
PROVENANCE IN MODIFIABLE DATASETS

by

Jing Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor H.V. Jagadish, Chair
Professor Margaret L. Hedstrom
Assistant Professor Kristen R. LeFevre
Assistant Professor Michael J. Cafarella

TABLE OF CONTENTS

LIST OF FIGURES . iv

ABSTRACT . vi

CHAPTER

I. Introduction . 1

II. Retrieval Of Lost Source Provenance . 5

2.1 Introduction . 5
2.2 Preliminaries . 8

2.2.1 Query Language . 8
2.2.2 Provenance of Tuples . 9
2.2.3 Historical Data . 10

2.3 Approach Overview and Auxiliary Data Structures 10
2.3.1 Provenance Log . 11
2.3.2 Shadow Table . 12
2.3.3 Annotation Attribute . 12
2.3.4 Populating Auxiliary Data Structures 13

2.4 Provenance Retrieval . 14
2.4.1 Tracing Query Revisited . 14
2.4.2 Extended Tracing Query Aware of Historical Data 17
2.4.3 Analysis of Efficiency of Extended Tracing Queries 19

2.5 Evaluation . 22
2.5.1 Tables And Workloads . 22
2.5.2 Experiments . 27

2.6 Related Work . 31
2.7 Conclusion . 33

III. Customization of Provenance . 35

3.1 Introduction . 35
3.2 Problem Set Up and Background . 39

3.2.1 Customization of Provenance . 39
3.2.2 Definitions . 40
3.2.3 Tracing Queries . 41

3.3 Rewriting Rules For Optimization . 43
3.3.1 Types Of Predicates In Tracing Queries 43
3.3.2 Types of Transformation Operations . 45
3.3.3 Rewriting Rules . 46

3.4 Applying Rewriting Rules To A Datalog Program 50
3.4.1 Optional Recording Of The Values Of Special Attributes 53

ii

3.5 Experimental Evaluation . 54
3.5.1 Database And Queries Used . 54
3.5.2 Platform And Measurement Description 54
3.5.3 Choice of Customization . 55
3.5.4 Experiments On Time Costs . 56

3.6 Related Work . 57
3.7 Conclusion . 59

IV. Validation Of Derived Data . 64

4.1 Introduction . 64
4.2 Related Work . 68
4.3 Preliminaries . 71

4.3.1 Datalog . 71
4.3.2 Incremental Evaluation . 72

4.4 Validation Of Answers . 73
4.4.1 Single Aggregation-Free Datalog Rules 76
4.4.2 Single Aggregate Datalog Rules . 76
4.4.3 Set Of Datalog Rules . 79

4.5 Explanation of Invalidated Answers . 86
4.5.1 Definitions Of Contributory And Contradictory Derivations 87
4.5.2 Explanation Of Invalidation As Contradictory Provenance 92

4.6 Experiments . 94
4.6.1 Experiment Set Up . 94
4.6.2 Experimental Results . 96

4.7 Conclusion . 101

V. Provenance in Asynchronous Collaboration Of Text Documents 102

5.1 Introduction . 102
5.2 Preliminaries . 105
5.3 Related Work . 107
5.4 Revision Units And Its Dependency Graph . 109

5.4.1 Identifying Revision Units And Their Relationship From Two Consecu-
tive Versions . 112

5.4.2 Merging Two Sequences Of Revision Units Of The Same Version 114
5.4.3 Construction Of The Dependency Graph Of Revision Units From A Ver-

sion Tree . 117
5.4.4 Maintenance Of Dependency Graph Upon Version Tree Update 117

5.5 Provenance Of Revision Units And Arbitrary Text Pieces 118
5.5.1 Provenance Of Revision Units . 118
5.5.2 Provenance Of Selected Text Pieces . 119

5.6 Experiments . 120
5.6.1 Experimental Datasets . 121
5.6.2 Experimental Results . 121

5.7 Conclusion . 124

VI. Conclusion . 130

APPENDICES . 133

REFERENCES . 138

iii

LIST OF FIGURES

Figure

2.1 Book . 6

2.2 Price . 6

2.3 BargainBook . 6

2.4 Two Database Operations . 6

2.5 Provenance Log Example . 11

2.6 Shadow Table Pricesh After Up . 12

2.7 Table Price After Up . 12

2.8 Reads and Writes of Tables in Transactions . 24

2.9 Workloads . 28

2.10 Sizes of the Provenance Log and Shadow Tables . 29

2.11 Time of Provenance Retrieval For a Derived Tuple . 29

2.12 Workloads (Continued) . 30

2.13 Time Cost of Examining a Provenance Log Entry With Fixed Reconstructed Views 31

3.1 Example Database, Query And Its Result . 60

3.2 Retrieval Of Complete Provenance Of {SmartPhone,90} 61

3.3 Retrieval Of Customized Provenance Of Orders Related To “iPhone” Inside The Prove-
nance Of {SmartPhone,90} . 62

3.4 Compositions Of Predicate Substitution And Predicate Removal 62

3.5 Baseline Tracing Queries vs. Optimized Tracing Queries Using Rewriting Rule #2 or #9 . 63

3.6 Baseline Tracing Queries vs. Optimized Tracing Queries Using Rewriting Rule #3 or #13 . 63

4.1 Source Table And Derived Tables . 66

4.2 Example Queries . 67

iv

4.3 (Delta) Tables Extended With CNT . 68

4.4 Pruning Predicates For A Single Aggregation . 79

4.5 Inference Of Pruning Predicates (max) . 83

4.6 Inference Of Pruning Predicates (min) . 85

4.7 Basic Information of Experimental Queries And The Number Of Pruning Predicates 95

4.8 Experiments On Queries Without Inline Views . 98

4.9 Experiments On Queries With Inline Views . 100

5.1 Version Tree And Text Piece Provenance . 103

5.2 Examples Of wdi f f Output . 107

5.3 Dependency Graph Of Revision Units Derived From The Version Tree In Figure 5.1 111

5.4 Revision Units In Consecutive Versions And Their Correspondence 113

5.5 Example Of Splitting Units . 114

5.6 Cascading Effect Of Splitting . 116

5.7 Provenance Size In Terms Of Bytes . 123

5.8 Provenance Size In Terms Of Revision Units . 124

v

ABSTRACT

Provenance In Modifiable Datasets

by
Jing Zhang

Chair: H.V. Jagadish

The provenance of derived data, which explains the derivation and retrieves or captures

the source data, is valuable information for the data consumers possibly due to different

purposes, e.g., audit requirements, error tracing, data reproduction and etc. The prove-

nance of a derived datum should include all the details about how it is derived, including

in particular, the source data used in its derivation. The provenance of a derived datum

can be recorded during the original derivation process but storing it explicitly can incur

very high storage cost. Therefore, techniques have been developed to record only a small

amount of information, which can be used later to retrieve the full provenance from the

source dataset. Such provenance retrieval relies on the provenance being present in the

dataset in order to be retrieved by tracing queries. However, many datasets are subject to

modifications, e.g, new experimental data is collected and stored.

In this thesis, we investigate the retrieval of the provenance of a derived datum from a

modifiable dataset, specifically we consider the following four questions:

(i). Can we explain what a particular derived datum depends on, even if a value used in

its derivation has since been modified.

vi

(ii). Can we determine if a particular derived datum is still valid upon the source dataset

modifications without performing full view maintenance but through examining its

provenance.

(iii). Can we retrieve part of the provenance of a given datum due to the users’ request or

the fact that the rest of the provenance is missing.

(iv). Can we retrieve the provenance of a derived datum without predefined granularity in

an unstructured dataset.

In this thesis, we provide affirmative answers to the above questions in the form of new

techniques that use limited space and computational effort.

vii

CHAPTER I

Introduction

Provenance has conventionally been used to describe the history or origin of a work of

art. In the computer science universe, provenance refers to the history or origin of digital

objects. These digital objects can be (1) workflows and/or data in a workflow management

system, (2) data in a database management system, (3) network meta-data of a datum in a

network, etc. In this thesis, we focus on the data provenance in database applications.

Database applications are widespread. The ease of storing, querying, and manipulat-

ing data through database management systems has led to an explosion of the usage of

databases. Once data comes into being in a database, it can be used to derive more data.

The derivations can serve many different purposes, e.g., reformatting, filtering out irrele-

vant information, aggregating a big volume of data into a small volume for better human

comprehension, etc. We are all consumers of derived data when we check hotel ratings,

visit price comparison sites, and even when we read blogs that rely on some data or statis-

tics.

A consumer of a derived datum may request the provenance of the derived datum for

one or more reasons, e.g., determining the reliability of the derived datum, debugging the

derivation process, meeting the audit requirements, etc. The provenance of a derived da-

tum includes “where” the datum comes from and “why” it is produced from the derivation

1

2

process [5]. This provenance can be computed in an eager manner or a lazy manner [35].

In a lazy manner, the “why” provenance can be retrieved through tracing queries [12,

16]. Thus the provenance computation is decoupled from the original query evaluation

and there is a need neither for storage nor for rewriting the original query. However, this

approach needs to handle modifications of the source data [40], i.e., insertion, deletion,

updates, after the derivation. This is because the modifications after the derivation of a

given derived datum may remove the provenance of the given datum or invalidate it.

An eager approach usually couples the provenance computation with the original query

evaluation. One type of eager approach rewrites the original query to produce the prove-

nance together with result [15, 16]. Another type of eager approach propagates annotations

during the evaluation of the derivation query [18, 14]. A third type of eager approach is

targeted at a curated database and records the curation operations as provenance [2]. The

storage overhead of eager approaches will become intractable if more and more derived

data keep being generated. In [8], provenance factorization is proposed to reduce prove-

nance size.

Studying provenance in the presence of modifications to the source datasets is important

since modifying existing datasets is a rather common practice, e.g., new experimental

results being inserted, existing figures being corrected, erroneous facts being deleted, etc.

A single modification to a dataset can affect part of the dataset or the complete dataset.

Multiple modifications can be applied sequentially to the same dataset. In this thesis, we

focus on the study of provenance retrieval and usage in modifiable datasets.

Moreover, modifiable datasets can be structured, unstructured or semi-structured. Typ-

ical structured datasets include relational databases and object oriented databases. Typi-

cal unstructured datasets include plain text documents, audios and videos. Unstructured

datasets can be transformed to semi-structured ones, e.g., by attaching tags to plain text

3

documents. Typical semi-structured datasets are XML files. In this thesis, we study the

provenance retrieval and usage in modifiable relational databases and plain text docu-

ments.

Due to the different characteristics of relational databases and text documents, some

provenance questions may be more interesting in one scenario than in the other or vice

versa. In particular, given a set of modifications in chronological order that have taken

place to the source dataset after the derivation of a derived datum, we need to answer the

following provenance related questions.

(i). In case of relational databases, the following questions are applicable.

(a) What is the provenance of a given derived datum, even when (part of) the prove-

nance is not in the current dataset?

(b) Is it possible to compute one part of the provenance independent of the rest,

which may or may not be in the current dataset? When is it possible and how to

compute?

(c) Is a given derived datum affected by the set of modifications? How is the given

derived datum affected?

(ii). In case of plain text documents, the following questions are applicable.

(a) What modifications in the revision log have actually affected a selected piece of

text?

(b) What is the evolution of a selected piece of text, while the sub-pieces may evolve

independently and the ranges of the sub-pieces may change dynamically?

The question ((i)a) requires the retrieval of the lost provenance due to the modifications.

The classical tracing queries are adjusted to take into consideration the log of modifications

and the archived historical data. This approach is discussed in Chapter II.

4

The question ((i)b) requires the retrieval of partial provenance independently. The

classical tracing queries are rewritten to remove the references to certain source tables

when those source tables satisfy some specific requirements. This approach is discussed

in Chapter III.

The two questions in ((i)c) require determining the effect of modifications on some

selected derived data in the result set. Instead of performing a view maintenance over the

entire result set, validating the selected data can be more efficiently done through the usage

of pruning predicates. This approach is discussed in Chapter IV.

The questions in ((ii)a) and ((ii)b) require retrieving relevant revisions to the selected

text piece in the revision history/log of a text document. Due to the lack of a predefined

structure, we can adjust the ranges of the text pieces in the document according to the

revision history and according to the user’s request, and therefore prune away irrelevant

revisions from the provenance of the selected text piece. This approach is discussed in

Chapter V.

After the discussion in the above mentioned four chapters, we conclude our work and

introduce further work in Chapter VI. Moreover, the background knowledge that is needed

to understand the approaches in this thesis is in the appendices.

CHAPTER II

Retrieval Of Lost Source Provenance

2.1 Introduction

Provenance of a derived data item in a database explains how this data item is derived

from other (source) data items. In a database that allows overwriting operations, such as

deletes or updates, the source data items might be modified or removed after the derivation

was finished.

Consider a data repository that provides data to distributed online users. Suppose a user

derived a data item D from a data item S in the repository by using a query Q, and stored

D in his local database. After the user finished the derivation, S in the repository was

updated to a new value. Later, the user wanted to retrieve the source data item that is used

to derive D. Where can we find the proper value of S that is used in the derivation, given

the query Q and the data item D? If the value of S had been updated more than once, then

which one is the proper one?

Example 2.1. Consider a simple source database comprising two tables1 Book and Price

as shown in Figure 2.1 and Figure 2.2 respectively. A query Qbb is shown in Figure 2.4,

which selects all the books whose prices are under or equal to 10 dollars. The query result

of Qbb is stored in a new table called BargainBook, as shown in Figure 2.3. After the query
1The attribute named since in the tables is reserved for our provenance approach. Its meaning will be explained in Section 2.2.

5

6

Qbb is executed, the update Up (Figure 2.4) on the table Price is executed, which increases

the price of any book by Stephen Hawking.

ISBN Title Author since
0007208642 1940s Omnibus A. Christie 0
0002310198 After the Funeral A. Christie 0

0553380168 A Brief History S.W. Hawking 0of Time

0742627098 Adventures A.C. Doyle 0of Gerard

Figure 2.1: Book

ISBN Price since
0007208642 9 0
0002310198 12 0
0553380168 10 0
0742627098 25 0

Figure 2.2: Price

Title Price since
1940s 9 1Omnibus

A Brief
10 1History

of Time

Figure 2.3: BargainBook

Qbb SELECT b.Title, p.Price

FROM PRICE p INNER JOIN BOOK b

ON p.ISBN=b.ISBN

WHERE p.Price<=10

Up UPDATE PRICE

SET p.Price=p.Price*1.1

FROM PRICE p INNER JOIN BOOK b

ON p.ISBN=b.ISBN

WHERE b.Author=’Stephen Hawking’

Figure 2.4: Two Database Operations

Taking the tuple 〈“A Brief History of Time”, 10〉 as an example. Its source tuple in

the table Price is 〈0553380168, 10〉, which is no longer in the table Price after the two

operations in Figure 2.4 finished executing. In fact, this book is now priced 11 dollars, and

would not be considered a bargain book at its current price. Explaining its inclusion in the

BargainBook table requires an understanding of its historical price.

Existing techniques of provenance retrieval, such as tracing queries [11] or propagating

the identifiers of the source rows as annotations [18], rely on an assumption that the source

tuples are still in the database. Thus, they can be retrieved either by executing tracing

7

queries or by referring to their identifiers. This assumption holds when the derived data

is synchronized with the source data, e.g., the data in a materialized view is synchronized

with the source data in the base tables. However, in many scenarios, derived data does not

reflect the changes made to the source data, e.g., the derived data is stored locally while

the source data is in some remote repository.

When the source data items are not current in the database, for the existing techniques

to find them, a historical version of the database needs to be reconstructed such that this

historical version is exactly what the database was when the derivation happened. Thus,

the existing techniques can be applied to this historical version. However, to reconstruct a

complete database to its state at some previous time is expensive.

Usually only a small portion of the database is used in the derivation, which means

during the provenance retrieval, only this portion of the database at derivation time needs

to be reconstructed. In particular, the tracing queries can be extended such that they search

not only the current database but also the relevant historical data, which is just enough to

reconstruct the involved portion of the database.

In this chapter, we describe such an improved approach to provenance capture and

retrieval, which is aware of historical data and can retrieve source data items when they

are not current in the database. This chapter is organized as follows: Section 2.2 is the

background information about database provenance and historical data; Section 2.3 gives

the overview of our approach and introduces the necessary data structures required by

our approach; Section 2.4 describes the provenance reconstruction algorithm in detail and

analyzes its time and space costs; Section 2.5 shows the experimental results of these

costs in a realistic setting; finally, Section 2.6 and Section 2.7 are the related work and the

conclusion respectively.

8

2.2 Preliminaries

In a relational database, the database operations are usually intended to manipulate

tuples. Therefore, we focus on the provenance of tuples.

We denote the database as D. The tables inside D are denoted using capital letters, e.g.,

T . We assume set semantics, therefore, every table is a set of tuples. Tuple variables are

denoted with small letters, e.g., t or s.

For each table T , its attribute is denoted as capital letters, e.g., T.A, where A is an

attribute. The schema of a table T is denoted as T : 〈A1,, Am〉, where A1, ..., Am are

attributes.

2.2.1 Query Language

A safe query on the database can be expressed in Tuple Relational Calculus (TRC) as

{t| f (t)}, where t is the only free tuple variable in the formula f (t). In this TRC query,

the part before | is called answer. Sometimes, a TRC query also takes the form {t :

〈A1, ..., An〉 | f (t)}, where 〈A1, ..., An〉 is a list of attributes in the answer tuple, also called

target list.

In this chapter, we only consider conjunctive queries and conjunctive queries with ag-

gregations, i.e., SPJ queries and ASPJ queries.

An SPJ query (a.k.a. a conjunctive query) expressed in TRC is of the form {t|∃s1, ..., sm

S 1(s1)∧...∧S m(sm)∧ f (s1, ..., sm, t)}. S i(si) (i = 1, ...,m) is an atomic formula that evaluates

to true if si is a tuple in the table S i. f (s1, ..., sm, t) is a conjunction of atomic formulas. The

atomic formula is either a predicate, e.g., S 1(s1), or the comparison of a table’s attribute to

some value or some other attribute, e.g., S 1.A = 2. In particular, f (t) in an SPJ query does

not contain the universal quantifier ∀ or the negation ¬ or the disjunction ∨.

An SPJ query can be extended with aggregations by allowing aggregate attributes in

9

the target list, e.g., {t : 〈A1, ..., An,G AS agg(An+1)〉 | ∃s1, ..., sm S 1(s1) ∧ ... ∧ S m(sm) ∧

f (s1, ..., sm, t)}. In this form, A1 through An are grouping attributes, An+1 is the attribute to

which the aggregate function agg is applied, and G is a new attribute storing aggregate val-

ues. If in a query, aggregate attributes appear in the formula part (the part after |), the query

can be decomposed into several queries by introducing new intermediate tables, and each

of them either has aggregate attributes only in its target list or does not have aggregations.

We will show how this is done in Appendix A.2. In fact, this decomposition corresponds to

the decomposition of an aggregate query into canonical segments in [11]. Since an ASPJ

query sometimes needs to be divided into several (A)SPJ queries, the provenance retrieval

for this ASPJ query becomes a recursive process correspondingly.

From here on, we use {t : 〈A1, ..., An,G AS agg(An+1)〉 | ∃s1, ..., sm S 1(s1)∧...∧S m(sm)∧

f (s1, ..., sm, t)} as the general form of queries under our consideration. Notice that S i and

S j (i , j) may refer to the same table.

2.2.2 Provenance of Tuples

The provenance of a given tuple can be defined in many different ways. In this chapter,

we adopt the definition from [11]. We restate the definition here.

Definition 2.2. [Provenance] Assume a database D have tables T1, ...,Tn. Given a tuple t

in the result set of a query Q executed on D, denoted as t ∈ Q(T1, ...,Tn), the provenance

of t is a subset of D that have tables T ′1, ...,T
′
n, where T ′1, ...,T

′
n are the maximal subsets of

T1, ...,Tn such that:

(i). {t} = Q(T ′1, ...,T
′
n)

(ii). ∀T ′k : ∀t′ ∈ T ′k : Q(T ′1, ...,T
′
k−1, {t′},T ′k+1, ...,T

′
n) , ∅

If a single table is referenced more than once in the query, e.g., in the case of self-joins,

each instance is regarded as a separate table, and is renamed correspondingly such that

10

each table name only appears once in the query. With this treatment, there always exists

a set of tables, T ′1, ...,T
′
n, that satisfies the two requirements listed in the above definition.

Moreover, in this chapter, we assume set semantics. Under set semantics, it has been

proven in [11] that the provenance defined above for a given tuple is unique.

2.2.3 Historical Data

When a tuple in the database is deleted or updated, this tuple becomes a historical tuple.

As illustrated in the example in Section 2.1, this historical tuple can be the source tuple of

some derived tuple and may need to be retrieved. In such cases, the archiving of historical

tuples is essential to the retrieval of provenance.

The implementation of storing historical data can be done in many different ways as

explored in the temporal database literature. Although the intensive study on data models,

indexes and query languages of historical data is essential to temporal databases, it is out

of the scope of this chapter. We adopt a simple implementation of historical data storage,

since it does not impact our purpose to show the improvement of our provenance approach

over the baseline approach.

In the next section, we are going to describe our way of storing historical data, together

with other auxiliary data structures necessary for the retrieval of non-current provenance.

2.3 Approach Overview and Auxiliary Data Structures

Our approach to provenance retrieval consists of two steps: constructing an extended

tracing query and executing it. The extended tracing query, in order to retrieve provenance

that is not current in a database, should be able to retrieve both from the historical data and

from the current database.

The historical data is stored in several data structures. These extra data structures are

populated every time a data operation happens and are queried by our extended tracing

11

queries.

We define two additional table-like data structures: a provenance log and a set of

shadow tables. Furthermore, we define an extra annotation attribute since in each reg-

ular relational table.

2.3.1 Provenance Log

Most, if not all, databases have logs. Usually, there is more than one log, each for a

specific purpose. Therefore, each of these logs can be designed in a way such that it can

best serve a specific purpose.

In our approach, we define a provenance-oriented log: provenance log.

If a specific DBMS is under consideration, its existing logs may already be sufficient

for provenance purpose in the sense that they have all the information that the provenance

log has. If so, the provenance log does not necessarily have to be an additional log, but

instead it can be some view defined over the existing logs.

The provenance log, denoted as Plog, consists of a sequence of log entries. Each entry

corresponds to an operation executed in the database system. Each entry has the structure

(ID, timestamp, user, sqlS tatement). ID is an unique ID assigned to every entry in the

log, and an operation that is committed later has a greater ID for its corresponding log

entry. That is to say, the ID indicates the order of the commission of all the operations.

sqlS tatement stores the SQL statement of the committed operation. timestamp is the time

when the operation is committed. user specifies the user who commits the operation.

Recall Example 2.1. The provenance log after the execution of the two operations Qbb

and Up is shown in Figure 2.5.

ID timestamp user sqlS tatement
1 2009-08-01 01:00:00 Alice Qbb

2 2009-08-02 11:00:00 Bob Up

Figure 2.5: Provenance Log Example

12

2.3.2 Shadow Table

Historical tuples are stored in shadow tables. For each regular table in the database, we

define a corresponding shadow table.

For example, if a regular table is of schema T : 〈a1, a2〉, then the shadow table of T

is Tsh : 〈a1, a2, begin, end〉. The attributes begin and end are foreign keys referring to the

attribute ID in the provenance log. The attribute begin stores an ID whose corresponding

entry in the provenance log records the operation that generates this tuple. The attribute

end stores an ID whose corresponding entry in the provenance log records the operation

that removes this tuple.

The attributes begin and end are to specify the time period when the historical tuple

was current. We choose to use the IDs of log entries instead of the actual times to avoid

ambiguity: two committed operations can have the same time of commit but can not have

a same log entry ID.

Recall Example 2.1. After the update Up, the table Price is like the one shown in

Figure 2.7; and its shadow table Pricesh is shown in Figure 2.6.

ISBN Price begin end
0553380168 10 0 2

Figure 2.6: Shadow Table Pricesh After Up

ISBN Price since
0007208642 9 0
0002310198 12 0
0553380168 11 2
0742627098 25 0

Figure 2.7: Table Price After Up

2.3.3 Annotation Attribute

Current tuples are stored in regular tables. An extra annotation attribute called since is

added to each regular table, which is a foreign key referring to the attribute ID in the prove-

13

nance log. The attribute since stores an ID whose correspondent entry in the provenance

log stores the operation that generates this tuple.

This extra annotation attribute is not visible to the users of the database, and thus it

can not be manipulated by the users. The provenance capture and retrieval are the only

procedures that can set its value or query it.

It is desirable that this annotation attribute is included in the schema during the database

design and before the database population. If a database is already populated with a

schema without this attribute, the alteration of adding this attribute to each table is not

very welcome. Therefore, an alternative approach will be creating a separate table that

links each tuple in the database, via some unique tuple ID, to this attribute. In this chap-

ter, we assume that this annotation attribute since is already included in each table in the

database schema.

2.3.4 Populating Auxiliary Data Structures

All the auxiliary data structures are populated whenever a database operation takes

place.

(i). When a database operation takes place, a new entry is created in the provenance

log and a unique ID is assigned to this new entry. When multiple operations are

committed together as in a single transaction, each of them will have a log entry in

the provenance log upon the time of commitment. The order of these entries is the

execution order of the corresponding operations. Any operation that is not committed

will not have an entry in the provenance log.

(ii). When a tuple is inserted into a table due to this database operation, the value of its

since attribute is set with the ID of the newly created entry in the provenance log.

(iii). When a tuple is removed from a table due to this database operation, either by a delete

14

or by an update, the removed tuple is inserted into the corresponding shadow table.

As for this new tuple in the shadow table, the value of the begin attribute is set with

the value of the since attribute in the removed tuple; the value of the end attribute is

set with the value of the ID of the newly created entry in the provenance log.

This populating of auxiliary data structures is in fact our provenance capture procedure.

As we will see in the next section, all the provenance information we need is recorded in

these auxiliary structures.

2.4 Provenance Retrieval

In this section, we show how to build the extended tracing queries to retrieve prove-

nance using both the current database and the historical data for a given derived tuple.

The tracing query introduced in [11] is able to retrieve the provenance defined in Def-

inition 2.2, if the provenance is current in the database. Those tracing queries are con-

structed based on the original query Q and the derived tuple t, and they use only the

current database. When the provenance is not current, they need to be extended to make

use of historical data.

We divide our discussion of the extended tracing queries into three parts. First, we

revisit the tracing query introduced in [11]. Then, we extend the tracing queries such that

they can find the (current or historical) provenance by utilizing the current database, the

provenance log and the shadow tables. Finally, we analyze the time and space costs of

provenance capture and retrieval.

2.4.1 Tracing Query Revisited

In [11], the tracing queries and the original queries are expressed in a relational algebra

extended with aggregations. In this chapter, we use Tuple Relational Calculus (TRC)

instead, which can be extended with aggregations as well [25]. Moreover, this extended

15

TRC is equivalent to the extended relational algebra [25].

Recall the example query Qbb shown in Figure 2.4. The SQL statement of Qbb can be

expressed in TRC as follows:

{
t : 〈Title, Price〉 |

∃s1 : 〈IS BN,Title〉, s2 : 〈IS BN, Price〉(
Book(s1) ∧ Price(s2)

∧s1.IS BN = s2.IS BN ∧ s2.Price <= 10

∧t.Title = s1.Title ∧ t.Price = s2.Price
) }

In the above TRC query, t, s1, s2 are tuple variables. t.Title, s1.IS BN, etc. are at-

tribute qualified tuple variables. Book(s1) and Price(s2) are atomic formulas. Book(s1)

(Price(s2)) evaluates to true, if s1 (s2) is a tuple from the table Book (Price). s1.IS BN =

s2.IS BN, s2.Price <= 10, etc. are also atomic formulas. Judging from its form, the above

query is a safe conjunctive query (SPJ query).

The answer to a TRC query is a set of tuples. Each of these tuples, when assigned to

the tuple variable in the answer part of the query, can make the formula part evaluate to

true. Since the answer to a TRC query is a set of tuples, it can been seen as a relation or a

table.

When the original query Qbb is expressed in TRC, its tracing query can be expressed

in TRC as well. The tuple 〈“A Brief History of Time”, 10〉 is an answer tuple to Qbb. To

retrieve its provenance in the table Book, we can use the following tracing query:

16

{
s1 : 〈IS BN,Title〉 |

∃s2 : 〈IS BN, Price〉, t : 〈Title, Price〉(
Book(s1) ∧ Price(s2)

∧s1.IS BN = s2.IS BN ∧ s2.Price <= 10

∧t.Title = s1.Title ∧ t.Price = s2.Price

∧t.Title = “A Brief History of Time′′ ∧ t.Price = 10
) }

The tracing query is like a “re-organization” of the original query, as shown in the above

example with underlines.

(i). The tuple variables s1 and t are switched such that the source tuple variable s1 is now

in the answer part and t is now in the formula part.

(ii). More conditions are added to the formula part, i.e., the value of each attribute of the

derived tuple t is specified, e.g., the last line of the above tracing query.

In general, given a query Q as

(2.3)

{
t : 〈A1, ..., An,G AS agg(An+1)〉 |

∃s1, ..., sm(
T1(s1) ∧ ... ∧ Tm(sm) ∧ f (s1, ..., sm, t)

) }
and given a tuple t = 〈a1, ..., an, g〉 in the query result, the tracing query to find its prove-

nance in the table Tk is, assuming Tk has a schema B1, ..., Bl,

(2.4)

{
sk : 〈B1, ..., Bl〉 |

∃t, s1, ..., sk−1, sk+1, ..., sm(
T1(s1) ∧ ... ∧ Tm(sm) ∧ f (s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an
) }

We show in Appendix A.1 that this tracing query can retrieve the provenance defined

in Definition 2.2.

17

2.4.2 Extended Tracing Query Aware of Historical Data

Given a derived tuple t, if its provenance is not current in the database, we can retrieve

its provenance with our extended tracing queries. Compared to the classic tracing query

as in Equation 2.4, the extended tracing query need an extra piece of information, i.e., the

ID of the provenance log entry that records the the original query.

Recall our discussion in Section 2.3.2. The IDs of provenance log entries can be used

as timestamps to indicate time points or periods of time, e.g., storing these IDs in the

attributes begin, end and since. We have also argued that these IDs are even better than

real timestamps since they incur no ambiguity.

Similarly, the ID of the provenance log entry that records the the original query repre-

sents the derivation time, i.e., the time when the original query was executed. Therefore,

with this ID, our extended tracing query is able to decide which historical data is proper

to retrieve provenance from, i.e., the data that was current in the database at the derivation

time is proper.

Recall the book example, for the tuple 〈“A Brief History of Time”, 10〉 generated by

the query Qbb, an extended tracing query that can retrieve the provenance of it in the table

Price is

{
s2 : 〈IS BN, Price〉 |

∃s1 : 〈IS BN,Title〉, t : 〈Title, Price〉(
BookH(s1) ∧ PriceH(s2)

∧s1.IS BN = s2.IS BN ∧ s2.Price <= 10

∧s1.IS BN = t.IS BN ∧ s2.Price = t.Price

∧t.Title = “A Brief History of Time′′ ∧ t.Price = 10
}

Compared to the classic tracing query, the difference is that the Book and Price pred-

18

icates are changed into BookH and PriceH respectively. BookH (PriceH) is the historical

version of the table Book(Price) when Qbb took place.

In the book example, there are no updates on the table Book. Therefore, BookH is the

same as Book. However, PriceH and Price are different due to the update Up. To construct

PriceH, we should remove any tuple that enters the table Price after the execution of Qbb;

and add any tuple that leaves the table Price after the execution of Qbb. Therefore, PriceH

can be constructed as a view using the following query:

{
s : 〈IS BN, Price〉 |(
Price(s) ∧ s.since < 1

)∨
∃sh

(
Pricesh(sh) ∧ sh.begin < 1 ∧ sh.end >= 1

∧s.IS BN = sh.IS BN ∧ s.Price = sh.Price
) }

In this example of extended tracing query, the query formula consists of two formulas

connected by a union. The first formula selects source tuples from the current table Price.

In order for a current Price tuple to be possible provenance, it should have been current

before Qbb happened. In this example, Qbb is logged in the provenance log with an entry

ID 1. Therefore, the first formula has a condition s.since < 1. This condition is to make

sure the source tuple is already in the database when Qbb took place.

The second formula selects source tuples not currently in the table Price. These his-

torical tuples are stored in the shadow table of Price, i.e., Pricesh. Similar to the case of

current tuples, in order for a historical tuple to be possible provenance, it should be current

when Qbb took place. This requirement is checked through the conditions sh.since < 1 ∧

sh.end >= 1.

From the above example, we can see that, in order to build an extended tracing query,

we need the ID of the provenance log entry that records the original derivation query.

19

Thus, the construction of an extended tracing query needs three pieces of information:

(i). the derived tuple

(ii). the original query

(iii). the ID of the provenance log entry recording the original query

In general, if given a tuple t, whose derivation query Q is logged in a provenance log

entry with ID being id, assuming Q is of the form as shown in Equation 2.3, then the

extended tracing query to retrieve provenance in the table Tk is

(2.5)

{
sk : 〈B1, ..., Bl〉 |

∃t, s1, ..., sk−1, sk+1, ..., sm(
T H

1 (s1) ∧ ... ∧ T H
m (sm) ∧ f (s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an
) }

where T H
k , assuming the shadow table of Tk is Tk sh, is

(2.6)

{
sk : 〈B1, ..., Bl〉 |(
Tk(sk) ∧ sk.since < id

)∨
∃s′k

(
Tk sh(s′k) ∧ s′k.begin < id ∧ s′k.end >= id

∧s′k.B1 = sk.B1 ∧ ... ∧ s′k.Bl = sk.Bl
) }

Notice that, although the original derivation query is a conjunctive query with possible

aggregations, the extended tracing query is not a conjunctive query, because of the union

connective used in Equation 2.6.

2.4.3 Analysis of Efficiency of Extended Tracing Queries

We now analyze the space and time efficiency of our approach.

20

Space Cost

The archiving of historical data can be done at different granularities. For example, if

one attribute in one tuple in a table in a database is updated, to store the historical data,

before the update, we can back up (i) the whole database, (ii) the updated table, (iii) the

updated tuple, or (iv) just the updated attribute in the tuple.

The size of the storage of historical data obviously depends on the granularity used in

archiving. In the above example, each way of archiving can enable the recovering of the

database before update, however, the last one incurs the minimum amount of storage.

In our approach, we archive the historical data at the granularity level of tuples, i.e., we

archive a tuple in a proper shadow table when one or multiple attributes in this tuple are

updated. Assume the average size of a tuple is sizet, and the number of tuples affected by

an operation is n. Thus, after this operation, the size of the shadow tables is increased by

(sizet + C) × n, where C is a constant being the size of the two attributes begin and end.

Notice that decreasing the space cost also means an increase in the time cost of re-

constructing previous versions using historical data. For example, if the whole database

is archived, the reconstruction of any table in the database at a previous time involves no

complex queries but merely selecting. Comparatively, since we only archive the updated

tuple when one or more attributes in it are changed, the reconstruction of the involved table

needs to run a query as shown in Equation 2.6.

Besides the archive of historical data, i.e., the shadow tables, our approach also incurs

extra space cost due to the provenance log and the annotation attribute since. The size of

the provenance log is linear to the number of entries in it if we assume a fixed size of each

entry, which is possible if a maximum length of SQL statements is assumed. The size of

the attribute since is the same as that of begin or end, since they all refer to a provenance

log entry ID. The total cost of this attribute across the entire database will be the number

21

of tuples in the entire database times the size of this attribute.

Time Cost

There are two types of time cost: the time cost of provenance capture and the time

cost of provenance retrieval. The time cost of provenance capture is relatively smaller and

more straightforward than that of provenance retrieval.

Provenance capture for every database operation is a two-step procedure: computing

one new provenance log entry and/or new shadow table tuples; and inserting them into the

provenance log and/or shadow tables.

The computation time is negligible, since the computation of either the log entry or

the shadow table tuples is fairly simple. The insertion time of the log entry is constant,

since there is always one log entry with a fixed size. The insertion time of shadow table

tuples depends on the number of shadow table tuples generated by this operation. Assume

n tuples are updated during an operation, and insert timet is the average time of inserting

one shadow table tuple. Then the time of inserting into shadow tables for this operation

will be insert timet × n.

The time cost of our provenance retrieval primarily consists of constructing an extended

tracing query and executing it. The construction of an extended tracing query takes roughly

a constant amount of time. On the other hand, the time of executing it varies with the

reconstructed historical versions.

The historical version of a table consists of tuples from current table and shadow tables.

The executing time of the extended tracing query is affected by both the number of tuples

in the historical version and the location of these tuples. The former is easier to understand,

since retrieving from a table/view with more tuples takes more time than retrieving from a

table/view with less tuples. However, the second relationship is not so obvious.

In fact, if the reconstructed historical version has n tuples, and m of them comes from

22

the shadow table, then the executing time is roughly proportional to m/n. This is later

shown by an experiment in Section 2.5. The cause of this is probably the specific physical

plan of the union operations used in reconstruction. In the physical plan, the union oper-

ation is implemented as (i) two index seeks on the two tables, (ii) a concatenation of the

outputs of the index seeks, and finally (iii) a sort of the output of concatenation. If most

of the tuples in the output of concatenation are from the same table, the sort may be faster

than in the case where tuples come evenly from the two tables.

2.5 Evaluation

In this section, we evaluate, through experiments, the sizes of the provenance log and

shadow tables, and the time of provenance retrieval.

In each experiment, we start with a set of tables; execute a workload consisting of

queries, inserts, updates and deletes; then retrieve provenance for selected tuples in the

result sets of the executed queries. The workload is specially made up such that some of

the derived tuples in the result sets do have provenance that is not current in the database.

Our experimental tables and workloads are based on the database and transactions spec-

ified in TPC-E benchmark [22] with some simplifications and modifications. The reason

we use TPC-E benchmark is that it has quite a few transactions that contain updates and

deletes.

2.5.1 Tables And Workloads

The TPC-E benchmark simulates the activity of a brokerage company. The brokerage

company interacts with customers and the financial market. A customer can have more

than one account with the broker company. The customer can place trade orders through

any of her accounts. The brokerage company buys or sells securities on the market ac-

cording to the customers’ trade orders. In the TPC-E specification, there are 33 tables

23

and 13 transactions. In our experiments, we use 4 transactions out of 13 and these four

transactions use 9 tables out of 33.

The transactions we used are customer position (c-p), trade order (t-o), trade result

(t-r) and market feed (m-f). The tables we used are CUSTOMER (C), CUSTOMER ACCOUNT

(CA), HOLDING SUMMARY (HS), TRADE (T), LAST TRADE (LT), TRADE HISTORY

(TH), STATUS TYPE (ST), SETTLEMENT (S), CASH TRANSACTION (CT). Each of

those 9 tables is read and/or written by some of these four transactions.

Table Generation

We generate the tables specified in TPC-E through EGen package. The sizes of the

tables can be scaled through several parameters: the number of customers (NoC), the

scaling factor (SF), the initial trade days (ITD). For example, the size of the table TRADE

is ((ITD * 8 * 3600)/SF) * NoC. We set the number of customers to be 5000, the scaling

factor to be 4500 and the initial trade days to be 30. Notice that the scaling factor is

the number of customer rows per single Transaction-Per-Second-E(tpsE), and the scaling

factor for nominal throughput is 500 [22]. Therefore, the scaling factor we choose is too

big for a nominal output. Since we do not intend to report the database performance under

TPC-E but to make use of the table settings and workloads, we use this big scaling factor

in order to keep the database small. Given the parameters we choose, we have 33 tables of

a total size being 3.4G bytes.

Transaction Generation

In the four transactions we use in our experiments, customer position is a read-only

transaction, and the other three transactions are read-write transactions. Each transaction

can have more than one read and/or write. All the reads are queries. The writes can

be inserts or updates or deletes. Some of the writes modify the tables that are read by

24

customer position. All these reads and writes are called database operations.

Although we execute every database operation (read or write) in these four transaction,

we do not capture every database operation in the provenance log. When a read only reads

tables that are not used by any write, we do not capture provenance for it. This is because

the result tuples of this type of read always have provenance in the current database, thus

we are not interested in experimenting with them. When a write only writes tables that are

not used by any read, we do not capture the provenance for it. This is because writes of

this type do not have affect on the provenance of result tuples of reads, thus, we are not

interested in these writes. All the other reads and writes are captured in the provenance

log when they take place.

In Figure 2.8, we label the database operations, i.e., reads or writes, in the four trans-

actions that the provenance capture is aware of. We also show the tables used in each of

them. The database operation denoted as R is a read and the one denoted as W is a write.

Each of the 5 tables, shown in Figure 2.8, has a corresponding shadow table.

CA HS T LT TH

c-p
Rc-p

CA,HS,LT r r r
Rc-p

ST,T,TH r r

t-o
Wt-o

T w
Wt-o

TH w

t-r

Wt-r
HS w

Wt-r,1
T w

Wt-r,2
T w

Wt-r
TH w

Wt-r
CA w

m-k
Wm-f

LT w
Wm-f

T w
Wm-f

TH w

Figure 2.8: Reads and Writes of Tables in Transactions

25

Workload Generation

The central task we wish to evaluate is that of retrieving provenance by reconstructing

the source tuples that are not in the current database. Therefore, in the workloads we

use for the experiments, we want some updates that come after some queries and change

(some of) the source tuples used by those queries. We generate two types of workload,

both fulfilling this specific purpose.

The first type of workloads has a workload pattern that is the recurring sequence of

the 4 transactions in the order of customer position, trade order, trade result and mar-

ket feed. The order of trade result and market feed may be switched depending on if

the order is a market order or a limit order. In particular, in such a workload, the tuples

used in customer position as source tuples are later modified by the following trade order,

trade result and market feed. The workloads of this type all have roughly the same ratio

of read to write.

The second type of workloads always has a single customer position at the beginning

of the workload, and then has many recurring sequences of 3 transactions, i.e., trade order,

trade result and market feed. Unlike the workloads of the first type, the workloads of this

type can have different ratios of read to write. With this type of workloads, we can manage

to achieve different percentages of historical tuples in the reconstructed historical view, as

will be explained in the discussion of the second experiment on time cost (Figure 2.13).

These two types of workload are both obtained by modifying the workloads generated

by the CEE class in EGen package, since the original workloads generated by CEE contain

transactions other than the four we use in this experimental evaluation.

(i). we take a workload generated by the CEE class in EGen package;

(ii). keep only the transactions of trade order;

26

(iii). for each trade order, we generate a trade result and a market feed after it, and

(a) for the first type of workload, a customer position is generated before it

(b) for the second type of workload, a customer position is generated before it only

when this trade order is the first transaction in the workload.

Metrics

We have two metrics of primary interest: space and time. In space, we are primarily

concerned with the space requirements of the auxiliary data structures that we require, to

retain sufficient historical provenance information. We would like to measure this over-

head. In time, we are concerned with the time required to reconstruct at least enough

history to complete provenance explanation for a data item derived from updated sources.

Obviously, we would like to minimize this time. We report measurements for both metrics

in turn below.

Baseline for Comparison

The most important question to address is whether the space and time costs are accept-

able, in an absolute sense. Is the overhead affordable to obtain the benefits of historical

provenance? Of course, this question is addressed in the experimental results reported

below. But there is also an additional question of interest: how much did our cleverness

buy us? How do the techniques we developed in this chapter compare against the state of

the art before our work. How much better are we than a baseline? Of course, this begs the

question of defining a suitable baseline. Since most provenance techniques are not capable

of handling updatable sources, we really cannot use them directly for effective comparison.

In fact, we already know, even without performing any experiments, that our techniques

reduce to the method of tracing queries if there happen to be no updates performed to the

source data.

27

Since the primary barrier to the use of classic provenance techniques in our problem

scenario is the need for historical source data, a baseline approach will be leveraging the

transaction-time temporal databases to query some previous state of the database and apply

the existing provenance techniques to that previous state. However, it has two disadvan-

tages. First, temporal databases are either queried via an extended language to SQL, e.g.,

introducing a new keyword “AS OF” [28]; or queried via XQuery, e.g., [37]. The for-

mer needs an extended query language standard, while the latter enforces the retrieval of

provenance by several queries. Second, it is a challenging problem in temporal databases

to acquire transaction timestamps that are consistent with the transaction serialization or-

der [24]. However, as long as the provenance retrieval is concerned, the sole usage of the

serialization order is sufficient to reconstruct necessary historical data, as demonstrated by

the usage of log entry IDs in our approach. Thus, there is no need of introducing trans-

action timestamping to cause unnecessary complexity. As a comparison, our approach

exclusively uses SQL, and only depends on the commit order of transactions to achieve

the reconstruction of previous states.

2.5.2 Experiments

We implement all our experiments in Java. We run the code using the JRE 6 update 14

from Sun, installed on a machine of 3.06GHz Celeron CPU with 1.96GB RAM memory

running Microsoft Windows XP Professional 2002 SP 3.

Space Cost

The size of provenance log grows with the number of committed database operations.

The size of a shadow table grows with the number of tuples updated or removed from the

corresponding regular table.

We have 5 workloads of the first type with increasing amounts of transactions shown

28

in Figure 2.9. In these 5 workloads, the ratios of read to write are roughly the same. The

space cost of each of these 5 workloads is shown in Figure 2.10. The size of provenance

log is close to linear with the number of committed operations, which can be queries,

inserts, updates or deletes. In this particular experiment, the size of a single log entry,

i.e., the provenance log cost per committed operation, is around 150 bytes. The size

of shadow tables for each workload, shown in Figure 2.10, is the sum of 5 shadow ta-

bles, i.e., the shadow tables for TRADE, TRADE HISTORY, CUSTOMER ACCOUNT,

HOLDING SUMMARY and LAST TRADE respectively. This total size of shadow tables

is roughly linear with the number of updates in the workload. In this particular experiment,

the space cost of shadow tables is around one third of the cost of the provenance log. In

this experiment, the number of writes is a little more than double the number of reads. If

the writes are less frequent, the space cost of shadow tables can be further reduced.

Workload
1 2 3 4 5

Rc-p
CA,HS,LT 58 563 1123 1678 2248

Rc-p
ST,T,TH

Wt-o
T 58 563 1123 1678 2248Wt-o
TH

Wt-r
HS 58 563 1123 1678 2248Wt-r
TH

Wt-r
CA 57 519 1031 1529 2070

Wt-r,1
T 13 100 190 316 423

Wt-r,2
T 58 563 1123 1678 2248

Wm-f
LT 58 563 1123 1678 2248

Wm-f
T 14 214 447 626 875Wm-f
TH

Total 562 5551 11099 16521 22227

Figure 2.9: Workloads

Time Cost

We have two experiments showing respectively the absolute time cost of provenance

retrieval and the relationship between the time cost and the ratio of historical tuples in the

29

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5

Si
ze

 (
K

B
)

Workloads

Sizes of the Provenance Log and Shadow Tables

Provenance Log Shadow Tables

Figure 2.10: Sizes of the Provenance Log and Shadow Tables

reconstructed historical views.

To show the absolute time cost of retrieving provenance using extended tracing queries,

we experiment with the first workload as shown in Figure 2.9. In this workload, the query

Rc-p
CA,HS,LT is executed 58 times, and generates 322 tuples in total. Among these 58 exe-

cutions, a later execution uses a different version of the database than an earlier execu-

tion, since we have padded updates between any two consecutive executions of the query.

Therefore, the reconstructed historical versions of these 322 tuples are different.

The retrieval times of these tuples are shown in Figure 2.11. The vertical axis is the

time of retrieval. The horizontal axis is the total size of all the reconstructed views in one

tracing query. The size is measured with the number of tuples. Every point in the plot is

the retrieval of provenance for one derived tuple.

0

50

100

150

200

250

300

350

400

450

224004 224006 224008 224010 224012 224014

Ti
m

e
(m

s)

Total Size of All the Reconstructed Views

Time of Retrieving Provenance
For One Derived Tuple

Figure 2.11: Time of Provenance Retrieval For a Derived Tuple

30

We can see from Figure 2.11 that the absolute time of retrieval falls in a range from

200ms to 300ms when the total number of tuples in all the reconstructed views is around

224000. Also, we notice in Figure 2.11 that for a fixed size of reconstructed views, the

retrieval time varies. That is because of the different ratios of historical tuples in the

reconstructed views.

To show the relationship between the retrieval time and the ratio of historical tuples

in the reconstructed views, we execute the four workloads of the second type shown in

Figure 2.12.

Workload
6 7 8 9

Rc-p
CA,HS,LT 1 1 1 1

Rc-p
ST,T,TH

Wt-o
T 58 563 1817 2840Wt-o
TH

Wt-r
HS 58 563 1799 2816Wt-r
TH

Wt-r
CA 57 519 1648 2577

Wt-r,1
T 13 100 309 499

Wt-r,2
T 58 563 1799 2816

Wm-f
LT 58 563 1799 2816

Wm-f
T 14 214 698 1197Wm-f
TH

Total 448 4427 14185 22416

Figure 2.12: Workloads (Continued)

In each of these four workloads, the query Rc-p
CA,HS,LT is executed only once and is exe-

cuted at the beginning of the workload. Since it is executed at the beginning and the initial

databases for these four workloads are the same, the reconstructed view of each involved

table is the same across these four workloads. In particular, the total number of tuples in

the reconstructed views of all the involved tables is 224007.

When retrieving the provenance for a derived tuple by Rc-p
CA,HS,LT, the more writes fol-

lowing this query, the more historical tuples in the reconstructed views. Therefore, the

ninth workload has the highest ratio of historical tuples to the size of the reconstructed

31

views.

The provenance retrieval time for a tuple derived by the query Rc-p
CA,HS,LT in each of these

four workloads is shown in Figure 2.13. As can be seen from this figure, the executing

time of the extended tracing query grows when the ratio of historical tuples increases.

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e
(m

s)

Percentage of Historical Tuples In Reconstructed
Views (%)

Time of Retrieving Provenance
For One Derived Tuple

Figure 2.13: Time Cost of Examining a Provenance Log Entry With Fixed Reconstructed Views

2.6 Related Work

Provenance provides information about the origin of data. This information can be

used in many different ways. For example, in a scientific computing workflow, the origin

of data can help to find the cause of errors in the data. Also, the origin of each form on a

secure web page can help prevent leaking private information to malicious hackers.

Due to the usefulness of provenance, it has attracted more and more attention. There are

quite a few studies on provenance and in particular in database applications [4][12][18][3][9]

[16][14][2][7][8].

In general, the provenance of a data item in a database includes the source data items

used to derive it and the derivation process. The approaches to the retrieval of these source

items can be classified into three categories: inversion based, annotation based, and log

based. In an inversion based approach [12], the source data items are located by executing

tracing queries, which are constructed based on the original queries and the derived data

32

item. In an annotation based approach [16][18][14][8][3], the source data items are located

by referring the annotation of the derived data items, which contains either the identifiers

of the source data items or the source data items. In a log based approach [2], every

database operation is logged and the source data items or the referring to them are directly

recorded in the log.

The inversion based approach is the computation-on-request type, i.e., the provenance

is computed only when the user asks for it. It particularly addresses the derivation that is

done through SQL queries. On the other hand, it does not provide provenance for a derived

data item that is generated through copy-paste operations. The annotation based approach

can apply whether the derivation is through SQL type operations or copy-paste type op-

erations. It requires that the annotations be propagated during the execution of derivation

operations. This annotation propagation mechanism is not yet a widely supported feature

of commercial systems. The log based approach suits the curated databases best. The

provenance stored is like a log of operations, and the storage cost can be achieved by

removing entries that could be inferred from the other entries as illustrated in [2].

Although much work has been done on database provenance, the effect of in-place

update on provenance has not attracted attention until recently [4][3][9].

[4] proposed an update language that implicitly propagates color annotations of the ob-

jects where the color annotations are a type of provenance representation. These provenance-

aware updates propagate the color annotation in a “kind-preserving” way, which means

that if a value appears in the output with a given color, then the corresponding value in the

input must have the same type (atom, record, or set); furthermore, if the value is an atom,

then the corresponding value in the input must be the same atom [3]. For example, if a

cell of a tuple is updated by a provenance-aware update operation, the color annotation of

the tuple and all other cells stay the same while the color annotation of this cell changes.

33

However, kind-preserving is a very weak condition [3]. For example, if the value of every

cell in a tuple is replaced by some random value, the tuple still keeps its color. It is not

clear that this is a desirable property. Moreover, [4] does not provide for the retrieval of

previous values.

Our work addresses the problem of retrieving the provenance no longer present in the

database due to the in-place update with regard to the inversion based approaches. The

typical inversion based approaches retrieve the provenance through tracing queries. If the

provenance is not currently in the database, the tracing queries are not able to find it. Thus,

additional information are needed to recover the proper historical values and the classical

tracing queries need to be modified to use those additional information.

Another area of related work to this chapter is the work on temporal databases. In a

temporal database, the tuple getting replaced is not gone but still stored somewhere, and

thus becomes a historical tuple. Each historical tuple has transaction times associated

with them indicating the time period during which the tuple was present in the database.

Other ways of archiving historical tuples have been explored too. For example, recent

works [37][31] proposed efficient ways of storing all the previous values and/or previous

schemas by archiving the information of previous versions into XML files. In contrast

to the focus of provenance approach, temporal databases do not address the derivation

relationship that may exist between these historical data items and other data items that

are derived from these historical values.

2.7 Conclusion

In this chapter, we introduced an approach to the retrieval of provenance (source data

items used in a derivation) that is not current in the database. In order to retrieve it, the

provenance capture and provenance retrieval process should be aware of the database oper-

34

ations that overwrite existing values in the database. We developed techniques that would

maintain the least amount of historical information necessary to reconstruct provenance

accurately. We demonstrated experimentally that our techniques result in reasonable costs

both in terms of storage overhead and in terms of provenance reconstruction time.

CHAPTER III

Customization of Provenance

3.1 Introduction

The provenance of a given result tuple intuitively includes all the source tuples that

contributed to its derivation. This provenance is usually examined by a human for some

purpose, e.g., locating error causes, validating the result, acquiring missing information in

the result, etc.

The basic provenance request is to find all the provenance information of a given result

tuple (or tuples). However, this one-size-fits-all solution has limitations. When users have

a particular purpose for which they want provenance information, the complete provenance

can contain a great deal of additional irrelevant information. For example, the user need

may be for the intersection of the provenance of two result tuples derived from different

queries, rather than for the complete provenance of both. For another example, the user

may be interested in finding the provenance of a result tuple within a specific source table

with a particular attribute less than some value: provenance information regarding other

source tables, or with larger values of this attribute, are not of interest.

These observations lead to the need to define customized provenance, determined based

on the user need. The customized provenance of a given result tuple is usually a subset

of the complete provenance. That suggests a simple two-stage approach of computing

35

36

the customized provenance: first computing the complete provenance and then filtering it

using the specific criterion of the customized provenance request. However, this basic ap-

proach involves unnecessary computation of some (and often, a great deal of) provenance

information that is discarded in the second stage. To illustrate this problem consider the

following (greatly simplified) example.

Example 3.1. We have three database tables Orders, Categories and Ratings as shown

in Figure 3.1a, with the primary keys underlined. We want to find the revenue of every

category including only the products that are either iPhones or are positively rated, where

a product is considered positively rated if its average rating is higher than 3.

A possible query for this request is shown in Figure 3.1b in both SQL and Datalog.

The corresponding predicate dependency graph1 [38] built from the set of Datalog rules is

shown in Figure 3.1d. That query first computes the average rating of each product that has

been rated, and filters on the average ratings, and computes the revenue for each category

by summing up the orders placed for the products with qualified average ratings and the

orders placed for iPhones.

Suppose we want to retrieve the complete provenance of the result tuple {SmartPhone,

90}. We can issue appropriate tracing queries to determine the tuples in the source ta-

bles Categories, Orders and Ratings on which this result tuple depends, denoted as

Categoriesp, Ordersp and Ratingsp. The method prescribed in [11] is illustrated in Fig-

ure 3.2 as rules r4 through r8.

The rule set of r4 through r8 involves two tracing steps: (1) find the provenance of

{SmartPhone, 90} in Ordersp Productsp Categoriesp, which can then be projected to the

schema of Orders, the schema of Products and the schema of Categories to get Ordersp,
1For a set of Datalog rules, a predicate dependency graph can be built. In that graph, every node corresponds to a predicate. An

edge from node p to node q means q is the head of a rule whose body contains p. Notice that some literature defines the edge in the
opposite direction.

37

Productsp, Categoriesp; and (2) find in Ratings the provenance of Productsp.

Now suppose that the user wants to customize the provenance. The user only wants

to study the iPhone share in the calculated revenue “90” if there is such a share. In other

words, the user wants the orders placed on iPhone and included in the returned revenue

“90”. Then, the baseline approach is to execute r4 and r5 and filter Ordersp with the

customization request, shown as the option #1 in Figure 3.3. However, a quick observation

over the derivation of Products will tell us that the predicate Products(“iPhone′′) always

evaluates to true. Therefore, given the specific customization of the user, we can get rid

of the predicate Products in the rules of the provenance retrieval. Thus, we end up with

option #2 in Figure 3.3 as tracing queries. In fact, the baseline approach, i.e., option #1,

can be transformed into option #2 through three rewritings as shown in Figure 3.3b.

In summary, we have an opportunity to optimize the retrieval of customized prove-

nance. Some of the potential optimizations may be found by general purpose optimization

methods. However, many can not, since they request application-specific knowledge. Our

goal in this chapter is to develop a systematic technique to find potential optimizations that

are tuned for tracing queries.

A special characteristic of tracing queries is that the desired result, at each step, is a

subset of a source or intermediate table. When written as a Datalog program, each rule in

the tracing query has as the predicate in the head is a “provenance-restriction” of one of the

predicates in the body. The restriction is provided by the other predicates in the body of the

rule. Selective provenance requests add additional predicates to the body of one or more

rules in the Datalog representation of the tracing query. Our challenge in this chapter is

to recognize this special structure of tracing queries and the restriction predicates imposed

on them.

We propose an optimization algorithm based on rewriting rules to solve this problem.

38

In particular, two types of rewriting are used: (1) substitution of a predicate for a rule, (2)

removal of a predicate.

The benefits that result from our optimization of the provenance retrieval include: (1)

less predicates in a Datalog rule (in other words, less joins in the query evaluation); (2)

elimination of unnecessary access to intermediate tables (in other words, either elimina-

tion of the recomputation of intermediate tables during retrieval or elimination of storage

of intermediate tables); (3) elimination of unnecessary retrieval of provenance inside in-

termediate tables.

Whereas we developed our techniques for customized provenance, it turns out that most

of them are applicable to all tracing query computations. Doing so requires no modifica-

tions of the optimization techniques at all, since a regular tracing query is simply a special

case of a customization that does nothing. The extent of actual benefit derived depends on

the specific tracing query.

The rest of this chapter is organized as follows. In Section 3.2, we review the prove-

nance definition and the classical tracing queries used to retrieve it; and then we formalize

the representation of customized provenance as database views defined by modified trac-

ing queries. In Section 3.3, we develop a set of query rewriting rules that are aimed at

simplifying the tracing queries. In Section 3.4, we show how these rules are applied to

a Datalog program. In Section 3.5, we show experiments on customized provenance re-

trieval that compare the time costs of baseline tracing query approach with the time costs

of the optimized tracing query approach. Finally, in Section 3.6 and in Section 3.7 respec-

tively, we discuss the related work and conclude our work.

39

3.2 Problem Set Up and Background

3.2.1 Customization of Provenance

Users may have criteria on what provenance should be returned to them. Their specific

requests are usually based on their knowledge of the answer, the query and even the un-

derlying database. Recall Example 3.1. The user knows that iPhone belongs to the smart

phone category, and he then wonders about the iPhone share in the smart phone revenue

returned by the example query.

More complex customization is possible. For example, suppose there are two answer

tuples produced through two different queries respectively. If we know one of the tuples

is wrong and have been able to locate the erroneous source data inside its provenance, we

may request the common provenance of the two answer tuples to check if the other answer

tuple used the erroneous data in its derivation. Note that we are not interested in the full

provenance for the second tuple, but rather in its intersection with the provenance of the

first tuple.

Traditional provenance management systems work hard to compute, and possibly store,

provenance information. However, there is not much need for a provenance query facility:

a user merely has to click on a data item to get its full provenance. Now, with provenance

customization, we would like to give users precisely what they want, rather than the whole

thing. But this requires that we know what they want – that is, that the users have expressed

their customization desires to the system. In short, we need a provenance customization

specification language.

Fortunately, provenance is also just data, and in fact, structured data. Therefore, prove-

nance is easily queried through query languages such as SQL or its equivalent. Thus, the

customization of provenance is simple. Using query languages to customize provenance

may be difficult for users who do not have familiarity a query language. However, this is a

40

problem that is not unique to provenance customization. Rather, it applies broadly to most

stores of structured data. As such, there has been much work done to develop database

tools that help users to query data with form-based or keyword-based interfaces. Such

tools can also be used to customize provenance. In this chapter, we do not worry about

these specification details. Rather, we examine how to evaluate customized provenance

efficiently.

SQL is the query language of choice for commercial database products. However,

Datalog is often the preferred language for development of complex algebraic techniques.

It is straightforward to translate Datalog programs into SQL. For these reasons, in this

chapter we use non-recursive Datalog programs consisting of a set of safe and non-negated

Datalog rules. A Datalog rule is safe if every variable that appears in the head of rule also

appears in some non-negated relational predicate in the body of the rule. A relational

predicate is a predicate that represents relations/tables or views in the database. Another

type of predicates is arithmetic predicates, such as A > 3 and mod(A, B, 3), which is true

if and only if A%B = 3.

3.2.2 Definitions

Before we formally start to discuss the customization of provenance and the rewrit-

ing rules to optimize the retrieval of the customized provenance, we need to review the

definition of provenance and the classical tracing queries.

Definition 3.2. [SPJ Tuple Provenance] Suppose there is an SPJ query Q as follows:

T (Y) D S 1(X1), ..., S m(Xm)

Then, given t ∈ T , a table D is the provenance of t according to Q if and only if

(i). D is of the schema ∪i=m
i=1 Xi

(ii). ∀d ∈ D t.Y = d.Y

41

(iii). ∀d ∈ D, S i(Xi)[Xi/d.Xi] (i = 1, ...,m) evaluates to true, where S i(Xi)[Xi/d.Xi] repre-

sents a ground S i(Xi) by substituting Xi for the value d.Xi

(iv). @D′ ⊂ D such that D′ satisfy the above requirements

In Definition 3.2, every d in D uniquely specify a mapping from the variables in the

body of Q to values.

Definition 3.3. [ASPJ Tuple Provenance] Suppose there is an ASPJ query Q as follows:

T (G,Σ(〈A〉)) D S 1(X1), ..., S m(Xm)

where the notation 〈A〉 indicates a grouping, with G being the GROUP-BY attribute, and

Σ ∈ {sum, count, avg,max,min} being the aggregate function. Then, given t ∈ T , a table

D = {d1, ..., dn} is the provenance of t according to Q if and only if

(i). D is of the schema ∪i=m
i=1 Xi

(ii). t.G = d j.G for j = 1, ..., n

(iii). t.A = Σ(d1.A,, dn.A)

(iv). S i(Xi)[Xi/d j.Xi] evaluates to true, for i = 1, ...,m and j = 1, ..., n

(v). @D′ ⊂ D such that D′ satisfies all the above requirements

Definition 3.4. [Query Result Provenance] Suppose there is a query Q and further sup-

pose T = {t1, ..., tk} is the (sub)set of the result of Q over tables S 1, ..., S m. Then, the

provenance of T is the union of the provenances of ti for i = 1, ..., k.

3.2.3 Tracing Queries

Tracing queries are a standard technique for determining the provenance of a desired

result. To find the provenance according to an SPJ query, we have:

(3.5) P(∪i=m
i=1 Xi) D S 1(X1), ..., S m(Xm), t.Y = Y

42

where t is an answer tuple; and more generally

(3.6) P(∪i=m
i=1 Xi) D S 1(X1), ..., S m(Xm),T′(Y)

where T ′ is the subset of the answer set. Moreover, if we want the provenance inside a

table S i, we have:

(3.7) S p
i (Xi) D S 1(X1), ..., S m(Xm), t.Y = Y

and

(3.8) S p
i (Xi) D S 1(X1), ..., S m(Xm),T′(Y)

The bold parts in the equations above are predicates related to the provenance retrieval

given the answer tuple(s), e.g., r4 in Figure 3.2.

To find the provenance according to an ASPJ query, we have:

(3.9) P(∪i=m
i=1 Xi) D S 1(X1), ..., S m(Xm), t.G = G

where t is an answer tuple; and more generally

(3.10) P(∪i=m
i=1 Xi) D S 1(X1), ..., S m(Xm),T′(G)

where T ′ is the subset of the answer set projected on the attribute list G. Moreover, to have

the provenance inside S i, we have

(3.11) S p
i (Xi) D S 1(X1), ..., S m(Xm), t.G = G

and

(3.12) S p
i (Xi) D S 1(X1), ..., S m(Xm),T′(G)

When a query involves more than one rule, i.e., a predicate in the body of a Datalog

rule is the head of another rule, the provenance retrieval is done recursively as discussed

in [12].

43

3.3 Rewriting Rules For Optimization

Our optimization method is rewriting based. Thus, our optimization method consists

of a set of rewriting/optimization rules. (When there is a possibility of confusing Datalog

rules with rewriting rules, we will use a modifier “Datalog” or “rewriting/optimization”

before “rule”. Otherwise, we will use just “rule” and its meaning will be clear from con-

text.)

Each rewriting rule consists of two parts. One part specifies requirements on the predi-

cates in a Datalog rule. The other part specifies a transformation of a Datalog rule.

To apply an optimization rule to a Datalog rule, we check if the predicates in the Dat-

alog rule satisfy the conditions specified in the optimization rule. If they do, then the

Datalog rule can be rewritten according to the optimization rule.

In order to list our rewriting rules for optimization, we have to discuss two things first:

(1) the types of predicates in the body of a Datalog rule as part of a tracing query, and (2)

the types of transformation operations used in transforming the rule body.

3.3.1 Types Of Predicates In Tracing Queries

In general, given a Datalog rule as part of a classical tracing query, we have two types

of predicates. If the tracing query is for customized provenance, there is a third type of

predicate.

The first type consists of the predicates that appear in the original query, e.g., Orders,

Products and Categories in r4.

The second type consists of the predicates related to the provenance retrieval and de-

termined by the given answer tuple(s), e.g., caid = SmartPhone, where the attribute and

the value in the comparison are determined by the answer tuple {SmartPhone, 90}.

The provenance related predicates are meant to narrow down the source tuples used in

44

the original query evaluation to only the ones particularly contributing to the given answer

tuple(s). The provenance related predicates can be written in the form of a relational

predicate T (Y), where T is a temporary table holding the set of selected answer tuple(s)

and Y is the attribute list of the answer tuple, e.g., T (caid, rev) = {{SmartPhone, 90}}

if the provenance of {SmartPhone,90} is requested; or T (caid, rev)={{SmartPhone, 90},

{{NormalPhone, 100}} if the provenance of {SmartPhone, 90} and {NormalPhone, 100} is

requested. ({NormalPhone, 100} is not in the result of Example 3.1 because of the fraction

of data shown in the example.)

When a user specifies the customization of the provenance, we have a third type of pred-

icates in the tracing queries, i.e., the customization related predicates, e.g., pid = iPhone

in r9. The customization related predicates can be relational predicates or arithmetic pred-

icates. For example, Ordersp
cust D Ordersp(oid, pid, amt, prc), amt ∗ prc > 10. In par-

ticular, when the customization related predicate is relational, it is no different than a

provenance related predicate in effect. Therefore, from here on, when we refer to prove-

nance related predicates, we actually mean provenance related predicates and relational

customization related predicates.

When the provenance/customization related predicates are present in the same rule as

the original predicates, the provenance/customization related predicates can sometime ren-

der the original predicates redundant by being more restrictive than the original predicates.

In Figure 3.3b, Productsp is removed because pid = iPhone is more restrictive than it.

The optimization rule will explore the relative restrictiveness of the provenance/customization

related predicates and the original predicates. We will discuss how to determine their rel-

ative restrictiveness when we discuss the optimization rules.

45

3.3.2 Types of Transformation Operations

In Figure 3.3b, the baseline approach, i.e., Option #1, is transformed into Option #2,

and Option #2 is obviously simpler and more efficient in terms of computation.

There are two rewriting operations in the transformation from Option #1 to Option #2:

(1) substituting a subgoal for the body of a rule whose head is this subgoal, e.g., the first

rewriting step in Figure 3.3b; (2) removing a predicate, e.g., the second and the third

rewriting steps in Figure 3.3b. Moreover, there is a third operation that is not used in the

example: moving arithmetic predicates.

For the first rewriting operation, it can be done if there are no conflicts in the variable

naming. In this chapter, we assume that all the variables in a Datalog program are named

properly to avoid naming conflicts.

For the second rewriting operation, a predicate can be removed if there is at least one

predicate in the same rule body that is more restrictive than it. In the context of tracing

queries, a provenance related predicate is usually more restrictive than original predicates,

since the purpose of the provenance related predicate is to narrow down the source tuples

to only the ones contributing to the given answer tuples. In the following subsection,

we will show in the rewriting rule #1 through #3 that when certain requirements on the

provenance related predicate are met, we can remove an original predicate.

For the third rewriting operation, an arithmetic predicate should be pushed towards

the beginning of a query evaluation process, since the earlier the filtering takes place, the

smaller the intermediate results are. This has been studied extensively and is not our focus.

The above rewriting operations are all atomic rewriting operations. A proper composi-

tion of these rewriting operations will produce a simpler and optimized tracing queries, as

illustrated in Figure 3.3b. In the following section, we will show in the rewriting rules #4

through #8, that when certain requirements on the provenance related predicates are met, a

46

combination of predicate substitution and predicate removal can produce a simpler tracing

query than the original one.

3.3.3 Rewriting Rules

Given a query r : R(Y) D S 1(X1), ..., S m(Xm) or r : R(Y,Σ(〈A〉)) D S 1(X1), ..., S m(Xm),

and a set of answer tuples y1, ..., yn, supposing the tracing query rp : S p
i (Xi) D S 1(X1), ...,

S m(Xm),T (Y), where T (Y) is the provenance related predicate and S i(Xi) are the predicates

in the original query, we have the following rewriting rules for the tracing query rp.

Rewriting Rule #1: if Y ⊇ Xi, then rp can be transformed into

(3.13) r′p : S p
i (Xi) D T (Y)

Intuitively, when all the attributes of S i are in the schema of the answer tuples (i.e.,

Y ⊇ S i), the provenance of the answer tuples in S i is completely included in the answer

tuple, and thus there is no need to query the other predicates than the answer tuples (i.e.,

T (Y)).

Formally, we show that the result relations S p
i of rp and r′p are the same, i.e., {y1.Xi, ..., yn.Xi}.

Given the way a tracing query is constructed, T (Y) = {y1, ..., yn}. Since Y ⊇ Xi, then the

evaluation of r′p is simply to substitute the proper value in yk (k = 1, ..., n) into Y and also

Xi. Therefore, we will have the result relation of r′p as {y1.Xi, ..., yn.Xi}.

For every yk (k = 1, ..., n), we can construct a substitution θk such that θk(Y) = yk and

S j(X j)[X j/θk(X j)] (j = 1, ...,m) evaluates to true. Such θk must exist, otherwise, yk can

not be an answer tuple to the original query. Therefore, θk (k = 1, ..., n) will produce a

fact yk.Xi in the result relation of rp. Moreover, any substitution θ that makes the body of

rp evaluate true also makes T (Y) evaluate true. This further means that θ(Y) = yk where

k ∈ {1, ..., n}. Since Y ⊇ Xi, θ(Xi) = yk.Xi. Therefore there will no result tuple other than

y1.Xi, ..., yn.Xi in the result relation of rp.

47

Rewriting Rule #2: if Y ⊇ PKS i , where PKS i is the primary key of S i, then rp can be

transformed into

(3.14) r′p : S p
i (Xi) D S i(Xi),T (Y)

The intuition behind this rule is similar to that behind the rewriting rule #1. The primary

key of S i can uniquely determine a tuple in S i. When the primary key of S i is included in

the schema of the answer tuples, i.e., Y ⊇ PKS i , the answer tuples are sufficient to identify

their contributing tuples in S i.

The proof of the rewriting rule #2 is similar to that of the rewriting rule #1. In short, we

can construct substitutions based on y1, ..., yn and show the result relation of rp(r′p) using

these substitutions is {y1.Xi, ..., yn.Xi}.

Rewriting Rule #3: if Y ⊇ PKS j ∧ (∀k ∈ {1, ...,m} Y ⊇ X j ∩ Xk) ∧ (
(∪l= j−1

l=1 Xl) ∪

(∪l=m
l= j+1Xl) ∪ Y ⊇ Xi

)
, then

(3.15) S p
i (Xi) D S 1(X1), ..., S j−1(X j−1), S j+1(X j+1), ..., S m(Xm),T (Y)

The goal of this rule is to take advantage of the presence of T (Y) to remove S j(X j). This

can be done if (1) T (Y) is more restrictive than S j(X j) and (2) every variable in Xi ∩ X j

must also be in some predicates other than X j in the body, otherwise the rule will become

unsafe after the removal of S j(X j).

We now show why T (Y) is more restrictive than S j(X j) given the requirements in the

rewriting rule #3. To show that it is sufficient to show that every substitution that makes

T (Y) evaluate to true makes S j(X j) evaluate true.

T (Y) is the provenance related predicate. According to the way the tracing query is

constructed, T (Y) = {y1, ..., yn}. Thus any substitution θ for rp that makes T (Y) evaluate

true satisfy the condition ∃k ∈ {1, ..., n} θ(Y) = yk. Since Y ⊇ PKS j , therefore, θ(X) =

48

yk.X j. Moreover, S j(X j)[X j/yk.X j] must evaluate to true as well, otherwise yk will not be

an answer tuple in the first place.

In the bottom right graph in Figure 3.3b, the predicate pid = iPhone can be considered

as a temporary table T (pid) = {{iPhone}}. Then, Productsp(pid) is removed since the

conditions in the above rule is satisfied.

The rewriting rules #1 through #3 involve only predicate removal operations. In the

following rules, we combine the predicate substitution and predicate removal.

In Figure 3.3b, the first rewriting is in fact two predicate substitutions in a row: sub-

stituting Ordersp with the body of r5, i.e., Ordersp Productesp Categoriesp and then

substituting Ordersp Productesp Categoriesp with the body of r4. After these two predi-

cate substitutions, two predicate removals follow. Thus, the final outcome is a query much

simpler than the original query.

The reason that we combine the predicate substitution and the predicate removal is to

avoid intermediate table access or intermediate provenance retrieval without increasing the

number of predicates in the involved Datalog rules.

Suppose we have two rules r : S p
i (Xi) D S 1(X1), ..., S m(Xm),T (Y), and r′ : Rk(Zk) D

R1(Z1), ...,Rn(Zn), S p
i (Xi), where T (Y) and S p

i (Xi) are the provenance related predicates,

and S p
i (Xi) is also intermediate provenance.

Imagine that we substitute S p
i in r′ for the body of r. Then, although we eliminate the

reference of intermediate provenance S p
i in r′, the resulting r′ has now n+m+1 predicates

instead of n + 1. The elimination of intermediate provenance may not be worth the price

of more predicates in r′, and we do not really want to apply the predicate substitution.

However, after the predicate substitution we may find predicate removals and reduce the

number of predicates in r′; this is the situation where we really want to apply the predicate

substitution rewritings.

49

A general procedure of applying predicate substitution is:

(i). trying to reduce the number of predicates in r using rewriting rules #1 through #3;

(ii). substituting S p
i (Xi) in r′ for the body of r;

(iii). trying to reduce the number of predicates in the rewritten r′ using rewriting rules #1

through #3;

(iv). checking if the number of predicates in the rewritten r′ is greater than n + 1, if it is,

abort the predicate substitution; else keep it.

There are 4 choices for the first predicate removal operation (the rewriting rule #1

through #3, and the no-op), and the same 4 choices for the second predicate removal

operation. Thus there are 16 choices in all. Not all combinations make sense. For example,

no-op, sub, no-op will lead to more predicates in the body on account of the substitution.

Similarly #3,sub,#3 also leads to more predicates in the rewritten rule than in the original.

After eliminating 6 such combinations, we are left with 10 possible combinations that

result in a rewritten r′ with less predicates (and no S p
i). These are listed in Figure 3.4.

We now describe a few of the noteworthy rules in Figure 3.4. The rest are similar.

This rewriting rule #4 is a result of applying rewriting rule #1 to r and then a predicate

substitution in r′. Since Y ⊇ Xi, then according to the rewriting rule #1, S p
i (Xi) D T (Y).

Furthermore, substituting S p
i (Xi) for T (Y) into r′, we get the equation in the rewriting rule

#4.

This rule can avoid the computation of intermediate provenance S p
i and also avoid the

access to the intermediate table S i. Meanwhile, although the transformed r′ has the same

number of predicates as the original r′, the number of tuples in T (Y) is less than or equal

to the number of tuples in S p
i . Therefore the transformed r′ can take less time to compute

than the original r′.

50

As for the rewriting rule #5 in Figure 3.4, we substitute S p
i (Xi) in r′ for the body of r, we

get Rk(Zk) D R1(Z1), ...,Rn(Zn), S 1(X1),, S m(Xm),T (Y). Since Y ⊇ Zk, then according to

the rewriting rule #1, we get the equation in the rewriting rule #5.

As for the rewriting rule #12 in Figure 3.4, we first apply the rewriting rule #3 to r,

and then substituting S p
i in r′ for the body of the transformed r, and finally applying the

rewriting rule #2 to r′.

3.4 Applying Rewriting Rules To A Datalog Program

The rewriting rules #1 through #13 can be applied repeatedly. Moreover, the rewriting

due to one rule may trigger more opportunities to apply the same or other rules. Therefore,

we provide an algorithm to apply the rewriting rules to each of the Datalog rules in a given

rule set, and the order in which each Datalog rule is examined is derived from the partial

order of the rule dependency graph of these Datalog rules.

When a Datalog rule set (a.k.a. a Datalog program) is given, a rule dependency graph,

or dependency graph in short, can be constructed for it. Each node in the rule dependency

graph corresponds to a Datalog rule in this set, and the edge from a node to another means

the former depends on the latter. In this paper, we assume no recursive queries, and thus

the resulting tracing queries from the original query are non-recursive as well. Therefore,

the dependency graph is a DAG (directed acyclic graph).

Notice that the rule dependency graph should not be confused with the predicate depen-

dency graph. In rule dependency graphs, nodes are rules and edges are rule dependency;

while in predicate dependency graphs, nodes are predicates and edges are inference.

To build the rule dependency graph of a given Datalog rule set, we have Algorithm 1.

Algorithm 1 runs two passes over the rule set. The time complexity of the first pass is

linear in the number of nodes, or the number of rules. The time complexity of the second

51

Algorithm 1: Construction Of Dependency Graph Of A Rule Set (CDG)
Input: R, which is a Datalog rule set

1 begin
2 Initialize a DAG G = (V, E), where V is the set of nodes and E is the set of directed edges
3 Initialize a hash map head map, which maps a predicate name to a rule identifier
4 for every rule r in R do
5 V ← V ∪ {r}
6 T ← the head of r
7 Insert (T, r) into the hash map head map
8 end
9 for every rule r in R do

10 for every predicate S in the body of r do
11 if (r′ = head map(S)) , null then
12 E ← E ∪ {(r, r′)}
13 end
14 end
15 end
16 return G
17 end

pass is of the order of the magnitude of the square of the number of predicates.

With the rule dependency graph built, we can optimize the rule set by applying the

rewriting rules to each node one by one by in a traversal over the graph. A node is pro-

cessed only when all the nodes it depends on have been processed. This means we will

process the nodes according to a topological sort/ordering of the rule dependency graph.

During the first pass over the entire graph, we process each node with the predicate

removal operations if they are applicable. During the second pass over the entire graph,

we process each node with the combination of predicate substitution and predicate removal

operations. When a predicate substitution is performed, the rule dependency graph needs

to be updated accordingly, as shown in the lines 20-25 in Algorithm 2.

We then keep repeating the second pass until there is no rewriting during one pass. The

reason we repeat the second pass is because the substitution of a predicate introduces new

predicates into the Datalog rule (i.e., new edges into the rule dependency graph), and these

new predicates may be substituted further.

When a node is processed, if there is more than one applicable rewriting rule, we choose

52

the rule that will lead to a rewritten rule with the least number of predicates in the body.

Algorithm 2: Traversal Of Dependency Graph (TDG)
Input: R,G = (V, E)

1 begin
2 Initialize a queue node to be processed to a queue of nodes in V in a topological ordering
3 Initialize a queue node processed to an empty queue
4 while node to be processed is not empty do
5 r ← node to be processed
6 Remove r from node to be processed
7 Add r to node processed
8 repeat
9 Apply an applicable rewriting rule in #1 through #3 to r

10 until No rule in the rewriting rules #1 through #3 is applicable
11 end
12 node to be processed ← node processed
13 repeat
14 while node to be processed is not empty do
15 r′ ← node to be processed
16 Remove r′ from node to be processed
17 Add r′ to node processed
18 for every (r′, r) ∈ E do
19 Apply an applicable rewriting rules in #4 through #13 to (r′, r)
20 if a predicate substitution is preformed then
21 Remove (r′, r) from E
22 for every new predicate r′′ that is introduced into r′ by the predicate substitution

do
23 Add an edge (r′, r′′) to E
24 end
25 end
26 end
27 end
28 node to be processed ← node processed
29 until The last pass does not make any rewriting
30 return R
31 end

Theorem 3.16. Algorithm 2 produces a set of rewritten Datalog rules such that none of

the rewriting rules (#1 to #13) can be applied further to decrease the number of predicates

in any of these Datalog rules.

From G, multiple topological orderings can be derived. For our Algorithm 2, we can

use any of these topological orderings, and the result is a set of rewritten rules satisfying

Theorem 3.16.

53

3.4.1 Optional Recording Of The Values Of Special Attributes

The rewriting of Datalog rules discussed above makes use of provenance related pred-

icates on special attributes, i.e., primary keys in the source tables. When the primary keys

are in the output result, the provenance related predicates are most restrictive and thus most

useful in the rewriting. However, primary keys are not always in the output. In fact, we

can rewrite the original query to include the primary keys in the output. In [15], rewriting

techniques have been introduced to rewrite the original query to include all the attributes

from the source tables in the output. It can be easily adapted to include only the primary

keys instead of all the attributes. Thus, the extra space cost due to additional attributes

in the output will be greatly reduced. By paying for the extra space cost of including

the primary keys in the output, we can maximize the applicability of the rewriting rules

introduced in this chapter.

Moreover, if the user requests to exclude the usage of an arbitrarily selected source table

from the retrieval of provenance. A similar approach can be used. That is, we rewrite the

original query using the techniques introduced in [15] to include all the attributes from the

selected source table in the output. Thus, for each of the attributes in the selected source

table, we can add a provenance related predicate to the provenance retrieval query and this

predicate checks the equality of the attribute and its output values. These predicates will

then remove the reference(s) to the selected source table in the provenance retrieval query

according to our rewriting rules, since they are most restrictive regarding the attributes in

the selected source table. Therefore, we can retrieve provenance without referring to the

source table arbitrarily selected by the user.

As a summary, by taking the advantage of the presence of provenance related predicates

in the rules, our optimization rules have three direct or indirect benefits:

(i). fewer predicates in the rule body (in other words, fewer joins in the query evaluation),

54

(ii). the elimination of unnecessary access to intermediate tables during provenance re-

trieval,

(iii). the elimination of unnecessary retrieval of intermediate provenance, which is the

provenance inside the intermediate tables, e.g., the retrieval of Productsp.

3.5 Experimental Evaluation

We conducted experiments to evaluate the benefits obtained by applying the rewriting

rules developed in this chapter. In particular, given a customized provenance request, we

compare the time cost of computing it using the optimized tracing queries with the time

cost of computing it using the baseline tracing queries.

3.5.1 Database And Queries Used

We use the database and queries specified in TPC-H benchmark. There are 8 source ta-

bles, lineitem, orders, customer, part, supplier, nation, region, partsupp. Our instances

of the 8 tables are generated through DBGen with the scaling factor of 1.

There are 22 query templates in TPC-H. Our method is applicable to multiple-block

ASPJ queries with set-oriented subqueries. Therefore we exclude queries from these 22

query templates that can not be transformed into this desired form. This leaves us with 6

single-block (A)SPJ query templates and 2 two-block nested (A)SPJ query template. The

single-block query templates are No.1, No.3, No.5, No.6, No.10 and No.19, as numbered

in TPC-H benchmark. The two-block query templates are No.7 and No.9. One instance

query was produced for each query template using QGen.

3.5.2 Platform And Measurement Description

We ran all of our experiments on a machine with the following configuration: (i). Intel

Core i7 CPU with 7.7GB RAM, (ii). Ubuntu 11.10 64bit, (iii). PostgreSQL 8.4.4 64bit,

55

with “share buffer” set to be 16MB and “effective cache size” 128MB.

All measurements were taken as follows:

(i). every time cost shown in the figures is an average of three measurements;

(ii). the time measurement (in seconds) is measured by using “pg statement” module in

PostgreSQL;

(iii). the system cache and PostgreSQL cache are cleaned before the evaluation of each

query by “echo 3 > /proc/sys/vm/drop caches”.

3.5.3 Choice of Customization

Our experiments include the following steps.

(i). For each query Q, we choose an answer tuple t from the answer set. (We conveniently

choose the first answer in the answer set.)

(ii). We construct the tracing query Qtrace to retrieve the provenance of t. Qtrace is deter-

mined by t and Q.

(iii). We set a customized provenance requests Qcust.

(iv). We compute the customized provenance using

(a) baseline tracing queries, i.e., Qcust(Qtrace(D))

(b) optimized tracing queries, i.e., Qopt(D), where Qopt is the result of optimizing

Qcust ◦ Qtrace.

Unfortunately, we do not have any gold standard for customized provenance requests.

The TPC-H benchmark, of course, does not provide any. Furthermore, since this is a

benchmark, rather than a real database, we cannot even use subjective expert knowledge.

In short, there is no way for us to use real, or even “realistic”, customization.

56

In light of this, we decided to be minimalist. Rather than create complex customiza-

tions, we decided to restrict our choice of Qcust to a simple conjunction of equality con-

ditions on one or more attributes in one of the source tables followed by a projection.

Furthermore, we decided to write these simple customization functions such that precisely

one rewriting rule is fired by each Qcust
i ◦ Qtrace.

We choose to test 4 representative rewriting rules rather than all of them. By observing

the rewriting rules #1 through #13, we can see 4 patterns of the rewritten rules. After

rewriting, the number of predicates in a rule body either remains the same (#4), or becomes

1 (#1 and #5 through #8), or becomes 2 (#2 and #9 through #12), or decreases by 1(#3 and

#13).

Recall that we have both single-block queries and double-block nested queries in our

query set. The scope for optimization is somewhat different in the two. For these reasons,

we decided to test one rewriting rule for single-block queries and another rule from the

same pattern family for nested queries. We choose to experiment with the last two pattern

families.

Given a single-block query Q and an answer tuple t, we construct Qcust
1 to make the

rewriting rule #2 applicable to Qcust
1 ◦ Qtrace, and construct Qcust

2 to make the rewriting

rule #3 applicable to Qcust
2 ◦ Qtrace.

Correspondingly, given a two-block query Q and an answer tuple t, we construct Qcust
1

to make the rewriting rule #9 applicable to Qcust
1 ◦ Qtrace, and construct Qcust

2 to make the

combination of rewriting rule #13 applicable to Qcust
2 ◦ Qtrace.

3.5.4 Experiments On Time Costs

In Figure 3.5, we show the time costs of tracing customized provenance by using the

baseline tracing queries and the optimized tracing queries, which are optimized by the

rewriting rule #2 for the single-block queries and by the rewriting rule #9 for the two-

57

block queries.

We experiment on 8 queries and thus have 8 pairs of time costs. The left 6 queries are

single-blocked, and the time costs are measured in seconds. The optimized tracing queries

always run faster. The right 2 queries are two-blocked. The optimized tracing queries

always run faster too. Moreover, since the time difference between the baseline approach

and the optimized approach is as large as not being at the same magnitude, we show

the time costs in natural logarithms. The time difference is large because the optimized

approach does not access the intermediate tables while the baseline approach does and has

to recompute them.

In Figure 3.6, we show the time costs of retrieving the customized provenance using

baseline tracing queries and optimized tracing queries, which are optimized by the rewrit-

ing rule #3 for single-block queries or by the rewriting rule #13 for the two-block queries.

Queries No.1 and No.6 have only one source table, therefore rule #3 is not applicable.

Thus, Figure 3.6 shows only queries No.3, No.5, No.10, No.19, No.7 and No.9. The trend

shown in Figure 3.6 is similar to that in Figure 3.5. The optimized queries always run

faster. The elimination of access to intermediate tables, such as in query No.7 and No.9,

has the most significant improvement in terms of computational time.

3.6 Related Work

Provenance in the database setting has been addressed through different points of view.

One approach is in [12] for (A)SPJ queries. It is later extended by [16] for queries with

provnestsubq. In both definitions, provenance includes the contributing source tuples from

different derivations of the result tuple. Another approach to provenance is in [18] for SPJ

queries. In [18], the provenance is represented as a polynomial in the semi-ring algebra,

and each term in the polynomial is a derivation. Moreover, in [5], the why provenance

58

includes all the alternative derivations; and the where provenance has a finer granularity,

which captures the mapping from an attribute in the source tuples to an attribute in the

result tuple, if applied to the relational database setting. Finally, in [10], data provenance

is viewed as data dependency. The result tuple in general depends on the source tuples

used to generate it.

Provenance can be computed in either a lazy way or an eager way [35]. In a lazy

approach, provenance is computed by tracing queries by request [12]. In an eager ap-

proach, provenance is generated with the result either through the query rewriting [15] or

through annotation propagation [18, 14] or through recording data operation in a curated

database [2] or through input from users. The lazy approach may implicitly require the

availability of the database at a historical time point [40]. The eager approach may require

an efficient storage mechanism [8].

An optimization technique used typically in database systems can be based on query

rewriting rules or based on evaluation cost estimation. For a rewriting rule based opti-

mization method, the goal is to convert a query plan corresponding to a query into an

equivalent query plan using the rewriting rules, such that the new plan can be executed

more efficiently. In our work, we come up with rewriting rules that are applicable for trac-

ing queries in the context of provenance retrieval; these rules are then used for rewriting

the tracing queries into more efficient queries.

Our work explores the opportunities of optimizing the tracing queries. Those oppor-

tunities are due to the provenance related predicates present in the tracing queries. The

provenance related predicates are often more restrictive than the relational predicates also

in the tracing queries, as has been argued in this chapter. Being more restrictive, those

provenance related predicates are able to eliminate the less restrictive predicates from the

tracing queries and make the tracing queries faster to evaluate.

59

3.7 Conclusion

Users are often not interested in the complete provenance of given answer tuples, but

rather in a specific question that may only need part of the complete provenance. Baseline

approaches first compute the complete provenance and then select the requested part. It is

obvious that unnecessary computation on the unrequested part is involved. In this chap-

ter, we suggested to customize the provenance using SQL language or other equivalent

languages and proposed an approach to computing the customized provenance efficiently

by applying rule-based optimization techniques to the tracing queries that retrieve the cus-

tomized provenance. These optimization techniques take advantage of the provenance

related predicates in the tracing queries and simplify the tracing queries by removing re-

dundant original predicates. We show through experiments that the optimizations can

reduce the time cost of provenance retrieval significantly.

60

Orders
oida pidb amtc prcd

1 Nexus 5 20
1 iPhone 3 10
2 Galaxy 4 15

Ratings
pid custe rt f

Nexus Cu1 3
iPhone Cu2 4
Galaxy Cu1 4
Galaxy Cu2 3.5

Categories
pid caidg

Nexus SmartPhone
iPhone SmartPhone
Galaxy SmartPhone

a oid is the order ID. b pid is the product ID.
c amt is the amount. d prc is the price.
e cust is the customer ID. f rt is the rating of the product.
g caid is the category ID.

(a) Database

In SQL:
SELECT C1.caid, sum(O1.prc ∗ O1.amt) AS rev
INTO Revenue
FROM Orders AS O1

INNER JOIN Categories AS C1

INNER JOIN ((SELECT R1.pid FROM Ratings AS R1 GROUP BY R1.pid HAVING AVG(R1.rt)>3)
UNION
(SELECT “iPhone” AS pid)) AS Products

GROUP BY C1.caid

In Datalog:
r1: AvgRatings(pid, avg(〈rt〉) as avgrt) D Ratings(pid, cust, rt)
r2: Products(pid) D AvgRatings(pid, avgrt), avgrt > 3
r′2: Products(“iPhone”) D
r3: Revenue(caid, sum(〈amt ∗ prc〉) as rev) D Products(pid),Orders(oid, pid, amt, prc),Categories(caid, pid)

(b) Query

Revenue
caid rev

SmartPhone 90

Products
pid

iPhone
Galaxy

(c) Query Result

Ratings�AvgRatings
6

“iPhone”
��* ∪

Products
@
@I

Categories
HH

HHY

Orders
�
��

Revenue

(d) Predicate Dependency Graph

Figure 3.1: Example Database, Query And Its Result

61

Retrieval Step 1:
r4: Ordersp Productsp Categoriesp(Orders oid,Orders pid,Orders amt,Orders prc,

Products pid,Categories caid,Categories pid),
D Products(pid),Orders(oid, pid, amt, prc),Categories(caid, pid), caid = SmartPhone

r5: Ordersp(oid, pid, amt, prc)
D Ordersp Productsp Categoriesp(Orders oid,Orders pid, rders amt,Orders prc,

Products pid,Categories caid,Categories pid),
Orders oid = oid,Orders pid = pid,Orders amt = amt,Orders prc = prc

r6: Productsp(pid)
D Ordersp Productsp Categoriesp(Orders oid,Orders pid,Orders amt,Orders prc,

Products pid,Categories caid,Categories pid),
Products pid = pid

r7: Categoriesp(caid, pid)
D Ordersp Productsp Categoriesp(Orders oid,Orders pid,Orders amt,Orders prc,

Products pid,Categories caid,Categories pid),
Categories caid = caid,Categories pid = pid

Retrieval Step 2:
r8: Ratingsp(pid, cust, rt)
D Ratings(pid, cust, rt), Productsp(pid)

(a) Retrieval Of Complete Provenance of {SmartPhone, 90}

Orders
�
���

Products

6

Categories

6

pid = iPhone
@
@@I

Ordersp Productsp Categoriesp

(Orders oid,Orders pid,Orders amt,Orders prc,
Products pid,Categories pid,Categories caid)

6

6

6
Ordersp

Productsp
���

Ratings
@@I

Ratingsp Categoriesp

(b) Illustration Of Rules In Figure 3.2a

Figure 3.2: Retrieval Of Complete Provenance Of {SmartPhone,90}

62

Option #1: baseline approach
r4 & r5 in Figure 3.2

r9: Ordersp
cust : −Ordersp, pid = iPhone

Option #2: optimized approach
r′5: Ordersp

cust(oid, pid, amt, prc) D Orders(oid, pid, amt, prc), pid = iPhone

(a) Retrieval Of Customized Provenance Related To “iPhone”

Option #1: baseline approach

r4 & r5 in Figure ??

r9: Ordersp
cust : �Ordersp, pid = iPhone

Option #2: optimized approach

r05: Ordersp
cust(oid, pid, amt, prc) D Orders(oid, pid, amt, prc), pid = iPhone

(a) Retrieval Of Customized Provenance Related To “iPhone”

Option #1

Orders
�
�✓

Products

6

Categories

6

caid = SmartPhone
@

@I

Ordersp Productsp Categoriesp

(Orders oid,Orders pid,Orders amt,Orders prc,
Products pid,Categories caid,Categories pid)

6
Ordersppid = iPhone

��✓ @@I
Ordersp

cust
-Rewriting

Orders
⇣⇣⇣⇣1

Products
��✓

Categories
6

caid = SmartPhone
@@I

pid = iPhone
PPPPPiOrdersp

cust

�
Rewriting

Option #2

Orders
��✓

caid = SmartPhone
�

��
@

@@

6 caid not present in Orders

6
pid = iPhone

@@I
Ordersp

cust

?

Rewriting

Ordersp
cust

Orders
⇣⇣⇣⇣⇣⇣1

Products
�
�✓

�
��

@
@@ Categories

6

�
��

@
@@ caid = SmartPhone

6

pid = iPhone
@

@@I

6
More restrictive

6

More restrictive

(b) Optimization Applied To Rules In Baseline Approach Shown In Figure 3

Figure 3: Retrieval Of Customized Provenance Of Orders Related To “iPhone” Inside The Provenance Of {SmartPhone,90}

4

(b) Optimization Applied To Rules In Baseline Approach Shown In Figure 3.3

Figure 3.3: Retrieval Of Customized Provenance Of Orders Related To “iPhone” Inside The Provenance Of
{SmartPhone,90}

Rule Requirements Rewritten r′ Operation Sequence
#4 Y ⊇ Xi Rk(Zk) D R1(Z1), ...,Rn(Zn),T (Y) #1 suba no-opb

#5 Y ⊇ Zk

Rk(Zk) D T (Y)

no-op sub #1
#6 Y ⊇ Zk ∧ Y ⊇ Xi #1 sub #1
#7 Y ⊇ Zk ∧ Y ⊇ PKS i #2 sub #1
#8 Y ⊇ Zk ∧ Y ⊇ PKS j ∧ (∀l ∈ {1, ...,m} Y ⊇ X j ∩ Xl) #3 sub #1

∧((∪l= j−1
l=1 Xl) ∪ (∪l=m

l= j+1Xl) ∪ Y ⊇ Xi
)

#9 Y ⊇ PKRk

Rk(Zk) D Rk(Zk),T (Y)

no-op sub #2
#10 Y ⊇ PKRk ∧ Y ⊇ Xi #1 sub #2
#11 Y ⊇ PKRk ∧ Y ⊇ PKS i #2 sub #2
#12 Y ⊇ PKRk ∧ Y ⊇ PKS j ∧ (∀k ∈ {1, ...,m} Y ⊇ X j ∩ Xk) #3 sub #2

∧((∪l= j−1
l=1 Xl) ∪ (∪l=m

l= j+1Xl) ∪ Y ⊇ Xi
)

#13 Y ⊇ Xi ∧ Y ⊇ PKR j ∧ (∀l ∈ {1, ...,m} Y ⊇ Z j ∩ Zl) Rk(Zk) D R1(Z1), ...,R j−1(Z j−1), #1 sub #3
∧((∪l= j−1

l=1 Zl) ∪ (∪l=m
l= j+1Zl) ∪ Y ⊇ Zi

)
R j+1(Z j+1), ...,Rk(Zk),T (Y)

a sub means predicate substitution in r′
b no-op means no operation is applied to either r or r′

Figure 3.4: Compositions Of Predicate Substitution And Predicate Removal

63

1 3 5 6 10 19 7 9
Query No

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Time Costs Of Retrieval Of Customized Provenance

3

2

1

0

1

2

3

4

5

6

Na
tu

ra
l L

og
rit

hm
 O

f E
xe

cu
tio

n
Ti

m
e

(s
ec

on
d)

baseline, single-block, using left y-axis
optimized, single-block, using left y-axis
baseline, multiple-block, using right y-axis
optimized, multiple-block, using right y-axis

Figure 3.5: Baseline Tracing Queries vs. Optimized Tracing Queries Using Rewriting Rule #2 or #9

3 5 10 19 7 9
Query No

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

Time Costs Of Retrieval Of Customized Provenance

3

2

1

0

1

2

3

4

5

6

Na
tu

ra
l L

og
rit

hm
 O

f E
xe

cu
tio

n
Ti

m
e

(s
ec

on
d)

baseline, single-block, using left y-axis
optimized, single-block, using left y-axis
baseline, multiple-block, using right y-axis
optimized, multiple-block, using right y-axis

Figure 3.6: Baseline Tracing Queries vs. Optimized Tracing Queries Using Rewriting Rule #3 or #13

CHAPTER IV

Validation Of Derived Data

4.1 Introduction

In a modern scientific project, there frequently is a huge body of raw data collected

from experiments. Usually, this data is stored in a database, and processed by SQL queries

to make it ready for further analysis. This derived data is vital for the final scientific

conclusions the scientists draw from the experiments. When the raw data changes, e.g.,

due to a re-collection or a curation of the raw data, in the form of database inserts, deletes

and updates, it is important to know whether previously derived data and results are still

valid or derivable.

Previously derived data can be validated by incrementally maintaining the derived data

set with regard to the updated database. However, scientists are often interested in only

some particular portion of the derived data set, possibly even a single tuple. For example,

this may be a specific result quoted in some publication or used in follow-on work. In such

cases, one desires a more efficient way to validate the part in question without refreshing

the whole derived data set, especially when the derived data set is large.

In this chapter, we propose an approach to validating the selected answer tuples derived

from a nested query in case of modifications to the source database, and provide an ex-

planation of the invalidation of any of these tuples that is invalidated. For the former part,

64

65

we base our approach on the incremental evaluation of materialized views enhanced with

pruning predicates derived from the selected tuples and tailored for both positive and neg-

ative tuples1 in delta tables; for the latter part, we treat the invalidated tuples as negative

tuples in the delta result table and retrieve their provenance as a set of both positive and

negative tuples within original and/or delta source tables.

Consider the following illustrative scenario, which we have designed using customers

and orders, as is so common in the database literature. We use this as our running example,

to make it accessible to the reader without requiring domain knowledge in any scientific

discipline.

Example 4.1. Assume we have two simple tables Orders and Customers as shown in

Figure 4.1. Every order in Orders consists of a unique order ID, a customer ID and the

cost of the order. Every customer in Customers consists of a unique customer ID and

a nation ID. There are four simple ASPJ queries QcMax, QoCnt, Qdist and QcMaxNation as

shown in Figure 4.2. QcMax computes the the maximum cost of a single order for each

customer; QoCnt computes the order count for each customer; QoCnt ◦ Qdist computes the

distribution of customers for each count of orders; QcMax ◦QcMaxNation computes the maxi-

mum cost of a single order for each nation. The derived tables are CostMax, OrderCount,

CustomerDistribution and CostMaxNation are also shown in Figure 4.1.

Suppose we have updates to Orders table as ∆Orders, shown in Figure 4.3. The CNT

attribute in ∆Orders is the number of derivations of each tuple. The precise meaning of

CNT will be specified in Section 4.3 as preliminaries, and it is sufficient for now to con-

sider only the sign of CNT . Tuples with positive CNT are to-be-inserted tuples and tuples

with negative CNT are to-be-removed tuples. ∆Orders leads to the update ∆CostMax

to the result table CostMax. For example, (o6, c3, 150) ∈ ∆Orders is inserted into the
1Tuples in delta tables can have positive counts or negative counts [20]. We call tuples with positive counts positive tuples, and

tuples with negative counts negative tuples. See Section 4.3.2 for a brief review of delta tables and incremental view maintenance.

66

Orders&

oIDa& cIDb& cost&

o1& c1& 500&

o2& c2& 100&

o3& c2& 150&

o4& c3& 100&

o5& c3& 50&

OrderCount&

cID& oCnt&

c1& 1&

c2& 2&

c3& 1&

QoCnt&

CustomerDistribu:on&

oCnt& cCnt&

1& 2&

2& 1&

Qdist&

CostMax&

cID& cMax&

c1& 500&

c2& 150&

c3& 100&

QcMax&

Customers&

cID& nIDc&

c1& CN&

c2& US&

c3& US&

CostMaxNa:on&

nID& cMax&

CN& 500&

US& 150&

QcMaxNa:on&

a: oID is a unique ID for each order.
b: cID is a unique ID for each customer.
c: nID is a unique ID for each nation.

Figure 4.1: Source Table And Derived Tables

source table Orders, and then (c3, 100) ∈ CostMax is replaced with (c3, 150). We say

that (o6, c3, 150) contradicts the previous answer (c3, 100), and (o6, c3, 150) serves as an

explanation of the invalidation of (c3, 150) from CostMax.

Note that upon the insertion of (o6, c3, 150), the derivation that produced (c3, 100) is still

in Orders. However, (c3, 100) is no longer an answer in CostMax. Thus, the existence

of contributory derivations is not sufficient to form an answer. Moreover, it is obvious

that there is more than one way to contradict an answer. For example, (o7, c3, 200) can

contradict (c3, 100) as well. On the other hand, the removal of contributory source tuples,

e.g., (o4, c3, 100) can invalidate (c3, 100) too.

In general, an answer’s validity can be changed by the insertion of contradictory source

tuples or by the removal of contributory source tuples.

The contributions of this chapter are as follow.

(i). Given a set of answer tuples to a simple or nested (A)SPJ query over a source

database, we validate it by incrementally evaluating the query with pruning attributes

tailored for both positive tuples (i.e., existing or inserted tuples) and negative tuples

(i.e., removed tuples). These pruning predicates can reduce computational cost by

avoiding evaluation over irrelevant source tuples. These pruning predicates can be

67

QoCnt:
SELECT cID, count(oID) as oCnt
FROM Orders WHERE cost >= 100
GROUP BY cID
roCnt:
OrderCount(cID, count(〈oID〉) AS oCnt) D Orders(oID, cID, cost)
? − OrderCount(cID, oCnt)
Qdist:
SELECT oCnt, count(cID) as cCnt
FROM OrderCount GROUP BY oCnt
rdist:
CustomerDistribution(oCnt, count(〈cID〉) AS cCnt) D OrderCount(cID, oCnt)
? −CustomerDistribution(oCnt, cCnt)
QcMax:
SELECT cID, max(cost) as cMax
FROM Orders
GROUP BY cID
rcMax:
CostMax(cID,max(〈cost〉) AS cMax) D Orders(oID, cID, cost)
? −CostMax(cID, cMax)
QcMaxNation:
SELECT nID, max(cMax) as cMaxNation
FROM CostMax, Customers
WHERE CostMax.cID = Customers.cID
GROUP BY nID
rcMaxNation :
CostMaxNation(nID,max(〈cMax〉) AS cMaxNation) D CostMax(cID, cMax),Customers(cID, nID)
? −CostMaxNation(nID, cMaxNation)

Figure 4.2: Example Queries

propagated through subqueries in the nested (A)SQPJ query.

(ii). In case of the answers being invalidated, we explain their invalidation by finding

contradictory derivations contained in the delta source tables. These contradictory

derivations can include both removed tuples and inserted tuples.

This chapter is organized as follows. In Section 4.2, we briefly review the related

work and its relationship to our work. In Section 4.3, we briefly review the concepts

of Datalog and incremental view maintenance, which we will need in the discussion of

our approach. In Section 4.4, we discuss how to construct pruning predicates and use

them with incremental evaluation to validate selected answer tuples. In Section 4.5, we

define the contributory and contradictory derivations of answer tuples, and explain the

invalidation of them with their contradictory derivations. In Section 4.6, we report the

68

Orders
oIDa cIDb cost CNT

o1 c1 500 1
o2 c2 100 1
o3 c2 150 1
o4 c3 100 1

∆Orders
oIDa cIDb cost CNT

o6 c3 150 1
o1 c1 500 -1

∆OrderCount
cID oCnt CNT
c1 1 -1
c3 1 -1
c3 2 1

∆CustomerDistribution
oCnt cCnt CNT

2 1 -1
1 2 -1
2 2 1

∆CostMax
cID cMax CNT
c1 500 -1
c3 100 -1
c3 150 1

Figure 4.3: (Delta) Tables Extended With CNT

time cost of incrementally evaluating (nested) queries with pruning predicates. Finally, we

conclude in Section 4.7.

4.2 Related Work

Several research problems are closely related to our validation problem, though each is

different in crucial ways. We briefly review view maintenance, schema mapping, prove-

nance, causality, explanation of (non-)answers, and aggregate selections.

View maintenance techniques update a view upon source data change. In [20], the

count of derivations of every view tuple is tracked. The count of derivations can be either

positive or negative. Negative counts track the number of derivations removed due to

changes to the base tables. Given changes to the base tables as delta base tables, [20]

evaluates a set of delta rules to determine the changes to this count and further decide the

presence of every view tuple. Our problem can be considered as a specialization of this

work where our interest is in only selected tuples in the result view.

Although view maintenance techniques can figure out if given answers are invalidated

by comparing the updated view and the original view, they require too much work in our

scenario, where the view is much larger than the few selected answers.

Our validation approach relies on incremental view maintenance and applies additional

pruning determined by the selected answers we are trying to validate. The goal of pruning

69

is to avoid evaluating over irrelevant tuples, i.e., the tuples that are not capable of changing

the selected answers. This intuition is similar to the one leading to aggregate selection

[33] or magic sets [1]. The criterion they use to determine what tuples are irrelevant only

applies to positive tuples. Our pruning predicates applies to both positive and negative

tuples.

Provenance (also known as lineage) and view maintenance are closely related areas.

Intuitively, provenance consists of the source tuples that contribute to the derivation of the

view tuple or an answer tuple [12, 15]. These contributing source tuples explains “why” [5]

the answer is in the derived set. A finer grained provenance, “where” [5] provenance, can

explain how a particular value in the answer is derived [14, 10, 29]. In particular, [14, 10]

applies to a wider application scenario than just relational databases.

Provenance can be defined as a polynomial expression [18]. The number of terms in

the polynomial is the number of derivations and the factors in each term correspond to the

joined source tuples in each derivation.

Provenance can be viewed as dependency [10]. Given part of an answer, its provenance

is “data slices” in the source database that the part of the answer may depend on, although

minimal slices are not computable.

Causality [30] is another way of looking at the relationship between answers and the

source tuples. The causes of an answer can be counterfactual or actual. The removal

of counterfactual causes can invalidate an answer, while actual causes can invalidate an

answer if a certain set of source tuples are removed as well. Thus, causes of an answer are

the tuples that contribute to the answer’s derivation.

Provenance can be computed in either a lazy way or an eager way [35]. In a lazy

approach, provenance is computed by tracing queries [12]. In an eager approach, prove-

nance is generated with the result either through query rewriting [15], through annotation

70

propagation [18, 14] or through recording data operation in a curated database [2]. The

lazy approach may implicitly require the availability of the database at a historical time

point [40]. The eager approach may require an efficient storage mechanism [8].

In [26], absorption provenance is used to efficiently determine the effect of the deletion-

induced updates on a distributed and recursive view. Absorption provenance is based on

the semi-ring provenance introduced in [18]. In [26], the update to the aggregate results

due to the input stream data is based on incremental view maintenance and aggregate

selections.

View maintenance and provenance are also closely related to schema mapping. [17]

sets up an application scenario where a set of data sources exchange data with each other

through schema mappings. Their model of data sharing incorporates the semi-ring prove-

nance to enforce trust policy when propagating the update from one source to the other.

Provenance can be used to explain the derivation of answers. As a counterpart, the

explanation of non-answers or missing answers [7, 29, 23, 21] is actively explored too.

The explanations of non-answers or missing answers can be query-based or instance-

based [21]. The former explanation consists of the operations in the derivation process

that eliminate the production of expected but missing answers [7]. The latter explana-

tion consists of the missing source tuples that can otherwise produce the missing answers

according to the derivation process [23, 29, 21].

Our explanation of invalidation of answers relies on provenance generalized to nega-

tive tuples. While the instance-based explanation of non-answers aims at describing the

modifications to the source that can add the non-answers into the result set, our valida-

tion problem aims at describing the modifications to source that have removed specified

answers, which include insertion of new source tuples and/or removal of existing source

tuples. This information is something we would like, in our problem setting.

71

4.3 Preliminaries

In this chapter, we represent queries in Datalog rules [6] and enhance each database tu-

ple with a count of its derivations [20]. We very briefly revisit related syntax and semantics

in this section. More details are in [6, 20].

4.3.1 Datalog

Datalog rules are of the form R(X) D S 1(Y1), ..., S n(Yn),C(∪i=n
i=1Yi). R(X) and S 1(Y1), ...,

S n(Yn) are relational predicates, which correspond to relational tables. C(∪i=n
i=1Yi) is a dis-

junction of conjunctive predicates on the variables ∪i=n
i=1Yi (sometimes written as ∪iYi for

short, when the range of i is clear from context). A conjunctive predicate is a conjunc-

tion of arithmetic predicates, which are either comparisons or built-in functions. In this

chapter, we consider only comparisons, e.g., cost ≥ 100 in roCnt.

A negated predicate is a predicate modified by a negation, e.g., ¬S 1(Y1). ¬S 1(Y1) evalu-

ates to true if and only if S 1(Y1) evaluates to false. A Datalog rule R(X) D S 1(Y1), ..., S n(Yn),

C(∪iYi) is safe if and only if ∀x ∈ X ∃k ∈ {1, ...,m} such that x ∈ Yk and S k is a relational

predicate and is not a negated predicate. We only consider safe rules in this chapter.

A substitution maps each variable in the rule to a constant value or a variable. A

valuation is a substitution that maps each variable in the rule to a constant value. For

simplicity of notation, we abuse the attribute names in a relational table as variables in

the corresponding relational predicate. Given a rule R(X) D S 1(Y1), ..., S m(Ym),C(∪iYi), a

valuation µ of this rule is a mapping µ : ∪iYi → D(∪iYi), where D(∪iYi) is the domain of

∪iYi. S i(Yi)[Yi/µ(Yi)] represents a ground term resulting from substituting each variable y

in Yi with µ(y), and it evaluates to true if µ(Yi) is a tuple in the relational table S i. Given µ,

the goal evaluates to true if and only if all the subgoals evaluate to true.

We categorize Datalog rules into aggregation-free rules (or simple rules) and aggregate

72

rules. An aggregation-free rule is of form R(X) D S 1(Y1), ..., S m(Ym),C(∪iYi). An aggre-

gation rule is of the form T (G,Σ(〈A〉) AS Â) D R(Y),C(Y), where G ⊂ Y and A ⊂ Y . G is

the GROUPBY attribute. A is the to-be-aggregated attribute. Â is the aggregate attribute

and Σ ∈ {sum, count, avg,max,min}. Sometimes, we also use Σ in a form as Σ(a1,, ak),

where ai (i = 1, ..., k) are values of A and are aggregated.

In a nested query of interest to us in this chapter, the inner query’s result table is used

as the source table to its outer query. Represented in SQL, the inner query appears in the

FROM clause of the outer query. Represented in Datalog, the goal of a rule is a subgoal of

another rule. We will not consider other types of nesting, such as in the WHERE clause,

following the lead of previous work, such as [12, 18].

Moreover, multiple references to the same table in a query are treated as independent

instances of the table.

4.3.2 Incremental Evaluation

Given a table, its delta table describes the changes made to that table. Delta tables can

contain both to-be-removed and to-be-inserted tuples [20]. Each tuple is attached with a

special count, denoted as CNT , which can be positive or negative. If positive, CNT rep-

resents the number of derivations of an existing or to-be-inserted tuple; if negative, CNT

represents the number of derivations to be removed for an existing tuple. In Figure 4.3, we

show an example of the delta source/result tables for the example in Figure 4.1.

We assume every tuple has the count CNT . We attach CNT to a tuple using ∗ as in [20],

e.g., (o1, c1, 500) ∗ −1 and t ∗ −1. Strictly speaking, CNT is not part of the table schema,

i.e., not an attribute. Therefore, the comparison of tuples does not compare their CNT

values. However, for easy notation, we access the CNT value of t by t.CNT as if it was an

attribute. We call tuples with positive CNT positive tuples, and tuples with negative CNT

negative tuples.

73

The incremental evaluation of a query, say r : R(X) D S 1(Y1), ..., S m(Ym),C(∪iYi),

involves a set of delta rule. That is, ∆ir : ∆iR(X) D S 1] ∆S 1, ...,∆S i,, S m. Then,

the updated result set is R] ∆1R] ...] ∆mR.] is the union of two sets of tuples with

CNT . s ∈ S 1(X)] S 2(X) with a count c, if (1) s ∈ S 1(X) ∧ s < S 2(X) with a count c or

(2) s ∈ S 2(X) ∧ s < S 1(X) with a count c or (3) s ∈ S 1(X) with a count c1 and s ∈ S 2(X)

with a count c2 and c = c1 + c2.

4.4 Validation Of Answers

Given a query, a set of selected answer and a set of delta source tables, the validation of

the answers and the explanation in case of invalidation can be done in the following steps:

Step 1 compute the delta result table by incrementally evaluating the (nested) query with

pruning predicates;

Step 2 check the delta result table against the original result table to see if the given an-

swers are invalidated, and explain the invalidation with the positive and/or negative

tuples in the delta source tables (and possibly tuples in the original source tuples).

We discuss Step 1 in this section and discuss Step 2 in the next section. In Step 1,

the key point is the construction of pruning predicates. The goal is to prune irrelevant

source tuples in the (delta) source tables. The source tuples that can not possibly affect the

selected answer(s) are considered irrelevant. Note that the view update results computed

from the incremental evaluation with and without pruning predicates are possibly different,

since the former does not care for updating answers other than the selected ones.

We first define pruning predicates for aggregation-free Datalog rules in Definition 4.2

and for aggregate rules in Definition 4.3.

Definition 4.2. [Pruning Predicate For A Single Answer Tuple According To An

Aggregation-Free Rule]

74

Given

• a query r : R(Y) D S 1(X1), ..., S m(Xm),C(∪iXi)

• an answer t ∈ R(Y)

• a set of delta tables ∆S 1, ...,∆S m

For k = 1, ...,m, let

• ∆kR(Y) D S 1(X1), ...,∆S k(Xk), ..., S m(Xm),C(∪iXi)

• ∆kRp(Y) D S 1(X1)] ∆S 1(X1), ...,∆S k(Xk), ..., S m(Xm),C(∪iXi),Cp(∪iXi)

Then Cp(∪iXi) is a pruning predicate for t according to r if and only if

• t ∈ ∆kR implies t ∈ ∆kRp, and vice versa

Definition 4.3. [Pruning Predicate For A Single Answer Tuple According To An Ag-

gregate Rule]

Given

• a query rα : T (G,Σ(〈A〉) AS Â) D R(Y), where G ⊂ Y and A ⊂ Y

• an answer t ∈ T (G, Â)

• a delta table ∆R

Let

• ∆Rp(Y) D ∆R(Y),Cp(Y)

• T p
] D R] ∆Rp and ∆T p = T p

] − T

• T] D R] ∆R and ∆T = T] − T

Then Cp(Y) is a pruning predicate for t according to rα if and only if

• t ∈ ∆T implies t ∈ ∆T p, and vice versa

75

Definition 4.2 and Definition 4.3 define a pruning predicate that restricts the view main-

tenance to a given answer t. The vital requirement of Cp is that it should not affect the view

update with regard to t. The pruning predicate is not unique for a given answer. Obviously,

the more restrictive a pruning predicate is, the better it is. Cp being true is a trivial pruning

predicate that does not prune any source tuples.

For example, given an answer (c2, 150) ∈ CostMax, a possible choice of Cp is (cost >

150∧CNT > 0)∨(cost = 150∧CNT < 0). Cp states two cases where t could be affected by

∆Orders. One case is the insertion of orders of the customer c2 with a new maximum cost;

the other case is the removal of orders of c2 that have the current maximum cost. Another

pruning predicate Cp
1 could be (cost > 100) ∧ CNT > 0) ∨ (cost = 150) ∧ CNT < 0).

Since Cp is more restrictive than (or tighter than) Cp
1 , and thus Cp is better.

Although the source tuples that do not satisfy these pruning predicates can not possibly

change the given answer, the source tuples that do satisfy the pruning predicates do not

necessarily change the given answer. Take (c2, 150) ∈ CostMax as an example again. A

negative tuple (o2, c2, 150) ∗ −1 ∈ ∆Orders, which satisfies cost = 150 ∧ CNT < 0, has

the potential to change (c2, 150), but won’t if there is another order of c2 whose cost is also

150.

Definition 4.4. [Pruning Predicate For A Set Of Answer Tuples] Given a query r that

produces R, and a set of answer t1, ..., tn ∈ R, let Cp
k be a pruning predicate for tk according

to r (k = 1, ..., n), then Cp
1 ∨ ... ∨Cp

n is a pruning predicate for {t1, ..., tn}.

Since the pruning predicates for a set of answers can be constructed from pruning

predicates for each answer in the set, we will focus on constructing pruning predicates

for single answers.

The construction of pruning predicates for a given answer is fairly intuitive for single

Datalog rules (i.e., single-block queries) but more complicated for a set of Datalog rules

76

(i.e., nested queries). We will first discuss enhancing incremental evaluation of a single

Datalog rule with pruning predicates for a given answer, and then doing the same for a set

of Datalog rules.

4.4.1 Single Aggregation-Free Datalog Rules

Algorithm 3: Incremental Evaluation Of An SPJ Query With Regard To A Given Answer Tuple

Input: rcon j : T (Y) D S 1(X1), ..., S m(Xm),C(∪i=m
i=1 Xi)

Input: ∆S 1, ...,∆S m

Input: t ∈ T (Y)
Output: ∆T (Y) relevant to t

1 begin
2 ∆T (Y)← ∅

/* pruning predicate Cp */

3 Cp(Y)← (Y = r.Y)
/* incremental evaluation with pruning predicate */

4 ∆T ← ∅
5 for k ← 1 to m do
6 Evaluate ∆krcon j : ∆kT (Y) D S 1(X1)] ∆S 1(X1), ..., S k−1(Xk−1)]

∆S k−1(Xk−1),∆S k(Xk), S k+1(Xk+1,, S m(Xm),C(∪i=m
i=1 Xi),Cp(Y) as indicated in [20]

∆T (Y)← ∆T (Y)] ∆kT (Y)
7 end
8 return ∆T (Y)
9 end

Cp in Algorithm 3 is a pruning predicate. In case of aggregation-free rules, the pruning

logic is the same for positive tuples and negative tuples. In fact, Y = t.Y is a classic way

of filtering contributing source tuples with regard to a given answer tuple as used in the

provenance tracing queries [12].

4.4.2 Single Aggregate Datalog Rules

In Algorithm 4, we show the construction of pruning predicates for incremental evalua-

tion of a single aggregation. The pruning predicate Cp equals to Cp
groupby ∧Cp

α, and the first

term is the pruning on GROUPBY attribute G and the second term is on the aggregated

attribute A. Cp
groupby being G = t.G excludes the source tuples in groups other than the one

producing t. For max and min, Cp
α specifies two cases of affecting t: the insertion of new

maximums (minimums) or the removal of current maximums (minimums). For sum, Cp
α

77

Algorithm 4: Incremental Evaluation Of An Aggregation With Regard To A Given Answer Tuple

Input: rα : T (G,Σ(〈A〉) AS Â) D R(G, A)
Input: ∆R
Input: t ∈ T (G, Â)
Output: ∆T (G, Â) with regard to r

1 begin
/* pruning predicate Cp

groupby ∧Cp
α */

2 Cp
groupby(G)← (G = t.G)

3 if Σ is max then
4 Cp

α(A)← (A > t.Â ∧CNT > 0 ∨ A = t.Â ∧CNT < 0)
5 end
6 if Σ is min then
7 Cp

α(A)← (A < t.Â ∧CNT > 0 ∨ A = t.Â ∧CNT < 0)
8 end
9 if Σ is sum then

10 Cp
α(A)← (A , 0)

11 end
12 if Σ is count then
13 Cp

α(A)← true
14 end
15 Cp(G, A) = Cp

groupby(G) ∧Cp
α(A)

/* incremental evaluation of aggregation */

16 ∆Rp(Y)← ∆R(Y),Cp(G, A)
17 T] ← T
18 for every r ∈ ∆Rp do
19 if exists t ∈ T] and t.G = r.G then
20 T] ← T]] δ(t, r)
21 else
22 T] ← T]] {(r.G,Σ(r.A)) ∗ r.CNT }
23 end
24 end

/* in case that the previous maximum or minimum is removed */

25 if Σ is max or min and exists t ∈ T] and t.CNT < 0 then
26 Remove t from T]
27 Add to T] new maximum or minimum from R] ∆R with GROUPBY value being t.G
28 end
29 ∆T ← ∅
30 for every t ∈ T] do
31 if exists t′ ∈ T and t.G = t′.G and t.Â , t′.Â then
32 ∆T ← ∆T] {(t′.G, t′.A) ∗ −1, (t.G, t.A) ∗ 1}
33 else
34 ∆T ← ∆T] {t};
35 end
36 end
37 return ∆T (G, Â)
38 end

78

prunes the source tuples with zero values on the aggregated attribute A. For count, we do

not have a non-trivial pruning predicate. In other words, Cp
α is trivially true if the aggrega-

tion is count. This is because any source tuple that is in the group G = t.G can change the

count of of this group and thus affect t.

In Algorithm 4, note that Cp
α is different from the aggregate selection used in [33], since

it deals with both positive and negative tuples and has different pruning logic for them. The

predicate for the positive tuples in Cp
α is the same as the aggregate selection.

The aggregate selection introduced in [33] deals with recursive Datalog programs. The

evaluation of a recursive program keeps adding facts into the database but never removes

tuples from the already computed set of facts. Therefore, aggregate selection does not

need to deal with the effect that the removal of facts might have on the given answer.

In Algorithm 4, δ(t, r) is

• if Σ is sum, {(t.G, t.Â + r.A × r.CNT) ∗ 1, t ∗ −1}

• if Σ is count, {(t.G, t.Â + r.CNT) ∗ 1, t ∗ −1}

• if Σ is max or min

– if r.CNT > 0, {(t.G,max(t.Â, r.A)) ∗ 1, t ∗ −1} or {(t.G,min(t.Â, r.A)) ∗ 1, t ∗ −1}

– if r.CNT < 0

∗ if r.A < t.Â, {}

∗ if r.A = t.Â, {t ∗ (−t.CNT − 1)}

We summarize in Figure 4.4 the pruning predicates in Algorithm 3 and Algorithm 4.

In particular, we formalize Cp into C+ ∨ C−. C+ in Figure 4.4 applies to positive tuples

and C− applies to negative tuples. Moreover, if we have Cp for two different attributes

respectively, then the Cp for these two attributes together is the conjunction of the separate

Cp, e.g., Cp(G, A) is Cp(G) ∧Cp(A).

79

C+ (C−) for the aggregated attribute depends on the aggregation type. Meanwhile, C+

(C−) for non-aggregated attributes, such as GROUPBY attributes or output attributes of

aggregation-free rules, does not depend on the aggregation type. In Figure 4.4, Σ being

null means C+ (C−) for non-aggregated attributes.

Σ C+(A) or C+(Y) or C+(G) C−(A) or C−(Y) or C−(G)
max A > t.Â A = t.Â
min A < t.Â A = t.Â
sum A , 0 A , 0

count true true
null G = t.G or Y = t.Y G = t.G or Y = t.Y

Figure 4.4: Pruning Predicates For A Single Aggregation

4.4.3 Set Of Datalog Rules

Consider a non-recursive negation-free Datalog program (a set of Datalog rules) where

the goal of each rule appears as a subgoal in another rules except for one rule. This one rule

produces our final result. This type of programs correspond to the type of nested queries

specified in Section 4.3. In general, this type of Datalog programs can be translated into

query trees, and we illustrate two such Datalog programs in Figure 4.5a.

The rule in a program can be either aggregation-free or aggregate. Incremental evalua-

tion of a Datalog program starts from the leaves in the query tree, and when every subgoal

in a rule has been updated, the goal of the rule can be updated.

In a Datalog program, every rule can have its own pruning predicate. In Figure 4.5b, we

show an answer (US , 150) produced from {rcMax, rcMaxNation}, and two pruning predicates

that can be applied to rcMax and rcMaxNation respectively. There are two things that need to

be noted. First, the two pruning predicates are in fact related; and second, the earlier the

pruning takes place, the better it is.

In Figure 4.5b, given the answer (US , 150) produced by rcMaxNation, we can construct

the pruning predicate applicable to the delta rules of rcMaxNation as shown in Figure 4.4.

80

(a) Datalog Program Examples

(b) Pruning Predicates Inference Example

Furthermore, since the subgoal in rcMaxNation is produced from rcMax, we intuitively want to

try some early pruning during the incremental evaluation of rcMax, which should achieve

similar results as the pruning predicate for rcMaxNation does and thus is inferred from the

one for rcMaxNation.

Suppose ∆Orders is as shown in Figure 4.3. When computing ∆CostMax from it, the

pruning predicate for rcMax in Figure 4.5b causes ∆CostMax to be empty. Thus, without

incrementally evaluating rcMaxNation, we know that (US , 150) will not be invalidated. This

shows the advantage of earlier pruning in the incremental evaluation of a Datalog program.

In general, given a Datalog program, suppose r is the rule at the root of the correspond-

ing query tree, we start from r and construct the pruning predicates applicable to its delta

rules as shown in Figure 4.4. Suppose r has a subgoal that is the goal of r′, we infer the

pruning predicate applied to r′ from the pruning predicate applied to r and then recursively

infer pruning predicates for the subgoals in r′. We repeat this process for all other subgoals

in r that are goals of other rules.

In order to construct pruning predicates by inference, we need to know how attributes

81

propagate through the query. For example,

• roCnt:

(i). Orders.cID→ OrderCount.cID

(ii). Orders.oID
count−−−→ OrderCount.oCnt

• roCnt, rdist:

(i). Orders.cID→ OrderCount.cID

count−−−→ CustomerDistribution.cCnt

(ii). Orders.oID
count−−−→ OrderCount.oCnt

→ CustomerDistribution.oCnt

• rcMax:

(i). Orders.cID→ CostMax.cID

(ii). Orders.cost
max−−−→ CostMax.cMax

• rcMax, rcMaxNation:

(i). Orders.cID→ CostMax.cID→ ∅

(ii). Orders.cost
max−−−→ CostMax.cMax

max−−−→ CostMaxNation.cMaxNation

(iii). Customer.cID→ ∅

(iv). Customer.nID→ CostMaxNation.nID

The mapping path of an attribute starts with an attribute in the source table and ends at

an attribute in the final result. This path illustrates the dependency of the attribute in the

final result on the attribute in the source table. It gives us useful clues about how to prune

the source tuples with regard to this attribute using attribute values in the result tuples.

Algorithm 5 shows how to construct the mapping path of every attribute in the final result.

82

Algorithm 5: Construction of attribute mapping paths
Input: A Datalog rule set: r1, ..., rn

Output: G = (V, E), where V is a set of attributes, E is a set of edges representing mapping from an
attribute in goal to an attribute in the subgoal of the same rule

1 begin
2 Initialize V and E be empty
3 for i ∈ {1, ..., n} do
4 for every attribute A appearing in the goal R of ri do
5 Add A to V
6 for every subgoal S in ri do
7 if A appears in S then
8 Add (R.A

Σ−→ S .A) to E, where Σ is null if ri is an aggregation-free rule, or the
aggregation of ri if ri is an aggregate rule

9 end
10 end
11 end
12 end
13 end

Suppose we have a mapping path of an attribute T1.A1
r1−→ T2.A2

r2−→ ...
rn−1−−→ Tn.An. ri

has Ti as a subgoal and Ti+1 as the goal. It can be an aggregation-free rule or an aggregate

rule. We infer the pruning predicates backward from the end of the path. First, given an

answer t ∈ Tn and rn−1, we construct Cp(An−1) as in the single Datalog rule case. Then,

given Cp(Ak) and rk−1, we can infer Cp(Ak−1). In particular, the inference process is as

follows:

(i). Cp(Ak) is decomposed into C+(Ak) and C−(Ak);

(ii). from C+(Ak), we infer C+
1 (Ak−1) and C−1 (Ak−1);

(iii). from C−(Ak), we infer C+
2 (Ak−1) and C−2 (Ak−1);

(iv). C+(Ak−1) is C+
1 (Ak−1) ∨C+

2 (Ak−1);

(v). C−(Ak−1) is C−1 (Ak−1) ∨C−2 (Ak−1);

(vi). Cp(Ak−1) is C+(Ak−1) ∨C−(Ak−1).

We show the inference for the aggregation max in Figure 4.5a and Figure 4.5b, for the

aggregation min in Figure 4.6a and Figure 4.6b.

83

C+(Ak+1) C+
1 (Ak) C−1 (Ak)

Ak+1 = c Ak = c Ak > c
Ak+1 > c Ak > c Ak > c
Ak+1 < c Ak < c truea

Ak+1 , c Ak , c true
a: true means no pruning

(a) Inference From C+(Ak+1)

C−(Ak+1) C+
2 (Ak) C−2 (Ak)

Ak+1 = c Ak > c Ak = c
Ak+1 > c Ak > c Ak > c
Ak+1 < c Ak < c Ak < c
Ak+1 , c true true

(b) Inference From C−(Ak+1)

C+(Ak+1) C+
1 (Ak) C−1 (Ak)

1© 2© 3© 1© 2© 3©
Ak+1 = c Ak = c falseb Ak = c false Ak > c false
Ak+1 > c Ak > c Ak > c Ak > c false Ak > c false
Ak+1 < c false false Ak < c Ak = c Ak > c Ak < c
Ak+1 , c Ak > c Ak > c Ak , c Ak = c Ak > c Ak < c
b: false means all input tuples are pruned

(c) Explanation Of Inference From C+(Ak+1)

C−(Ak+1) C+
2 (Ak) C−2 (Ak)

1© 2© 3© 1© 2© 3©
Ak+1 = c Ak > c false false Ak = c false false
Ak+1 > c false Ak > c false false Ak > c false
Ak+1 < c false false Ak < c false false Ak < c
Ak+1 , c false Ak > c true Ak = c Ak > c Ak < c

(d) Explanation Of Inference From C−(Ak+1)
1©: c is equal to current maximum of Ak
2©: c is less than current maximum of Ak
3©: c is greater than current maximum of Ak

Figure 4.5: Inference Of Pruning Predicates (max)

Every row in Figure 4.5a shows three predicates C+(Ak+1), C+
1 (Ak) and C−1 (Ak). Given

C+(Ak+1), we try to find C+
1 (Ak) ∨ C−1 (Ak) such that the tuples in ∆Tk that satisfy C+(Ak+1)

will still in ∆Tk after C+(Ak) ∨C−(Ak) are applied to the delta rules of rk. We now explain

the first row in Figure 4.5a as an example. Since Ak+1 is the current maximum of Ak, the

predicate Ak+1 = c means that the new maximum is c. Therefore, we have three cases to

consider: c is equal to or greater than or less than the current maximum of Ak.

(i). when c is equal to current maximum of Ak

• the new tuples inserted into Tk that satisfy Ak = c can possibly generate a new

maximum being c (1© under C+
1 (Ak) column in Figure 4.5c)

• the removal of existing tuples from Tk does not have the potential to produce

84

a new maximum equal to c, and thus C−1 (Ak) being f alse (1© under C−1 (Ak) in

Figure 4.5c)

(ii). when c is less than current maximum of Ak

• the new tuples inserted into Tk can not change the current maximum to a smaller

value, and thus C+
1 (Ak) being f alse (2© under C+

1 k in Figure 4.5c)

• the removal of tuples from Tk with Ak > c can potentially produce a new maxi-

mum equal to c (2© under C−1 (Ak) in Figure 4.5c)

(iii). when c is greater than the current maximum of Ak

• the inserted new tuples in Tk should satisfy Ak = c (3© under C+
1 (Ak) in Fig-

ure 4.5c)

• the removal of tuples from Tk can not produce a greater maximum value, and

thus C−1 (Ak) being f alse (3© under C−1 (Ak) in Figure 4.5c)

Then, C+
1 (Ak) (C−1 (Ak)) is the disjunction of the predicates from the three cases. There-

fore, C+
1 (Ak) is (Ak = c) ∨ (Ak = c) ∨ (Ak = c) and thus is normalized to Ak = c; C−1 (Ak) is

f alse ∨ Ak > c ∨ f alse and thus is normalized to Ak > c.

For all the other rows in Figure 4.5a and Figure 4.5b, the detailed inference is similar,

as shown in Figure 4.5c and Figure 4.5d respectively.

In Figure 4.5a, Figure 4.5b, Figure 4.6a and Figure 4.6b, the aggregations are either

max or min. The inference of pruning predicates when the aggregation is sum or count is

quite different. Whether an input source tuple to sum or count can potentially contribute

to the aggregate value for a given group of source tuples is constrained by that source

tuple’s value on GROUPBY attribute. As a contrast, it is not constrained by that source

tuple’s value on the to-be-aggregated attribute. Therefore, there is no pruning on the to-

be-aggregated attribute of source tuples as an input to sum or count. That is to say, given

85

Cp(Ak+1) and the aggregation in rk being count or sum, Cp(Ak) is trivially true, i.e., no

pruning.

Moreover, given Cp(Ak+1) and rk being aggregation-free, Cp(Ak) is the same as Cp(Ak+1)

with the attribute Ak+1 replaced with Ak.

C+(Ak+1) C+
1 (Ak) C−1 (Ak)

Ak+1 = c Ak = c Ak < c
Ak+1 > c Ak > c true
Ak+1 < c Ak < c Ak < c
Ak+1 , c Ak , c true

(a) Inference From C+(Ak+1)

C−(Ak+1) C+
2 (Ak) C−2 (Ak)

Ak+1 = c Ak < c Ak = c
Ak+1 > c true Ak > c
Ak+1 < c Ak < c Ak < c
Ak+1 , c Ak , c true

(b) Inference From C−(Ak+1)

C+(Ak+1) C+
1 (Ak) C−1 (Ak)

1© 2© 3© 1© 2© 3©
Ak+1 = c false Ak = c false false false Ak < c
Ak+1 > c false Ak > c false Ak = c Ak > c Ak < c
Ak+1 < c Ak < c Ak < c Ak < c false false Ak < c
Ak+1 , c Ak < c Ak > c Ak < c Ak = c Ak > c Ak < c

(c) Explanation Of Inference From C+(Ak+1)

C−(Ak+1) C+
2 (Ak) C−2 (Ak)

1© 2© 3© 1© 2© 3©
Ak+1 = c Ak < c false false Ak = c false false
Ak+1 > c false true false false Ak > c false
Ak+1 < c false false Ak < c false false Ak < c
Ak+1 , c false Ak , c Ak < c Ak = c Ak > c Ak < c

(d) Explanation Of Inference From C−(Ak+1)
1©: c is equal to current maximum of Ak
2©: c is less than current maximum of Ak
3©: c is greater than current maximum of Ak

Figure 4.6: Inference Of Pruning Predicates (min)

We have shown all the necessary components in the procedure of incrementally evalu-

ating a Datalog program with pruning predicates, and now summarize below the procedure

given a set of selected answers.

Construction of attribute mapping paths For every attribute in the final result, we build

a mapping path for it as shown in Algorithm 5;

Construction of pruning predicates For the selected set of answers, we build a pruning

predicate from this set of answers according to the rule at the root of the correspond-

86

ing query tree as shown in Figure 4.4;

Inference of pruning predicates For all rules other than the root, we process in a breadth-

first traversal order, and infer its pruning predicate from the pruning predicate of its

parent rule;

Evaluation Of Delta Rules For every delta rule, if a subgoal T (X) is in form of ∆T (X),

then for every attribute A in X, we add the predicate Cp(A) to the delta rule’s body; if

a subgoal T (X) is in the form of T (X) or T (X)]∆T (X), for every attribute A in T , we

add the predicate C+(A) to the delta rule’s body. Then, the delta rules with pruning

predicates can be evaluated as indicated in [20].

4.5 Explanation of Invalidated Answers

Given a Datalog program consisting of rules r1, ..., rn, and an answer t in the result set

T , after the incremental evaluation with proper pruning predicates, we have a delta table

∆T . If t′ ∈ ∆T with t′.CNT + t.CNT ≤ 0 and t = t′, we know that t is invalidated;

otherwise, t is still valid and t.CNT is also updated to t′.CNT + t.CNT . If the answer t ∈ T

is invalidated, we need to find the explanation of its being invalidated.

The explanation of the invalidation can consist of (1) the positive tuples (to-be-inserted

tuples) in the delta source tables, (2) negative tuples (to-be-removed tuples) in the delta

source tables, (3) positive tuples (existing tuples) in the original source tables. Any such

tuples both contradict the previous answer t as a positive tuple in T and contribute to the

invalidated answer t′ as a negative tuple in ∆T . In other words, the contributory deriva-

tions of the invalidated answer t′ are the contradictory derivations of the answer t. More-

over, from the viewpoint of the answer t, it has contributory derivations and contradictory

derivations, while the former can derive the answer (i.e., traditional provenance) and the

latter can invalidate the answer.

87

Recall the example in Figure 4.3, the delta source table ∆Orders leads to the delta

tables ∆OrderCount, ∆CustomerDistribution, ∆CostMax and ∆CostMaxNation, which

can be computed by the incremental view maintenance technique, e.g., [20].

The tuples in ∆OrderCount, ∆CustomerDistribution and ∆CostMax with negative

CNT are the answers that are invalidated by ∆Orders. For example, (c1, 1, 1) ∈ OrderCount

is invalidated because of (o1, c1, 500,−1) ∈ ∆Orders and correspondingly (c1, 1,−1) ∈

∆OrderCount is produced because of (o1, c1, 500,−1) ∈ ∆Orders. In other words,

(o1, c1, 500,−1) ∈ ∆Orders contributes to (c1, 1,−1) in ∆OrderCount, and contradicts

(c1, 1, 1) in OrderCount.

As another example, (c3, 100, 1) ∈ CostMax is invalidated by (o6, c3, 150, 1) ∈ ∆Orders

and its replacement (c3, 150, 1) ∈ ∆CostMax (its invalidated version (c3, 100,−1) ∈ ∆CostMax)

is produced by (o6, c3, 150, 1) ∈ ∆Orders.

This explanation of invalidated answers can be interpreted as derivations of the invali-

dated answers if we define derivations in a way such that

(i). both positive tuples, i.e., valid answers in the (delta) result tables tuples, and negative

tuples, i.e., invalidated answers in the delta result tables, can have derivations;

(ii). the derivations can consist of positive tuples, i.e., inserted tuples in the delta source

tables or existing tuples in the source tables, and negative tuples, i.e., removed tuples

in the delta source tables.

4.5.1 Definitions Of Contributory And Contradictory Derivations

Definition 4.5. [Contributory Derivation (SPJ)]

Given

• rQ : R(Y) D S 1(X1), ..., S m(Xm),C(∪i=m
i=1 Xi) where

– Xi and Y are lists of variables or constants

88

– Y ⊆ ∪i=m
i=1 Xi

– C is a disjunction of conjunctive predicate

For t ∈ R, suppose there is a valuation µ : ∪i=m
i=1 Xi → D(∪i=m

i=1 Xi) such that

• µ(Y) = t.Y

• S i(Xi)[Xi/µ(Xi)] evaluates to true, where i = 1, ...,m2

• C(∪i=m
i=1 Xi)[∪i=m

i=1 Xi/µ(∪iXi)] evaluates to true

Then, µ(X1), ..., µ(Xm) constitute a contributory derivation of t according to or with regard

to rQ within S 1, ..., S m.

In Definition 4.5, the derivation µ maps the variable in ∪i=m
i=1 Xi to a constant value.

Thus, µ(Xi) is a tuple in S i, and µ(X1), ..., µ(Xm) can derive t. We assume set semantics in

the evaluation of queries, therefore, given an answer, the valuation µ is not unique.

The contributory derivations of a set of answers t1, ..., tn are the union of the contrib-

utory derivations of each answer in the set. Suppose there is a set of answers t1, ..., tn,

and µi is a contributory derivation of ti according to rQ within S 1, ..., S m, then a contribu-

tory derivation of t1, ..., tn is µ1(X1), ..., µ1(Xm), , ..., µn(X1), ..., µn(Xm) according to rQ within

S 1, ..., S m. If there are duplicate tuples in that set of tuples, the duplicates can be simply

removed.

Definition 4.6. [Contributory Derivation (Aggregation)]

Given

• rQ : T (G,Σ(〈A〉) AS Â) D R(Y), where G is the GROUPBY attribute, Â is the

resulting aggregate attribute and Σ ∈ {sum, count, avg,max,min}

For an answer t ∈ T , suppose that there exists a set of valuations µ1, ..., µn : X → D(Y)

(n ≥ 1) such that
2[Xi/µ(Xi)] means the substitution of variables in X with the corresponding values in p.Xi

89

(i). µi(G) = t.G where i = 1, ..., n

(ii). R(Y)[Y/µi(Y)] evaluates to true, where i = 1, ..., n

(iii). t.Â = Σ(µi(A), ..., µn(tn))

(iv). @µn+1 such that µ1, ..., µn+1 satisfy the above conditions.

Then, µ1(Y), ..., µn(Y) constitute a contributory derivation of t according to or with regard

to rQ within R.

In Definition 4.6, every valuation µi (i = 1, ..., n) will produce a tuple in R and the

values of A in these produced tuples are aggregated within each group by the values of G.

The contributory derivation of an answer produced by an aggregation is unique. Take

count as an example, all the valuations that map G to t.G constitute the contributory deriva-

tion; for max, all substitutions that map G to t.G and map A to t.A constitute the contribu-

tory derivation.

The contributory derivation of a set of answers produced by an aggregation is the union

of the contributory derivations of each answer in the set.

Since contributory derivations are transitive, given a general ASPJ query, we can always

decompose it into SPJ blocks and aggregations.

Definition 4.5 and Definition 4.6 are classical definitions as introduced in [12]. They

apply to tuples produced through normal queries. During the incremental evaluation of a

query, the source delta tables and the result delta table can contain negative tuples, and the

following definitions precisely specify the contributory derivations of the negative tuples

in the delta result table, which is also the contradictory derivations of an existing answer

of the original query.

Definition 4.7. [Contradictory Derivation (SPJ)]

Given

90

• rQ : R(Y) D S 1(X1), ..., S m(Xm),C(∪i=m
i=1 Xi)

• ∆S 1, ...,∆S m

Let

• ∆krQ : ∆kR(Y) D S 1(X1)] ∆S 1(X1), ...,∆kS k(Xk),, S m(Xm),C(∪i=m
i=1 Xi), where k =

1, ...,m

Then, for an answer t ∈ R, if there exists tk ∈ ∆kR with tk.CNT < 0, and tk.Y =

t.Y (k = 1, ...,m), then a contributory derivation of tk according to ∆krQ within S 1]

∆S 1, ...,∆kS k, ..., S m is a contradictory derivation of t according to rQ within S 1] ∆S 1, ...,

∆kS k, ..., S m.

In Definition 4.7, ∆krQ (k = 1, ..., n) are the delta rules in the incremental evaluation of

rQ. These delta rules compute how many derivations of an existing answer are removed

due to the delta source tables, and how many derivations of an existing answer are added

due to the delta source tables, and also what new answers are produced due to the delta

source tables. A negative tuple t′ ∈ ∆kR means there is a corresponding existing answer

t and some or all of its derivations are removed due to the delta source tables. For the

existing answer t, if t.CNT + Σk=m
k=1 tk.CNT ≤ 0, then t is invalidated; otherwise, t is still

valid but have less derivations, i.e., t.CNT + Σk=m
k=1 tk.CNT derivations instead of t.CNT

derivations after the insertion of delta source tables. Since the negative tuple tk (k =

1, ...,m) is produced through delta rules, we can trace its contributory derivations according

to the delta rules and its contributory derivations contradict the existing answer t.

Definition 4.8. [Contradictory Derivation (Aggregation)]

Given

• rQ : T (G,Σ(A) AS Â) D R(Y)

• ∆R(Y)

91

Let

• r′Q : T ′(G,Σ(A) AS Â) D R(Y)] ∆R(Y)

• ∆rQ : ∆T (G,Σ(A) AS Â) D ∆R(Y)

For an answer t ∈ T and t < T ′, there must exist t′ ∈ ∆T with t′.G = t.G and t′.CNT < 0.

Thus, the contributory derivation of t′ according to ∆rQ within ∆R(Y) is the contradictory

derivation of t.

In Definition 4.8, the tuple t is invalidated due to the positive or negative tuples in

∆R that have the same value of GROUPBY attribute as t does. Therefore, t′ in Defini-

tion 4.8 must exist and the contributory derivation of t′ consists of all the tuples (positive

or negative) that have the same value of GROUPBY attribute as t does and thus is the

contradictory derivation of t.

Since the contradictory derivation of an answer tuple in the result table is converted

to a contributory derivation of a negative tuple in the delta result table, the properties

of contributory derivations are transferred to contradictory derivations, in particular, the

union of derivations and the transitivity of derivations.

The contributory derivations can be unioned. If µ1, ..., µn constitute a contributory

derivation of t according to rQ and σ1, ..., σm constitute a contributory derivation of s ac-

cording to rQ, then µ1, ..., µn, σ1, ..., σm constitute a contributory derivation of {t, s} accord-

ing to rQ. If some µi and some σ j are identical, we simply remove one of them from the

union.

The contributory derivations are transitive. Suppose rQ1 : R(Y) D S 1(X1), ..., S m(Xm),

C1(∪i=m
i=1 Xi) and rQ2 : S 1(X1) D T1(Z1), ...,Tn(Zn),C2(∪i=n

i=1Zi). If µ1, ..., µk1 constitute a con-

tributory derivation of r according to rQ1, and σ1, ..., σk2 constitute a contributory deriva-

tion of µ1.X1 according to rQ2 then τi, j (i = 1, ..., k1 and j = 1, ..., k2) constitute a contribu-

tory derivation of t according to rQ2◦rQ1, where τi, j is µi with replacement of the mappings

92

of X1 with mappings of ∪i=k2
i=1 Zi.

4.5.2 Explanation Of Invalidation As Contradictory Provenance

The contributory derivations of the negative t within the intermediate tables and the

source tables can measure the tightness of the pruning predicates. As mentioned before,

the pruning predicates are not unique. Even if we construct pruning predicates to try to

prune as many irrelevant source tuples as possible, there may remain always irrelevant

source tuples that are not pruned by the pruning predicates. Intuitively, the tighter the

pruning predicates are, the better they are. All the relevant source tuples are included in

the derivation of t, and thus can be considered as the ideal result of pruning. Therefore,

the tightness of a pruning predicate can be measured by comparing the set of source tuples

retained by the pruning predicate and the derivation.

Definition 4.9. [Tightness Of Pruning Predicates] Suppose rQ : R(Y) D S 1(X1), ..., S m(Xm),

C(∪iXi) and t ∈ R. Further suppose rQ′ : R′(Y) D S 1] ∆S 1,, S m] ∆S m,C(∪iXi) and

t ∈ ∆−R(Y), where ∆−R(Y) = R(Y) − R′(Y). If the contributory derivations of t according

to rQ′ are µ1, ..., µn, then the tightness of a pruning predicate Cp(∪iXi) is defined as

• |Rpruned(∪iXi)|/|Rprov(∪iXi)|

where

• Rpruned(∪iXi) D S 1] ∆S 1(X1), ..., S m] ∆S m(Xm),C(∪iXi),Cp(∪iXi) and

• Rprov = ∪ j=n
j=1{µ j(∪iXi)}

The ideal pruning predicate has a tightness equal to 1. Less tight pruning predicates

have tightness measurements greater than 1.

For single-block (A)SPJ queries, the pruning predicates constructed according to Fig-

ure 4.4 are always ideal, i.e. have tightness measurements equal to 1. For nested (A)SPJ

93

queries, given an answer t, we have the following cases where the pruning predicates con-

structed according to Figure 4.4 and inference are known to have tightness measurements

equal to 1:

(i). Every attribute in t has a mapping path free of aggregations;

(ii). Every attribute in t has a mapping path involving at most one aggregation at the very

beginning of the path.

Suppose one rule in the nested query is r : T (Y) D S 1(X1), ..., S m(Xm),C(∪iXi). Further

suppose T ′ ⊆ ∆T . Let ∆kr : ∆kT (Y) D S 1(X1)]∆S 1(X1), ...,∆S k(Xk), ..., S m(Xm),C(∪iXi),Cp.

For every t ∈ T ′, if t ∈ ∆kT , we retrieve the provenance of t within S i using classical

tracing rules [12]

• ∆trace
k r : ∆trace

k S i(Xi) D S 1(X1)] ∆S 1(X1), ...,∆S k(Xk), ..., S m(Xm),C(∪iXi),Cp,Y =

t.Y , if r is a conjunctive rule;

• ∆trace
k r : ∆trace

k S i(Xi) D S 1(X1)] ∆S 1(X1), ...,∆S k(Xk), ..., S m(Xm),C(∪iXi),Cp,G =

t.G, where G ⊂ Y is the GROUPBY attributes, if r is an aggregation rule.

Then, the contributory derivations of T ′ within S 1, ..., S m are]k=m
k=1 ∆trace

k S i. And if S i is

a goal of another rule, we further trace the provenance of]k=m
k=1 ∆trace

k S i according to that

rule.

The retrieval of explanations can be made more efficient if we store (delta) intermediate

tables during the validation with pruning predicates. During the validation with pruning

predicates, the sizes of delta intermediate tables are reduced to some degree depending

on how tight the pruning predicates are. Storing these (delta) intermediate tables will

avoid their re-computation during the retrieval of provenance and also reduce the input

table sizes on which the delta rules are evaluated. After the explanation of the invalidated

answer is found, these stored delta intermediate tables can be removed if desired.

94

4.6 Experiments

In this section, we experimentally evaluate the construction of pruning predicates and

the time cost of validating a set of selected answers with the pruning predicates.

4.6.1 Experiment Set Up

Data Set

In our experiments, we use the database schema and query templates described in the

TPC-H benchmark. The relational database consists of 8 tables, part, supplier, partsupp,

orders, customer, lineitem, nation, region. The data for these tables are generated by

DBGen package with scaling factor 1 for the data set #1, #2 and #3, with scaling factor 10

for the data set #4. The delta tables ∆lineitem and ∆orders are also generated by DBGen

and targeting at one hundred thousandth of their respective source tables for the data set

#1, and one thousandth for the data set #2 and #4, and five thousandth for the data set #3.

The information of these resulting data sets is specified in Section 4.6.1.

TPC-H specifies 22 ASPJ query templates. We eliminate the ones with sublinks (nested

subqueries in WHERE clause) and the ones with keywords like “case”, “when”, etc. to get

9 remaining templates. One query is generated from each of these query templates. We

refer to them by their query IDs assigned by QGen package in TPC-H, i.e, Q1, Q3, Q5, Q6,

Q7, Q9, Q10, Q13 and Q19. Since these queries do not have a max or min aggregation, we

change the sum aggregation in Q5 to max. Their basic information is shown in Figure 4.7.

In the number of result tuples columns in this figure, there are two numbers shown, sepa-

rated by a comma, the first one is on the data set #1, #2 and #3, and the other is on the data

set #4.

95

QueryID # of # of # of Aggregation # of # of
Source Total ASPJ Result C+,
Tables Blocks Blocks Type Tuples C−

Q1 1 1 1 sum,avg,count 4,4 5
Q3 3 1 1 sum 11620,114003 4
Q5 6 1 1 max 5,5 2
Q6 1 1 1 sum 114160,1139264 1
Q7 6 2 1 sum 4,4 4,4
Q9 6 2 1 sum 175,175 3,3
Q10 4 1 1 sum 37967,381150 8
Q13 1 2 2 count 42,46 1,0
Q19 2 1 1 sum 121,1134 1

Figure 4.7: Basic Information of Experimental Queries And The Number Of Pruning Predicates

Performance Metrics

As for the construction of pruning predicates, we report the number of atomic compar-

ison predicate in the pruning predicate for every query block in the query. This number

depends on the query only, and is not affected by the selected answers.

As for the validation with pruning predicates, we experiment on four data sets and four

different sizes of the selected answers. The source tables in the data set #1, #2 and #3 are

the same, whose size is around 1GB. The delta tables in the data set #1, #2 and #3 are

increasing in size, being 24KB, 1MB, 5MB respectively. The source tables’ size in data

set #4 is around 10GB, and the delta tables’ size in data set #4 is around 10MB.

For each data set and each experimental query, we experiment on four different sizes of

the selected answers of the query. The proportion of the selected answers out of the entire

result set affects the comparison of validation with pruning predicates and the incremental

view maintenance. Given a query, we try 4 different portions of selected answers, i.e.,

(1) one tuple in its result set, (2) 10% of its result set, (3) 50% of its result set and (4)

the whole result set. Thus, we can observe how the time cost of validation with pruning

predicates grows with the proportion.

96

Experimental Parameters And Methods

Our system configuration is: (1) Intel Core i7 CPU; (2) Ubuntu Release 11.10; (3) Java

version 1.6.0 23; (4) PostgreSQL 8.4.4 64-bit, with “share buffer” set to be 16MB and “ef-

fective cache size” set to be 128MB. The “shared buffer” parameter determines how much

memory is dedicated to PostgreSQL use for caching data [19]. The “effective cache size”

is an estimate of how much memory is available for disk caching by the operating system

and within the database itself, after taking into account what’s used by the OS itself and

other applications [19]. This value is used by the PostgreSQL query planner to figure out

whether plans it’s considering would be expected to fit in RAM or not [19].

All our measurements in this section are taken under the following assumptions: (1) in-

dexes are build on primary keys, foreign keys and grouping attributes in the source tables,

delta tables, and the result tables; (2) “echo 3 > /proc/sys/vm/drop caches” is run between

two executions of the same query to clean the system cache and the PostgreSQL cache;

(3) the execution time (in seconds) of a query is measured by the module “pg stat statements”

in PostgreSQL, and the reported time is always an average of 3 runs; (4) due to the large

variance of the time/space cost of different queries, all the figures reported in the following

experiments are natural logarithm of the actual costs.

4.6.2 Experimental Results

Experiments On Constructing Pruning Predicates

The nine queries are divided into two groups: queries without inline views and queries

with them. Q1, Q3, Q5, Q6, Q10, Q19 are queries without inline views (i.e., single-block

queries) and Q7, Q9, Q13 are queries with inline views (i.e., nested queries).

In Figure 4.7, under the table column C+/C−, we show the number of atomic compar-

ison predicates in the pruning predicate of each query block in an experimental query.

97

In general, the numbers of predicates for positive tuples and negative tuples are not nec-

essarily the same except for some particular cases. However, if the query consists of a

single block, then these numbers are the same. If the query consists of multiple blocks,

these numbers for inner blocks depend on the inference shown in Figure 4.5a, Figure 4.5b,

Figure 4.6a and Figure 4.6b. In Figure 4.7, the numbers happen to be the same for our

experimental queries.

Experiments On Single-Block Queries

For each query without inline views and each data set, we do the following steps.

(i). Execute each query on the tables customer, supplier, part, nation, region, partsupp,

orders, lineitem.

(ii). Pick four subsets of randomly selected derived tuples from the query result set: a

subset consisting of one derived tuple, a subset consisting of around 10% of the

result set, a subset of around 50% of the result set, and a subset that is in fact the

entire result set. When the 10% or 50% size is less than 1 tuple, we round it to 1.

(iii). Incrementally evaluate each query with the pruning predicates.

(iv). As a comparison, incrementally evaluate the complete result set without pruning

predicates.

The time costs of the (4) and (5) for comparison are reported in Figure 4.8a, Figure 4.8b,

Figure 4.8c and Figure 4.8d for the three different data sets respectively.

For Q3, Q5, Q10, Q19, the time costs of evaluation with pruning predicates are signif-

icantly smaller than the time cost of evaluation without pruning predicates (note that the

time cost is shown in natural logarithm), even when the selected answers constitute the en-

tire result set. These queries also show a pattern that the time cost grows with the portion

of selected answers in Figure 4.8b, Figure 4.8c and Figure 4.8d. However, in Figure 4.8a,

98

1 3 5 6 10 19
Query No

5

4

3

2

1

0

L
o
g

 E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
o
n

d
)

Log Execution Time of Validation and Incremental View Maintenance

Validation of 1 result tuple

Valdiation of 10% result tuples

Valdiation of 50% result tuples

Valdiation of all result tuples

Incremental view maintenance

(a) Experiments On The Data Set #1

1 3 5 6 10 19
Query No

4

3

2

1

0

1

2

3

L
o
g

 E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
o
n

d
)

Log Execution Time of Validation and Incremental View Maintenance

Validation of 1 result tuple

Valdiation of 10% result tuples

Valdiation of 50% result tuples

Valdiation of all result tuples

Incremental view maintenance

(b) Experiments On The Data Set #2

1 3 5 6 10 19
Query No

3

2

1

0

1

2

3

L
o
g

 E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
o
n

d
)

Log Execution Time of Validation and Incremental View Maintenance

Validation of 1 result tuple

Valdiation of 10% result tuples

Valdiation of 50% result tuples

Valdiation of all result tuples

Incremental view maintenance

(c) Experiments On The Data Set #3

1 3 5 6 10 19
Query No

4

2

0

2

4

6

L
o
g

 E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
o
n

d
)

Log Execution Time of Validation and Incremental View Maintenance

Validation of 1 result tuple

Valdiation of 10% result tuples

Valdiation of 50% result tuples

Valdiation of all result tuples

Incremental view maintenance

(d) Experiments On The Data Set #4

Figure 4.8: Experiments On Queries Without Inline Views

when the delta tables are very small compared to the source tables, the growth pattern

is less obvious for these queries, but the time costs of validating with pruning predicates

are still significantly smaller than the incremental view maintenance in most cases of the

selected answers.

For Q1, it actually shows the overhead of the pruning predicates due to the fact that it

involves a single source table. When the number of selected answers is small, the com-

parison predicates in the pruning predicate for these answers can be explicitly written out.

When the selected answers consist of hundreds of answers, the equality comparisons are

implemented as natural joins. Thus, the validation with pruning predicates has one more

join than the incremental view maintenance. Joins are expensive operators, and therefore

may cause the performance of evaluation with pruning predicates inferior to the perfor-

mance of evaluation without pruning predicates, especially when the number of joins in

the original queries is small or zero, e.g., Q1. Therefore, Q1 demonstrates the overhead of

99

the pruning predicates.

For Q6, the validation with pruning predicates is much more efficient than the incre-

mental view maintenance when the selected answers’ size is less than 50% of the entire

result set on all the experimental data sets. Moreover, regarding the data set #2, #3 and #4,

when the portion of selected answers is greater than 50%, it is more efficient to validate

the selected answers by updating the complete result set through incremental view main-

tenance. The presence of this critical point may be due to two facts: (1) Q6 has one source

table and (2) Q6 has a large result set. Because of the first fact, similar to Q1, the overhead

of implementing pruning predicates as a join dominates. However, because of the second

fact, when the portion of selected answers is very low, the difference in size of the selected

answers and the entire result set is large and the resulting pruning outweights the overhead

of the extra join. As a comparison, Q1 has only four result tuples.

In general, the advantage of validation with pruning predicates over the incremental

view maintenance becomes more obvious when the result set’s size becomes larger and

the number of source tables becomes larger.

Moreover, for each query in Q1,Q3,Q5,Q6,Q10,Q19, its behavior according to dif-

ferent sizes of the selected answers is consistent across Figure 4.8b and Figure 4.8c and

Figure 4.8d. This means that this behavior is determined more by the query itself but less

by the data sets.

Experiments On Two-Block Queries

For each query with inline views, we follow the same steps for their experiment as

we did for the experiment on queries without inline views. The results are reported in

Figure 4.9a, Figure 4.9b, Figure 4.9c and Figure 4.9d for the four different data sets re-

spectively.

For Q7, the time costs of the validation with pruning predicates are roughly the same

100

(a) Experiments On The Data Set #1 (b) Experiments On The Data Set #2

(c) Experiments On The Data Set #3 (d) Experiments On The Data Set #4

Figure 4.9: Experiments On Queries With Inline Views

as those of the incremental view maintenance. There are two causes for this: (1) Q7 has

only four result tuples, and thus the selected answers are almost the entire result set; (2)

the particular delta tables don’t provide much pruning.

For Q9, on the data set #1, #2 and #4, the validation with pruning predicates is obviously

more efficient than incremental view maintenance (note that the time cost is presented in

natural logarithm) and has a clear pattern of growth in the time cost with the increased size

of selected answers. However, on the data set #3, the anomaly in performance may be due

to the particular data set instance.

101

For Q13, the validation with pruning predicates is similar to the view maintenance due

to three reasons. First, it involves only one source table. Second, it has a relatively small

result set. Third, the outer block’s GROUPBY attribute is the aggregate attribute pro-

duced by the inner query and both aggregations are count, and thus no non-trivial pruning

predicate can be found for the inner block.

4.7 Conclusion

The validity of derived tuples or answers may change due to the source data set updates.

View maintenance can track the validity of every answer in the result set by updating the

complete result set in case of source data set updates. However, under an application

scenario where only a small fraction of all the answers in the result set are concerned, the

validity of this small fraction of answers can be checked by view maintenance enhanced

with pruning predicates. Pruning predicates can prune irrelevant source tuples that can not

possibly affect the selected answers; pruning predicates for the outermost query block (in

a nested query) depend on the values of the selected answers and pruning predicates for

each inner query block can be inferred from the pruning predicates for its parent query

block.

If an answer is invalidated, the explanation of its invalidation consists of the tuples in

the source data set updates and possibly tuples in the original source data set. Moreover,

those tuples in the source data set updates can be either inserted tuples (positive tuples)

or removed tuples (negative tuples). If we extend the provenance definition such that (1)

both positive tuples and negative tuples can have provenance and (2) the provenance can

consist of positive tuples and negative tuples, then the explanation is the provenance of the

invalidated answer.

CHAPTER V

Provenance in Asynchronous Collaboration Of Text Documents

5.1 Introduction

Collaborative editing allows multiple users to edit the same text document. Asyn-

chronous multiple-user document collaboration allows users working on separate copies

of the same document and merges the diverged copies. An example is the revision control

system, e.g., CVS (stand-alone), or Microsoft Word (with integrated version control).

In this chapter, we focus on asynchronous multiple-user collaboration of a text doc-

ument without any predefined structures. In this asynchronous document collaboration

application, the revision history of a text document can be represented as a version tree,

e.g., the one shown in the left part of Figure 5.1.

Every node in the version tree represents a version of the document. The version tree of

a document captures all the edits to the document. With the version tree, the document at

any previous time point can be reconstructed. A typical revision control system allows the

user to restore any previous version. (Some may support additional functionalities, such

as search over the version tree for specified keywords.) However, what if the user wants to

view the complete revision history related to a selected piece of text1 instead of the whole

document?

A document may have different parts modified at different times. If a user is interested
1In this chapter, when we refer to a piece of text, we mean a continuous range of text if not explicitly stating otherwise.

102

103

Jane%%lives%at%456%State%
123$Main$street,%
Neverland.%Her%cell%is%
111%222%3333.%

Jane%lives%at%123%Main%
street,%%%876$Jackson$road,%
Neverland.%Her%cell%is%111%
222%3333.%

Jane%lives%at%876%%875%%%%
Jackson%road,%Neverland.%
Her%cell%is%111%222%3333.%

Jane%Doe%lives%at%123%Main%
street,%Neverland.%Her%cell%
is%111%222%3333.%

Jane%Doe%lives%at%875$
Jackson$road,%Neverland.%
Her%cell%is%111%222%3333.%

875%Jackson%road%

876%Jackson%road%

123%Main%street%

875%Jackson%road%

Jane%lives%at%456%State%
street,%Neverland.%Her%
cell%is%111%222%3333.%

456%State%street%

{+123%Main+},%[B456%StateB]%

{+Doe+}%

{+876%Jackson%road+},%[B123%Main%streetB]%

{+875+},%[B876B]%

{+Doe+}%

{+875+},%%[B876B]%
[B123%Main%streetB],%%%
{+876%Jackson%road+},%%

V0%

V1%

V2%

V3%

V4%

V5%

Figure 5.1: Version Tree And Text Piece Provenance

in the provenance of a particular part of the document, edits to the other parts of the

document are irrelevant. In this case, the version tree of the document is not desirable as

the provenance requested by the user, since it includes all edits, including the ones outside

the part of interest. Moreover, when the document is quite large or has many versions,

its version tree contains a great deal of information, likely to overwhelm the user, and

potentially even strain system resources when being retrieved. It would be much preferred

if we can define a notion of provenance for a selected piece of text that contains only

relevant revision history.

Since the text document does not have a predefined data structure, any piece of text in

the document can be viewed as a temporary data object. A piece of text may be seman-

tically meaningful or arbitrarily chosen. It may have been specified/tagged by the user or

inferred from the revision history. How exactly it is identified is beyond the scope of this

chapter: we want to build our technique making no assumption about the beginning and

end points of an arbitrary piece of text.

The desired relevant revision history of a selected piece of text can not be acquired by

104

simply searching the version tree with keywords. First, the same keyword may appear in

different parts in the document, while the selected piece of text actually has two inherent

characteristics: the content and the position. Second, the insertion of the selected piece

at a particular position does not necessarily serve as the very beginning of the revision

history of the selected piece as shown by the example in Figure 5.1.

In Figure 5.1, if we trace back the selected text ‘875 Jackson road’, we can find that

it results from correcting ‘876 Jackson road’, and ‘876 Jackson road’ further results from

replacing ‘123 Main street’, and ‘123 Main street’ in turn results from replacing ‘456 State

street’. Then, should we include ‘123 Main street’ and ‘456 State street’ in the complete

history of the selected text ‘875 Jackson road’, even if they don’t contain any part of the

selected text? We would like to argue that we should for two reasons. First, the replaced

texts, although do not contain the selected text, explain why the selected text is where it

is since the selected text enters the document to replace them. Second, the replaced texts

provide hints about the semantic meaning of the selected text, e.g., in Figure 5.1, all the

text pieces shown in the right part are part of an address. Although the semantic meaning

of text pieces is beyond the scope of this chapter, the replaced texts are worthwhile to

be included in the revision history for their potential relationship with the selected text in

terms of their semantical meanings.

The goal of this chapter is to define and retrieve provenance for a piece of text in a col-

laborative document that is edited asynchronously. The technical challenges of computing

provenance of this selected piece of text include:

(i). Identify data objects contained in the selected text. Since we do not consider se-

mantics of the text, data objects can be defined according to the revision history re-

lated criterion, e.g., a collection of continuous words that are always edited together

according to the revision history so far. We call these identified data objects revi-

105

sion units. The identified revision units change dynamically when the version tree

changes.

(ii). Retrieve the dependency relationship among the revision units in all the versions of

the document. Given a specific version in the version tree and a selected piece of

text in this version, its provenance consists of all the revision units contained in the

selected text piece and all the revision units from the previous versions on which the

revision units in the selected text piece depend.

The rest of this chapter is organized as follows. In Section 5.2, we review preliminaries

necessary for the discussion of revision history and provenance in this chapter. In Sec-

tion 5.3, we review related work. In Section 5.4, we show how to identify revision units in

a piece of text according to the version tree, how to construct the dependency graph of revi-

sion units, and how to maintain the graph upon the version tree update. In Section 5.5, we

define and retrieve provenance of revision units, and show how to construct the provenance

of a selected piece of text from the provenance of related revision units. In Section 5.6, we

experiment with the retrieval algorithm on Wikipedia page history data. In Section 5.7, we

conclude our work on the provenance of selected text pieces in a collaborative document

edited asynchronously by multiple users.

5.2 Preliminaries

The revision history of a text document is captured as a version tree in general, which is

in fact a directed acyclic graph, e.g., Figure 5.1. It becomes a linear sequence of versions

if concurrent revisions are not allowed. We denote a version tree as G = {V, E}. V =

{v1, ..., vn} and is the set of all the versions in G. E is the set of all the edges in G. If there

exists e ∈ E and e = (vi, v j), where vi, v j ∈ V , then v j is derived from vi, and v j depends on

vi.

106

Given (vi, v j) ∈ E, v j is derived from vi through one or more revision operations, such

as inserts, deletes, or through merging vi and other versions. The difference between vi

and v j is based on longest common subsequence. We make use of wdi f f package (GNU

wdiff 0.6.5) written by Francois Pinard to calculate the difference between vi and v j.

wdi f f (vi, v j) compares two documents vi and v j, and outputs inserted text pieces and

removed text pieces and inherited pieces with regard to vi. A removed text piece is a text

piece in vi but not in v j. An inserted piece is a text piece in v j but not in vi. An inherited

text piece is in both vi and v j. Examples are shown in Figure 5.1, where “{+Doe+}” is an

inserted piece, “[-123 Main street-]” is a removed piece, and “Jane lives at” is an inherited

piece. The set of all removed text pieces is denoted as vi − v j, the set of all inserted text

pieces is denoted as v j − vi, and the set of all inherited text pieces is denoted as vi ∩ v j.

Note that the text pieces are all of different lengths: this is typical.

The output of wdi f f is parsed and formatted into a sequence of text pieces (strings) as

shown in Figure 5.2. In the rest of this chapter, we assume the output of wdi f f is always

formatted that way. In this formatted output, the text document is divided into text pieces

embraced with either ‘(’ and ‘)’, or ‘{+’ and ‘+}’, or ‘[-’ and ‘-]’. The text pieces inside ‘(’

and ‘)’ are inherited from the previous version to the next version. The text pieces inside

‘{+’ and ‘+}’ are inserted. The text pieces inside ‘[-’ and ‘-]’ are removed. Moreover, two

adjacent text pieces can not be embraced with the same type of braces, since they can be

merged into one text piece.

wdi f f does not identify whether an inserted text piece and a removed piece are related,

e.g., the former replacing the latter. Strictly speaking, unless explicitly specified, we can

not say for sure an inserted text piece is the replacement of a removed text piece. However,

inference of a possible replacement is useful. For example, when computing the revision

history of a text piece, the indication of the possibility of this text piece as a replacement

107

V1%%

V5%

(Jane)%%%%%()%%%%%(’s%address%is)%(123%Main%street,%Neverland.%Her%cell%is%111%222%3333.)%

(Jane)%(Doe)%(’s%address%is)%(123%Main%street,%Neverland.%Her%cell%is%111%222%3333.)%

V1:%%%%%%%%%Jane%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
V2:%%%%%%%%%Jane%lives%at%876%Jackson%road,%Neverland.%Her%cell%is%111%222%3333.%
wdiff:%%%%%Jane%lives%at%[B123%Main%street,B]%{+876%Jackson%road,+}%Neverland.%Her%
%%%%%%%%%%%%%%%cell%is%111%222%3333.%

V1:%%%%%%%%%Jane%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
V5:%%%%%%%%%Jane%Doe%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
wdiff:%%%%%Jane%{+Doe+}%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%
%%%%%%%%%%%%%%%3333.%

aMer%formaPng:%%
%%%%%%%(Jane%lives%at%)%[B123%Main%street,B]%{+876%Jackson%road,+}%(%Neverland.%Her%

%%%%%%%%%%%%%%%cell%is%111%222%3333.)%

aMer%formaPng:%%
%%%%%%%(Jane%)%{+Doe+}%(%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%

%%%%%%%%%%%%%%%3333.)%

Figure 5.2: Examples Of wdi f f Output

to a removed text piece can help the user to explore the possible reasons of the presence of

this text piece. In this chapter, the purpose of inferring the possible replacement is more

about the exploration of possible explanations of the selected text piece, and less about the

accuracy of the inference or how close the inference is to the fact.

In this chapter, we treat versions and text pieces as strings and assume some common

string functions for concise notation.

• s.indexO f (t) represents the starting position of t in s

• s.length() represents the length of s

• s.substring(pos, len) represents a substring of s starting at pos with the length len,

which means that the substring ends just before pos + len

The position in a string is zero-based. Moreover, when we say two strings are identical or

one string is equal to another, we mean their contents are the same.

5.3 Related Work

Provenance has been studied extensively for database applications and scientific work-

flow applications. The original meaning of provenance is history and origin. The actual

meaning of provenance depends on the specific interpretations with regard to the specific

108

applications. Provenance information in different types of applications are usually quite

different.

With regard to scientific workflow management systems, the basic provenance of the

output of a workflow run consists of all the intermediate results and the dependency among

them [13]. With regard to database management systems, the basic provenance of derived

data consists of source data in the database that are used by the queries expressed in a

declarative data query language [12, 18, 10, 30] or consists of the operations expressed in

a data modification language [3, 8].

When applying the concept of provenance to text document editing, the provenance is

about the revision history of a particular version of a text document or a particular text

piece in the version. For collaborative documents, such as Wikipedia pages, the revision

history is usually structured as a version tree [34], where the nodes in the tree are versions

of the document.

Revision histories are very useful since they can be used to infer some very useful in-

formation about the documents, such as trustworthiness [39], error patterns [27], linguistic

information [32], trend of revision choices [36], etc. The inference calls for an analysis

of the differences between versions of the document. To model those differences, the rea-

sonable granularities include words [32], sentences [39, 36, 32], paragraphs [32] and lines

for plain text documents, and method calls for code [27]. The granularity is often picked

to suit the purpose of the application in question. Usually, it is chosen to be something

of a domain-specific meaning with regard to the application, e.g., linguistic units (words,

sentence, paragraphs) for plain text documents, and method calls for code.

In our work, our goal is to find the revision provenance of an arbitrary text piece. Thus,

we would like to choose a granularity related to revisions such that it can be fine enough to

separate adjacent texts affected by different revisions and coarse enough to merge adjacent

109

texts affected by the same revision. In other words, the granularity should allow us put

finer granules to where revisions involve small text pieces and put coarser granules to

where revisions involve monolithic large text pieces. Moreover, a single revision on a

particular version should have the potential to affect the granules formed in other versions

in the revision history, because there is certain dependency among revisions.

5.4 Revision Units And Its Dependency Graph

Text documents don’t have predefined structures. Any continuous substring of a text

document can be considered as an integrated unit for revision purpose. In fact, different

granularities have been adopted for the computation of file difference, e.g., at sentence

level, at word level, at line level. Some choices are due to semantical structures, such as

sentences or words; some aren’t, such as lines. In this chapter, we propose an adjustable

granularity which is determined by the revision history. We call it revision units.

Definition 5.1. [Revision Unit] Given a version tree (V, E) and v ∈ V , suppose r is a tuple

of schema (version, position, str), where r.position is a position in the version r.version

and r.str is a string starting at r.position, then r = (v, p, s) is a revision unit if and only if

it satisfies one of the following conditions:

(i). ∃(v, v′) ∈ E such that s ∈ v − v′ and s equals v.substring(p, s.length())

(ii). ∃(v′, v) ∈ E such that s ∈ v − v′ and s equals v.substring(p, s.length())

(iii). ∃(v, v′) ∈ E such that s ∈ v ∩ v′ and s equals v.substring(p, s.length())

(iv). ∃(v′, v) ∈ E such that s ∈ v ∩ v′ and s equals v.substring(p, s.length())

(v). s is an empty string

(vi). s is a piece of text selected by the user from v and s equals v.substring(p, s.length())

110

In Definition 5.1, the tuple (v, p, s) uniquely identifies a piece of text in the revision

history. s is a string that is either removed or inserted or inherited. The first two conditions

in Definition 5.1 specify the removed or inserted units. The third and fourth conditions in

Definition 5.1 specify the inherited units. The reason that the first and the second condi-

tions (the third and the fourth conditions) can not be merged into one condition is because

some version may not have a parent version or have a child version.

Moreover, r can also be an empty revision unit when s is an empty string. This type of

units are dummy units that are used when constructing the mapping between units, which

will be shown later in this chapter. Also, if a user selects a text piece in some version, the

selected piece becomes a unit.

From a version tree, we can uniquely identify a dependency graph of revision units,

as shown in Figure 5.3. In Figure 5.3, every node (in the box) is a revision unit. Inside

each node, we indicate the version and the text of the revision unit. In Figure 5.3, every

edge indicates the transition of a revision unit in one version to another revision unit in

the next version. The revision unit at the end of a directed edge depends on the revision

unit at the beginning of the directed edge. There are four types of dependency as indi-

cated in Figure 5.3, which will be explained in details later in this section. Moreover, the

dependency graph in Figure 5.3 has several disconnected components. For example, The

revision units containing the text “Jane” form a disconnected component. The edges in

that component are all marked as “inherited”, which indicates that the text piece “Jane”

has never been modified throughout the version tree. As another example, the address part

constitutes another disconnected component. If we are looking for the provenance of a

particular revision unit, it must be in the same component as the revision unit.

In the rest of this section, we are going to show how to construct the dependency graph

of revision units from a version tree. In the next section, we are going to use this depen-

111

v0:$$$Jane$ v0:$$$livesat
v0:$$$456$State$$$$ v0:$$$street,$$

v1:$$$Jane$ v1:$$$livesat
v1:$$$123$Main$ v1:$$$$Neverland.Hercellis111$222$3333.$

v0:$$$$Neverland.Hercellis111$222$3333.$

v1:$$$street,$

v2:$$$Jane$ v2:$$$livesat
v2:$$$$$Neverland.Her
cellis111$222$3333.$

v3:$$$Jane$ v3:$$$livesat v3:$$$$875$ v3:$$$$$Neverland.Her
cellis111$222$3333.$

v3:$$$$Jackson$road,$$

v2:$$$$876$ v2:$$$$Jackson$road,$

v4:$$$Jane$ v4:$$$livesat v4:$$$$875$ v4:$$$$$Neverland.Her
cellis111$222$3333.$

v4:$$$$Jackson$road,$

v3:$$$ ∅

v4:$Doe$$$

v5:$$$Jane$ v5:$$$livesat v5:$$$$$Neverland.Her
cellis111$222$3333.$v5:$$$$123$Main$v5:$Doe$$$

v1:$ ∅

v5:$$$$street,$$

Legend:$
=$$$$$“Inherited”$
+$$$$$“inserted”$
I  $$“removed”$
*$$$$$“replaced”$

=$

=$ =$

=$

=$

=$

=$ =$

=$

=$

=$

=$=$

=$

=$ =$

=$

=$

+$

+$

*$

*$ *$
*$

*$

*$ =$

=$ =$

*$ *$ *$

*$
=$

=$

Figure 5.3: Dependency Graph Of Revision Units Derived From The Version Tree In Figure 5.1

dency graph to retrieve provenance of arbitrary revision units and arbitrary text pieces.

We first give an overall description of the procedure that constructs the dependency

graph and then discuss in details each step in the procedure. Suppose we have a version

tree G = (V, E), we denote the dependency graph derived from it as D = (U,M), where U

is the set of all revision units, and M is the set of edges among revision units. We follow

the steps below to construct D.

Sorting We sort the nodes in V into a topological ordering of G, and then sort the edges

in E such that the starting nodes of the sorted edges follow the topological ordering.

Incremental Construction Initialize D = (U,M) to be an empty graph and grow it every

time an edge in E is processed.

Consecutive Versions For each edge (v, v′) ∈ E, we call Algorithm 6 to convert v

and v′ into two sequences of revision units respectively, denoted as U(v) and

U(v′); and find the dependency relationship between the revision units in U(v)

and the revision units in U(v′), denoted as f : U(v)→ U(v′).

Updating Graph U(v), U(v′) and f are used to update the existing U and M respec-

tively.

(i). If the existing U already contains a sequence of revision units of v, say U′(v),

112

we need to merge U(v) and U′(v) by calling Algorithm 7 and Algorithm 8

since every version is only allowed to be converted to one sequence of revi-

sion units. Otherwise, U(v) is simply added to U.

(ii). U(v′) is processed in the same way as U(v).

(iii). In either of the above two steps, if the merging takes place, f : U(v)→ U(v′)

will be adjusted according by Algorithm 7 and 8, and then added to M.

Otherwise, it is directly added to M.

We are going to discuss the incremental construction of the dependency graph first since

it is the major step in the above procedure, and then discuss the sorting when summarizing

with Algorithm 9.

5.4.1 Identifying Revision Units And Their Relationship From Two Consecutive Versions

The incremental construction of the dependency graph consists of two steps: processing

two adjacent versions and updating the dependency graph from the output of the process-

ing.

We first look into the step that processes two consecutive versions. Given any two

consecutive versions of a text document, according to the revisions between them we can

convert these two versions to two sequences of revision units respectively. Moreover,

there is a one-to-one relationship between these two sequences of revision units as shown

in Figure 5.4. In Figure 5.4, “Doe” is inserted and thus the revision unit “(Doe)” in v5 is

paired with an empty revision unit in v1. In general, given two consecutive versions or an

edge in the version tree, we (1) convert either version into a sequence of revision units and

(2) find the one-to-one dependency relationship of revision units in these two sequences

as shown in Algorithm 6.

The one-to-one relationship of revision units in two consecutive versions, computed in

113

V1%%

V5%

(Jane)%%%%%()%%%%%(lives%at)%(123%Main%street,%Neverland.%Her%cell%is%111%222%3333.)%

(Jane)%(Doe)%(lives%at)%(123%Main%street,%Neverland.%Her%cell%is%111%222%3333.)%

V1:%%%%%%%%%Jane%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
V2:%%%%%%%%%Jane%lives%at%876%Jackson%road,%Neverland.%Her%cell%is%111%222%3333.%
wdiff:%%%%%Jane%lives%at%[B123%Main%street,B]%{+876%Jackson%road,+}%Neverland.%Her%
%%%%%%%%%%%%%%%cell%is%111%222%3333.%

V1:%%%%%%%%%Jane%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
V5:%%%%%%%%%Jane%Doe%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%3333.%
wdiff:%%%%%Jane%{+Doe+}%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%
%%%%%%%%%%%%%%%3333.%

aMer%formaPng:%%
%%%%%%%(Jane%lives%at%)%[B123%Main%street,B]%{+876%Jackson%road,+}%(%Neverland.%Her%

%%%%%%%%%%%%%%%cell%is%111%222%3333.)%

aMer%formaPng:%%
%%%%%%%(Jane%)%{+Doe+}%(%lives%at%123%Main%street,%Neverland.%Her%cell%is%111%222%

%%%%%%%%%%%%%%%3333.)%

Figure 5.4: Revision Units In Consecutive Versions And Their Correspondence

Algorithm 6, has four different types.

(i). If an empty revision unit in vi corresponds to a non-empty revision unit in v j, then

the latter is inserted during the transition from the version vi to v j.

(ii). If a non-empty revision unit in vi corresponds to an empty revision unit in v j, the

former unit is removed during the transition from vi to v j.

(iii). If a non-empty revision unit in vi corresponds to a non-empty revision unit in v j, and

those two contain different texts, then the former is replaced by the latter during the

transition from vi to v j.

(iv). If a non-empty revision unit in vi corresponds to a non-empty revision unit in v j, and

those two contain identical texts, then the former is kept during the transition from vi

to v j and becomes the latter.

The insertion, deletion and inheritance are easy to infer from the output of wdi f f . For

the replacement, we use a simple heuristics to infer it. When a removed text piece is next

to (i.e., immediately before or after) an inserted text piece, we say that the latter replaces

the former. This simple heuristics will need to false replacement relationship between tow

revision units. We prefer it to missing actual replacement relationship. That is because the

user who later examines the provenance can determine for himself whether he would like

to discard the replacement relationship, but can not possibly find out the actual replacement

relationship if it is not contained in the provenance.

In a version tree, most versions have more than one edge connected to it, including

both incoming edges and outgoing edges, e.g., (v0, v1) and (v1, v5) or (v5, v4) and (v3, v4) in

114

Figure 5.1. Suppose we called Algorithm 6 on (v0, v1) first and produced U(v0), U(v1) and

f : U(v0) → U(v1). We then added U(v0) and U(v1) to U, and added f : U(v0) → U(v1)

to M. After that, we moved on to (v1, v5) and called Algorithm 6 on it. Thus, we produced

a different U(v1) and find that the existing U already contains a sequence of revision units

for v1. Then, we need to merge that existing sequence and the new U(v1) into one.

5.4.2 Merging Two Sequences Of Revision Units Of The Same Version

In Figure 5.5, we illustrate how to merge two different sequences of revision units of

the same version. In Figure 5.5, the first two sequences are U(v0) and U(v1) produced

by calling Algorithm 6 on (v0, v1). Then, the second two sequences are U′(v1) and U(v5)

produced by calling Algorithm 6 on (v1, v5), where U′(v1) is a sequence of revision units

for v1 but different from U(v1).

In order to merge U(v1) and U′(v1), we first align them, which is feasible since the

underlying documents are the same, i.e., v1. Then, if the starting position of a unit in

one sequence is inside some revision unit in the other sequence, we split the latter unit,

as shown with dashed arrows in Figure 5.5. After we split the units in U(v1) and U(v′1),

these two sequences will be consistent and we get a single sequence of revision units for

v1 shown as Us(v1) below the block arrow in Figure 5.5.

v4:%(Jane%%%Doe’s%address%is%)%%%%%%(875%Jackson%road,)%%(%Neverland.%Her%cell%is%111%222%3333.)%
v5:%(Jane%%%Doe’s%address%is%)%%%%%%(123%Main%street,)%%%%(%Neverland.%Her%cell%is%111%222%3333.)%%

v4:%(Jane)%%(%Doe)(’s%address%is%%%875%Jackson%road,%%%%%%Neverland.%Her%cell%is%111%222%3333.)%

v3:%(Jane)%%(%%%%%%%%%)(’s%address%is%%%875%Jackson%road,%%%%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v5):%%(Jane)%%(Doe)%%(lives%at%%%%123%Main%%%%%%street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U’(v1):%(Jane)%%(%%%%%%%)%%(lives%at%%%%123%Main%%%%%%street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v0):%(Jane%%lives%at%%%%%%%%%%)%%%%%%(456%State)%%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%
U(v1):%(Jane%%lives%at%%%%%%%%%%)%%%%%%(123%Main)%%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v1):%(Jane%)%(%%%%%%%)%(lives%at%)%(123%Main)%%%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Figure 5.5: Example Of Splitting Units

After we get Us(v1) after merging U(v1) and U′(v1), we will use Us(v1) to replace U(v1),

115

which is currently in U. This replacement will lead to another problem: what should we do

about the dependency relationship between U(v1) and U(v0) that is currently in M, since

U(v1) is replaced by Us(v1). Certainly, any dependency involve the units in U(v1) should

be removed from M when U(v1) is removed from U. Then, how should we construct the

new dependency between the units in Us(v1), the replacement to U(v1), and the units in

U(v0)?

We have two options shown in Figure 5.6a and in Figure 5.6b: propagating the splittings

in the units of v1 or not. These two options will result in different updated U and M.

In Figure 5.6a, we show how to propagate the splitting in a revision unit. When the

first unit in U(v1) is split between “Jane” and “Doe”, this unit’s corresponding unit in v0 is

split accordingly at the corresponding position as indicated with the dashed arrows. If we

propagate the splittings, the dependency relationship between the units of v0 and v1 keeps

being one-to-one as indicated with the solid arrows. Moreover, since the revision units of

v0 get split too, the splitting can propagate further from the splittings in v0.

In Figure 5.6b, we show an alternative choice to propagating the splitting of units. If we

don’t propagate the splittings in the revision units of v1 to the units of v0, the dependency

relationship between the units of v0 and v1 is adjusted accordingly and is no longer one-

to-one as indicated by the two sequences below the block arrow in Figure 5.6b.

In general, we prefer propagating the splitting as far as possible, since a one-to-one

relationship is a more precise and concise description of the dependency among revision

units. However, propagating is not always possible. In fact, it is only feasible when the

dependency relationship is of the type “inherited”. In Figure 5.6a, the unit “Jane lives at”

is inherited from v0 to v1, and therefore the splitting position in the unit of v1 has an exact

match in the corresponding unit of v0, which enables us to split the latter as well. Other-

wise, when the dependency relationship being “replaced”, or “inserted” or “removed”, the

116

splitting can not be propagated. Depending on the dependency relationship, the splitting

in a single revision unit v can potentially lead to a splitting in any revision unit that is

reachable from v or can reach v.

U(v0):%(Jane%lives%at%)%%%%%%(456%State)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v1):%(Jane%lives%at%)%%%%%%(123%Main)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v1):%(Jane%)%(%%)%(lives%at%)%(123%Main)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v0):%(Jane%)%%%%%%(lives%at%)%(456%State)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

PropagaTng%the%spliPng%

U(v0):%(Jane%lives%at%)%%%%%%(456%State)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v1):%(Jane%lives%at%)%%%%%%(123%Main)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v1):%(Jane%)%(%%)%(lives%at%)%(123%Main)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

U(v0):%%(Jane%lives%at%)%%%%%%%%%%(456%State)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

Without%propagaTng%

(a) Example Of Propagation Of Splitting

U(v0):%(Jane%lives%at%)%%%%%%(456%State)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v1):%(Jane%lives%at%)%%%%%%(123%Main)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v1):%(Jane%)%(%%)%(lives%at%)%(123%Main)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v0):%(Jane%)%%%%%%(lives%at%)%(456%State)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

PropagaTng%the%spliPng%

U(v0):%(Jane%lives%at%)%%%%%%(456%State)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

U(v1):%(Jane%lives%at%)%%%%%%(123%Main)%(street,%%Neverland.%Her%cell%is%111%222%3333.)%%

Us(v1):%(Jane%)%(%%)%(lives%at%)%(123%Main)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

U(v0):%%(Jane%lives%at%)%%%%%%%%%%(456%State)%(street,%Neverland.%Her%cell%is%111%222%3333.)%%

Without%propagaTng%

(b) Example Of No Propagation Of Splitting

Figure 5.6: Cascading Effect Of Splitting

Given two sequences of revision units of the same version, say U(v) and U′(v), Algo-

rithm 7 finds (1) a new sequence Us(v) that is the result of merging U(v) and U′(v), and

(2) the mapping from each unit in U(v) or U′(v) to one or more units in Us(v). Then, ac-

cording to the mapping found, Algorithm 8 replaces a revision unit in U(v) or U′(v) with

the units in Us(v) it is mapped to.

In Algorithm 7, the output g (g′) captures the correspondence mapping between a unit

in U(v) (U′(v)) and one or more units in Us(v). Given a revision unit r in U(v) (U′(v)),

suppose it is mapped to r1, ..., rm in Us(v) according to g (g′), then, we can call Algorithm 8

to replace r with r1, ..., rm.

In Algorithm 8, a revision unit r is replaced by r1, ..., rm. The dependency between r

and another existing unit r′ will be modified to dependency between ri (i = 1, ...,m) and

117

r′ or the split units out of r′. If the latter case is true, Algorithm 8 is called recursively to

replace r′ with those split units of r′.

5.4.3 Construction Of The Dependency Graph Of Revision Units From A Version Tree

As a summary of the incremental construction of the dependency graph of revision

units from a version tree, we show Algorithm 9 below. It makes use of Algorithm 6, Al-

gorithm 7 and Algorithm 8. It is in fact the same as the textual description of constructing

the dependency graph at the beginning of this section, but put in the algorithm form.

In Algorithm 9, the first instruction is to find a topological ordering of the versions in

the version tree. A version tree is a directed acyclic graph (DAG), and therefore it defines

a partial order of all the versions. Suppose one of the topological ordering of this partial

order is v1, ..., vn, then vi only depends on v1, ..., vi−1. The topological ordering can be found

through breadth-first-search over the version tree. With the topological ordering of nodes,

we can sort the edges as e1, ..., em such that if ei is before e j, then the starting node of ei

is either the same as the starting node of e j or is before it in the topological ordering of

all the nodes. This sorted sequence of edges can be easily found as: for each node in v1

through vn, list all the edges connected to it.

5.4.4 Maintenance Of Dependency Graph Upon Version Tree Update

The dependency graph of revision units computed from a version tree needs to be main-

tained when the version tree is updated, e.g., new versions are added to the version tree.

Suppose G = (V, E) is the existing version tree, and a new version v′ is added to V and

(v, v′) is added to E. Further suppose D = (U,M) is the existing graph of revision units

derived from G. Then, the following steps are taken to update D.

(i). Call Algorithm 6 on (v, v′) to get U(v), U(v′) and f : U(v)→ U(v′).

(ii). Call Algorithm 7 on U(v) and the existing sequence of v, say U′(v), to get Us(v),

118

g : U(v)→ Us(v) and g : U′(v)→ Us(v)

(iii). Call Algorithm 8 to update U by replacing U′(v) with Us(v), and adjust U(v′) and f

accordingly before adding them to U and M respectively

5.5 Provenance Of Revision Units And Arbitrary Text Pieces

In the following, we first define and retrieve provenance for a revision unit. Then, we

define the provenance for a selected text piece and show how to construct it by combining

the provenance of revision units related to this text piece.

5.5.1 Provenance Of Revision Units

Definition 5.2. [Provenance Of Revision Units] Given a version tree G = (V, E), the

dependency graph of revision units D = (U,M) derived from G, a revision unit r ∈ U, the

provenance of r includes (1) any r′ such that there exists at least one path from r′ to r in D

and (2) any edge in M such that there exists at least one path from r′ to r with that edge in

it.

According to Definition 5.2, the retrieval of the provenance of a given revision unit can

be thought of finding a sub-DAG in D. Suppose D = (U,M) is the dependency graph of

revision units, given a revision unit r, its provenance is represented as D(r) = (U(r),M(r)),

where D(r) is a sub-DAG of D and U(r) ⊆ U and M(r) ⊆ M. One approach to find D(r)

is a two-step procedure: first, find all the “reachable” units which constitute U(r); second,

for every edge in M, if both of its end units are in U(r), it is in M(r).

For the first step, all the “reachable” units can be found by searching depth-first along

the reversed directions of the edges in M until reaching revision units that do not have

incoming edges in M. Note that we need to use the reversed directions of the edges since

we are actually searching from units in newer versions towards units in older versions.

In Algorithm 10, we show how to retrieve the provenance of a given revision unit.

119

5.5.2 Provenance Of Selected Text Pieces

If a user selects a continuous piece of text, it may be contained within one revision unit

or contain one or more consecutive revision units. For each revision unit fully covered by

the selected piece, its revision history is then part of the revision history of the selected

piece. For each revision unit partially covered by the selected piece, it should be further

refined into two or three revision units such that one of the refined revision units is fully

contained in the selected piece. Thus, the provenance of the selected continuous text piece

can be built upon the provenance of those revision units fully contained in the text piece.

Given t as a selected text piece in v, if t covers a sequence of consecutive revision

units, then the first and last revision units may only be partially contained in t. If so, the

partially covered unit is refined by being split into two units such that one of them is fully

contained in t. Similarly, if t is contained in a single revision unit, there may exist margins

on both ends of t inside the revision unit. Then, the revision unit needs to be split into

three units and the middle one is fully covered by t. This splitting of a revision unit may

propagate throughout the entire dependency graph of revision units. The splitting and the

possible propagation of splitting are handled by Algorithm 8 given the original unit and its

replacement units.

Suppose there is a revision unit (v, p, s) and a text piece t completely contained in s.

Then, the replacement units for (v, p, s) are

• (v, p, s.substring(0, s.indexO f (t)))

• (v, p + s.indexO f (t), t)

• (v, p+ s.indexO f (t)+ t.length(), s.substring(p+ s.indexO f (t)+ t.length(), s.length()−

t.length() − s.indexO f (t)))

Suppose there is a revision unit (v, p, s) and a text piece t. If t is a substring of s and

120

matches s from the beginning to somewhere in the middle, then the replacement units for

(v, p, s) are

• (v, p, t)

• (v, p + t.length(), s.substring(s.length() − t.length()))

If t is a substring of s and matches s from somewhere in the middle to the end, then the

replacement units for (v, p, s) are

• (v, p, s.substring(0, s.indexO f (t)))

• (v, p + s.indexO f (t), t)

After the proper splitting of revision units using Algorithm 8, the selected continuous

piece of text can exactly cover a sequence of consecutive revision units. Then, we can find

the provenance of each contained revision unit as shown in Algorithm 10. Finally, we can

assemble the provenance of the text piece from the provenance of those revision units. It

is straightforward as set unions. Since the provenance of a revision unit is a set of versions

and a set of edges, the union of the provenance of multiple revision units consists of the

union of multiple sets of versions and the union of multiple sets of edges.

If the user selects a non-continuous text piece, which consists of several continuous text

pieces, then the provenance of the non-continuous text piece is the union of the provenance

of each continuous text piece contained in it.

5.6 Experiments

The main benefit obtained from determining provenance with revision units for speci-

fied pieces of text is simplicity – the user sees a small, focused result without distraction

from much irrelevant revision information. While the size of the resulting provenance is

not the whole story, it is a large part of it, and is much easier to measure than user satisfac-

121

tion. As such, we conducted experiments to measure the size of provenance for selected

text snippets and compared this to the size of provenance for the document as a whole.

5.6.1 Experimental Datasets

We use Wikipedia pages as our experimental data. For each page, Wikipedia keeps all

its historical versions as its page history. The page history of a Wikipedia page can be

exported, and a maximum number of 1000 versions can be included in the history.

We first picked a set of Wikipedia pages whose titles fall into a randomly selected range;

then discarded pages containing non-UTF8 characters, e.g., Asian language characters,

and pages containing delimiters reserved for the wdi f f output, i.e., “(”,“)”,“{+”,“+}”, “[-

”,“-]”; finally we got 198 pages.

For each of the 198 pages, we exported its page history as a linear sequence of historical

versions, which serves as the page’s version tree. Then, we called Algorithm 9 to construct

the dependency graph of revision units from the page’s version tree. After that, we chose a

random revision unit whose length is not zero form the latest version of the page. Finally,

we retrieved the provenance of this revision unit with Algorithm 10.

Our code is in Java, and runs on an system that uses Intel Core i7 CPU with 1GB

memory and runs Ubuntu Release 11.10 and Java version 1.6.0.

5.6.2 Experimental Results

The provenance size of a selected revision unit is potentially related to (1) the size of

the selected unit, (2) the size of the version containing the unit, (3) the total size of all the

versions, (4) the number of revision units in the version containing the selected unit and

(5) the total number of all revision units. Our goal is to demonstrate these relationships

through experiments, and confirm the sensibility of choosing revision units as a proper

granularity for revision provenance. That means, the representation of provenance using

122

revision units is more precise, and is neither too coarse as including irrelevant information

nor too fine as having many fractional pieces of information. This advantage of using

revision units will be reflected in effectively cutting down the size of revision information

considered to be relevant to the selected revision unit, as compared to the entire version

tree.

Suppose we have a version tree G = (V, E) and a corresponding dependency graph of

revision units D = (U,M). Given a revision unit r of the schema (version, position, str)2,

suppose its provenance is D(r) = (U(r),M(r)), we have the following variables to observe

(i). the size3 of the revision unit r, i.e., r.str.length()

(ii). the size of the version containing r, i.e., r.version.length()

(iii). the size of the entire dependency graph, i.e.,
∑

u∈U u.str.length()

(iv). the size of the provenance of r, i.e.,
∑

u∈U(r) u.str.length()

(v). the number of units in the version containing r, i.e., |U(r.version)|

(vi). the number of units in the provenance of r, i.e., |U(r)|

(vii). the total number of units in the entire dependency graph, i.e., |U |

We are going to make plots about the ratios of pairs of the above variables:

(i). r.str.length()/r.version.length() vs.
∑

u∈U(r) u.str.length()/
∑

u∈U u.str.length()

(ii). |U(r.version)|/1 vs. |U |/|U(r)|

In Figure 5.7, x-axis is the natural logarithm of r.str.lenght()/r.version.length(). We

took the natural logarithm of the ratio to have more evenly distributed dots since the ratio

varies greatly and is not evenly distributed over the range. In Figure 5.7, y-axis is the nat-

ural logarithm of
∑

u∈U(r) u.str.length()/
∑

u∈U u.str.length(). Most of the dots in Figure 5.7
2See Definition 5.1 for the meaning of this revision unit representation and see Section 5.2 for the meaning of the assumed string

functions.
3In this chapter, we only count the non-space character.

123

settle around the line x = y. That means these two ratios are pretty close. It reflects the

fact that relevant revision provenance is linearly proportional to the revision unit in size.

In other words, the provenance’s size grows linearly with the selected text piece’s size and

if the selected text piece is the entire document, the provenance will become the entire

dependency graph. It indicates that the choice of revision units as granularity is sensible

in terms of effectively reducing the size of revision information considered to be relevant

to the selected revision unit.

10 8 6 4 2 0
Natural Logarithm Of The Ratio Of The Size Of The Selected

 Revision Unit To The Size Of Its Version (byte)

10

8

6

4

2

0

N
a
tu

ra
l
Lo

g
a
ri

th
m

 O
f

T
h
e
 R

a
ti

o
 O

f
T
h
e
 S

iz
e
 O

f
 P

ro
v
e
n
a
n
ce

 T
o
 T

h
e
 S

iz
e
 O

f
R

e
v
is

io
n
 H

is
to

ry
 (

b
y
te

)

Provenance Size Comparison

Figure 5.7: Provenance Size In Terms Of Bytes

As a comparison, in Figure 5.8, we set the x-axis as |U(r.version)| and the y-axis as

|U |/|U(r)|. They are also meant to measure the proportion of sizes as the x-axis and y-axis

in Figure 5.7 do, but use a different measuring unit for size. In Figure 5.7, the measuring

unit is byte, and in Figure 5.8 the measuring unit is the revision unit. Unlike Figure 5.7,

Figure 5.8 does not show a clear pattern. This is because the size of the revision unit

may vary greatly and the number of revision units as a measurement for size is not proper.

However, from another point of view, it indicates that the length of the revision unit adjusts

to the revisions.

124

7 6 5 4 3 2 1 0
Natural Logarithm Of The Number Of Revision Units In

 The Version Containing The Selected Revision Unit

14

12

10

8

6

4

2

0

N
a
tu

ra
l
Lo

g
a
ri

th
m

 O
f

T
h
e
 R

a
ti

o
 O

f
T
h
e
 T

o
ta

l
N

u
m

b
e
r

O
f

 R
e
v
is

io
n
 U

n
it

s
T
o
 T

h
e
 N

u
m

b
e
r

O
f

R
e
v
is

io
n
 U

n
it

s
In

 P
ro

v
e
n
a
n
ce Provenance Size Comparison

Figure 5.8: Provenance Size In Terms Of Revision Units

5.7 Conclusion

In this chapter, we introduced the provenance of a piece of text inside a collaborative

document edited asynchronously by multiple users. Due to the lack of predefined struc-

tures in text documents, users can choose a piece of text ranging from a single word to

the entire document. The provenance of the selected text piece should contain only the

revisions relevant to the selected piece. We based the provenance for text pieces on revi-

sions units. The choice of revision units as the granularity to represent revision provenance

avoids being too fine or too coarse in the representation, since revision units adjust their

ranges according to the revisions in the version tree of the document. A revision unit may

depend on other revision units and the dependency is introduced by the revisions logged

in the version tree. From the version tree, we can built a dependency graph of revision

units. This dependency graph is then used to retrieve the provenance of any given revision

unit. The provenance of revision units can further be used to construct the provenance of

a selected text piece, which may contain (partially) one or more revision units, or may be

contained in a single revision unit.

125

Algorithm 6: Construction Of Revision Units Out Of Two Consecutive Versions
Input: e = (vi, v j)
Output: U(vi),U(v j), f : U(vi)→ U(v j)

1 begin
2 Call wdi f f on vi and v j and put the output in v
3 Let len be the length of v
4 Let units be an empty sequence of tuples (v, p, s)
5 for k = 0 to k < len do
6 if v[k] =′ (′ then
7 Find the string s inclusively between v[k] and the first ’)’ after the position k
8 end
9 if v[k, k + 1] =′ {+′ then

10 Find the string s inclusively between v[k] and the first ’+}’ after the position k
11 end
12 if v[k, k + 1] =′ [−′ then
13 Find the string s inclusively between v[k] and the first ’-]’ after the position k
14 end
15 Put (v, k, s) into units
16 Increase k by the length of s
17 end
18 posi ← 0, pos j ← 0
19 for the head unit r in units do
20 Remove r from units
21 Let r′ be the new head unit or be null if units is empty
22 Let str be r.str stripped of the embracing delimiters
23 Let str′ be r′.str stripped of the embracing delimiters or null if r′ is null
24 if r.str is embraced with ‘(’ and ‘)’ then
25 ri ← (vi, posi, str), r j ← (v j, pos j, str)
26 posi ← posi + str.length(),pos j ← pos j + str.length()
27 end
28 if r.str is embraced with ‘[-’ and ‘-]’ and (r′ is null or r′.str is braced with ‘(’ and ‘)’) then
29 ri ← (vi, posi, str), r j ← (v j, pos j, ∅)
30 posi ← posi + str.length()
31 end
32 if r.str is braced with ‘{+’ and ‘+}’ and (r′ is null or r′.str is braced with ‘(’ and ‘)’) then
33 ri ← (vi, posi, ∅),r j ← (v j, pos j, str)
34 pos j ← pos j + str.length()
35 end
36 if r.str is braced with ‘{+’ and ‘+}’ and r′.str is braced with ‘[-’ and ‘-]’ then
37 ri ← (vi, posi, str′), r j ← (v j, pos j, str)
38 posi ← posi + str′.length(),pos j ← pos j + str.length()
39 Remove r′ from units
40 end
41 if r.str is braced with ‘[-’ and ‘-]’ and r′.str is braced with ‘{+’ and ‘+}’ then
42 ri ← (vi, posi, str), r j ← (v j, pos j, str′)
43 posi ← posi + str.length(),pos j ← pos j + str′.length()
44 Remove r′ from units
45 end
46 Put ri into U(vi), put r j into U(v j), put the pair (ri,r j) into f
47 end
48 end

126

Algorithm 7: Find Splittings To Merge Two Sequences Of Revision Units Of The Same Version
Input: U(v), U′(v)
Output: Us(v), g : U(v)→ Us(v), g′ : U′(v)→ Us(v)

1 begin
2 Suppose U (U′) is an array of revision units that are sorted by their position values
3 Initialize Us(v) to be an empty array
4 posInU ← 0
5 posInU′ ← 0
6 currS tart ← 0
7 while posInU is less than the length of U and posInU′ is less than the length of U′ do
8 nextS tart1← U(v)[posInU].position + U(v)[posInU].str.length()
9 nextS tart2← U′(v)[posInU].position + U′(v)[posInU′].str.length()

10 if nextS tart1 < nextS tart2 then
11 s← v.substring(currS tart, nextS tart1 − currS tart)
12 rs ← (v, currS tart, s)
13 Add rs to Us(v)
14 Add (U(v)[posInU], rs) to g
15 Add (U′(v)[posInU′], rs) to g′

16 currS tart ← nextS tart1
17 posInU + +

18 end
19 if nextS tart1 > nextS tart2 then
20 s← v.substring(currS tart, nextS tart2 − currS tart)
21 rs ← (v, currS tart, s)
22 Add rs to Us(v)
23 Add (U(v)[posInU], rs) to g
24 Add (U′(v)[posInU′], rs) to g′

25 currS tart ← nextS tart2
26 posInU′ + +

27 end
28 if nextS tart1 == nextS tart2 then
29 s← v.substring(currS tart, nextS tart1 − currS tart)
30 rs ← (v, currS tart, s)
31 Add rs to Us(v)
32 Add (U(v)[posInU], rs) to g
33 Add (U′(v)[posInU′], rs) to g′

34 currS tart ← nextS tart1
35 posInU′ + +

36 posInU + +

37 end
38 end
39 end

127

Algorithm 8: Splitting Revision Units
Input: G = (V, E): a version tree
Input: D = (U,M): a DAG of revision units computed from G, where U is the set of all revision

units, i.e., ∪v∈VU(v), and M is the set of edges describing the dependency relationship between
revision units

Input: r ∈ U: a revision unit
Input: r1, ...rm: consecutive units that are to replace r
Output: updated D = (U,M)

1 begin
2 Remove r from U
3 Add r1, ..., rm to U
4 for every (r, r′) in M do
5 Remove (r, r′) from M
6 if r′ is inherited from r then
7 for i = 1 to m do
8 r′i ← (r′.version, r′.position − r.position + ri.position, ri.str)
9 Add (ri, r′i) to M

10 end
11 Call this algorithm recursively on G,D, r′, r′1, ..., r

′
m

12 else
13 for i = 1 to i = m do
14 Add (ri, r′) to M
15 end
16 end
17 end
18 for every (r′, r) in M do
19 Remove (r′, r) from M
20 if r is inherited from r′ then
21 for i = 1 to m do
22 Let r′i be (r′.version, r′.position − r.position + ri.position, ri.str)
23 Add (r′i , ri) to M
24 end
25 Call this algorithm recursively on G,D, r′, r′1, ..., r

′
m

26 else
27 for i = 1 to i = m do
28 Add (r′, ri) to M
29 end
30 end
31 end
32 end

128

Algorithm 9: Build A Dependence Graph Of Revision Units From A Version Tree
Input: G = (V, E): a version tree
Output: D = (U,M): a dependency DAG of revision units computed from G, where U is the set of all

revision units, i.e., ∪v∈VU(v), and M is the set of edges describing the dependency
relationship between revision units

1 begin
2 U ← ∅
3 M ← ∅
4 Suppose v1, ..., vn is a topological ordering of the partial order defined by G
5 for i = 1 to i = n do
6 for every (vi, v j) ∈ E do
7 Call Algorithm 6 on (vi, v j) to get U(vi) and U(v j) and f : U(vi)← U(v j)
8 U ← U ∪ U(vi)
9 U ← U ∪ U(v j)

10 M ← M ∪ f
11 if exists U′(vi) in U already then
12 Call Algorithm 7 on U(vi) and U′(vi) to get Us(vi) and g : U(vi)→ Us(vi) and

g′ : U′(vi)→ Us(vi)
13 for every r in U(vi) or U′(vi) do
14 Suppose (r, r1), ..., (r, rm) are all the edges in g or g′ that start with r
15 Call Algorithm 8 on G, D, r, r1,...,rm

16 end
17 end
18 if exists U′(v j) in U already then
19 Call Algorithm 7 on U(v j) and U′(v j) to get Us(v j) and g : U(v j)→ Us(v j) and

g′ : U′(v j)→ Us(v j)
20 for every r in U(v j) or U′(v j) do
21 Suppose (r, r1), ..., (r, rm) are all the edges in g or g′ that start with r
22 Call Algorithm 8 on G, D, r, r1,...,rm

23 end
24 end
25 end
26 end
27 end

129

Algorithm 10: Provenance Of A Revision Unit
Input: r = (v, p, s),G = (V, E),D = (U,M)
Output: D(r) = (U(r),M(r))

1 begin
/* Compute U(r) as the ‘‘reachable’’ set */

2 U(r)← ∅
3 Add r into U(r)
4 Initialize f ound path to be an empty list
5 Add r to f ound path
6 while f ound path is not empty do
7 Let last v be the last element of f ound path
8 if exists (next v, last v) ∈ M and next v < U(r) then
9 Add next v to U(r)

10 Add next v to f ound path
11 else
12 Remove last v from curr path
13 end
14 end

/* Compute M(r) */

15 for every edge (r, r′) in M do
16 if r in U(r) and r′ in U(r) then
17 Add (r, r′) to M(r)
18 end
19 end
20 end

CHAPTER VI

Conclusion

Provenance of derived data helps the users in understanding and interpreting the data,

evaluating the reliability of the data and debugging the data. Provenance of derived data

lie in the source datasets from which the data are derived. Meanwhile, datasets are subject

to modifications, such as removal of existing data and insertion of new data. In presence

of modifications, we have to rethink our understanding and retrieval of provenance. In

this thesis, we discuss the provenance related problems under the circumstance of modifi-

able datasets, structured and unstructured. For structured datasets, we focus on relational

databases; for unstructured datasets, we focus on plain text documents.

The modifications may remove (part of) the requested provenance from the source

dataset. Previous provenance retrieval techniques based on classical tracing queries rely

on the provenance being present in the database. When we try to retrieve the lost prove-

nance from the source dataset, we make adjustments to classical tracing queries as shown

in Chapter II. The adjusted tracing queries take into considerations the modification log

and archived historical values to construct the lost provenance.

Moreover, in case of partially removed provenance, if the user requests the remaining

part of the provenance, it is desirable to retrieve that part independently of the rest. Pre-

vious provenance retrieval techniques based on classical tracing queries have to use all

130

131

the source tables involved in the original derivation query. The independent retrieval of

partial provenance calls for a technique that can rewrite the classical tracing queries to

eliminate their references to certain source tables. In order to do that, we take advantage

of the presence of more restrictive predicates than the relational predicates in the classical

tracing queries as shown in Chapter III. This technique also enables the optimization of

the classical tracing queries and the customized tracing queries.

The modifications may bring in new source tuples as well as remove existing ones.

These new source tuples can potentially affect the derived tuples in an opposite way than

the classical provenance. While previous work focuses on the classical provenance, i.e.,

the contributing source tuples to a derived tuple, we show that there exist contradicting

source tuples of the derived tuple, which either eliminate the derived tuple or replace

it. Given derived tuples, identifying their contradicting tuples can efficiently validate the

derived tuples upon source dataset modifications as shown in Chapter IV.

Besides the relational datasets, another type of datasets that are frequently modified are

plain text documents. They are unstructured, and have flexible data granularities. Most text

editors are capable of keeping the change logs or revision histories of the text documents.

However this type of view contains a lot of irrelevant information when the user requests

the provenance of only part of a document. We propose a flexible data granularity, called

revision units, and use revision units to present the provenance of an arbitrary fragment

of text, which captures only the relevant revision information with regard to the given text

fragment, as discussed in Chapter V.

Besides the projects presented in this thesis, there are other problems related to the

provenance in modifiable datasets. We list two of them below.

(i). First, we have so far explored relational databases and text documents as popular

types of modifiable datasets and there are certainly other interesting types of mod-

132

ifiable datasets, e.g., map data. Map data is represented as graphs with attributes

attached to nodes and edges. Map data can have different types of modifications,

e.g., changing the value of an attribute or changing the structure of the graph. There

is also dependency among the changes to map data. To capture the provenance of

map data, we need to make decisions on appropriate information units, modification

operations and precise meaning of map data provenance.

(ii). Second, we can use the domain specific knowledge of the data to make its prove-

nance more useful and more like knowledge. For example, if a plain text document

is a pay stub, then a change of text may reflect a rise in salary; if the document is

an inventory of a zoo, then a change of text may reflect the arrival of new animals or

equipments. With domain specific knowledge about the underlying data, we can sep-

arate important provenance from trivial provenance and separate relevant provenance

from irrelevant provenance. For example, a user can ask for provenance related to

salaries, then the text changes on addresses don’t need to be included in the requested

provenance. In order to leverage the domain specific knowledge, the underlying data

needs to be tagged with domain knowledge. In relational databases, the attribute

names may be a good indicator of domain knowledge. In XML databases, the XML

tags may be such an indicator. In plain text documents, tags need to be added explic-

itly. It can be done by domain experts and/or automatic tagging that makes use of

natural language processing and/or text mining.

APPENDIX A

Tracing Queries and Aggregations

A.1 Tracing Queries and Provenance

In this appendix, we are going to show that the provenance retrieved by the tracing

query as shown in Equation 2.4 is actually the provenance defined in Definition 2.2. If

this is shown to be true, then the extended tracing query as shown in Equation 2.5 can

retrieve the provenance defined in Definition 2.2 as well, since the the extended tracing

query is essentially a tracing query with the source tables used in the query being some

reconstructed historical versions of the source tables.

We first show that the argument is true for the case where there is no aggregation in

the original derivation query, and then show the argument is also true where there are

aggregations in the target list of the original query.

For clarity, we state our argument using a specific case where there are exactly two

source tables. Other cases are similar.

Given the original derivation query being Q as {t : 〈A1, ..., Am〉 | ∃s1, s2 T1(s1)∧T2(s2)∧

f (s1, s2, t)}.

Then the tracing query T Q1 to find provenance in table T1 for a given tuple t̄ is {s1 :

〈B1, ..., Bn〉 | ∃s2, t T1(s1) ∧ T2(s2) ∧ f (s1, s2, t) ∧ t = t̄}. The tracing query T Q2 for

provenance in table T2 is similar.

133

134

Notice that in this appendix, we use s (s′) and t (t′) to denote tuple variables; use s̄ (s̄′)

and t̄ (t̄′) to denote tuple constants.

Assume that T ′1 and T ′2 are the provenance retrieved by the tracing query. In order to

show that they are exactly the defined provenance by Definition 2.2, we only need to show

(i). T ′k ⊂ Tk (k = 1, 2)

(ii). t̄ ∈ Q(T ′1,T
′
2)

(iii). ∀s′k ∈ T ′k : Q(T ′1, ..., {s′k}, ...,T ′2) , ∅

(iv). T ′1,T
′
2 are the maximal subset of their kinds respectively

First, we show T ′k ⊆ Tk. We only show here T ′1 ⊆ T1. The other case is similar. To

show this, we only need to show ∀s′1 ∈ T ′1 : s′1 ∈ T1.

Since s′1 ∈ T ′1, s′1 is an answer tuple to the tracing query T Q1. Therefore, the formula

in T Q1 evaluates to true with the assignment of s′1 to s1. That is, ∃s2, t T1(s′1) ∧ T2(s2) ∧

f (s′1, s2, t) ∧ t = t̄ evaluates to true. That is to say, T1(s′1) evaluates to true. Since T1(s′1)

evaluates to true, s′1 ∈ T1. Therefore, ∀s1 ∈ T ′1 : s1 ∈ T1. Thus, T ′1 ⊂ T1.

Second, we show t̄ ∈ Q(T ′1,T
′
2).

Since t̄ ∈ Q(T1,T2), then the formula in Q evaluates to true with the assignment of t̄

to t. That is, ∃s1, s2 T1(s1) ∧ T2(s2) ∧ f (s1, s2, t̄) evaluates to true. Therefore, there exists

tuples s̄1 and s̄2 such that T1(s̄1)∧T2(s̄2)∧ f (s̄1, s̄2, t̄) evaluates to true. This further means,

∃s2, t T1(s̄1)∧ T2(s2)∧ f (s̄1, s2, t)∧ t = t̄ evaluates to true. Since this is just the formula in

T Q1 with s̄1 assigned to s1, therefore, s̄1 ∈ T ′1. Similarly, s̄2 ∈ T ′2. Therefore, the formula

T ′1(s̄1)∧T ′2(s̄2)∧ f (s̄1, s̄2, t)∧ t = t̄ evaluates to true. That is to say, ∃s1, s2 T ′1(s1)∧T ′2(s2)∧

f (s1, s2, t) ∧ t = t̄ evaluates to true. This means, we have found an assignment of t̄ to t,

which makes the formula ∃s1, s2 T ′1(s1)∧ T ′2(s2)∧ f (s1, s2, t) evaluate to true. Since this is

just the formula of Q executed on T ′1 and T ′2. Thus, t̄ ∈ Q(T ′1,T
′
2).

Third, we show ∀s′1 ∈ T ′1 : t̄ ∈ Q({s′1},T ′2). The other case is similar.

135

Since s′1 ∈ T ′1, therefore s′1 is an answer tuple to T Q1. That is to say, the formula in T Q1

evaluates to true with the assignment of s′1 to s1. Thus, ∃s2, t T ′1(s′1)∧T ′2(s2)∧ f (s′1, s2, t)∧

t = t̄ evaluates to true. This further means, the formula ∃s2, t T ′2(s2) ∧ f (s′1, s2, t) ∧ t = t̄

evaluates to true. Therefore, the formula ∃s1, s2, t s1 ∈ {s′1} ∧ T ′2(s2) ∧ f (s1, s2, t) ∧ t = t̄

evaluates to true. This is just the formula of Q if executed on {s′1},T ′2. Therefore, t̄ ∈

Q({s′1},T ′2). Thus, Q({s′1},T ′2) , ∅.

Fourth, we show T ′1 is the maximal subset that satisfies the three conditions above. The

other case is similar. We show that by contradiction.

Suppose T ′′1 and T ′′2 are the provenance of t̄ as defined in Definition 2.2, and T ′′1 is not

a subset of T ′1. This means, there exists a tuple s̄1 that is in T ′′1 but not in T ′1. According

to the third condition and since T ′′1 is the provenance, the formula ∃s1, s2, t s1 ∈ {s̄1} ∧

T ′′2 (s2) ∧ f (s1, s2, t) evaluates to true with the assignment of t̄ to t. That is to say, the

formula ∃s2, t T ′′2 (s2)∧ f (s̄1, s2, t)∧ t = t̄ evaluates to true. Furthermore, since s̄1 ∈ T1 due

to the first condition, the formula ∃s2, t T1(s̄1) ∧ T ′′2 (s2) ∧ f (s̄1, s2, t) ∧ t = t̄ evaluates to

true. Since T ′′2 ⊆ T2, the formula ∃s2, t T1(s̄1) ∧ T2(s2) ∧ f (s̄1, s2, t) ∧ t = t̄ evaluates to

true. This formula is just the formula in T Q1 with the assignment of s̄1 to s1. Therefore,

s̄1 ∈ T ′1. This contradicts with the assumption that s̄1 is not in T ′1. Therefore, T ′1 is the

maximal subset that satisfies the three above conditions.

So far, we have show that the tracing queries retrieve the defined provenance when there

is no aggregations in the original derivation queries. Now assume there is an aggregate at-

tribute in the target list. Then Q is like {t : 〈A1, ..., Am,G AS aggr(Am+1)〉 | ∃s1, s2 T1(s1)∧

T2(s2)∧ f (s1, s2, t.A)}, where G is an aggregate attribute, aggr is an aggregate function and

t.A is a short hand for t.A1, ..., t.Am.

Suppose we have another query Q′, which is {t : 〈A1, ..., Am〉 | ∃s1, s2 T1(s1) ∧ T2(s2) ∧

f (s1, s2, t.A)}. The only difference between Q and Q′ is that Q′ does not have the aggregate

136

attribute G in the target list.

An observation on Q and Q′ is that they have the same tracing queries, e.g., both have

a T Q1 being {s1 : 〈B1, ..., Bn〉 | ∃s2, t T1(s1) ∧ T2(s2) ∧ f (s1, s1, t) ∧ t.A = t̄.A}.

Given two tuples, tagg : 〈a1, ..., am, g〉 from Q and t : 〈a1, ..., am〉 from Q′, if we can show

that

(i). these two tuples have the same provenance according to Definition 2.2,

(ii). and they also have the same provenance retrieved by the tracing query in Equa-

tion 2.4,

(iii). and the provenance of t retrieved by the tracing query matches the provenance of t

defined by Definition 2.2,

then we can say that the provenance of tagg retrieved by the tracing query matches the

provenance of tagg defined by Definition 2.2.

The third of the above is obvious since Q′ is an aggregate-free query. In the case of

aggregate-free queries, we have shown that the provenance retrieved by the tracing query

is exactly the provenance defined by Definition 2.2.

The second of the above is also obvious since Q and Q′ have the same tracing queries.

Thus, we only need to show that the provenance of tagg is the same as that of t according

to Definition 2.2. For tagg : 〈a1, ..., am, g〉, there exists a group of tuples 〈a1, ..., am, g1〉, ...,

〈a1, ..., am, gk〉 such that g is aggr(g1, ..., gk). Since the formula parts of Q and Q′ are the

same, this same group of tuples are projected into t if Q′ is executed. Therefore, according

to the transitivity of the defined provenance, the provenance of tagg and t are both the

provenance of these group of tuples. Thus, the defined provenance of tagg and t are the

same.

Therefore, the provenance retrieved by the tracing query in Equation 2.4 is the prove-

nance defined in Definition 2.2.

137

A.2 Aggregations in Formula

We only allow aggregate functions/attributes in the target list. In Section 2.2, we claim

that if an aggregate function/attribute appears in the formula part of a query, this query can

decomposed into two formulas such that none of them has aggregations in the formula.

We give a simple example first. Assume we have a table T that has two attributes A1

and A2. We group on A1, then compute the average of values in A2, and finally select the

value of A1 and the average of the group if the average is greater than 2. Thus, the query

is of the form {t : 〈A1,G AS aggr(A2)〉 | ∃s T (s) ∧ aggr(s.A2) > 2 ∧ s = t}.

This query can be decomposed into two queries. The first query is the original one

except for the atomic formula involving aggregations. The second uses the output of the

first query and applies the atomic formula that is left out in the first query.

Thus, the first query is {t : 〈A1,G AS aggr(A2)〉 | ∃s T (s) ∧ s = t}. Assume the result

is stored in table T ′. Then the second query is {t : 〈A1,G〉 | ∃s T ′(s) ∧ s.G > 2 ∧ s = t}.

Thus, there are no more aggregate functions in the formulas.

In general, assume a query that has an aggregate function in the formula is of the

form {t : 〈A1, ..., Am〉 | ∃s1, ..., sn T1(s1) ∧ ... ∧ Tn(sn) ∧ f (s1, ..., sn, t) ∧ f ′(aggr(Am+1))},

where f ′(aggr(Am+1)) is an atomic formula specifying a condition on the aggregate value

resulting from the application of the aggregate function aggr to the attribute Am+1.

Then this query can be decomposed into two queries.The first is {t : 〈A1, ..., Am,G AS aggr(Am+1)〉 |

∃s1, ..., sn T1(s1)∧ ...∧Tn(sn)∧ f (s1, ..., sn, t)}. Assume the result is stored in S . The second

is {t : 〈A1, ..., Am〉 | ∃s S (s) ∧ f ′(s.G) ∧ s = t}.

More complex cases, such as multiple aggregate functions in the formula, can be treated

similarly. We do not detail on them here.

REFERENCES

[1] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic sets and other strange
ways to implement logic programs (extended abstract). In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, PODS ’86, pages 1–15, New York, NY, USA,
1986. ACM.

[2] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in curated databases.
In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on Management of
data, pages 539–550, New York, NY, USA, 2006. ACM.

[3] Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn Vansummeren. Curated databases. In
PODS ’08: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, pages 1–12, New York, NY, USA, 2008. ACM.

[4] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit provenance
in query and update languages. In In ICDT 2007, number 4353 in Lecture Notes in Computer Science,
pages 209–223. Springer, 2007.

[5] Peter Buneman, Sanjeev Khanna, and Wang chiew Tan. Why and where: A characterization of data
provenance. In In ICDT, pages 316–330. Springer, 2001.

[6] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and never dared to
ask). IEEE Trans. on Knowl. and Data Eng., 1(1):146–166, March 1989.

[7] Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data, pages 523–534, New York, NY, USA, 2009. ACM.

[8] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient provenance storage. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages
993–1006, New York, NY, USA, 2008. ACM.

[9] James Cheney, Umut A. Acar, and Amal Ahmed. Provenance traces. CoRR, abs/0812.0564, 2008.

[10] James Cheney, Amal Ahmed, and Umut A. Acar. Provenance as dependency analysis. In DBPL’07:
Proceedings of the 11th international conference on Database programming languages, pages 138–
152, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] Yingwei Cui. Lineage Tracing In Data Warehouses. PhD thesis, Stanford University, December 2001.

[12] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data warehouses. In In ICDE, pages
367–378, 1999.

[13] Susan B. Davidson and Juliana Freire. Provenance and scientific workflows: challenges and opportu-
nities. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
SIGMOD ’08, pages 1345–1350, New York, NY, USA, 2008. ACM.

[14] J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated xml: queries and provenance. In Maurizio
Lenzerini and Domenico Lembo, editors, PODS, pages 271–280. ACM, 2008.

[15] B. Glavic and G. Alonso. Perm: Processing provenance and data on the same data model through
query rewriting. pages 174 –185, mar. 2009.

138

139

[16] Boris Glavic and Gustavo Alonso. Provenance for nested subqueries. In EDBT ’09: Proceedings of
the 12th International Conference on Extending Database Technology, pages 982–993, New York, NY,
USA, 2009. ACM.

[17] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange with
mappings and provenance. In In Very Large Data Bases (VLDB, pages 675–686, 2007.

[18] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In PODS ’07: Pro-
ceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 31–40, New York, NY, USA, 2007. ACM.

[19] Christopher Browne Greg Smith, Robert Treat. Tuning your postgresql server.
http : //wiki.postgresql.org/wiki/Tuning Your PostgreS QL S erver/.

[20] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In
SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international conference on Management of
data, pages 157–166, New York, NY, USA, 1993. ACM.

[21] Melanie Herschel and Mauricio A. Hernández. Explaining missing answers to spjua queries. Proc.
VLDB Endow., 3:185–196, September 2010.

[22] http://www.tpc.org/tpce/default.asp. TPC BenchmarkTM E (TPC-E).

[23] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the provenance of non-
answers to queries over extracted data. Proc. VLDB Endow., 1(1):736–747, 2008.

[24] Christian S. Jensen and David B. Lomet. Transaction timestamping in (temporal) databases. In In
Proceedings of the 27th VLDB Conference, pages 441–450, 2001.

[25] Anthony Klug. Equivalence of relational algebra and relational calculus query languages having ag-
gregate functions. J. ACM, 29(3):699–717, 1982.

[26] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo. Recursive
computation of regions and connectivity in networks. In Proceedings of the 2009 IEEE International
Conference on Data Engineering, pages 1108–1119, Washington, DC, USA, 2009. IEEE Computer
Society.

[27] Benjamin Livshits. Dynamine: Finding common error patterns by mining software revision histories.
In In ESEC/FSE, pages 296–305. ACM Press, 2005.

[28] David Lomet, Roger Barga, and Rui Wang. Transaction time support inside a database engine. In In
Proceedings of the 22nd ICDE Conference, 2006.

[29] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. Why so? or why no?
functional causality for explaining query answers. CoRR, 2009.

[30] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. The complexity of
causality and responsibility for query answers and non-answers. CoRR, abs/1009.2021, 2010.

[31] Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo. Managing and
querying transaction-time databases under schema evolution. Proc. VLDB Endow., 1(1):882–895,
2008.

[32] Rani Nelken and Elif Yamangil. Mining wikipedias article revision history for training computational
linguistics algorithms, 2008.

[33] Sudarshan Raghu Ramakrishnan. Aggregation and relevance in deductive databases. In In Proceedings
of the International Conference on Very Large Databases, pages 501–511, 1991.

[34] Mikalai Sabel. Structuring wiki revision history. In Proceedings of the 2007 international symposium
on Wikis, WikiSym ’07, pages 125–130, New York, NY, USA, 2007. ACM.

140

[35] Wang-Chiew Tan. Research problems in data provenance. IEEE Data Engineering Bulletin, 27:45–52,
2004.

[36] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. Studying cooperation and conflict between
authors with history flow visualizations. In Proceedings of the SIGCHI conference on Human factors
in computing systems, CHI ’04, pages 575–582, New York, NY, USA, 2004. ACM.

[37] Fusheng Wang, Carlo Zaniolo, and Xin Zhou. Archis: an xml-based approach to transaction-time
temporal database systems. The VLDB Journal, 17(6):1445–1463, 2008.

[38] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard Thomas Snodgrass, V. S. Subrahmanian, and
Roberto Zicari. Advanced database systems. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997.

[39] Honglei Zeng, Maher A. Alhossaini, Richard Fikes, and Deborah L. Mcguinness. Mining revision
history to assess trustworthiness of article fragments. 2006.

[40] Jing Zhang and H.V. Jagadish. Lost source provenance. In EDBT ’10: Proceedings of the 13th Inter-
national Conference on Extending Database Technology, 2010.

