Defining chemical reaction mechanisms associated with threshold phenomena in conformational diseases

by

Conner Iknokwayyo Sandefur

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2012

Doctoral Committee:
Associate Professor Santiago Schnell, Chair
Associate Professor Jason Gestwicki
Associate Professor Gustavo Rosania
Assistant Professor Victoria Booth
Lecturer IV Elizabeth McLaurine Rust
This thesis is dedicated to my wife, Brittany Grace Marino Sandefur. Thank you for your kindness, candor, humor, and patience. Your unconditional love and support made this thesis possible. Gopher ties.
TABLE OF CONTENTS

DEDICATION ... ii
LIST OF FIGURES .. vi
LIST OF TABLES .. xi
LIST OF APPENDICES .. xii
ABSTRACT ... xiii

CHAPTER

I. Introduction .. 1
 1.1 Introduction ... 1
 1.2 Overview of thesis structure 4

II. Classifying protein aggregation in conformational disease: current strategies and limitations ... 6
 2.1 Introduction ... 6
 2.2 Classification of mechanisms of protein misfolding and aggregation ... 7
 2.3 Threshold phenomena are observed in the formation of toxic misfolded and aggregated proteins ... 10
 2.4 Most available mechanisms of protein misfolding and aggregation are not classified as capturing threshold phenomena ... 13
 2.5 Threshold phenomena can be captured by dose response curves ... 14
 2.6 Dynamical behaviors driving threshold phenomena can be distinguished experimentally ... 19
 2.7 Conclusion ... 22

III. Identification of motifs underlying bistable chemical reaction mechanisms ... 24
3.1 Introduction ... 24
3.2 Dynamical behavior underlying threshold phenomena have been systematically characterized .. 25
3.3 Materials and Methods .. 29
 3.3.1 Bistable overall reaction configurations 29
 3.3.2 Bistable reaction mechanisms 30
 3.3.3 One-to-one transformation of mechanisms into bipartite graphs with edge coloring 30
 3.3.4 Mining bipartite graphs for motifs 31
3.4 Results .. 32
 3.4.1 Original chemical motifs were captured by mining the transformed bistable reaction configurations 32
 3.4.2 Fundamental reaction mechanism structure is captured by small motif sizes 35
 3.4.3 Identification of motifs underlying bistability 38
3.5 Discussion .. 40
3.6 Conclusion .. 42

IV. Motifs characterizing protein aggregation mechanisms and dynamics ... 44
4.1 Introduction .. 44
4.2 Materials and Methods .. 46
 4.2.1 Creation of a library of protein aggregation mechanisms and networks 46
 4.2.2 Motif mining and clustering 47
 4.2.3 Creation of an online repository 47
4.3 Results and Discussion .. 48
 4.3.1 Unique mechanisms were found in less than a fifth of published modeling papers 48
 4.3.2 Aggregation models were classified into six groups . 51
 4.3.3 Nine protein aggregation networks are predicted to have threshold behavior 53
 4.3.4 Models and networks are stored in AggMod, a repository of protein Aggregation Models 55
4.4 Conclusion .. 57

V. A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases ... 59
5.1 Introduction .. 59
5.2 Model .. 61
 5.2.1 A model of bystander protein disappearance in the presence of misfolded protein 61
2.1 Multiple theoretical steady state behaviors can describe experimentally observed threshold phenomena. (A) A square hyperbolic dose response curve describes a monostable system in which there is a sharp initial change in response to a change in dose and then the response plateaus. (B) In a system described by a sigmoidal saturation dose response curve, there is a one-to-one response. A sharp shift in the steady state number of aggregates occurs in the threshold region. (C-D) There are two types of switch-like saturation curves. (C) In a reversible bistable system, the system jumps to a high steady state number of aggregates at \(\text{thres}_2 \). If the system starts at a high response level, the dose must be reduced past \(\text{thres}_2 \) to \(\text{thres}_1 \) before a low response level can be recovered. (D) In an irreversible bistable system, once \(\text{thres}_3 \) is passed, there is no way to recover the low response state. The boxed regions in (A - D) are the threshold regions for each dynamical behavior. In (A - D), solid lines denote stable steady states. In (C - D), unstable steady states are denoted by dotted lines.

2.2 Steady state aggregation data can be captured by multiple dynamical behaviors. (A) Experimental time series data of aggregation formation in a \(C. \text{ elegans} \) model of Huntington's disease [80] were extracted using digitizing software [78]. (B) Data from (A) were replotted as polyglutamine tail length (Q#) versus number of aggregates at day 14.
2.3 Predicted outcomes of experimental studies distinguish the three different theoretical steady state behaviors. Top panel: In a square hyperbolic system, there is a one-to-one response of steady state number of protein aggregates to the polyglutamine tail length (Q). There is a gradual, graded increase in the steady state level of aggregates as the tail length increases. Middle top panel: In a sigmoidal dose response system, Middle bottom panel: The reversible switch system outside of the threshold region behaves similarly to the sigmoidal system. When the polyglutamine tail length is within the threshold region, the steady state number of protein aggregates is dependent on the initial number of protein aggregates in the system. Bottom panel: In the irreversible switch simulation, there is no recovery from high aggregate numbers. Triangle represents high misfolded concentration (high Q#), square threshold range and diamond represents a low Q#. In the square hyperbolic graphs, the low and threshold lines are nearly identical.

3.1 Examples of chemical pathways represented as directed bipartite graphs without and with edge coloring. Pathways (denoted as P_1, P_2, and P_3) are represented by black nodes and connect the reactants and products (represented as gray nodes). The edge coloring captures the stoichiometry of the pathway. In graphs with edge coloring, a green edge represents one molecule of a species reacting or being produced. A blue edge represents the reaction or production of two molecules of a given species.

3.2 The chemical motif were transformed into bipartite motifs. The chemical motif ID (e.g. DabXFabc) and chemical reactions are listed with the corresponding bipartite motif and motif ID (e.g. 17214571108). Enzyme catalyzed reactions are denoted by an arrow with the enzyme catalyst. In the bipartite motifs, species and reactions are represented by gray and black nodes, respectively.

3.3 Frequency of bipartite motif appearing in the 16 transformed bistable reaction configurations. Motif 17214571108 appeared in the most networks. The last two motifs (16920 and 164) were required to appear together in a network to correspond to the original chemical motif (Figure 3.2).

3.4 Significance profile for the 16 transformed bistable reaction configurations shows over and underrepresentation of motifs in the resulting bipartite networks.

3.5 Normalized z-scores of three-node motifs for the 11 bistable mechanisms transformed into bipartite graphs with colored edges. Motifs appearing as over- or underrepresented across the majority of networks are presented. Motifs discussed in the text are pictured. The motif label is the motif ID assigned by FANMOD plus the adjacency matrix corresponding to the motif.
3.6 Motifs of size five nodes appearing in (A) all transformed bistable mechanisms and (B) only in bistable mechanisms requiring edge coloring. .. 38

3.7 Two motifs of size seven nodes appearing or overrepresented across all transformed bistable reaction mechanisms. In both motifs, there is a cycle between two species with an input and output into one of the species in that cycle. Node identifiers and chemical pathways underlying the motifs are listed for clarity. 39

4.1 Pie chart of models taken from peer-reviewed, published literature. The majority (56%) of modeling papers did not include a mechanistic description of the aggregation process. Of all of the modeling papers identified, only 15% contained unique mechanisms. 49

4.2 Network clustering based on pairwise correlation of normalized z-scores for four-node motifs. The correlation scale is denoted by the heatmap colors where red is negatively correlated, green is positively correlated and black is no correlation. 52

4.3 Classification of aggregation bipartite networks with edge coloring using four-node motifs. Examples of chemical reactions underlying each motif are given. *In class A, two networks did not have a dimerization event and a third network did not have a monomer addition event. Abbreviations: reverse conformational change (RCC), reversible isomer addition (RIA), permanent isomer addition (PIA), reversible conformational change (PCC), homodimerization (D), heterodimerization (HD) . . 54

4.4 Screenshot of search results for ‘actin.’ The AggMod website is available for free use at http://aggmod.ccmb.med.umich.edu. 55

5.1 Schematic diagram of a continuous flow reactor model of the endoplasmic reticulum lumen (ER). In this model, the bystander protein pool, composed of unfolded and folded isomers, has an inflow rate of \([N_0]/t_N\), where \([N_0]\) is the basal bystander protein concentration and \(t_N\) is the bystander ER residence time. The misfolded protein has an inflow rate equal to \([M_0]/t_M\), where \([M_0]\) is the basal misfolded protein concentration and \(t_M\) is the misfolded ER residence time. Bystander and misfolded proteins interact with reaction rate \(R([N],[M])\) which is a function of the bystander and misfolded protein concentrations. The outflow rate of bystander and misfolded proteins follows first-order kinetics. The outflow of isomers is driven by the ER-assisted folding (ERAF), ER-assisted degradation (ERAD), protein export and translocation pathways. 63
5.2 Steady states for the extent of the reaction (5.17) as a function of θ. The steady states are given by the intersections of $y_f(x)$ and $y_r(x)$. Panel A shows the flow diagram to illustrate the origins of bistability, which creates a threshold behavior in the model. Panel B shows the geometrical picture of the rate of the reaction $y(x)$. From the graph we can determine all the steady state and their stability. The model exhibits one, three, or again, one steady state solution as θ increases from θ_1 to θ_3, where $\theta_1 < \theta_2 < \theta_3$. The open circle represents an unstable steady states and closed circles represent stable steady states for $\theta = \theta_2$. Note that the model exhibits bistability for θ_2. The insets are a blown up portion of the figures showing the lower steady state value. Parameter values are: $n = 2$, $m = 4$, $\tau_r = 4$, $\tau_u = 0.1$, $\theta_1 = 0.05$, $\theta_2 = 0.5$, and $\theta_3 = 0.75$.

5.3 Steady states of the model (5.17) for changes in the bystander isomer residence time in the ER (τ_u). Panel A shows the steady states as the intersections of $y_f(x)$ and $y_r(x)$. The flow diagram illustrates that bistability can arise by increasing τ_u. The bistability explains the threshold behavior in our model. For a fixed $y_r(x)$, the model is bistable when $\tau_{u-} < \tau_u < \tau_{u+}$. Panel B shows the stationary steady state locus in the bifurcation diagram as a function of the bystander residence time τ_u. In the bifurcation curve, stable steady states are denoted by a solid line while the dashed line denotes unstable steady states. The lower stable steady state branch is characterized by the fast flow of bystander isomers in the ER. The higher stable steady state branch is characterized by a high bystander isomer depletion and high misfolded isomer production. Parameter values are: $n = 1$, $m = 2$, $\tau_r = 6$, $\tau_{u-} = 0.10$, $\tau_{u+} = 0.42$, and $\theta = 0.1$.

5.4 The threshold behavior depends on the nondimensional bystander isomer residence time in the ER (τ_u) and the ratio of basal misfolded isomer to bystander isomer inflow rates into the ER (λ). We illustrate this result in the $\tau_u-\lambda$ parameter plane, which shows the number of physically realistic steady states for the model (5.17). The boundary curves are given implicitly and parametrically by the solutions of (5.25) for $n = 1$ and $m = 2$. At the cusp point C, $\lambda_- = \lambda_+$ and $\tau_{u-} = \tau_{u+}$. The model exhibits three steady states inside the closed area, and one steady state outside. The inset is a blown up portion of the figure.
5.5 The order of the reaction with respect to the misfolding isomer plays an important role in the appearance of the threshold behavior. We illustrate this point by showing the number of steady states in the parameter domain $\lambda-n-m$ for our model (5.17). The domains are defined by necessary conditions obtained from the solutions of the inequality (5.29) for cases $n = 1$ and $n > 1$. In Panel A, condition (5.31) defines the domains for one steady state, and one-or-three steady states for the special case $n = 1$. In Panel B, condition (5.32) defines the same domains for one steady state, and one-or-three steady states for the case $n > 1$. The panels show that there are reaction order exponents which are favorable for the appearance of the threshold behavior for a fixed value of λ.

5.6 Parameters involved in the onset and rescue of conformational diseases. A low x^* implies a high bystander isomer concentration at steady state, while a high x^* implies a low bystander isomer concentration at steady state. In Panel A, we illustrate how the onset of conformational disease can be caused by increasing the transition time of the bystander protein in the ER (τ_u), the ratio of basal misfolded isomer to bystander isomer inflow rates in the ER (λ), or the misfolded isomer reaction order (m). Parameter values for control: $\tau_u = 0.45$, $\lambda = 0.025$, $n = 4$, $m = 5$. In Panel B, bystander protein concentration is rescued by decreasing τ_u, λ, or m. Parameter values for disease: $\tau_u = 0.10$, $\lambda = 0.1875$, $n = 4$, $m = 5$.

6.1 Mathematical modeling incorporates biology and mathematics to make predictions. Modeling involves a continuous cycle of mathematical formulation, analysis, prediction and validation.

B.1 ‘A bistable system involving feedback activation’ [54] where $v_1 = k_1$, $v_2 = k_2 A$, $v_3 = k_3 B$, $v_4 = k_4$, $v_5 = k_5 C$, $v_6 = \frac{k_6 A C^2}{k_7 + C}$, A: PrP* (prion polypeptide), B: PrPC (normal prion protein), and C: PrPSc (infectious prion protein).
LIST OF TABLES

Table

2.1 Examples of threshold phenomena in conformational diseases. Conformational diseases occur across a wide variety of organisms and are the result of a misfolded protein. The threshold parameter shifts the system from state of low misfolded and aggregated proteins to a toxic state of high misfolded proteins and protein aggregates. After crossing the threshold, the organism manifests a characteristic phenotype. 12

4.1 The final 18 bipartite networks organized by group determined by motif clustering. The different protein systems and qualitative classifications [82] are also listed. Abbreviations listed are subsequent monomer addition (SMA), reversible association (RA), prion aggregation mechanism (PAM). Those networks that are unclassified in the literature are classified as ‘none.’ 50
LIST OF APPENDICES

Appendix

A. Bystander Model Appendix .. 96
B. Mathematical Biology Laboratory Appendix 98
ABSTRACT

Defining chemical reaction mechanisms associated with threshold phenomena in conformational diseases

by

Conner Iknokwayyo Sandefur

Chair: Santiago Schnell

Conformational diseases arise from the failure of a protein to fold or remain in its native conformational state. The resulting misfolded protein isomers are prone to aggregation, a hallmark of conformational diseases. In some conformational diseases, there is an observed threshold behavior characterized by a sudden shift from non-toxic to toxic misfolded protein concentrations. Evidence suggests that basal protein isomer concentrations, protein isomer interactions, pH, and temperature impact protein aggregation but the mechanism(s) underlying threshold behavior are unknown. Identifying the factors underlying the sudden toxic shift in misfolded protein concentration is a key to controlling conformational disease. The central hypothesis of this research is that a limited number of protein isomer interaction reaction mechanisms drive threshold behavior in conformational disease. In this work, I apply mathematical and computational modeling techniques to identify reaction mechanisms associated with threshold behavior in conformational diseases. First, I present a mathematical model of native and misfolded protein isomer interactions and define the model conditions under which threshold behavior occurs. Second, I apply a novel
computational approach to characterize known models of protein aggregation based on reaction mechanisms and dynamical behavior. Finally, I organize these characterizations into AggMod, an online repository of known models of protein aggregation.
CHAPTER I

Introduction

1.1 Introduction

A driving force of systems biology is the desire to understand the many interactions that compose the pathways within a cell. Systems biology is interested in the interactions and emergent properties that result from communication between different system components. Reducing a system (e.g., a cell) to its parts (e.g., individual genes and proteins) neglects component interaction and emergent properties. Building and investigating a complete interaction map provides insight into normal and diseased individuals that might not be found by traditional methods.

Much of traditional biology has the central dogma of molecular biology at its basis. This dogma states that DNA is transcribed into RNA which is translated into protein [23] and has guided the study of individual genes and the proteins they encode. The protein folding pathway provides an example of how the central dogma of molecular biology does not explain many of the interactions within cells. DNA transcription is initiated by proteins and is the first step in protein production. For a number of eukaryotic proteins, the process continues with co-translation through ribosomes into the endoplasmic reticulum (ER). Molecular chaperones and folding machinery aid in folding protein into its native structure. This native state is not a random one but is instead the result of both the amino acid sequence and the complex folding pathway.
These properly folded proteins are transported out of the ER for further processing.

The path from gene to protein is composed of many different and unknown interactions between DNA, RNA, proteins, and small molecules. Protein folding is one pathway, or subsystem, within the larger system of protein production. A systems biology approach offers us an opportunity to understand the complicated pathway of protein folding and the emergent properties that arise from interacting pathway components.

Protein folding is often described by way of a folding energy landscape [16]. The landscape is composed of different conformations of a given protein each corresponding to a different energy level. The minimum energy, three-dimensional folded protein structure is termed the ‘native state’ and for most proteins, is essential for proper function [2]. Failure to fold properly results in misfolded protein conformations. These protein conformations correspond to energy minima pockets within the folding energy landscape.

Proteins may fail to properly fold through mutations, cellular stress, or stochastic events [84]. A breakdown in the quality of protein production can lead to the accumulation of toxic levels of misfolded and unfolded proteins. Improperly folded proteins can form aggregates [79]. When the level of aggregates reaches a certain concentration, these protein complexes lead to proteotoxicity or loss or gain of function diseases.

Amyloidosis diseases constitute the largest subset of conformational diseases. These diseases are associated with the conversion of unfolded polypeptides and native proteins into highly organized fibrillar aggregates known as amyloids [137]. Amyloid formation occurs through activation of a monomer into an aggregate-prone species, such as a misfolded protein. Monomers then aggregate together to form oligomers. Protafilaments and fibril structures then form through oligomer and protafilaments organization, respectively. Protein aggregation also occurs outside of the above or-
dered structure resulting in amorphous aggregates such as inclusion bodies. Recent evidence suggests, however, that inclusion bodies also contain ordered aggregates. Both ordered and disordered aggregates may be composed of misfolded proteins, unfolded polypeptides, native proteins, protein folding intermediates, or a combination of the four [82]. Recent reviews [16] have done well discuss the role of non-native conformational protein isomers in protein aggregation. Quite possibly, there are multiple mechanisms of aggregation occurring within an organism affected by a conformational diseases.

Aggregate formation in conformational diseases often displays a threshold phenomenon characterized by a slight change in a biological system component driving a dramatic shift in the system state from normal to disease. In some conformational diseases, the concentration of aggregated protein can switch between non-toxic (low concentration) and toxic (high concentration) in a threshold-dependent manner. In chemical reactions, the appearance of a threshold phenomenon is characterized by two stable steady states (and a third unstable steady state) coexisting within a certain range of parameters [45, 28]. In dynamical and complex systems, this phenomenon is known as bistability. In biochemistry, metabolic and signaling pathways exhibiting bistability switch between the two stable steady states in response to a chemical signal. For this reason, it is generally said that such pathways exhibit ‘switch-like behavior’ [32]. One key to controlling conformational diseases, therefore, is to understand the underlying mechanisms responsible for the threshold phenomenon associated with increased misfolded proteins and decreased native protein production.

The central focus of my thesis is to understand the essential conditions for threshold phenomena in conformational diseases. My driving hypothesis is that the mechanisms by which different protein conformations interact in aggregation have specific motifs resulting in the observed threshold phenomena. Understanding the factors underlying the emergence of bistability in chemical mechanisms is fundamental to
targeting aggregate formation in conformational diseases.

1.2 Overview of thesis structure

In the following chapter, Chap. II, I begin with a review of aggregation reaction mechanisms and experimentally observed threshold phenomena in conformational disease. I review the current state of the aggregation literature and outline the experimental evidence for threshold phenomena in the formation of misfolded and aggregated protein. I follow with a discussion of how threshold phenomena can be modeled mathematically (via a hyperbolic or sigmoidal curve or irreversible or reversible bistability). The chapter closes with a discussion of how these models can be distinguished experimentally.

Chap. III begins with a review of our current understanding of characteristics driving bistability in chemical reaction mechanisms. I then present and apply a novel transformation to create a unique, one-to-one mapping of mechanism to bipartite network to allow searching for motifs underlying threshold phenomena in bistable systems. First, as a proof of concept, I use the network transformation and motif mining to replicate the results in a previously published study on bistable motifs ([103]). I then present the results of searching bistable reaction mechanisms for motifs using my methodology. These motifs will be used in the next chapter to predict which aggregation mechanisms are and are not capable of threshold phenomena via bistability.

In Chap. IV, I first discuss the creation of a library of aggregation models and the quantitative classifications made using motif mining. I briefly discuss redundant mechanisms in the aggregation literature as well as the highly correlated nature of published mechanisms. I follow with predictions of dynamical behavior using the motifs from Chap. III. The chapter concludes with a description of the online repository, AggMod, developed to house the library of protein aggregation mechanisms and the
Threshold phenomena in protein aggregation is determined by a variety of factors, not only the interactions of different protein conformations. In Chap. V, I present a general mechanism of bystander and misfolded protein interaction which I use to investigate additional factors involved in triggering threshold behavior in protein misfolding and aggregation. I describe the analysis of the model and discuss the findings that slight changes in the bystander protein residence time in the ER or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding.

In Chap. VI, I present a course outline developed around using mathematical modeling to explore biological phenomena. In particular, I present a course description and philosophy. This is followed by learning objectives and course organization. I conclude this chapter with a discussion of course assessment. An example laboratory associated with this course is available in the Appendix.

This thesis concludes with a summary and some possible future directions.
CHAPTER II

Classifying protein aggregation in conformational disease: current strategies and limitations

2.1 Introduction

Protein misfolding and aggregation are implicated in a wide array of conformational diseases. Abnormal misfolded protein levels are associated with the formation of protein aggregates in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s [125], and prion encephalitis [101], as well as other diseases such as Mutant INS-gene-induced Diabetes of Youth (MIDY) [50, 69], medullary carcinoma of the thyroid [7], and the rare lung disease, pulmonary alveolar proteinosis [47]. The diversity of conformational diseases is quite astounding.

In some conformational diseases, the mechanism of protein misfolding and aggregation results in threshold phenomena. Threshold phenomena occur when a small change in a system parameter (e.g. the basal misfolded protein concentration) results in a dramatic shift in the overall system state. These phenomena are reoccurring curiosities observed in many biological systems [15, 2, 95, 90, 132, 139, 73]. In conformational diseases, the number of misfolded proteins and aggregates can undergo a dramatic shift from low, non-toxic to high, toxic levels resulting in disease onset [80, 123, 63]. A well-formed characterization of the mechanism(s) driving threshold
behavior appearing in conformational disease remains elusive.

Here we review our current understanding of the mechanisms underlying threshold phenomena in conformational diseases. We begin with a discussion of the current characterizations of aggregation mechanisms. Next, we discuss experimental evidence of threshold phenomena in the formation of toxic levels of misfolded and aggregated proteins. A discussion of the dynamical behaviors capturing threshold phenomena follows. We conclude our review with a summary and a discussion of recommended next steps.

2.2 Classification of mechanisms of protein misfolding and aggregation

Given the importance of understanding protein aggregation, mechanisms of protein misfolding and aggregation and the associated reaction kinetics models have been studied for more than half a century [81, 82, 9]. A similarity across many of these modeling studies is an attempt to describe the key intermediates involved in the aggregation process of a specific protein. In an expansive review of the protein aggregation literature, Morris et al. [82] grouped mathematical models of protein aggregation based on the underlying mechanism. Some of these studies include a specific reaction mechanism while others provide only a description of the underlying mechanism (i.e. phenomenological models). Morris et al. [82] label these grouped models as ‘subsequent monomer addition I: early contributions,’ ‘subsequent monomer addition mechanism II: later contributions,’ ‘reverse association,’ ‘prion aggregation mechanisms,’ ‘Ockham’s razor’/minimalistic 2-step model,’ and ‘quantitative structure-activity relationship models.’ This final group contains non-mechanistic models developed using protein physicochemical properties and therefore discussion of this group is excluded from this review.
The two subsequent monomer addition classifications relate to older and newer publications grouped as subsequent monomer addition I and II, respectively (Eqs. 2.1 - 2.4).

\[
M_1 + M_1 \xrightarrow{k_N} M_2, \quad \text{(2.1)}
\]
\[
M_1 + M_2 \xrightarrow{k'} M_3, \quad \text{(2.2)}
\]
\[\vdots\]
\[
M_1 + M_{i-1} \xrightarrow{k'} M_i. \quad \text{(2.4)}
\]

These two groups include models describing protein aggregation as a condensation reaction. In condensation reactions, there is a critical concentration threshold before protein aggregation can occur. A type of subsequent monomer addition identified in studies is often referred to as ‘nucleation-polymerization’ in the literature. In order for the favored polymerization reaction to occur, a critical number of proteins must form a nucleus. The models in the subsequent monomer addition are some of the first published models of protein aggregation.

The third class of protein aggregation models identified by Morris et al. [82] is ‘reversible association.’

\[
M_i + M_j \leftrightarrow [k_d]k_a M_{i+j}. \quad \text{(2.5)}
\]

Mechanistically, these models (Eq. 2.5) can look very similar to subsequent monomer addition models. Models classified as reversible association, however, do not (generally) require a nucleation event for aggregation to occur.

Subsequent monomer addition mechanisms look identical to reversible association mechanisms when rates of nucleation and polymerization are not distinguished (Eqs. 2.6 - 2.8).
Reverse association models capture behaviors distinct from subsequent monomer addition, however, highlighting that using mechanistic information alone is not sufficient to distinguish and classify models of aggregation. Additional information regarding kinetic parameters is also important.

Morris et al. [82] identify a fourth grouping of ‘prion aggregation mechanisms’ which includes models of infectious prion formation and replication, the hypothesized precursor to prion aggregation formation. In a qualitative sense, prion models are similar to the initial steps of misfolded monomer and oligomer formation seen in many protein aggregation models. Most published models of prion aggregation only include qualitative descriptions of the mechanisms which Morris et al. [82] transform into reaction mechanisms [46, 101, 20]. Other models include mechanisms for all but prion replication, which is described by a phenomenological term [61, 65]. While prion models do not provide strict reaction mechanisms, many are capable of capturing threshold phenomena [54, 58].

“Ockham’s razor’/minimalistic 2-step model’ is the fifth group. This group includes simplified two-step models of nanocluster formation [81] applied to protein aggregation. The two-step model (Eqs. 2.9 - 2.10) applies two overall reactions to describe aggregation.

\[
kN = k = ka, \quad (2.6)
\]
\[
kN' = k' = k_d, \quad (2.7)
\]
\[
i = 1. \quad (2.8)
\]
\[U_1 \stackrel{k_1}{\rightarrow} M_1, \quad (2.9) \]
\[U_1 + M_1 \stackrel{k_2}{\rightarrow} 2M_1. \quad (2.10) \]

The first step is an overall reaction describing nucleation while the second is an overall reaction describing an autocatalytic aggregate concentration growth. The minimalistic 2-step model fits experimental data from a wide variety of prion and protein aggregation systems [82]. These models, due to use of overall reactions, are inherently phenomenological. The rates describing steps one and two are not actual rates but are instead a composition of many rates occurring across multiple intermediate steps. While overall reactions do not capture the intermediate steps of the full aggregation mechanism, they can be decomposed (‘unpacked’) into reaction mechanisms composed of elementary (uni and bimolecular) reaction steps.

The Morris et al. [82] classifications are the result of gathering numerous and diverse published protein aggregation mechanisms, a considerable undertaking. There are some inconsistencies that remain due to the qualitative nature of the classifications (Eqs. 2.6 - 2.8). Additionally, a recent paper by Bernackia and Murphy [9] address the difficulty of interpreting aggregation mechanisms using minimalistic two-step models. They also note that both a two-step minimalistic [81] and a subsequent monomer addition model [13] both fit well to the same data.

2.3 Threshold phenomena are observed in the formation of toxic misfolded and aggregated proteins

In some conformational diseases, misfolded and aggregated proteins are observed to form via threshold phenomena. Huntington’s disease is a well-studied example of this phenomenon. In both humans and Caenorhabditis elegans, a slight change
in the number of polyglutamine residues in the huntingtin protein tail is correlated with a dramatic increase in the number of protein aggregates and disease onset. Nerve cells of patients with Huntington’s disease have toxic inclusion bodies which are associated with the expression of huntingtin protein with a 38-182 polyglutamine length tail. The polyglutamine tail length can increase over successive generations [93]. The increased tail length is associated with increased misfolding and aggregation [62]. On the other hand, patients without the disease exhibit low levels of protein aggregation and express a form of the protein with an 8-37 residue long polyglutamine tail [113, 116, 112]. A similar threshold is correlated with the loss of motility in C. elegans [80]. Additional examples of misfolded proteins involved in disease formation are listed in Table 2.1.

The diversity in type and size of proteins involved, as well as the resulting disease is quite astounding. Neuroserpin is a 410 amino acid protein involved protease inhibition [89]. In a mouse model of familial encephalopathy with neuroserpin inclusion bodies, increased neuroserpin misfolding results in aggregation and is associated with seizure. Mutant INS-gene-induced Diabetes of Youth (MIDY) occurs when proinsulin undergoes misfolding due to mutation and forms complexes with non-misfolded (‘bystander’) proinsulin. In a MIDY mouse model, misfolding of the 110 amino acid sized insulin precursor occurs within the endoplasmic reticulum of β-cells and results in decreased insulin secretion and reduced β-cell mass [50, 69]. A key to controlling toxic protein misfolding and aggregation in some conformational diseases, therefore, is an understanding of what drives threshold phenomena. The development of therapies relies on accurate descriptions of the mechanisms of protein misfolding and aggregation underlying the threshold phenomena.
Table 2.1: Examples of threshold phenomena in conformational diseases. Conformational diseases occur across a wide variety of organisms and are the result of a misfolded protein. The threshold parameter shifts the system from state of low misfolded and aggregated proteins to a toxic state of high misfolded proteins and protein aggregates. After crossing the threshold, the organism manifests a characteristic phenotype.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Misfolded Protein</th>
<th>Threshold Parameter</th>
<th>Phenotype</th>
<th>Disease (or disease model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>huntingtin [113, 116, 112]</td>
<td>polyQ tail length</td>
<td>Inclusion body formation within nerve cells</td>
<td>Huntington’s</td>
</tr>
<tr>
<td>Worm</td>
<td>polyQ plasmid [80]</td>
<td>polyQ tail length</td>
<td>Decreased motility, increased number of aggregates</td>
<td>Huntington’s</td>
</tr>
<tr>
<td>Human</td>
<td>amyloid β [122, 133]</td>
<td>E22Q amyloid β isomer concentration</td>
<td>Decreased cell proliferation</td>
<td>Alzheimer’s</td>
</tr>
<tr>
<td>Mouse</td>
<td>Proinsulin [50, 69, 67, 68]</td>
<td>Akita proinsulin isomer concentration</td>
<td>Decreased β-cell mass and insulin secretion</td>
<td>Mutant INS-gene-induced Diabetes of Youth (MIDY)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Neuroserpin [127]</td>
<td>neuroserpin concentration</td>
<td>Seizure</td>
<td>Autosomal dementia, familial encephalopathy</td>
</tr>
<tr>
<td>Mouse</td>
<td>type I collagen [52, 102]</td>
<td>collagen protein concentration</td>
<td>Decreased type I collagen formation</td>
<td>Aortic rupture</td>
</tr>
</tbody>
</table>
2.4 Most available mechanisms of protein misfolding and aggregation are not classified as capturing threshold phenomena

Missing from almost all mechanistic models of protein aggregation is an explanation of the threshold phenomena observed in the development of many conformational diseases. Most published mechanistic models are analyzed for and fit to available time series data of total protein loss or aggregation formation [82, 9]. These models are not analyzed for dynamical behavior that might capture threshold phenomena. For example, Pallitto and Murphy [92] present a mechanistic model of amyloid β aggregation [92]. The resulting law of mass action model fits well to the time series data and a thorough exploration of the impacts of pH and temperature on aggregation are provided. This mechanism could be analyzed for threshold phenomena if the basal amyloid β concentration, for example, was varied and the resulting system behavior was analyzed. If a dramatic shift in aggregate formation occurred, this would suggest that the amount of basal misfolded protein (amyloid β) was driving a threshold phenomenon which was captured by the mechanistic model.

The majority of available models seeking to explain threshold phenomena in toxic protein misfolding and aggregation are phenomenological [46, 101, 54, 61, 27, 107]. These models capture overall dynamical behavior but lack mechanistic information describing the underlying reaction mechanism. While phenomenological models are useful in understanding overall behavior, ‘unpacking’ the models into mechanisms composed of all necessary intermediate steps can result in the loss of threshold behavior [114]. In order to regain threshold behavior, introduction of additional mechanistic information is often necessary. In an open system with influx and outflux of both proteins (N and M), the overall cubic autocatalytic reaction is bistable under certain conditions [115]. When the overall reaction is ‘unpacked’ into elementary re-
action steps, the overall behavior of the system is only maintained under restrictive parameter conditions [28]. In the following sections, we provide evidence highlighting the importance of using accurate mechanistic models to develop a comprehensive picture of experimentally observed threshold behavior. To set the stage, we need to understand threshold behavior as a dynamical phenomenon which we discuss next.

2.5 Threshold phenomena can be captured by dose response curves

Qualitatively, threshold phenomena occur when small changes in a system parameter(s) cause large changes in system outputs. These phenomena can be captured by dose response curves. In dynamical systems, dose response curves are also known as bifurcation plots. In a standard bifurcation plot, the parameter value (‘dose’) is plotted on the x-axis and a system variable (the ‘response’) is plotted on the y-axis. All other parameters remain constant and the response in the system is visualized as the dose increases or decreases. The number of responses a system has for a given dose is the number of equilibrium points (steady states) a system variable has for a given parameter set. These steady states can be unstable or stable. A system will tend to be repelled away from unstable steady states and attracted towards the stable ones.

There are three types of dose-response curves that capture threshold phenomena: a square hyperbolic saturation curve, a sigmoid saturation curve, and a switch-like saturation curve. A square hyperbolic dose response is a one-to-one response where the response initially increases as the dose is increased (or decreased, depending on the given system) and then finally plateaus (Figure 2.1A). A hyperbolic dose response curve represents a monostable system (a system with one stable steady state). For any given dose, the system only has one stable steady state and therefore the system
Figure 2.1: Multiple theoretical steady state behaviors can describe experimentally observed threshold phenomena. (A) A square hyperbolic dose response curve describes a monostable system in which there is a sharp initial change in response to a change in dose and then the response plateaus. (B) In a system described by a sigmoidal saturation dose response curve, there is a one-to-one response. A sharp shift in the steady state number of aggregates occurs in the threshold region. (C-D) There are two types of switch-like saturation curves. (C) In a reversible bistable system, the system jumps to a high steady state number of aggregates at thres_2. If the system starts at a high response level, the dose must be reduced past thres_2 to thres_1 before a low response level can be recovered. (D) In an irreversible bistable system, once thres_3 is passed, there is no way to recover the low response state. The boxed regions in (A - D) are the threshold regions for each dynamical behavior. In (A - D), solid lines denote stable steady states. In (C - D), unstable steady states are denoted by dotted lines.
will always reach that equilibrium for a given parameter set.

A sigmoid saturation dose response curve describes a reversible behavior characterized by a graded one-to-one response to a signal (Figure 2.1B). Below a critical threshold range, there is a gradual increase in response to a changing dose. Within the critical threshold range (Figure 2.1B box), there is a dramatic shift in the system response. This dramatic shift occurs over a relatively small dose range but the one-to-one (monostable) nature of the system is maintained.

A third dose response curve capturing threshold phenomena is a switch-like saturation curve (Figure 2.1C and Figure 2.1D). Outside of the critical threshold region, this curve is similar to a sigmoid saturation curve. There is a one-to-one response to a change in the dose. In other words, outside the threshold region, the system is monostable. The behavior of the switch-like saturation curve inside the critical threshold region, however, distinguishes this curve from the other two curves presented here. Within the threshold region of a switch-like saturation curve (Figure 2.1C box and Figure 2.1D box), the system has two possible stable steady states (and a middle unstable steady state). A switch-like saturation curve describes a bistable system, where there are two possible stable steady states a system can attain within a defined parameter ranged. Bistability has been used to describe threshold phenomena observed in prion propagation and plaque formation [46, 101, 54, 61, 27, 107], protein aggregation in *C. elegans* [107] and protein aggregation in conformational diseases [115]. In many of these systems, an autocatalytic reaction between unfolded and misfolded proteins (or prions) creates additional misfolded proteins which can increase to a toxic level. This positive feedback is tempered by folding and export of unfolded proteins as well as misfolded protein degradation.

In a protein aggregation system with square hyperbolic and sigmoid saturation dose response behavior, we expect to see graded increases and decreases in the steady state number of protein aggregates in response to increasing and decreasing tail length,
Figure 2.2: Steady state aggregation data can be captured by multiple dynamical behaviors. (A) Experimental time series data of aggregation formation in a *C. elegans* model of Huntington’s disease [80] were extracted using digitizing software [78]. (B) Data from (A) were replotted as polyglutamine tail length (Q#) versus number of aggregates at day 14.
respectively. The formation of toxic aggregates would be reversible through shortening the polyglutamine tail length. Both of these systems have one-to-one dose-response behavior. There is only one possible steady state in the number of aggregates that the system can reach for a given set of parameters. Though one-to-one, the behaviors are ‘switch-like’ as there is a dramatic increase in the number of aggregates when the threshold parameter (e.g. the polyglutamine tail length) is within the threshold range (Figure 2.1A and Figure 2.1B, boxed region). In the square hyperbolic, however, there is no low dose response. As soon as the tail length increases, in this simulated example, the steady state number of aggregates begins to grow dramatically.

There are important distinctions between the two switch-like saturation (bistable) curves presented here. Similar to a sigmoid saturation system, in a reversible bistable system, toxic aggregation can be reduced by decreasing the signal past the critical threshold (Figure 2.1C, boxed region). In contrast to a system with a sigmoid saturation dose response, however, the initial number of aggregates (the initial condition of the system) is important to the overall system behavior. In a certain range of parameters, the system can end up in two different steady states, depending on the initial conditions. In a bistable system, increasing the polyglutamine tail length beyond the threshold range ($thres_2$) results in a dramatic shift to a high number of protein aggregates. To reverse this switch in aggregate numbers, the polyglutamine tail length driving misfolded protein production must be reduced beyond $thres_2$ to a lower value ($thres_1$). This behavior is known as hysteresis and is in contrast to the one-to-one response of both the square hyperbolic and sigmoid saturation dose response systems.

As the threshold signal increases, irreversible bistable systems have behavior similar to the monostable sigmoid saturation and the reversible bistable systems. At the threshold point ($thres_3$), there is a dramatic shift in the number of protein aggregates. In a protein aggregation system with underlying irreversible bistable dynamical be-
behavior, however, low aggregate levels are unrecoverable after crossing the threshold (Figure 2.1D, boxed region). Decreasing the misfolded protein level by shortening the polyglutamine tail length outside of the threshold region is impossible. In protein aggregation systems with underlying irreversible bistable behavior, therapies implemented after the appearance of toxic protein aggregates would only slightly reduce the number of aggregates (making it difficult to recover normal function).

Understanding the differences of hyperbolic, sigmoidal dose response, reversible and irreversible bistable systems is important to therapeutic intervention. In this thesis, we are interested in determining the underlying dynamics of the formation of toxic protein misfolding and aggregation. For example, there are multiple possible steady state behaviors underlying steady state aggregate threshold phenomena in *C. elegans* (Figure 2.2A and Figure 2.2B). Due to the important therapeutic differences of the presented dynamical behaviors, drug development needs to proceed with the underlying dynamical behavior of the protein misfolding and aggregation system in mind. This dynamical behavior is dictated by both the reaction mechanism and the kinetic parameters [121].

2.6 Dynamical behaviors driving threshold phenomena can be distinguished experimentally

Protein aggregate formation, in general, is either measured directly via absorbance and fluorescence assays or indirectly through the measurement of total protein loss. These experimental measurements generally begin with a system containing low, non-toxic level of protein aggregates. The experiment progresses until the number (or concentration) of aggregates reach an apparent steady state. The end result is a time series data charting the increase in aggregates over time (either through direct measurement or through direct correlation with total protein loss).
Figure 2.3: Predicted outcomes of experimental studies distinguish the three different theoretical steady state behaviors. Top panel: In a square hyperbolic system, there is a one-to-one response of steady state number of protein aggregates to the polyglutamine tail length (Q). There is a gradual, graded increase in the steady state level of aggregates as the tail length increases. Middle top panel: In a sigmoidal dose response system, Middle bottom panel: The reversible switch system outside of the threshold region behaves similarly to the sigmoidal system. When the polyglutamine tail length is within the threshold region, the steady state number of protein aggregates is dependent on the initial number of protein aggregates in the system. Bottom panel: In the irreversible switch simulation, there is no recovery from high aggregate numbers. Triangle represents high misfolded concentration (high Q#), square threshold range and diamond represents a low Q#. In the square hyperbolic graphs, the low and threshold lines are nearly identical.
Time series data for square hyperbolic, sigmoid saturation, and switch-like saturation curves look very similar when the initial aggregate level is low. This makes experimentally distinguishing these dynamical behaviors difficult. Experimental data from protein aggregation systems beginning with both low and high aggregate numbers, however, would aid in distinguishing the systems (Figure 2.3). Simulated time series data from a square hyperbolic and sigmoidal saturation system shows a reversible, one-to-one signal to response (Figure 2.3, top and top middle panels). The steady state value of the number of aggregates is always the same for a given polyglutamine tail length, regardless of the initial number of protein aggregates. The threshold range for the square hyperbolic occurs when there is a physically realistic (non-negative) level of protein aggregates. There is a dramatic shift to high aggregate level as soon as the polyglutamine tail exists (Figure 2.3, top panel). On the other hand, in a sigmoidal saturation system, low and high levels of aggregates exist for short and long tail lengths, respectively (Figure 2.3, top middle panel).

A reversible switch-like saturation system looks very similar to a sigmoidal system at short and long tail lengths, for high and low initial aggregate levels (Figure 2.3, bottom middle panel). There is a critical range of polyglutamine residues (the threshold region), however, that gives a very distinctive behavior. Within this region, the same steady state level of aggregates can exist for different polyglutamine tail lengths depending on the initial number of aggregates. In a reversible switch-like saturation system, the required tail length for a switch from toxic to non-toxic number of protein aggregates would be much shorter than the tail length required for a switch from non-toxic to toxic aggregate numbers (a hysteretic response). Therefore, a much more reduced misfolded concentration would be necessary to recover normal aggregate levels after the initial toxic protein aggregation threshold was passed. In contrast, toxic aggregation in a system governed by irreversible switch-like saturation bistability cannot be reduced after the threshold is crossed, regardless of the reduction in
polyglutamine tail length (Figure 2.3, bottom panel). Designing experimental systems with the above factors in mind would aid in distinguishing predicted dynamical behaviors underlying threshold phenomena, as well as aid in validation of proposed protein aggregation mechanisms.

2.7 Conclusion

Conformational diseases are diverse, numerous and result from a protein failing to fold into a native conformation. Increased misfolded and aggregated proteins are hallmarks of many conformational diseases. Current classifications of mechanisms of protein aggregation are qualitative. Use of qualitative classifications results in contradictory descriptions of the same protein aggregation mechanism. Due to the strong bias in the literature towards closed mechanisms of aggregation involving the creation of homodimer, creating new mechanisms of aggregation is important. Addressing the open nature of cellular systems, by developing new or expanding on published aggregation mechanisms, would be a useful future step.

Threshold phenomena underlie toxic protein misfolding and aggregation in some conformational diseases (Table 2.1). A key to understanding and controlling these conformational diseases lies in developing therapies targeting the important reactions underlying threshold behavior. These reactions can be predicted by development of aggregation mechanisms using theoretical and experimental means. These mechanisms and associated kinetic parameters underlie the dynamical behavior of an aggregation system. Dynamical behavior capturing threshold phenomena are square hyperbolic, sigmoid saturation, and switch-like saturation (bistability) (Figure 2.1). Quantitative information about dynamical behavior and underlying mechanisms would aid in creating more comprehensive classifications of models of protein misfolding and aggregation. Future investigations into the mechanisms creating toxic protein misfolding and aggregation threshold phenomena would benefit from interdisciplinary
approaches.

While different dynamical behaviors can produce threshold behavior, there is increasing evidence that biochemical threshold behavior is a result of bistability. In the next chapter, we discuss what is known about mechanisms underlying bistable behavior. We then introduce a novel methodology to identify reaction mechanisms important to bistability. This sets the stage for the application of our new methodology to quantitatively characterize protein aggregation mechanisms.
CHAPTER III

Identification of motifs underlying bistable chemical reaction mechanisms

3.1 Introduction

Chemical reaction mechanisms - developed by piecing together specific chemical pathways (or reactions) - provide fine-grained representations of biological systems. These representations capture the complete picture of the underlying chemical interactions between biological components. The dynamics of mechanistic representations can be captured by ordinary differential equations (ODEs). These ODEs model the change of each component in the system (e.g. concentration of a protein) over time. In theory, these systems can be solved analytically or numerically in order to give information about steady state behavior [121].

As most biological systems are large and complex, the unfortunate reality is that obtaining an accurate description of the steady state behavior is quite difficult. Methodology such as homotopy exists to aid in estimating steady state behavior but require an educated guess of the steady state solution(s) of a system. These estimated guesses are often elusive in complex biological systems where the true steady state behavior is unknown or unclear. Alternative methods are available to exclude systems incapable of certain behaviors (e.g. chemical reaction network theory or CRNT)
but this group of methods only considers positive steady states. In biological and chemical systems, one expects that a system component, such as a protein, could be completely depleted from a system (i.e. have a value of zero at steady-state).

Though these alternative methods disregard a zero steady-state, they provide a useful representation of chemical mechanisms as bipartite graphs. Bipartite graph representations of chemical reaction networks (mechanisms) are generally composed of two types of nodes: one type of node representing chemical species and a second node type representing the chemical pathways (the individual steps in the mechanism). The single type of directed edges of these bipartite graphs connect reactant and product species nodes to their respective chemical pathway nodes. This particular type of bipartite graph is sometimes referred to as a ‘species-reaction (SR)’ graph in the literature [22].

Identifying specific component interactions (‘motifs’) underlying biological system behavior is a major task of modern biology. Motif mining studies published thus far almost unanimously explore associations between motifs and biological behavior in single node type substrate graphs. CRNT illustrates that there are particular relationships between species and pathways captured by bipartite graphs that are associated with dynamical behaviors. Therefore, we hypothesize that we can identify motifs important to dynamical behavior using bipartite graph representations of chemical reaction networks.

3.2 Dynamical behavior underlying threshold phenomena have been systematically characterized

Of particular interest is understanding the key motifs underlying cellular decision making such as oocyte development, apoptosis, and oncogene activation, biological behaviors that are hypothesized to be driven by bistability [15, 2, 95, 90, 132, 139, 73].
There remains considerable debate about the specific conditions necessary for bistability. Evidence for bistability in biological processes can be found in an experimentally observed hysteretic response. In Xenopus oocyte maturation, for example, there is an irreversible, all or nothing switch towards maturation in response to a change in the progesterone concentration. Returning to the original, pre-maturation progesterone concentration cannot return the oocyte to an ‘immature’ state. This hysteretic response is also observed in aggregation where the change in the pH [41], temperature [75], and pressure [31] can drive a switch in the aggregated protein concentration.

But what are the mechanisms underlying proposed bistable biological systems? Computational approaches have been employed to search for bistable behavior and predictors of bistability in silico. *Paladugu et al.* [91] applied an evolutionary approach to developing chemical reaction configurations with bistable (and oscillatory) behavior. Initially, random chemical reaction configurations of uni- and bi-molecular interactions were generated. Configurations capable or near capable of desired dynamical behavior were used to generate the next set of configurations. In other words, high fitness configurations were selected as ‘parents’ of the next generation.

Ramakrishnan and Bhalla [103] used a set of 12 chemical reactions identified as commonly occurring in biology. They first performed a systematic exploration of all possible reaction configurations of two, three and four chemical species, using all, one to six, and one to three (of the set of 12 reactions), respectively. In the second stage, they increased the number of reactions used and sampled a subset of all possible reaction configurations of three, four, and five chemical species using seven to fifteen, five, and one to four reactions (of the set of 12 reactions), respectively. With sparse but broad ranged parameter sampling, the authors found that approximately 10% of the full set and 5% of the subset of configurations were bistable.

All of the bistable networks identified by *Ramakrishnan and Bhalla* [103], contain either enzyme catalyzed reactions or overall reaction rates and therefore do not pro-
vide mechanistic insight into bistable behavior. The study does point to an interesting indication that there is a core set of smaller bistable reaction networks and that the larger networks are expansions on this core. The authors connected all bistable configurations via a directed acyclic graph. Bistable configurations served as the nodes and the addition or removal of one of the 12 reactions served as an edge connecting the configurations. From the graph, it appears that the larger bistable configurations are children of smaller configurations. This suggests that while the number of total bistable configurations is large, bistable behavior may be driven by a much smaller group of three-species configurations.

A similar finding appears in a more recent study by Siegal-Gaskins et al. [124]. In this study, the authors apply CRNT [29, 30] to perform an in silico search on a large set (40,680) of two-gene gene-regulatory networks (GRNs). A GRN consists of interacting genes and proteins (which are, in general, transcription factors). In their analysis, Siegal-Gaskins et al. [124] found a large number of bistable GRNs (36,771). Further analysis determined that each of the 36,771 bistable GRNs contained one of 11 possible core bistable networks (termed minimal bistable networks or MBNs) containing three to eight species. An MBN contains the minimum number and type of reactions to create a bistable system. Removing any one reaction from an MBN would result in loss of bistability, creating a monostable system. As in the Ramakrishnan and Bhalla [103] study, there was a set of bistable sub-networks which could be found in larger bistable gene-regulatory networks. These findings are in line with the mounting evidence that larger networks are made up of smaller sub-networks with specific functions [131].

Despite studies investigating and characterizing theoretical systems capable of threshold phenomena, the specific reactions underlying threshold behavior remain unclear [96]. Some studies present evidence of three necessary conditions for bistability [22, 138]: positive feedback loop(s), ultrasensitive dose-response curves, and a
mechanism to prevent a large increase in the concentration of any chemical species (reactants, intermediates, and products) in the chemical reaction network. These are the three characteristics identified in the ‘smallest bistable chemical reaction system’ published by [138]. Other evidence exists, however, that these three conditions may not be necessary for bistability. Studies by two different groups demonstrated that bistable systems can occur in absence of positive feedback loops [103, 88]. This can be observed in the mass action MBNs as well [124]. For example, certain reactions appear together in six of seven MBNs creating a feedback loop. Depending on the other reactions in the chemical network, the feedback can be positive or negative. In two of these six chemical reaction networks, there is no positive feedback (only negative feedback) due to the other reactions in chemical networks. Additionally, in certain enzyme-catalyzed reactions, enzyme saturation is critical for bistability, while in others, bistability results from a balance between competing reactions. This suggests that ultrasensitivity, at least via enzyme saturation, is not a necessary requirement for a bistable system [131, 139]. Certainly, the conditions underlying bistability in chemical reaction networks remain open for investigation.

Here, we present a method to mine transformed chemical reaction networks (i.e. mechanisms) to identify motifs underlying bistable behavior. First, as a proof of concept, we apply our methodology to bistable network configurations found in a previously published in silico study of bistability in biological systems [103]. We illustrate that we can capture the ‘chemical motifs’ identified in the study as bipartite motifs in the transformed chemical reaction networks. We discuss the importance of comparing motif appearances against a random background by showing how using motif frequencies may lead to spurious results. We then apply our method to a library of published bistable mechanisms and identify two seven-node bipartite motifs found across all the bistable mechanisms.
3.3 Materials and Methods

3.3.1 Bistable overall reaction configurations

The 16 bistable chemical reaction systems were obtained from a previous systematic study of ‘chemical motifs’ in computationally generated reaction configurations [103]. These 16 systems are a subset of a computationally generated set of chemical reaction systems. In the original study, Figure 2 presented example bistable models from a final set of approximately 4500 bistable reaction configurations. We identified this set of 16 reaction configurations as ‘overall reactions’ due to the assumption of an instantaneous conversion of species made in the paper. For example, in an enzyme catalyzed reaction such as autocatalysis, the chemical mechanism is generally comprised of two chemical pathways: a reversible association of enzyme with substrate to form a complex ($a + b \leftrightarrow ab$, where a is the substrate and b is the enzyme) and a irreversible change of the complex into a product ($ab \rightarrow b + b$). In the original paper, the overall reaction $a + b \rightarrow 2b$ was used to model this type of chemical mechanism.

In our study, reaction configurations with tri-molecular interactions and above were removed (e.g. we did not include reaction configurations with the reaction $4a + b \leftrightarrow c$). For example, the ‘Oxidation’ reaction $2a + b \leftrightarrow 2c$ is an overall reaction as it encompasses multiple intermediate reaction steps. Chemically, there is no expectation that two molecules of a and one molecule of b will combine instantaneously. Instead, we expect that, for example, a and b will combine first and then this heterodimer will combine with another molecule of a in a second chemical pathway (i.e. $a + b \leftrightarrow ab$ and then $ab + a \rightarrow 2c$). An alternative set of chemical pathways is that a will first associate with itself form a homodimer which then combines with b in the second chemical pathway.
3.3.2 Bistable reaction mechanisms

To obtain the 11 reaction mechanisms, we searched the biomedical and chemical literature. After searching, we obtained 105 potential chemical reaction configurations. We removed all reaction configurations that did not meet our definition of a chemical reaction mechanism. We defined a chemical reaction mechanism as one that only contains chemical pathways where chemical pathways were defined as those with only uni- and bi-molecular reactions resulting in a maximum of two species.

Additionally, we removed any reaction configurations that contained enzyme catalyzed reactions without an intermediate complex step (e.g. the overall reaction configurations described in section 3.3.1). Any other reaction configurations found in the literature were removed after reviewing the paper to identify any violations of law of mass action assumptions. For example, a model of bistability in a closed reactor is published as bistable under the assumption of the non-linear Beer-Lamper’s Law of light absorption [94]. The final eleven bistable reaction mechanisms used in this study were M2 [94], M4 [21], M19 [21], M20 [22], M21 [22], M23 [74], M24 [24], M64 (unpublished), M102 [21], M103 [21], and M104 [24]

3.3.3 One-to-one transformation of mechanisms into bipartite graphs with edge coloring

Chemical reaction configurations were transformed into directed bipartite networks with one node color (black) representing chemical pathways and a second node color (gray) representing chemical species. In order to capture the stoichiometry of the chemical reaction configurations, edges connecting species and pathway nodes were colored in two ways. One node color (green) represented one species (a reactant) entering a pathway node or one species (a product) exiting a pathway node. A second node color (blue) represented when two of a given species entered into (reacted) or exited (produced) a pathway node. By definition, an edge between two
species nodes or an edge between two pathway nodes were not allowed in a bipartite graph. Examples of the edges for the different reaction and product stoichiometries are illustrated in Figure 3.1.

Figure 3.1: Examples of chemical pathways represented as directed bipartite graphs without and with edge coloring. Pathways (denoted as \(P1, P2, \) and \(P3 \)) are represented by black nodes and connect the reactants and products (represented as gray nodes). The edge coloring captures the stoichiometry of the pathway. In graphs with edge coloring, a green edge represents one molecule of a species reacting or being produced. A blue edge represents the reaction or production of two molecules of a given species.

3.3.4 Mining bipartite graphs for motifs

With author permission, we modified FANMOD, a program to search motifs in graphs with node and edge coloring [136]. Bipartite graphs with edge coloring were
mined for motifs of size three-, four-, and five-nodes. Bipartite graphs without edge coloring were mined for motifs of size six- and seven-nodes (due to software restrictions). To generate a background of 1000 random bipartite graphs, the ‘no regard’ background with regard to node and vertex coloring was used. FANMOD was modified to output the number of appearances of a subgraph in the original graph \(c_{orig}\), the mean \(c_{avg}\) and standard deviation \(c_{std}\) of the number of appearances of a subgraph across the random background for all subgraph appearances. After mining, subgraphs representing inert chemical pathways were removed (i.e. subgraphs containing the network representation of \(A + B \rightarrow A + B\) or \(2A \rightarrow 2A\) were removed).

In order to identify subgraphs appearing with more or less frequency than expected at random, a z-score for each subgraph was calculated in the following manner:

\[
z_i = \frac{c_{orig} - c_{avg}}{c_{std}}
\]

where \(i\) represents subgraph \(i\). In order to allow for comparison of motifs across networks, a normalized z-score was calculated for each subgraph resulting in subgraph z-scores ranging from -1 to 1 [77]. Subgraphs with a negative normalized z-score were defined as underrepresented motifs and subgraphs with a positive normalized z-score were defined as overrepresented motifs. Subgraphs with a z-score of zero did not appear with any more and less frequency than what would be expected at random. Motif IDs were generated by the FANMOD software [136].

3.4 Results

3.4.1 Original chemical motifs were captured by mining the transformed bistable reaction configurations

Each ‘chemical motif’ in the original paper [103] had a bipartite graph representation (Figure 3.2). Motifs with six or more species and pathways were only
representable as bipartite graphs without edge coloring while motif BabXDcdX was captured via two bipartite motifs with edge coloring.

<table>
<thead>
<tr>
<th>DabX</th>
<th>Fabc</th>
<th>DabX</th>
<th>Jbca</th>
<th>AabX</th>
<th>DacX</th>
<th>DabX</th>
<th>Fcab</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a → b</td>
<td>b</td>
<td>a → b</td>
<td>a ← b</td>
<td>c</td>
<td>a → b</td>
<td>a → b</td>
</tr>
<tr>
<td>2a ← b + c</td>
<td></td>
<td>c</td>
<td></td>
<td>c</td>
<td></td>
<td>2c ← a + b</td>
<td></td>
</tr>
<tr>
<td>17214571108</td>
<td></td>
<td>8424074</td>
<td></td>
<td>2282756144</td>
<td></td>
<td>17197861382</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AabX</th>
<th>Fabc</th>
<th>Fabc</th>
<th>Jadb</th>
<th>BabX</th>
<th>DcdX</th>
</tr>
</thead>
<tbody>
<tr>
<td>a ← b</td>
<td>b</td>
<td>2a ← b + c</td>
<td>a → b</td>
<td>2a ← b</td>
<td></td>
</tr>
<tr>
<td>140806753879236</td>
<td></td>
<td>35459790546950</td>
<td></td>
<td>16920</td>
<td>164</td>
</tr>
</tbody>
</table>

Figure 3.2: The chemical motif were transformed into bipartite motifs. The chemical motif ID (e.g. DabXFabc) and chemical reactions are listed with the corresponding bipartite motif and motif ID (e.g. 17214571108). Enzyme catalyzed reactions are denoted by an arrow with the enzyme catalyst. In the bipartite motifs, species and reactions are represented by gray and black nodes, respectively.

Sixteen computationally generated bistable reaction configurations [103, Fig. 2] were transformed into bipartite graphs with and without edge coloring and mined for subgraphs. Figure 3.3 shows the frequency of the bipartite motifs appearances across the 16 bipartite networks. Except for a single reaction configuration which can be represented by a single bipartite motif, the frequency of all bipartite motifs in Figure 3.2 was below 20% and this frequency varied across each network. No single motif appeared across all the transformed reaction configurations.
Figure 3.3: Frequency of bipartite motif appearing in the 16 transformed bistable reaction configurations. Motif 17214571108 appeared in the most networks. The last two motifs (16920 and 164) were required to appear together in a network to correspond to the original chemical motif (Figure 3.2)
The normalized z-scores for each motif across the 16 transformed reaction configurations were calculated and plotted in Figure 3.4. The bipartite motif most frequently observed in the original reaction configurations (motif 17214571108) was overrepresented in the five networks which it appeared. Motif 8424074, the second most frequency motif observed in the original paper, is also always overrepresented in the networks in which it appears. The third most frequent motif had non-positive z-scores (the motif was not overrepresented in any of the transformed networks). The fourth motif, found bistable in approximately 44% of the original bistable reaction configurations, was overrepresented in one network and underrepresented in four others. A similar result was obtained for the fifth (140806753879236) and sixth motif (35459790546950). The final chemical motif presented in the original paper is represented as two distinct bipartite motifs in the transformed networks. In networks where both motifs appeared, motif 16920 was always overrepresented while motif 164 was always underrepresented.

3.4.2 Fundamental reaction mechanism structure is captured by small motif sizes

We mined the bistable reaction mechanisms for motifs of size three to seven. Overrepresented motifs of size three and four nodes were those generally expected to appear based on our definition of chemical reaction mechanisms (Materials and Methods 3.3.2). For example, the first motif in Figure 3.5 is representative of the following chemical pathway: $X + A \rightarrow B + Y$ where X and Y are some other species (besides A and B) or are flux nodes (input or outputs into the system). Underrepresented motifs also appeared as expected based on our definition of a reaction mechanism. The second motif in Figure 3.5, for example, is representative of an overall catalytic reaction of the type: $A + B \rightarrow B + X$ where X is some other species besides A or B.

35
Figure 3.4: Significance profile for the 16 transformed bistable reaction configurations shows over and underrepresentation of motifs in the resulting bipartite networks.
Figure 3.5: Normalized z-scores of three-node motifs for the 11 bistable mechanisms transformed into bipartite graphs with colored edges. Motifs appearing as over- or underrepresented across the majority of networks are presented. Motifs discussed in the text are pictured. The motif label is the motif ID assigned by FANMOD plus the adjacency matrix corresponding to the motif.
3.4.3 Identification of motifs underlying bistability

Figure 3.6: Motifs of size five nodes appearing in (A) all transformed bistable mechanisms and (B) only in bistable mechanisms requiring edge coloring.

We mined the networks for motifs of size five and identified four motifs appearing overrepresented across all networks (Figure 3.6). The first motif (16646) is one in which one species gives two different species in two different reactions. This is similar to the single input motif (SIM) found in transcription networks where a single input gives multiple outputs [3]. The second motif (67088) is a multiple input single output (MISO) motif. In this motif, two separate species create a third species via two separate chemical pathways. The third motif (532520) is similar to the second motif where a single species received two inputs but this single species also acts as an input.
to a third pathway. The fourth motif (470912) includes a cycle between two species with a single input into one of the species (a single input cycle motif or SICM).

The majority of the transformed bistable mechanisms do not require edge coloring to capture stoichiometric information. In the two networks requiring edge coloring, we identified two overrepresented motifs of size five appearing in both networks. Both of these motifs together show a balance between homodimerization (captured by the blue edge) and species creation. The motifs together also show an input into and output from the cycle.

Next, we searched for the maximum sized motif, size seven, to see if we could isolate a potential bistable motif. Using FANMOD [136], we can only mine for motifs larger than size five in networks without edge coloring. In the case of the two networks with colored edges, therefore, we removed edge coloring prior to motif mining. After mining, we identified two motifs of size seven appearing or overrepresented across all 11 bistable bipartite networks (Figure 3.7). We identified the chemical reactions underlying this motif and found that the two motifs represented the same basic set of chemical reaction mechanisms.

Figure 3.7: Two motifs of size seven nodes appearing or overrepresented across all transformed bistable reaction mechanisms. In both motifs, there is a cycle between two species with an input and output into one of the species in that cycle. Node identifiers and chemical pathways underlying the motifs are listed for clarity.
3.5 Discussion

The normalized z-scores for each motif across the 16 transformed reaction configurations were calculated and plotted in Figure 3.4. By comparing the original motifs to a randomized background, we are able to obtain information about motif significance. The top two most frequently observed chemical motifs (17214571108, 8424074) are overrepresented in the networks in which they each appear. The results from the normalized z-scores of the other motifs are less straightforward. The third most frequent motif (2282756144, appearing in 44% of the original set of approximately 4500 bistable networks) was found to be underrepresented in one network suggesting it is not necessarily important to bistable behavior in these networks. The fourth motif (17197861382) was found in approximately 41% of the original bistable reaction configurations. This motif was underrepresented in four networks, again suggesting the motif is not necessary for bistable behavior. We see similar inconclusive results for motifs 5 (140806753879236) and motif 6 (35459790546950). The final chemical motif presented in the original paper is represented as two distinct bipartite motifs in the transformed networks. In networks where both motifs appeared, motif 16920 was always overrepresented while motif 164 was always underrepresented. Using the normalized z-scores, we find that many of the motifs that are identified as appearing more frequently across a set of bistable networks are not necessarily overrepresented and can in fact be underrepresented in some networks.

These results speak to the spurious nature of using motif frequencies. Perhaps motifs appearing with greater frequency across the original bistable reaction configurations are a result of the inherent nature of the full set of reaction configurations. An original set of twelve reactions were used to computationally generate the full configuration set. In a similar fashion, reaction mechanisms are generated based on a small fundamental set of uni- and bi-molecular interactions producing a maximum of two species. We identified motifs of size three that were overrepresented in our bistable
reaction mechanisms. The overrepresentation of a motif means that it appeared in the original network. Several three-node motifs appeared with 100% frequency across all eleven bistable mechanisms. These motifs are the bipartite graph representation of some of the fundamental set of elementary chemical pathways found in all reaction mechanisms (per our definition). These results indicate when analyzing bipartite networks with colored edges, using motifs of size three and four nodes may aid in classifying networks by type (e.g., reaction mechanism versus overall reaction) but are not necessarily useful in discriminating networks with different dynamical behaviors.

Additionally, these results highlight that the types of motifs identified in bistable systems will differ based on the network classification. The ‘chemical motifs’ identified as important to the bistable overall reaction configurations either were not identified or were not overrepresented in the bistable chemical reaction mechanisms. The overall reaction configurations have a topology very different from mechanisms which are developed from elementary (uni- and bi-molecular) chemical pathways. An enzyme catalyzed reaction mechanism includes an intermediate complex \((E + S \leftrightarrow C \rightarrow P + E)\). In the original paper, some of the chemical reaction configurations assume that the conversion from \(S\) to \(P\) through \(E\) is instantaneous and irreversible \((E + S \rightarrow P + E)\). It has been shown that decomposing (‘unpacking’) overall reactions into a set of intermediate elementary pathways results in the loss of bistable behavior \([114]\).

One example of decomposing the bistable overall reaction configurations is presented in the supplementary information of the original study \([103]\).

The results of mining for five-node motifs show a balance that is required for input and output from the cycle. For the two bistable systems requiring edge coloring to capture all stoichiometric information, both overrepresented motifs contain cycles between two species. The first motif (2692776208) has input into one species in the cycle and the second motif (537399576) has output out of one of the cycle species. Mapping back to the original chemical reaction mechanism, we find that the input
and output species are the same. Viewing these motifs in tandem, we see a balance between a flux into and out of a species involved in a cycle.

In order to search for a potential bistable motif, we mined all transformed bistable reaction mechanisms for motifs of seven nodes. The two motifs identified across all bistable networks are actually two different representations of the same set of chemical pathways, only the node identifiers are different. Due to software limitations, we were only able to search for a maximum of seven-node motifs in networks with two node colors (bipartite networks). We expect that once software capable of searching for a motif of ten nodes (four reactions and the six species A, B, C, D, AC, and ABC) within a bipartite graph is available, a single motif will be identified across all eleven transformed bistable reaction mechanisms.

3.6 Conclusion

Our novel methodology to search for motifs in chemical reaction systems was successful in obtaining motifs from the bistable systems presented in the systematic study by Ramakrishnan and Bhalla [103]. We found that using frequencies of motifs across networks of a particular dynamical behavior can give spurious results. By comparing subgraph appearances to a randomized background, we were able to pinpoint some motifs identified as ‘motifs in bistable switches’ to be underrepresented in some of the bistable reaction configurations. On the one hand, these motifs may not be important to bistable behavior in these minimal systems. On the other hand, motifs underrepresented across all bistable reaction configurations may point to possible means to break bistability. Including these underrepresented motifs into a bistable reaction configuration could lead to a loss of bistable behavior (a loss of function motif).

As far as we know, applying a bipartite graph transformation to elementary chemical reaction mechanisms and mining these networks using motif mining software is novel. Using motif information, we found that each bistable network in our sample
requires that a cycle between two species be present. Each network also requires an input to one node in the cycle as well as an output from the same node in that species. While the cycle retains a balance between the two species concentrations, the influx into and outflux out of one species allows the steady state concentration to change while keeping the concentration from increasing to a maximum. This novel bipartite motif information points to specific chemical pathway combinations that may be important bistability. Using bipartite motifs found in the bistable mechanisms analyzed here, we may be able to predict bistability in large systems where the dynamical behavior is often unknown. Additionally, we hope that these results will encourage additional motif mining algorithm and software development to search for single motifs driving bistability. In the next chapter, we use the network transformation and motif mining described here to characterize aggregation and make predictions about dynamical behavior of aggregation systems.
CHAPTER IV

Motifs characterizing protein aggregation mechanisms and dynamics

4.1 Introduction

Over the last half century, mathematical modeling has been employed to study protein misfolding and aggregation. To date, there are a few mathematical models which can describe the threshold of protein misfolding and aggregation in conformational and prion diseases as a bistable system [107, 54, 61]. These models are phenomenological, however, and do not explain the threshold for protein aggregation in a mechanistic manner [58]. Additionally, there is no agreed upon universal mechanism of aggregation [16]. Current mechanistic models generally describe aggregation due activation of a monomer (e.g. a protein misfolds). This is the major hypothesized proximal event initiating aggregation in conformational disease.

Mechanistic models of protein aggregation are often classified based on qualitatively characteristics such as dimerization or monomer addition. In a recent review of known models of protein aggregation, five categories of protein aggregation are listed: (1) subsequent monomer addition, (2) reversible association, (3) prion aggregation, (4) “Ockhams razor”/minimalistic 2-step model and (5) quantitative structure activity relationship models [82] (see Chapter II). These classifications do not include any
information about dynamical behavior; this information is important to describe the protein misfolding and aggregation threshold phenomena.

The evidence discussed in Chapter III regarding bistability are based on the computational creation of different types of chemical networks. A natural next line of investigation is how relating these findings to aggregation mechanisms. Are there reactions present in the above bistable networks that also exist in mechanisms of protein aggregation? As discussed in Chapter II, there are few mechanistic models of threshold behavior in protein aggregation. One of the only mechanistic bistable models of protein aggregation was developed by Rieger et al. [107]. In this closed model, protein aggregation occurs through the addition of unfolded protein to create oligomers (of up to three monomers in size). While the total oligomer size is only three, this model is one of the first to capture toxic protein aggregation threshold via bistability using mass-action kinetics. Molecular chaperones are primary actors in the model, aiding in folding and disaggregation processes. These are mechanistic interactions, providing further insight into reaction mechanisms underlying the bistability captured by this model. In this model, after dimerization, aggregate formation is more thermodynamically favored. This introduces a positive feedback through the parameters instead of directly through the mechanism, highlighting how both reaction topology and parameter values impact dynamical behavior.

More comprehensive theoretical mechanistic studies of protein aggregation would increase our understanding of toxic protein aggregation threshold phenomena as well as the system properties underlying threshold phenomena in general. With a developed set of mechanisms capable of threshold phenomena in protein aggregation, we might be able to identify the key reactions important for the dynamical behavior. In this chapter, we present the use of network motifs (described in Chapter III) to quantitatively characterize aggregation mechanisms. Specifically, we employ overrepresented motifs to classify published protein aggregation models. Second, we predict
aggregation mechanisms are (and are not) capable of threshold phenomena through bistability. Finally, we present AggMod, an online repository of characterized macroscopic models of protein aggregation. Gaining knowledge of aggregation model mechanism and dynamical behavior is an important step in step in the development of successful therapeutic strategies to modulate conformational diseases.

4.2 Materials and Methods

4.2.1 Creation of a library of protein aggregation mechanisms and networks

We first defined mechanisms as a complete list of the intermediate steps in protein misfolding and aggregation. Each step in the mechanism must be an elementary reaction, solely comprised of uni and/or bimolecular reactions. To obtain published mechanisms of protein aggregation, literature searches were performed using PubMed [36], Google Scholar [43], and Web of Knowledge [106]. Examples of search terms used include ‘protein aggregation mechanism’, ‘kinetic mechanism aggregation’, and ‘mathematical model protein aggregation’.

Found mechanisms were transformed into bipartite networks with edge coloring (a one-to-one transformation) using the procedure described in Chapter III. Redundant networks could also be identified applying a change of variables in the original mechanisms. For example, a published mechanism could contain the reaction $A + B \rightarrow AB$ where A represents an unfolded protein, B represents a misfolded protein, and AB represents the heterodimer of unfolded and misfolded protein. A separate published mechanism could contain the reaction $N + A \rightarrow NA$ where N represents a non-aggregation-prone protein, A represents an aggregation-prone protein, and NA represents the heterodimer resulting from association of N and A. After change of variable in the two mechanisms (A and N to U and B and A to M, re-
spectively), the resulting reaction is $U + M \rightarrow UM$. All redundant networks were removed from the network set prior to motif mining.

4.2.2 Motif mining and clustering

Bipartite networks with edge coloring were mined for motifs of size four and five nodes and bipartite networks without edge coloring were mined for motifs of size six and seven nodes using the method in Chapter III. Briefly, pairwise correlations between the various networks were calculated using normalized z-scores based on motifs of size four nodes. A normalized z-score ranged from -1 to 1, where a negative normalized z-score described an ‘underrepresented’ motif and a positive normalized z-score described an ‘overrepresented’ motif. Motif mining results for five, six and seven node motifs were used to make threshold predictions.

4.2.3 Creation of an online repository

The library of protein aggregation mechanisms and networks (Section 4.2.1) were stored in a MySQL database accessible through a public web-interface at http://aggmod.ccmb.med.umich.edu. Each model describing the aggregation mechanism was implemented and curated in Berkeley Madonna [72] and/or Mathematical Modeling Language (MML) [105]. These implemented models were curated and annotated to meet Minimal Information Requested In the Annotation of biochemical Models (MIRIAM) standards [85]. Four levels of curation were used (zero through three). A model was given a curation level of zero when the peer-reviewed, published paper describing the model into the repository. The model was moved to status one after a curator implemented the model in a given format (e.g. Berkeley Madonna or MML). A curation status of two was achieved when a curated checked a model and determined it to be consistent with the published paper. A model reached status three when is was checked for typographical errors, completeness (parameters,
equations, mass conservation and physical constrains), and unit consistency. If the curated model differed from the published model, due to errors introduced into the model during the publication process or missing information (e.g. parameter values or initial conditions), the model was annotated describing these additions.

4.3 Results and Discussion

4.3.1 Unique mechanisms were found in less than a fifth of published modeling papers

After searching the protein aggregation literature, we identified 120 published mathematical models of protein aggregation for 29 different proteins (Figure 4.1). Not all of the papers contained a mechanistic description underlying the presented system of ordinary differential equations. After removing those models without an associated mechanism, 53 published models remained. The resulting 53 mechanisms were transformed into bipartite graphs (i.e networks) with edge coloring. Of these 53 networks, 35 were redundant (duplicate) networks. Our final set of bipartite networks based on published mechanisms of protein aggregation numbered 18 describing 29 different proteins (Table 4.1).

Redundant networks often appeared as multiple papers applied the same mechanisms to model aggregation of a particular protein. For example, Buswell and Middelberg [12] published a model of lysozyme protein aggregation (M^2). A year later, Dong et al. [26] published a model describing lysozyme aggregation using the same mechanism. Several years after these two groups published, M et al. [71] published a paper on lysozyme aggregation based on the original paper by Buswell and Middelberg [12]. All three models are built upon the same mechanism resulting in three identical networks developed from the original set of 54 mechanisms.

From the network pairwise correlations using four node motifs, we found that all of
Figure 4.1: Pie chart of models taken from peer-reviewed, published literature. The majority (56%) of modeling papers did not include a mechanistic description of the aggregation process. Of all of the modeling papers identified, only 15% contained unique mechanisms.
Table 4.1: The final 18 bipartite networks organized by group determined by motif clustering. The different protein systems and qualitative classifications [82] are also listed. Abbreviations listed are subsequent monomer addition (SMA), reversible association (RA), prion aggregation mechanism (PAM). Those networks that are unclassified in the literature are classified as ‘none.’

<table>
<thead>
<tr>
<th>Group</th>
<th>Network</th>
<th>Protein(s)</th>
<th>Classification(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>M1</td>
<td>carbonic anhydrase, interferon-gamma, DNase [8]</td>
<td>none</td>
</tr>
<tr>
<td>A</td>
<td>M5</td>
<td>actin [37], beta-amyloid [137], beta-lactoglobulin [6], prion [27], granulocyte colony-stimulating factor [141]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M7</td>
<td>insulin [11], colloids [76]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M8</td>
<td>alpha-lactalbumin, beta-amyloid, thaumatin [83]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M9</td>
<td>beta-amyloid [92, 67]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M11</td>
<td>alpha-chymotrypsinogen A [4], beta-amyloid [64, 99], huntingtin [99], polyglutamine [99]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M12</td>
<td>huntingtin, polyglutamine [107]</td>
<td>RA</td>
</tr>
<tr>
<td>A</td>
<td>M17</td>
<td>actin [135], glutamate dehydrogenase [53, 130]</td>
<td>SMA</td>
</tr>
<tr>
<td>A</td>
<td>M18</td>
<td>actin [42, 134], beta-lactoglobulin [1], concavalin [33], glutamate dehydrogenase [53, 129, 130, 104], hemoglobin [51, 34], Sup-35 [133], tubulin [35]</td>
<td>SMA, RA</td>
</tr>
<tr>
<td>B</td>
<td>M2</td>
<td>lysozyme [12, 26, 71]</td>
<td>SMA</td>
</tr>
<tr>
<td>B</td>
<td>M13</td>
<td>actin [108], beta-amyloid [108], granulocyte-colony stimulating factor [110], hemoglobin [108], interleukin-1 receptor antagonist [14]</td>
<td>SMA</td>
</tr>
<tr>
<td>B</td>
<td>M14</td>
<td>beta-lactoglobulin [111]</td>
<td>SMA</td>
</tr>
<tr>
<td>C</td>
<td>M3</td>
<td>carbonic anhydrase [18]</td>
<td>none</td>
</tr>
<tr>
<td>C</td>
<td>M10</td>
<td>patatin [98]</td>
<td>SMA</td>
</tr>
<tr>
<td>C</td>
<td>M15</td>
<td>prion [117]</td>
<td>PAM</td>
</tr>
<tr>
<td>D</td>
<td>M4</td>
<td>prion [25]</td>
<td>PAM</td>
</tr>
<tr>
<td>D</td>
<td>M16</td>
<td>citrate synthase, malate dehydrogenase, ribulose-1,5-bisphosphate carboxylase oxygenase E [128]</td>
<td>SMA</td>
</tr>
<tr>
<td>E</td>
<td>M6</td>
<td>immunoglobulin [57]</td>
<td>none</td>
</tr>
</tbody>
</table>
the networks within our library are all closely related (Figure 4.2). The fact that the networks are closely correlated is in part due to more recent mechanisms being based on those previously appearing in the literature. The original lysozyme network (M_2 in class B) by Buswell and Middelberg [12] is partially based upon a model (M_3 in class C) by Cleland et al. [18] used to model carbonic anhydrase. Another member of class B, is network (M_{13}) by Roberts [108] proposed to describe actin, beta-amyloid, and hemoglobin aggregation mechanisms. The Cleland et al. [18] study is also cited in Roberts [108]. Along with the motif information, this lends evidence that the Cleland et al. [18] network - develop to model carbonic anhydrase - is a common ancestor of the Buswell and Middelberg [12] and Roberts [108] networks describing aggregation mechanisms of four additional proteins.

4.3.2 Aggregation models were classified into six groups

Using the motif normalized z-scores, the set of unique aggregation networks clustered into five groups. As some of the aggregation networks had a small number of nodes and edges, a four-node motif was the largest motif available to cluster without reducing the sample size. We then identified overrepresented motifs found in each cluster. Two overrepresented motifs occurred in all networks. These motifs are to be expected in mass action networks and were observed across other non-aggregation networks based on reaction mechanisms (e.g. the bistable networks in Chapter III). Published papers of aggregation models from our original sample without a mechanism were organized into the sixth group.

The first group of networks, A, contained nine networks and was by far the largest class, containing 50% of the total sample set. All networks in group A contain an overrepresented reversible protein conformation change motif. Additionally, all networks in this group (save the smallest network, M_1) have an overrepresented reversible isomer addition motif. Finally, eight of ten networks contain a conformational change
Figure 4.2: Network clustering based on pairwise correlation of normalized z-scores for four-node motifs. The correlation scale is denoted by the heatmap colors where red is negatively correlated, green is positively correlated and black is no correlation.
plus dimerization motif (the other two networks are based on mechanisms lacking a homodimerization reaction). Three networks clustered into group B characterized by an overrepresented a reversible conformational change and permanent isomer addition motif. Group C contains three related aggregation networks characterized by a conformational change, formation of a homodimer and permanent isomer addition. Two networks cluster together into group D characterized by a reversible protein conformational change motif, a conformational change and dimerization motif, and a permanent isomer addition motif. The permanent isomer addition motif distinguishes this group from group A, with which it shares two of the same motifs. The least closely correlated network appears in group E. This group is characterized by a conformational changes via isomer dimerization motif and an isomer addition motif. There did not appear to be any correlations between the network clustering and the protein type.

4.3.3 Nine protein aggregation networks are predicted to have threshold behavior

Using the predicted bistable motifs in Chapter III and the motif mining information obtained above, we identified nine networks predicted to have threshold phenomena via bistability. All but one of these networks is from class A and taken as a whole, these networks describe the majority of the proteins in our library. The final network is from class F, the monoclonal antibody aggregation network. Thus far, we have confirmed our prediction of bistability for two of these nine networks. One potential bistable network from class A (M12) is a published bistable mechanism [107] while we confirmed a second network in class A (M8) using using Chemical Reaction Network Theory [29] (discussed in Chapter III). The remaining 9 networks in our sample did not contain the bistable motifs. All of the mechanisms underlying these networks are closed (there are no fluxes into or out of the system). Additionally, the final aggre-
Figure 4.3: Classification of aggregation bipartite networks with edge coloring using four-node motifs. Examples of chemical reactions underlying each motif are given. *In class A, two networks did not have a dimerization event and a third network did not have a monomer addition event. Abbreviations: reverse conformational change (RCC), reversible isomer addition (RIA), permanent isomer addition (PIA), reversible conformational change (RCC), permanent conformational change (PCC), homodimerization (D), heterodimerization (HD)

4.3.4 Models and networks are stored in AggMod, a repository of protein Aggregation Models

Protein aggregation models derived from published, peer-reviewed papers, associated mechanism, network (when available), and classification were organized into AggMod, an online repository (Figure 4.4). Models were implemented in Berkeley Madonna [72] and MML [105]. Berkeley Madonna is inexpensive, runs on both Windows and Mac OS, and employs a user interface that allows utilization by non-experts in mathematical and computational modeling. After downloading Berkeley Madonna, users can upload time series data into a particular model and fit data to
the model. Models implemented in Berkeley Madonna are provided with parameter sliders so that users can easily manipulate model parameters and obtain instant simulation results. Also, Berkeley Madonna has a built-in sensitivity analysis package allowing users to quantify a given parameter's influence on a system variable. (A free version of Berkeley Madonna can be also be downloaded. This version includes all of the functionality of the full version except models cannot be saved, graphs and tables cannot be saved or copied and a watermark appears on all printouts.)

For users who only want to simulate the model and/or who cannot or do not want to download extra software, models are also implemented in MML [105]. These models run within the web browser using the JSim Java program housed on a server. JSim reads XML formatted models and therefore allows for a more direct conversion to other XML languages such as CellML and SBML. Code for models in these formats are added as it becomes available.

Curation and annotation is important to the sharing and reuse of mathematical models. Therefore, models in the AggMod repository undergo annotation in an effort to meet MIRIAM standards. These standards provide guidelines for curation and annotation of computational models related to reference correspondence, attribution annotation and external resource annotation [85]. Each model has an individual web page based on a single reference and includes a reaction schematic (when available) for easy mapping of the model to the biological processes. The model web page links to the file(s) implementing the model in public machine-readable format(s). Additionally, each model file is annotated with the following information in order to comply with MIRIAM standards: a model name based on the model reference, a digital object identifier (DOI), name and contact information of the model encoder(s), the date and time of creation, the date and time of the last modification and a statement about the terms of distribution.

The AggMod repository provides a centralized location for models of macroscopic
mechanisms of protein aggregation. As far as we are aware, these models are not currently available in any other online databases. The site can be searched based on the model name, abstract, original paper authors, title, network, classification, or protein name. Models within the repository can also be browsed by protein or classification. All models in AggMod are in the public domain and are freely distributable.

4.4 Conclusion

We have developed a library of 120 published protein aggregation models and mechanisms modeling 29 unique protein systems. After transforming these mechanisms into networks, we identified overrepresented motifs and classified the aggregation models into six groupings (the sixth class containing all models without networks). We characterized the five groups of networks using motif information, creating, as far as we are aware, the first quantitative classification of aggregation mechanisms. We found that the networks were very similar in nature and the majority of networks were found within one class. We identified a potential bias in the protein aggregation literature, perhaps due to new mechanisms being based on a handful of unique published mechanisms. In order to address this bias in future aggregation mechanism development, we propose the following alternative approaches. The first approach is to use the motifs identified here as the core motifs when building a network and then expand based on experimental data. The second approach is to generate aggregation networks that do not use these core motifs but are still based on experimental data.

Additionally, we successfully predicted threshold phenomena for two of nine predicted bistable networks in our library using bistable motif information. The remaining networks predicted to not have threshold phenomena via bistability were determined to be monostable. It is still possible that these networks can manifest threshold phenomena through a monostable switch-like response (Chapter II). We
are currently developing a methodology to assess dynamical behavior of the remaining seven aggregation networks predicted to have threshold phenomena via bistability.

The aggregation models, mechanisms and networks are stored in an online repository: AggMod. Systems biologists have successfully created model repositories in specific areas: the BioModels Database [86] is a repository of quantitative kinetic models of biochemical and cellular systems, JWS Online [87] is a model repository of kinetic models of biochemical pathways with a web-based simulation tool and ModelDB [49] is a repository of computational neuroscience models. The stored models in these repositories are derived from published, peer-reviewed papers. The AggMod repository provides a centralized location for models of macroscopic mechanisms of protein aggregation. As far as we are aware, these models are not currently available in any other online databases. These structured, human and computer readable files allow AggMod to be a useful resource to both experimentalists and theoreticians interested in mathematical models of protein aggregation. Additionally, by quantitatively classifying aggregation models in the AggMod library using chemical reaction motifs, we hope to aid in future development of testable mechanisms towards the ultimate goal of mitigating protein aggregation.
A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases

5.1 Introduction

In Chapter III, we identified specific motifs important to bistability in bistable mechanisms. We followed with an identification of motifs important to aggregation and used this information to classify aggregation (Chapter IV). Along with interactions (motifs) occurring in an aggregation mechanism, kinetic parameters are also important to the dynamical behavior of a mechanism [45, 121]. Experimental evidence suggests misfolded isomer or aggregate protein concentration can exhibit bistability with changes in temperature [75], pressure [31], and pH [41]. There is also evidence of guanidinium chloride concentration dependent bistability in the transition between unfolded and folded transthyretin protein states [60].

Evidence suggests that misfolded proteins can interact with bystander isomers to elicit a misfolded phenotype [40]. A bystander protein is one that, in the absence of misfolded proteins, will be routed to its normal physiological pathway. The bystander protein pool is composed of the unfolded isomers and native (folded) proteins. In the presence of misfolded proteins, bystander proteins misfold resulting in decreased na-
tive protein levels and increased levels of protein aggregation [40]. This phenomenon has recently been characterized in the autosomal dominant Mutant INS-gene Induced Diabetes of Youth [68, 50, 69].

To date there are few mathematical models which can describe the threshold of protein misfolding or aggregation in conformational diseases as a bistable system [107, 54, 61, 97]. Generalizations of the Smoluschowski’s theory of coagulation have been applied to investigate protein polymerization and aggregation [19]. However, these models do not explain the threshold for protein misfolding or aggregation in a mechanistic manner [58].

The lack of mechanistic models in the literature is not unexpected since experimental determination of protein misfolding or aggregation pathways is technically demanding [16]. A major difficulty lies in obtaining accurate characterization of the diverse, short-lived intermediate misfolded and aggregate isomers that may occur during formation of both polymorphous and highly structured aggregates (“fibrils”). An alternative to focusing on the mechanism of misfolding or aggregation itself is to investigate the progression of cellular dysfunction from the perspective of bystander protein production. The bystander protein pool can be detected experimentally through nonreducing Tris-Tricine-urea-SDS-PAGE if the misfolded protein is the result of disulfide mispairing [140, 66, 67]. Loss-of-function diseases are characterized by a reduction in native protein levels, which could be caused by protein misfolding. Understanding the mechanisms that deplete bystander protein levels will be important in the search for therapeutic interventions aimed at controlling conformational diseases.

In this chapter, we present a general model describing the bystander protein disappearance (loss-of-function) through direct or indirect interaction with misfolded protein to explore threshold behavior in conformational diseases. Our model also describes the production of misfolded isomers, which makes it applicable to investi-
gate toxic gain-of-function in conformational diseases. We find that a mathematical formulation of our model can exhibit the threshold behavior typically found in some conformational diseases. The threshold behavior is explained by the appearance of bistability in our mathematical model. Furthermore, we find that bistability is a function of two parameters: the bystander isomer residence time in the endoplasmic reticulum lumen and the ratio of the basal inflow rates of misfolded to bystander protein. We also derive the necessary conditions for the manifestation of the threshold behavior based on this ratio and the order of the reaction with respect to the misfolded and bystander isomers. After analyzing our model, we propose three mechanisms to rescue bystander protein in conformational diseases. Our results provide mechanistic insight into the threshold behavior in conformational diseases and open potential therapeutic avenues to regulate conformational diseases.

5.2 Model

5.2.1 A model of bystander protein disappearance in the presence of misfolded protein

We model the process of protein production and folding in the endoplasmic reticulum (ER) lumen as occurring within a continuous flow reactor (Figure 5.1). In our model, there is a continuous flow of the recently synthesized conformational isomers, the bystander N and misfolded M proteins, which is the direct result of basal protein synthesis and depletion [44, 48]. Under normal conditions, bystander and misfolded proteins inflow with the constant basal rates $[N_0]/t_N$ and $[M_0]/t_M$, respectively. $[N_0]$ and $[M_0]$ represent, respectively, the basal concentrations of bystander and misfolded protein. t_i is the ER residence time of isomer i. Bystander unfolded isomers are depleted through the ER-assisted folding pathway, while the bystander folded protein is exported from the ER [5]. On the other hand, misfolded proteins are depleted from
the ER, either through ER-assisted degradation [84] or protein translocation [59]. We assume that the rate of these outflow processes is of first-order kinetics. Therefore, the system of differential equations governing the bystander N and misfolded M isomer concentration in the ER lumen is:

$$\frac{d[N]}{dt} = \frac{[N_0] - [N]}{t_N} - R([N], [M]) \tag{5.1}$$

$$\frac{d[M]}{dt} = \frac{[M_0] - [M]}{t_M} + R([N], [M]), \tag{5.2}$$

where $R([N], [M])$ is the reaction rate between bystander and misfolded proteins. Note that we are denoting concentration with square brackets.

In the next subsection we discuss the determination of the reaction rate $R([N], [M])$ between the bystander and misfolded proteins.

5.2.2 A general mechanism of bystander and misfolded protein interaction in conformational diseases

The irreversible aggregation typical of conformational diseases is highly sensitive to protein conformation. The misfolded protein pool (M) encompasses non-native denatured and misfolded isomers. This pool is aggregation prone due to the exposure of hydrophobic groups and disulfide bonds, which can result in strong, and irreversible protein-protein contacts [18]. Therefore, there is compelling biochemical evidence suggesting that the misfolded isoforms are responsible for the onset of certain conformational diseases [82].

Protein aggregation is initiated by the reversible aggregation of misfolded isomers, M, followed by structural rearrangements. These rearrangements lead to the formation of an intermediate committed to the aggregation pathway [109, 82]. Protein aggregation proceeds as more misfolded isomers are committed to the aggregation
Figure 5.1: Schematic diagram of a continuous flow reactor model of the endoplasmic reticulum lumen (ER). In this model, the bystander protein pool, composed of unfolded and folded isomers, has an inflow rate of \([N_0]/t_N\), where \([N_0]\) is the basal bystander protein concentration and \(t_N\) is the bystander ER residence time. The misfolded protein has an inflow rate equal to \([M_0]/t_M\), where \([M_0]\) is the basal misfolded protein concentration and \(t_M\) is the misfolded ER residence time. Bystander and misfolded proteins interact with reaction rate \(R([N],[M])\) which is a function of the bystander and misfolded protein concentrations. The outflow rate of bystander and misfolded proteins follows first-order kinetics. The outflow of isomers is driven by the ER-assisted folding (ERAF), ER-assisted degradation (ERAD), protein export and translocation pathways.
pathway [100]. There are two sources of misfolded isomers. Misfolded isomers M are formed by the spontaneous and first-order conversion of bystander isomers, N [137, 82]. This conversion is sporadic and represents a minor source of misfolded protein formation in conformational diseases. The main source of misfolded isoform M is the conversion of bystander protein N into a misfolded isoform M through process catalyzed by M [81, 82]. This process can be represented by a phenomenological reaction rate of the form:

$$ R([N], [M]) = k [N]^n[M]^m. $$ (5.3)

In the above equations, the exponents n and m specify the order of the reaction with respect to the bystander and misfolded proteins, respectively. k is the rate constant of order $(n + m)$. Note that $n \geq 1$ and $m \geq 1$.

The $(n + m)$th order of our phenomenological rate Eq. 5.3 does not imply that we are proposing a single, multimolecular, elementary step. There are multiple combinations of bimolecular steps that when combined together give an overall reaction rate with this $(n + m)$th order form. For example, we can consider the scenario in which aggregation of misfolded isomers M follows an association-limited aggregation mechanism [109]. The conversion of bystander N into misfolded isomer M involves a two-step mechanism involving an aggregate intermediate A:

$$
\begin{align*}
M + M & \xrightleftharpoons[k_1]{k_{-1}} A \\
N + A & \xrightarrow{k_2} M + A.
\end{align*}
$$

(5.4) $$(5.5)

In this mechanism, two misfolded isomers form a dimer, which then plays the catalytic role to convert the bystander into a misfolded isomer. If the reverse reaction constant of the dimerization is higher than the forward reaction constants, $k_{-1} \gg k_1$
and \(k_{-1} \gg k_2 \), then the dimerization step Eq. 5.4 is rate-limiting for the formation of the smallest aggregate [126, 38], and the overall rate of disappearance of the bystander isomer \(N \) will be Eq. 5.3 with \(n = 1 \) and \(m = 2 \).

5.2.3 Bystander isomer concentration at steady state

We can understand the reaction dynamics by studying the steady states. At the steady state, Eqs. 5.1–5.2 are:

\[
\frac{d[N]}{dt} = \left[N_0 - [N] \right] - R([N], [M]) = 0 \quad (5.6)
\]

\[
\frac{d[M]}{dt} = \left[M_0 - [M] \right] + R([N], [M]) = 0. \quad (5.7)
\]

By adding Eqs. 5.6–5.7, the ER reactor model has the following steady state relationship:

\[
\frac{[N_0]}{t_N} + \frac{[M_0]}{t_M} = \frac{[N]}{t_N} + \frac{[M]}{t_M}. \quad (5.8)
\]

We now can derive an expression for the bystander isomer concentration at steady state. Using the steady state relationship Eq. 5.8 and phenomenological reaction rate Eq. 5.3, we can uncouple Eq. 5.6 and Eq. 5.7. This yields an expression for the bystander isomer concentration at the steady state of the form

\[
\frac{[N_0] - [N]}{t_N} - k N^n \left[\frac{t_M}{t_N} ([N_0] - [N]) + [M_0] \right]^m = 0. \quad (5.9)
\]

5.2.4 Dimensionless bystander isomer concentration at steady state

Before we can analyze our model, we derive a suitable dimensionless form of Eq. 5.9. The non-dimensionalization allows us to reduce the number of parameters in our model and give an absolute measure of the model parameters independent
of units of measurement. Following Segel [120] concepts of scaling, we scale the bystander isomer concentration $[N]$ with a parameter that provides an estimate of its maximum value. We choose the dimensionless variable:

$$u = \frac{[N]}{[N_0]} .$$ \hspace{1cm} (5.10)

Substituting Eq. 5.10 into Eq. 5.9 and re-arranging, we obtain the dimensionless equation for the bystander isomer concentration at steady state

$$\frac{1 - u}{\tau_u} - u^n [\tau_r (1 - u) + \theta]^m = 0$$ \hspace{1cm} (5.11)

with the non-dimensional parameters defined as

$$\tau_u = k t_N [N_0]^{(n+m-1)}, \quad \tau_r = \frac{t_M}{t_N} , \quad \text{and} \quad \theta = \frac{[M_0]}{[N_0]} .$$ \hspace{1cm} (5.12)

In Eq. 5.11, τ_u is the bystander isomer dimensionless residence time in the ER, τ_r is the ratio of the misfolded to bystander isomers residence times, and θ is the ratio of the misfolded to bystander isomer initial concentrations.

There are limits to the values of our variable and some of our parameters. The bystander isomer u lies in the range of

$$0 \leq u \leq 1 .$$ \hspace{1cm} (5.13)

Under normal physiological conditions, the ratio of misfolded to bystander isomer initial concentrations θ lies in the range of

$$0 \leq \theta \ll 1 ,$$ \hspace{1cm} (5.14)

because misfolded isomers are usually in lower concentrations than the bystander proteins. On the other hand, the ER residence time of misfolded isomers is larger.
than the ER residence time of bystander isomers \((t_M \gg t_N)\) [5]; this implies that \(\tau_r\) lies in the range of

\[
\tau_r \gg 1 .
\]

There are no bounds on \(\tau_u\).

Note that the misfolding reaction will be completed when the bystander and misfolded isomers have reached steady state. Therefore, we can define the extent of the reaction, \(x\), as

\[
x = 1 - u .
\]

At the beginning of the reaction \(x = 0\). At the end of the reaction, the bystander protein can be depleted to a low steady state concentration or the production of misfolded isomer can reach a high steady state concentration. This makes our model applicable to investigate loss-of-function disease due to bystander protein depletion or toxic gain-of-function due to misfolded protein production. Substituting Eq. 5.16 into Eq. 5.11 yields an expression for the rate of the extent of the reaction at steady state

\[
y(x) = \frac{\tau_u^{-1}x - (1 - x)^n(\tau_r x + \theta)^m}{y_f(x) + y_r(x)} = 0 .
\]

The above expression has two dimensionless rates: the bystander reactor flow rate in the ER, \(y_f(x)\), and the bystander reaction rate, \(y_r(x)\). Our analysis will benefit from the division of the model into these two rates as will be evident in the next section.
5.3 Results

5.3.1 The model can exhibit bistability

In our mathematical model, the extent of the reaction can attain a value which balances the bystander flow rate, $y_f(x)$, with the bystander reaction rate, $y_r(x)$. When this happens, the bystander isomer and misfolded isomer concentrations are at steady state. From Eq. 5.17, the steady states are given by the solutions of the equation

$$y_f(x) - y_r(x) = \tau_u^{-1}x - (1 - x)^n(\tau_r x + \theta)^m = 0.$$ \hspace{1cm} (5.18)

This is a $(n + m)$th-order polynomial, meaning x can have up to $(n + m)$ steady states. We are only interested in the physically realistic solutions in the range $x = [0, 1]$.

A convenient way to investigate the total number of steady states is to find the intersections of $y_f(x)$ and $y_r(x)$ in the flow diagram for different values of τ_u, τ_r, θ, n, and m. The flow rate $y_f(x)$ is a straight line with slope determined by τ_u. The reaction rate $y_r(x)$ is a higher-order polynomial, which can potentially have $(n + m)$ roots between $x = [0, 1]$. Surprisingly, $y_r(x)$ has a simple concave downwards form between $x = [0, 1)$ with a maximum at $x = 1 - n(\tau_r + \theta)/\tau_r(n + m)$ (see A). For a fixed value of τ_u, the flow rate $y_f(x)$ will remain fixed in the flow diagram. Depending on the values of τ_r, θ, n, and m, the system can exhibit more than one steady state. An easy way of changing the number of steady states is to vary the ratio of the misfolded to bystander isomer initial concentrations (θ), while keeping τ_r, n, and m constant. Increasing θ increases the maximum value of $y_r(x)$ without affecting $y_f(x)$. The manner in which the steady states change with θ is illustrated in (Figure 5.2), showing three steady states at intermediate values of θ. The actual values of the steady states are not important here. What is important, however, is the existence of one, three, or again, one steady state solution as θ increases from θ_1.
Figure 5.2: Steady states for the extent of the reaction (5.17) as a function of θ. The steady states are given by the intersections of $y_f(x)$ and $y_r(x)$. Panel A shows the flow diagram to illustrate the origins of bistability, which creates a threshold behavior in the model. Panel B shows the geometrical picture of the rate of the reaction $y(x)$. From the graph we can determine all the steady state and their stability. The model exhibits one, three, or again, one steady state solution as θ increases from θ_1 to θ_3, where $\theta_1 < \theta_2 < \theta_3$. The open circle represents an unstable steady states and closed circles represent stable steady states for $\theta = \theta_2$. Note that the model exhibits bistability for θ_2. The insets are a blown up portion of the figures showing the lower steady state value. Parameter values are: $n = 2$, $m = 4$, $\tau_r = 4$, $\tau_u = 0.1$, $\theta_1 = 0.05$, $\theta_2 = 0.5$, and $\theta_3 = 0.75$.
to θ_3, where $\theta_1 < \theta_2 < \theta_3$. By inspection, x_2 is linearly unstable, since $\partial y(x)/\partial x > 0$ at $x = x_2$, while x_1 and x_3 are stable steady states, since at these points $\partial y(x)/\partial x < 0$ (Figure 5.2B). The model, therefore, exhibits bistability which creates the threshold behavior found in some conformational diseases. A similar pattern in the change of steady states can be observed for fixed $\tau_r, \theta, n,$ and m, and varying the flow rate of the bystander isomer (τ_u) (Figure 5.3).

The model can exhibit physically unrealistic steady states if parameters are not appropriately bounded. We need to set up limits for the critical point $x = 1 - n(\tau_r + \theta)/(\tau_r(n + m))$, where $y_r(x)$ achieves a maximum. Given that the extent of the reaction x is bounded by 0 and 1, the critical point may lie in the range

$$0 < 1 - \frac{n(\tau_r + \theta)}{\tau_r(n + m)} < 1.$$ \hspace{1cm} (5.19)

We find that the condition given by Eq. 5.19 is valid when

$$\frac{\theta}{\tau_r} < \frac{m}{n}.$$ \hspace{1cm} (5.20)

Note that θ/τ_r is equivalent to the ratio of basal misfolded isomer to bystander isomer inflow rates into the ER, which we define as

$$\lambda = \frac{\theta}{\tau_r} \equiv \frac{[M_0]/t_M}{[N_0]/t_N}.$$ \hspace{1cm} (5.21)

The parameter λ plays an important role in the model as can be appreciated in Figure 5.2. The variation of θ is effectively a variation of λ as the value of τ_r remains constant. We also further investigate the influence of λ on the threshold behavior in the sections below.
Figure 5.3: Steady states of the model (5.17) for changes in the bystander isomer residence time in the ER (τ_u). Panel A shows the steady states as the intersections of $y_f(x)$ and $y_r(x)$. The flow diagram illustrates that bistability can arise by increasing τ_u. The bistability explains the threshold behavior in our model. For a fixed $y_r(x)$, the model is bistable when $\tau_{u-} < \tau_u < \tau_{u+}$. Panel B shows the stationary steady state locus in the bifurcation digram as a function of the bystander residence time τ_u. In the bifurcation curve, stable steady states are denoted by a solid line while the dashed line denotes unstable steady states. The lower stable steady state branch is characterized by the fast flow of bystander isomers in the ER. The higher stable steady state branch is characterized by a high bystander isomer depletion and high misfolded isomer production. Parameter values are: $n = 1$, $m = 2$, $\tau_r = 6$, $\tau_{u-} = 0.10$, $\tau_{u+} = 0.42$, and $\theta = 0.1$.
5.3.2 Influence of τ_u and λ on the threshold behavior

Now we investigate how the model jumps from one to three steady states when the functions $y_f(x)$ and $y_r(x)$ become tangential in the flow diagram (Figure 5.2A). The expressions for the tangency of $y_f(x)$ and $y_r(x)$ allow us to determine the parameters contributing to the threshold behavior.

In chemical reaction models, the tangency of curves in flow diagrams and the appearance of more than one steady state is relatively common. For tangency our model requires simultaneously that

$$y_f(x) = y_r(x) \quad \text{and} \quad y'_f(x) = y'_r(x). \quad (5.22)$$

In terms of τ_u, these equations become

$$\tau_u^{-1} = x^{-1}(1-x)^n(\tau_rx + \theta)^m \quad (5.23)$$

$$\tau_u^{-1} = [m\tau_r(1-x) - n(\tau_rx + \theta)](1-x)^{n-1}(\tau_rx + \theta)^{m-1}. \quad (5.24)$$

Dividing the above equations and rearranging gives a quadratic expression for the tangency points:

$$x_\pm = \frac{(m-1) - \lambda(n-1) \pm \sqrt{D}}{2(m+n-1)}, \quad (5.25)$$

where

$$D = \lambda^2(n-1)^2 - 2\lambda(nm + n + m - 1) + (m-1)^2. \quad (5.26)$$

By examining Eq. 5.25 and Eq. 5.26, we find that multiple intersections and tangencies are only possible if
\[n \geq 1 \quad \text{and} \quad m \geq 2. \quad (5.27) \]

By using the above expressions, we can investigate the influence of the \(\tau_u \) on the bistability, which creates the threshold behavior in our model. Substituting Eq. 5.25 into Eq. 5.23, we determine the critical bystander isomer dimensionless residence time points \(\tau_{u\pm} \) for tangency in the flow diagram:

\[\tau_{u\pm} = \frac{x_\pm}{(1 - x_\pm)^n (\tau_r x_\pm + \theta)^m}. \quad (5.28) \]

In the flow diagram (Figure 5.3A), for a fixed \(y_r \), the family of flow rates \(y_f \) between the low flow rate \(y_f(x; \tau_{u+}) \) and high flow rate \(y_f(x; \tau_{u-}) \) exhibits three steady states: two stable steady states and one unstable steady state. Therefore, the model is bistable for \(\tau_{u-} < \tau_u < \tau_{u+} \). The reaction has a single steady state for \(\tau_u < \tau_{u-} \) or \(\tau_u > \tau_{u+} \).

The bifurcation diagram \(x \) versus \(\tau_u \) (Figure 5.3B) has an S-shaped curve. At short bystander residence time with \(\tau_u < \tau_{u-} \), the reaction has only one steady state characterized by low bystander isomer depletion and low misfolded isomer production. As the bystander residence time increases, but remains bounded by \(\tau_u < \tau_{u+} \), the bystander isomer depletion increases slightly along a low bystander isomer depletion steady state branch. We call this branch ‘the fast flow’ branch because it is characterized by the fast flow of bystander isomers in the ER lumen, which decreases the probability of misfolded isomers to react with the bystander isomers. At a long bystander residence time \(\tau_u > \tau_{u+} \), then the reaction moves to a new steady state branch characterized by a high bystander isomer depletion and a high production of misfolded isomer. We name this branch ‘the outbreak branch’ because the conformational disease is manifested on this branch. Note that for \(\tau_{u-} < \tau_u < \tau_{u+} \) the fast flow and outbreak branches co-exist. In the absence of perturbation, the system
will remain in one steady state branch. For example, a sustained and progressive increase in the bystander residence time \(\tau_u \) will cause a discontinuous change in the steady state from the fast flow branch to the outbreak branch at \(\tau_u^+ \). In this case, \(\tau_u^+ \) becomes ‘the threshold behavior point’, where a sudden shift occurs between low levels of bystander isomer depletion to high levels of bystander depletion. If \(\tau_u \) is decreased progressively from a long bystander residence time \(\tau_u > \tau_u^+ \), the system will remain on the outbreak branch, even as \(\tau_u \) is reduced below the threshold behavior point through the region where the two steady state branches co-exist. The system will exhibit a discontinuous change in the steady state from the outbreak branch to the fast flow branch at \(\tau_u^- \). We call this critical point the ‘bystander isomer rescue point’ because the bystander isomer concentration level increases from this point as \(\tau_u^- \) decreases. The existence of two different critical points (to change between steady state branches) as we progressively vary a parameter shows that our model exhibits hysteresis.

Interestingly, the model also exhibits hysteresis for progressive variations of the ratio of basal misfolded isomer to bystander isomer inflow rates \(\lambda \) into the ER. Although we cannot determine analytically a closed-form solution for the critical \(\lambda_{\pm} \) points, we know that the variation of \(\lambda \) produces a discontinuity in the number of the steady states from one to three, and back to one as we progressively increase \(\lambda \) (Figure 5.2). Moreover, the \(x-\lambda \) bifurcation diagram has a S-shape curve similar to the \(x-\tau_u \) bifurcation diagram shown in Figure 5.3B with both a threshold behavior point and the bystander isomer rescue point.

Now we are in the position of investigating the effects of both \(\tau_u \) and \(\lambda \) on the appearance of the threshold behavior. There is a domain in the \(\tau_u-\lambda \) parameter plane where the three physically realistic steady states of the model Eq. 5.11 exist and the threshold behavior will appear. This is shown in Figure 5.4. The analytical expression for the boundary curves is given parametrically and implicitly by substituting Eq. 5.25
into Eq. 5.28. The two roots $\tau_{u\pm}$ move closer together as λ increases. They intersect at the cusp point C, where $\tau_{u_-} = \tau_{u_+}$. The representation of the bistable area in the $\tau_u-\lambda$ parameter plane also confirms that the model exhibits a hysteresis effect. Suppose that we have a fixed λ between the critical points λ_- and λ_+, and τ_u moves from zero vertically. As the value of τ_u increases, the system will discontinuously jump from one steady state to three steady states back to one steady state. The same discontinuous jump can be observed for a fixed τ_u as λ increases from zero horizontally in Figure 5.4.

Figure 5.4: The threshold behavior depends on the nondimensional bystander isomer residence time in the ER (τ_u) and the ratio of basal misfolded isomer to bystander isomer inflow rates into the ER (λ). We illustrate this result in the $\tau_u-\lambda$ parameter plane, which shows the number of physically realistic steady states for the model (5.17). The boundary curves are given implicitly and parametrically by the solutions of (5.25) for $n = 1$ and $m = 2$. At the cusp point C, $\lambda_- = \lambda_+$ and $\tau_{u-} = \tau_{u+}$. The model exhibits three steady states inside the closed area, and one steady state outside. The inset is a blown up portion of the figure.
5.3.3 Necessary conditions for the threshold behavior

To this point, the analysis of our model shows that there are three possible steady states for the extent of the reaction. According to the parameter plane analysis (Figure 5.4), the threshold behavior is a function of τ_u and λ. In reality, the model can exhibit the threshold behavior if we guarantee the existence of two physically realistic and distinct tangency points. The conditions for the existence of two realistic and distinct tangency points will provide us with necessary conditions for the appearance of the threshold behavior in our model. After careful examination of the tangency point(s) given by Eq. 5.25, the model can have two real and distinct tangency points if the discriminant D is greater than zero

$$D = \lambda^2(n - 1)^2 - 2\lambda(nm + n + m - 1) + (m - 1)^2 > 0 . \quad (5.29)$$

As we discussed before, from the above inequality, the model requires $n \geq 1$ and $m \geq 2$.

The analysis of Eq. 5.29 needs to be divided into two cases: $n = 1$ and $n \geq 1$. For the special case $n = 1$, the λ^2 term is eliminated from the discriminant D, which leads to the necessary condition

$$\lambda < \frac{(m - 1)^2}{4m} . \quad (5.30)$$

However, note that the condition (Eq. 5.20) for the model to exhibit a physically realistic steady state when $n = 1$,

$$\lambda < m , \quad (5.31)$$

is stronger than condition given by Eq. 5.30. Therefore, for the special case $n = 1$, Eq. 5.31 is a necessary condition for the model to exhibit threshold behavior. For the
more generic case $n > 1$, we need to solve the quadratic expression of Eq. 5.29. After some basic analysis, we find that the following expression

$$
\lambda < \frac{m(n + 1) + (n - 1) - 2\sqrt{nm(n + m - 1)}}{(n - 1)^2}
$$

(5.32)

is a necessary condition for the system to exhibit the threshold behavior when $n > 1$. Eqs. 5.31 and 5.32 permit us to assess the dependence of the threshold behavior on the ratio of basal misfolded isomer to bystander isomer inflow rates and the order of the reaction with respect to the misfolded isomer (Figure 5.5). For a fixed value of λ, there are reaction order values that are favorable for the threshold behavior, as well as reaction order values that will guarantee monostability in the model. In the case that the reaction order exponents are favorable for the appearance of bistability, the threshold behavior will be exhibited if λ and τ_u are both in a parameter plane analysis region (Figure 5.4) where the model has three steady states.

5.4 Conclusion

We presented a model of bystander and misfolded protein interaction to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. In our model, bystander isomers are converted by the misfolded isomers through a process catalyzed by the misfolded isomers with a phenomenological rate Eq. 5.3. We model the ER as a reactor with a continuous flow of bystander and misfolded isomers (Figure 5.1), which is the direct result of basal protein synthesis and depletion. Conformational disease can either result from a dominant-negative effect of misfolded isomers, leading to a loss-of-function of the native folded protein, or from a toxic gain-of-function of the misfolded isomer. Interestingly we can investigate both loss-of-function and toxic gain-of-function diseases by modeling the extent of the overall reaction between bystander and misfolded isomers.
Previous studies [107, 54, 61, 97] showed that the threshold behavior in conformational diseases is caused by the nonlinear phenomenon known as bistability. Our mathematical model also displayed bistability, though it is qualitatively different from the other models. In Rieger et al. [107], protein misfolding and aggregation are regulated by folding chaperones. In our model protein misfolding cannot be reversed by folding chaperones. The other models [54, 61, 97] focus on the quantification of prion infection dynamics. We do not investigate the role of protein misfolding in infection by proteins. In our model, there are three possible steady states; two of these steady states are stable to small perturbations and are easily observable under physiological conditions. The stable steady state with the lower bystander isomer depletion and lower misfolded production is characterized by the fast flow of bystander isomers in the ER lumen. On the other hand, the stable steady state with the higher bystander depletion and higher misfolded production causes the outbreak of the conformational disease (Figure 5.3). Our analysis showed that the appearance of the threshold behavior depends on two parameters: the ratio of basal misfolded isomer to bystander isomer inflow rates λ, and the bystander isomer residence time τ_u (Figure 5.4). These parameters are external to the misfolding reaction mechanism, because they are driven by the ER protein production, folding and export machinery. We also found that there are values of the order of the reaction with respect to the misfolded isomer that favor the appearance of the threshold behavior (Figure 5.5). This reaction order is an internal property of the reaction mechanism, because it can depend specifically on the nature of the elementary reactions driving protein misfolding.

The appearance of bistability has important implications for the onset and rescue of conformational diseases. What are the factors that can cause the outbreak of protein misfolding in conformational diseases? Here we must relate the parameters controlling the appearance of bistability to the steady state values of the model x^* shown in Figure 5.6. A low x^* implies a high bystander isomer concentration (and
Figure 5.5: The order of the reaction with respect to the misfolding isomer plays an important role in the appearance of the threshold behavior. We illustrate this point by showing the number of steady states in the parameter domain $\lambda - n - m$ for our model (5.17). The domains are defined by necessary conditions obtained from the solutions of the inequality (5.29) for cases $n = 1$ and $n > 1$. In Panel A, condition (5.31) defines the domains for one steady state, and one-or-three steady states for the special case $n = 1$. In Panel B, condition (5.32) defines the same domains for one steady state, and one-or-three steady states for the case $n > 1$. The panels show that there are reaction order exponents which are favorable for the appearance of the threshold behavior for a fixed value of λ.
a low misfolded isomer production) at steady state, while a high x^* implies a low bystander isomer concentration (and high misfolded isomer production) at steady state. An outbreak of misfolding isomer production can be the result of increasing the transition time of the bystander protein in the ER (Figure 5.6A, control versus $\tau_u = 1.5$) above the threshold behavior point. Current experimental evidence supports this observation. An increase in the bystander proinsulin transition time in the Akita mice results in Mutant INS-gene Induced Diabetes of Youth [68, 50]. Alternatively depletion of bystander protein will reach a loss-of-function point if we increase the ratio of basal misfolded isomer to bystander isomer inflow rates in the ER (Figure 5.6A, control versus $\lambda = 0.13$) above the threshold point. This ratio can be increased by overexpression of the basal misfolded isomer levels. There is experimental evidence to support this model prediction. In the Akita mouse, higher levels of misfolded proinsulin results in fulminant diabetes within two weeks of life [56] and in a reduction of bystander insulin [50]. Similar results have been reported for the toxicity of Dutch E22Q and Flemish A21G mutant amyloid β proteins in human cerebral microvessel and aortic smooth muscle cells [133]. Interestingly, our model predicts that an increase of the order of the misfolded isomer can trigger the outbreak in misfolding isomer production and the depletion of bystander protein (Figure 5.6A, control versus $n = 5$). This reaction order exponent will increase if the number of misfolded isomers involved in the recruitment of bystander proteins into aberrant isomer complexes increases. More work is needed to precisely characterize the reaction mechanisms involved in the recruitment of bystander proteins into misfolded isomer complexes.

From the disease rescue point of view, what can be done to rescue bystander isomers or decrease misfolded isomer production? A general increase in the folding capacity of the ER can reduce the bystander isomer residence time [17], resulting in the rescue of bystander protein (Figure 5.6B, disease versus $\tau_u = 003$). Rieger et al.
Figure 5.6: Parameters involved in the onset and rescue of conformational diseases. A low x^* implies a high bystander isomer concentration at steady state, while a high x^* implies a low bystander isomer concentration at steady state. In Panel A, we illustrate how the onset of conformational disease can be caused by increasing the transition time of the bystander protein in the ER (τ_u), the ratio of basal misfolded isomer to bystander isomer inflow rates in the ER (λ), or the misfolded isomer reaction order (m). Parameter values for control: $\tau_u = 0.45$, $\lambda = 0.025$, $n = 4$, $m = 5$. In Panel B, bystander protein concentration is rescued by decreasing τ_u, λ, or m. Parameter values for disease: $\tau_u = 0.10$, $\lambda = 0.1875$, $n = 4$, $m = 5$.
proposed that the overexpression of molecular chaperones can increase folding capacity, reducing protein misfolding and aggregation in neurodegenerative diseases. Of course, the ability to rescue bystander protein by decreasing the bystander residence time will likely depend on the specific nature of the protein itself, which will in turn influence the folding and trafficking pathways accessible to the protein [118]. Alternatively bystander proteins can be rescued by decreasing the ratio of basal misfolded isomer to bystander isomer inflow rates in the ER (Figure 5.6B, disease versus \(\lambda = 0.063 \)). This ratio can be decreased by the upregulation of basal isomer inflow or downregulation of the basal misfolded isomer inflow. This rescue mechanism can be tested by increasing the expression of bystander isomer with varying levels and verifying that rescue is not caused by a general increase in folding capacity of the ER.

Another strategy for rescuing from the conformational disease is to reduce the reaction order of the misfolded isomer (Figure 5.6B, disease versus \(m = 3 \)). The reduction of reaction order \(m \) can be achieved through the introduction of pharmacological inhibitors, which block elementary reactions involving the association of misfolded isomers into complexes. Pharmacological agents can also affect \(\tau_u \) by changing the reaction coefficient \(k \).

The above potential therapies must account for the hysteresis in bistable systems. The rescue of the system to the high bystander concentration (or low misfolded isomer production) requires a decrease of \(\tau_u \), \(\lambda \), and \(m \) below the threshold point level to overcome the hysteresis phenomena due to bistability. Our model proposes qualitative ideas for the rescue of conformational diseases. It is not easy to determine an optimal strategy quantitatively, particularly since the specific nature of the protein and its misfolding pathway must be taken into account. Therefore, a more detailed description of the bystander and misfolded protein reaction mechanism and their interactions with the ER machinery is required. The modeling of these detailed mechanisms will allow us to investigate the control of the threshold behavior and to
develop a more complete and quantitative theory for the design of rescue strategies for specific conformational diseases.
CHAPTER VI

Educational component: outlining a mathematical modeling course

6.1 Introduction

Many colleges, particularly small and rural colleges and minority secondary institutions, do not have the infrastructure to support ‘wet’ laboratories. Additionally, rural colleges are increasingly employing online or distance learning, reducing student access to hands-on laboratory experience students [10]. It is in these laboratories that students would perform traditional experiments to test hypotheses formulated around biological problems. One way to address this limitation is to employ mathematical and computational models to test hypotheses and investigate biological problems.

Mathematical modeling is used to investigate a wide array of biological process such as cell cycle control, gene expression, tissue and organ development and protein folding pathways. Models are also employed to investigate mechanisms of protein aggregation. As part of my dissertation, I developed an example mathematical biology laboratory applied to bistable prion aggregation [54] (Appendix B). This laboratory is a starting point for a ‘virtual biology laboratory’ I am interested in developing in the future. This resource would allow students from the types of schools mentioned above to gain similar skills as their counterparts at larger, more resource heavy institutions.
In this chapter, my focus is on developing a mathematical biology course description and an example laboratory. The course description includes the following information: the course level, prerequisites, learning objectives, course organization, and assessment. This chapter serves as the first step towards developing a mathematical biology course to address institution infrastructure and increased distance learning.

6.2 Course Description and Philosophy

This course is a one semester course designed to introduce seniors and advanced juniors students to using differential and difference equations to model biological systems. The course philosophy is centered around active student involvement in gathering background information, generating hypotheses, developing and using sound and realistic models to test hypotheses, and analyzing and writing the results. Students will learn how to use mathematical modeling as a way to ask and answer questions while engaging in scientific study of life sciences questions.

Throughout the course, students will be asked to read the scientific literature, synthesize material read and presented in class, and use this information to develop mathematical models based on the general approach outlined in Figure 6.1.

The expectation is that students will have successfully completed a first course in calculus, introductory biology, and introductory chemistry prior to engaging in this course. In terms of calculus concepts, a student will be expected to have prior exposure to the study of functions of one variable, limits and continuity, algebraic function differentiation, introduction to integrals, and curve sketching. Students should have been exposed to concepts in cellular and molecular biology, genetics, evolution and diversity of organisms, plant anatomy and physiology and mammalian anatomy, physiology and ecology. Finally, students should be familiar with general chemistry concepts including stoichiometry, atomic structure, periodicity, chemical bonding,
states of matter, redox, concentration units, acids and bases, kinetics, equilibria, and electrochemistry.

6.3 Learning Objectives

After completing this course, students will be able to:

- employ online resources to search for and access peer-reviewed literature
- critically read and synthesize scientific literature
- write a hypothesis statement
- develop a mathematical model using difference (discrete) and differential (continuous) equations to test hypotheses
- utilize Berkeley Madonna to run numerical simulations on differential equation models
• create a phase portrait and perform a phase plane analysis of a two-dimensional system

• calculate steady states and assess stability of two-dimensional ordinary differential equation models

• interpret a bifurcation diagram

• discuss and critique mathematical models of biological systems

6.4 Course Organization

As is often the case in educational modules, the labs within the educational module will be laid out in a sequential manner. The concepts in the later labs will build upon those concepts learned earlier in the sequence. The technology necessary to complete these labs is minimal. Each lab will use Berkeley Madonna, a Windows and MacOS software program that runs on any standard desktop. Berkeley Madonna is available for free (with some minor limitations) and the full version is relatively inexpensive.

Berkeley Madonna is useful for analysis of dynamical systems. A dynamical system is a mathematical formulation which describes the time evolution of some 'thing' in a space; e.g. the number of foxes in a forest, the volume of water in a pipe, or the number of people with AIDS in New York City. Ordinary differential equations (ODEs) are used to represent dynamical systems. Once the ODEs are encoded in a Berkeley Madonna readable format, one can simulate the change in some 'thing' over time based on certain conditions. These conditions are determined by the parameters of the model. The 'thing(s)' are represented as variables of the ODEs.
6.5 Assessment

Student learning will be assessed each course using a ungraded quiz at the beginning of each laboratory and lecture. These quizzes will be reviewed by the instructor to identify students who are struggling early in the course. At the end of each lecture, students are also required to ask a question or make a comment about the day’s lecture or laboratory in writing. These two ungraded activities will be used as a real-time assessment of student learning and will be used to guide future classes throughout the course.

Student grades will be based upon the following:

- critical quarterly self-evaluation (10%)
- biweekly homeworks, graded in teams by students (30%)
- team research paper and projects (30%)
- two take home exams (30%)

Peer graded homeworks will be reviewed by the instructor. At the midpoint and end of the course, students will be asked to complete a course survey. This tool (in concert with the daily quizzes and comments) will be used to guide the course instructor.

6.6 Summary

The course proposed here is centered around introducing mathematical modeling for the life sciences using team-oriented activities and active student learning. Throughout the course, the lectures and laboratories (e.g. B) will stress the power of mathematical modeling. Students will be challenged to critically analyze the models and use them to explore the biological systems they represent. Most importantly,
students will learn scientific reasoning and a powerful scientific tool - mathematical models - in a course that is implementable at institutions with limited resources.
CHAPTER VII

Conclusion

Conformational diseases originate from the failure of specific proteins to adopt or maintain their native conformational state [79]. Misfolded proteins are implicated in the reduction of native protein levels and the formation of aggregates in a variety of conformational diseases, such as β-amyloid toxicity, Charcot-Marie-Tooth, diabetes, pre-senile dementia, and α1-antitrypsin deficiency with liver disease [119]. Proteins misfold due to cellular stress as well as inherited or stochastic mutations [84].

The formation of misfolded proteins in conformational diseases often displays a threshold behavior that is characterized by a sudden shift in the concentration of proteins from low misfolded concentration (non-toxic) to high misfolded concentration (toxic) levels. For example, an increase in mutant type I collagen expression above a critical threshold results in an aortic rupture due to a breakdown in collagen formation [102]. Vascular toxicity appears to occur in a dose dependent manner with β-amyloids, which are a misfolded form of amyloid precursor protein and the main component of aggregates found in patients with Alzheimer’s disease [133]. Both of these examples, and several others, are the result of dominant negative mutations that give rise to increased misfolded protein levels. Misfolded isomers exert a dominant-negative effect (toxic gain-of-function) possibly through an interaction with a protein binding partner expressed in cells [119]. A key to controlling conformational diseases, therefore, is
to understand the underlying mechanisms responsible for threshold behavior under conditions of increased protein misfolding.

The threshold behavior in conformational diseases can arise from a sigmoidal dose-response curve or the appearance of bistability within a certain range of parameters. In dynamical and complex systems, bistability is characterized by two steady states and a third unstable steady state [45, 28]. Experimental evidence suggests that this threshold phenomenon is associated with bistability; misfolded isomer or aggregate protein concentration can exhibit bistability with changes in temperature [75], pressure [31], and pH [41]. There is also evidence of guanidinium chloride concentration dependent bistability in the transition between unfolded and folded transthyretin protein states [60]. To date there are few mathematical models which can describe the threshold of protein misfolding or aggregation in conformational diseases as a bistable system [107, 54, 61, 97]. Generalizations of the Smoluchowski’s theory of coagulation have been applied to investigate protein polymerization and aggregation [19]. However, these models do not explain the threshold for protein misfolding or aggregation in a mechanistic manner [58].

In this thesis, we critically reviewed the aggregation literature and discussed current qualitative classifications of aggregation mechanisms (Chapter II). We presented evidence from the literature for a threshold phenomena in aggregation. Bistability is one manner in which threshold phenomena can be described. The exact conditions underlying bistability in chemical reaction networks are undefined. In Chapter III, we presented a novel method to search for one type of condition (motifs) in chemical reaction configurations. We applied this method to reproduce previously published results of chemical motifs found in bistable reaction configurations [103]. Our method was then applied to discover two novel motifs in a set of published bistable chemical reaction mechanisms. These motifs differed from previously published motifs as our reaction networks were developed from chemical mechanisms generated by uni and
bimolecular reactions.

Qualitative characterizations can result in classifying identical mechanisms (from separate studies) into different categories. For example, Morris et al. [82] classify a mechanism of bovine liver glutamate dehydrogenase aggregation by Thusius [129] as ‘reverse association.’ This mechanism describes the indiscriminate aggregation of monomers and polymers of any length. Certain cases of this mechanism look identical to the ‘subsequent monomer association’ mechanism describing a nucleation event [134]. The result is dual classification for identical mechanisms, confounding clarification of mechanism(s) of protein aggregation.

In future studies, our method can be used to discriminate between network types (e.g. overall reaction configurations versus mechanistic) and aid in clarifying in some of the discrepancies found in the aggregation literature. First, we see that misfolded proteins (often act as the instigator, interacting with different protein conformations as the initial step in the aggregation reaction. This ‘activated monomer’ hypothesis is proposed for a variety of different protein aggregation systems. For example, in a model of insulin aggregation based on the “Ockham’s razor’/minimalistic 2-step model’, insulin must undergo a transformation from a non-aggregating to aggregating species in order for the aggregation reaction to occur [39]. Amyloid β is an aggregate prone species originating from amyloid precursor protein and is implicated in the formation of protein aggregates in Alzheimer’s disease [92], which provides another example of the ‘activated monomer’ hypothesis. Second, we see that heterodimerization occurs across most of the bistable networks. An inherent bias in published mechanisms of protein aggregation is a predicted homodimerization ($M_1 + M_1$) event. There are a handful of mechanisms that do predict dimerization of two different conformations of the same protein. Mechanistic models of calcitonin aggregation [55] and amyloid β aggregation [70] both have heterodimerization events. Dimerization of misfolded and bystander (wild-type unfolded or folded) proinsulin
is experimentally observed in a MIDY mouse model and hypothesized to underlie the dramatic decrease in insulin secretion and β-cell mass in this diabetic phenotype [50, 69, 67, 68]. Third, many of the networks include both intermediates and a final aggregate form. One of the issues of currently available aggregation models is that those capturing dynamical behavior of threshold phenomena are phenomenological. Several of the standardized networks presented here include intermediate steps and retain bistable behavior. This suggests that mechanistic models of protein aggregation capturing threshold phenomena can be developed by applying what is known of currently available bistable networks. Finally, some of these standardized bistable networks are open. Most available mechanisms of protein aggregation are of closed systems. It is known that fluxes can impact dynamical behavior [29, 30] and cellular systems are inherently open systems.

Using our novel method, we identified aggregation motifs and created a quantitative classification of our library of published models of protein aggregation (Chapter IV). During this process, we discovered a possible bias in the aggregation literature. We completed this chapter with a prediction of dynamical behavior of the aggregation mechanisms. We hope that this motif information can be used to generate novel unbiased aggregation mechanisms. A necessary future step would be to experimentally test hypothesized mechanisms of threshold behavior in a way that would distinguish square hyperbolic, sigmoid saturation, and switch-like saturation (reversible and irreversible) systems.

As other factors beyond motifs are important to dynamical behavior, we developed and analyzed a model of protein misfolding and aggregation in conformational disease (Chapter V). We identified particular kinetic parameters important to bistability. Within this chapter, we predicted pathways for recovery from abnormal protein misfolding and aggregation that are experimentally testable. The final chapter (Chapter VI) presents the beginnings of a mathematical biology course with an example
laboratory using a mathematical model of protein aggregation. This chapter will aid in transferring research based results to the classroom; future science research begins with the education of future scientists.
APPENDICES
APPENDIX A

Bystander Model Appendix

A.1 Flux perturbation

A.2 The shape of \(y_r(x) \)

To distinguish between unique and multiple steady states we need to understand the shape of \(y_r(x) \) for \(x = [0, 1] \). \(y_r(x) \) is a \((n + m)\)th order polynomial of the form

\[y_r(x) = (1 - x)^n(\tau_r x + \theta)^m. \] \hspace{2cm} (A.1)

First, we proceed to calculate the critical points of Eq. A.1 by determining the values of \(x \) for which the derivative of Eq. A.1 with respect to \(x \) is equal to zero. This becomes

\[y'_r(x) = [m\tau_r (1 - x) - n(\tau_r x + \theta)](1 - x)^{(n-1)}(\tau_r x + \theta)^{(m-1)} \]
\[= 0. \] \hspace{2cm} (A.2)
The critical values satisfying the above equation are:

\[x = \left\{ -\frac{\theta}{\tau_r}, 1 - \frac{n(\tau_r + \theta)}{\tau_r(n + m)}, 1 \right\}. \] (A.3)

Using the second derivative test, we determine that the function \(y_r(x) \) is concave downward and has a maximum at the critical point \(x = 1 - n(\tau_r + \theta)/\tau_r(n + m) \):

\[y_r'' \left(x = 1 - \frac{n(\tau_r + \theta)}{\tau_r(n + m)} \right) < 0. \] (A.4)

The maximum value is, therefore,

\[y_r(x)_{\text{max}} = \left(\frac{n(\tau_r + \theta)}{\tau_r(n + m)} \right)^n \left(\frac{m(\tau_r + \theta)}{n + m} \right)^m. \] (A.5)
B.1 Mathematical biology laboratory: modeling prion infection

B.1.1 Background

Learning goals: introduction to prion diseases, understanding parameters and variables, phase portraits, numerical solutions, steady states and stability

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a family of neurodegenerative disorders affecting humans and animals. These diseases often progress rapidly and always result in the death of the infected human or animal. Prion diseases are thought to be caused by a proteinaceous infectious particle (prion), an infectious agent composed primarily of protein. Infectious abnormally folded prions (PrPSC) induce abnormal folding of normal prion proteins (PrP). Misfolded prions form stable aggregated structures that accumulate in tissues, leading to cellular damage and death.

Several mathematical models of prion diseases have been proposed, including the one introduced below. In this model, Kacser and Small [54] propose that prion infec-
tion can be described by a bistable mechanism. Bistability is a dynamical behavior characterized by two stable steady states (and a middle unstable steady states) within a particular parameter range(s). A bistable system is one that can switch between two very different steady states through a very slight perturbation; e.g. a bistable system can switch from low levels of infections prions to high levels of infectious prions by slightly changing a system parameter.

B.1.2 The model

Figure B.1: ‘A bistable system involving feedback activation’ [54] where \(v_1 = k_1, v_2 = k_2A, v_3 = k_3B, v_4 = k_4, v_5 = k_5C, v_6 = \frac{k_6AC^2}{k_7 + C}, A: PrP* (prion polypeptide), B: PrPC (normal prion protein), and C: PrPSc (infectious prion protein).

This schematic can be described by the following set of equations

\[
\frac{dA}{dt} = v1 - v2 - v4 - v6 \quad (B.1)
\]
\[
\frac{dB}{dt} = v2 - v3 \quad (B.2)
\]
\[
\frac{dC}{dt} = v4 - v5 + v6 \quad (B.3)
\]
where the six rates describing prion infection are

\[
\begin{align*}
v_1 &= k_1 \\
v_2 &= k_2A \\
v_3 &= k_3B \\
v_4 &= k_4A \\
v_5 &= k_5C \\
v_6 &= \frac{k_6AC^2}{k_s + C}
\end{align*}
\]

(B.4)
(B.5)
(B.6)
(B.7)
(B.8)
(B.9)

B.1.3 Problem Set

1. Explain what each variable \((A, B, \text{ and } C)\) and each rate \((v_1, v_2, v_3, v_4, v_5\text{ and } v_6)\) means in biological terms.

2. Run the model using several different initial conditions. What do you notice? Comment on the difference between the results.

3. Now investigate the effect that changing the \(k_1\) parameter has on the dynamical behavior of the system. To do this, graph \(A, B, \text{ and } C\) versus time for three very different values of \(k_1\) while keeping the same initial conditions. Can you estimate the value of \(k_1\) that results in a change in the behavior of the system?

4. Construct phase portraits of \(A \text{ vs. } B\), \(B \text{ vs. } C\) and \(A \text{ vs. } C\) using values of \(k_1\) that give the behaviors observed in Question 3. What do you notice about the relationship between the three variables in the two cases?

B.1.4 Berkeley Madonna code

{DOI: 10.1006/jtbi.1996.0157}

{How Many Phenotypes From One Genotype? The Case of Prion Diseases}
Numerical Integration Method

METHOD STIFF

STARTTIME = 0
STOPTIME = 15
DT = 0.02

Model Variables
A: Prp*, peptide product
B: PrPC, normal prion protein
C: PrPSc, infectious prion protein

Model Equations
\[\frac{d}{dt} (A) = v_1 - v_2 - v_4 - v_6 \]
\[\frac{d}{dt} (B) = v_2 - v_3 \]
\[\frac{d}{dt} (C) = v_4 - v_5 + v_6 \]

Rates
v_1 = k_1
v_2 = k_2 \cdot A
\[v_3 = k_3 \times B \]
\[v_4 = k_4 \times A \]
\[v_5 = k_5 \times C \]
\[v_6 = \frac{(k_6 \times A \times C \times C)}{(k_s + C)} \]

\{ Model Parameters \}
\[k_1 = 10 \]
\[k_2 = 7.5 \]
\[k_3 = 6.5 \]
\[k_4 = 0.06 \]
\[k_5 = 0.75 \]
\[k_s = 1 \]
\[k_6 = 1.25 \]

\{ Initial Conditions \}
\[\text{INIT } A = 1e-6 \]
\[\text{INIT } B = 1e-6 \]
\[\text{INIT } C = 1e-6 \]
BIBLIOGRAPHY

