74 (m, 1H), 1.61-

1.27 (complex pattern) 1.35 (t, J = 7.1 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 7.0 

Hz, 3H), 0.62 (d, J = 6.8 Hz, 3H), -0.17 (d, J = 6.9 Hz, 3H). 

8-(Allylamino)rifampin (10c) 

From 8-(allylamino)rifampin S (8c), 10c was obtained as an orange solid (24 mg, 

89%).  ESI MS: m/z 884.3 (M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.95 (br s, 1H), 

12.69 (s, 1H), 12.04 (s, 1H), 10.17 (s, 1H), 8.36 (s, 1H), 6.67 (dd, J = 11.4, 15.6 Hz, 1H), 

6.41 (d, J = 10.8 Hz, 1H), 6.19 (d, J = 12.6 Hz, 1H), 5.99 (m, 1H), 5.94 (dd, J = 5.0, 16.3 

Hz, 1H), 5.39 (d, J = 17.4 Hz, 1H), 5.28 (d, J = 10.3 Hz, 1H), 5.10 (dd, J = 6.4, 12.6 Hz, 

1H), 4.99 (d, J = 10.3 Hz, 1H), 4.34 (m, 1H), 3.82 (d, J = 9.6 Hz, 1H), 3.70 (br s, 1H), 
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3.51 (d, J = 5.2 Hz, 2H), 3.20 (m, 4H), 3.07 (s, 3H), 3.02 (m, 1H), 2.66 (m, 4H), 2.42 (m, 

1H), 2.34 (s, 3H), 2.08 (m, 6H), 2.04 (m, 1H), 1.80 (s, 3H), 1.75-1.22 (complex pattern), 

1.04 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.62 (d, J = 6.4 Hz, 3H), -0.17 (d, J = 

6.7 Hz, 3H). 

8-(2-Hydroxyethylamino)rifampin (10d) 

From 8-((2-hydroxyethyl)amino)rifampin S (8d), 10d was obtained as an orange 

solid (14 mg, 82 %).  ESI MS: m/z 888.4 (M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.77 

(m, 2H), 11.95 (s, 1H), 10.34 (s, 1H), 8.37 (s, 1H), 6.65 (dd, J = 11.4, 15.3 Hz, 1H), 6.38 

(d, J = 11.2 Hz, 1H), 6.16 (d, J = 12.6 Hz, 1H), 5.90 (dd, J = 4.6, 15.4 Hz, 1H), 5.09 (dd, 

J = 6.4, 12.6 Hz, 1H), 4.97 (d, J = 9.9 Hz, 1H), 3.91 (m, 2H), 3.86 (m, 1H), 3.79 (m, 1H), 

3.72 (m, 2H), 3.49 (d, J = 6.2 Hz, 2H), 3.37 (m, 4H), 3.05 (s, 3H), 3.01 (m, 1H), 2.86 (m, 

4H), 2.56 (s, 3H), 2.42 (m, 1H), 2.35 (s, 3H), 2.07 (m, 6H), 1.79 (s, 3H), 1.72 (m, 1H), 

1.56 (m, 1H), 1.43-1.26 (complex pattern) 1.03 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 6.9 Hz, 

3H), 0.61 (d, J = 6.7 Hz, 3H), -0.20 (d, J = 6.8 Hz, 3H). 

8-(Benzylamino)rifampin (10e) 

From 8-(benzylamino)rifampin S (8e), 10e was obtained as an orange solid (26 

mg, 93 %).  ESI MS: m/z 934.4 (M+Na
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.90 (s, 1H), 

12.70 (s, 1H), 12.00 (s, 1H), 10.46 (m, 1H), 8.36 (s, 1H), 7.35 (m, 5H), 6.65 (dd, J = 

11.3, 15.4 Hz, 1H), 6.38 (d, J = 11.1 Hz, 1H), 6.19 (d, J = 12.6 Hz, 1H), 5.92 (dd, J = 4.7, 

15.5 Hz, 1H), 5.10 (dd, J = 6.5, 12.6 Hz, 1H), 4.99 (d, J = 10.5 Hz, 1H), 4.91 (m, 2H), 

3.81 (d, J = 9.4 Hz, 1H), 3.74 (br s, 1H), 3.51 (d, J = 6.5 Hz, 1H), 3.24 (m, 4H), 3.06 (s, 

3H), 3.03 (m, 1H), 2.70 (m, 4H), 2.44 (s, 3H), 2.40 (m, 1H), 2.37 (s, 3H), 2.08 (s, 3H), 
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2.06 (s, 3H), 1.79 (s, 3H), 1.73 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.8 Hz, 

3H), 0.62 (d, J = 6.6 Hz, 3H), -0.16 (d, J = 6.6 Hz, 3H). 

8-(Cycloheptylamino)rifampin (10f) 

From 8-(cycloheptylamino)rifampin S (8f), 10f was obtained as an orange solid 

(19 mg, 87 %).  ESI MS m/z 918.2 (M+H
+
).  

1
H NMR (500 MHz, CDCl3): ! 12.90 (br s, 

1H), 12.80 (s, 1H), 12.00 (s, 1H), 10.30 (d, J = 8.3 Hz, 1H), 8.37 (s, 1H), 6.67 (dd, J = 

11.4, 15.5 Hz, 1H), 6.41 (d, J = 11.1 Hz, 1H), 6.18 (d, J = 12.6 Hz, 1H), 5.94 (dd, J = 4.9, 

15.4 Hz, 1H), 5.09 (dd, J = 6.4, 12.5 Hz, 1H), 4.97 (d, J = 10.5 Hz, 1H), 4.09 (m, 1H), 

3.82 (d, J = 9.3 Hz, 1H), 3.71 (br s, 1H), 3.50 (d, J = 6.3 Hz, 1H), 3.24 (m, 4H), 3.06 (s, 

3H), 3.00 (m, 1H), 2.71 (m, 4H), 2.46 (m, 1H), 2.40 (m, 3H), 2.30 (s, 3H), 2.10 (s, 3H), 

2.08 (s, 3H), 2.05 (m, 2H), 1.89 (m, 2H), 1.80 (m, 1H), 1.79-1.27 (complex pattern), 1.04 

(d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H), 0.61 (d, J = 6.8 Hz, 3H), -0.18 (d, J = 6.9 

Hz, 3H). 
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Appendix III-2 

Structure-based Modeling Studies 

To gain better understanding of the SAR, we carried out structure-based modeling 

studies. Modeling was based on the 2.5 Å resolution structure of rifabutin complexed 

with the Thermus thermophilus RNAP holoenzyme (PDB ID: 2a68) (11).  Since the 

rifamycin binding site is highly conserved among bacteria, this structure provides a good 

foundation for understanding how proposed rifamycin analogues may interact with the 

MTB RNA polymerase.  Preparation of the structure before modeling was conducted 

using MOE. 

Given the size of the rifamycins, size of the binding site, and the flexibility of the 

ansa ring, accurate docking of these inhibitors to the RNAP complex would be 

challenging using standard docking approaches.  Since most of the rifamycin structure 

remains unchanged, modeled poses of the analogues were generated by mutating 

rifamycin to the analogue and then relaxing the complex through a series of energy 

minimizations as described in the Supplementary Material. 

Modeled poses were generated for each of the structures listed in Table III-2.  A 

QSAR model (not shown) using interaction energies between the inhibitor and RNAP 

complex and two other ligand descriptors produced a very good R2 of 0.90 and a cross 

validation R2 of 0.79.  The good fit of the QSAR model based on energies from the 

structure-based modeling supports the accuracy of the latter.  The robustness of our 

structure-based modeling has also been supported by experimental studies where 

sensitivity to rifamycins against binding site mutants qualitatively correlates with our 

models (17). 
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Preparation for the 2a68 structure before modeling 

All water molecules and metal ions more than 12 Å from rifamycin were 

removed.  Residues with missing atoms were rebuilt.  Residues which were not resolved 

in the structure were distant from the binding site and were not modeled in.  All N and C 

termini (either real or as a result of missing residues) were acetylated and amidated 

respectively.  Bond orders were checked for the rifabutin and hydrogen atoms added to it 

and the complex.  

A series of energy minimizations were then used to relax the structure.  The 

positions of the hydrogen atoms were relaxed with energy minimization using the 

MMFF94x forcefield.  Hydrogen atoms, rebuilt residues and termini except for carbon 

alpha atoms were relaxed with energy minimization.  All protein and rifamycin heavy 

atoms were fixed and positions of all hydrogen atoms and water molecules relaxed.  

Positions of the rifamycin atoms were then relaxed.  Finally all atoms within 12 Å from 

rifamycin were relaxed with energy minimization. 

Generation of binding complexes for the analogues 

Rifamycin was modified to form the analogue structure.  A series of energy 

minimizations were then used to relax the structure.  The positions of the hydrogen atoms 

were relaxed with energy minimization using the MMFF94x forcefield.  Atoms added or 

modified to create the analogue and positions of hydrogen atoms were relaxed with 

energy minimization.  Positions of water molecules and hydrogen atoms were relaxed.  

Protein side chains within 12 Å from rifamycin, water molecules and hydrogen atoms 

were relaxed.  Finally all atoms within 12 Å from original rifamycin were relaxed with 

energy minimization. 
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Appendix III-3 

Table III-A1.  Log IC50 Values and Standard Errors of the Fits for C-8 Rifamycins with 

MTB RNAPs 

 

No. Log IC50
1
 (standard error of fit

2
, Hill slope

3
) 

 
(WT MTB RNAP) (MTB RNAP (S450L)) 

1 -2.3986 (0.037, 1.54) 1.7166 (0.026, 1.52) 

2 -2.1734 (0.049, 1.4) 1.5566 (0.082, 1.73) 

3 -1.6795 (0.028, 1.04) 2.9922 (0.086, 1.11) 

4a 0.6441 (0.054, 1.39) 2.2706 (0.103, 0.73) 

4c -0.2984 (0.027, 1.54) 2.4317 (0.109, 0.61) 

4i 1.1879 (0.076, 1.26) 2.1042 (0.113, 1.45) 

4j -1.8199 (0.092, 0.74) 1.5742 (0.064, 1.46) 

6 -1.8767 (0.107, 1.45) 1.6672 (0.034, 1.11) 

7 -0.8462 (0.043, 0.94) 2.0451 (0.075, 0.90) 

9b -0.85567 (0.061, 0.96) 1.4751 (0.065, 0.98) 

 
1
 The log IC50 values are such that the IC50 values will be in !M.  Negative log IC50 

values reflect IC50 values less than !M (e.g., in the nM range).  Values were fit to a 

four parameter logistic regression model with the top and bottom limits set at 100 and 0 

respectively. 
2
 The average error is ~10 %, which roughly translates to 20-25% in the IC50. 

3
 The average Hill slope is 1.193. 
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CHAPTER IV 

Structure-based Design of Novel Benzoxazinorifamycins with Potent 

Binding Affinity to Wild-type and Rifampin-resistant Mutant 

Mycobacterium tuberculosis RNA polymerases 

 

The emergence of multi-drug resistant TB (MDR-TB) has become of main 

concern with approximately half a million new cases reported in 2008 (1).  MDR-TB 

strains are resistant to rifampin (1 , RMP, Figure IV-1) and isoniazid, the two most 

effective TB drugs.  The treatment of MDR-TB consists of a combination of three or four 

second-line anti-TB drugs that includes a fluoroquinolone (2, 3).  These second-line 

bacteriostatics have more serious side effects and need to be taken for an extended period 

of time (at least 2 years) (2, 3).  Furthermore, TB strains resistant to these agents along 

with RMP and isoniazid are classified as the virtually untreatable extensively drug-

resistant TB (XDR-TB) (1).  Therefore, agents that are non-toxic, well tolerated, effective 

against drug-susceptible and drug-resistant TB, and that will result in shortened TB 

therapy are needed urgently (4-7). 

Benzoxazinorifamycins, a new generation of rifamycin derivatives with a four 

ring structure, have shown improved antimicrobial activity against Mycobacterium 

tuberculosis (MTB) (8, 9).  Amongst the benzoxazinorifamycin derivatives, rifalazil (2a, 

RLZ, Figure IV-1) was selected as the most promising due to its excellent potency (both 

in vivo and in vitro), high tissue affinity, long elimination time from tissues and its 



 106 

relative lack of toxicity in early rodent studies (8-11).  RLZ is an exceedingly potent 

rifamycin derivative being 16 - 256 times more potent than RMP (8, 9, 12-14).  RLZ is 

effective against most rifamycin-resistant (RifR) MTB strains but not all (13, 15-18).  In 

addition to being active against RifR MTB strains, RLZ also has potent activity against 

several other clinically important bacterial pathogens (19-21) 

One major downside of rifamycins is their many drug-drug interactions.  RMP 

and other rifamycins induce the expression of cytochrome P450 3A4 (CYP3A4), a drug-

metabolizing enzyme responsible for eliminating 36% of clinically important drugs, by 

activating the human pregnane X receptor (hPXR) (22).  However, RLZ does not induce 

the expression of CYP3A4 (presumably due to lack of activation of hPXR).  

Unfortunately, RLZ was seen to be quite toxic in a series of phase I (23, 24) and phase II 

(12, 23-25) clinical trials with most adverse effects associated with a flu-like syndrome 

and leucopenia even at lower dose levels.  Hence, its development as a treatment for TB 

has been suspended (26). 



 

1
0
7
 

 

Figure IV-1:  Structures of reference agents (1, 2a) and novel benzoxazinorifamycins (2b-2e) 
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Due to the overall favorable properties of RLZ, benzoxazinorifamycin derivatives 

(2b – 2e ; Figure IV-1) where ether tethers had been installed off the 3’-position of the 

“southeastern” part of the benzoxazinorifamycin template were synthesized.  The design 

of these derivatives was based upon the three-dimensional X-ray structures of rifamycins 

bound to RNA polymerase (RNAP) (27, 28) and the human pregnane X receptor (hPXR) 

(22) in order to obtain an analogue with equal or better potency than RLZ against WT 

and RifR mutants of RNA polymerase (RNAP), the multi-subunit target of the 

rifamycins, with potential of making additional interactions with the other RNAP 

subunits.  Furthermore, these analogues were expected to display lowered affinity for and 

therefore lowered activation of the hPXR.  These studies demonstrate proof of principle 

for this subclass of rifamycins and support further expansion of structure-activity 

relationships (SAR) toward uncovering analogues with development potential. 

Materials and Methods 

Reagents 

Chemistry  

All reagents were commercially available and used without further purification.  

Melting points were determined in open capillary tubes on a Laboratory Devices Mel-

Temp apparatus and are uncorrected.  
1
H and 

13
C NMR spectra were obtained on Bruker 

500 MHz spectrometers with CDCl3 or d6-DMSO as solvent and chemical shifts are 

reported relative to the residual solvent peak in ! (ppm).  Mass spectrometry analysis was 

performed using a Waters LCT time-of-flight mass spectrometry instrument.  High 

resolution mass spectrometry (HRMS) analysis was performed on an Agilent Q-TOF 

system.  Analytical HPLC was performed on a Perkin Elmer Series 200 system with an 
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Agilent Eclipse plus C18 (4.6 + 7.5 mm, 3.5 mm particle size) column.  The mobile 

phase was a 15 min binary gradient of acetonitrile (containing 0.1 % TFA) and water 

(20–90%).  Thin-layer chromatography (TLC) was performed on silica gel GHLF plates 

(250 microns) purchased from Analtech.  Extraction solutions were dried over MgSO4 

prior to concentration.  (The chemistry scheme and synthesis described in Figure IV-A2 

in Appendix IV-2.) 

Biochemistry 

All the reagents were the same as specified in Chapter II.  The hPXR activation 

and cell viability in 96-well format assay was from Puracyp, Inc.  Rifamycin S was from 

AAPharmaSyn LLC.  Rifampin was from Boche Scientific.   

Computational Modeling of Rifamycin•RNAP Complexes.   

Initially, the rifabutin (RBN) bound to Thermus thermophilus RNAP complex 

was modified (described in Figure IV-A1 in Appendix IV-1).  The proposed analogues 

were then generated using the modified RBN complex where all of the water molecules 

present in the structure were removed.  All residues that did not have one or more atoms 

within approximately 20 Å of the RBN were deleted.  The remaining atoms of RBN, 

which were not modified in the generation of the proposed analogue, were initially fixed 

in space and treated as part of the RNAP holoenzyme.  A LowModeMD (29) 

conformational search algorithm with energy minimization was then employed to 

generate plausible poses (conformations) of the modified portions of RBN.  The 

LowModeMD search was conducted in MOE (30) using default settings.  Hydrogen 

atoms, modified portions of RBN and protein side chains within ~16 Å of the modified 

portions were allowed to move during the conformational search and energy 
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minimizations.  Generated poses were ranked by interaction energies and duplicate poses 

based on a RMSD cutoff removed.  The lowest energy pose was then selected and the 

truncated RNAP complex soaked with water to a surrounding distance of 6 Å.  A series 

of energy minimizations were then conducted using the MMFF94x force field to relax the 

complex.  First, hydrogen atoms and then the water molecules were allowed to relax 

while the entire analogue and all of the RNAP atoms were held fixed.  Second, the 

modified portions of RBN and side chains of RNAP within 16 Å were also allowed to 

relax with the water molecules and hydrogen atoms.  Finally, the entire analogue 

molecule, residues of RNAP within 16 Å, and the water molecules and hydrogen atoms 

were allowed to relax.  The relaxed complexes were then examined to determine how the 

proposed analogue may interact with the sigma factor or other portions of RNAP 

(specifically the ! and !` subunits). 

Synthesis of Analogues 2a – 2e 

The synthetic route utilized to make our target “one-armed” compounds 2b-2d is 

shown in Figure IV-A2 in Appendix IV-2.  A “two-armed” RLZ congener (2e) was also 

synthesized to assess the effect of the additional side chain on biological activity.  The 

complete synthesis is described in Appendix IV-A2. 

Expression and Purification of MTB RNAP (WT and RifR mutants) 

The WT and RifR mutants were prepared as described in Chapter II from the co-

expression vectors (pMTBRP-5, 6, 7, 8) with minor alterations.  For cell lysis, the 

sonication method (used to prepare E. coli RNAPs in Chapter II) was preferred over the 

freeze/thaw method.  For the remainder of the purification steps, the protocol outlined in 

Chapter II was followed. 
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Cloning, Expression and Purification of MTB sigma factor (SigA) 

The pAvitag vector (modified pMSCG7 vector with an Avitag introduced 

between BglII and KpnI sites) was linearized with SspI at 37
o
C for 1 h and the reaction 

product was purified using the Qiagen PCR kit.  The linearized pAvitag vector (1.6-2.0 

!g) was treated with T4 DNA polymerase in 10X T4 polymerase buffer, 5 mM DTT, 4 

mM dGTP in a final reaction volume of 60 !L.  The reaction was incubated for 30 min at 

22
o
C and then for 20 min at 75

o
C before being stored at -20

o
C.  PCR primers were 

designed to amplify the Rv2703/sigA  gene encoding SigA from pSR01 (31).  The 

primers included an overhang sequence that complemented the vector Ligation 

Independent Cloning (LIC) overhangs.  The sigA  gene was purified via Qiagen PCR kit.  

The purified PCR product (0.2 pmol) was incubated with T4 DNA polymerase, 5 mM 

DTT, 4 mM dCTP, 10X T4 DNA polymerase in a final reaction volume of 20 !L.  The 

reaction was incubated for 30 min at 22
o
C and then for 20 min at 75

o
C and stored at -

20
o
C.  The treated sigA  was incubated with treated pAvitag vector (~0.2 pmol) for 10 

min at 22
o
C.  Then 6.25 mM EDTA was added followed by incubation at 22

o
C for 5 min 

before reducing the temperature to 4
o
C.  The annealed pAvitag vector containing sigA  

was transformed into BL21(DE3) CodonPlus RIPL cells. 

For the expression of SigA protein in BL21(DE3) CodonPlus RIPL cells, the cells 

were grown in 500 mL of 2xTY liquid cultures containing 100 !g/mL carbenicillin and 

30 !g/mL chloramphenicol at 37
o
C with vigorous shaking until cell density reached 

OD600nm=0.5-0.6.  The protein was induced by the addition of IPTG to a final 

concentration of 1 mM.  The cultures were allowed to incubate for an additional 20-24 

hours at 19
o
C.  The cells were harvested by centrifugation (6000xg, 15 min, 4

o
C).  The 
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cell pellet of each 500 mL culture was re-suspended in 10 mL of Ni
2+

-NTA bind buffer 

(300 mM NaCl, 50 mM NaH2PO4, 10 mM imidazole, pH 8.0).  The freeze/thaw method 

was followed to lyse the cells, and it was repeated a total of three times.  The sample was 

supplemented with 10 !L of Lysonase
TM

 Bioprocessing Reagent and 100 !M of PMSF, 

and then the resulting lysate was cleared by centrifugation (21,000xg, 30 min, 4
o
C).  All 

further purification steps were performed at 4
o
C.  The lysate was incubated with 2 mL 

Ni
2+

-NTA His•Bind Resin overnight with gentle shaking.  Each supernatant-resin mixture 

was applied to individual columns.  The columns were washed twice with 4 mL of Ni
2+

-

NTA wash buffer (300 mM NaCl, 50 mM NaH2PO4, 20 mM imidazole, pH 8.0), and the 

protein was then eluted in 6 mL of Ni
2+

-NTA elute buffer (300 mM NaCl, 50 mM 

NaH2PO4, 250 mM imidazole, pH 8.0).  The protein was concentrated to a final volume 

of ~500 !L and then sterile-filtered with 0.22-!m syringe before being applied to a 

HiPrep 16/60 Sephacryl S-200 HR (GE Healthcare) column and the running buffer was 

RNAP storage buffer (10 mM Tris-HCl (pH 7.9), 0.1 mM EDTA, 0.1 mM DTT, 0.1 M 

NaCl).  The fractions containing SigA were pooled together and concentrated to a final 

volume of ~500 !L using Amicon Centrifugal Filter Units (MWCO=10 kDa).  SigA was 

mixed with one volume of 100% glycerol and stored in liquid nitrogen.  The final 

concentration of SigA was determined via Bradford assay using the Bio-Rad Protein 

Assay Kit. 
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In vitro Transcriptional Activity of MTB RNAPs and Dose Response Curves 

Dose response studies with RLZ (2a) and analogues (2b-2e) were performed via 

rolling circle transcription assay to determine the IC50 values.  Each of the compounds 

was tested in duplicate (n=2).  The concentration range used for the wild-type MTB 

RNAP (+/- SigA) was 1.56-100 nM for RLZ and analogues (2b-2e).  The concentration 

ranges used for MTB RNAP (D435V) with SigA were as follows: for 2a and 2e (39.1-

2500 !M); for 2b-2d (1.25-80 !M).  The concentration ranges used for MTB RNAP 

(H445Y) with SigA were as follows: for 2a and 2e (20.5-5000 !M); for 2b-2d (8.2-

2000 !M).  The concentration ranges used for MTB RNAP (S450L) with SigA were as 

follows: for 2a (8.2-2000 !M); for 2b (3.3-800 !M); for 2c and 2d (1.64-400 !M); for 

2e  (6.55-1600 !M).  The final concentration of the wild-type MTB RNAP was 10 nM, 

whereas the final concentration of the RifR RNAPs was 100 nM in the reactions.  The 

core RNAP and SigA were incubated for 30 min on ice in 1X RNAP reaction buffer (40 

mM Tris-HCl (pH 8.0), 50 mM KCl, 10 mM MgCl2, 0.01% Triton X-100) before adding 

the test compound and DNA nanocircle template (80 nM).  The reactions were set up as 

outlined in Chapter II.  The IC50 values were determined by non-linear regression and, the 

logIC50s and their standard errors (of the fit) are reported in Table IV-A2 in Appendix 

IV-3). 

Determination of Minimal Inhibitory Concentration (MIC) Against MTB H37Rv 

Strains 

All compounds were evaluated for MIC90 vs. MTB H37RV using the microplate 

Alamar Blue assay (MABA) as previously described (32) except that 7H12 media was 

used (replacing 7H9 + glycerol + casitone + OADC).  The use of this and other redox 
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reagents such as MTT have shown excellent correlation with colony-forming unit (CFU)-

based and radiometric analyses of mycobacterial growth in many laboratories.  The MIC 

is defined as the lowest concentration effecting a reduction in fluorescence (or 

luminescence) of 90% relative to controls.  Isoniazid and rifampin are included as 

positive quality control compounds with expected MIC ranges of 0.025-0.1 and 0.06-

0.125 !g/mL, respectively. 

The Low Oxygen Recovery (LORA) in vitro assay (33) is designed to detect 

compounds which may have the potential for shortening the duration of therapy through 

(more) efficient killing of the non-replicating persistor (NRP) population.  The assay 

involves (1) adaptation of MTB to low oxygen through gradual, monitored, self-depletion 

of oxygen during culture in a sealed fermenter, (2) exposure for 10 days of the low-

oxygen adapted culture to test compounds in microplates that are maintained under an 

anaerobic environment, thus precluding growth and (3) subsequent evaluation of MTB 

viability as determined by the ability to recover.  Recovery/viability is determined either 

by (a) (aerobic) subculture onto solid, drug-free media and determination of colony 

forming units or (b) by the extent to which a luciferase-expressing strain can recover the 

ability to produce luminescence.  Compounds such as isoniazid and ethambutol, which 

are considered to be devoid of “sterilizing activity”, are inactive in this assay while the 

rifamycins and the more potent fluoroquinolones, which do appear to eliminate some 

proportion of the persistor population and thus can affect treatment duration, are active, 

albeit at concentrations higher than the MICs for replicating cultures.  Correlation 

between the CFU and luminescence readout has been good with the exception of the 
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fluoroquinolone class for which luminescence underestimates absolute activity but not 

relative activity. 

Computational Modeling of Rifamycin•hPXR Complexes 

A 2.8 Å resolution crystal structure of hPXR in complex with rifampin is 

available from the Protein Data Bank (PDB ID: 1skx) (22).  Unfortunately, the 1-amino-

4-methylpiperazine tail of RMP and three hPXR loops adjacent to the binding pocket 

(residues 178-209, 229-235, and 310-317) are disordered and unresolved in the structure.  

The missing residues in this and other published hPXR structures make accurate 

modeling of the hPXR and the tails of rifamycins difficult.  Figure IV-4 was created by 

overlaying the naphthalene portions of the four rifamycins generated from the 2a68 

structure onto the naphthalene portion of RMP in complex with hPXR structure 1skx.  

The relative location of synthetic branch point for the analogues described in Figure IV-1 

is also indicated in Figure IV-4.  In addition to the complex with RMP, four other 

relatively complete hPXR structures are available.  The hPXR apo structure (PDB ID: 

1ilg) (34) and hPXR complexes with SR12813 (PDB ID: 1ilh) (34) hyperforin (PDB ID: 

1m13) (35) and colupulone (PDB ID:2qnv) (36) were obtained from the Protein Data 

Bank.  These four hPXR complexes were superimposed onto the hPXR structure of 1skx 

containing the four modeled in rifamycins.  Coordinates were not relaxed with energy 

minimization due to the many missing residues. 

Human Pregnane X Receptor Activation Assay 

To assess the ability of specific rifamycins to activate the hPXR, the hPXR 

activation assay system from Puracyp, Inc. was used.  The manufacturer’s protocol was 

followed for the 96 well plate assay.  Briefly, the DPX2 cells were thawed in a 37°C 
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water bath and mixed thoroughly with culture media.  Then 100 !L of cell mixture was 

transferred into each well and the plate was incubated overnight in a 5% CO2 incubator at 

37 °C.  The following day, the dosing media was thawed in a 37ºC water bath.  The 

dilutions of RLZ (2a) and analogues (2b-2e) and RMP (1 , positive control) were 

prepared as described in the manual.  The 96 well plate was removed from the incubator 

and liquid from each well was discarded before adding 100 !L of the dilutions to the 

specific wells.  Each dilution of the rifamycin derivative was tested in duplicate.  The 

plate was placed in the 5% CO2/37ºC incubator again for 24 h.  The next day, the 

CellTiter-Fluor Buffer and CellTiter-Fluor
TM

 were thawed at room temperature before 

adding 5 !L of CellTiter-Fluor
TM

 to 10 mL of CellTiter-Fluor Buffer.  The wells of the 

96 well plate were emptied again and 100 !L of CellTiter-Fluor
TM

 reagent was added to 

each well.  The plate was incubated for 1 h in the 5% CO2/37ºC incubator.  A Synergy 

H1 Hybrid Multi-Mode Microplate Reader (BioTek) was used to measure fluorescence 

(!ex=390 nm; !em=505 nm).  To obtain luminescence readings, the contents of ONE-

Glo
TM

 Assay Buffer were added to the ONE-Glo
TM

 Assay Substrate and then 100 !L of 

mixture was transferred into each well.  The plate was read after 5 min where the 

luminometer was set for 5 sec pre-shake with 5 sec/well read time.  The Relative 

Luminescence Units (RLU) and Relative Fluorescence Units (RFU) were determined as 

outlined under the “Quantitation of PXR Receptor Activation” section of the manual.  

The normalized luciferase activity (RLU/RFU) was divided by the normalized DMSO 

control to represent the data as ‘fold activation’ relative to the control.  The replicate data 

points were averaged and both the original data points and the average values were 

plotted as a function of log concentration versus PXR activation.  The average values 
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were then fit by non-linear regression to a modified four parameter logistic equation 

using Kaleidagraph (Synergy Software, Essex, VT), 

y = 1+ [(M3– 1)/(1 + 10[(M1-M0)*M2])] 

where M3 is the ECMAX, and 1 is the lower limit of the assay, M0 is the log of the 

rifamycin concentration, M1 is the log of the EC50, and M2 is the Hill slope.  The data 

were normalized such that the lower limit was set to 1.  M1, M2, and M3 were fit by the 

regression. 

Microsome stability and Pharmacokinetic (PK) studies 

 Microsome stability and pharmacokinetics studies were performed in the Institute 

for Tuberculosis Research, University of Illinois, Chicago (see Appendix IV-4). 

Results 

Analogue Design and Synthesis 

Modeling was based on the 2.5 Å resolution structure of RBN in complex with 

the Thermus thermophilus RNAP holoenzyme (PDB ID: 2a68) (28).  From this structure 

and a related complex (PDB ID: 2a69; rifapentine in complex with the T. thermophilus 

RNAP holoenzyme), it was observed that the sigma factor hairpin loop might exist in two 

distinct physiologically relevant conformations, at least in the free holoenzyme.  The 

modeled RLZ/RNAP complex without bound water molecules is shown in Figure IV-2.  

RLZ (2a) is shown with bright green carbon atoms and the different molecular surfaces 

of the RNAP are shown as follows: ! subunit surface is colored white and light blue, !’ 

subunit is brown, and the sigma factor is dark green.  The interaction surfaces at 4.5 Å 

between the tail of analogue 2b and surrounding RNAP are shown in Figure IV-3.  

(Similar poses for RLZ and analogues 2c  – 2e  are shown in Figure IV-A1 (A-D) in 
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Figure IV-2:  The modeled RLZ/RNAP complex without bound water molecules. RLZ 
(2a) is shown with bright green carbon atoms. The RNAP molecular 
surface is shown with ! colored white and light blue, !’ in brown, and the 
sigma factor in dark green. 

 

 

Figure IV-3:  Interaction surfaces at 4.5 Å between the compound tail and surrounding 
RNAP for benzoxazinorifamycin 2b, in the same coloring scheme as 
Figure IV-2. 
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Appendix IV-1.)  These representative analogues 2a – 2e  were then synthesized (the 

synthesis is described in Appendix IV-2). 

 

In vitro Inhibition of Wild-type and RMP-resistant Mutant MTB RNAPs   

The inhibition constants of the wild-type and three RifR mutants of the MTB 

RNAP by RLZ (2a) and analogues (2b – 2e) were determined via dose-response studies 

where each compound was tested in duplicate at the specified concentrations in Materials 

and Methods section.  To assess the additional binding of these analogues to the sigma 

factor, the MTB sigma factor (SigA) was expressed and purified and then incubated with 

the core enzyme for 30 minutes on ice to form a holoenzyme before initiating the assay.  

The band corresponding to SigA was observed on the SDS-PAGE after gel filtration of 

the preincubated sample of the core MTB RNAP and SigA, suggesting that the SigA did 

bind to form the holoenzyme (data not shown).  (The IC50 values for these analogues with 

the core RifR RNAPs were not evaluated due to the very low activity observed after 30 

min incubation of enzyme on ice.)  The data were plotted (% activity vs. log 

benzoxazinorifamycin concentration) and then fitted by nonlinear regression. The logIC50 

values and their standard errors (of the fit) are reported, with these roughly translating 

into a 20-25% error in the IC50 values (Table IV-A2 in Appendix IV-3).  The apparent 

IC50 values are listed in Table IV-1.  All of the benzoxazinorifamycins (2a – 2e) inhibit 

the wild-type MTB RNAP in the 10
-9

 M (nM) range.  The IC50 values for RLZ (2a) 

against the RifR mutants of MTB were much higher, in the 10
-4

 M (~100 !M) range.  

The most frequently observed MTB RifR mutant in clinical isolates, S450L, (18, 37) was 

inhibited at 2 to 5-fold lower concentrations of 2b, 2c  & 2e  relative to RLZ with 2d 

being essentially the same as RLZ.  The MTB D435V mutant was inhibited at 5 to 50-
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fold lower concentrations of 2b, 2c, 2d & 2e  relative to RLZ.  For the H445Y mutant, 

Rlz and 2b similar IC50 values; whereas, the other analogues (2c , 2d, 2e) were inhibited 

at 2.5-6 fold higher concentrations. 

Table IV-1:  In vitro RNAP IC50 Values (!M)
a
 for RLZ (2a) and Analogues (2b – 2e) 

 

 2a (RLZ) 2b 2c 2d 2e 

WT RNAP 

(-!
A
) 

0.0115 < 0.01 < 0.01 < 0.01 0.017 

WT RNAP 

(+!
A
) 

< 0.01 < 0.01 < 0.01 < 0.01 0.021 

D435V 

(+!
A
) 

541 20 9 13 112 

H445Y 

(+!
A
) 

172 171 437 574 1074 

S450L 

(+!
A
) 

117 16 18 122 78 

a 
IC50 is the concentration of rifamycin resulting in 50% inhibition of transcription.  

Errors of the logIC50 values are reported as described in the Material and Method Section.  

As a control the mutant RNAPs (D435V, H445Y, and S450L) without SigA were tested 

against RMP where the IC50 values are as follows: 313 !M (D435V), 830 !M (H445Y), 

and 126 !M (S450L).  The standard errors of the logIC50 values roughly translate into a 

20-25% error in the IC50 values. 
 

Activity against M. tuberculosis (H37RV) in Cell Culture 

Under aerobic conditions (MABA), all newly synthesized compounds 2b – 2e  

display superior activities (MIC90 values of 0.02 – 0.08 !M) relative to RMP (0.13 !M), 

but are less potent (5 to 40-fold) than RLZ (< 0.004 !M).  Under anaerobic conditions 

(LORA), activity for “one armed” compounds 2b – 2d (MIC90 values 0.35 – 0.40 !M) is 

essentially equivalent to RMP (0.46 !M), and these range from 4 – 18.5 fold higher than 

in the MABA.  Relative to RLZ, LORA potency for analogues 2b – 2d is lower (at least 

20-fold) with 2e  strikingly poor, being essentially inactive (MIC90 > 6.72 !M).   
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Table IV-2:  MIC90 Values (!M)
a
 of RMP (1) and Benzoxazinorifamycins 2a – 2e  vs. 

MTB 

 

 1 (RMP) 2a (RLZ) 2b 2c 2d 2e 

MABA 0.13 < 0.004 0.02 0.08 0.07 0.08 

LORA 0.46 < 0.017 0.37 0.35 0.40 > 6.72 

a 
The MIC90 is defined as the minimum concentration of the compound required to inhibit 

90% of bacterial growth.  Isoniazid (MABA: 0.24, LORA: >128), moxifloxacin (MABA: 

0.46), streptomycin (MABA: 0.46), and PA824 (LORA: 2.53). 

Human Pregnane X Receptor 

RMP (1) is one of, if not the most, potent activators of hPXR (22).  RMP fills the 

ligand-binding pocket very well.  In Figure IV-4, four known rifamycins (RMP, 

rifapentine, RBN, and RLZ) were modeled in the hPXR binding site with spatial relation 

to resolved hPXR residues.  In particular, there are seven hPXR residues, namely Phe-

237, Ser-238, Leu-239, Leu-240, Pro-241, His-242 and Met-243, in very close proximity 

to the synthetic branch point for our synthesized analogues.  These residues are resolved 

in each of the five hPXR structures and other than one of the Phe-237 rings, have fairly 

conserved relative coordinates.  This, along with the presence of Pro-241, would suggest 

a more rigid region of the hPXR ligand-binding pocket. 
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Figure IV-4:  Clinical rifamycins modeled into the hPXR binding pocket. 

 

To probe for hPXR activation, the commercially available in vitro assay for hPXR 

activation (Puracyp, Inc.) was used.  The dose-response plots for the hPXR assay are 

shown in Figure IV-5.  RMP exhibited a high maximal degree of activation (~12-fold) 

and an EC50 value of ~2 !M.  RLZ did not display hPXR activation at concentrations as 

high as 25 !M.  But RLZ did show ~2-fold receptor activation along with ~2-fold loss of 

cell viability at 100 !M.  Analogue 2d was fit to a dose-response curve that revealed a 6-

fold maximal activation of hPXR and an EC50 of ~6 !M.  Analogue 2d also started to 

exhibit loss of cell viability at 25 !M; therefore, the 100 !M data point was not used in 

the dose-response curve fit (Figure IV-6 and Table IV-A3 in Appendix IV-3).   Analogue 

2e shows hPXR activity very similar to that of RLZ, with no activation or loss of cell 

viability below 25 !M and ~3-fold activation and ~25% loss of cell viability at 100 !M.  

Analogues 2b and 2c were essentially identical with ~3-fold hPXR activation at 6.25 !M 
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and dramatic loss of cell viability above 6.25 !M (such that no hPXR activation was 

seen). 

 

 

Figure IV-5:  Plots from the hPXR activation assay. 
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Figure IV-6:  Effect of Rifampin (top) and Benzoxazinorifamycins (bottom) on DPX2 

cell growth as measured by CellTiter-Fluor
TM

. 

 

Microsome Stability and Pharmacokinetics (PK)    

RLZ (2a) and analogue 2b were evaluated for metabolic stability in human 

microsomes.  Both were relatively stable with estimated half-lives of 65 and 54 min, 
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respectively (Table IV-3).  Similarly, the estimated half-life of 2a in mouse microsomes 

was 53 min while that of 2b was 141 min. 

Table IV-3:  Half-life of Selected Benzoxazinorifamycins in Human and Mouse 

Microsomes 

 

  

% Remaining compound after 

30 min incubation in 

microsomes  t1/2 (min)  

Compound Mouse Human Mouse Human 

2a (RLZ) 67 73 53 65 

2b 86 68 141 54 

 

The PK of analogue 2b was assessed using a suspension prepared in 

carboxymethylcellulose (0.05% CMC).  In the single dose study, 2b was detected in the 

blood but the signal was below the lower limit of quantitation.  The Cmax was 0.0185 µM 

at a Tmax of 1 h.  However, analogue 2b appeared to accumulate in the blood of mice that 

were dosed once daily for 5 consecutive days with a Cmax of 1.74 µM at a Tmax of 2 h, 

which is 100-fold higher than that observed after a single oral dose (Figure IV-A4 in 

Appendix IV-4).  In the lung tissue of these mice, 2b was also detected at a concentration 

of 1.79 ug/g (around 0.4 µM), but only exceeded the MIC of 0.02 µM for ~4 h (Figure 

IV-A4). 

Discussion 

Recent determinations of the three-dimensional structures of rifamycins bound to 

RNAP provide a conceptual framework for structure-based discovery of improved 

rifamycins (27, 28).  In addition, the design of these novel analogues was based on 

benzoxazinorifamycins that have shown improved antimicrobial activity against MTB (8, 

9).  Previously, C-5’ benzoxazinorifamycin and C-3’ hydroxy derivatives have been 

synthesized where RLZ was selected as the most promising derivative (9).  Apart from an 
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obscure report on the synthesis of a small series of simple benzoxazinorifamycin C-3’ 

monoethers (38), there are no examples of more elaborate ethers that have been 

incorporated onto a rifamycin S scaffold utilizing the strategy outlined here.  These 

analogues are the first example (as far as we know) where structure-based design has 

been utilized to elaborate the ansa-napthalene core in a novel way that would lead to 

enhanced binding affinity to both WT MTB RNAP and RifR mutants. 

Although modeling was based on Thermus thermophilus RNAP, the rifamycin 

binding site is highly conserved among prokaryotes (27, 39); therefore, this structure 

provides a good foundation for understanding how proposed rifamycin analogues may 

interact with the MTB RNAP.  The designed analogues ranged in size, flexibility, and 

spatial variation with the likelihood of increasing potency by one or more of the 

following: (a) making additional contacts with the sigma factor, !, and/or !’ regions of 

the RNAP and (b) interfering with the binding of the sigma factor and/or further 

occluding the channel.  The modeled complexes seen in Figure IV-3 and Figure IV-A1 

(A-D) illustrate that the benzoxazinorifamycins have the potential to interact with 

different regions of RNAP. 

Previously, the effect of RLZ on E. coli and Mycobacterium avium RNAPs was 

examined and compared to RMP.  The IC50 value of RLZ was higher than RMP for both 

RNAPs (E. coli: RLZ, 0.138 "M; RMP, 0.122 "M; M. avium: RLZ, 0.213 "M; RMP 

0.085 "M).  Therefore, it was concluded that the greater antibacterial activity of RLZ (a 

more hydrophobic compound) is due to greater permeability into the cell (40).  Here, the 

IC50 values of RLZ and analogues 2b – 2d were determined for the WT and the three 

RifR mutants (Table IV-1).  The lower limit of detection of the rolling circle transcription 
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assay is an IC50 value of ~5 nM, so it is quite possible that these analogues have true IC50 

values that are much lower; therefore, a more sensitive assay needs to be developed to 

determine the very low IC50 values.  RLZ and all other analogues inhibit the WT MTB 

RNAP at 10
-9

 M (nM) range with and without SigA.  The IC50 values for RLZ with the 

RifR mutants of MTB were much higher, in the 10
-4

 M (~100 !M) range.  Increasing the 

concentration of RifR RNAPs to 100 nM and the binding of SigA seemed to stabilize the 

MTB RNAPs, which allowed the IC50 values of each analogue to be determined and 

compared to the one another. Here the IC50 values of RLZ with RifR RNAPs were similar 

to those observed for RMP (listed underneath Table IV-1).  Previously, RLZ has been 

reported to be active against RifR strains including the D435V mutant, but RifR MTB 

strains with mutations at His445 and Ser450 (major mutation sites) were still resistant to 

RLZ (13, 15-18).  However, our data indicates that RLZ has a higher apparent IC50 value 

for the D435V mutant than the other two RifR mutants (Table IV-1).  The results from 

this very limited series of analogues provide proof of principle that the potency of 

rifamycins towards RifR MTB RNAPs can be substantially improved and the range of 

inhibition by the analogue depends on the type of RifR mutation. 

RLZ was the most potent under both MABA and LORA conditions.  The MABA 

MIC90 value was comparable to what has been reported previously for MTB H37RV strain 

(MIC90 value 0.004 !M) (16).  Analogues 2b – 2e  had improved antimicrobial activity 

compared to RMP but were less potent than RLZ.  However analogue 2e  had a much 

higher LORA MIC90 value (> 6.72 !M) where the addition of the RLZ side chain into the 

5’-position of 2e  introduces another basic moiety, which may impede its transport across 

the cell membrane of the non-replicating bacterial strain of the LORA. 
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In addition to designing analogues that might be more potent against WT and 

RifR RNAPs, these novel compounds were also expected to reduce Cyp450 induction 

effects.  Cyp450 induction effects (due to activation of the hPXR) decrease with a 

progression from the RMP (hydroquinone core) to the RLZ (markedly modified quinone 

core) scaffold.  The relative potency of CYP3A4 induction is RMP > rifapentine > 

rifabutin > RLZ (41, 42).  Within this same order of structural subclasses, there is also a 

trend of RLZ possessing increased potency against drug-susceptible isolates of slow-

growing mycobacteria and better in vivo efficacy in mice (14).  Analysis of a recent 

structure of RMP (1) bound to the hPXR suggests that these elaborations may have the 

significant added benefit of reducing the affinity of the analogues for hPXR, thereby 

reducing CYP450 induction activity (22).  The hPXR ligand-binding pocket is large, 

flexible, and capable of adapting itself to bind a large variety of ligands (22).  It appears 

the tails of these benzoxazinorifamycins may prevent binding to hPXR by projecting into 

rigid, sterically encumbered regions of hPXR.  Therefore, the diminished binding to 

hPXR would then presumably reduce induction of CYP450s. 

The activation of hPXR by these novel analogues was then assessed.  RLZ as 

reported previously does not activate the hPXR (41).  Unfortunately, the other analogues 

did exhibit hPXR activation up to a certain concentration before cell toxicity was 

observed (Figure IV-6).  The apparent toxicities (in this cell line) of 2b and 2c is 

currently unexplained.  Further studies in this and other cell lines are needed to confirm 

this toxicity and to probe the responsible mechanism.  The lower toxicities of 2d and 2e 

show that improved rifamycin analogues are possible.  It seems likely that the flexible 

side chains may allow for the side chains to adopt a conformation that minimizes the 
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clash with the hPXR ligand binding pocket.  The observation that 2e is very similar to 

RLZ in hPXR activation is consistent with this hypothesis since 2e is a very close 

analogue of RLZ and has both sides chains, thereby reducing their degrees of freedom.  It 

should be noted that at least for the wild-type RNAP, there is ~1000 fold difference 

between the RNAP IC50 and the threshold for apparent cytotoxicity.  Nevertheless, the 

lower toxicity of and hPXR activation by 2e shows that novel rifamycin analogues with 

improved side effects can be made. 

Mouse and human microsomal studies of analogue 2b show it to have excellent 

metabolic stability relative to RLZ (2a).  The pharmacokinetics of 2b showed 

accumulation of the compound in plasma after multiple dosing with an apparent half-life 

of ~1-2 h, suggesting that compound levels are above the MIC ~7-8 h if the decay is 

linear.  This is corroborated by studies in lung tissue where levels of 2b exceeded the 

MIC of 0.02 µM for only ~4 h.  These studies suggest non-optimal pharmacokinetics for 

this compound, and that further SAR will be necessary to find a compound to take to in 

vivo efficacy studies. 

Conclusions 

We have utilized recent determinations of the three-dimensional structures of 

rifamycins bound to RNAP to design and synthesize a novel subclass of 

benzoxazinorifamycins (2b – 2e), possessing a range of size, flexibility, and spatial 

variation to interact with the sigma hairpin loop and other regions of the RNAP complex.  

Relative to RLZ (2a), these analogues generally displayed superior affinity toward WT 

and RifR mutants of the MTB RNAP but lower antitubercular activity in cell culture 

(under both aerobic and anaerobic conditions).  We have also utilized information from 
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the crystal structure of RMP (1) bound to hPXR as part of our design strategy toward 

analogues 2b – 2e , and have determined that analogue 2e  displays lowered affinity for 

hPXR relative to RMP (1) and similar to RLZ (2a), thereby suggesting a potential for 

reduced CYP450 induction activity.  Mouse and human microsomal studies of analogue 

2b show it to have excellent metabolic stability; mouse pharmacokinetics in plasma and 

lung show accumulation of 2b, but with a half-life suggesting non-optimal 

pharmacokinetics.



 131 

Notes to Chapter IV 

We gratefully acknowledge Hao Xu and Dr. Hollis Showalter for the synthesis of 

the rifalazil and benzoxazinorifamycin analogues.  We thank Dr. Scott Franzblau 

(Institute for Tuberculosis Research at University of Illinois at Chicago) for providing the 

antitubercular activity, microsomal stability and pharmacokinetics data.  We would also 

like to thank Dr. Paul Kirchhoff for his contribution with the structural studies/models.  

We acknowledge generous support by the University of Michigan College of Pharmacy 

Ella and Hans Vahlteich and UpJohn Research Funds.  We would also like to 

acknowledge additional funding by the University of Michigan Office of the Vice 

President for Research, and the Rackham Graduate School.  

The work described in this chapter has been accepted in the Journal of Medicinal 

Chemistry (Gill, S.K., Hao, X., Kirchhoff, P.D., Wan, B., Zhang, N., Peng, K.-W., 

Franzblau, S.G., Garcia, G.A., and Showalter, H.D.H.  Structure-based Design of Novel 

Benzoxazinorifamycins with Potent Binding Affinity to Wild-type and Rifampin-resistant 

Mutant Mycobacterium tuberculosis RNA Polymerases  Journal of Medicinal 

Chemistry  (2012)  DOI: 10.1021/jm201716n).  Due to poor purity and NMR results, 

the data for benzoxazinorifamycin analogue (2e) was not published. 
 

Abbreviations used:  TB, tuberculosis; RNAP, DNA-dependent RNA polymerase; SigA, 

MTB housekeeping sigma factor A; WT, wild-type; RifR, Rifamycin-resistant; MTB, 

Mycobacterium tuberculosis; MDR, multi-drug resistant TB strain; XDR, extensively-

drug resistant TB strains; RMP, rifampin; RLZ, rifalazil; RBN, rifabutin; SAR, structure-

activity relationship; NTP, ribonucleotide triphosphate; IPTG, isopropyl !-D-

thiogalactoside; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; 

PMSF, phenylmethylsulfonyl fluoride; EDTA, ethylenediaminetetraacetic acid; DTT, 

dithiothreitol; RNA, ribonucleic acid; MABA, Microplate Alamar Blue Assay; LORA, 

Low Oxygen-Recovery Assay; IC50, concentration of rifamycin resulting in 50% 

inhibition of transcription; MIC90, concentration of rifamycin that results in 90% 

inhibition of bacterial growth; CYP3A4, cytochrome P450 3A4; hPXR, human pregnane 

X receptor; EC50, half maximal effective concentration; ECMAX, maximal effective 

concentration of the compound; RFU, relative fluorescence units; RLU, relative 

luminescence units; HRMS, high resolution mass spectrometry; TLC, thin layer 
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Appendix IV-1 

Structural Modeling 

The structure of 2a68 was used as the starting point in our modeling studies (28).  

In brief, modifications made to the structure prior to its use in the modeling were as 

follows.  All water molecules and metals greater than 12 Å from RBN were removed.  

Four magnesium ions within 12 Å were converted to water molecules.  Partially missing 

residues were repaired.  Connection points for completely missing residues were greater 

than 35 Å from RBN, and were kept fixed in space during the energy minimizations.  All 

N and C termini, either real or as a result of missing residues, were acetylated and 

amidated respectively.  RBN was removed from the complex.  Hydrogen atoms were 

added to the proteins and the force field set to AMBER99 and charged.  Modifications 

were made to the RBN structure to produce the proposed analogue while keeping the 

unmodified atoms of RBN fixed in relation to the RNAP complex. 

A series of energy minimizations were then conducted to relax the positions of the 

modified atoms using the AMBER99 force field to gradients of 0.01.  Positions of 

hydrogen atoms were first relaxed with energy minimization.  Repaired residues except 

for their C alpha atoms, termini, and hydrogen atoms were then relaxed.  Lastly, the 

complete repaired residues, termini, and hydrogen atoms were relaxed.  Resulting 

confirmations of the repaired residues and termini were checked.  Bond orders for RBN 

were corrected, hydrogen atoms added, and the force field set to MMFF94x and charged.  

Positions of hydrogen atoms were relaxed with energy minimization using the MMFF94x 

force field to a gradient of 0.01.  RBN was returned to the complex in its original pose. 
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A second series of energy minimizations were then conducted using the 

MMFF94x force field to gradients of 0.01.  Positions of hydrogen atoms were first 

relaxed followed by positions of hydrogen atoms and all water molecules.  Atoms of the 

RBN were then included in the minimizations.  Lastly, positions of all RBN, water, and 

hydrogen atoms and protein residues having one or more atoms within 12 Å from RBN 

were relaxed with energy minimization.  The naphthalene ring of RBN drifted 

approximately 1 Å toward the cleft of the complex from their crystallographic positions 

with relatively minor movements of the protein residues well within the 2.5 Å resolution 

of the starting structure. 

 

Figure IV-A1 (A-D):  Interaction surfaces at 4.5 Å between the compound tail and 
surrounding RNAP for benzoxazinorifamycins 2a and 2c-e  in 
the same coloring scheme as Figure IV-2. 
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Appendix IV-2 

Chemistry and Synthesis 

The RLZ literature (43) suggested a strategy of annulating the benzoxazino 

moiety onto rifamycin S (12) with a suitably protected monoether (e.g., TBS) of 2-

aminoresorcinol, followed by ether deprotection and then side chain installation off the 

nascent phenol by any number of alkylation methodologies.  This was investigated, but 

yields were very poor and the scope of alkylation possibilities was quite limited (data not 

shown).  We opted instead to annulate a fully tethered 2-aminoresorcinol monoether onto 

the rifamycin S framework in a single step.  This allowed us to consider a wide range of 

tethers off the “southeastern” part of the rifalazil-type template, and more importantly, 

minimized difficult synthetic transformations and product purifications involving the 

complex rifamycin S core to a single last step.  Thus, we set our sights initially on 

developing a robust procedure to intermediate 5 , which would serve as a key starting 

material for introduction of our chosen tethers.  While there are two reports for the 

synthesis of this compound (44, 45)
 
neither was deemed practical for our needs.  Instead, 

we pursued a two-step procedure.  Accordingly, dialkylation of 2-nitroresorcinol (3), 

similar to the literature procedure (46), gave a 95% yield of dibenzyl ether 4  which was 

then cleanly mono-debenzylated to  nitrophenol 5 (44) in 82% yield.  With 5  now in 

hand, we were ready to install our target tethers.  Phenolic alkylation with 2-

(diethylaminoethyl)ethyl chloride hydrochloride under standard conditions provided 6  in 

87% yield.  Hydrogenation of 6  utilizing Pearlman’s catalyst simultaneously reduced the 

nitro function and hydrogenolyzed the benzyl protecting group to give the 2-

aminoresorcinol ether 7  in 81% yield.  A similar sequence of reactions was followed to 
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provide ethers 11a, 11b.  Alkylation of 5  with 1,4-dibromobutane gave 8  in 93% yield, 

which was subsequently aminated with two mono-substituted piperazines to afford 

compounds 9a and 9b in 68% and 99% yields, respectively.  t-Boc deprotection of 9b 

followed by acylation of 9c  with 2-(1H-imidazol-1-yl)acetic acid provided 10 , the amide 

congener of 9a, in 72% yield.  Hydrogenation of 9a and 10  was conducted as described 

for 6  to provide the remaining 2-aminoresorcinol ethers 11a and 11b, respectively, in 

nearly quantitative yields.  Each 2-aminoresorcinol ether (7 , 11a, 11b) was then 

annulated onto rifamycin S (12) to provide target compounds 2b – 2d in 35 – 74% yields 

following a two-stage purification utilizing medium pressure and then preparative plate 

silica gel chromatography.  No effort was made to optimize the condensation reaction 

with rifamycin S, but we feel that this has the potential to be an efficient transformation. 

Having achieved the synthesis of our desired “one-armed” target molecules, we 

decided to make a single proto-type “two-armed” RLZ congener (2e) to test the 

chemistry of its synthesis and the effect of the additional side chain on biological activity.  

Thus, condensation of 2d with N-isobutylpiperazine under oxidative conditions as 

described for the synthesis of RLZ (2a) (43) gave a 74% yield of 2e  following rigorous 

purification.  The structural assignments of 2b – 2e  were supported by diagnostic peaks 

in the 
1
H NMR spectra and by chemical ionization (CI) and high resolution (HR) mass 

spectrometry. 
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Figure IV-A2:  Synthesis of 2b – 2e
a 

 

a
Reagents and conditions: (a)  benzyl bromide (for 3) and 1,4-dibromobutane (for 5), 

Cs2CO3, DMF, 25 °C, 12-16 h, 93-95%; (b)  BCl3, DCM, -78 °C, 1 h, 82%; (c)  

Et2NCH2CH2Cl ! HCl, Cs2CO3, acetone, 50 °C, 3 h, 93% (d)  20% Pd/C, H2 (40 psi), 25 

°C, 20-40 h, MeOH:HOAc (9:1) for 6 ; MeOH:10% aq HCl (9:1) for 9a,10 ; 81 – 98%; 

(e) 1-[2-(1H-imidazol-1-yl)ethyl]piperazine or 1-Boc-piperazine, DIPEA, CH3CN, reflux, 

12-18 h, 68-99%; (f)  TFA, DCM, 25 °C, 3 h;  (g)  2-(1H-imidazol-1-yl)acetic acid, 

DIPEA, EDC!HCl, HOBT, DMF, 25 °C, 16 h, 72% from 9b; (h)  7 , 11a, or 11b; p-

dioxane or 1,2-DCE, MnO2, 25 °C – reflux, 35 – 74%; (i) for 2d, 1-(2-

methylpropyl)piperazine, DMSO, MnO2, 2 h, 74%. 
 

Synthesis of RLZ and analogues 

(((2-Nitro-1,3-phenylene)bis(oxy))bis(methylene))dibenzene (4) 

 A mixture of 2-nitroresorcinol (3; 2.0 g, 12.9 mmol), Cs2CO3 (10.5 g, 32.2 
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mmol), benzyl bromide (3.39 ml, 28.4 mmol) and DMF (35 mL) was stirred at room 

temperature for 12 h. The mixture was diluted with ethyl acetate and washed sequentially 

with 1% aq HCl and brine. The organic phase was dried and concentrated to leave a 

yellow oil, which was diluted with 2-propanol to precipitate pure product. The solids 

were collected to leave 4 (4.35 g, 95%) as light yellow crystals: mp 87.5 - 88!C (lit(46) 

80!C); Rf  0.26 (hexanes : ethyl acetate, 5 : 1); 
1
H NMR (CDCl3) ! 7.3 (m, 10 H), 7.23 (t, 

J = 8.5 Hz, 1 H), 6.64 (d, J = 8.5, 2 H), 5.16 (s, 4 H); 
13

C NMR (CDCl3) ! 150.9, 135.6, 

130.9, 128.7, 128.2, 127.0, 106.2, 71.0; MS (ES
+
) m/z 358.1 (M+Na)

+
. 

3-(Benzyloxy)-2-nitrophenol (5) 

A solution of dibenzyl ether 4 (3.0 g, 8.95 mmol) in dichloromethane (80 mL) at -

78!C was treated drop-wise with boron trichloride (13 mL, 1M in heptane) during which 

the color changed to dark purple. The reaction was monitored by TLC and stirred at -78!

C until all starting material was consumed (1 h).  Methanol (5 mL) was added drop-wise 

and the mixture was brought to room temperature, cautiously diluted with 5% aq sodium 

bicarbonate, and then extracted with dichloromethane (2x).  The combined extracts were 

dried and concentrated to an orange oil that was purified by flash silica gel 

chromatography eluting with hexanes : ethyl acetate (5 : 1). Product fractions were 

pooled and concentrated to give 5 (1.79 g, 82%) as a bright yellow solid: mp 67 - 67.5 !

C; Rf  0.24 (hexanes : ethyl acetate, 5 : 1); 
1
H NMR (CDCl3) ! 10.18 (brs, 1 H), 7.4 (m, 2 

H), 7.3 (m, 4 H), 6.72 (d, J = 8.5 Hz, 2 H), 6.6 (d, J = 8.5 Hz, 2 H), 5.21 (s, 2 H); 
13

C 

NMR (CDCl3) ! 155.7, 154.7, 135.6, 135.4, 128.7, 128.2, 126.9, 111.0, 105.1, 71.4; MS 

(ES
+
) m/z 268.0 (M+Na)

+
. 

  



 138 

2-(3-(Benzyloxy)-2-nitrophenoxy)-N,N-diethylethanamine (6) 

A mixture of nitrophenol 5 (1.31 g, 5.4 mmol), 2-(diethylaminoethyl)ethyl 

chloride hydrochloride (1.2 g, 7 mmol), Cs2CO3 (4.37 g, 13.4 mmol) and acetone (20 

mL) was stirred at 50!C for 3 h. The mixture was filtered and the filtrate was 

concentrated to a residue that purified by flash silica gel chromatography eluting with 

hexanes : ethyl acetate (5 : 1). Product fractions were pooled and concentrated to leave 6 

(1.71 g, 93%) as a light yellow oil: Rf = 0.22 (CH2Cl2 : methanol, 95 : 5); 
1
H NMR 

(CDCl3) ! 7.3 (m, 6 H), 6.62, (dd, J1 = 3.6 Hz, J2 = 14.1 Hz, 2 H), 5.16 (s, 2 H), 4.1 (t, J = 

10.5 Hz, 2 H), 2.8 (t, J = 10.5 Hz, 2 H), 2.6 (q, J = 11.9 Hz, 4 H), 1.0 (t, J = 11.9 Hz, 6 

H); 
13

C NMR (CDCl3) ! 151.2, 150.8, 135.6, 130.9, 128.6, 128.2, 127.0, 105.9, 105.6, 

70.9, 68.5, 51.2, 47.9, 11.9; MS (ES
+
) m/z 245.1 (M+H)

+
. 

2-Amino-3-(2-(diethylamino)ethoxy)phenol (7) 

2-(Diethylamino)ethyl ether 6 (1.8 g, 5.2 mmol) was dissolved in 10% acetic acid 

in methanol (50 mL) in a 250 mL Parr hydrogenation bottle. Catalyst (20% Pd(OH)2/C, 

0.1 g) was added and the mixture was hydrogenated at 40 psi H2 for ~20 h. The reaction 

mixture was rapidly filtered over Celite®, and the filtrate was concentrated and diluted 

with ethyl acetate. The solution was washed with 5% aq sodium carbonate, dried, and 

concentrated to a brown solid that was triturated in hot hexanes.  The solids were 

collected and dried to leave 7 (0.95 g, 81%): mp 91 - 91.5!C; Rf 0.21 (CH2Cl2 : 

methanol, 85 : 15); 
1
H NMR (CDCl3) ! 6.55 (t, J = 7.7 Hz, 1 H), 6.4 (m, 2 H), 4.07 (t, J = 

5.8 Hz, 2 H), 2.91 (t, J = 5.8 Hz, 2 H), 2.7 (m, 4 H), 1.1 (t, J = 7.1 Hz, 6 H); 
13

C NMR 

(CDCl3) ! 148.0, 145.3, 124.9, 117.8, 109.0, 104.4, 66.5, 51.9, 47.4, 11.1; MS (ES
+
) m/z 

225.1 (M+H)
+
. 
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1-(Benzyloxy)-3-(4-bromobutoxy)-2-nitrobenzene (8) 

To a mixture of DMF (5 mL), 1,4-dibromobutane (5 mL) and Cs2CO3 (1.66 g, 5.1 

mmol) was added slowly a solution of nitrophenol 5 (0.5 g, 2.0 mmol) in DMF (5 mL). 

The mixture was stirred at room temperature for 16 h, and then DMF was removed in 

vacuo to leave an oil that was distributed between 1% aq HCl and ethyl acetate. The 

organic phase was dried and concentrated to a light yellow oil that was purified by flash 

silica gel chromatography eluting with hexanes : ethyl acetate (6 : 1). Product fractions 

were pooled and concentrated to give 8 (0.702 g, 93%) as a light yellow oil: Rf 0.45 

(hexanes : ethyl acetate, 2 : 1); 
1
H NMR (CDCl3) ! 7.36 (m, 5 H), 7.26 (m, 1 H), 6.61 (m, 

2 H), 5.16 (s, 2 H), 4.08 (t, J = 5.8 Hz, 2 H), 3.46 (t, J = 6.3 Hz, 2 H), 2.02 (m, 2 H), 1.92 

(m, 2 H); 
13

C NMR (CDCl3) ! 151.1, 150.9, 135.6, 131.0, 128.7, 128.2, 127.0, 106.1, 

105.6, 70.9, 68.4, 33.4, 28.9, 27.5; MS (ES
+
) m/z 401.9, 403.9 (M+Na)

+
. 

1-(2-(1H-Imidazol-1-yl)ethyl)-4-(4-(3-(benzyloxy)-2-nitrophenoxy)butyl)piperazine (9a) 

A solution of bromobutyl ether 8 (1.0 g, 2.6 mmol), 1-[2-(1H-imidazol-1-

yl)ethyl]piperazine (0.52 g, 2.9 mmol; Oakwood Products Inc.), N,N-

diisopropylethylamine (5 mL) and acetonitrile (18 mL) was heated at reflux overnight. 

The solution was concentrated and the residue was distributed between dichloromethane 

and 5% aq sodium carbonate. The organic phase was dried and concentrated to an orange 

oil that was purified by flash silica gel chromatography eluting with dichloromethane : 

methanol : NH4OH (90 : 10 : 0.5). Product fractions was pooled and concentrated to 

leave 9a (0.86 g, 68%) as an oil: 
1
H NMR (CDCl3) ! 7.53 (s, 1 H), 7.36-7.22 (m, 6 H), 

7.03 (s, 1 H), 6.97 (d, J = 1.1 Hz, 1 H), 6.61 (m, 1 H), 5.15 (s, 1 H), 4.05 (t, J = 6.3 Hz, 2 

H), 4.01 (t, J = 6.5 Hz, 2 H), 2.67 (t, J = 6.5 Hz, 2 H), 2.48 (bs, 8 H), 2.36 (t, J = 6.5 Hz, 2 
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H), 1.79 (m, 2 H), 1.61 (m, 2 H); 
13

C NMR (CDCl3) ! 151.3, 150.8, 137.4, 135.6, 132.8, 

130.9, 129.2, 128.7, 128.2, 127.0, 119.3, 105.8, 105.6, 70.9, 69.3, 58.6, 57.8, 53.3, 53.0, 

44.7, 26.9, 23.1; MS (ES
+
) m/z 480.1 (M+H)

+
. 

tert-Butyl 4-(4-(3-(benzyloxy)-2-nitrophenoxy)butyl)piperazine-1-carboxylate (9b) 

A solution of bromobutyl ether 8 (0.4 g, 1.05 mmol), 1-Boc-piperazine (0.282 g, 

1.514 mmol) N,N-diisopropylethylamine (4 mL) and acetonitrile (10 mL) was heated at 

reflux for 12 h. The solution was concentrated and distributed between ethyl acetate and 

brine. The organic phase was dried and concentrated to residue that was purified by flash 

silica gel chromatography eluting with ethyl acetate. Product fractions were pooled and 

concentrated to leave 9b (0.505 g, 99%): 
1
H NMR (CDCl3) ! 7.36 (m, 4H), 7.31 (m, 1 

H), 7.24 (m, 1 H), 6.61 (m, 2 H), 5.16 (s, 2 H), 4.06 (t, J = 6.2 Hz, 2 H), 3.41 (t, J = 7.0 

Hz, 4 H), 2.36 (t, J = 7.0 Hz, 4 H), 1.80 (m, 2 H), 1.62 (m, 2 H), 1.46 (s, 9 H), 1.26 (t, J = 

7.2 Hz, 2 H); 
13

C NMR (CDCl3) ! 154.9, 151.5, 150.9, 135.8, 131.0, 128.8, 128.3, 127.1, 

106.0, 105.7, 79.7, 71.1, 69.4, 60.5, 58.1, 53.1, 28.6, 27.0, 23.2, 21.2, 14.3; MS (ES
+
) m/z 

486.1 (M+H)
+
. 

1-(4-(4-(3-(Benzyloxy)-2-nitrophenoxy)butyl)piperazin-1-yl)-2-(1H-imidazol-1-

yl)ethanone (10) 

Trifluoroacetic acid (2 mL) was added dropwise to a solution of 9b (0.505 g, 1.04 

mmol) in dichloromethane (8 mL), and the resultant mixture was stirred at room 

temperature for 3 h.  The solution was concentrated to leave 9c (0.52 g, quantitative) as 

the crystalline trifluoroacetate salt.  This was then dissolved into DMF (10 mL) and N,N-

diisopropylethylamine (3 mL), and the mixture was stirred at room temperature for 10 

min followed by treatment with 1-ethyl-3-[3-dimethylamino propyl]carbodiimide 
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hydrochloride (EDC!HCl; 0.22 g, 1.14 mmol), N-hydroxybenzotriazole (HOBt; 0.175 g, 

1.14 mmol) and 2-(1H-imidazol-1-yl)acetic acid (0.197 g, 1.56 mmol; Tokyo Chemical 

Industry Co. Ltd.) After stirring under N2 for 16 h, DMF was removed in vacuo and the 

residue was distributed between dichloromethane and 5% aq sodium carbonate. The 

organic phase was dried and concentrated to an oil that was purified by flask silica gel 

chromatography eluting with dichloromethane : methanol : NH4OH (95 : 5 : 0.5). Product 

fractions were pooled and concentrated to give 10 (0.37 g, 72%) as a yellow oil: 
1
H NMR 

(CDCl3) ! 7.49 (s, 1 H), 7.36 (m, 5 H), 7.26 (m, 1 H), 7.09 (s, 1 H), 6.95 (s, 1 H), 6.61 

(m, 1H), 5.16 (s, 2 H), 4.75 (s, 2 H), 4.07 (t, J = 5.9 Hz, 2 H), 3.62 (m, 2 H), 3.44 (m, 2 

H), 2.42 (t, J = 4.9 Hz, 4 H), 2.39 (t, J = 7.2 Hz, 2 H), 1.81 (m, 2 H), 1.62 (m, 2 H); 
13

C 

NMR (CDCl3) ! 164.4, 151.3, 150.8, 138.0, 135.6, 131.0, 129.5, 128.7, 128.2, 127.0, 

120.1, 105.9, 105.5, 70.9, 69.1, 57.6, 52.6, 47.9, 45.1, 42.3, 26.7, 22.9; MS (ES
+
) m/z 

494.1 (M+H)
+
.  

3-(4-(4-(2-(1H-Imidazol-1-yl)ethyl)piperazin-1-yl)butoxy)-2-aminophenol (11a) 

Compound 9a (0.86 g, 1.8 mmol) was dissolved in a mixture of 10% aq HCl (10 

mL) and methanol (90 mL) in a Parr hydrogenation bottle. Catalyst (20% Pd(OH)2/C, 

0.05 g) was added and the mixture was hydrogenated at 40 psi H2 for ~40 h. The reaction 

mixture was rapidly filtered over Celite®, and the filtrate was concentrated and diluted 

with ethyl acetate. The solution was washed with 5% aq sodium carbonate, dried, and 

concentrated to give 11a (0.61 g, 95%) as a brown solid:
 1

H NMR (CDCl3) ! 7.56 (s, 1 

H), 7.05 (s, 1 H), 6.96 (s, 1 H), 6.52 (t, J = 7.2 Hz, 1 H), 6.44 (s, 1 H), 6.37 (d, J = 8.0 Hz, 

1 H), 3.98 (m, 4 H), 2.66 (t, J = 6.2 Hz, 2 H), 2.49 (bs, 8 H), 2.41 (t, J = 6.5 Hz, 2 H), 

1.78 1.68 (m, 2 H); 
13

C NMR (CDCl3) ! 147.6, 145.5, 128.6, 124.9, 119.4, 117.3, 108.7, 
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103.7, 68.1, 58.4, 58.2, 53.0, 50.4, 44.7, 27.5, 23.3; MS (ES
+
) m/z 360.1 (M+H)

+
. 

1-(4-(4-(2-Amino-3-hydroxyphenoxy)butyl)piperazin-1-yl)-2-(1H-imidazol-1-

yl)ethanone (11b) 

Compound 10 (0.37 g, 0.75 mmol) was dissolved in a mixture of 10% aq HCl (5 

mL) and methanol (45 mL) in a Parr hydrogenation bottle. Catalyst (20% Pd(OH)2/C, 

0.02 g) was added and the mixture was hydrogenated at 40 psi H2 for ~40 h. Workup as 

described above for the synthesis of 11a gave 11b (0.27 g, 98%) as a brown solid: 
1
H 

NMR (CD3OD) ! 7.78 (s, 1 H), 7.13 (s, 1 H), 7.06 (s, 1 H), 6.58 (m, 1 H), 6.43 (m, 2 H), 

5.08 (s, 2 H), 4.03 (t, J = 5.9 Hz, 2 H), 3.66 (s, 2 H), 3.62 (s, 2 H), 2.75 (s, 2 H), 2.65 (m, 

4 H), 1.82 (m, 4 H); 
13

C NMR (CD3OD) ! 174.8, 165.8, 148.0, 145.8, 138.1, 126.0, 

123.0, 121.3, 118.2, 107.8, 103.5, 67.7, 57.3, 52.1, 51.8, 43.5, 40.9, 26.8, 22.2, 20.1; MS 

(ES
+
) m/z 374.1 (M+H)

+
. 

Benzoxazinorifamycin (2b) 

A mixture of aminophenol 7 (0.336 g, 1.5 mmol), rifamycin S (12; 2.085 g, 3 

mmol) and 1,4-dioxane (20 mL) was stirred at room temperature overnight. The mixture 

was then concentrated to a black solid that was dissolved in 20 mL of methanol and 

treated with MnO2 (0.3 g, 3.45 mmol). The mixture was stirred at room temperature for 

30 min, filtered over Celite®, and the filtrate concentrated to a dark residue that was 

purified by flash silica gel chromatography eluting with dichloromethane : methanol (95 : 

5 to 90 : 10). Product fractions were pooled and concentrated to give partially purified 2b 

as a deep purple solid. Further purification by preparative TLC was conducted on a 20 

mg scale, eluting the plate with dichloromethane : methanol (90 : 10). The yield was 

~55%:  Rf 0.58 (dichloromethane : methanol, 85 : 15); HPLC tR 6.1 min (95.4% purity); 
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1
H NMR (CDCl3) ! 7.48 (t, J = 8.4 Hz, 1 H), 6.92 (d, J = 8.2 Hz, 2 H), 5.98 (d, J = 15.4 

Hz, 2 H), 5.14 (bs, 2 H), 4.97 (m, 1 H), 4.41 (t, J = 11.6, 2 H), 3.29 (s, 2 H), 3.13 (s, 1 H), 

3.08 (s, 3 H), 3.01 (d, J = 9.3, 2 H), 2.65 (m, 4 H), 2.29 (s, 3 H), 2.09 (s, 3 H), 2.05 (s, 3 

H), 1.79 (s, 3 H), 1.70 (m, 2 H), 1.60 (m, 2 H), 1.25 (s, 3 H), 1.15 (t, J = 7.1 Hz, 6 H), 

0.94 (d, J = 7.1 Hz, 3 H), 0.76 (d, J = 6.9 Hz, 3 H), 0.63 (d, J = 7.1 Hz, 3 H); MS (ES
+
) 

m/z 900.1 (M+H)
+
; HRMS (MALDI) calcd for C49H61N3O13 [(M + H)

+
], 900.4277; found 

900.4269. 

Benzoxazinorifamycin (2c) 

A mixture of aminophenol 11a (80 mg, 0.22 mmol), rifamycin S (12; 220 mg, 

0.32 mmol) and 1,2-dichloroethane (10 mL) was stirred at room temperature for 16 h. 

The reaction mixture was then concentrated to a black solid that was dissolved in 10 mL 

of methanol and treated with MnO2 (80 mg, 0.92 mmol). The mixture was stirred at room 

temperature for 30 min, filtered over Celite®, and concentrated to a dark residue that was 

purified by flash silica gel chromatography eluting with dichloromethane : methanol : 

NH4OH (94 : 6 : 0.5). Product fractions were pooled and concentrated to give a solid that 

was further purification by preparative TLC, eluting the plate with dichloromethane : 

methanol (92 : 8). The product band was processed to give 2c (170 mg, 74%) as a dark 

purple solid: HPLC tR 5.15 min (91.7% purity); 
1
H NMR (CDCl3) ! 7.56 (s, 1 H), 7.48 (t, 

J = 8.4 Hz, 1 H), 7.04 (s, 1 H), 6.98 (s, 1 H), 6.92 (d, J = 8.3 Hz, 1 H), 6.80 (d, J = 8.2 Hz, 

1 H), 5.97 (m, 2 H), 5.12 (bs, 2 H), 4.94 (m, 1 H), 4.24 (t, J = 5.6 Hz, 2 H), 4.03 (t, J = 

6.5 Hz, 2 H), 3.09 (s, 3 H), 3.01 (d, J = 9.3 Hz, 1 H), 2.68 (m, 2 H), 2.52 (bs, 11 H), 2.29, 

(s, 3 H), 2.09 (s, 3 H), 2.05 (s, 6 H), 1.80 (s, 5 H), 1.69 (m, 2 H), 1.60 (m, 2 H), 1.25 (s, 3 

H), 0.93 (s, 3 H), 0.75 (s, 3 H), 0.64 (s, 3 H); MS (ES
+
) m/z 1035.1 (M+H)

+
; HRMS 
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(MALDI) calcd for C49H61N3O13 [(M + H)
+
], 1035.5074; found 1035.5095. 

Benzoxazinorifamycin (2d) 

Reaction of a mixture of aminophenol 11b (30 mg, 0.08 mmol), rifamycin S (12; 

102 mg, 0.15 mmol) and 1,2-dichloroethane (4 mL) and subsequent purification was 

carried out exactly as described above for the synthesis of 2c to provide 2d (29 mg, 

34.5%) as a dark purple solid: HPLC tR = 5.11 min (91.8% purity); 
1
H NMR (CDCl3) ! 

7.50 (m, 2 H), 7.10 (s, 1 H), 6.95 (m, 2 H), 6.87 (d, J = 8.3 Hz, 1 H), 5.98 (s, 1 H), 5.96 

(s, 1 H), 5.30 (s, 2 H), 4.95 (m, 1 H), 4.76 (m, 2 H), 4.25 (m, 2 H), 3.68 (s, 1 H), 3.63 (s, 

1 H), 3.49 (s, 1 H), 3.44 (s, 1 H), 3.11 (s, 3 H), 3.03 (s, 1 H), 2.58 (m, 2 H), 2.51 (m, 4 H), 

2.29 (s, 3 H), 2.09 (s, 3 H), 2.06 (s, 3 H), 1.86 (d, J = 8.5 Hz, 1 H), 1.80 (s, 3 H), 1.68 (s, 

2 H), 1.61 (bs, 9 H), 1.25 (s, 3 H), 0.94 (s, 3 H), 0.75 (s, 3 H), 0.65 (s, 3 H). MS (ES
+
) 

m/z 1049.2 (M+H)
+
; HRMS (MALDI) calcd for C49H61N3O13 [(M + H)

+
], 1049.4866; 

found 1049.4857. 

RLZ analogue (2e) 

A mixture of benzoxazinorifamycin 2d (5.5 mg, 0.005 mmol), 1-(2-

methylpropyl)piperazine (2.3 mg, 0.016 mmol; Oakwood Products Inc.), MnO2 (5 mg, 

0.055 mmol) and DMSO (0.5 mL) was stirred at room temperature for 24 h and then 

filtered over Celite
®

. The filtrate was concentrated and purified by preparative TLC, 

eluting with dichloromethane : methanol (90 : 10). The product band was processed to 

give 2e  (4.6 mg, 74%) as a dark blue solid: HPLC tR 5.33 min (95.3% purity); MS (ES
+
) 

m/z 1189.5 (M+H)
+
; HRMS (MALDI) calcd for C49H61N3O13 [(M + H)

+
], 1189.6180; 

found 1189.6193. 
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Appendix IV-3 

Confirmation of MTB RNAP subunits and MTB RNAPs Inhibition 

Before moving further with the studies, it was important to confirm the bands 

observed on the SDS-PAGE were the MTB RNAP subunits rather than E. coli subunits 

or a mixture of the two.  Previously, the identity of MTB ! subunit was confirmed by 

Michigan Proteome Consortium via mass spectrometry.  Furthermore, the identity of the 

contaminating proteins were also determined as we especially wanted to confirm the band 

at ~70 kDa was not the E. coli sigma factor, "
70

. 

 

Figure IV-A3:  SDS-PAGE of WT MTB RNAP after size exclusion chromatography.  

Lane 1, LMW standard; Land 2, WT MTB RNAP. 

 

The seven bands (labeled A-G in Figure IV-A3) were sent to Applied Biomics 

where the identity of each band was determined.  As can be seen in Appendix Table IV-

A1, band A contains both MTB # and #’ subunits and MTB ! subunit is band E.  

However, the MTB $ subunit was not confirmed because band G (assumed to be MTB $ 

subunit) resulted in being 50S ribosomal protein L28 (MW 9 kDa).  To be certain that the 

MTB $ subunit does not share homology with 50S ribosomal protein L28, the amino acid 
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sequences of the two proteins were aligned and very low sequence identity/homology 

was observed.  Therefore, the faint band right above band G could possibly be the MTB 

! subunit (since the MW of MTB ! subunit is 11.8 kDa).  Although MTB ! subunit has 

not been confirmed, the ! subunit has been reported to assist in assembling the RNAP 

and does not affect the activity of the enzyme.  Therefore, the confirmation of the main 

catalytic MTB RNAP subunits (", #, #’) is sufficient to eliminate the uncertainty of E. 

coli RNAP being present. To conclude, the activity observed in the assays was due to the 

MTB RNAP and not E. coli RNAP.  It was important to confirm that the E. coli sigma 

factor was not bound to the MTB RNAP since the assay for rifalazil analogues and the in 

vitro plasmid based transcription assay require using the MTB sigma factor, SigA.  The 

MTB SigA can be added knowing that the E. coli sigma factor is not already bound.  

Band C at ~70 kDa was confirmed to not be the E. coli $
70

.  The amino acid sequence of 

E. coli $
70

 and the fused UDP-L-Ara4N formyltransferase/UDP-GlcA C-4’-

decarboxylase were aligned to confirm there is low identity/homology between the two 

proteins. 
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Table IV-A1:  MTB RNAP Subunit Confirmation 

Band/Method MW Identity (%) 

A 

(NanoLC) 

146.6 kDa (beta’) 

129.8 kDa (beta) 

DNA-directed RNA polymerase beta’ and 

beta subunits (M. bovis) (100%) 

B 

(MALDI-TOF/TOF) 

104.9 kDa Oxoglutarate dehydrogenase (succinyl-

transferring), E1 component (E. coli) (100%) 

C 

(MALDI-TOF/TOF) 

74.2 kDa Fused UDP-L-Ara4N 

formyltransferase/UDP-GlcA C-4’-

decarboxylase (E. coli) (100%) 

D 

(MALDI-TOF/TOF) 

44 kDa Dihydrolipoamide succinyltransferase 

(Shigella boydii) (100%) 

E 

(MALDI-TOF/TOF) 

37.7 kDa DNA-directed RNA polymerase alpha 

subunit (MTB) (100%) 

F 

(MALDI-TOF/TOF) 

42.7 kDa Penicillin-binding protein pbpA (MTB) 

(90%) *low confidence 

G 

(MALDI-TOF/TOF) 

9 kDa 50S ribosomal protein L28 (Reinekea sp.) 

(100%) 

 

The NanoLC method was preferred for Band A since it is more sensitive and able to 

identify more than one protein. 
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Table IV-A2:  Log IC50s and Standard Errors of the Fits for RLZ (2a) and Analogues (2b – 2e) against RNAP 

Log IC50
a
 (standard error of fit

b
, Hill Slope

c
) 

 2a (RLZ) 2b 2c 2d 2e 

WT RNAP (-!
A
) 

-1.9407 

(0.048, 1.09) 

-2.5282 

(0.026, 2.29) 

-2.5103 

(0.038, 2.38) 

-2.4916 

0.066, 1.22) 

-1.7666 

(0.040, 0.88) 

WT RNAP (+!
A
) 

-2.4614 

(0.068, 1.16) 

-2.5442 

(0.038, 1.65) 

-2.5653 

(0.055, 1.51) 

-2.348 

(0.096, 0.85) 

-1.6819 

(0.064, 0.72) 

D435V (+!
A
) 

2.7331 

(0.038, 2.02) 

1.2946 

(0.035, 0.95) 

0.94796 

(0.064, 0.87) 

1.1085 

(0.046, 0.88) 

2.0472 

(0.156, 0.62) 

H445Y (+!
A
) 

2.2355 

(0.069, 0.71) 

2.2337 

(0.138, 0.41) 

2.6407 

(0.140, 0.64) 

2.7592 

(0.180, 0.53) 

3.0311 

(0.214, 0.61) 

S450L (+!
A
) 

2.0692 

(0.157, 0.63) 

1.2054 

(0.056, 0.81) 

-2.5103 

(0.038, 2.38) 

2.0881 

(0.069, 0.67) 

1.8917 

(0.068, 0.74) 
a
 The log IC50 values are such that the IC50 values will be in !M.  Negative log IC50 values reflect IC50 values less than !M (e.g., in the 

nM range).  Values were fit to a four parameter logistic regression model with the top and bottom limits set at 100 and 0 respectively.  
b
 The average error is ~10 %, which roughly translates to 20-25% in the IC50.  

c
 The average Hill slope is 1.02. 
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Table IV-A3:  Mean Relative Fluorescence Units (RFU)
a
 for RMP (1) and Benzoxazinorifamycins (2a – 2e) in the hPXR Activation 

Assay 

 

  RMP (1)   2a (RLZ) 2b 2c 2d 2e 

20 !M 48427 100 !M 35250 11137 10881 11625 29476 

10 !M 59067 25 !M 63418 11591 12218 43077 24305 

5 !M 61839 6.25 !M 70784 43495 49297 66941 47757 

1 !M 64852 1.56 !M 73704 68860 60314 68172 50761 

0.5 !M 59756 0.39 !M 74950 69532 63570 68936 43211 

0.1 !M 63078 0.098 !M 72399 71149 65632 68628 43120 
a , 

RFU is a measure of cell viability in the assay.  For controls, 1% DMSO = 67021 RFU; Dosing media = 59992 RFU. 
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Appendix IV-4 

Microsome Stability and Pharmacokinetic (PK) Studies 

Microsome stability 

Test compound stock solutions were prepared at 200 µM in acetonitrile.  Two 

microliters was added to 198 uL PBS containing 1 mg/mL human or mouse microsome.  

After mixing, 25 uL aliquots were dispensed in triplicate in 96-well plates.  Control and 

reaction wells received 25 uL of PBS and of 2 mM NADPH in PBS, respectively.  Plates 

were incubated for 30 min at 37 °C with shaking at 600 rpm.  Internal standard solution 

(150 !L) was added to each well to quench the reaction.  For controls, quenching was 

done prior to incubation.  Plates were centrifuged at 4000g for 30 min. at 4°C and the 

supernatant was collected for analysis.  The percentage of compound remaining and half-

life of compound in microsomes were calculated according to the following formula: 

Percentage remaining =  

Half-life (min) = !

 

Pharmacokinetics of Analogue 2b 

(Previously described methods were followed (47, 48))   

Single dose study:  Analogue 2b was prepared in 0.5% CMC at 1 mg/mL.  

Healthy female BALB/c mice were administered 10mg/kg of the suspension via oral 

gavage.  Two mice per time point were used and 0.4 mg/kg fentanyl was given 15 min 

prior to bleeding by intraperitoneal injection.  For each mouse, at least 100 !L of venous 

blood was collected via retro-orbital bleeding in BD Vacutainer® spray-coated K2EDTA 

tubes at 0.5, 1, 2, 4, 8 and 24 h post-dose.  Tubes were inverted several times and kept on 

100
Control

Reaction
!

 /100)remaining  Percentage Ln(

Ln2*  time)Incubation(
!
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ice.  Blood was transferred to polypropylene tubes and centrifuged at 4,000g for 30 min 

at 4˚C.  The harvested plasma was transferred to new polypropylene tubes and stored at -

80˚C until analysis.  To each sample, 3x volume of chilled acetonitrile was added 

containing 0.2 !M internal standard (IS).  The solution was vortexed and then 

subsequently centrifuged at 10,000g for 15 min.  Calibration standard samples were 

prepared by spiking the stock solution of analogue 2b in acetonitrile into mouse plasma to 

yield the following concentrations: 0.097656, 0.195313, 0.390625, 0.78125, 1.5625, 

3.125, 6.25, 12.5, 25, 50 µM.  Supernatant was injected into an LC-MS/MS for analysis.  

In addition, a blank (blank plasma extracted with 3x volume of IS) and a double blank 

(blank plasma extracted with 3x volume of pure acetonitrile) were prepared.  The 

concentration of 2b in blood sample for each time point was then determined.  

Multiple dose study:  Mice were dosed once daily for 5 consecutive days by oral 

gavage.  Blood samples at time points 0.5, 1, 2, 4, 8 and 24h were collected and analyzed 

in the same way as the single dose study.  After collecting the blood, the mice were 

sacrificed by carbon dioxide asphyxiation.  Lung tissue was  aseptically removed, rinsed 

in 3 mL PBS, air dried on sterilized gauze pads,  weighed and suspended in 4x 

(solvent/tissue; w/v) PBS buffer.  Lung tissue was homogenized, mixed and extracted 

with 3x acetonitrile containing internal standard at 0.2 µM and centrifuged at 10,000 g for 

15 min at 4 ˚C.  The supernatant was collected for LC-MS/MS analysis.  Calibration 

standard lung samples were prepared by spiking the stock solution of compound (in 

methanol or acetonitrile) into homogenized mouse lungs and extracting with 3x volume 

acetonitrile to yield the following concentrations: 0.024, 0.049, 0.098, 0.195, 0.39, 0.78, 

1.56, 3.12, 6.25, 12.5, 25, 50 µM.  In addition, a blank (blank lung tissue extracted with 
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3x volume of IS) and a double blank (blank lung tissue extracted with 3x volume of pure 

acetonitrile) were prepared.  The concentration of 2b in lung tissue for each time point 

was then determined.  

(a) Single dose 

!

(b) Multiple dose 

!

Figure IV-A4:  Linear plasma mean concentration vs. time profile for analogue 2b in (a) 

single dose and (b) multiple dose studies 
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!

Figure IV-A5:  Linear lung tissue mean concentration vs. time profile for analogue 2b in 

a multiple dose study. 
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CHAPTER V 

Developing a Direct Binding Assay Using a Dansyl-Conjugated Rifamycin 

 

Rifampin (RMP) is a tight binding inhibitor of wild-type (WT) RNA polymerase 

(RNAP), forming a stable noncovalent 1:1 complex.  RMP binds to and inhibits both the 

core RNAP and the holoenzyme (1-3).  The binding constant (KD; equilibrium 

dissociation constant) for prokaryotic RNAP is in the range of 10
-8

 M (4-7).  Previously, 

the KD has been determined for WT E. coli RNAP to be 10
-9

 M via radiochemical and 

fluorescence assays (5, 6, 8); however, the KD value for WT and rifamycin-resistant 

(RifR) MTB RNAPs has not been reported. 

Recently, Feklistov and colleagues have chemically attached fluorescein to the E. 

coli sigma factor (!
70

) to study rifamycin-RNAP interaction (8, 9), but there are no 

reports of developing a direct binding assay using a fluorophore-labeled rifamycin.  To 

characterize the interactions between MTB RNAP and our synthetic rifamycin analogues, 

we decided to develop a direct binding assay using a fluorescently labeled rifamycin.  

This would enable the use of competition binding assays to determine binding constants 

for an array of rifamycin analogues.  The dansyl group was selected as the fluorophore 

for our first attempt because it has been previously used to prepare fluorescent drug 

analogues (10, 11) and has a long history of use in probing binding interactions. 

The KD values of rifamycins and MTB RNAPs will allow for changes in binding 

free energy to be calculated.  We will then correlate the changes in binding free energy to 
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the predicted changes in molecular interactions between the rifamycins and the RNAP 

(based on the published crystal structure models (12, 13)).  Our goal is to use this 

information to enhance our understanding of the molecular mechanisms responsible for 

resistance and guide the development of new analogues with improved binding to the 

MTB RNAP and RifR mutants. 

Materials and Methods 

Unless otherwise specified, all reagents were purchased from Sigma-Aldrich (St. 

Louis, MO).  Kool
TM

 NC-45
TM

 Universal RNA Polymerase template was from Epicentre 

(Madison, WI).  Carbenicillin (disodium salt), corning microplates, bactotryptone, and 

yeast extract were from Fisher Scientific (Hampton, NH).  The E. coli BL21 (DE3) 

CodonPlus-RIPL and Epicurian coli XL2-Blue Ultracompetent cells were from Agilent 

Technologies (Santa Clara, CA).  Quanti-iT
TM

 RiboGreen RNA Reagent and 

RNaseOUT
TM

 Recombinant Ribonuclease Inhibitor were from Invitrogen (Carlsbad, 

CA).  The Ni-NTA His•Bind! resin was from Novagen (San Diego, CA).  The nucleotide 

triphosphates (NTPs) were from Roche Applied Science (Indianapolis, IN).  PhastGel 

Precast Gels and SDS Buffer Strips were from VWR (Arlington Heights, IL).  The Bio-

Rad Protein Assay kit was from Bio-Rad (Hercules, CA).  The EC2880 strain (permeable 

strain with tolC
-
 and imp

-
 mutations) was a generous gift from Dr. Michael Hubband 

(Pfizer Scientific).  Rifamycin S was from AAPharmaSyn LLC.  Rifampin was from 

Boche Scientific.  Dansyl chloride and dansyl amide were from Sigma-Aldrich. 

Synthesis of Dansyl-Conjugated Rifamycin (HX52) 

The dansyl-conjugated rifamycin (HX52) was synthesized by Hao Xu (3
rd

 year 

Medicinal Chemistry student) using the scheme outlined in Figure V-1. 
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Figure V-1: Dansyl-conjugated Rifamycin (Compound 6; HX52)
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Expression and Purification of MTB RNAP (WT and RifR mutants) and MTB SigA 

(!
A
) 

The WT and RifR MTB RNAPs and MTB SigA were prepared as described 

earlier in Chapter II and IV. 

In vitro Transcriptional Activity of MTB RNAPs and Dose Response Curves 

The RNAP activity and inhibition was estimated by the production of RNA 

synthesis as described (14).  The IC50 values were determined via dose response studies 

(Table V-1).  HX52 (6) was tested in duplicate (n=2).  The final concentration of the WT 

MTB RNAP was 10 nM, whereas the final concentrations of the RifR RNAPs were 100 

nM in the reactions. 

Determination of Minimal Inhibitory Concentration (MIC) Against MTB H37Rv 

Strains 

The compound was also evaluated for MIC90 vs. MTB H37RV using the 

Microplate Alamar Blue Assay (MABA) and the Low Oxygen Recovery Assay (LORA) 

(14-16).  Additionally, the MIC90 values were determined for E. coli by the microdilution 

method described previously (17, 18). 

HX52 Absorbance/Fluorescence Studies 

Absorbance and fluorescence spectra were measured using the Synergy H1 

Hybrid Multi-Mode Microplate Reader (BioTek) in half area 96-well black plates. 
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Results 

In this work, the dansyl-conjugated rifamycin (HX52, 6) was synthesized by Hao 

Xu using the scheme illustrated in Figure V-1.  The dansyl group reacted with the 

secondary amine of (3) to yield the dansyl amide derivative (4)  that was then modified 

and attached to rifamycin S. 

Inhibition Studies 

The IC50 values of HX52 against WT and RifR MTB RNAPs were determined 

(Table V-1).  This dansyl-conjugated rifamycin does potently inhibit the WT MTB 

RNAP (with and without sigma factor, !
A
) with the IC50 values in the 10

-9
 M (nM) range; 

whereas, the RifR MTB RNAPs (+!
A
) were inhibited at higher concentrations with the 

IC50 values in the 10
-6

 M (!M) range. 

Table V-1.  In vitro RNAP IC50 Values (!M) for HX52 

 

 IC50 values 

WT RNAP (-!
A
) (Cf = 10 nM) 0.0146 

WT RNAP (+!
A
) (Cf = 10 nM) 0.0152 

D435V (+!
A
) (Cf = 100 nM) 343 

H445Y (+!
A
) (Cf = 100 nM) 267 

S450L (+!
A
) (Cf = 100 nM) 97 

 

The MIC90 values are also reported against the MTB virulent strain (H37RV) and 

three selected E. coli strains (Table V-2).  HX52 inhibited MTB with MIC90 values 9 nM 

and 0.93 !M for MABA and LORA, respectively.  The MIC90 values were higher for E. 

coli strains including the tolC knockout strain (EC2880). 
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Table V-2.  HX52 MIC90 values against MTB and E. coli 

 

 MIC90 values (!M) 

MTB (H37RV)  

MABA 0.009 

LORA 0.93 

E. coli strains  

TG2 > 100 

DH5! > 100 

EC2880 (!tolC) > 12.5 (75% inhibited) 

 

Absorbance/Fluorescence Studies 

 

Compound HX52 was initially dissolved in DMSO to make a high concentration 

stock.  The compound was then diluted in RNAP storage buffer (10 mM Tris-HCl (pH 

7.9), 0.1 mM EDTA, 0.1 mM DTT, 0.1 M NaCl) to the final concentration of 100 nM in 

a total volume of 100 "L.  The dansyl conjugated compound excitation and emission 

maxima vary between 350-370 nm and 490-540 nm, respectively.  Unfortunately, when 

the sample, in the above buffer, was excited at 350 nm, there was no fluorescence 

emission observed (400-600 nm).  The absorbance of different rifamycins was measured 

from 250-600 nm (Figure V-2).  The dansyl-conjugated rifamycin (HX52) has a broad 

peak around the 350-370 nm region.  Possible explanations for this lack of fluorescence 

include: the tetracyclic chromophore (benoxazinonaphthyl) of the rifamycin moiety 

might quench the fluorescence of the dansyl group or fluorescence could be quenched 

due to the polarity/pH of the buffer. 
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Figure V-2:  Absorbance Spectra of Rifamycins. 

To investigate which of these explanations might apply, the following steps were 

taken.  The NMR of D–Cl and HX52 confirmed that the starting material and the end 

product were pure and stable (data not shown).  To see if the tetracyclic moiety of 

rifamycin quenches the fluorescence of the dansyl group, a direct comparison of 

fluorescence emission spectra of compound 5  and HX52 would have been ideal.  

Unfortunately, all of compound 5  was used to synthesize HX52 thus the fluorescence 

could not be determined.  Instead the fluorescence of dansyl amide (CAS# 1431-39-6; 

!ex=340 nm; !em=555–565 nm) was measured because dansyl amide is a fluorescent side 

product observed when D–Cl is attached to amino acids (Figure V-3).  We would have 

expected to see a similar fluorescence emission spectrum of our dansyl-conjugated 

rifamycin as the one observed for dansyl amide since the dansyl group reacted with an 

amine to form a dansyl amide derivative.  The dansyl amide was incubated with RMP to 
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determine if fluorescence is quenched in the presence of rifamycins but the data was 

inconclusive. 

 

Figure V-3:  Fluorescence emission spectrum of Dansyl-amide (in blue) in RNAP storage 

buffer.  The sample was excited at 340 nm and the emission spectrum was 

measured from 400-700 nm.  DMSO (control) can be seen in red. 

 

It is possible that the fluorescent dansyl tail is stacking on top of the tetracyclic 

moiety of HX52, thereby quenching the fluorescence.  To probe this, compound HX52 

was preincubated with RNAP for 10 min at 37
o
C, with the idea that the key interactions 

between the rifamycin core and RNAP would free the dansyl tail, but unfortunately 

fluorescence was not observed under these conditions (data not shown).  The dansyl 

group is a sensitive probe where the fluorescence is polarity/pH dependent; therefore, the 

HX52 itself was dissolved in different solvents (methanol, acetone, acetonitrile) and 

tested in different buffers (Tris buffers, bicarbonate buffers, phosphate buffers) at 

different pH values but still no fluorescence was observed (data not shown).  To make 

sure that a component of the buffer was not quenching the fluorescence, the compound 
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was tested in water and the same results were seen.  However, the compound was 

fluorescent when it was dissolved in 100% DMSO.  Optimal fluorescence was observed 

when !ex=360 nm with emission spectra from 400-700 nm.  The DMSO concentration 

was titrated in RNAP buffer (Figure V-4) to determine the effect of DMSO concentration 

on fluorescence.  Fluorescence was not seen at less than 60% DMSO.  Optimal 

fluorescence was observed at high DMSO concentrations (80-100% DMSO).  To 

determine if fluorescence could be seen when bound to RNAP, the compound was 

preincubated with the RNAP but fluorescence was not observed (data not shown). 

 

Figure V-4:  Fluorescence emission spectra of dansyl-conjugated rifamycin (HX52) in 

RNAP storage buffer with increasing amount of DMSO. 
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Discussion 

Previously, the reported equilibrium dissociation constant for wild-type E. coli 

RNAP and RMP is 10
-9

 M at 37
o
C determined via radioactive and fluorescence assays (5, 

6, 8, 19).  The radioactive assay consisted of using dextran-coated charcoal and 

radiolabeled [
14

C] RMP to determine the KD value (5, 19).  The [
14

C] RMP was mixed 

with the enzyme where the unbound RMP was adsorbed on the charcoal and the larger 

antibiotic-enzyme complex remained in solution.  The KD has also been determined via 

direct fluorescence titration where the binding of RMP leads to the partial quenching of 

the RNAP tryptophan residue (20).  Recently, Feklistov et al. have calculated the 

association, dissociation, and equilibrium constants by measuring rifampin-RNAP via 

monitoring the quenching of the fluorescence emission of fluorescein-labeled sigma 

factor (8).  Fluorescein, a fluorescent probe, was inserted at residue 517 of !
70

.  The 

probe was the FRET donor and the naphthyl group of rifampin was the FRET acceptor 

(9). 

Fluorescent probes are relatively small modifying agents used to label protein, 

nucleic acids, and drugs.  Advantages of a fluorescent assay include: nonradioactive, does 

not require separation of bound and free ligand, higher sensitivity, and adaptable to low 

volumes (10, 21).  There are a wide range of fluorescent probes available: fluorescamine, 

dialdehydes, ATTO-TAG reagents, FITC and other isothiocyanates, succinimidyl esters, 

and sulfonyl chlorides (www.invitrogen.com).  We elected to add the dansyl probe to 

make the rifamycin fluorescent.  Dansyl chloride (a sulfonyl chloride) is a well known 

reagent that has been utilized in areas such as pharmacology, toxicology, organic 

synthesis, and biochemistry (11).  Furthermore, it is useful in preparing fluorescent drugs 
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that are expected to bind to hydrophobic sites in proteins, membranes, or other biological 

receptors. 

The dansyl-conjugated rifamycin (HX52) was synthesized and assayed in 

inhibition studies.  The compound behaves similar to other rifamycins and binds to the 

WT MTB RNAP with a strong affinity and exhibits loss of affinity with the RifR MTB 

RNAPs.  From the MTB MIC90 values, it can be seen that the compound is able to 

permeate through the mycobacterial cell wall.  However, higher MIC90 values were 

observed with E. coli (including the !tolC strain) indicating that the compound is less 

able to permeate through Gram-negative bacteria and the higher MIC90 values do not 

appear to be due to efflux pump activity. 

Previously, dansyl-conjugated analogues have been reported to be highly 

fluorescent ("ex=350 nm; "em=490–540 nm).  Therefore, the addition of the dansyl probe 

to a rifamycin was expected to make the dansyl-conjugated rifamycin compound 

fluorescent.  Unfortunately, this dansyl-conjugated rifamycin (HX52) was not fluorescent 

in aqueous buffers.  Most likely the dansyl probe overlaps with the tetracyclic moiety of 

our synthesized rifamycin probe (due to the length and flexibility of the linker), which 

quenches the fluorescence.  As mentioned earlier, the intrinsic chromophore within 

rifamycins can be used as acceptors in fluorescence resonance energy transfer (FRET) 

measurements (6, 9, 20).  When the compound is in DMSO (a highly polar, aprotic 

solvent), the dansyl probe is presumably free in solution and fluorescent.  This is 

problematic because RNAP is not stable in #30% DMSO solutions and fluorescence of 

HX52 itself is not observed at that concentration of DMSO (19).  When HX52 was in less 

polar, aprotic solvents (acetone, acetonitrile), fluorescence quenching was observed. 
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Conclusions 

Unfortunately, the dansyl-conjugated rifamycin resulted in a nonfluorescent 

derivative.  In the future, a different fluorophore can be introduced that is not so sensitive 

to the assay conditions or else reduce the length of the linker such that the dansyl group 

cannot overlap with the rifamycin chromophore and quench the fluorescence.  Another 

option to attach the fluorophore to the RNAP/sigma factor (as described earlier by 

Feklistov and colleagues) or use radiolabeled RMP.  Due to the fact that rifamycins are 

retained by nitrocellulose filters, a nitrocellulose filter binding assay cannot be used to 

study rifamycin-RNAP interactions (22).  Once a direct binding assay has been 

established, the effects of WT and mutant MTB RNAPs will be analyzed to determine the 

equilibrium binding constant.  The KD values will allow the loss of binding free energy to 

be calculated.  This value will help answer the following questions: Does this value 

correlate to the loss of just one hydrogen bond?  Are other interactions being affected by 

the mutation? 
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Abbreviations used:  TB, tuberculosis; RNAP, DNA-dependent RNA polymerase; SigA, 

MTB housekeeping sigma factor A; WT, wild-type; RifR, Rifamycin-resistant; MTB, 

Mycobacterium tuberculosis; KD, equilibrium dissociation constant; D-Cl, dansyl-

chloride; HX52, dansyl-conjugated rifamycin; RMP, rifampin; NTP, ribonucleotide 

triphosphate; EDTA, ethylenediaminetetraacetic acid; DTT, dithiothreitol; RNA, 

ribonucleic acid; MABA, Microplate Alamar Blue Assay; LORA, Low Oxygen-

Recovery Assay; IC50, concentration of rifamycin resulting in 50% inhibition of 

transcription; MIC90, concentration of rifamycin that results in 90% inhibition of bacterial 

growth 
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CHAPTER VI 

Summary 

 

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis 

(MTB), remains an important global public health problem (1, 2), mainly because of the 

number of multi-drug resistant and extensively-drug resistant strains that have become 

more prevalent over the years (3).  The existing anti-TB drugs are unable to treat these 

resistant strains and the number of new anti-TB drugs in clinical trials is limited to only 

nine candidates (4, 5).  Novel drug targets are proving to be increasingly difficult to 

identify and effectively attack.  One approach is to revisit proven targets and attempt to 

address deficiencies such as drug resistance.  In order to modify antibiotics to control the 

resistant strains, a better understanding of resistance needs to be achieved at the 

molecular level.  The mechanism of known drugs (e.g., rifampin and other rifamycins) 

needs to be thoroughly understood that will then lead to improved drug design and a 

better understanding of the resistant (e.g., RifR) mutants to guide further research. 

Rifampin (RMP) is a semi-synthetic rifamycin derivative that demonstrates strong 

bactericidal activity via inhibition of RNA polymerase (RNAP).  The mechanism of 

inhibition reported and confirmed (via crystal structure) for rifamycins is the “steric 

occlusion model” where rifamycins bind to the !-subunit and clash with the 5’-phosphate 

of the growing RNA chain during the initiation stage of transcription (6, 7).  Resistance 

to RMP is mainly due to point mutations within the 81 base pair region (amino acids 424-
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456, MTB numbering) of the !-subunit, which alter the rifamycin-binding site leading to 

decreases in affinity for the rifamycins.  The three most prevalent RifR mutations found 

in MTB clinical isolates are Asp435Val, His445Tyr, and Ser450Leu, which result in 

disrupting key interactions between the enzyme and RMP (7-9).  Even though these 

mutations have been clinically isolated and studied in resistant MTB strains, no in vitro 

studies of purified resistant MTB RNAPs with rifamycins have been reported.  It is 

conceivable that a more potent rifamycin, which could potentially be active against these 

resistant strains, can be developed from the information obtained from these in vitro 

studies.  The purpose of this dissertation is to address the issue of rifamycin resistance in 

MTB and screen novel rifamycin analogues against RifR MTB RNAPs. 

We report the construction of co-overexpression vectors containing rpo genes that 

co-express the core subunits of wild-type and RifR mutants of MTB RNAP preceded by a 

single T7 promoter.  The three aforementioned amino acids were each mutated to the 

most prevalent substitution found in the MTB clinical isolates in the rpoB gene via site 

directed mutagenesis.  Initially, only the expression of MTB " subunit was observed; 

therefore, conditions (e.g., expression cell lines, expression temperature, and 

concentration of IPTG) were varied to express all 4 subunits.  The expression of MTB 

RNAP was successful in E. coli BL21 (DE3) CodonPlus RIPL cell line when expressed 

at 19
o
C for 20-24 hours.  The enzyme was then purified via nickel affinity 

chromatography and gel filtration.  The in vitro activity of the wild-type and RifR mutant 

MTB RNAPs was assessed via rolling circle transcription assay.  The final concentration 

of enzyme that was determined to be optimal (lowest concentration that gives a consistent 

and reliable signal) was 10 nM.  The apparent IC50 values for three key rifamycins 
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(rifampin, rifabutin, and rifaximin) were determined via dose response studies and these 

results indicate that the mutant RNAPs demonstrate greater than 10
3
-fold losses in 

affinity for rifamycins relative to wild-type MTB RNAP. 

Along with screening known rifamycins, a novel series of rifamycin S and 

rifampin analogues incorporating 8-amino, 8-thio, and 1,8-pyrazole substituents was also 

assayed.  The most prevalent mutation seen in clinical isolates is the mutation of amino 

acid Ser450 to Leu where the Ser450 residue directly interacts with the C-8 hydroxyl 

group of RMP via a hydrogen bond thus the Ser450Leu mutation affects the binding of 

the rifamycin (7-9).  The results from this screen confirm that the C-8 hydroxyl of RMP 

does form a hydrogen bond with Ser450 and that rifamycin resistance in the Ser450Leu 

mutant is due to loss of this hydrogen bond and loss of affinity for rifamycins.  

Unfortunately, none of the C-8 analogues displayed superior potency to their parent 

scaffolds.   

In addition, we report the screening of benzoxazinorifamycin derivatives.  The 

design of these analogues was based upon recent crystal structures in order to develop a 

more potent rifamycin by making additional contacts with the other RNAP subunits. (7, 

10).  The sigma factor and core RNAP were preincubated to form a holoenzyme prior to 

the addition of the analogue in case the analogue does make additional contacts with the 

sigma factor.  Overall, these novel benzoxazinorifamycin analogues displayed superior 

affinity toward wild-type and RifR mutants of the MTB RNAP compared to RMP but the 

IC50 values were still in the 10
-6

 M (!M) range with the RifR MTB RNAPs. 

RMP is a potent inducer of cytochrome P450 3A4 (CYP3A4, a drug metabolizing 

enzyme); whereas, rifalazil is not thus suggesting the design of rifamycins can be 
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improved where CYP3A4 induction is absent.  The expression of CYP3A4 is up-

regulated when the human pregnane X receptor (hPXR) is activated.  In order to 

determine if these novel series of rifamycins (C-8 analogues and benzoxazinorifamycin 

analogues) activate the receptor, the analogues were assessed using the hPXR activation 

assay.  Some of the analogues of the latter series exhibited lowered activation of hPXR 

suggesting a potential for reduced Cyp3A4 induction activity.  These studies demonstrate 

proof of principle for this subclass of rifamycins and support further expansion of 

structure-activity relationships (SAR) toward uncovering analogues with development 

potential. 

Previously, it has been reported that Gram-positive bacteria (particularly 

mycobacteria) are more sensitive to rifamycins than Gram-negative bacteria (11).  The 

IC50 values of known rifamycins for wild-type and RifR mutants of MTB and E. coli 

RNAPs (wild-type and corresponding mutants) were determined and found to be very 

similar; therefore, the difference in sensitivity toward rifamycins is not due to the RNAP.  

The correlation between the sensitivity of rifamycins and permeability into cells was 

evaluated using the wild-type E. coli strains and a mutant strain with efflux pump defects 

(EC2880, tolC
-
/imp

-
).  The MIC values were drastically lower in the EC2880 strain, 

consistent with previous reports that the differential sensitivity of MTB and E. coli to 

rifamycins is not related to the RNAP, but rather has to do with efflux pump activity in E. 

coli. 

In addition to screening rifamycin derivatives, work on the development of two 

additional assays (direct binding assay and MTB promoter based plasmid assay) was 

carried out.  Due to the limitations of the rolling circle transcription assay, a more 
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sensitive direct binding assay needs to be developed to determine the affinity of MTB 

RNAPs and rifamycins.  The equilibrium dissociation constant (KD) of wild-type and 

RifR RNAPs will then be compared.  The loss of free energy for each mutation will then 

be correlated to what interaction(s) is/are being disrupted.  The focus has been on 

developing the direct binding assay by attaching a fluorophore (e.g., dansyl group) 

directly to the rifamycin to determine the KD value.  Unfortunately the fluorescence of a 

rifamycin-dansyl probe was quenched in aqueous buffer.  To conclude if the fluorescence 

is essentially quenched due to the naphthyl ring of the rifamycin, a variety of different 

fluorophores and linkers need to be tested.  Another disadvantage of the rolling circle 

transcription assay is the non-native promoterless DNA nanocircle template.  Therefore, 

to enhance the affinity of the MTB RNAP for the template, a MTB promoter-based 

plasmid has been constructed using the P1 and P3 promoters of the MTB rrn operon that 

would be recognized by the MTB holoenzyme.  The promoter region is followed by 

malachite green aptamer repeat sequences, which allows the amount of the malachite 

green aptamer mRNA transcribed to be directly measured via fluorescence upon the 

addition of malachite green.  Once the optimal conditions are determined, this assay will 

be followed up by high-throughput screening of small molecule libraries that might lead 

to the discovery of potential lead compounds that bind at the same position of rifamycins 

or at other positions that act against the antibiotic resistant strains. 

Prior to our studies, the E. coli RNAP and rifampin had been extensively studied 

but little is known about the molecular mechanisms involved in resistance due to the lack 

of in vitro studies of RifR MTB RNAPs.  The successful expression and purification of 

wild-type and RifR MTB RNAPs from co-overexpression vectors allowed us to directly 
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investigate the level of inhibition by known and novel rifamycins.  The similar IC50 

values determined for known rifamycins with MTB and E. coli RNAPs (WT and RifR) 

allowed us to conclude that the difference in sensitivity between MTB and E. coli is not 

due to the RNAP.  The issue of sensitivity was further investigated by using a mutant E. 

coli strain (deficient in the TolC efflux pump) where the strain was much more sensitive 

to rifamycins suggesting that the difference in sensitivity is due to the E. coli efflux 

pumps.  The C-8 modifications (8-amino, 8-thio, and 1,8-pyrazole) did not result in a 

more effective rifamycin against the most prevalent mutation (Ser450Leu) found in MTB 

clinical isolates.  This study also confirmed that the C-8 position is limited in the number 

of modifications at this position since it is involved in critical interactions with key 

residues of the RNAP.  The next set of analogues was based on rifalazil and crystal 

structure information since rifalazil is more potent than RMP and does not induce 

CYP3A4.  The benzoxazinorifamycin analogues were designed to make additional 

contacts with the RNAP.  While the desired level of inhibition was not obtained, the 

limited number of compounds synthesized provided proof of concept for expansion of 

SAR in this series.  The linker was also thought to lower the affinity of the 

benzoxazinorifamycins to the hPXR binding site because of the additional bulk, but since 

the hPXR binding site is large and able to adapt to different ligands, activation was still 

observed which could be due to the flexibility of the linker.  The results from these 

studies will lead us to improve the design of rifamycins to develop a more potent 

rifamycin against RifR RNAPs. 

In the future, the completion of the direct binding assay and the in vitro MTB 

promoter based plasmid transcription assay experiments allow for a greater understanding 
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of the interactions between rifamycins with the wild-type and mutant MTB RNAP.  The 

small molecules identified from the HTS can then be transformed into new broad-

spectrum antibiotics since prokaryotic RNAPs are conserved.  Furthermore, it would be 

beneficial to obtain structural information by X-ray crystallography of the MTB RNAP 

bound to various rifamycins, especially the benzoxazinorifamycin analogues.  These 

experiments will hopefully provide useful information to understand the molecular 

mechanisms responsible for resistance and guide the development of new analogues with 

the potential of enhanced activity against resistant strains.   
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APPENDIX 

Construction of MTB Promoter Based Plasmid 

 

In prokaryotes, gene expression is mediated by the holoenzyme (core RNAP + 

sigma factor) (1).  An in vitro transcription assay mimics these conditions by using a 

DNA template with a specific promoter that is recognized by the sigma factor.  For the 

assay, a strong promoter is required to be confident it will recognized by the holoenzyme 

hence leading to the expression of the gene following the promoter.  Previously, E. coli 

has been the best-studied prokaryote where the E. coli RNAP and promoters are well 

known.  However, mycobacterial promoters are not well characterized since majority of 

the promoters are weak (2).  Mycobacterial promoters have also been difficult to study 

because the promoters do not function well in E. coli (1, 2).  Due to the fact that 

prokaryotic RNAPs recognize different promoters, the activity of MTB RNAP will be 

assessed directly using a native mycobacterial template that will be recognized by the 

housekeeping MTB sigma factor, (SigA, !
A
), which is one of the thirteen MTB sigma 

factors, all of the !
70

 type (1, 3, 4). 

In general, prokaryotic promoters contain two hexamers at -35 and -10 from the 

transcription start point (TSP).  Different parts of the sigma factor recognize different 

regions of the promoter (! region 2.4 binds to the -10 region and ! region 4.2 binds to the 

-35 region of the promoter) (1, 3, 5).  The -10 region of mycobacterial promoters is 

similar to E. coli but the -35 region is not as strongly conserved (2, 6).  The consensus 
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sequence recognized by SigA is TTGAC(A/T) (-35 hexamer) N18/17 TATA(A/C)T (-10 

hexamer) (1, 5).  Only a few strong MTB promoters have been identified that transcribe 

the following genes: 16S rRNA, cpn-60 gene, and 85A antigen gene (6-9).  Even though 

the slow-growing MTB has a low content of RNA, the majority (80%) of the RNA pool 

is the ribosomal RNA (rRNA), which is an essential component that is involved in 

decoding the mRNA and interacting with the tRNA.  MTB has a single ribosomal RNA 

(rrn) operon containing the genes for 16S, 23S, and 5S rRNA that is driven by two 

promoters, P1 and P3 (10, 11).  The complete promoter region of rrn operon is 

approximately 650 bp, but previous studies have shown that a 310 bp fragment 

containing the +1 of mature 16S rRNA and both P1 and P3 rrn promoters is highly active 

(8).  The P3 promoter has been identified as the stronger rrn promoter in MTB, 

approximately twice as active as P1.  The sequence of the P3 promoter is TTGACT (-35 

hexamer) N18 TAGACT (-10 hexamer), similar to the consensus sequence recognized by 

SigA (8).  Therefore, our lab will use the MTB rrn operon (containing the P1 and P3 

promoters) as the promoter region. 

 
Appendix Figure–1: The 369 bp sequence of MTB rrn operon containing the P1 and P3 

promoter.  The -35 and -10 regions of both promoters are 

highlighted in yellow.  The transcription sites are indicated after the 

-10 hexamer as ‘TSP’ and the translation start point is indicated as 

+1 (7-9). 



!

! 186 

Another important component of the assay is the detection of the transcribed 

product.  Previously, radioisotopically tagged ribonucleotides have been used in in vitro 

transcription assays.  Some disadvantages involved with this method include: high 

reagent costs, high disposal costs, and variable reagent shelf life (12).  A non-

radioisotopic approach is to measure the RNA via Ribogreen, a fluorescent dye.  A 

disadvantage to this method is the dye binds to both RNA and DNA; therefore, an 

additional step is required that removes DNA by DNase digestion and ultrafiltration (12).  

Molecular beacons can also be used to detect the mRNA.  These exist in RNA hairpin 

structures in the absence of target with the fluorophore in close proximity to the 

quencher.  When the molecular beacon binds to the specific target, a strong fluorescence 

signal is observed due to the dissociation of the hairpin (concurrent with annealing to the 

target RNA) and the consequent physical separation of the fluorophore and quencher 

moieties.  This method allows for high signal to noise ratio, but is prohibitively expensive 

to be used for an HTS assay (13).  Another method is use an aptamer, which is short 

single stranded RNA that binds to a molecule with high binding affinity and specificity 

(14, 15).  To visualize the amount of mRNA produced in this assay, we have elected to 

insert the malachite green aptamer (MGA) gene sequence after the MTB P1/P3 promoter.  

MGA has been reported to bind to triphenylmethane dyes (i.e., malachite green (MG)) 

and upon binding a ! 2,000 fold increase in fluorescence signal is observed (16).  The 

fluorescence emission spectra is measured at an excitation wavelength of 610 nm with 

the maximum emission wavelength being at 640-650 nm.  
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Appendix Figure–2:  The malachite green aptamer (MGA) mRNA sequence.  The 

4xMGA and 8xMGA repeat sequences are shown underneath 

with the MGA sequence underlined. 

 

Professor Jaya Sivaswami Tyagi (All India Institute of Medical Sciences) was 

kind enough to send us the prrn plasmid containing the 369 bp rrn operon (with P1 and 

P3 promoter) followed by the gfp gene (Appendix Figure–1) (9).  The plasmid is in an E. 

coli-mycobacterial shuttle plasmid (pFPV-27) and is hygromycin B antibiotic resistant.  

The plasmids containing MGA (pLee345.3.3 and pTJ141) were a generous gift from 

Professor Nilsen-Hamilton (Iowa State University).  Plasmid pLee345.3.3 has the 

sequence of four repeats of MGA (4xMGA) and plasmid pTJ141 has eight repeats 

(8xMGA) where each MGA repeat sequence is separated by 7 bases.  Since the aptamer 

domain is only 38 nucleotides long (Appendix Figure–2), the multiple repeats of MGA 

might enhance fluorescence signal further. 

Once the plasmids were received, unique restriction sites were incorporated to 

allow for subcloning the MGA repeats into the MTB promoter containing plasmid 

(Appendix Figure–3).  It was challenging to identify unique sites because we did not have 
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the sequence file of prrn.  The unique sites used were Bsu361 and PacI.  These sites were 

introduced into prrn plasmid via site-directed mutagenesis.  After the Bsu361 site was 

inserted after the P3 TSP, the sequence of several plasmids showed there was a deletion 

of a single nucleotide at various positions of the P3 promoter: !T from P3 spacer region, 

!T from P3 -10 region, and !G before P3 TSP.  QC primers were designed to insert +T 

to the -10 region, but after multiple trials, the reaction was still unsuccessful.  For MGA 

sequence, the sites were introduced via PCR. 

 

Appendix Figure–3:  MTB Promoter based plasmid + MGA.  All the oligonucleotides 

used to sequence and construct the plasmid are listed in Appendix 

Table 1. 

 

After the restriction sites were introduced, the PCR product of 4xMGA and 

8xMGA and prrn (containing the Bsu361 and PacI sites) were treated with Bsu361 and 

PacI via sequential digestion.  The PCR product of the MGA repeats was subcloned into 

treated prrn.  Along the way plasmids containing only two repeats of the MGA were also 

obtained.  The resulting plasmids that we have constructed are listed below 

(unfortunately we were unable to get a plasmid that did not contain a deletion):  
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• prrn (!T from P3 spacer region) + 2xMGA 

• prrn (!G before P3 TSP) + 2xMGA 

• prrn (!T from P3 spacer region) + 4xMGA 

• prrn (!T from P3 -10 region) + 4xMGA 

• prrn (!G before P3 TSP) + 4xMGA 

• prrn (!T from P3 spacer region) + 8xMGA 

• prrn (!G before P3 TSP) + 8xMGA 

Now that these plasmids have been constructed, initial studies need to be 

conducted including one that determines if the holoenzyme binds to the DNA template 

via DNA binding assays.  Control experiments (with no inhibitor present) will then be 

setup to find the optimal conditions for the in vitro transcription assay.  Furthermore, the 

MGA sequence from the original plasmids (pLee345.3.3 and pTJ141) is preceded by the 

T7 promoter thus the amount of MGA synthesized by T7 RNAP can be isolated and 

quantified to determine a standard curve using MG.  The amount of fluorescence 

observed with the MTB promoter assay can be used to quantify the amount of RNA 

transcribed.  Rifampin and rifamycin analogues will then be assayed with the wild-type 

and mutant MTB RNAPs.  In the absence of rifamycins, the MTB RNAP will be 

expected to transcribe the MGA domain and when MG is added a distinct fluorescence 

signal will be observed; whereas, in the presence of rifamycins, the aptamer domain will 

not be transcribed because the RNAP will be inhibited thus no fluorescent signal. 

Once preliminary runs are successful, the assay can then be developed into an 

HTS assay.  Small molecule libraries will be screened using the different MTB RNAPs.  

Any hits will be confirmed and characterized via secondary assays (e.g., in vitro 
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MGA•MG binding assay to screen for inhibitors of MG binding to MGA and the direct 

binding assay (see Chapter V) to probe for competition with rifamycins).  Ideally the 

HTS will identify novel scaffolds that inhibit the MTB RNAP with a different 

mechanism of action than the rifamycins thus not subject to cross-resistance. 

In this appendix, we have described an approach to analyze in vitro transcription 

in the presence of MTB RNAP using the malachite green aptamer that specifically binds 

to malachite green.  The SigA driven MTB RNAP binds to the MTB rrn operon 

promoters hence leads to the transcription of the malachite green aptamer mRNA.  This 

method is convenient with reduced steps, which makes it favorable to be developed into a 

HTS assay.  The advantages of this method include: reduced cost, fewer steps, high 

signal to noise ratio, high binding affinity of target, and non-radiolabeled nucleotides.  

Since RNAP is conserved among prokaryotes, small molecules that target and inhibit 

RNAP in HTS assay could potentially lead to finding a novel MTB antibiotic. 
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Appendix Table 1.  Oligonucleotides Used to Construct the Plasmids. 
 
O ligonucleotides      Primer Sequence (5’-3’) 
(Q C/PC R Primers) 
pr rn Plasmid  
(Add Bsu361 site after P3 TSP start site and PacI site after translation start site) 
prrn QC FWD Primer (+Bsu361)  gtattagactggcagggtcgccccTaagGgggcggaaacaagcaagcgtgttg 
prrn QC REV Primer (+Bsu361)  caacacgcttgcttgtttccgcccCcttAggggcgaccctgccagtctaatac 
prrn QC FWD Primer (+PacI)  ctggctcaggacgaacgctggcggcTtaatTaAtagtgaattcgatatcaagcttatc 
prrn QC REV Primer (+PacI)   gataagcttgatatcgaattcactaTtAattaAgccgccagcgttcgtcctgagccag 
(Insert “T” in the -10 box of the second promoter (P3)) 
prrn QC FWD Primer (+T)   gccggatttgtattagacTggcagggtcgcccctaag 
prrn QC REV Primer (+A)   cttaggggcgaccctgccAgtctaatacaaatccggc 
(To amplify WT MTB rrn promoter + GFP) 
PCR FWD Primer     gaagctGGATCCcccgggctgcagg 
PCR REV Primer     agcttcGCATGCctgcaggtctggac 
 
(Q C/PC R Primers) 
(p4xM G A Plasmid; pL ee345.3.3) 
p4xMGA PCR FWD (+Bsu361)  cagcgaCCTAAGGagcacgtcgacggatcccgac 
p4xMGA PCR REV (+PacI)   gaagctTTAATTAAtccgctctagaggatccattcg 
 
(p8xM G A Plasmid; pTJ141) 
p8xMGA PCR FWD (+Bsu361)  cagcgaCCTAAGGctcttcaggtaagtcgacggatcccgac 
p8xMGA PCR REV (+PacI)   gaagctTTAATTAAtccaccgctctagaggatccattcgttacc 
 
(to amplify 4xMGA and 8xMGA from original plasmids pLee345.3.3 and pTJ141) 
PCR FWD Primer (4x/8xMGA)  cagaGATTACGAATTTAATACGACTC 
PCR REV Primer (4x/8xMGA)  gagtCTAGTAAAAAGCGGACCGAAGTC 
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Appendix Table 1.  (continued) 
 
O ligonucleotides      Primer Sequence (5’-3’) 
PCR primers (to amplify MTB rrn promoter region (including ~150 bp upstream) + 4x/8xMGA without GFP sequence) 
PCR FWD Primer     cagaCTTGGTCGATACCAAGCCATTTC 
PCR REV Primer     gagtGATATCGAATTCACTATTAATTAATC 
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