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ABSTRACT

Problems in Spatio–Temporal Modelling, Kriging, and Prediction of Computer Network Traffic

by

Joel M. Vaughan

Co-Chairs: George Michailidis and Stilian A. Stoev

In order to maintain consistent quality of service, engineers face the task of mon-

itoring the traffic fluctuations on the individual links making up a computer net-

work. However, due to resource constraints and limited access, it is often not

possible to directly measure the traffic on all links. This work explores a statis-

tical framework for simultaneously modeling the traffic levels on links across an

entire network and using the model to solve a variety of statistical problems, in-

cluding prediction of traffic on unobserved links and the detection of statistical

anomalies.

We begin by examining some of the important types of network traffic data

and features of the traffic. These features present interesting challenges but also

provide important structure that is used throughout this work. We next develop

a probabilistic spatio–temporal model for large scale computer networks that is

based on physical properties of computer networks. This model simultaneously

describes the traffic level on all the links of the network, and how these levels

fluctuate over time. We next move on to study the so–called kriging and predic-

xii



tion problems, where we use observed traffic measurements on a small subsets

of the links of a network to predict the traffic on other (unobserved) links in the

network. We then explore an application of this prediction technique to anomaly

detection. Finally, we develop an alternative model that more explicitly incor-

porates the dependence in traffic that arises due to certain mechanisms in the

protocols that govern network behavior. We conclude by discussing the strengths

and weaknesses of these two approaches.
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CHAPTER I

Introduction

This dissertation focuses on the statistical modeling and analysis of traffic in

computer networks. The developed methodology can be used to predict traffic

and detect anomalies as well as aide practitioners and network traffic engineers

in managing modern large–scale communication systems such as backbone com-

puter networks.

The statistical analysis of computer network traffic has received considerable

attention in the literature, but many open problems remain.

Understanding the behavior of network traffic is important for assessing net-

work performance [18] and on the potential for development of more suitable

protocols [17, 18].

Modern computer networks have become an integral part of people’s lives due

to their ubiquity and the introduction of sophisticated applications and services,

such as packet telephony and television, social and business networking, ad-

vanced customer services, etc. (For more details, see [11] and [30].) For networks

to operate in a seamless manner and carry out these functions successfully, ca-

pacity planning, fault diagnosis, traffic forecasting and provisioning and efficient

routing protocol configuration become important issues to be addressed [19]. To

1



2

do so, various types of network data can be collected that differ in their granular-

ity, accuracy, volume and delay [14].

The analysis of computer network traffic on a single link has been the focus of a

number of studies. It was discovered that traffic exhibits long–range dependence

over time, which is closely related to the presence of heavy tails in file sizes, con-

nection durations, and user and application behavior. A number of mechanistic

models that take into account individual users’ behavior were proposed to ac-

count for these empirical facts (see e.g. [18]) While the probabilistic behavior of

network traffic on a single link has been well studied, similar models have not

been developed to describe the behavior over all the links in the network simulta-

neously. Thus, an important open problem is the development of a global model

for the traffic on an entire computer network. This problem, and applications of

its solution, are the focus of this dissertation.

We begin by introducing some important terminology and background on the

function of computer networks in Chapter II. We also describe the types of data

used to study the behavior of computer network traffic and the Internet2 network,

which is used as an example throughout this dissertation. In Chapter III, we de-

velop a global probabilistic models for network traffic. We begin this chapter by

reviewing important work describing the temporal behavior of traffic on a sin-

gle link, and then develop a probabilistic model that simultaneously models the

behavior of the traffic on all links in the network. In Chapter IV, we consider

the Network Kriging problem, or the problem of using traffic measurements from

a small subset of links to predict the traffic on other, unobserved links. After

introducing the problem, we show how auxiliary network data may be used to

develop a low–dimensional model for important statistical parameters. We con-



3

clude this chapter by demonstrating how the kriging methodology may be used

for detecting anomalous traffic. In Chapter V, we discuss an alternative model

that explicitly models the feedback mechanism present in certain types of com-

puter network traffic, and the solution to the Kriging problem under this model.

Finally, in Chapter VI, we present results on real network data from Internet2,

and compare the two models.



CHAPTER II

Network Preliminaries and Data Description

This chapter provides important background information for the ideas devel-

oped in this work. In it, we discuss the basics of computer networks, relevant

protocols, and important features of the data we work with. We begin by intro-

ducing Internet2, the backbone network we analyze throughout this document.

We then describe some important concepts related to computer networks in gen-

eral, and conclude by describing the types and important properties of computer

network traffic data.

2.1 Internet2 Network Description

This section provides details concerning the Internet2 network, the network

used as an example throughout this document. Internet2 is a high speed network

that forms the backbone for educational and research institutions throughout the

United States.

The Internet2 network consists of 26 unidirectional links, which are illustrated

in Figure 2.1. In order to simplify notation, each link was assigned an id number.

Table 2.1 provides the mapping from the link id numbers to the source and desti-

nation of each link, as well as the link capacities. At the time of the data collection,

most links had a 10 Gb/s (Gigabits per second) capacity, with the exception of 4

4
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Figure 2.1: Internet2 Topology: The network consists of nine routers and 26 uni–directional links,
arranged as displayed in this figure. [10]

Link ID Source→Destination Capacity
1,2 Los Angeles→ Seattle 10 Gb/s
3,4 Seattle→ Salt Lake City 10 Gb/s
5,6 Los Angeles→ Salt Lake City 10 Gb/s
7,8 Los Angeles→ Houston 10 Gb/s
9, 10 Salt Lake City→ Kansas City 10 Gb/s
11, 12 Kansas City→ Houston 10 Gb/s
13, 14 Kansas City→ Chicago 20 Gb/s
15, 16 Houston→ Atlanta 10 Gb/s
17, 18 Chicago→ Atlanta 10 Gb/s
19, 20 Chicago→ New York 10 Gb/s
21, 22 Chicago→Washington 10 Gb/s
23, 23 Atlanta→Washington 10 Gb/s
25, 26 Washington→ New York 20 Gb/s

Table 2.1: ID’s of the 26 links of the Internet2 backbone. Odd Link ID’s correspond to the forward
and the even to the reverse; i.e. Link 15 is the Houston to Atlanta link and Link 16 is the Atlanta
to Houston link.

links: Chicago to Kansas City, Kansas City to Chicago, New York to Washington,

and Washington to New York. These four links actually were comprised of two 10

Gb/s capacity cables, for a total capacity of 20 Gb/s.

2.2 Basics of Computer Networks and Protocol Mechanisms

Fundamentally, computer networks consist of a set of nodes (typically routers,

switches, or end hosts) connected by physical links. Data, in the form of packets,

are transmitted from one node (called the source) to a second node (destination).
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Figure 2.2: A graphical representation of the routing matrix A from Internet2 at the time of analy-
sis. Black indicates a 0 in the matrix, while white indicates 1. The figure is oriented as the matrix,
with rows corresponding to links 1–12, and columns to flows 1–72.

This transmission occurs over a pre–specified collection of links, called a route.

Typically, each node in the network can serve both as a source and a destination,

resulting in J = n(n − 1) origin–destination flows, although there could be fewer.

Each of these flows takes a predetermined path of links across the network. These

routes can be summarized by a routing matrix A = (a`j)L×J , where

a`j =


1 link ` used in route j

0 link ` not used in route j
1 ≤ ` ≤ L, 1 ≤ j ≤ J .

We assume that this matrix is known and fixed in time. A graphical depiction of

the routing matrix of the Internet2 at the time of the study shown in 2.2.

We are interested in the traffic on each flow in terms of both packets and

bytes. Formally, let XPj (t) represent the the number of packets transmitted on

flow j ∈ {1, . . . ,J } during the time interval ((t − 1)h, th], for some fixed period

h > 0 that may be chosen according to context. Similarly, let XBj (t) represent the

the number of bytes transmitted on flow j ∈ {1, . . . ,J } during the time interval

((t − 1)h, th]. We are also interested in the traffic on each of the L links during
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this time interval, which we denote Y P` (t) and Y B` (t) for packets and bytes respec-

tively. These quantities may be simplified by collecting the flow and link measure-

ments into the vectors XB(t) := (XBj )1≤j≤J ,XP (t) := (XPj )1≤j≤J , Y B(t) = (Y B` (t))1≤`≤L,

and Y (t) = (Y P` (t))1≤`≤L. Additionally, define X(t) := (XP (t),XB(t))T and Y (t) :=

(Y P (t),Y B(t))T . Since the traffic on each origin–destination flow must be carried

across links, the traffic on any link ` is clearly the sum of the traffic carried by all

the flows using the link. This may be more succinctly expressed via the important

routing equations:

(2.1) Y B(t) = AXB(t) Y B(t) = AXB(t)

or, combining the packet and byte traffic loads in a single vector, we have:

(2.2) Y (t) =

 Y
P (t)

Y B(t)

 =

 A 0

0 A


 X

P (t)

XB(t)

 =

 A 0

0 A

X(t)

This relationship between X(t) and Y (t) is crucial to the modeling discussed in

upcoming sections. This relationship holds provided that the round trip time

(RTT) of the traffic traversing the network is much smaller than the length of the

interval over which the traffic is measured (h). This assumption holds for all the

data used within this work.

In addition to the relationship betweenX(t) and Y (t), there is also an important

relationship between XB(t) and XP (t) that we will exploit in upcoming sections.

We will model XB(t) and XP (t) as sums of related subflows of specific types of

traffic.

As an example network, we will refer to the Internet 2 network [10], the back-

bone education and research network in the United States. The topology is shown
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Figure 2.3: Example Origin–Destination Flows depicted on Internet2. Each colored set of arrows
represent a different Origin–Destination Flow.

in Figure 2.1. The network consists of nine routers, with 9 × 8 = 72 origin–

destination flows traveling across 26 physical uni–directional links. The network

is described in more detail in Section 2.1.

We now discuss some of the engineered features in computer networks that

motivate our models. Computer networks employ a variety of communication

protocols, organized into several layers. A complete discussion of the hardware

and software involved in heterogeneous computer networks is well beyond the

scope of this work; however, we refer the curious reader to [7] or [19] and the

numerous references within. One of the most prevalent features of the commu-

nication protocol is the layered approach. At each layer, the packets from the

previous layer are encased or wrapped into packets at the lower layer. There are

four important layers: the application layer, which consists of the data the user or

end–system interacts with; the transport layer, which describes the mechanism by

which this data is transmitted; the network layer, describing how packets traverse

heterogeneous, independent, and interconnected networks; and finally the link

layer, where the data is packaged to traverse the physical medium.
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The two most relevant protocols to this work are transport layer protocols: the

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP

is used when the reliability of the data is essential, such as in file transfer and

ssh. This protocol includes an acknowledgment mechanism to ensure accurate

delivery. Whenever the destination host receives a packet, it sends a small packet

to the source to acknowledge the receipt of the packet. This packet, known as an

acknowledgment packet, or ACK, allows the source to ensure that the destination

has received all the packets in the correct order. Thus, TCP traffic on a particular

origin–destination flow induces traffic on the reverse flow. On the other hand,

UDP is used when speed is more important than reliability, such as Voice over IP

(VoIP) or streaming video. Data sent via the UDP protocol does not have a built–

in reliability mechanism other than the ability of the destination user to request a

retransmission if a substantial amount of data is lost.

2.3 Data Description

In this section, we discuss the two types of data available and illustrate the

features relevant to the modeling decisions discussed later in this thesis.

Netflow Data: Netflow is a packet sampling technology developed by Cisco Sys-

tems [5]. Netflow data is collected at each of the nine routers that comprise

Internet2. (Similar technologies exist for hardware from other manufacturers.)

Netflow records consist of packet header information for similar packets over a

short period of time. This header information includes such things as source and

destination IP address and port, time, number of packets, number of bytes, and

transmission protocol. An example of the raw data, together with its fields, may

be seen in Table 2.2. Pairing this information with some additional auxiliary in-
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Figure 2.4: Example traffic trace of Origin–Destination Flows reconstructed from Netflow mea-
surements.

formation, it is possible to create a mapping of IP (Internet Protocol) addresses

to the nine routers as sources and/or destinations. With the mapping, it is then

possible to assign each Netflow record to one of the (72) origin–destination flows.

This allows us to examine the data from a variety of perspectives. It allows us to

reconstruct time series for the origin–destination flows directly, in terms of either

packets or bytes, i.e. to recover XB(t) or XP (t). Additionally, it allows us to further

divide these flows by protocol, packet size, both of these features, or even other

features in the data. It is with this technique that we obtain the data displayed

in both Figures 2.6 and 2.9. Examples of reconstructed time series are shown in

Figure 2.4.

Netflow data does have some major limitations. The data take non-trivial re-

sources to collect, and as a result, a subset of sample packets are recorded rather

than all packets traversing a given node. Once the data have been recorded and

transmitted, it takes even more resources to process the data in order to recon-

struct the traffic flows as described above. Last but not least, the small sampling

rate and implementation issues lead to highly variable and often biased estimates
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Figure 2.5: Example Origin–Destination Flows depicted on Internet2. Each colored set of arrows
represent a different Origin–Destination Flow.

of traffic flows. Thus, these are excellent data to learn the structure of a traffic

model, but cannot be used directly for on-line traffic prediction or model estima-

tion.

Link Data: Each physical link in the network may be directly monitored, and

counters are maintained for both the number of packets and the amount of data

(in bytes) that traverse the link over a given period of time. Compared to the

Netflow data, this data is easier to collect, process, store, and transmit without

the same strain on network resources. Nonetheless, the resource demand for such

data does increase with the size of the network. Figure 2.5 illustrates such traffic

traces.

Relevant Protocols: Throughout this work, we focus exclusively on only two

transport protocols: TCP and UDP. Table 2.3 shows the distribution of transport

protocols used by the traffic, calculated via analysis of the Netflow data. We see
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Protocol: % Packets % Bytes
TCP: 86 92
UDP: 12 6

Other: 2 2

Table 2.3: Percentage of traffic carried by transport protocols. Note that TCP and UDP combine to
carry approximately 98% of the total traffic, as measured in terms of either bytes or packets.

that these two protocols together carry approximately 98% of the total traffic,

measured both in terms of packets or bytes. Therefore, we are not losing a sub-

stantial amount of traffic by ignoring the other protocols.

Packet Size Distribution: One important feature of the data is the difference in

packet size distribution between TCP packets and UDP packets. This difference is

shown in by the empirical cumulative distribution functions shown in Figure 2.6.

TCP packets tend to have most of the mass near two values, corresponding to the

maximum packet size of 1500 bytes (the transmitted payload) and the smallest

packet size of 40 bytes (ACKs). The UDP traffic, on the other hand, has a much

more uniform distribution across packet sizes. The empirical probability mass

functions are shown with more detail in Figure 2.7. Although there are several

sizes that have noticeably large probability, there are large regions where there

exists a non–trivial mass.

Forward/Reverse Flow Relationship: The TCP protocol discussed in Section 2.2

induces a strong relationship between forward and reverse flows. In particular,

the small packets on a given flow j are to a large degree the ACK packets of the

reverse flow, denoted jr . This relationship is clearly seen in the data, and illus-

trated by Figure 2.9. On this pair of forward/reverse flows (Atlanta to Chicago

and Chicago to Atlanta), it is clear that the small size packets (ACKs) follow the

same pattern as the large (payload) packets on the corresponding reverse flow. As
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Figure 2.6: Empirical CDF of packet size for TCP and UDP over two flows. Note that the packet
size distribution of the TCP subflows is primarily bi–modal, while the UDP subflows have a more
spread–out distribution across packet sizes.

Figure 2.7: Empirical PMF functions for for UDP packets on representative flows (11 and 14).
Notice the concentration near 50 bytes, as well as several other spikes at certain sizes.
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Figure 2.8: The acknowledgment mechanism in TCP traffic. The solid lines show the TCP traffic
generated by the Source, with the payload packets traveling from the source to the destination,
and the ACK packets being sent back from the destination to the source. The so–called reverse
flow sends packets from the Destination to the Source, causing reverse packet to be sent from the
Source to the Destination. Thus, the total TCP traffic moving in a given direction consists of the
payload data for the forward flow and the acknowledgments for the reverse flow.

suggested by the packet transport mechanism, this pattern is not present in the

UDP packets. This is a fundamental mechanism in understanding the statistical

behavior of computer network traffic.
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Figure 2.9: Forward/Reverse Relationship for TCP Traffic. These figures depict the TCP subflows
for O/D flows 1 and 2. In particular, notice the relationships between the payload subflows (black)
with the ACK subflows (blue). The ACK time series tends to follow the same pattern as the payload
series on the reverse link.

Figure 2.10: Forward/Reverse Relationship for TCP Traffic. These figures depict the TCP subflows
for O/D flows . Notice that although the temporal pattern of these flows are different from those
displayed in Figure 2.9, the relationship between the subflows remains the same.



CHAPTER III

Global Probabilistic Models for Network Traffic

In this chapter, we first review the existing state–of–the–art probabilistic mod-

els of single link/flow traffic. These include the celebrated on/off models leading

to the asymptotic approximation of traffic with fractional Brownian motion.

We introduce a novel model for the global traffic on the network, which rep-

resents the traffic behavior on all links. The model is offered as a scaling limit of

on/off sources from all possible origin/destination flows on the network. It faith-

fully captures the observed temporal behavior of such traffic, but also models the

dependence of traffic volumes across different links in the network, which arise

from the underlying routing mechanisms of the network.

3.1 Single–Link Models of Computer Network Traffic

In this section we provide basic definitions and properties of Fractional Brown-

ian Motion, Fractional Gaussian Noise, and Long Range Dependence. We discuss

the connection between self-similarity and long range dependence, and explore

how long range dependence arises in a networking context.

17
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3.1.1 Fractional Brownian Motion and Long Range Dependence

Definition III.1. Fractional Brownian Motion (fBm) is a zero mean Gaussian pro-

cess {X(t)}t∈R which is self similar and has stationary increments. A process

{X(t)}t∈R is considered to have stationary increments if

(3.1) {X(t + h)−X(h)}t∈R
d= {X(t)−X(0)}t∈R,∀h ∈R.

and {X(t)}t∈R is considered self-similar with self-similarity exponent H > 0 if

(3.2) {X(ct)}t∈R
d= {cHX(t)}t∈R,∀c > 0.

Here, d= means equality in finite dimensional distributions (f.d.d.).

Using (3.1) and (3.2) above, one can show that if {X(t)}t∈R is fBm, then

Var(X(t)−X(s)) = Var(X(t − s)) = σ2|t − s|2H , where σ2 = Var(X(1)).

Thus, up to a multiplicative constant σ2, there is at most one zero-mean Gaus-

sian process that satisfies (3.1) and (3.2) above. It is denoted BH (t) = {BH (t)}t∈R,

and its covariance is

(3.3)

Cov(BH (t),BH (s)) = EBH (t)BH (s) =
σ2

2
(|t|2H+|s|2H−|t−s|2H ), where σ2 = Var(BH (1))

One can show such processes exist provided H ∈ (0,1]. If H = 1/2, the fBm

{B1/2(t)}t∈R has independent increments and is the Brownian Motion. If σ2 = 1, it

is the Standard Brownian Motion. The caseH = 1 is degenerate since then BH (t) =

tBH (1), for all t ∈ R. If, H , 1/2, the increments of {BH (t)}t∈R are dependent. Two
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Figure 3.1: Standard Brownian Motion and Fractional Brownian Motion with three different val-
ues of H.

distinct regimes are encountered. If 0 < H < 1/2, the increments of {BH (t)}t∈R

are negatively dependent and the sample paths are rather irregular. However, if

1/2 < H < 1, then the increments of {BH (t)}t∈R are positively dependent and the

sample paths are smoother. See Figure 3.1 for examples of the behavior of fBm

with different values of H .

One can use the Kolmogorov-Čentsov Theorem (e.g. Theorem 2.8 of Karatzas

and Shreve [12]) to show that there is a version of {BH (t)}t∈R with β-Hölder con-

tinuous paths for all β ∈ (0,H). This is proved as Proposition 2.4 by Taqqu in

[23]. It is not trivial to show that fBms exist. Namely, that the function in (3.3)

is positive semi-definite, and therefore it is a valid auto-covariance function. See

Proposition 2.2 of Taqqu [23] for a proof.

Alternatively, one can directly construct a process {BH (t)}t∈R which is H-self

similar and has stationary increments by using L2 stochastic integrals. Namely,

let

(3.4) BH (t) :=
∫
R

(
(t − s)H−1/2

+ − (−s)H−1/2
+

)
dW (s)

where (g(x))+ denotes the positive part of g(x), and {W (s)}s∈R represents stan-

dard Brownian Motion. It can be shown that the integrand fH (t, s) := (t − s)H−1/2
+ −

(−s)H−1/2
+ is such that

∫ (
fH (t, s)

)2
ds < ∞ for all t ∈ R and H ∈ (0,1]. Thus, the
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Figure 3.2: Fractional Gaussian Noise with four values of H.

stochastic integral in (3.4) is well defined. One can also show that the resulting

zero-mean Gaussian process BH (t) = {BH (t)}t∈R has stationary increments and is

self-similarity with exponent H ∈ (0,1]. For details, see e.g. Taqqu [23] or Em-

brechts and Maejima [9].

Definition III.2. Let {BH (t)}t∈R be fBm. The time series of the increments of BH (t):

(3.5) Y (k) = BH (k)−BH (k − 1), k ∈Z, H ∈ (0,1].

The time series {Y (k)}k∈Z is said to be Fractional Gaussian Noise (FGN). From

(3.3), one can show that:

(3.6) Cov(Y (k + i),Y (i)) =
σ2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
=
σ2

2
∆2(|k|2H )

where ∆2 = (I −B)2 is the second difference operator.

For sample paths of FGN, see Figure 3.2. For further discussion of the proper-

ties of FGN, see Taqqu [23].

We now define long range dependence, one of the important properties of FGN.

Definition III.3. A finite-variance stationary time series Z = {Z(k)}k∈Z is said to

be Long Range Dependent (LRD) if

(3.7)
∞∑
k=1

|Cov(Z(k),Z(0))| =∞.
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A Fractional Gaussian Noise time series {Y (k)}k∈Z, with H ∈ (1/2,1) is LRD.

Indeed, by using the properties of finite difference and (3.6), one can show that

for H , 1/2,

Cov(Y (k),Y (0)) ∼ σ2H(2H − 1)|k|2H−2 as k→∞.

Thus, for 1/2 < H < 1, we have

(3.8)
∞∑
k=1

Cov(Y (k),Y (0)) =∞

i.e, the Fractional Gaussian Noise time series is LRD by Definition III.3.

3.1.2 The Connection Between Self Similarity and Long Range Dependence

To illustrate the close connection between LRD and self similarity, suppose

that {Y (k)}k∈Z is a zero-mean Gaussian time series which is LRD. In particular,

suppose that

(3.9) γ(k) = Cov(Y (k),Y (0)) ∼ ck2H−2 as k→∞, with H ∈ (1/2,1).

Note that
∑
k |γ(k)| =∞ Consider the cumulative sum:

Y ∗(t) =
[t]∑
k=1

Y (k)

We have that

(3.10) Var(Y ∗(T t)) = [T t]σ2
Y + 2

[T t]−1∑
k=1

([T t]− k)Cov(Y (k),Y (0))

By using (3.9) and the fact that H ∈ (1/2,1), we have the following scaling limit

result.

Proposition III.4. For all H ∈ (1/2,1) we have:

(3.11)
{ 1
T H

Y ∗(T t)
}
t≥0

f .d.d
→ {BH (t)}t≥0 as T →∞
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where {BH (t)}t≥0 is a fractional Brownian motion, as in (3.3), with variance Var(BH (t)) =

σ2 = c/(H − 1/2), where c is as in (3.9).

Proof. The process
{
T −HY ∗(T t)

}
t≥0

is Gaussian and has stationary increments. There-

fore, in order to prove (3.11), it is enough to show that

Var
( 1
T H

Y ∗(T t)
)
→ Var(BH (t)) as T →∞.

By (3.10) and (3.9), we have that

It is important to observe the following with regards to the connection between

long range dependence and self similarity.

• LRD time series are asymptotically Self-Similar, in the sense of Proposition

III.4.

• The increments of Y ∗(T t) correspond to block-sums of the time series {Y (k)}k∈Z.

The covariance in (3.11) indicates that

Y ∗(T k)−Y ∗(T (k − 1))
T H

=
1
T H

[T k]∑
i=[T (k−1)]+1

Y (i)

converges to FGN in finite dimensional distributions. Thus, at sufficiently

large time scales the LRD series {Y (k)}k∈Z behaves statistically like the FGN.

Note that if {Y (k) = BH (k) − BH (k − 1)} itself was an FGN, then by the self-

similarity of the fBm for all integer T ,{ 1
T H

(BH (T k)−BH (T (k − 1)))
}
k∈N
≡

 1
T H

T k∑
i=T (k−1)+1

Y (i)


k∈N

d= {Y (k)}k∈N ∀T ∈Z

For more details, see [23].

3.1.3 Importance of Long Range Dependence in Networking Context

Initially, work done to analyze network traffic relied on traditional time series

methods, often assuming short range dependence. However, much work has been
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done to show that many types of high speed Internet traffic exhibits long range

dependence. See, for example, [29], [28], and [18].

As an example, consider Figure 3.3. Following the methods in [29], this graph

compares actual network traffic and simulated Poisson traffic with the same vari-

ance. Here, the traffic time series consists of the average number of packets

traversing a link during 1 millisecond intervals. The data was collected from

the UNC campus link on April 8, 2002, starting at 9:30 PM. The graph shows

30,000 observations, corresponding to 30 seconds worth of measurements. To

simulate Poisson traffic, the variance of these ten thousand measurements was

calculated, and then used to generate 30,000 Poisson random variables, having

that mean. The mean of each series is then subtracted off, leaving two mean zero

series, showing the average traffic over 1 ms intervals. These two series are shown

in the the first row of Figure 3.3. In order to be able to compare the right left- and

right- hand plots we keep their y axes the same in this and the following plots.

Next, block averages of 100 consecutive observations are taken, resulting in series

that show the average number of packets over 100 ms intervals. These series are

shown in the second row of 3.3. This process is repeated, resulting in series that

show the average number of packets over 200 ms and 2 s intervals. Note that the

variance of the actual traffic is decreasing noticeably slower than that of the sim-

ulated Poisson traffic. Thus, the LRD nature of the measured traffic is apparent.

The On/Off Model of LRD Traffic

Following Willinger, Paxson, Riedi, and Taqqu [28], we now describe the classic

On/Off user-level traffic model. In this particular model, we assume that users

of a network application switch between periods of activity (“On periods”) and

periods of inactivity (“Off periods”). While active (On), users are assumed to
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Figure 3.3: Comparison of Actual Traffic from April 8, 2002 at 9:30 PM to simulated Poisson traffic
with the same mean at different levels of aggregation.



25

send packets with a constant rate. Thus, the traffic generated by each user can be

represented as a stationary process {X(t)}t≥0, such that :

X(t) =


1 if the user is ON at time t

0 if the user is OFF time t

X(t) can be viewed as the reward at time t, and the process {X(t)}t≥0 is an al-

ternating renewal reward process. Assume that the On periods are i.i.d. with

cumulative distribution function Fon(x), and that the Off periods are i.i.d. with

cdf Fof f . Let F̄(x) = 1− F(x). Furthermore, assume that the lengths of On and Off

periods are independent, and an Off period always follows an On period. Let σ2
on

and σ2
of f denote the variances of these processes.

In the model, the distribution of the On and Off times may be either finite vari-

ance, or heavy-tailed (finite mean but infinite variance). That is, as x→∞, either

F̄on(x) ∼ conx−αon with 1 < αon < 2,or σ2
on < ∞. Similarly, assume that F̄of f (x) ∼

cof f x
−αof f as x → ∞ with 1 < αof f < 2,or σ2

of f < ∞. Here, con and cof f are con-

stants. In the case that 1 < α < 2, the corresponding On or Off times have heavy-

tailed distributions, with finite mean but infinite variance. (The Pareto distribu-

tion would be such an example.) In this case, the corresponding on or off times

could be long with high probability. The case σ2 < ∞ represents the situations

where the on or off times are not likely to last long. Here the distribution might

be exponential or Poisson.

The model then considers M independent and identically distributed sources

using the same network flow. The aggregate load at time t is then given by∑M
k=1Xk(t). If this load is properly normalized, then by the Central Limit The-

orem,
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(3.12) L lim
M→∞

1
√
M

M∑
k=1

(Xk(t)−E(Xk(t))) = G(t), t ≥ 0.

where “L lim” denotes the limit in finite dimensional distributions, and the limit

{G(t)}t≥0 is a mean zero stationary Gaussian process.

If one now aggregates over time, then

(3.13) L lim
T→∞

1
T H

∫ T t

0
G(u)du = σBH (t), t ≥ 0.

with self-similar parameter

(3.14) H =
3−min(αon,αof f )

2

where “L lim” denotes the limit in finite dimensional distributions, and the limit

{BH (t)}t∈R is Fractional Brownian Motion. This result is proved by Taqqu, Will-

inger, and Sherman as Theorem 1 in [25].

These results show us that, under this model, if we allow the number of users

sending traffic over a given network flow first increase to infinity, and then look

at the resulting load over increasingly larger time scales, the aggregated total

load, centered and rescaled, converges to Fractional Brownian motion in the limit.

When αon,αof f ∈ (1,2), then H ∈ (1/2,1), and the fBm BH (t) has LRD increments.

This is in line with the empirical findings that network traffic time series are

LRD. Relation (3.14) indicates that the heavier the tails at the on/off periods, the

stronger the dependence in the increments of BH (t).

Let X∗(T ,M) =
∫ T

0

∑M
k=1

(
Xk(t)−EXk(t)

)
dt denote the cumulative traffic fluctu-

ations over the period [0,T ] over a link shared by M independent users. Here,

X∗(T ,M) corresponds to the cumulative traffic fluctuation, since we subtract the
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mean. The limit result in (3.13) is an asymptotic statement about traffic fluctua-

tions. Our focus here is on the study of the statistical properties of the fluctuations

of the traffic about its mean.The above result suggests that

(3.15)
1

T H
√
M
X∗(T t,M)

d≈ BH (t),

where “
d≈” means approximate in finite dimensional distributions, and BH (t) is

fBm, as usual. Therefore, if a link is shared by many users, the cumulative fluc-

tuations about the average traffic rate are well modeled by fBm. Thus, provided

that one focuses on sufficiently large time scales, fBm is a reasonably good model.

In practice, one often studies the stationary time series

(3.16) X(k,∆) = X∗(∆k,M)−X∗(∆(k − 1),M)

representing the traffic fluctuations per time interval ∆. Thus the limit theory

suggests that {X∆(k)}k∈Z is well-modeled by FGN for sufficiently large time scales

∆.

One can let T and M grow to infinity simultaneously. Let M(T ) be an integer-

valued function of T that is non-decreasing in T such that M(T )→∞ as T →∞,

and α = min(αon,αof f ). Provided that

lim
T→∞

M(T )/T α−1 =∞,

the LHS of (3.15) still converges to fBm. This case is referred to as the “fast growth

regime” in the literature, and will be the focus of much of the following work.

There is another case, called the “slow growth regime”, in which

lim
T→∞

M(T )/T α−1 = 0

as T and M(T ) grow simultaneously to infinity. In this case, the LHS of (3.15) is
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no longer fBm, but is rather a stable Lèvy motion. These results are discussed in

Mikosch, Resnick, Rootzén, and Stegeman [15] or in Willinger et al [28].

The On/Off model as described above, and the popular M/G/∞ model have

been extensively tested and validated against TCP connection level data on links

in networks with various topologies. For more details, see [18] and the related

theorems.

3.2 A Spatio–Temporal Model for Network–Wide Traffic

In this section, we use the results concerning the traffic fluctuations on a single

link of a network to motivate a similar network-wide model. Unlike previous net-

work level models, this is a physical model on the user level similar in spirit to the

single-link models, but extends to the network as a whole. To describe the model,

we introduce Functional Fractional Brownian Motion, an abstract probabilistic

framework to succinctly represent the model, and discuss some of its properties.

3.2.1 Motivation

Let Xj(t) denote the traffic intensity at time t over route j. Thus, X∗j (T ) :=∫ T
0
Xj(t)dt represents the cumulative traffic over route j during the time interval

[0,T ]. Although it is natural to view traffic in continuous time, in practice the

measurements are taken in discrete time. That is, we observe

Xj(k;∆) := X∗j (∆k)−X∗j (∆(k − 1)) =
∫ ∆k
∆(k−1)

Xj(t)dt, for k = 1,2, . . .

where ∆ > 0 is a particular measurement time scale (e.g. 1 ms, 1 second, etc.). Let

now Y`(t) denote the traffic intensity observed on link ` at time t. As above, we

set

(3.17) Y ∗` (t) :=
∫ T

0
Y`(t)dt
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and denote by

(3.18) Y`(k;∆) := Y ∗` (∆k)−Y ∗` (∆(k − 1)) =
∫ ∆k
∆(k−1)

Y`(t)dt, for k = 1,2, . . .

the time series of link measurements over time scale ∆. As mentioned earlier, the

routing matrix provides a natural connection between the typically unobserved

traffic over all possible routes Xj(t), j = 1, . . . ,J and the physical traffic observed

on all possible links Y`(t), ` = 1, . . . ,L. From the routing equation (2.2), we have:

(3.19) Y (t) = AX(t), Y ∗(t) = AX∗(t), and Y (k;∆) = AX(k;∆).

for all t ≥ 0, k ∈N, ∆ > 0, where Y (t) =
(
Y`(t)

)
1≤`≤L

, X(t) =
(
Xj(t)

)
1≤j≤J

and sim-

ilarly Y ∗(t), X∗(t), Y (k;∆), and X(k;∆ represent vector quantities for the traffic

characteristics measured over all links and all routes, respectively. This represen-

tation is valid under the assumption that traffic propagates through the network

almost instantaneously. This is not an unreasonable assumption when one fo-

cuses on modeling time scales of order greater than the round trip time (RTT) of

the network. For example, the round trip time on the Internet2 backbone are low

(on the order of microseconds) because of the large bandwidth. [3] On the other

hand, the relevant time scales for detecting anomalies and attacks are typically

greater than the RTT.

Many statistical models for the traffic on a single link or route are available,

such as the previously mentioned On/Off models and the M/G/∞ models. The

omnipresent phenomenon of the temporal dependence of network traffic both in

these models and in real data is that of Long Range Dependence. Little is known,

however, about the interplay between space and time, that is, about the statistical

dependence of traffic on different links seen at the same or different instants of
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time. Our goal is to develop a statistical model for the network traffic (Y`(t))
L
`=1

that can capture the spatial and temporal dependence structure simultaneously.

A Physical User Level Model

Currently, we make the following assumptions to construct the statistical model:

• Xj(t), j = 1, . . . ,J are mutually independent. That is, the traffics over different

routes are independent even if these routes share some links.

• Xj(t) =
∑Mj

i=1Xij(t), the traffic on route j is the sum of the traffic generated by

Mj independent users sharing this route.

• The individual user traffic intensity is modeled by an on/off renewal reward

process

Xij(t) =


1 if the ith user on route j is transmitting at time t

0 otherwise

• As in the single-link model, we assume that the on/off periods are indepen-

dent and that they have heavy tails (infinite variance) but finite means. See

the discussion and references in Section 2.3.

By Theorem 1 in [25] (see also (3.12) and (3.13) above), we have the following

limit result for the cumulative traffic fluctuation over route j. Namely,

(3.20) L lim
T→∞

1
T H

∫ T τ

0

(
L lim
Mj→∞

1√
Mj

Mj∑
i=1

(Xij(t)−EXij(t))
)
dt = {BH (τ)}τ≥0

or equivalently,

(3.21) L lim
T→∞

L lim
Mj→∞

1
T H

√
Mj

∫ T τ

0

(
Xj(t)−EXj(t)

)
dt = {BH (τ)}τ≥0

Thus, over a single route, we have for large T ,

(3.22)
1
T H

X∗j (T t)
d≈ BH (t)
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or, in terms of the increments over time scale ∆,

(3.23)
{ 1
∆H

Xj(k,∆)
}
kN

d≈ {BH (k)−BH (k − 1)}k∈N

for large ∆. Relation (3.21) and the continuous mapping theorem imply the fol-

lowing result.

Theorem III.5. Assume that all routes are of the same type, or Xj(t) are i.i.d processes

in j, and that all routes are balanced, that is, that Mj =M + o(M). Then

L lim
T→∞

L lim
M→∞

1

T H
√
M

(
Y ∗` (T t)−EY ∗` (T t)

)
= A

(
BH,j(t)

)
where BH,j = {BH,j(t)}t≥0, for j = 1, . . . ,J are independent fBm’s withH = (3−min(αon,αof f ))/2.

For more general results, when Mj = Mj(T ) may grow at different rates for

different routes, see D’Auria and Samorodnitsky [8]. Although their setting is

different, the results apply in this case.

In attempting to model the behavior of the networks, a practical issue arises.

Although the processes take place in continuous time, measurements are neces-

sarily made in discrete time. Thus, in working with real and simulated data, it

becomes necessary to work with these measured time series. It is important that

the model reflect this. Thus, we define a discretization of the path level processes.

First, define cumulative traffic for a given origin–destination pair as

X∗j (∆k) =
∫ ∆k

0
Xj(t)dt for k ∈Z+

It is then possible to define the origin–destination flow traffic discretized over an

interval as

X(k) = X∗j (∆k)−X∗j (∆(k − 1)) for k ∈Z+
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Then let

Y ∗`j (k) =
∑
i

aijX
∗
j (k).

Y ∗(k) then represents the link-level volume over a period of time ∆, which is the

measurement that are made.

3.2.2 Functional Fractional Brownian Motion

We now describe an abstract probabilistic framework which provides a suc-

cinct representation of the resulting traffic model described above. Consider a

measure µ defined on an abstract measurable space (E,E). Let

L2H (µ) :=
{
f :

∫
E
|f (x)|2Hdµ(x) <∞

}
,

H ∈ (0,1) and consider the functional

(3.24) φ(f ,g) ≡ σ
2

2
(‖f ‖2HL2H + ‖g‖2HL2H − ‖f − g‖2HL2H ),

where f ,g ∈ L2H (µ) and 0 < H < 1. The functional φ(f ,g) resembles the auto-

covariance of the ordinary fBm, although f and g are now functions rather than

scalars. In fact, as its counterpart in (3.3), the functional φ(f ,g) as defined above

is positive semi-definite (Lemma III.11). This fact allows us to define a Gaussian

process with covariance given by (3.24) indexed by functions.

Definition III.6. A zero mean Gaussian process B = {B(f )}f ∈L2H (µ), indexed by the

functions f ∈ L2H (µ) is said to be a Functional Fractional Brownian Motion (f-fBm)

if it has the covariance given by

EB(f )B(g) = Cov(B(f ),B(g)) = φ(f ,g)

The following result shows some basic properties of the f-fBm.
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Proposition III.7. Let B = {B(f )}f ∈L2H (µ) be a f-fBm with the measure µ and exponent

H . Then, we have:

(i) For a fixed f ∈ L2H (µ), the process {B(tf }t≥0 is a fractional Brownian motion with

self-similarity parameter H .

(ii) f-fBm has stationary increments; i.e for all h ∈ L2H (µ), we have

(3.25) {B(f + h)−B(h)}f ∈F
d= {B(f )}f ∈F

(iii) B(f ) and B(g) are independent if f · g = 0 .

Proof. Statement (i) follows from (3.24) by noting that

Cov(B(tf ),B(sf )) =
σ2‖f ‖2H

L2H

2

(
|t|2H + |s|2H − |t − s|2H

)
,

which is the autocovariance of an fBm.

To prove (ii), it is enough to show that

Cov(B(f + h)−B(h),B(g + h)−B(h)) = Cov(B(f ),B(g)),

for all f ,g and h in L2H (µ). In view of (3.24), we have that Cov(B(f +h)−B(h),B(g+

h)−B(h)) equals:

Cov(B(f + h),B(g + h)) + Cov(B(h),B(h))−Cov(B(f + h),B(h))−Cov(B(g + h),B(h))

=
σ2

2

(
‖f + h‖2HL2H + ‖g + h‖2HL2H − ‖f + h− g − h‖2HL2H + 2‖h‖2HL2H − ‖f + h‖2HL2H

−‖h‖2HL2H + ‖f + h− h‖2HL2H − ‖g‖2HL2H + ‖h‖2HL2H − ‖g + h− h‖2HL2H

)
=
σ2

2
(‖f ‖2HL2H + ‖g‖2HL2H − ‖f − g‖2HL2H )

= Cov(B(f ),B(g)).

(iii): Let f ,g ∈ L2H (µ). If f · g = 0, then

‖f − g‖2HL2H = ‖f ‖2HL2H + ‖g‖2HL2H .
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This, in view of (3.24), yields Cov(B(f ),B(g)) = 0, which implies the independence

of B(f ) and B(g) by multivariate normality. This completes the proof.

The following result shows that the functional fractional Brownian motion has

an integral representation similar to that of the ordinary fBm.

Proposition III.8. Let B = {B(f )}f ∈L2H (µ) be a f–fBm associated with the measure space

(E,E ,µ) and with self–similarity parameter H ∈ (0,1] as in Definition III.6. Then, we

have that

(3.26) B(f ) =
"
R×E

{
(f (u)− s)H−1/2

+ − (−s)H−1/2
+

}
W (du,ds),

where W (du,ds) is a Gaussian random measure with control measure µ(du)ds, that is

EW (du,ds)2 = µ(du)ds, and where the coefficient σ2 in (3.24) is given as:

(3.27) σ2 =
∫
R

(
(1− s)H−1/2

+ − (−s)H−1/2
+

)2
ds.

Proof. As for the case of ordinary fBm, by using the Fubini’s theorem, one can

show that the integrand in (3.26) belongs to L2(dsdµ) for all f ∈ L2H (µ). Thus,

B = {B(f )}f ∈L2H (µ) is a well–defined zero mean Gaussian process.

By using the integral representation in (3.26) one can show that B has station-

ary increments. Thus, to prove that B has the auto–covariance of an f-fBm in

(3.24), it is enough to show that

(3.28) Var(B(f )) = σ2‖f ‖2HL2H (µ), for all f ∈ L2H (µ).

Indeed, this follows from the fact that

Cov(B(f ),B(g)) =
1
2

(
Var(B(f ) + Var(B(g))−Var(B(f − g))

)
,

since B(f )−B(g) d= B(f − g).

We will now complete the proof by showing (3.28). By using a change of vari-

ables and the Fubini’s theorem, we obtain:
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Var((BH (f )) = E(BH (f ))2 =
∫
R×E

(
(f (u)− s)H−1/2

+ − (−s)H−1/2
+

)2
ds du

=
∫
E
f (u)2H

∫
R

(
(1− s)H−1/2

+ − (−s)H−1/2
+

)2
ds du

=
∫
E
σ2f (u)2Hdu = σ2‖f ‖2HL2H ,

where σ2 is as in (3.27).

An Example: Consider now a discrete space E = {1, . . . ,J } where the elements of

the space corresponding to routes. Let µ be the counting measure. Let f`(u) = 1A` ,

where A` is the set of all routes that use link ` for ` ∈ {1, . . . ,L}. Observe that

now the routing matrix can be represented as A =
(
f`(j)

)
1≤`≤L,1≤j≤J

. That is, the

rows of the routing matrix A are now viewed as functions. Consider the f-fBm

B = {B(f )}f ∈L2H (µ) and let Z∗(t) =
(
B(tf`)

)
1≤`≤L

. Because of the on/off scaling limit

theorems introduced in the previous section, and the assumptions set forth at the

beginning of this section, when we consider the cumulative traffic over a link, we

have the following relationship:

(3.29) y∗(t)
d≈ Z∗(t)

To be more precise,

Theorem III.9. Consider J routes, where each route j has Mj on/off sources. The

cumulative traffic on route j is given by

X∗j (t) =
Mj∑
i=1

X∗ij(t)

as before. If we let Mj =M for all j, we have

(3.30) L lim
T→∞

L lim
M→∞

1
T H

1
√
M

(
Y ∗(T t)−µY (T t)

)
= Z∗(t).

whereZ∗(t) =
(
B(tf`)

)
1≤`≤L

, Y ∗(t) is as defined in (3.17), and µY (t) = EY ∗(t) = tEY ∗(1).
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The above model provides a spatial, temporal,and spatio-temporal correlation

structure of the fluctuations of traffic over links by means of the f-fBm found in

the limit. The next result gives explicit formulas for these correlations.

Proposition III.10. Let Y ∗` (t) = B(tf`), where B(·) is an f–fBm with self-similarity

parameter H ∈ (0,1). The following three expressions give the temporal, spatial, and

spatio-temporal correlation structure of the increment time series Y`(k;∆) = Y ∗` (k∆) −

Y ∗` ((k − 1)∆), k ∈Z.

(i) Spatial Correlations:

(3.31) Cov(Y`1
(k;∆),Y`2

(k;∆)) = σ2∆2H |A`1
∩A`2

|

(ii)Temporal Correlations:

(3.32) Cov(Y`1
(k;∆),Y`1

(j;∆)) =
σ2|∆|

2
γH (k − j)|A`1

|

(iii)Spatio-temporal Correlations:

(3.33) Cov(Y`1
(k;∆),Y`2

(j;∆)) =
σ2|∆|2H

2
γH (k − j)|A`1

∩A`2
|

where

(3.34) γH (k) = |k − 1|2H + |k + 1|2H − 2|k|2H , k ∈Z

is the autocovariance of a standard fGn with self-similarity parameter H ∈ (0,1)

Proof. The proof of (ii) follows from Proposition III.7, part (i). The temporal cor-

relation for the same link at different times is simply the correlation of an fBm.

To prove (iii), first note that:

EBH (tf`1
)BH (sf`2

) =
σ2

2

(
‖tf`1
‖2H + ‖sf`2

‖2H − ‖tf`1
− sf`2

‖2H
)

(3.35)

=
σ2

2

(
|t|2H |A`1

|+ |s|2H |A`2
| − |t|2H |A`1

\A`2
|

−|s|2H |A`2
\A`1
| − |t − s|2H |A`1

∩A`2
|
)
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We then see that:

Cov(Y`1
(k;∆),Y`2

(j;∆))

= Cov(Y ∗`1
(∆k)−Y ∗`1

(∆(k − 1)),Y ∗`2
(∆j)−Y ∗`2

(∆(j − 1)))

= Cov(Y ∗`1
(∆k),Y ∗`2

(∆j))−Cov(Y ∗`1
(∆(k − 1)),Y ∗`2

(∆j))

−Cov(Y ∗`1
(∆k),Y ∗`2

(∆(j − 1))) + Cov(Y ∗`1
(∆(k − 1)),Y ∗`2

(∆(j − 1)))

Now, by recalling that Y ∗` (δk) = BH (δkf`), in view of (3.35), we further have

Cov(Y`1
(k;∆),Y`2

(j;∆))

=
σ2

2

[
|∆k|2H |A`1

|+ |∆j |2H |A`2
| − |∆k|2H |A`1

\A`2
| − |∆j |2H |A`2

\A`1
|

−|∆(k − j)|2H |A`1
∩A`2

| − |∆(k − 1)|2H |A`1
|

−|∆j |2H |A`2
|+ |∆(k − 1)|2H |A`1

\A`2
|+ |∆j |2H |A`2

\A`1
|

+|∆(k − 1− j)|2H |A`1
∩A`2

| − |∆k|2H |A`1
| − |∆(j − 1)|2H |A`2

|

+|∆k|2H |A`1
\A`2
|+ |∆(j − 1)|2H |A`2

\A`1
|+ |∆(k − j + 1)|2H |A`1

∩A`2
|

+|∆(k − 1)|2H |A`1
|+ |∆(j − 1)|2H |A`2

|

−|∆(k − 1)|2H |A`1
\A`2
| − |∆(j − 1)|2H |A`2

\A`1
| − |∆(k − j)|2H |A`1

∩A`2
|
]

=
σ2|∆|2H

2

[
|k − j − 1|2H + |k − j + 1|2H − 2|k − j |2H

]
|A`1
∩A`2

|

=
σ2|∆|2H

2
γH (k − j)|A`1

∩A`2
|

The proof of (i) is a special case of (iii) where k = j.

The intuition behind this formula is that the spatial-temporal covariance be-

tween the two links depends on the time lag and the number of flows that share

the two links. As one would expect, larger time lags should reduce the correlation,
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and increased number of shared paths should increase the correlation. Also, we

observe a two-factor structure in the spatio–temporal covariances in (3.33). The

correlations have a factor that corresponds exactly as those of a fGn and a spatial

factor that is determined by the routing matrix.

Lemma III.11. Let α > 0 and for any f ,g ∈ Lα(µ), define

(3.36) φα(f ,g) :=
1
2

(
‖f ‖αα + ‖g‖αα − ‖f − g‖αα

)
.

If α ∈ (0,2], then the function φα(·, ·) is positive definite.

Conversely, if there exist two disjoint sets Ai , i = 1,2 with positive finite measures

µ(Ai) > 0, then the function φα(·, ·) is positive definite only if α ∈ (0,2].

Proof. We will first show that φα is positive definite for all α ∈ (0,2].

LetMα, α ∈ (0,2] be an SαS random measure with control measure µ and define

Λ(f ) :=
∫
E
f dMα, ∀f ∈ Lα(µ),

to be the SαS integral of the deterministic function f . Notice that for all xj ∈ C,

and fj ∈ Lα(µ), with 1 ≤ j ≤ n, we have

E

∣∣∣∣ n∑
j=1

xje
iΛ(fj )

∣∣∣∣2 =
n∑

j,k=1

xjxkEe
iΛ(fj−fk) =

n∑
j,k=1

xjxke
−‖fj−fk‖αα .

Since the LHS of the last expression is always non–negative, so is the RHS. This

shows that the function rα(f ,g) := e−‖f −g‖
α
α , f ,g ∈ Lα(µ) is positive definite.

Now, the proof proceeds as the proof of the positive definiteness of the auto–

covariance function of the fractional Brownian motion (see, e.g. Proposition 2.2

in Taqqu [23]). Indeed, for all xj ∈ C, and fj ∈ Lα, 0 ≤ j ≤ n, and for all ε > 0, we
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have

0 ≤
n∑

j,k=0

xjxke
−ε‖fj−fk‖αα(3.37)

=
n∑

j,k=1

xjxke
−ε‖fj−fk‖αα +

n∑
j=1

x0xke
−ε‖f0−fk‖αα +

n∑
j=1

xjx0e
−ε‖fj−f0‖αα + x0x0

=: S1 + S2 + S3 + |x0|2

Since x0 and f0 are at our disposal, let f0 := 0 and x0 := −
∑n
j=1xje

−ε‖fj‖αα . Observe

that with this choice of x0 and f0, we get

S2 = S3 = −|x0|2 = −
n∑

j,k=1

xjxke
−ε‖fj‖αα−ε‖fk‖αα ,

and therefore

S1 + S2 + S3 + |x0|2 =
n∑

j,k=1

xjxk

(
e−ε‖fj−fk‖

α
α − e−ε‖fj‖

α
α−ε‖fk‖αα

)
= ε

n∑
j,k=1

xjxk

(
‖fj‖αα + ‖fk‖αα − ‖fj − fk‖αα

)
+ o(ε),(3.38)

as ε ↓ 0, where the last relation we used the fact that e−εa − e−εb = ε(b − a) + o(ε),

as ε ↓ 0. If for some xj ’s and fj ’s we have
∑n
j,k=1xjxk(‖fj‖αα + ‖fk‖αα − ‖fj − fk‖αα) < 0,

then, for all sufficiently small ε > 0, the LHS of (3.38) becomes negative, which in

view of (3.37), is impossible. This shows that φα is positive definite.

Conversely, we will now show that if α > 2, then φα is not positive definite.

Indeed, let f1 = 1A1
/µ(A1)1/α and f2 = 1A2

/µ(A2)1/α, where µ(Ai) > 0 and µ(A1 ∩

A2) = 0. Then, one can show that

(φα(fi , fj))2×2 =

 1 (1− 2α−1)

(1− 2α−1) 1

 .
Observe that the determinant of the last matrix equals (1 − (1 − 2α−1)2), which is

negative for α > 2. This shows that the eigen values of the matrix (φα(fi , fj))2×2

have opposite signs and hence the function φα is not positive definite.
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On/Off Source Simulation

A method for simulation of on/off traffic is outlined here. It is designed to

be efficient in that it generates aggregate on/off traffic from several users, but

only stores a small amount of information, namely the current state (Si) and time

remaining in that state (Ri) of each user, with Si and Ri defined below. First, each

user is initialized by being randomly assigned a state, Si ∈ {0,1} (0 for off and 1 for

on), and the time remaining in that state, drawing from the Pareto distribution

with an appropriate exponent. For each time step, the time each user is spent in

an “on” state is calculated, and these times are totaled. As necessary, the states

are updated as the time remaining runs out and new times for the next state are

drawn. Figure 3.4 illustrates four possible scenarios. The user represented by line

(a) is in an “on” state and remains in that state for the duration of the time step.

Thus, the user contributes a activity of length ∆ to the aggregate activity for the

interval. User (b) on the other had remains inactive for the entire interval and

contributes no traffic to the total. User (c) begins the interval in an “on” state.

The time remaining in that state is not sufficient to last the entire interval, and

so the state is switched, and a new Ri is drawn for the time the user will remain

in the off state. Only the time this user spends in the “on” state is added to the

total traffic. Finally, user (d) begins the interval in the “off” state. During the

course of the interval, the state changes three times, each change resulting in the

state, Si , and the time remaining Ri being replaced each time. Again, the time

that user (d) spends in the “on” state is added to the total traffic for that interval.

This procedure is used to simulate traffic on any number of independent paths,

and then used to generate traffic on links for an network by forward-multiplying

the path measurements by the routing matrix.
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Figure 3.4: Illustration of Simulation Method. The x-axis represents time, while the y-axis repre-
sents 4 simulated users. A solid line indicates that that user is currently in an on state, while a
dashed line indicates that the user is currently in an off state.



CHAPTER IV

Network Kriging

In the previous chapter we developed a general probabilistic model for global

network traffic. In this chapter, we explore the network kriging problem. One

important practical issue will be the fact that the flow means µX and variances

σ2
X are unknown or hard to measure directly. They can, in principle, be estimated

from expensive Netflow measurements of the flows, but they are not available in

a fast on–line fashion as are direct link measurements. Motivated by this issue,

we will refine the theoretical global traffic model and obtain a practical network–

specific model by fusing expensive (slow) Netflow and inexpensive (fast) direct

link measurements.

4.1 Network Kriging with Known Parameters

We start by discussing a natural application of global network traffic mod-

els, namely the network kriging problem. An important motivation behind de-

veloping practical global traffic models is to better predict traffic on unobserved

network links or detect statistical anomalies, which can help identify structural

problems or denial of service attacks, for example.

42
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Network Kriging: Traffic traces are observed on a subset of links O ⊂ {1, · · · ,L}:

(4.1) D ≡D(t0,m) := {Y`(t), t0 −m ≤ t ≤ t0, ` ∈ O}.

over the time window t0 −m+ 1 ≤ t ≤ t0 of size m.

Obtain estimators Ŷ`(t0) for the traffic Y`(t0), for all unobserved links ` ∈ U :=

{1, · · · ,L} \O at time t0 in terms of the data D(t0,m).

The term network kriging was coined by [4] but used in a different context.

Network Prediction: Assume that the data D(t0,m) as in the Network Kriging

problem is available.

Obtain estimators Ŷ`(t0 + h) for the future traffic loads Y`(t0 + h) for all (observed

and unobserved) links ` ∈ {1, · · · ,L}, given the data D(t0,m).

The network kriging problem is a special case of the network prediction prob-

lem (h = 0). We state them separately since here we will emphasize on network

kriging. A satisfactory practical solution of the general network prediction prob-

lem will be the goal of another paper. We review next some theoretical expres-

sions for the optimal predictors. They are valid under the following slightly more

general assumptions than given in the global model.

Let {Y (t)}t∈Z, Y (t) = (Y`(t))
L
`=1 be a stationary multivariate Gaussian time series

such that

Y (t) ∼N (µY ,ΣY ), and Corr(Y`1
(t),Y`2

(t + k)) = ρ(k),

for all 1 ≤ `1, `2 ≤ L, where ρ(k), k ∈Z is an arbitrary positive definite function.

Network Kriging: For known means µY and covariances ΣY , the network kriging

problem becomes the simple kriging problem from spatial statistics. The best lin-

ear unbiased predictor (BLUP) for Yu = Yu(t) in terms of Yo = Yo(t) is then given
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by:

(4.2) Ŷu(t) = µu +ΣuoΣ
−1
oo (Yo(t)−µo),

where

Y =

 YoYu
 , µY =

 µoµu
 , and ΣY =

 Σoo ΣouΣuo Σuu

 .
HereEY (t) = µY andΣY are the mean and the covariance matrix of the vector Y (t),

partitioned accordingly into observed and unobserved components Yo(t) and Yu(t).

The (conditional) covariance matrix of prediction errors Yu(t)− Ŷu(t) is given by:

(4.3) m.s.e.(Ŷu |D) ≡ E
(
(Yu − Ŷu)(Yu − Ŷu)T |Yo

)
= Σuu −ΣuoΣ−1

ooΣou .

Network Prediction: Consider first the h−step-ahead prediction for directly observed

links in the past. Proposition 7 in [21] implies that the BLUP Ŷo(t0 +h) of Yo(t0 +h)

via D(t0,m) is given as follows:

(4.4) Ŷo(t0 + h) = µo +
m−1∑
j=0

cj(h)(Yo(t0 − j)−µo),

where ~c(h) = (cj(h))m−1
j=0 = Γ −1

m ~γm(h), with

(4.5) Γm = (ρ(|i − j |))0≤i,j≤m−1 and ~γm(h) = (ρ(h+ j))m−1
j=0 .

(The matrix Γm is always invertible, provided ρ(τ)→ 0, τ →∞, see e.g. Proposi-

tion 5.1.1 in [2].) The prediction error is then

(4.6) m.s.e.(Ŷo(t0 + h)|D) = σ2(h)Σoo, with σ2(h) = 1−~c(h)T Γm~c(h).

Now, for the case of unobserved links in the past, by Proposition 7 in [21], we have

that the BLUP is:

(4.7) Ŷu(t0 + h) = µu +ΣuoΣ
−1
oo (Ŷo(t0 + h)−µo)
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and for the prediction error matrix, we have:

(4.8) m.s.e.(Ŷu(t0 + h)|D) = σ2(h)ΣuoΣ
−1
ooΣou +Σuu −ΣuoΣ−1

ooΣou .

By Gaussianity, the above BLUP’s are also the minimum variance unbiased pre-

dictors.

Observe that, the predictor Ŷu(t0 +h) is obtained as in the case of simple kriging,

where the future Yo(t0 +h) in (4.2) are replaced in (4.7) by their optimal predictors

Ŷo(t0 +h) from (4.4). Consequently, the prediction error matrix in (4.8) is the sum

of an error due to predicting the observed links into the future and the kriging

error. This ‘orthogonality phenomenon’ is due to the product structure in the

spatio–temporal covariances of the time series {Y (t)}t∈Z. For more details, see

[21].

The performance of the simple kriging and the temporal prediction is illustrated

in Figure 4.1. One link is estimated from current and past observations of three

other links (Scenario 6 in Tables 2.1 & 6.1). Here, µY and ΣY are estimated from

moving windows of past observations, by using data on all links (described in

section 4.2.4). For the temporal correlations ρ(k)’s we used the fGn model with

Hurst parameter estimated from the data.

In the context of our network kriging and prediction problems, however, not

all links are observed, the means and covariances are unknown, and the above

predictors in Figure 4.1 are not possible to obtain. Nevertheless, they provide

theoretically optimal benchmark (baseline) that will be used to evaluate all meth-

ods developed in the sequel.

In the next section, we will develop a model that can be estimated from data on

a small subset of links and used to perform kriging and prediction over the entire

network. This can be done, however, only by utilizing further information about
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Figure 4.1: Kriging (top) and Prediction (bottom) in Scenario 6 (see Tables 2.1 & 6.1). The top
plot shows the link loads over successive 10s windows, beginning at 0h GMT on Feb 19, 2009 and
lasting 24 hours. The bottom plot focuses on a period of 500 windows and displays predictors for
lags h = 0,1,5, and 50. Note that h = 0 corresponds to kriging.

the network.

4.2 Network Specific Modeling via Netflow Data

4.2.1 Modeling Traffic Means

As mentioned in the introduction, direct measurements of the flow–level traffic

X(t) are very expensive to obtain because this would involve examining the entire

traffic load of the network, i.e. storing and then processing 95–170 Gigabytes of

data per day. Modern routers allow for random or systematic sampling of the flow

of traversing packets. The routers store important information such as the ports,
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Figure 4.2: Left: The columns correspond to local sample means over consecutive windows of
2000 seconds for each of the J = 72 flows. Darker shades indicate higher values. The data were
reconstructed from Netflow measurements of the Internet2 network for Feb 19, 2009. Right: cu-
mulative energy captured by the F matrix for increasing values of p (see (4.9) and Proposition IV.1
below.)

source and destination IP addresses, etc. from the sampled packet headers. Even

though in fast backbone networks (e.g. Internet2) the practical sampling rates are

e.g. 1 out of 100 packets, the Netflow mechanism provides unique information

about the traffic loads in the network. Using a careful mapping procedure, we

assigned the sampled packets to one of the 72 origin–destination flows. We thus

constructed an estimate {X̃(t)} ≈ {X(t)} of the flow–level traffic. Unfortunately, this

method is computationally expensive to implement, which makes it impractical

to use repeatedly, and to apply in an on–line fashion. Therefore, the information

derived from Netflow can only be viewed as auxiliary data in the context of net-

work kriging. Nevertheless, this information proves useful in building a flexible

network-wide model that can be updated online.

Figure 4.2a illustrates the local means of the origin–destination flows as a func-

tion of time, where the data were derived from an extensive analysis of Netflow
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measurements. This suggests that a linear model for µX(t) with a few constant

factors can capture much of the variability in the local means. We therefore posit

the model

(4.9) µX(t) = Fβ(t),

where F is a suitably chosen J ×pmatrix and β = β(t) ∈Rp is a parameter. Observe

that

µY = AµX = AFβ and also µYo
= AoFβ.

Provided p equals rank(AoF), the parameter β can be successfully estimated by

using linear regression from the available data on the observed links. We will see

that this essentially means that p is no greater than the number of observed links

|O|.

The goal then becomes to choose F optimally so that Fβ(t) can approximate

best µX(t) (in the Euclidean norm) with a suitable β(t) ∈ Rp. Consider the sample

X̃(t), 1 ≤ t ≤ T , of the flow–level data derived from the Netflow mapping, where

T = w ×n. Partition the data into n windows of size w, and let

(4.10) mX(k) =
1
w

w∑
i=1

X̃((k − 1)w+ i)

(1 ≤ k ≤ n), be the sample mean the X̃(t)’s in the k–th window.

Consider the set of n vectors {mX(k), 1 ≤ k ≤ n} in RJ and observe that the

model in (4.9) postulates that µX(t) belongs to range(F) (the linear space spanned

by the columns of F). Thus, given the local means mX(k)’s, a least squares optimal

choice of F corresponds to minimizing the sum of the squared distances from the

mK (k)’s to the p−dimensional subspace W := range(F). That is, we want to find

W ∗ = Argmin
W≤RJ , dim(W )=p

n∑
k=1

‖mX(k)− PW (mX(k))‖2,
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where PW denotes the orthogonal projection onto the subspace W . The following

result shows that this problem has a simple solution, which corresponds precisely

to performing principal component analysis (PCA) on a certain matrix.

Proposition IV.1. Let mX(k) ∈ RJ , 1 ≤ k ≤ n. Consider the positive semidefinite J × J

matrix M =
∑n
k=1mX(k)mX(k)T and let M =

∑J
j=1λjbjb

T
j , be its spectral decomposi-

tion, where bj , 1 ≤ j ≤ J are orthonormal and λ1 ≥ λ2 ≥ · · · ≥ λJ ≥ 0.

Set W ∗ = span{b1, . . . , bp}, 1 ≤ p ≤ J . Then, for all W ≤ RJ with dim(W ) = p, we

have that

(4.11)
n∑
k=1

‖mX(k)− PW ∗(mX(k))‖2 ≡
J∑

j=p+1

λj ≤
n∑
k=1

‖mX(k)− PW (mX(k))‖2,

where PW denotes the orthogonal projection onto the subspace W .

The proof is given in Appendix 4.3. This result implies that the (J × p) matrix F

with columns given by the p eigenvectors ofM with largest eigenvalues yields the

best linear model for the temporal behavior of the local traffic means.

Figure 4.2b shows that just a few PCA vectors p are enough to capture a large

percentage of the local variability of the mean vectors mX(t)’s. Figure 4.3 (top)

illustrates the prediction performance of this model when the covariance matrix

is known, but the unobserved means are estimated from the model.

Remark IV.2. Note that we view the local means as slowly changing in time, non–

random vector functions with values in RJ . Our model allows us the flexibility

to represent the means as locally linear functions and it captures well possible

non–stationarity due to time of the day effects. The statistical behavior of the

flow–level traffic on finer time scales is of a rather different nature and it can be

modeled by stationary long–range dependent time series.
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Figure 4.3: Top: Kriging in Scenario 6 (Table 6.1) using the PCA–mean model (with p = 2) and the
sample covariance matrix. In reality, the sample covariances for unobserved links are not available,
and this plot merely illustrates that the model (4.9) successfully captures the structure of the
means. See also Figure 4.1. Bottom: Kriging in Scenario 6 using the complete mean–variance model
with p = 2. The time axis shows successive 10s windows, beginning at 0h GMT on Feb 19, 2009
and lasting 24 hours.

Remark IV.3. The method of selecting the mean model µX = Fβ here resembles

principal component regression, where a lower dimensional model is obtained by

focusing on the p eigenvectors of the matrix M.

4.2.2 Modeling the Covariances

The physical nature of network protocols, the mechanisms of transmission,

and the user behavior imply strong relationship between the means and the vari-

ances of network traffic traces. This relationship was shown to be ubiquitous over

different types of computer networks. In the field of network tomography, for

example, the mean–variance models have been successfully used to resolve chal-

lenging identifiability questions (see [13, 20]). In our context, we also encountered

a strong relationship between the means and the variances of traffic flows. More

precisely, by exploring the sample means Xj(t) and standard errors Sj(t), calcu-
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lated over a window of traffic data, we observed that

(4.12) Sj(t) ≈ C(Xj(t))
γ , 1 ≤ j ≤ J

with γ ≈ 3/4. Namely, the standard error of a source–destination flow Xj(t) is

proportional to a power of its mean.

We estimated γ (as a function of t) by performing log–linear regression of Sj(t)

versus Xj(t) over j, 1 ≤ j ≤ J . The resulting estimates remained approximately

constant in t and close to 3/4 regardless of the time window used. The power–

law relationship is remarkably consistent in time and the regression diagnostics

R2 ≈ 80% indicate strong agreement with the model (see [26]).

Regarding cross-flow correlations, it was shown in [20] that they are rather

weak and only forward and reverse flows, e.g. the Chicago–Los Angeles and Los

Angeles–Chicago, exhibit moderate magnitude ones (around 0.3). Such correla-

tions are primarily due to the feedback mechanism built in the TCP protocol.

Our experience with Netflow on Internet2 (e.g. Fig. 2 in [21]) and limited NS2–

simulations [16] confirm that cross-flow correlations are negligible at the time

scales of interest, provided that the network is not congested. The study of heavy

traffic scenarios beyond the operating characteristics of the network is interesting

but it is outside the scope of the present work. Therefore, in this paper we shall

model ΣX(t) as a diagonal matrix of the form:

(4.13) ΣX = σ2diag(|Fβ|2γ ),

where |a|2γ denotes (|ai |2γ )Ji=1, for a = (ai)
J
i=1 ∈R

J , and where µX = Fβ.

We will show below that the parameter σ can be estimated on–line from link–

level data (Y`’s). On the other hand, γ is a structural parameter, obtained from

the off–line analysis of Netflow data. (See Section 4.4.2 for more details.)
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4.2.3 The Joint Model: Parameter Estimation and Asymptotic Properties

Combining the mean and covariance models from the previous two sections,

we obtain the following joint model:

(4.14) Y (t) = AFβ + σAdiag(|Fβ|γ )Z(t),

where Z(t) ∼ N (0, IJ ) is a standard normal vector in RJ and where β ∈ Rp and

σ > 0 are unknown parameters. In this section, we will show how this model can

be estimated from on–line measurements on a limited set of observed links O. We

will also establish asymptotic properties of the proposed estimators.

In the framework of the Network Kriging problem (see Section 4.1), we obtain

Y o(t0) = AoFβ + εY o(t0),

where

(4.15) Y o(t0) =
1
m

m−1∑
k=0

Yo(t0 − k).

To establish the covariance structure of the noise εY o , we introduce the mild as-

sumption that the flow–level traffic is stationary (in practice, traffic is locally sta-

tionary on the time scales of interest) and its temporal correlation structure is the

same across all routes. Namely, that Corr(Xj(t),Xj(t + i)) = ρ(i), 1 ≤ i ≤m− 1, (1 ≤

j ≤ J ). This yields

Corr(Y`(t + i),Y`(t)) = ρ(i), 1 ≤ i ≤m− 1, for all 1 ≤ ` ≤ L,

and consequently

(4.16) εY o(t0) ∼N (0,σ2
mAodiag(|Fβ|2γ )ATo ),

where

(4.17) σ2
m =

σ2

m

(
1 + 2

m−1∑
i=1

(1− i/m)ρ(i)
)
.
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The structure of the noise variance suggests a natural iterated generalized least

squares (iGLS) scheme for the estimation of β.

Algorithm: (Iterated GLS)

(i) Set β̂1 = [(AoF)TAoF]−1(AoF)T Y o(t0) to be the OLS (ordinary least squares)

estimate of β and let k := 1.

(ii) Set

(4.18) β̂k+1 = [(AoF)TG(β̂k)AoF]−1(AoF)TG(β̂k)Y o(t0),

where

(4.19) G(β) := [Aodiag(|Fβ|2γ )ATo ]−1.

(iii) Set k := k + 1 and repeat step (ii). Iterate until ‖β̂k+1 − β̂k‖ falls below a

certain “convergence” threshold.

Observe that the temporal correlation structure does not need to be estimated

here since it appears only in the scalar coefficient σ2
m of the noise variance, which

cancels in (4.18). The above iGLS scheme requires that the matrices involved in

steps (i) and (ii) be invertible, a result established next.

Proposition IV.4. Suppose that Fβ >~0 and let Ao be of full row–rank. Then:

(i) The inverse G(β) in (4.19) exists, for all γ > 0.

(ii) If AoF is of full column–rank, then the inverses

(4.20) ΣGLS(β) := [(AoF)TG(β)AoF]−1,

and [(AoF)TAoF]−1 exist and are positive definite.

The proof is given in the Appendix and the assumptions are discussed in the

remarks below it.
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The following result establishes the strong consistency of the iterated GLS es-

timators β̂k’s, even in the presence of long–range dependence. It also shows that

the β̂k’s are asymptotically equivalent to the (unavailable) GLS estimator β̂GLS ,

provided k ≥ 2.

Theorem IV.5. Suppose that Ao and AoF are of full row and column ranks, respec-

tively, and let Fβ >~0. Then:

(i) For all k ≥ 1, we have Fβ̂k >~0, a.s. as m→∞. Hence, the estimates β̂k , k ≥ 1 are

well–defined, almost surely, as m→∞.

(ii) If ρ(τ)→ 0, as τ→∞, then for any fixed k ≥ 1, we have

(4.21) β̂k
a.s.−→ β, as m→∞.

(iii) For all k ≥ 2, we have that,

β̂k − β̂GLS = oP (σm), as m→∞,

where β̂GLS is the GLS estimate of β in the model (4.14), and σ2
m is given in (4.17).

Moreover, Var(β̂GLS) = σ2
mΣGLS(β) with ΣGLS as in (4.20).

The proof is given in Appendix 4.3. In view of Slutsky’s theorem and part (iii) of

the above result, we obtain that for all k ≥ 2,

(4.22)
1
σm

(β̂k − β)⇒N
(
0,ΣGLS(β)

)
, as m→∞.

Thus, the β̂k’s (k ≥ 2) are asymptotically optimal. Further, given σm, one can use

(4.22) to obtain consistent confidence intervals for β.

As mentioned above, the scale parameter σ of the covariance structure in (4.14)

is not involved in the formula for the predictors Ŷu = f (β̂k ,Yo) (see e.g. (4.18)).

The parameter σ is involved, however, in the expression of the prediction error
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(4.30). Therefore, to gauge the accuracy of prediction, and to be able to use our

estimators for detection of anomalies (see Sections 4.2.5 and 4.5 below), one needs

an estimate of σ .

As in the case of the ordinary kriging estimator (see (4.25) below), a natural

estimate of σ is obtained as follows:

(4.23) σ̂2 := vec(Σ̂Yo)
T vec(Σoo(β̂))/vec(Σoo(β̂))T vec(Σoo(β̂)),

where Σ̂oo is the partition of the modeled covariance matrix corresponding the

observed links, as in (4.26), Σ̂Yo = Σ̂Yo(t0) is the sample covariance matrix of the

vector Yo, calculated from past m observations {Yo(t0 − k), 0 ≤ k ≤m− 1}, and β̂ is

an estimate of β.

Proposition IV.6. Assume the conditions of Theorem IV.5(ii). Then, with β̂ = βk , k ≥

1, for σ̂2 as in (4.23), we have σ̂2 a.s.→ σ2, as m→∞.

The proof is given in Appendix 4.3. We conclude this section with a few technical

comments.

Remarks:

1. Here we do not estimate the temporal correlation structure ρ(·). In prac-

tice, this can be done, but the presence of LRD makes the precise asymptotic

analysis cumbersome. This will be pursued in another work. Practical ap-

proaches are discussed in Section 4.2.5.

2. The model in (4.14) is realistic only if Fβ >~0. In our experience, the estimates

β̂k obtained from real network data always satisfy Fβ̂k > ~0. This is perhaps

due to the careful (optimal) choice of the matrix F discussed in Section 4.2.1.

3. The assumption that Ao is of full row–rank is natural since for prediction

purposes, one need not include in the set of observed links ones that are per-
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fect linear combination of other observed links. In practice, such a redundant

scenario can arise only in the trivial case when some nodes do not generate

traffic.

4. The full column–rank condition on AoF is required for the identifiability of

β. If the dimension of β is greater than the number of observed links, then

the model parameters cannot be identified (see also Section 4.4.2 and Figure

4.6a). In practice, we implement the iGLS procedure by using the Moore–

Penrose generalized inverse.

4.2.4 On the implementation of simple and ordinary kriging

The baseline estimator in Section 4.1 is essentially the simple kriging predictor,

which assumes knowledge of the mean and covariance of Y (µY (t) and ΣY (t)). In

practice, we estimate these quantities from moving windows of past data: µY (t) ≈

µ̂Y (t) := 1
m

∑m
j=1Y (t − j) and

ΣY (t) ≈ Σ̂Y (t) :=
1

m− 1

m∑
j=1

(Y (t − j)− µ̂Y (t))(Y (t − j)− µ̂Y (t))T .

The ordinary kriging methodology is used in our first solution of the prediction

problem in Section 4.1. In this case, ΣY is modeled by σ2
XAA

T , where the scale

σX is unknown. The means EY` = µY are unknown but assumed to be constant

across the links 1 ≤ ` ≤ L. Here σX and µY are allowed to vary slowly with time t.

In contract, to the baseline estimator, we can no longer use µ̂Y (t) and Σ̂Y (t) above

since only some links are observed. Under these assumptions, the least squares

optimal linear predictor of a link Yu(t) from Yo(t) becomes

(4.24) Ŷu(t) =ΛYo(t), where Λ =

 Γoo
~1

~1T 0


−1

~γou ,
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where Γoo = (E(Y`i−Y`j )
2)`i ,`j∈O is a matrix of the variograms for the set of observed

links O and ~γou = (E(Yu −Y`)2)`∈O is a vector of cross–variograms between the un-

observed link and observed links. For more details, see [6]. The resulting ordinary

kriging coefficients are such that ~1TΛ = 1 so that the predictor is unbiased. In our

application, we calculated the variograms by estimating the unknown parame-

ter σX from a window of past data from the observed links Yo(t). Namely, since

ΣYo = σ2
XAoA

T
o , we obtain the linear regression estimate

(4.25) σ̂2
X = [vec(AoA

T
o )T vec(AoA

T
o )]−1vec(Σ̂Yo)

T vec(AoA
T
o ),

where vec(B) stands for the vectorized matrix B. The estimator σ̂2
X corresponds to

minimizing ‖vec(Σ̂Yo)− σ
2vec(AoATo )‖ with respect to σ2.

4.2.5 Model–based Kriging and Prediction: Implementation

In this section, we describe how to estimate the model, and use it to perform

kriging, and prediction of link loads in practice. The performance of this method-

ology is evaluated in the next section.

1. Learning the Model: The first step involves using the expensive Netflow data

to ‘learn the model’, i.e., construct the matrix F and estimate the parameter γ as

discussed in Section 4.2.

2. Estimating Model Parameters: After learning the model, we use the inexpen-

sive link loads data to estimate the parameters β and σ from (4.14). Namely, β is

estimated with iterated GLS from the sample means of observed links in (4.15) as

in Section 4.2.3. Then, σ is estimated by using (4.23).

In order to carry out temporal prediction, it is also necessary to obtain an esti-

mate Ĥ of the Hurst exponentH . This is a well–studied and yet difficult problem.

Here, we use the robust wavelet method of [27].
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3. Estimating Traffic: Given F and γ , along with the parameter estimates β̂, σ̂2,

and Ĥ , one can obtain instantaneous estimates of the traffic loads on unobserved

links (kriging) and/or estimates of the future traffic loads (prediction).

Let

(4.26) µ̂Y := AFβ̂ =

 µ̂oµ̂u
 and Σ̂Y := σ̂2diag

(
|Fβ̂|2γ

)
=

 Σ̂oo Σ̂ouΣ̂uo Σ̂uu

 .
The kriging estimator, obtained from (4.2) is:

(4.27) Ŷu(t) = µ̂u + Σ̂uoΣ̂
−1
oo

(
Yo(t)− µ̂o

)
.

A plug–in estimate of the mean squared error obtained from (4.3) is given by:

(4.28) m.s.e.(Ŷu) = Σ̂uu − Σ̂uoΣ̂−1
oo Σ̂ou .

One can show that the resulting plug–in estimates are asymptotically optimal

under the model. Indeed, let Ỹu be the kriging estimator based on the unavailable

in practice GLS estimate of β. By using Theorem IV.5, one can show that Ŷu− Ỹu
a.s.→

0, as m→∞, i.e. the estimates Ŷu converge to optimal GLS–based estimate Ỹu .

By using the estimated Hurst exponent, Ĥ , we also obtain expressions for the

temporal predictors. Assume that the temporal correlation structure is given by

the standard fractional Gaussian noise (see Section 3.1.1). By plugging Ĥ for H in

(4.5) and (4.6), we we obtain the corresponding estimated quantities: Γ̂m, γ̂m(h),

ĉ(h), and σ̂2(h), for a given time lag h. By using these quantities and (4.4), we

obtain predictors of the traffic load on an observed link h steps into the future:

(4.29) Ŷo(t0 + h) = µ̂o +
m∑
j=0

ĉj(h)(Yo(t0 − j)− µ̂o).

The mean squared error estimate is:

(4.30) m.s.e.(Ŷo(t0 + h)) = σ̂2(h)Σ̂oo
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Similarly, by (4.7) we obtain predictors for unobserved links h steps ahead into

the future:

(4.31) Ŷu(t0 + h) = µ̂u + Σ̂uoΣ̂
−1
oo (Ŷo(t0 + h)− µ̂o).

In this case, the mean squared error estimate is:

(4.32) m.s.e.
(
Ŷu(t0 + h)

)
= σ̂2(h)Σ̂uoΣ̂

−1
oo Σ̂ou + Σ̂uu − Σ̂uoΣ̂−1

oo Σ̂ou .

Remarks:

1. Note that σ̂2 is a consistent estimate of σ2, asm→∞, provided ρ(τ)→ 0, τ→

∞. In view of (4.27), the temporal correlation structure does not play a role

in the kriging estimate. On the other hand, by (4.28), we see that the variance

of this predictor does depend on ρ.

2. As discussed in Section 4.2.3, the expression for σ2
m in (4.17) is not tractable

under the general assumptions of long–range dependence. However, if the

correlation structure ρ is that of fGn (3.6), then by using the self–similarity

of fBm one obtains:

σ2
m =

σ2

m2(1−H)
.

In Section 4.4, we use this fact and point estimates of H in order to obtain

prediction intervals.

4.3 Proofs of Sections 4.2 and 4.5

Proof of Proposition IV.1. Let W = span{~f1, · · · , ~fp}, where {~f1, · · · , ~fJ } is an orthonor-

mal basis of RJ . Observe that, for all 1 ≤ k ≤ n:

‖mX(k)− PW (mX(k))‖2 =
J∑

j=p+1

〈mX(k), ~fj〉2 =
J∑

j=p+1

~f Tj (mX(k)mX(k)T )~fj .
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Now, by summing over k, the right–hand side of (4.11) becomes:
J∑

j=p+1

~f Tj

( n∑
k=1

mX(k)mX(k)T
)
~fj =

J∑
j=p+1

~f Tj M
~fj .

Clearly, the last sum is minimized when span{~fp+1, · · · , ~fJ } = (W ∗)⊥ ≡ span{~bp+1, · · · ,~bJ }.

In this case, this sum equals
∑J
j=p+1λj .

Proof of Proposition IV.4. Since Fβ > ~0, the matrix diag(|Fβ|2γ ) is positive defi-

nite. Thus, the fact that Ao is of full row–rank, implies that the square matrix

Aodiag(|Fβ|2γ )ATo is of full row–rank and hence invertible. This proves (i).

To show (ii), let x ∈ Rp and suppose that xT (AoF)TG(β)AoFx = 0. Thus, for the

vector y = AoFx, we have yTG(β)y = 0. This, sinceG(β) is positive definite, implies

that y = AoFx = ~0, which in turn yields x = ~0, because AoF has a trivial null–space.

We have thus shown that (AoF)TG(β)AoF is a positive definite matrix.

Proof of Theorem IV.5. Note that

Y o(t0) = AoFβ + σAodiag(|Fβ|γ )Z(t0),

where Z(t0) = 1
m

∑t0
t=t0−m+1Z(t). Since ρ(τ)→ 0, τ →∞, the Maruyama’s Theorem

implies that the Gaussian process Z = {Z(t)}t∈Z is mixing. Therefore, Z(t0)
a.s.→ 0,

and hence Y o(t0)
a.s.→ AoFβ, as m→∞.

Note that the OLS estimator β̂1 is well–defined sinceAoF is of full column rank.

Observe also that, since Y o(t0)
a.s.→ AoFβ, we have

β̂1 − β = [(AoF)TAoF]−1(AoF)T (Y o(t0)−AoFβ)
a.s.−→ 0, as m→∞.

We proceed by induction. Let k ≥ 2 and β̂k−1
a.s.→ β, m→∞. Then, since Fβ > ~0, by

continuity, Fβ̂k−1 > ~0, almost surely, as m→∞, and β̂k is well–defined, as w→∞

(Proposition IV.4). Further, for all k ≥ 2, by (4.18),

(4.33) β̂k = C(β̂k−1)Y o(t0),
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with the matrix

(4.34) C(β̃) := [(AoF)TG(β̃)AoF]−1(AoF)TG(β̃).

Note that C(β̃) is well–defined and continuous for Fβ̃ > ~0. Since, also C(β)AoFβ =

β, the convergences Y o(t0)
a.s.→ AoFβ, and β̂k−1

a.s.→ β, imply that β̂k
a.s.→ β, as m→∞.

We have thus shown parts (i) and (ii).

We shall now prove (iii). As in (4.33), for all k ≥ 2, we have

β̂k = C(β̂k−1)Y o(t0) and also β̂GLS = C(β)Y o(t0).

Note also that C(β)AoFβ = β = C(β̂k)AoFβ, and therefore,

(4.35) β̂k − β̂GLS = (C(β̂k−1)−C(β))(Y o(t0)−AoFβ).

Now, by (4.16) and (4.19), we have

(4.36) Var(Y o(t0)) = σ2
mG(β)−1.

Thus, Relation (4.35), the convergence β̂k−1
a.s.→ β, m→ ∞, and the continuity of

C(·) imply that β̂k = β̂GLS = oP (σm), m→∞. Note also that by (4.34) and (4.36), we

readily have Var(β̂GLS) = σ2
mΣGLS(β).

Proof of Proposition IV.6. As in the proof of Theorem IV.5, the Maruyama’s theo-

rem implies that Σ̂Yo
a.s.→ ΣYo , as m→∞. By Theorem IV.5 (ii) we also have β̂k

a.s.→ β,

as m→∞. Note that the right–hand side of (4.23) is a continuous function of β̂

and Σ̂Yo , which by (4.14), equals σ2 when β̂ and Σ̂Yo are replaced by β and ΣYo ,

respectively. This implies the strong consistency of σ̂2.

Proof of Proposition IV.7. The variance of Z̃t is then given by:

E[Z̃2
t ] = (1−φ)2

∞∑
j=0

∞∑
k=0

φj+kγ(j − k) = (1−φ)2
∞∑
j=0

∞∑
k=0

φj+k
∫ π

−π
eiθ(k−j)f (θ)dθ,
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where f (θ) stands for the spectral density of {Zk}. By using the expression of f

given in equation 9.12 on p.34 of [24] , we obtain that E[Z̃2
t ] equals

λ2
∫ π

−π

∣∣∣∣ ∞∑
k=0

φkeiθk
∣∣∣∣2f (θ)dθ = λ2C2(H)−2

∫ ∞
−∞

2(1− cos(θ))|θ|−(2H+1)

φ2 + 1− 2φcosθ
dθ

= λ2C2(H)−2
∫ ∞
−∞

2(1− cos(θ))|θ|−(2H+1)

λ2 − 2λ(1− cosθ) + 2(1− cosθ)
dθ.

4.4 Model Validation and Calibration

In this section, we evaluate our model in the context of traffic prediction. We

focus on 9 representative scenarios described in Tables 2.1, 6.1 and Appendix 2.1.

4.4.1 Performance and Model Robustness

Table 4.1 provides relative mean squared errors (ReMSE) for the optimal base-

line estimator, the ordinary kriging estimator, and the proposed model (with

p = 2). The reported ReMSE’s of the estimates are computed as follows:

ReMSE(Ŷ ) =
T∑
t=1

‖Ŷ (t)−Y (t)‖2/
T∑
t=1

‖Y (t)‖2.

Here Ŷ (t) is an estimator (obtained by either kriging or temporal prediction) for

the true value Y (t) and ‖ · ‖ stands for the Euclidean norm. The ReMSE’s quantify

empirically the prediction error relative to the energy of the true ‘signal’ Y (t),

over the duration T . In a controlled setting where Y (t) is available, the ReMSE’s

allow us to objectively compare the performance of various estimators.

Scenarios 1–7 represent situations where the observed links share sufficiently

many flows with the unobserved ones to make relatively accurate prediction. In

all these cases, the network–specific model outperforms the naı̈ve ordinary kriging

method, with an average improvement of the ReMSE by 0.2072 points or 20.72%.
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Scen. Baseline Ordinary Kriging Model 02-18 02-20 02-26 03-12
1 0.0305 0.4052 0.2476 0.2342 0.2363 0.2629 0.2209
2 0.0287 0.1266 0.0517 0.0461 0.0550 0.0424 0.0746
3 0.0288 0.3279 0.0514 0.0459 0.0549 0.0425 0.0750
4 0.0314 0.1209 0.0512 0.0696 0.0658 0.0694 0.0596
5 0.0285 1.0241 0.2414 0.2651 0.2864 0.3344 0.2722
6 0.0262 0.1129 0.0468 0.0619 0.0587 0.0684 0.0462
7 0.0216 0.0614 0.0388 0.0501 0.0495 0.0564 0.0384
8 0.0727 0.8423 1.0322 1.1060 1.0687 1.4335 1.7803
9 0.0723 0.2649 0.6277 0.7618 0.6875 0.7792 0.7449

Table 4.1: Evaluation of Model Performance. Columns 2 and 3: ReMSE’s of the baseline (simple
kriging) and network–specific model for Feb 19, 2009. Columns 4 to 7: The matrix F was obtained
from Feb 19, 2009 Netflow data (Xj ’s), and then used to fit the model and perform kriging based
on link data (Y`’s) for four additional days.

Ordinary kriging estimates are obtained by using the sample covariance matrix of

all links (as in the baseline) and assuming equal but unknown flow–means (see e.g.

[6]). The latter is a reasonable approximation when no Netflow data is available.

The difference is as high as 78% and as low as 2.2% in favor of the network specific

model. In most cases and across different days our model yields useful predictions

with ReMSE’s of about 5%. In Scenarios 8 and 9, however, fewer flows are shared

by the observed and unobserved links and hence the accurate prediction is objec-

tively more difficult. In these scenarios, the baseline predictor has over 2–3 times

the ReMSE’s as compared to Scenarios 1–7. This initial comparison shows that the

joint model improves significantly upon the naı̈ve ordinary kriging approach and

comes close to the optimal ReMSE lower bound in the cases where the prediction

problem is well–posed (Scenarios 1–7). Scenarios 8 and 9 illustrate that the accu-

racy of prediction has natural limitations, inherent to the routing of the network,

that neither model can overcome.

One apparent limitation of the network specific approach is that it relies on

expensive flow–level data (Xj ’s) to build the matrix F. Surprisingly, it turns out

that once the matrix F is obtained from flow–level measurements during a single
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day, it can be successfully used to model the link–level traffic for many days in the

future. That is, even though the model requires the extensive off–line analysis of

Netflow data, once it is built, it can be readily estimated on–line using only link–

level data and used for several days before it has to be updated. It is remarkable

that all results in Table 4.1 are based on a model (i.e. a matrix F) learned from

Feb 19, 2009 flow–level data. Then, the same model was used to predict Y`’s in

all 9 scenarios for 5 different days. Even a month later, this model continues to

outperform the ordinary kriging in the first seven scenarios. In only one of these

scenarios therein we have an appreciable increase in the prediction ReMSE’s due

perhaps to an outdated model. These results may be attributed to the fact that the

structure of the traffic means across all flows in the network, although complex, is

relatively constant, and is therefore well–captured by the principal components

involved in the matrix F. The model must be updated should structural changes

in the network occur.

The performance of the model under temporal prediction may be seen in Table

4.3 and Figure 4.4. Table 4.3 shows that the prediction is better for links that were

directly observed in the past in comparison with unobserved ones, as might be

naturally expected (see also (4.30) & (4.32)). More importantly, the model–based

approach remains close to the unattainable baseline. The model–based predictor

in Figure 4.4 may be compared to the baseline predictor in Figure 4.1 (bottom).

Although the model–based predictor does not track the average traffic level as

precisely as the baseline, it has similar behavior. For small time lags (h), the

predictor follows many of the features. As the time lag increases, the predictor

becomes smoother and closer to the traffic mean.
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Figure 4.4: Temporal Prediction for various time horizons using the joint model.
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Figure 4.5: ReMSE of network–specific model over time. The model was learned on Feb 19, 2009
(1). The matrix is then used to predict the previous day (2), the next day (3), a day one week later
(4), and a day 4 weeks later (5). Each line corresponds to one of the first seven scenarios described
in Table 6.1.
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Baseline Model
h Observed Link (3) Unobserved Link (13) Observed Link (3) Unobserved Link (13)
1 0.0111 0.0347 0.0111 0.0444
5 0.0367 0.0329 0.0366 0.0452

10 0.0389 0.0322 0.0388 0.0402
25 0.0418 0.0426 0.0417 0.0522
50 0.0367 0.0402 0.0366 0.0499

Table 4.2: Performance of Network Prediction, in terms of ReMSE, for observed links and unob-
served links. Here we compare the Baseline situation (with known mean and covariance) to the
model, for both an observed link (3) and an unobserved link (13). The link is predicted according
to Scenario 6.

Time Step 1 3 5 10 15 20
Observed Link, Baseline 0.01 0.04 0.04 0.04 0.04 0.04

Unobserved Link, Baseline 0.01 0.04 0.04 0.04 0.04 0.05
Observed Link, Model 0.03 0.04 0.03 0.03 0.03 0.04

Unobserved Link, Model 0.03 0.04 0.03 0.03 0.03 0.04

Table 4.3: Performance of Network Prediction, in terms of ReMSE, for observed links and unob-
served links. Here we compare the Baseline situation (with known mean and covariance) to the
model, for both an observed link (3) and an unobserved link (13). The link is predicted according
to Scenario 6.

4.4.2 Calibration

Applying the model to real data relies on the choice of several parameters,

such as p, γ , and m, as described in Section 4.2. The prediction performance is

remarkably robust to the choice of these parameters, as discussed in detail below.

• The role of p: The parameter p equals the number of principal components

(columns of the matrix F) used to model the traffic means in (4.9). The predic-

tion performance is robust to the choice of p, provided that p is less than the

number of observed links used in prediction. Figure 4.6a shows the ReMSE’s for 3

prediction scenarios as a function of p. In Scenarios 5, 6, and 7 the same link is

predicted via two, three, and seven other links, respectively (see Table 6.1). If p

exceeds the number of observed links, then the parameter β in (4.14) is not iden-

tifiable, potentially resulting in poor performance. This explains the peaks in the

ReMSE’s at p = 2, 4, and 7 in Scenarios 5–7. Surprisingly, in the first two cases the
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ReMSE’s recover as p grows, even in the presence of non–identifiability. Similar

patterns are seen in the other six prediction scenarios (omitted, for simplicity).

The performance of the model remains stable for all choices of p less than the

number of predictors.

In light of these results, we advocate using a relatively small value of p (e.g.

p = 2). While a larger value of p can slightly improve prediction errors when

many links are observed, having small value of p allows one to fit the model in a

wide variety of prediction scenarios, without sacrificing the overall performance.

Recall also Figure 4.2b.

• The role of γ : This parameter controls the mean/variance relationship in the

model (see (4.9) and (4.13)). We observed the relationship (4.12), between the

sample means Xj(t) and standard deviations Sj(t)’s obtained from windows of the

flow–level data. The parameter γ was estimated by using a log–linear regression

of Xj(t) versus Sj(t), over j, 1 ≤ j ≤ J . This was done for a range of window sizes

and times t, and the estimates were found to be stable and γ̂ ≈ 3/4. Independently,

in [26], we explored the sensitivity of the model to the choice of γ and found that

the ReMSE’s are robust to all choices γ ∈ [0.5,1]. Small values of γ ≈ 0.5 lead

generally to slightly better ReMSE as compared to larger γ ’s. This may be due

to the fact that the small powers γ lead to a “smoother” covariance matrix and

hence have a regularizing effect. In practice, however, we need not only accurate

prediction but also adequate models for the variance, in order to have reliable

estimates of the prediction error. Therefore, we recommend using γ = 3/4 as

inferred from the data.

• The role of the window size m: In practice, at each time point t, the model (4.14)

is estimated from a window of past m data {Yo(t − k), 0 ≤ k ≤ m − 1}. Namely,
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Figure 4.6: Left: ReMSE of scenarios 5, 6, and 7 as a function of p. Performance suffers when p
exceeds the number of observed links, but is otherwise robust to the choice of p. Right: ReMSE of
scenarios 1–7, as a function of window size m used to estimate the means. We used p = 2 in these
cases.

β is obtained by using the iGLS algorithm and σ from (4.23) (see Section 4.2.3).

Figure 4.6b illustrates the effect of the window sizem on the quality of prediction.

Note that in all scenarios therein the prediction performance is rather robust to

the choice of m, provided that m ≥ 10. It is remarkable that with the exception of

2 out of the 7 shown prediction scenarios the model works well even when m is

less than 10.

Recall that the scalar σ does not affect the prediction and the ReMSE’s in Figure

4.6b depend only on the quality of estimation of β. The parameter σ is involved

in the prediction error. Our experiments with simulated data (not shown here, for

simplicity) show that the estimates of σ are also robust to the window size m.

• Convergence of β̂iGLS : In practice, the estimates of β̂GLS stabilize after a few iter-

ations. Here we assume the convergence criterion ‖β̂k − β̂k+1‖ < ε, with ε = 0.001,

for example. In the figures and tables, however, the algorithm was allowed to run
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for at least 20 iterations to be conservative.

4.4.3 Model Misspecification

We use the joint model (4.14) with simulated data that violate the assumption

of stationarity. Our goal is to understand the limitations of the model, when ap-

plied to network traffic with slowly changing trend. Network flows are simulated

using independent fractional Gaussian noise (fGn) time series with self–similarity

parameter H = 0.8 (see Section 4.5.1, below). This value of H is typical for many

real network flows that we examined.

We compare the mean squared prediction errors in the stationary and non–

stationary regimes. In the stationary case, constant means are added to the simu-

lated fGn’s to produce realistic traffic volumes. Non–stationary traffic traces were

obtained by adding a sinusoidal trend to all simulated stationary flows. In both

cases (stationary and non–stationary), link–level data was obtained from the sim-

ulated flow–level data through the routing equation (2.2).

We focus on prediction Scenario 6 in Table 6.1. We computed the baseline

simple kriging predictor Ỹ by using the known means and covariances of the

simulated data. We also estimated our model and used it to obtain a predictor Ŷ

of the unobserved link.

Table 4.4 shows the resulting prediction errors as a function of the window

size used to estimate the parameter β. The empirical error of our estimators is

comparable to the optimal MSE’s for the baseline estimator. This is so even in the

presence of non–stationarity. The major exception is when in the non–stationary

case the window size (m) becomes close to the half–period (50) of the sinusoidal

trend. This limited experiment shows that our model adapts well and it is essen-

tially robust to non–stationary trends provided that relatively small window sizes
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m are used.

Baseline Network Specific Model
Window Size (m) 5 10 25 30 50 75 100 200

Stationary 2.61 2.93 2.88 2.83 2.82 2.80 2.78 2.77 2.75
Non–Stationary 2.61 4.15 4.15 4.50 4.71 5.42 6.19 4.99 4.98

Table 4.4: Empirical mean squared errors for the baseline (simple kriging) predictor Ỹ and the
predictor Ŷ , based on our network–specific model with p = 2. Time series of 20,000 observations
were used.

We also examine the effect of an incorrect estimate of the Hurst exponent H

on temporal prediction. We simulated traffic from fGn with three different values

of H : 0.9, 0.75, and 0.6. For each simulation, a plug–in of Ĥ = 0.9 was used in

conjunction with known mean and covariance to construct temporal predictors

and prediction intervals (in Scenario 6). The results are summarized in Figure

4.7. We see that the ReMSE is higher in both cases, and the prediction intervals

undercover when H is over–estimated. Overall, overestimating H results in as-

suming a stronger temporal dependence than is present in the traffic. This results

in stronger weight being placed on recent observations in calculating the predic-

tors and leading to narrow prediction intervals, which explains the lower than

nominal coverage in Figure 4.7.

4.5 Statistical Detection of Anomalies under Long Range Dependence

In this section, we present an application of the above methodology to the case

when all links on the network are observed. In this case, for each link `, one can

compare the observed Y`(t) and the predicted Ŷ`(t) traffic (computed by using all

links with the exception of `). If statistically significant deviations are encoun-

tered, then this can serve as a flag of an anomaly or some structural change in the

network traffic.
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Figure 4.7: The effect of mis–specified Hurst exponent H on temporal prediction. We simulated
500 independent fGn traces for each of three different Hurst exponents: 0.9, 0.75, and 0.6. In
each case, the predictors were obtained assuming that H = 0.9. Plotted are the resulting empirical
ReMSE’s and coverages for 95%–prediction intervals.

To illustrate and detect such differences, we use a modified exponentially weighted

moving average (EWMA) control chart on the differences Y` − Ŷ`. The latter have

zero means and variances equal to the prediction error, which can be estimated

from (4.30) and (4.23).

Although EWMA control charts are widely used and well–studied (see, e.g,

[1]), they rely on an assumption of independent or weakly dependent (in t) obser-

vations. Computer network traffic is long–range dependent (LRD) and the usual

variance formula used in the EWMA charts does not apply. We show next how

the control limits of these charts can be adjusted to account for the presence such

dependence.

4.5.1 Control charts for long–range dependent data

Consider the EWMA with discount factor φ ∈ (0,1) of the time series {Zk}k≥0:

(4.37) Z̃t := (1−φ)(Zt +φZt−1 +φ2Zt−2 + · · · )
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Link Type H = Time Step: 1 3 5 10 15 20
Baseline Observed .9 Coverage 0.85 0.82 0.81 0.84 0.85 0.85

.9 Width 4.51 5.31 5.54 5.78 5.91 5.99
Observed .6 Coverage 0.78 0.82 0.83 0.87 0.91 0.90

.6 Width 6.00 7.07 7.36 7.69 7.86 7.97
Unobserved .9 Coverage 0.91 0.91 0.85 0.89 0.86 0.86

.9 Width 8.89 9.45 9.62 9.80 9.90 9.96
Unobserved .6 Coverage 0.85 0.93 0.92 0.90 0.93 0.89

.6 Width 12.22 12.89 13.09 13.32 13.43 13.51
Model Observed .9 Coverage 0.78 0.74 0.75 0.81 0.77 0.83

.9 Width 5.02 5.92 6.17 6.44 6.58 6.67
Observed .6 Coverage 0.28 0.32 0.35 0.42 0.39 0.34

.6 Width 2.00 2.36 2.46 2.57 2.62 2.66
Unobserved .9 Coverage 0.76 0.73 0.73 0.79 0.75 0.80

.9 Width 10.37 10.95 11.12 11.31 11.41 11.47
Unobserved .6 Coverage 0.39 0.38 0.38 0.36 0.46 0.36

.6 Width 4.20 4.43 4.50 4.58 4.62 4.65

Table 4.5: Coverage and Width for Simulated Traffic. In each case, a plug–in estimate of H = .9
was used, while the actual value of the Hurst parameter differed.

Letting λ = 1−φ, this moving average may be efficiently updated via Z̃t = λZt+(1−

λ)Z̃t−1. For independent Zt’s, for Var(Z̃t) = σ2
Z̃

, we have σ2
Z̃

= λ
2−λσ

2
Z . When the Zt’s

are long–range dependent (such as in the case of network traffic), however, the

latter formula underestimates the variance σ2
Z̃

, which can lead to frequent false

positive alarms.

As discussed in Chapter III, Internet traffic traces exhibit long–range depen-

dence, which can be well modeled by using fractional Gaussian noise, a stationary

time series with auto–covariance given by (3.6). The following result provides an

expression for the variance σ2
Z̃

of the EWMA control chart corresponding to LRD

fGn data.

Proposition IV.7. For Z̃t as in (4.37) with Zt’s an fGn with self–similarity parameter

H ∈ (0,1) and variance σ2, we have:

(4.38) Var(Z̃t) =
λ2σ2

C2(H)2

∫ ∞
−∞

2(1− cos(θ))|θ|−2H−1

λ2 − 2λ(1− cosθ) + 2(1− cosθ)
dθ,

where C2(H)2 := π/(HΓ (2H)sin(Hπ)).



73

The proof is given in Appendix 4.3. In practice, the expression in (4.38) is readily

evaluated by using numerical integration.

4.5.2 Simulated Anomalies in Observed Network Traffic

We now present some examples of using the adjusted EWMA control chart for

real network data, applied to the differences Y`(t)− Ŷ`(t). The mean is taken to be

0 for the duration of the control chart, since the predictor Ŷ`(t) is unbiased under

the model. The variance of the control chart is calculated using (4.38), with σ2

replaced by σ̂2
Y (estimated in the prediction procedure). The Hurst LRD param-

eter H of the traffic is obtained by using the wavelet–based methods described

in [22]. In each of the examples, a simple mean–shift anomaly is added to one

source–destination flow. Each figure in this section shows a plot of the observed,

predicted, and true traffic (top panels); the control chart of |Y` − Ŷ` | (middle pan-

els), and an indicator of whether the process is identified as out of control (bottom

panels). The vertical line indicates the onset of the simulated anomaly.
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(a) Standard EWMA Control Chart
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(b) LRD–adjusted EWMA Control Chart

Figure 4.8: Performance of the standard EWMA control chart for i.i.d. data (left plot) and that of
the LRD–adjusted chart (right plot).
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Figure 4.8 demonstrates the importance of the LRD–adjustment for the control

limits of the EWMA charts. Here, we examine link 13 (Kansas City to Chicago),

which is predicted using all links sharing at least one flow with it (Scenario 7 in

Table 6.1). A simulated anomaly is added to flow 20, which traverses only link

13. The standard chart results in far too many false positives and one cannot

distinguish between anomalous and non–anomalous traffic. While the adjusted

chart still has several false positives (due to high traffic variability), the onset of

the anomaly is essentially detected.

The second example shows how one can use the chart to determine which flow

is behaving anomalously. The mean shift was added to flow 6 (Kansas City to

Atlanta), which traverses two links: 13 (Kansas City to Chicago) and 17 (Chicago-

Atlanta) (see Figure 2.1). The LRD–adjusted control charts for Links 13 (Figure

4.9a) and 17 (not shown), clearly indicate the onset of the anomaly. The charts

of the other links, not carrying the anomalous flow, (e.g. link 7 in Figure 4.9b)

involve just a few false alarms and detect no anomaly. This suggests that the flow

using links 13 and 17 (that is, flow 6) is experiencing the anomaly.

In the last example, we illustrate a case where the anomaly detection is inher-

ently more challenging. We add a mean shift to the relatively long flow 14 (Seattle

to Atlanta), which traverses four links: 3 (Seattle to Salt Lake City), 9 (Salt Lake

City to Kansas City), 13 (Kansas City to Chicago), and 17 (Chicago to Atlanta) (see

Figure 2.1). In Figure 4.10a, the control chart is based on predicting Link 17 by

using all links that do not carry the anomalous flow. Unfortunately, these links

do not provide sufficient information to predict Link 17, hence the predictor is

a relatively ‘smooth curve’ as compared to the true traffic trace, and the error is

relatively large. Nevertheless, we can pick up the anomaly. The segment with
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(a) Link Carrying Anomalous Flow (13)
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(b) Link Not Carrying Anomalous Flow (7)

Figure 4.9: Detecting an anomalous multi–link flow. The simulated anomaly is added to a two–
link flow. The links carrying the flow show anomalous behavior (left plot), while the rest behave
as in the figure on right.

false positive alerts can be explained by the presence of small bias in our model,

since Fβ is not capturing perfectly the fine dynamics of the means. Indeed, if we

repeat the exercise using simulated traffic (Figure 4.10b), it shows that again the

predictor is not particularly useful i.e. it yields a smooth curve that tracks only

the local means. In this situation, however, there is no bias and the control chart

has no false positive alerts.
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(a) Real Traffic
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(b) Simulated Traffic

Figure 4.10: An anomaly is added to flow 14 (Seattle to Atlanta), and a control chart is constructed
on the Chicago–Atlanta Link (17), where all ’non–anomalous’ links are used in the prediction.
These links, however, do not provide enough information and the predictor is a relatively smooth
curve.



CHAPTER V

Multi–Modal Network Kriging

In the previous chapters, we developed and studied a global model for com-

puter network traffic. Although that model has many attractive theoretical prop-

erties and behaves well in practice, it does not account for certain small but real

statistical dependencies present in such traffic. In this chapter, we introduce and

explore an alternate model that explicitly models the TCP feedback mechanism,

the underlying cause of such dependence.

In addition to explicitly modeling the dependence between forward and re-

verse flows, the model we develop in this section also explicitly describes the re-

lationship between the packet and byte flows. This relationship can be leveraged

in predicting either packet or byte traffic levels on unobserved links. In practice,

however, predictions of the byte mode is most useful for network administration

purposes. Using the two traffic modes (bytes and packets) is similar in spirit to

the idea of co–kriging in spatial statistics, as described in [6].

We first introduce the new model, called the subflow model. We then discuss

the practical aspects of using this model for kriging, and finish by discussing some

of the details of the model. The evaluation of its performance is reserved for the

following chapter, where it is compared to the model from the previous chapter.
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5.1 A Mechanistic Byte–Packet Subflow Model

In this section, we build a model for the joint behavior of the packet and byte

flows across the entire network. In this model, we incorporate several of the im-

portant features discussed in Chapter II. Specifically, we try to capture the TCP

acknowledgment behavior, and the packet size distribution of the protocols described

in Section 2.3. When combined with the fact that TCP and UDP carry roughly

98% of the data, these two features allow us to achieve a mean/variance relation-

ship in a principled way, based on the engineered behavior of the network, rather

than using an empirical relationship as we did in Chapter IV.

We assume a subflow model for each of the source/destination flows. For each

flow j, denote by jr the reverse flow. We assume the TCP mechanism exists; namely

that when TCP packets are sent on the forward flow j, ACK packets are sent along

the reverse flow jr . This creates dependence between the forward and reverse

flows. The dependence is modeled in the covariance implied by the following

model. As in Chapter IV, we again assume that the time scale of measurement is

small as compared to the round trip time of the network.

We further assume (without loss of generality) that the J flows are ordered so

that the forward and reverse flows are consecutive entries in the appropriate X(t)

vector. We assume that each flow is composed of a set of subflows, and the total

traffic carried by a flow at a given time is simply the sum of the traffic carried

by the individual subflows. Each subflow caries packets of a constant size and is

utilized by a single protocol (UDP or TCP). In particular, assume that there are

two TCP subflows (the data subflow and the ACK subflow) and K UDP subflows.

Let cA denote the (constant) size of ACK packets, cT be the constant packet size of
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TCP packets, and cU,k ,∀k ∈ {1, . . . ,K} be the constant packet sizes of the K differ-

ent UDP subflows. Note that k should be relatively small as compared to the total

number of packet sizes for parsimony. In our analysis, we take K = 3 to approx-

imate ≈ 1500 possible packet sizes. We assume these constants are all known,

although we discuss the process of choosing them appropriately via the auxiliary

data in Section 5.3.1 below. This then allows us to express the number of packets

on flow j as:

(5.1) XPj (t) = XTj (t) +XTjr (t) +
K∑
k=1

XUj,k(t), j = 1, . . . ,J

Similarly, we may express the bytes on flow j as

(5.2) XBj (t) = cTX
T
j (t) + cAX

T
jr (t) +

K∑
k=1

cU,kX
U
j,k(t), j = 1, . . . ,J

These expressions match our intuition of the situation. Each subflow con-

tributes a certain number of packets to the overall packet and a certain number

of bytes to the byte total, where the contribution is equal to the packet size times

the number of packets. Furthermore, this model incorporates two novel and im-

portant features. By including the TCP acknowledgment mechanism, the depen-

dence between forward and reverse flows is accounted for. Secondly, since both

modes are functions of the number of packets in each subflow, the relationship of

the two modes is described by these equations.

Thus far, we have considered the mechanistic aspects of theses subflows. We

now consider an appropriate statistical model for these subflows. In contrast to

the assumptions made earlier in this work, the individual subflows are allowed

to have a relatively small number packets, a Poisson model is more appropriate
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than the normal approximation, as used above. However, empirical evidence,

discussed below in Section 5.3.2, suggests that network data is overdispersed, and

thus requires a model for count data that reflects this important property. We

therefore assume that each subflow has a Poisson distribution, conditional on a

certain parameter λkj (t), which is allowed to vary across each subflow. That is,

XTj |λ
T
j ∼ P ois(λTj ) ∀j = {1, . . . ,J }

XUj,k |λ
U
j,k ∼ P ois(λUj,k) ∀k = {1, . . . ,K}, j = {1, . . . ,J }

We assume that the λ’s have a gamma distribution, with a shape parameter αj

that depends on each subflow, and the scale parameter θ which is the same across

all subflows.

λTj ∼ Γ (αTj ,θ) ∀j = {1, . . . ,J }

λUj,k ∼ Γ (α
U
j,k ,θ) ∀k = {1, . . . ,K}, j = {1, . . . ,J }

We can then see that for a given subflow, the mean and variance may be given

by:

(5.3) E(XTj ) = E
(
E(XTj |λ

T
j )

)
= αTj θ

and

Var(XTj ) = E

(
Var(XTj |λ

T
j )

)
+ Var

(
E(XTj |λ

T
j )

)
= E(λTj ) + Var(λTj )(5.4)

= αTj θ +αTj θ
2 = αTj θ(1 +θ)

This allows us to calculate the mean and variance of each flow, and the covari-

ance between any pair of flows:
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EXPj (t) = θ

αTj +αTjr +
K∑
k=1

αUj,k

(5.5)

EXBj (t) = θ

cTαTj + cAα
T
jr +

K∑
k=1

cU,kα
U
j,k

(5.6)

Var(XPj (t)) = θ(1 +θ)

αTj +αTjr +
K∑
k=1

αUj,k

(5.7)

Var(XBj (t)) = θ(1 +θ)

c2
Tα

T
j + c2

Aα
T
jr +

K∑
k=1

c2
U,kα

U
j,k

(5.8)

Cov(XPj (t),XBj (t)) = θ(1 +θ)

cTαTj + cAα
T
jr +

K∑
k=1

cU,kα
U
j,k

(5.9)

Cov(XPj (t),XPjr (t)) = θ(1 +θ)
(
αTjr +αTj

)
(5.10)

Cov(XBj (t),XBjr (t)) = θ(1 +θ)
(
cAcT (αTjr +αTj )

)
(5.11)

Cov(XPj (t),XBjr (t)) = θ(1 +θ)
(
cTα

T
jr + cAα

T
j

)
(5.12)

Cov(XBj (t),XPjr (t)) = θ(1 +θ)
(
cAα

T
jr + cTα

T
j

)
(5.13)

with all other covariance terms zero due to independence

For convenience, this may be re–parametrized via:

(5.14) ~ν = ~αθ and φ = 1 +θ

which allows for an interpretation of the parameters, with ~ν representing the

means of the subflows and φ representing the variance scaling factor. Using this

alternative representation, the relationships above may be re–written as:
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EXPj (t) = νTj + νTjr +
K∑
k=1

νUj,k(5.15)

EXBj (t) = cT ν
T
j + cAν

T
jr +

K∑
k=1

cU,kν
U
j,k(5.16)

Cov(XPj (t),XPj (t)) = νTj + νTjr +
K∑
k=1

νUj,k(5.17)

Cov(XBj (t),XBj (t)) = φ

c2
T ν

T
j + c2

Aν
T
jr +

K∑
k=1

c2
U,kν

U
j,k

(5.18)

Cov(XPj (t),XBj (t)) = φ

cT νTj + cAν
T
jr +

K∑
k=1

cU,kν
U
j,k

(5.19)

Cov(XPj (t),XPjr (t)) = φ
(
νTjr + νTj

)
(5.20)

Cov(XBj (t),XBjr (t)) = φ
(
cAcT (νTjr + νTj )

)
(5.21)

Cov(XPj (t),XBjr (t)) = φ
(
cT ν

T
jr + cAν

T
j

)
(5.22)

Cov(XBj (t),XPjr (t)) = φ
(
cAν

T
jr + cT ν

T
j r

)
(5.23)

While somewhat cumbersome to repeat, this representation is instructive in that

these relationships are as they would have been if we had chosen a simple Poisson

model for each flow, with one major exception: each entry of the covariance matrix

is multiplied by a scaling factor φ, allowing overdispersion.

Thus the joint distribution of ~X and consequently ~Y (through the routing equa-

tion (2.2)) are determined by ~c, ~α, θ (or, alternatively, ~c, ~α, θ). While these pa-

rameters are, in principle, unknown, we consider a framework similar to that in

Chapter IV, where we differentiate between the so–called model parameters which

are learned via auxiliary data, and the parameters that are estimated using the

observed link level data. In this case, we will consider ~c to be a be a parameter

learned offline, θ or φ to be learned online, and ~α or ~ν to be modeled in the spirit
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of the means model in Chapter IV, as a linear combination of a small number of

basis vectors, where the basis vectors are learned offline, and the combination fit

via observed data. We discuss this process in the next Section 5.2.

5.2 Multi–Modal Kriging

The model defined in Section 5.1 states that X(t) and Y (t) are conditionally

Poisson random variables. In backbone networks, the entries of ~ν(t) are suffi-

ciently large so that X(t) may be well approximated by a multivariate Normal

distribution:

(5.24) X(t) ∼N (µX(~ν(t),φ),ΣX(~ν(t),φ))

where µX and ΣX as functions of ~ν(t) and φ are given in (5.15)–(5.16) and (5.17)–

(5.23), respectively. Observe that µX and ΣX are linear functions of ν(t). With this

approximation, we have:

(5.25) Y (t) ∼N (µY ,ΣY )

where µY = ÃµX(~ν(t),φ) and ΣY = ÃΣX(~ν(t),φ)ÃT , with

Ã :=

 A 0

0 A

 ,
where A denotes the routing matrix.

Using the above approximation, we consider the Kriging Problem from Section

4.1. With the above approximation, the Kriging Problem may be solved as before,

if ~ν(t) and φ are known. Given ~ν(t) and φ, the best linear unbiased predictor for

Yu = Yu(t) in terms of Yo = Yo(t) is then given by:

(5.26) Ŷu(t) = µu +ΣuoΣ
−1
oo (Yo(t)−µo),
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where

Y (t) =

 YoYu
 , µY (~ν(t),φ) =

 µoµu
 , and ΣY (~ν(t),φ) =

 Σoo ΣouΣuo Σuu

 .
are partitions of the traffic vector, mean vector, and covariance matrix, respec-

tively.

Remark V.1. In contrast with the approach proposed in Chapter IV, we have ar-

rived at the model in (5.26) in a more mechanistic way by incorporating the

packet–byte relationship as well as the TCP feedback mechanism.

As before, the difficulties lie in estimating the unknown parameters of the dis-

tribution of Y (t). Under the subflow model, both µY and ΣY are more structured

than in the previous chapter, however, both depend on the unknown ~ν(t) and φ.

The vector of subflow means, ~ν(t), is of length ((K + 1) ×J ), which is larger than

the number of observed links, so we attempt a dimension reduction technique

as before to estimate ~ν. This parallels our construction of basis vectors to model

traffic means in Chapter IV.

First, we construct locally smoothed estimates of the subflow means ~ν via the

Netflow data. This includes a series of estimates for each subflow of each flow,

or ((K + 1) ×J ) smoothed estimates of ~ν. We then let the matrix V be the first p

principle components of the matrix formed by joining the estimates of ~ν. We then

model ~ν(t) as a linear combination of these basis vectors:

(5.27) ~ν(t) = V ~β(t)
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Without loss of generality, assume that K = 3. Then we see that:

(5.28) µPX =

IJ/2 ⊗
 1 1 1 1 1 0 0 0

1 0 0 0 1 1 1 1


 ~ν =: Ψ ~ν

where ⊗ denotes the Kronecker product. Similarly,

(5.29) µBX =

IJ/2 ⊗
 cT cU,1 cU,2 cU,3 cA 0 0 0

cA 0 0 0 cT cU,1 cU,2 cU,3


 ~ν =: Φ~ν

We can then write:

µPX = Ψ V β and µBX = ΦV β

We see that under the subflow model,

(5.30) ~µX :=

 µ
P
X

µBX

 =

 Ψ VΦV
β

In view of the routing equation (2.2) we have:

(5.31) ~µY :=

 µ
P
Y

µBY

 =

 AΨ VAΦV

β
Defining the matrix

(5.32) M :=

 AΨ VAΦV

 ,
then we can write ~µY =Mβ. This then allows one to estimate β using the observed

set of links (whether bytes or packets), since

YO =MOβ
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In principle, we can then estimate β via OLS. If OLS is insufficient, we may use

it as an initial estimate of β to estimate ~ν which in turn allows us to calculate the

covariance matrix, and proceed with iterated GLS. In practice, this algorithm has

the potential to converge to a value of β that results in negative values for some

of the entries of ~ν. This is not consistent with the model, since both Poisson and

traffic means must be positive. This can be avoided with an iGLS procedure where

at each step the resulting β̂ is constrained via quadratic programming to satisfy

V β̂ = ~ν ≥ 0.

Once an estimate of β has been generated, it is straightforward to estimate the

overdispersion parameter φ. This is accomplished by defining the quantity

(5.33) Σ̃Y (ν) :=
1
φ
ΣY (ν(t),φ)

where ΣY (ν(t),φ) is the covariance matrix as defined by above. Note that Σ̃Y does

not depend on φ, and that:

ΣY (ν,φ) = φΣ̃Y (ν)

We then vectorize the sample covariance matrix of Yo and the observed part of

Σ̃Y (ν). It is then straightforward to estimate φ via OLS.

Once estimates for β and φ are obtained, they define estimates of µY and ΣY ,

which may then be used in the kriging equations. The results of kriging under

this model are presented in Chapter VI. The remainder of this chapter further

explores some details of this model.

5.3 Model Design and Validation

In this section, we discuss the problem of appropriately choosing the constant

packet sizes in the subflow model, and the need for a model that accounts for the
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overdispersion present in the data.

5.3.1 Model Design

In Section 5.1, we assume that we know the value of ~c. In practice, it is easy

to choose values of cA and cT as the smallest and largest possible packet sizes, re-

spectively. However, we need to choose a small number of packet sizes to closely

approximate the packet–size distribution of the UDP subflows. In fact, we wish

to approximate optimally a cumulative density function, denoted F(x), with a dis-

crete distribution having mass at k pre–specified values of x: c1, . . . , ck. We might

assume F(x) is continuous, or we might simply assume a discrete distribution

where the number of values having non–zero probability is much larger than k.

In practice, one does not observe the cdf, but rather the empirical cdf, denoted

F̂(x). However, we study the problem of approximating the empirical cdf with k

points.

We will approximate the cdf, F(x) via the function:

(5.34) F̃(x) :=
K∑
k=1

pkI{ck<x}

We approach this problem via a two–stage process:

1. For a fixed ~c := c1, . . . , ck, use a method to estimate the vector ~p := p1, . . . ,pk.

Some different approaches are discussed in the following.

2. Use an optimization routine, such as the Nelder-Mead algorithm, to search

over the space of possible values of ~c. For each ~c, we calculate the value of ~p

and then calculate the overall error between the empirical cdf and the esti-

mated cdf in (5.34). This overall error is minimized to give the appropriate

choice of ~c.
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(a) Estimated CDF (b) Estimates of ~c as a function of number of quantiles.

In the first step, we assume the vector ~c is given, and are trying to find the best

choice of ~p. This is done using the quantiles of the empirical cdf, and a linear

model. We chose n observed quantiles, and solve the following for ~p.

F̂(x1)

F̂(x2)

...

F̂(xn)


=



I{c1≤x1} I{c2≤x1} · · · I{ck≤x1}

I{c1≤x2} I{c2≤x2} · · · I{ck≤x2}

...
...

. . .
...

I{c1≤xn} I{c2≤xn} · · · I{ck≤xn}





p1

p2

...

pk


Solving the above system via OLS is not guaranteed to arrive at a valid solu-

tion, since we have the 0 ≤ pi ≤ 1∀i ∈ 1, . . . , k and
∑
pi = 1. We can enforce the

constraints by solving this system via a quadratic program.

In the second step, we need to define an objective function. Some candidates

include the sum of the L1 and L2 differences between F̂(x) and F̃(x). In practice,

we choose the L2 difference:

(5.35)
∫
|F̂(x)− F̃(x)|2dx

We then minimize this function via the Nelder–Mead algorithm to arrive at a

choice of ~c that is close to the empirical cdf.
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Many different applications utilize the UDP protocol. The three values of c

allow us to split the traffic into different application usage: small packets for short

messages, large packets representing mostly data transmission, and medium sized

packets, representing other applications. However, we must remember that, in

principle, whatever model we choose must be fit with a small number of observed

link measurements, so we must choose a number of c values that walks the fine

line between flexibility to describe the data and parsimony in the model.

5.3.2 Overdispersion of Data

In this section, we briefly illustrate the need of an overdispersed model for the

individual subflows. Since the parameter φ cancels out in the prediction formula,

it does not directly effect the prediction error. In order to see the necessity for the

overdispersed model, it is necessary to examine the prediction intervals. Figure

5.1 illustrates the Poisson model, while Figure 5.2 shows the results of the pre-

diction intervals with the overdispersed model. These results illustrate that the

variance present in the data is too high to be adequately described by a Poisson

model.

5.4 Calibration and Model Misspecification

In this section we evaluate the effect of model misspecification on the perfor-

mance of the subflow model. In particular, we examine the way in which the num-

ber of UDP subflows and the misspecification of packet sizes affect the quality of

the prediction. We also explore the utility of a model developed using auxiliary

data recorded on a particular day in carrying out prediction on other days.

Throughout this section, we evaluate the performance of the model via what

we refer to as the single–station network monitoring problem. For a given router, we
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Figure 5.1: Prediction of traffic with prediction intervals for a pure Poisson model,which is equiv-
alent to the subflow model with φ = 1. The prediction intervals are too small to be distinguished
from the prediction itself. The variability in the data, is clearly much larger.

Figure 5.2: Prediction of traffic with prediction intervals for the overdispersed model, with φ esti-
mated from the data. Although the coverage is not perfect, the coverage is much more reasonable.
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take as observed all the links that connect directly to the router, and predict the

traffic levels on the remaining links in the network. These scenarios correspond

to monitoring the traffic on the entire network using a combination of direct ob-

servation and multi–modal kriging. We evaluate the performance at each router

via:

ReMSE2(Ŷ ) :=
1
T

T∑
t=1

‖Ŷ (t)−Y (t)‖2

‖Y (t)‖2

For further details on the single–station monitoring problem, see the discussion

in Chapter VI.

5.4.1 Number of UDP Subflows

In the above derivation, we have assumed that the model consists of one TCP

subflow and K = 3 UDP subflows, as well as the ACK subflow induced by the TCP

mechanism on the reverse flow. In principle, however, we may choose any number

K of UDP subflows. In Table 5.1, we explore other possible values of K , namely,

K = 1 and K = 5. In the table, we see that the use of a single UDP subflow is not

particularly robust, as there are a few routers for which the prediction is quite

poor. With these exceptions, increasing the number of flows sometimes results

in marginally better prediction, although in some situations a smaller number

of UDP subflows performs better. Choosing K = 3 appears to be a reasonable

compromise between model flexibility and parsimony.

5.4.2 Misspecification of Subflow Packet Size

The model we propose uses known constant packet sizes for each of the sub-

flows in the model. In Section 5.3.1, we discuss a means of selecting the packet

sizes for the UDP subflows using auxiliary data. The size of the TCP payload and

acknowledgment packets, on the other hand, are known based on the design of
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Packets: Bytes:
Number of UDP Subflows: 1 3 5 1 3 5

ATLA 0.174 0.154 0.155 0.149 0.166 0.162
CHIC 0.320 0.308 0.319 0.190 0.217 0.228

HOUS 0.166 0.154 0.156 0.122 0.122 0.121
KANS 0.226 0.225 0.230 0.132 0.143 0.147
LOSA 3750.969 0.166 0.170 2643.996 0.131 0.131

NEWY 0.182 0.201 0.194 0.162 0.217 0.212
SALT 73383.537 0.230 0.239 106791.485 0.151 0.158
SEAT 0.252 0.257 0.257 0.153 0.173 0.175

WASH 0.152 0.140 0.139 0.188 0.176 0.173

Table 5.1: The effect of Number of UDP subflows used in the mode, reported in ReMSE2, for
predicting both packets and bytes. Note that the performance of a single subflow is somewhat
unstable. Furthermore, the change from 3 to 5 subflows does not improve prediction substantially.
In fact, in some cases it is marginally worse.

the protocol. In this section, we estimate the effect of misspecifying the packet

sizes for the acknowledgment, TCP payload, and UDP packet sizes.

In Table 5.2, we investigate specification of the ACK packet size. We see that

prediction of the packet mode is generally robust, although there is an increase for

large values. Predictions of the byte mode, on the other hand, are far less robust,

and become notably worse as the packet size is larger.

Table 5.4 examines the misspecification of the TCP payload size. As with the

ACK packet size, the effect is more noticeable when predicting byte traffic.

Finally, we examine the effect of misspecifying the size of UDP in Table 5.4.

We misspecify the size of UDP subflows. The model seems more robust to this

type of misspecification, which agrees with our intuition, since the UDP protocol

accounts for a much smaller fraction of traffic than TCP.

5.4.3 Robustness of Model on Other Days

In Chapter IV, we demonstrated that the model proposed therein was robust to

different days, in the sense that a model (the matrix F) learned on one day could

be used to predict traffic on other days without increasing the error substantially.
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Packets:
Packet Size: 40 0 1 80 400 1500

ATLA 0.191 0.202 0.201 0.182 0.156 0.168
CHIC 0.166 0.143 0.143 0.198 0.512 0.209

HOUS 0.126 0.128 0.128 0.124 0.140 0.138
KANS 0.133 0.126 0.126 0.141 0.239 0.152
LOSA 0.135 0.138 0.138 0.133 0.142 0.136

NEWY 0.260 0.277 0.276 0.244 0.170 0.203
SALT 0.131 0.129 0.129 0.134 0.198 0.191
SEAT 0.163 0.158 0.158 0.169 0.228 0.199

WASH 0.191 0.210 0.210 0.174 0.122 0.120
Bytes:

Packet Size: 40 0 1 80 400 1500
ATLA 0.153 0.151 0.151 0.155 0.196 0.840
CHIC 0.244 0.220 0.221 0.273 0.530 0.198

HOUS 0.150 0.150 0.150 0.150 0.169 0.369
KANS 0.203 0.198 0.198 0.209 0.269 0.266
LOSA 0.151 0.151 0.151 0.151 0.176 0.546

NEWY 0.174 0.173 0.173 0.175 0.205 1.108
SALT 0.174 0.173 0.173 0.177 0.229 0.275
SEAT 0.242 0.244 0.244 0.241 0.255 0.290

WASH 0.140 0.140 0.140 0.141 0.154 0.460

Table 5.2: Misspecification of ACK packet size. Comparing the correct packet size of 40 to various
misspecified packet sizes. Notice that misspecification much more seriously impacts the predic-
tion of the byte traffic.

We attempt a similar analysis with the subflow model.

Table 5.5 shows the results of this analysis. It is clear that this model is less

robust to changes in the underlying structure than the model explored in Chapter

IV. However, with the exception of certain routers (New York and Washington),

the model seems to achieve a consistent bound in most cases that is useful for the

coarser level network tasks.

Intuitively, we expect the subflow model to be more sensitive to changes in net-

work structure, since here we include finer structural detail in the model, consid-

ering the protocol level subflows making up the origin–destination flows rather

than considering the aggregate flows themselves. Furthermore, this sensitivity to

changes in the network is potentially useful, since it could, in principle, allow

anomaly detection methods based on the subflow model to detect more subtle
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Packets: Bytes:
Packet Size 1500 50 200 700 1200 1500 50 200 700 1200

ATLA 0.191 0.339 0.375 0.511 0.348 0.153 0.803 0.636 0.223 0.138
CHIC 0.166 0.255 0.315 0.471 0.287 0.244 0.827 0.666 0.239 0.125

HOUS 0.126 0.250 0.263 0.297 0.186 0.150 0.816 0.663 0.285 0.157
KANS 0.133 0.189 0.222 0.299 0.166 0.203 0.837 0.689 0.286 0.151
LOSA 0.135 0.227 0.248 0.314 0.197 0.151 0.839 0.690 0.297 0.159

NEWY 0.260 0.575 0.614 0.793 0.469 0.174 0.771 0.582 0.177 0.152
SALT 0.131 0.134 0.139 0.149 0.132 0.174 0.857 0.736 0.384 0.193
SEAT 0.163 0.150 0.151 0.147 0.139 0.242 0.866 0.757 0.441 0.278

WASH 0.191 0.408 0.435 0.591 0.442 0.140 0.789 0.614 0.202 0.129

Table 5.3: Misspecification of TCP payload packet size. The correct size of 1500 is compared to
a range of misspecified values. As with the ACK packet size, the misspecification most seriously
impacts the prediction of byte traffic.

Packets: Bytes:
Packet Size: Opt. 700 20 1200 Opt. 700 20 1200

ATLA 0.191 0.169 0.216 0.163 0.153 0.152 0.160 0.154
CHIC 0.166 0.233 0.136 0.331 0.244 0.304 0.223 0.373

HOUS 0.126 0.124 0.138 0.134 0.150 0.155 0.155 0.165
KANS 0.133 0.144 0.124 0.166 0.203 0.203 0.207 0.209
LOSA 0.135 0.132 0.145 0.132 0.151 0.147 0.160 0.141

NEWY 0.260 0.199 0.300 0.167 0.174 0.158 0.185 0.152
SALT 0.131 0.135 0.131 0.142 0.174 0.172 0.176 0.165
SEAT 0.163 0.167 0.159 0.169 0.242 0.231 0.259 0.212

WASH 0.191 0.144 0.231 0.132 0.140 0.141 0.150 0.158

Table 5.4: Misspecification of UDP Packet Size. The “Opt” column indicates the error when we
assign packet sizes based on the results from Section 5.3.1, while the other columns indicate the
misspecified size of all three subflows. We see that the model is more robust to misspecification of
this type than it is to the

changes in the network structure, or detect anomalies faster.
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Packets:
2-19-2009 2-18-2009 2-26-2009 3-12-2009 3-17-2009 4-19-2009

ATLA 0.191 0.237 0.303 0.564 0.456 0.436
CHIC 0.166 0.172 0.235 0.303 0.293 0.301

HOUS 0.126 0.156 0.186 0.481 0.367 0.329
KANS 0.133 0.138 0.180 0.275 0.281 0.308
LOSA 0.135 0.161 0.224 0.425 0.374 0.328

NEWY 0.260 0.374 0.420 0.809 0.919 1.181
SALT 0.131 0.143 0.184 0.248 0.259 0.282
SEAT 0.163 0.162 0.220 0.301 0.284 0.339

WASH 0.191 0.206 0.243 0.393 0.406 0.501
Bytes:

2-19-2009 2-18-2009 2-26-2009 3-12-2009 3-17-2009 4-19-2009
ATLA 0.153 0.216 0.288 0.497 0.392 0.424
CHIC 0.244 0.261 0.349 0.306 0.338 0.383

HOUS 0.150 0.184 0.247 0.432 0.344 0.377
KANS 0.203 0.211 0.283 0.272 0.319 0.391
LOSA 0.151 0.190 0.263 0.389 0.350 0.387

NEWY 0.174 0.286 0.350 0.806 0.776 0.878
SALT 0.174 0.186 0.257 0.242 0.291 0.354
SEAT 0.242 0.245 0.333 0.312 0.330 0.443

WASH 0.140 0.191 0.267 0.351 0.348 0.443

Table 5.5: Examining the robustness of the subflow model to different days. The subflow model
was used to learn the model via auxiliary data collected on 02-19-2009, and used to predict traffic
on several other days. Although there is an increase in error as we move from the original day,
most routers seem to reach a reasonable steady state.



CHAPTER VI

Discussion, Comparison of Methods, and Analysis of Real Data

In this chapter, we examine the performance of the subflow model introduced

in the previous chapter, and compare its relative strengths and weaknesses to the

model described in earlier chapters. We first introduce the idea of prediction

scenarios, and then evaluate the two models based on these scenarios.

6.1 Evaluation Criteria

To compare the performance of the two models, we use two different criteria.

In the first, we predict a single link using a subset of observed links.

Prediction Scenarios: In this case, estimators are compared for 9 different pre-

diction scenarios (see Table 6.1). In each case one link is treated as unobserved,

and a subset of the remaining links are used as predictors. The choice of the un-

observed/observed links is not arbitrary. Recall that the traffic on any single link

is equal to the sum of the traffic of the O/D flows that utilize the link. The three

unobserved links were chosen to represent a range in the utilization levels (in

terms of number of flows): Link 7, predicted in scenarios 1-3, is used by a medium

number of flows; Link 13, in cases 5-7, is used by 14 flows, the most of any link;

finally, Link 19 is utilized by a small number of flows.

The links used as predictors were also chosen based on the number of origin–
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Scenario Predicted Observed Links
1 7 2,12
2 7 2,12,13,15
3 7 2,12,13,15,23,25
4 13 3,7
5 13 3,9
6 13 3,9,12
7 13 3,7,9,12,17,19,21
8 19 3,9,13
9 19 2,3,9,12,15,21,23,25

Table 6.1: Description of nine Kriging scenarios used to evaluate the model. The choice of pre-
dictors is based on the number of shared traffic flows. The link id’s are given in Table 2.1.

destination flows shared with the unobserved link. Namely, for each unobserved

link, the predictors were selected so that they share at least one origin–destination

flow with the unobserved link. However, within a prediction scenario, multiple

observed links may carry the same OD flow.

While using the prediction scenario criteria, we are looking at how well a single

link is estimated, and we use the following natural measure to determine the

quality of a prediction. This measure can be interpreted as average relative error

over the network.

(6.1) ReMSE1(Ŷ ) =
T∑
t=1

‖Ŷ (t)−Y (t)‖2/
T∑
t=1

‖Y (t)‖2.

Single Router Network Monitoring: In addition to the set of scenarios described

above, we also consider the idea of monitoring the entire network from a single

router. In this scenario, all the links connected to a given router are directly ob-

served, while all other links are predicted. This is a natural problem, as it allows

the monitoring of the entire network without expending any bandwidth to trans-

mit information about network usage. In our analysis, we do this for all nine

routers making up Internet2.
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Packet Traffic Byte Traffic
Scenario SF Mod PCA Mod SF Mod PCA Mod

1 0.3708 0.1488 0.08 0.4692
2 0.1201 0.0219 0.0752 0.0692
3 0.1473 0.0348 0.0682 0.1113
4 0.0433 0.1623 0.0888 0.147
5 0.037 0.085 0.0312 0.5011
6 0.0423 0.0749 0.0308 0.0992
7 0.037 0.0328 0.0349 0.0439
8 0.11 0.2543 0.1365 7.5838
9 0.1111 0.2063 0.1382 2.0336

Table 6.2: Results comparing the results of the Subflow model with the previous model across the
9 prediction scenarios introduced in Table 6.1. The lowest value is highlighted. While the two
methods are comparable in terms of predicting the packet mode, the Subflow model has a clear
advantage in terms of predicting the byte mode.

Since this goal is more global in nature, we must consider a different measure

of success. We use the second version of relative mean square error as a global

measure of prediction success.

(6.2) ReMSE2(Ŷ ) :=
1
T

T∑
t=1

‖Ŷ (t)−Y (t)‖2

‖Y (t)‖2

These two measures are used as appropriate in the remainder of this chapter

to compare the performance of network kriging under these two models.

6.2 Comparison

Here, we compare the performance of the two models we have developed by

evaluating their performance in terms of both the prediction scenarios and the

network monitoring scenarios.

Scenario Prediction Perspective: Results for all the prediction scenarios are

shown in Table 6.2. Further details for some of the prediction scenarios are de-

picted in Figure 6.3, which shows the observed and predicted traffic traces under

different models for one of the prediction scenarios. It is clear that in general, the
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Figure 6.1: Comparing the Subflow model to the PCA model for the original scenarios, in terms of
predicting packets or bytes.

Figure 6.2: Comparing the Subflow model to the PCA model for the reverse of the observed links
from the original scenarios, in terms of predicting packets or bytes. Because the Subflow models
explicitly models the forward/reverse relationship, we expect it to perform better.
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Figure 6.3: Comparison of models for Scenario 4, with all forward links observed.

subflow model outperforms the PCA model in most of the studied scenarios. The

subflow model has the most notable advantage in the case of predicting the byte

traffic as opposed to the packet mode, which is most useful for administration of

a network.

Network Monitoring Perspective: It is clear that the subflow model is superior

for monitoring the network. As shown in Figure , the subflow model outperforms

the PCA model in terms of ReMSE2. This is undoubtedly due to the fact that the

subflow model makes more use of the information contained in the reverse flows

than the PCA model, a concept that is explored in more detail in the following

section.

6.3 Advantages of Subflow Model

In this section, we discuss the intuitive advantages of the subflow model over

the PCA model, and show these advantage hold true in practice when imple-
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Figure 6.4: Total Network Error: Router Perspective. Traffic is predicted on the entire network,
observing only the links directly connected to each of the nine routers of the Internet2 backbone.
Notice that we achieve prediction error as low as 15% even though we observe links at a single
node.
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Figure 6.5: Example network illustrating intuition behind the subflow model. The network con-
sists of five routers, labeled A–E, and eight uni–directional links, labeled 1–8. Also depicted are
four origin–destination flows, D→A (green solid), E→B (blue solid), A→D (green dashed), and
B→E (blue dashed). Other flows are present, but not displayed. If we consider predicting the
traffic level on link 3, we wish to learn about the two solid flows by observing other links. Since
the odd numbered links carry these flows, these links provide information about the traffic on link
3 under both models. However, under the subflow model, the relationship between the forward
and reverse flows (solid and dotted flows of the same color) is explicitly modeled, and so the even
numbered links provide information about the traffic on link 3.

mented with real data from Internet2.

6.3.1 Intuition of Subflow Model

There are two primary advantages of the subflow model. The first is that by

using the two modes of network traffic (bytes and packets), the model has more

information to use in predicting unobserved traffic. This advantage is somewhat

intuitive, and is related to the idea of co–kriging from spatial statistics. It is,

at its most basic level, an application of the fundamental idea that additional

information may be gained by observing a separate, but correlated quantity. In

our case, there is a fundamental relationship between byte and packet level traffic

loads which may be exploited to improve prediction. The second advantage, the

utility of reverse flows, is more subtle and explored below.

The subflow model, as discussed in Chapter V, explicitly models the relation-

ship between forward and reverse flows through the TCP subflows. These results
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in a non–diagonal covariance matrix of the vector of flows (~X), and, consequently,

more non–zero entries in the covariance matrix of the link level traffic vector (~Y ).

In turn, this means that a greater number of links provide information about any

unobserved link under this model.

Figure 6.5 shows an illustration of the idea on a simple network. In the figure,

the physical structure of the network is depicted in black. Four of the possible ori-

gin/destination flows are depicted in color, with forward/reverse pairs depicted

in the same color. From the perspective of predicting the traffic on Link 3, the

solid links represent “forward” flows, while the dashed lines represent the cor-

responding “reverse” flows. The model from Chapter IV models the dependence

between traffic on links through shared flows, so the other odd–numbered links

(1,5,7) provide the most useful information for predicting Link 3. Under this

model, however, the flows are considered independent, so the even numbered

links are not useful beyond determining an estimate of the mean vector. The sub-

flow model (introduced in Chapter V), explicitly models this dependence, making

the links that carry the reverse flows more useful in prediction. Thus, in the net-

work depicted, the even numbered links are more useful in predicting the traffic

on Link 3 under the subflow model than they are under the PCA model. This

effect is shown in Figure 6.6, where only links carrying “reverse” flows are used in

predicting the traffic on an unobserved link. This relationship is further explored

in the case of real data in the next section.

6.3.2 Selecting Observed Links

The subflow model introduced in Chapter V raises several interesting ques-

tions regarding the choice of which links should be observed in order to predict
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Figure 6.6: Comparison of models for Scenario 4, with all reverse links observed.

the unobserved links. In this context, the subflow model raises other interesting

questions, which we illustrate in this section. This is an interesting problem, of

interest in ongoing and future research.

In this section, we investigate the usefulness of various links in the network

to the task of predicting the traffic on a particular link. We conduct a series of

experiments, with examples shown in Figures 6.7 and 6.8. In the experiments, we

consider predicting the traffic on one link from four others. The four links are

reasonable for prediction, in the sense that they carry at least one flow with the

predicted link. (This is way the prediction scenarios described in Section 6.1 were

chosen.) We gradually switch these links from those that would be useful to the

link between the same two routers, but traveling in the reverse directions. Thus,

the useful links are switched with those that do not carry any flows in common

with the predicted link. They do, however, carry flows that are related to flows

carried by the predicted link, via the TCP subflows. As we see in the figures, the
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Figure 6.7: Predicting Link 7 via 4 links, chosen to be either forward or reverse. Note the perfor-
mance decrease for the PCA model versus the more stable performance of the subflow model.

subflow model is robust to these changes, while the PCA model is not, showing

that the Subflow model is able to utilize the information in the reverse flows to a

much greater degree than the PCA model.

6.4 Summary of Main Contributions

The preceding work provides new methodology to better understand and uti-

lize the complicated data associated with computer network traffic. The main con-

tribution of this work is the development and study of a global spatio–temporal

model for computer network traffic. In addition to its methodological contribu-

tions to the field, this work also introduces useful applications to network engi-

neers and important themes to guide future work.

The primary focus of this work is the modeling and prediction of computer

network traffic. Although the temporal behavior of computer network traffic had

been well–studied, the global, network–wide traffic behavior is largely an open
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Figure 6.8: Predicting Link 13 via 4 links, chosen to be either forward or reverse. Note the perfor-
mance decrease for the PCA model versus the more stable performance of the subflow model.

challenge. In this Chapter III, we introduced and developed a spatio–temporal

model. This model specifies not only the temporal relationships, but also those

of any set of links on the same network. While in principle this model can be

used to solve the kriging problem, the values of key parameters are unknown and

should be estimated from data. Chapter IV provides a practical method of es-

timating these parameters by using auxiliary data to develop a structural model

which may be fit using a small number of observed links. In Chapter V, we pro-

vide an explicit model for the dependence between flows via the behavior of net-

work protocols. The model also describes the relationship between two modes of

network traffic: number of packets and amount of data. This chapter introduces

multi–modal network kriging. In this framework, we can improve the prediction

and kriging error by measuring traffic levels in terms of both number of packets

and amount of data. This is because the mechanistic dependence between packets

and byes induces correlation between those modalities, which allows us to “bor-
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row strength” and thus improve the performance of network kriging.

Two important applications of the proposed methodologies are developed. First,

in Chapter IV, we developed a modified control–chart methodology that can be

useful to detect network anomalies by comparing the observed traffic levels to

those predicted by our model. Because the model implicitly represents the struc-

tural relationships of the underling network flows, substantial differences be-

tween the observed and predicted traffic indicate a deviation from this structure,

and hence an anomaly. Then, in Chapter V, we introduce the idea of single–point

network monitoring. This application of the modeling and kriging methodolo-

gies allow network administrators to monitor traffic on the entire network while

using substantially less network bandwidth for monitoring. If when monitoring

with a single node, the prediction error is not sufficiently small for a particular

application, then the technique could be extended to the case of monitoring at a

small number of nodes, rather than the entire network. This has the potential to

balance the bandwidth usage with the quality of the monitoring. The choice of

the optimal nodes to monitor is an interesting open question.

Two important themes appear throughout this work. All the methodological

developments were scientifically informed, in that they incorporated knowledge

about the physical world and the designed features of computer networks. The

global model from Chapter III is, at its core, based on the physical behavior of

users of the network, and the actual distributions of file sizes. Similarly, the sub-

flow model explored in Chapter V is directly based on the physical relationship

between the packet and byte modalities as well as the engineered TCP feedback

mechanism. Secondly, this work is an example of the growing field of data–fusion.

In both Chapters IV and V, we use two different sources of data about the net-
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work traffic. One is accurate but aggregate and computationally inexpensive to

work with, while the other is both much noisier and much more challenging com-

putationally, but much more detailed in the information it provides. We show

how these fundamentally different sources of information may be combined in a

way that acknowledges the limits of each, but produces better results than could

be obtained by either on its own. The developed methodologies and principles

extend to other types of networks and traffic, such as transportation and social

networks. We believe, however, that understanding both the underlying scien-

tific principles and the relationships between disparate types of data are crucial

to extending these methods to other types of networks.
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