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ABSTRACT

Defining chemical reaction mechanisms associated with threshold phenomena in
conformational diseases

by

Conner Iknokwayyo Sandefur

Chair: Santiago Schnell

Conformational diseases arise from the failure of a protein to fold or remain in its

native conformational state. The resulting misfolded protein isomers are prone to

aggregation, a hallmark of conformational diseases. In some conformational diseases,

there is an observed threshold behavior characterized by a sudden shift from non-

toxic to toxic misfolded protein concentrations. Evidence suggests that basal protein

isomer concentrations, protein isomer interactions, pH, and temperature impact pro-

tein aggregation but the mechanism(s) underlying threshold behavior are unknown.

Identifying the factors underlying the sudden toxic shift in misfolded protein con-

centration is a key to controlling conformational disease. The central hypothesis of

this research is that a limited number of protein isomer interaction reaction mech-

anisms drive threshold behavior in conformational disease. In this work, I apply

mathematical and computational modeling techniques to identify reaction mecha-

nisms associated with threshold behavior in conformational diseases. First, I present

a mathematical model of native and misfolded protein isomer interactions and define

the model conditions under which threshold behavior occurs. Second, I apply a novel

xiii



computational approach to characterize known models of protein aggregation based

on reaction mechanisms and dynamical behavior. Finally, I organize these character-

izations into AggMod, an online repository of known models of protein aggregation.
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CHAPTER I

Introduction

1.1 Introduction

A driving force of systems biology is the desire to understand the many interac-

tions that compose the pathways within a cell. Systems biology is interested in the

interactions and emergent properties that result from communication between differ-

ent system components. Reducing a system (e.g., a cell) to its parts (e.g., individual

genes and proteins) neglects component interaction and emergent properties. Build-

ing and investigating a complete interaction map provides insight into normal and

diseased individuals that might not be found by traditional methods.

Much of traditional biology has the central dogma of molecular biology at its basis.

This dogma states that DNA is transcribed into RNA which is translated into protein

[23] and has guided the study of individual genes and the proteins they encode. The

protein folding pathway provides an example of how the central dogma of molecular

biology does not explain many of the interactions within cells. DNA transcription

is initiated by proteins and is the first step in protein production. For a number of

eukaryotic proteins, the process continues with co-translation through ribosomes into

the endoplasmic reticulum (ER). Molecular chaperones and folding machinery aid in

folding protein into its native structure. This native state is not a random one but is

instead the result of both the amino acid sequence and the complex folding pathway.
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These properly folded proteins are transported out of the ER for further processing.

The path from gene to protein is composed of many different and unknown in-

teractions between DNA, RNA, proteins, and small molecules. Protein folding is one

pathway, or subsystem, within the larger system of protein production. A systems

biology approach offers us an opportunity to understand the complicated pathway

of protein folding and the emergent properties that arise from interacting pathway

components.

Protein folding is often described by way of a folding energy landscape [16]. The

landscape is composed of different conformations of a given protein each corresponding

to a different energy level. The minimum energy, three-dimensional folded protein

structure is termed the ‘native state’ and for most proteins, is essential for proper

function [2]. Failure to fold properly results in misfolded protein conformations. These

protein conformations correspond to energy minima pockets within the folding energy

landscape.

Proteins may fail to properly fold through mutations, cellular stress, or stochas-

tic events [84]. A breakdown in the quality of protein production can lead to the

accumulation of toxic levels of misfolded and unfolded proteins. Improperly folded

proteins can form aggregates [79]. When the level of aggregates reaches a certain con-

centration, these protein complexes lead to proteotoxicity or loss or gain of function

diseases.

Amyloidosis diseases constitute the largest subset of conformational diseases. These

diseases are associated with the conversion of unfolded polypeptides and native pro-

teins into highly organized fibrillar aggregates known as amyloids [137]. Amyloid

formation occurs through activation of a monomer into an aggregate-prone species,

such as a misfolded protein. Monomers then aggregate together to form oligomers.

Protafilaments and fibril structures then form through oligomer and protafilaments

organization, respectively. Protein aggregation also occurs outside of the above or-
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dered structure resulting in amorphous aggregates such as inclusion bodies. Recent

evidence suggests, however, that inclusion bodies also contain ordered aggregates.

Both ordered and disordered aggregates may be composed of misfolded proteins, un-

folded polypeptides, native proteins, protein folding intermediates, or a combination

of the four [82]. Recent reviews [16] have done well discuss the role of non-native con-

formational protein isomers in protein aggregation. Quite possibly, there are multiple

mechanisms of aggregation occurring within an organism affected by a conformational

diseases.

Aggregate formation in conformational diseases often displays a threshold phe-

nomenon characterized by a slight change in a biological system component driving

a dramatic shift in the system state from normal to disease. In some conformational

diseases, the concentration of aggregated protein can switch between non-toxic (low

concentration) and toxic (high concentration) in a threshold-dependent manner. In

chemical reactions, the appearance of a threshold phenomenon is characterized by two

stable steady states (and a third unstable steady state) coexisting within a certain

range of parameters [45, 28]. In dynamical and complex systems, this phenomenon

is known as bistability. In biochemistry, metabolic and signaling pathways exhibiting

bistability switch between the two stable steady states in response to a chemical signal.

For this reason, it is generally said that such pathways exhibit ‘switch-like behavior’

[32]. One key to controlling conformational diseases, therefore, is to understand the

underlying mechanisms responsible for the threshold phenomenon associated with

increased misfolded proteins and decreased native protein production.

The central focus of my thesis is to understand the essential conditions for thresh-

old phenomena in conformational diseases. My driving hypothesis is that the mech-

anisms by which different protein conformations interact in aggregation have specific

motifs resulting in the observed threshold phenomena. Understanding the factors

underlying the emergence of bistability in chemical mechanisms is fundamental to
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targeting aggregate formation in conformational diseases.

1.2 Overview of thesis structure

In the following chapter, Chap. II, I begin with a review of aggregation reaction

mechanisms and experimentally observed threshold phenomena in conformational

disease. I review the current state of the aggregation literature and outline the

experimental evidence for threshold phenomena in the formation of misfolded and

aggregated protein. I follow with a discussion of how threshold phenomena can be

modeled mathematically (via a hyperbolic or sigmoidal curve or irreversible or re-

versible bistability). The chapter closes with a discussion of how these models can be

distinguished experimentally.

Chap. III begins with a review of our current understanding of characteristics

driving bistability in chemical reaction mechanisms. I then present and apply a novel

transformation to create a unique, one-to-one mapping of mechanism to bipartite

network to allow searching for motifs underlying threshold phenomena in bistable

systems. First, as a proof of concept, I use the network transformation and motif

mining to replicate the results in a previously published study on bistable motifs

([103]). I then present the results of searching bistable reaction mechanisms for motifs

using my methodology. These motifs will be used in the next chapter to predict

which aggregation mechanisms are and are not capable of threshold phenomena via

bistability.

In Chap. IV, I first discuss the creation of a library of aggregation models and

the quantitative classifications made using motif mining. I briefly discuss redundant

mechanisms in the aggregation literature as well as the highly correlated nature of

published mechanisms. I follow with predictions of dynamical behavior using the mo-

tifs from Chap. III. The chapter concludes with a description of the online repository,

AggMod, developed to house the library of protein aggregation mechanisms and the
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associated motif information (classification and dynamical behavior predictions).

Threshold phenomena in protein aggregation is determined by a variety of factors,

not only the interactions of different protein conformations. In Chap. V, I present

a general mechanism of bystander and misfolded protein interaction which I use to

investigate additional factors involved in triggering threshold behavior in protein mis-

folding and aggregation. I describe the analysis of the model and discuss the findings

that slight changes in the bystander protein residence time in the ER or the ratio of

basal misfolded to bystander protein inflow rates can trigger the threshold behavior

in protein misfolding.

In Chap. VI, I present a course outline developed around using mathematical mod-

eling to explore biological phenomena. In particular, I present a course description

and philosophy. This is followed by learning objectives and course organization. I

conclude this chapter with a discussion of course assessment. An example laboratory

associated with this course is available in the Appendix.

This thesis concludes with a summary and some possible future directions.
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CHAPTER II

Classifying protein aggregation in conformational

disease: current strategies and limitations

2.1 Introduction

Protein misfolding and aggregation are implicated in a wide array of conforma-

tional diseases. Abnormal misfolded protein levels are associated with the formation

of protein aggregates in neurodegenerative diseases such as Alzheimer’s, Parkinson’s,

Huntington’s [125], and prion encephalitis [101], as well as other diseases such as Mu-

tant INS-gene-induced Diabetes of Youth (MIDY) [50, 69], medullary carcinoma of

the thyroid [7], and the rare lung disease, pulmonary alveolar proteinosis [47]. The

diversity of conformational diseases is quite astounding.

In some conformational diseases, the mechanism of protein misfolding and aggre-

gation results in threshold phenomena. Threshold phenomena occur when a small

change in a system parameter (e.g. the basal misfolded protein concentration) results

in a dramatic shift in the overall system state. These phenomena are reoccurring

curiosities observed in many biological systems [15, 2, 95, 90, 132, 139, 73]. In con-

formational diseases, the number of misfolded proteins and aggregates can undergo

a dramatic shift from low, non-toxic to high, toxic levels resulting in disease onset

[80, 123, 63]. A well-formed characterization of the mechanism(s) driving threshold
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behavior appearing in conformational disease remains elusive.

Here we review our current understanding of the mechanisms underlying threshold

phenomena in conformational diseases. We begin with a discussion of the current

characterizations of aggregation mechanisms. Next, we discuss experimental evidence

of threshold phenomena in the formation of toxic levels of misfolded and aggregated

proteins. A discussion of the dynamical behaviors capturing threshold phenomena

follows. We conclude our review with a summary and a discussion of recommended

next steps.

2.2 Classification of mechanisms of protein misfolding and

aggregation

Given the importance of understanding protein aggregation, mechanisms of pro-

tein misfolding and aggregation and the associated reaction kinetics models have been

studied for more than half a century [81, 82, 9]. A similarity across many of these

modeling studies is an attempt to describe the key intermediates involved in the aggre-

gation process of a specific protein. In an expansive review of the protein aggregation

literature, Morris et al. [82] grouped mathematical models of protein aggregation

based on the underlying mechanism. Some of these studies include a specific reaction

mechanism while others provide only a description of the underlying mechanism (i.e.

phenomenological models). Morris et al. [82] label these grouped models as ‘subse-

quent monomer addition I: early contributions,’ ‘subsequent monomer addition mech-

anism II: later contributions,’ ‘reverse association,’ ‘prion aggregation mechanisms,’

‘’Ockham’s razor’/minimalistic 2-step model,’ and ‘quantitative structure-activity re-

lationship models.’ This final group contains non-mechanistic models developed using

protein physicochemical properties and therefore discussion of this group is excluded

from this review.

7



The two subsequent monomer addition classifications relate to older and newer

publications grouped as subsequent monomer addition I and II, respectively (Eqs. 2.1

- 2.4).

M1 +M1
kN−−→
kN ′

M2, (2.1)

M1 +M2
k−→
k′
M3, (2.2)

... (2.3)

M1 +Mi−1
k−→
k′
Mi. (2.4)

These two groups include models describing protein aggregation as a condensation

reaction. In condensation reactions, there is a critical concentration threshold before

protein aggregation can occur. A type of subsequent monomer addition identified in

studies is often referred to as ‘nucleation-polymerization’ in the literature. In order

for the favored polymerization reaction to occur, a critical number of proteins must

form a nucleus. The models in the subsequent monomer addition are some of the first

published models of protein aggregation.

The third class of protein aggregation models identified by Morris et al. [82] is

‘reversible association.’

Mi +Mj ↔ [kd]kaMi+j. (2.5)

Mechanistically, these models (Eq. 2.5) can look very similar to subsequent monomer

addition models. Models classified as reversible association, however, do not (gener-

ally) require a nucleation event for aggregation to occur.

Subsequent monomer addition mechanisms look identical to reversible associa-

tion mechanisms when rates of nucleation and polymerization are not distinguished

(Eqs. 2.6 - 2.8).

8



kN = k = ka, (2.6)

kN
′
= k

′
= kd, (2.7)

i = 1. (2.8)

Reverse association models capture behaviors distinct from subsequent monomer

addition, however, highlighting that using mechanistic information alone is not suf-

ficient to distinguish and classify models of aggregation. Additional information re-

garding kinetic parameters is also important.

Morris et al. [82] identify a fourth grouping of ‘prion aggregation mechanisms’

which includes models of infectious prion formation and replication, the hypothesized

precursor to prion aggregation formation. In a qualitative sense, prion models are

similar to the initial steps of misfolded monomer and oligomer formation seen in

many protein aggregation models. Most published models of prion aggregation only

include qualitative descriptions of the mechanisms which Morris et al. [82] transform

into reaction mechanisms [46, 101, 20]. Other models include mechanisms for all but

prion replication, which is described by a phenomenological term [61, 65]. While prion

models do not provide strict reaction mechanisms, many are capable of capturing

threshold phenomena [54, 58].

“Ockham’s razor’/minimalistic 2-step model’ is the fifth group. This group in-

cludes simplified two-step models of nanocluster formation [81] applied to protein

aggregation. The two-step model (Eqs. 2.9 - 2.10) applies two overall reactions to

describe aggregation.
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U1
k1→M1, (2.9)

U1 +M1
k2→ 2M1. (2.10)

The first step is an overall reaction describing nucleation while the second is an

overall reaction describing an autocatalytic aggregate concentration growth. The

minimalistic 2-step model fits experimental data from a wide variety of prion and

protein aggregation systems [82]. These models, due to use of overall reactions,

are inherently phenomenological. The rates describing steps one and two are not

actual rates but are instead a composition of many rates occurring across multiple

intermediate steps. While overall reactions do not capture the intermediate steps of

the full aggregation mechanism, they can be decomposed (‘unpacked’) into reaction

mechanisms composed of elementary (uni and bimolecular) reaction steps.

The Morris et al. [82] classifications are the result of gathering numerous and

diverse published protein aggregation mechanisms, a considerable undertaking. There

are some inconsistencies that remain due to the qualitative nature of the classifications

(Eqs. 2.6 - 2.8). Additionally, a recent paper by Bernackia and Murphy [9] address the

difficulty of interpreting aggregation mechanisms using minimalistic two-step models.

They also note that both a two-step minimalistic [81] and a subsequent monomer

addition model [13] both fit well to the same data.

2.3 Threshold phenomena are observed in the formation of

toxic misfolded and aggregated proteins

In some conformational diseases, misfolded and aggregated proteins are observed

to form via threshold phenomena. Huntington’s disease is a well-studied example

of this phenomenon. In both humans and Caenorhabditis elegans, a slight change
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in the number of polyglutamine residues in the huntingtin protein tail is correlated

with a dramatic increase in the number of protein aggregates and disease onset.

Nerve cells of patients with Huntington’s disease have toxic inclusion bodies which

are associated with the expression of huntingtin protein with a 38-182 polyglutamine

length tail. The polyglutamine tail length can increase over successive generations

[93]. The increased tail length is associated with increased misfolding and aggregation

[62]. On the other hand, patients without the disease exhibit low levels of protein

aggregation and express a form of the protein with an 8-37 residue long polyglutamine

tail [113, 116, 112]. A similar threshold is correlated with the loss of motility in C.

elegans [80]. Additional examples of misfolded proteins involved in disease formation

are listed in Table 2.1.

The diversity in type and size of proteins involved, as well as the resulting disease

is quite astounding. Neuroserpin is a 410 amino acid protein involved protease inhi-

bition [89]. In a mouse model of familial encephalopathy with neuroserpin inclusion

bodies, increased neuroserpin misfolding results in aggregation and is associated with

seizure. Mutant INS-gene-induced Diabetes of Youth (MIDY) occurs when proin-

sulin undergoes misfolding due to mutation and forms complexes with non-misfolded

(‘bystander’) proinsulin. In a MIDY mouse model, misfolding of the 110 amino acid

sized insulin precursor occurs within the endoplasmic reticulum of β-cells and results

in decreased insulin secretion and reduced β-cell mass [50, 69]. A key to controlling

toxic protein misfolding and aggregation in some conformational diseases, therefore,

is an understanding of what drives threshold phenomena. The development of ther-

apies relies on accurate descriptions of the mechanisms of protein misfolding and

aggregation underlying the threshold phenomena.
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Table 2.1: Examples of threshold phenomena in conformational diseases. Confor-
mational diseases occur across a wide variety of organisms and are the result of a
misfolded protein. The threshold parameter shifts the system from state of low mis-
folded and aggregated proteins to a toxic state of high misfolded proteins and protein
aggregates. After crossing the threshold, the organism manifests a characteristic phe-
notype.

Organism Misfolded
Protein

Threshold
Parameter

Phenotype Disease (or
disease model)

Human huntingtin
[113, 116,
112]

polyQ tail
length

Inclusion
body forma-
tion within
nerve cells

Huntington’s

Worm polyQ plas-
mid [80]

polyQ tail
length

Decreased
motility,
increased
number of
aggregates

Huntington’s

Human amyloid β
[122, 133]

E22Q amy-
loid β isomer
concentration

Decreased cell
proliferation

Alzheimer’s

Mouse Proinsulin
[50, 69, 67,
68]

Akita proin-
sulin isomer
concentration

Decreased β-
cell mass and
insulin secre-
tion

Mutant INS-
gene-induced
Diabetes of
Youth (MIDY)

Mouse Neuroserpin
[127]

neuroserpin
concentration

Seizure Autosomal de-
mentia, familial
encephalopathy

Mouse type I colla-
gen [52, 102]

colla1 protein
concentration

Decreased
type I colla-
gen formation

Aortic rupture
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2.4 Most available mechanisms of protein misfolding and ag-

gregation are not classified as capturing threshold phe-

nomena

Missing from almost all mechanistic models of protein aggregation is an explana-

tion of the threshold phenomena observed in the development of many conformational

diseases. Most published mechanistic models are analyzed for and fit to available time

series data of total protein loss or aggregation formation [82, 9]. These models are

not analyzed for dynamical behavior that might capture threshold phenomena. For

example, Pallitto and Murphy [92] present a mechanistic model of amyloid β aggre-

gation [92]. The resulting law of mass action model fits well to the time series data

and a thorough exploration of the impacts of pH and temperature on aggregation are

provided. This mechanism could be analyzed for threshold phenomena if the basal

amyloid β concentration, for example, was varied and the resulting system behavior

was analyzed. If a dramatic shift in aggregate formation occurred, this would sug-

gest that the amount of basal misfolded protein (amyloid β) was driving a threshold

phenomenon which was captured by the mechanistic model.

The majority of available models seeking to explain threshold phenomena in toxic

protein misfolding and aggregation are phenomenological [46, 101, 54, 61, 27, 107].

These models capture overall dynamical behavior but lack mechanistic information

describing the underlying reaction mechanism. While phenomenological models are

useful in understanding overall behavior, ‘unpacking’ the models into mechanisms

composed of all necessary intermediate steps can result in the loss of threshold be-

havior [114]. In order to regain threshold behavior, introduction of additional mech-

anistic information is often necessary. In an open system with influx and outflux of

both proteins (N and M), the overall cubic autocatalytic reaction is bistable under

certain conditions [115]. When the overall reaction is ‘unpacked’ into elementary re-
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action steps, the overall behavior of the system is only maintained under restrictive

parameter conditions [28]. In the following sections, we provide evidence highlight-

ing the importance of using accurate mechanistic models to develop a comprehensive

picture of experimentally observed threshold behavior. To set the stage, we need to

understand threshold behavior as a dynamical phenomenon which we discuss next.

2.5 Threshold phenomena can be captured by dose response

curves

Qualitatively, threshold phenomena occur when small changes in a system param-

eter(s) cause large changes in system outputs. These phenomena can be captured

by dose response curves. In dynamical systems, dose response curves are also known

as bifurcation plots. In a standard bifurcation plot, the parameter value (‘dose’) is

plotted on the x-axis and a system variable (the ‘response’) is plotted on the y-axis.

All other parameters remain constant and the response in the system is visualized as

the dose increases or decreases. The number of responses a system has for a given

dose is the number of equilibrium points (steady states) a system variable has for a

given parameter set. These steady states can be unstable or stable. A system will

tend to be repelled away from unstable steady states and attracted towards the stable

ones.

There are three types of dose-response curves that capture threshold phenomena:

a square hyperbolic saturation curve, a sigmoid saturation curve, and a switch-like

saturation curve. A square hyberbolic dose response is a one-to-one response where

the response initially increases as the dose is increased (or decreased, depending on

the given system) and then finally plateaus ( Figure 2.1A). A hyperbolic dose response

curve represents a monostable system (a system with one stable steady state). For

any given dose, the system only has one stable steady state and therefore the system
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Figure 2.1: Multiple theoretical steady state behaviors can describe experimentally
observed threshold phenomena. (A) A square hyperbolic dose response curve de-
scribes a monostable system in which there is a sharp initial change in response to a
change in dose and then the response plateaus. (B) In a system described by a sig-
moidal saturation dose response curve, there is a one-to-one response. A sharp shift
in the steady state number of aggregates occurs in the threshold region. (C-D) There
are two types of switch-like saturation curves. (C) In a reversible bistable system, the
system jumps to a high steady state number of aggregates at thres2. If the system
starts at a high response level, the dose must be reduced past thres2 to thres1 before
a low response level can be recovered. (D) In an irreversible bistable system, once
thres3 is passed, there is no way to recover the low response state. The boxed regions
in (A - D) are the threshold regions for each dynamical behavior. In (A - D), solid
lines denote stable steady states. In (C - D), unstable steady states are denoted by
dotted lines.
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will always reach that equilibrium for a given parameter set.

A sigmoid saturation dose response curve describes a reversible behavior charac-

terized by a graded one-to-one response to a signal ( Figure 2.1B). Below a critical

threshold range, there is a gradual increase in response to a changing dose. Within

the critical threshold range ( Figure 2.1B box), there is a dramatic shift in the sys-

tem response. This dramatic shift occurs over a relatively small dose range but the

one-to-one (monostable) nature of the system is maintained.

A third dose response curve capturing threshold phenomena is a switch-like satu-

ration curve ( Figure 2.1C and Figure 2.1D). Outside of the critical threshold region,

this curve is similar to a sigmoid saturation curve. There is a one-to-one response

to a change in the dose. In other words, outside the threshold region, the system is

monostable. The behavior of the switch-like saturation curve inside the critical thresh-

old region, however, distinguishes this curve from the other two curves presented

here. Within the threshold region of a switch-like saturation curve ( Figure 2.1C box

and Figure 2.1D box), the system has two possible stable steady states (and a middle

unstable steady state). A switch-like saturation curve describes a bistable system,

where there are two possible stable steady states a system can attain within a de-

fined parameter ranged. Bistability has been used to describe threshold phenomena

observed in prion propagation and plaque formation [46, 101, 54, 61, 27, 107], protein

aggregation in C. elegans [107] and protein aggregation in conformational diseases

[115]. In many of these systems, an autocatalytic reaction between unfolded and mis-

folded proteins (or prions) creates additional misfolded proteins which can increase

to a toxic level. This positive feedback is tempered by folding and export of unfolded

proteins as well as misfolded protein degradation.

In a protein aggregation system with square hyperbolic and sigmoid saturation

dose response behavior, we expect to see graded increases and decreases in the steady

state number of protein aggregates in response to increasing and decreasing tail length,
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Figure 2.2: Steady state aggregation data can be captured by multiple dynamical
behaviors. (A) Experimental time series data of aggregation formation in a C. elegans
model of Huntingtons disease [80] were extracted using digitizing software [78]. (B)
Data from (A) were replotted as polyglutamine tail length (Q#) versus number of
aggregates at day 14.
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respectively. The formation of toxic aggregates would be reversible through shortening

the polyglutamine tail length. Both of these systems have one-to-one dose-response

behavior. There is only one possible steady state in the number of aggregates that

the system can reach for a given set of parameters. Though one-to-one, the behaviors

are ‘switch-like’ as there is a dramatic increase in the number of aggregates when the

threshold parameter (e.g. the polyglutamine tail length) is within the threshold range

( Figure 2.1A and Figure 2.1B, boxed region). In the square hyperbolic, however,

there is no low dose response. As soon as the tail length increases, in this simulated

example, the steady state number of aggregates begins to grow dramatically.

There are important distinctions between the two switch-like saturation (bistable)

curves presented here. Similar to a sigmoid saturation system, in a reversible bistable

system, toxic aggregation can be reduced by decreasing the signal past the critical

threshold ( Figure 2.1C, boxed region). In contrast to a system with a sigmoid satu-

ration dose response, however, the initial number of aggregates (the initial condition

of the system) is important to the overall system behavior. In a certain range of

parameters, the system can end up in two different steady states, depending on the

initial conditions. In a bistable system, increasing the polyglutamine tail length be-

yond the threshold range (thres2) results in a dramatic shift to a high number of

protein aggregates. To reverse this switch in aggregate numbers, the polyglutamine

tail length driving misfolded protein production must be reduced beyond thres2 to

a lower value (thres1). This behavior is known as hysteresis and is in contrast to

the one-to-one response of both the square hyperbolic and sigmoid saturation dose

response systems.

As the threshold signal increases, irreversible bistable systems have behavior sim-

ilar to the monostable sigmoid saturation and the reversible bistable systems. At the

threshold point (thres3), there is a dramatic shift in the number of protein aggregates.

In a protein aggregation system with underlying irreversible bistable dynamical be-
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havior, however, low aggregate levels are unrecoverable after crossing the threshold

( Figure 2.1D, boxed region). Decreasing the misfolded protein level by shortening

the polyglutamine tail length outside of the threshold region is impossible. In protein

aggregation systems with underlying irreversible bistable behavior, therapies imple-

mented after the appearance of toxic protein aggregates would only slightly reduce

the number of aggregates (making it difficult to recover normal function).

Understanding the differences of hyperbolic, sigmoidal dose response, reversible

and irreversible bistable systems is important to therapeutic intervention. In this

thesis, we are interested in determining the underlying dynamics of the formation of

toxic protein misfolding and aggregation. For example, there are multiple possible

steady state behaviors underlying steady state aggregate threshold phenomena in C.

elegans ( Figure 2.2A and Figure 2.2B). Due to the important therapeutic differences

of the presented dynamical behaviors, drug development needs to proceed with the

underlying dynamical behavior of the protein misfolding and aggregation system in

mind. This dynamical behavior is dictated by both the reaction mechanism and the

kinetic parameters [121].

2.6 Dynamical behaviors driving threshold phenomena can

be distinguished experimentally

Protein aggregate formation, in general, is either measured directly via absorbance

and fluorescence assays or indirectly through the measurement of total protein loss.

These experimental measurements generally begin with a system containing low, non-

toxic level of protein aggregates. The experiment progresses until the number (or

concentration) of aggregates reach an apparent steady state. The end result is a

time series data charting the increase in aggregates over time (either through direct

measurement or through direct correlation with total protein loss).
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Figure 2.3: Predicted outcomes of experimental studies distinguish the three differ-
ent theoretical steady state behaviors. Top panel: In a square hyperbolic system,
there is a one-to-one response of steady state number of protein aggregates to the
polyglutamine tail length (Q). There is a gradual, graded increase in the steady state
level of aggregates as the tail length increases. Middle top panel: In a sigmoidal dose
response system, Middle bottom panel: The reversible switch system outside of the
threshold region behaves similarly to the sigmoidal system. When the polyglutamine
tail length is within the threshold region, the steady state number of protein aggre-
gates is dependent on the initial number of protein aggregates in the system. Bottom
panel: In the irreversible switch simulation, there is no recovery from high aggregate
numbers. Triangle represents high misfolded concentration (high Q#), square thresh-
old range and diamond represents a low Q#. In the square hyperbolic graphs, the
low and threshold lines are nearly identical.
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Time series data for square hyperbolic, sigmoid saturation, and switch-like satu-

ration curves look very similar when the initial aggregate level is low. This makes

experimentally distinguishing these dynamical behaviors difficult. Experimental data

from protein aggregation systems beginning with both low and high aggregate num-

bers, however, would aid in distinguishing the systems ( Figure 2.3). Simulated time

series data a square hyperbolic and sigmoidal saturation system shows a reversible,

one-to-one signal to response ( Figure 2.3, top and top middle panels). The steady

state value of the number of aggregates is always the same for a given polyglutamine

tail length, regardless of the initial number of protein aggregates. The threshold range

for the square hyperbolic occurs when there is a physically realistic (non-negative)

level of protein aggregates. There is a dramatic shift to high aggregate level as soon

as the polyglutamine tail exists ( Figure 2.3, top panel). On the other hand, in a

sigmoidal saturation system, low and high levels of aggregates exist for short and long

tail lengths, respectively ( Figure 2.3, top middle panel).

A reversible switch-like saturation system looks very similar to a sigmoidal system

at short and long tail lengths, for high and low initial aggregate levels ( Figure 2.3,

bottom middle panel). There is a critical range of polyglutamine residues (the thresh-

old region), however, that gives a very distinctive behavior. Within this region, the

same steady state level of aggregates can exist for different polyglutamine tail lengths

depending of the initial number of aggregates. In a reversible switch-like satura-

tion system, the required tail length for a switch from toxic to non-toxic number of

protein aggregates would be much shorter than the tail length required for a switch

from non-toxic to toxic aggregate numbers (a hysteretic response). Therefore, a much

more reduced misfolded concentration would be necessary to recover normal aggregate

levels after the initial toxic protein aggregation threshold was passed. In contrast,

toxic aggregation in a system governed by irreversible switch-like saturation bistabil-

ity cannot be reduced after the threshold is crossed, regardless of the reduction in
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polyglutamine tail length ( Figure 2.3, bottom panel). Designing experimental sys-

tems with the above factors in mind would aid in distinguishing predicted dynamical

behaviors underlying threshold phenomena, as well as aid in validation of proposed

protein aggregation mechanisms.

2.7 Conclusion

Conformational diseases are diverse, numerous and result from a protein failing

to fold into a native conformation. Increased misfolded and aggregated proteins are

hallmarks of many conformational diseases. Current classifications of mechanisms of

protein aggregation are qualitative. Use of qualitative classifications results in contra-

dictory descriptions of the same protein aggregation mechanism. Due to the strong

bias in the literature towards closed mechanisms of aggregation involving the creation

of homodimer, creating new mechanisms of aggregation is important. Addressing the

open nature of cellular systems, by developing new or expanding on published aggre-

gation mechanisms, would be a useful future step.

Threshold phenomena underlie toxic protein misfolding and aggregation in some

conformational diseases ( Table 2.1). A key to understanding and controlling these

conformational diseases lies in developing therapies targeting the important reactions

underlying threshold behavior. These reactions can be predicted by development

of aggregation mechanisms using theoretical and experimental means. These mecha-

nisms and associated kinetic parameters underlie the dynamical behavior of an aggre-

gation system. Dynamical behavior capturing threshold phenomena are square hyper-

bolic, sigmoid saturation, and switch-like saturation (bistability) ( Figure 2.1). Quan-

titative information about dynamical behavior and underlying mechanisms would aid

in creating more comprehensive classifications of models of protein misfolding and

aggregation. Future investigations into the mechanisms creating toxic protein mis-

folding and aggregation threshold phenomena would benefit from interdisciplinary
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approaches.

While different dynamical behaviors can produce threshold behavior, there is in-

creasing evidence that biochemical threshold behavior is a result of bistability. In

the next chapter, we discuss what is known about mechanisms underlying bistable

behavior. We then introduce a novel methodology to identify reaction mechanisms

important to bistability. This sets the stage for the application of our new method-

ology to quantitatively characterize protein aggregation mechanisms.
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CHAPTER III

Identification of motifs underlying bistable

chemical reaction mechanisms

3.1 Introduction

Chemical reaction mechanisms - developed by piecing together specific chemical

pathways (or reactions) - provide fine-grained representations of biological systems.

These representations capture the complete picture of the underlying chemical inter-

actions between biological components. The dynamics of mechanistic representations

can be captured by ordinary differential equations (ODEs). These ODEs model the

change of each component in the system (e.g. concentration of a protein) over time.

In theory, these systems can be solved analytically or numerically in order to give

information about steady state behavior [121].

As most biological systems are large and complex, the unfortunate reality is

that obtaining an accurate description of the steady state behavior is quite difficult.

Methodology such as homotopy exists to aid in estimating steady state behavior but

require an educated guess of the steady state solution(s) of a system. These estimated

guesses are often elusive in complex biological systems where the true steady state

behavior is unknown or unclear. Alternative methods are available to exclude sys-

tems incapable of certain behaviors (e.g. chemical reaction network theory or CRNT)
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[29, 30, 22] but this group of methods only considers positive steady states. In biolog-

ical and chemical systems, one expects that a system component, such as a protein,

could be completely depleted from a system (i.e. have a value of zero at steady-state).

Though these alternative methods disregard a zero steady-state, they provide

a useful representation of chemical mechanisms as bipartite graphs. Bipartite graph

representations of chemical reaction networks (mechanisms) are generally composed of

two types of nodes: one type of node representing chemical species and a second node

type representing the chemical pathways (the individual steps in the mechanism).

The single type of directed edges of these bipartite graphs connect reactant and

product species nodes to their respective chemical pathway nodes. This particular

type of bipartite graph is sometimes referred to as a ‘species-reaction (SR)’ graph in

the literature [22].

Identifying specific component interactions (‘motifs’) underlying biological system

behavior is a major task of modern biology. Motif mining studies published thus far

almost unanimously explore associations between motifs and biological behavior in

single node type substrate graphs. CRNT illustrates that there are particular relation-

ships between species and pathways captured by bipartite graphs that are associated

with dynamical behaviors. Therefore, we hypothesize that we can identify motifs

important to dynamical behavior using bipartite graph representations of chemical

reaction networks.

3.2 Dynamical behavior underlying threshold phenomena have

been systematically characterized

Of particular interest is understanding the key motifs underlying cellular decision

making such as oocyte development, apoptosis, and oncogene activation, biological

behaviors that are hypothesized to be driven by bistability [15, 2, 95, 90, 132, 139, 73].
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There remains considerable debate about the specific conditions necessary for bistabil-

ity. Evidence for bistability in biological processes can be found in an experimentally

observed hysteretic response. In Xenopus oocyte maturation, for example, there is an

irreversible, all or nothing switch towards maturation in response to a change in the

progesterone concentration. Returning to the original, pre-maturation progesterone

concentration cannot return the oocyte to an ‘immature’ state. This hysteretic re-

sponse is also observed in aggregation where the change in the pH [41], temperature

[75], and pressure [31] can drive a switch in the aggregated protein concentration.

But what are the mechanisms underlying proposed bistable biological systems?

Computational approaches have been employed to search for bistable behavior and

predictors of bistability in silico. Paladugu et al. [91] applied an evolutionary ap-

proach to developing chemical reaction configurations with bistable (and oscillatory)

behavior. Initially, random chemical reaction configurations of uni- and bi-molecular

interactions were generated. Configurations capable or near capable of desired dy-

namical behavior were used to generate the next set of configurations. In other words,

high fitness configurations were selected as ‘parents’ of the next generation.

Ramakrishnan and Bhalla [103] used a set of 12 chemical reactions identified as

commonly occurring in biology. They first performed a systematic exploration of all

possible reaction configurations of two, three and four chemical species, using all, one

to six, and one to three (of the set of 12 reactions), respectively. In the second stage,

they increased the number of reactions used and sampled a subset of all possible

reaction configurations of three, four, and five chemical species using seven to fifteen,

five, and one to four reactions (of the set of 12 reactions), respectively. With sparse

but broad ranged parameter sampling, the authors found that approximately 10% of

the full set and 5% of the subset of configurations were bistable.

All of the bistable networks identified by Ramakrishnan and Bhalla [103], contain

either enzyme catalyzed reactions or overall reaction rates and therefore do not pro-
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vide mechanistic insight into bistable behavior. The study does point to an interesting

indication that there is a core set of smaller bistable reaction networks and that the

larger networks are expansions on this core. The authors connected all bistable con-

figurations via a directed acyclic graph. Bistable configurations served as the nodes

and the addition or removal of one of the 12 reactions served as an edge connecting

the configurations. From the graph, it appears that the larger bistable configurations

are children of smaller configurations. This suggests that while the number of total

bistable configurations is large, bistable behavior may be driven by a much smaller

group of three-species configurations.

A similar finding appears in a more recent study by Siegal-Gaskins et al. [124].

In this study, the authors apply CRNT [29, 30] to perform an in silico search on a

large set (40,680) of two-gene gene-regulatory networks (GRNs). A GRN consists of

interacting genes and proteins (which are, in general, transcription factors). In their

analysis, Siegal-Gaskins et al. [124] found a large number of bistable GRNs (36,771).

Further analysis determined that each of the 36,771 bistable GRNs contained one

of 11 possible core bistable networks (termed minimal bistable networks or MBNs)

containing three to eight species. An MBN contains the minimum number and type of

reactions to create a bistable system. Removing any one reaction from an MBN would

result in loss of bistability, creating a monostable system. As in the Ramakrishnan

and Bhalla [103] study, there was a set of bistable sub-networks which could be

found in larger bistable gene-regulatory networks. These findings are in line with the

mounting evidence that larger networks are made up of smaller sub-networks with

specific functions [131].

Despite studies investigating and characterizing theoretical systems capable of

threshold phenomena, the specific reactions underlying threshold behavior remain

unclear [96]. Some studies present evidence of three necessary conditions for bista-

bility [22, 138]: positive feedback loop(s), ultrasensitive dose-response curves, and a
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mechanism to prevent a large increase in the concentration of any chemical species

(reactants, intermediates, and products) in the chemical reaction network. These are

the three characteristics identified in the ‘smallest bistable chemical reaction system’

published by [138]. Other evidence exists, however, that these three conditions may

not be necessary for bistability. Studies by two different groups demonstrated that

bistable systems can occur in absence of positive feedback loops [103, 88]. This can be

observed in the mass action MBNs as well [124]. For example, certain reactions ap-

pear together in six of seven MBNs creating a feedback loop. Depending on the other

reactions in the chemical network, the feedback can be positive or negative. In two

of these six chemical reaction networks, there is no positive feedback (only negative

feedback) due to the other reactions in chemical networks. Additionally, in certain

enzyme-catalyzed reactions, enzyme saturation is critical for bistability, while in oth-

ers, bistability results from a balance between competing reactions. This suggests

that ultrasensitivity, at least via enzyme saturation, is not a necessary requirement

for a bistable system [131, 139]. Certainly, the conditions underlying bistability in

chemical reaction networks remain open for investigation.

Here, we present a method to mine transformed chemical reaction networks (i.e.

mechanisms) to identify motifs underlying bistable behavior. First, as a proof of

concept, we apply our methodology to bistable network configurations found in a

previously published in silico study of bistability in biological systems [103]. We

illustrate that we can capture the ‘chemical motifs’ identified in the study as bipartite

motifs in the transformed chemical reaction networks. We discuss the importance of

comparing motif appearances against a random background by showing how using

motif frequencies may lead to spurious results. We then apply our method to a library

of published bistable mechanisms and identify two seven-node bipartite motifs found

across all the bistable mechanisms.
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3.3 Materials and Methods

3.3.1 Bistable overall reaction configurations

The 16 bistable chemical reaction systems were obtained from a previous system-

atic study of ‘chemical motifs’ in computationally generated reaction configurations

[103]. These 16 systems are a subset of a computationally generated set of chemical

reaction systems. In the original study, Figure 2 presented example bistable models

from a final set of approximately 4500 bistable reaction configurations. We identified

this set of 16 reaction configurations as ‘overall reactions’ due to the assumption of

an instantaneous conversion of species made in the paper. For example, in an enzyme

catalyzed reaction such as autocatalysis, the chemical mechanism is generally com-

prised of two chemical pathways: a reversible association of enzyme with substrate

to form a complex (a + b↔ ab, where a is the substrate and b is the enzyme) and a

irreversible change of the complex into a product (ab→ b+ b). In the original paper,

the overall reaction a+ b→ 2b) was used to model this type of chemical mechanism.

In our study, reaction configurations with tri-molecular interactions and above

were removed (e.g. we did not include reaction configurations with the reaction 4a+

b↔ c). For example, the ‘Oxidation’ reaction 2a+ b↔ 2c is an overall reaction as it

encompasses multiple intermediate reaction steps. Chemically, there is no expectation

that two molecules of a and one molecule of b will combine instantaneously. Instead,

we expect that, for example, a and b will combine first and then this heterodimer will

combine with another molecule of a in a second chemical pathway (i.e. a + b ↔ ab

and then ab + a → 2c. An alternative set of chemical pathways is that a will first

associate with itself form a homodimer which then combines with b in the second

chemical pathway.
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3.3.2 Bistable reaction mechanisms

To obtain the 11 reaction mechanisms, we searched the biomedical and chemical

literature. After searching, we obtained 105 potential chemical reaction configura-

tions. We removed all reaction configurations that did not meet our definition of a

chemical reaction mechanism. We defined a chemical reaction mechanism as one that

only contains chemical pathways where chemical pathways were defined as those with

only uni- and bi-molecular reactions resulting in a maximum of two species.

Additionally, we removed any reaction configurations that contained enzyme cat-

alyzed reactions without an intermediate complex step (e.g. the overall reaction

configurations described in section 3.3.1). Any other reaction configurations found in

the literature were removed after reviewing the paper to identify any violations of law

of mass action assumptions. For example, a model of bistability in a closed reactor

is published as bistable under the assumption of the non-linear Beer-Lamper’s Law

of light absorption [94]. The final eleven bistable reaction mechanisms used in this

study were M2 [94], M4 [21], M19 [21], M20 [22], M21 [22], M23 [74], M24 [24], M64

(unpublished), M102 [21], M103 [21], and M104 [24]

3.3.3 One-to-one transformation of mechanisms into bipartite graphs with

edge coloring

Chemical reaction configurations were transformed into directed bipartite net-

works with one node color (black) representing chemical pathways and a second node

color (gray) representing chemical species. In order to capture the stoichiometry of

the chemical reaction configurations, edges connecting species and pathway nodes

were colored in two ways. One node color (green) represented one species (a reac-

tant) entering a pathway node or one species (a product) exiting a pathway node. A

second node color (blue) represented when two of a given species entered into (re-

acted) or exited (produced) a pathway node. By definition, an edge between two
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species nodes or an edge between two pathway nodes were not allowed in a bipartite

graph. Examples of the edges for the different reaction and product stoichiometries

are illustrated in Figure 3.1.

Figure 3.1: Examples of chemical pathways represented as directed bipartite graphs
without and with edge coloring. Pathways (denoted as P1, P2, and P3) are repre-
sented by black nodes and connect the reactants and products (represented as gray
nodes). The edge coloring captures the stoichiometry of the pathway. In graphs with
edge coloring, a green edge represents one molecule of a species reacting or being
produced. A blue edge represents the reaction or production of two molecules of a
given species.

3.3.4 Mining bipartite graphs for motifs

With author permission, we modified FANMOD, a program to search motifs in

graphs with node and edge coloring [136]. Bipartite graphs with edge coloring were
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mined for motifs of size three-, four-, and five-nodes. Bipartite graphs without edge

coloring were mined for motifs of size six- and seven-nodes (due to software restric-

tions). To generate a background of 1000 random bipartite graphs, the ‘no regard’

background with regard to node and vertex coloring was used. FANMOD was modi-

fied to output the number of appearances of a subgraph in the original graph (corig),

the mean (cavg) and standard deviation (cstd) of the number of appearances of a

subgraph across the random background for all subgraph appearances. After min-

ing, subgraphs representing inert chemical pathways were removed (i.e. subgraphs

containing the network representation of A+B → A+B or 2A→ 2A were removed).

In order to identify subgraphs appearing with more or less frequency then expected

at random, a z-score for each subgraph was calculated in the following manner:

zi =
corig − cavg

cstd
(3.1)

where i represents subgraph i. In order to allow for comparison of motifs across

networks, a normalized z-score was calculated for each subgraph resulting in subgraph

z-scores ranging from -1 to 1 [77]. Subgraphs with a negative normalized z-score were

defined as underrepresented motifs and subgraphs with a positive normalized z-score

were defined as overrepresented motifs. Subgraphs with a z-score of zero did not

appear with any more and less frequency then what would be expected at random.

Motif IDs were generated by the FANMOD software [136].

3.4 Results

3.4.1 Original chemical motifs were captured by mining the transformed

bistable reaction configurations

Each ‘chemical motif’ in the original paper [103] had a bipartite graph repre-

sentation ( Figure 3.2). Motifs with six or more species and pathways were only
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representable as bipartite graphs without edge coloring while motif BabXDcdX was

captured via two bipartite motifs with edge coloring.

Figure 3.2: The chemical motif were transformed into bipartite motifs. The chemical
motif ID (e.g. DabXFabc) and chemical reactions are listed with the corresponding
bipartite motif and motif ID (e.g. 17214571108). Enzyme catalyzed reactions are
denoted by an arrow with the enzyme catalyst. In the bipartite motifs, species and
reactions are represented by gray and black nodes, respectively.

Sixteen computationally generated bistable reaction configurations [103, Fig. 2]

were transformed into bipartite graphs with and without edge coloring and mined

for subgraphs. Figure 3.3 shows the frequency of the bipartite motifs appearances

across the 16 biparitite networks. Except for a single reaction configuration which

can be represented by a single bipartite motif, the frequency of all bipartite motifs

in Figure 3.2 was below 20% and this frequency varied across each network. No single

motif appeared across all the transformed reaction configurations.
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Figure 3.3: Frequency of bipartite motif appearing in the 16 transformed bistable
reaction configurations. Motif 17214571108 appeared in the most networks. The
last two motifs (16920 and 164) were required to appear together in a network to
correspond to the original chemical motif ( Figure 3.2)
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The normalized z-scores for each motif across the 16 transformed reaction configu-

rations were calculated and plotted in Figure 3.4. The bipartite motif most frequently

observed in the original reaction configurations (motif 17214571108) was overrepre-

sented in the five networks which it appeared. Motif 8424074, the second most fre-

quency motif observed in the original paper, is also always overrepresented in the

networks in which it appears. The third most frequent motif had non-positive z-

scores (the motif was not overrepresented in any of the transformed networks). The

fourth motif, found bistable in approximately 44% of the original bistable reaction

configurations, was overrepresented in one network and underrepresented in four oth-

ers. A similar result was obtained for the fifth (140806753879236) and sixth motif

(35459790546950). The final chemical motif presented in the original paper is rep-

resented as two distinct bipartite motifs in the transformed networks. In networks

where both motifs appeared, motif 16920 was always overrepresented while motif 164

was always underrepresented.

3.4.2 Fundamental reaction mechanism structure is captured by small

motif sizes

We mined the bistable reaction mechanisms for motifs of size three to seven.

Overrepresented motifs of size three and four nodes were those generally expected to

appear based on our definition of chemical reaction mechanisms (Materials and Meth-

ods 3.3.2). For example, the first motif in Figure 3.5 is representative of the following

chemical pathway: X +A→ B + Y where X and Y are some other species (besides

A and B) or are flux nodes (input or outputs into the system). Underrepresented

motifs also appeared as expected based on our definition of a reaction mechanism.

The second motif in Figure 3.5, for example, is representative of an overall catalytic

reaction of the type: A+B → B +X where X is some other species besides A or B.
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Figure 3.4: Significance profile for the 16 transformed bistable reaction configurations
shows over and underrepresentation of motifs in the resulting bipartite networks.
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Figure 3.5: Normalized z-scores of three-node motifs for the 11 bistable mechanisms
transformed into bipartite graphs with colored edges. Motifs appearing as over- or
underrepresented across the majority of networks are presented. Motifs discussed in
the text are pictured. The motif label is the motif ID assigned by FANMOD plus the
adjacency matrix corresponding to the motif.
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3.4.3 Identification of motifs underlying bistability

Figure 3.6: Motifs of size five nodes appearing in (A) all transformed bistable mech-
anisms and (B) only in bistable mechanisms requiring edge coloring.

We mined the networks for motifs of size five and identified four motifs appearing

overrepresented across all networks ( Figure 3.6). The first motif (16646) is one in

which one species gives two different species in two different reactions. This is similar

to the single input motif (SIM) found in transcription networks where a single input

gives multiple outputs [3]. The second motif (67088) is a multiple input single output

(MISO) motif. In this motif, two separate species create a third species via two

separate chemical pathways. The third motif (532520) is similar to the second motif

where a single species received two inputs but this single species also acts as an input
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to a third pathway. The fourth motif (470912) includes a cycle between two species

with a single input into one of the species (a single input cycle motif or SICM).

The majority of the transformed bistable mechanisms do not require edge coloring

to capture stoichiometric information. In the two networks requiring edge coloring,

we identified two overrepresented motifs of size five appearing in both networks. Both

of these motifs together show a balance between homodimerization (captured by the

blue edge) and species creation. The motifs together also show an input into and

output from the cycle.

Next, we searched for the maximum sized motif, size seven, to see if we could

isolate a potential bistable motif. Using FANMOD [136], we can only mine for motifs

larger than size five in networks without edge coloring. In the case of the two networks

with colored edges, therefore, we removed edge coloring prior to motif mining. After

mining, we identified two motifs of size seven appearing or overrepresented across

all 11 bistable bipartite networks ( Figure 3.7). We identified the chemical reactions

underlying this motif and found that the two motifs represented the same basic set

of chemical reaction mechanisms.

Figure 3.7: Two motifs of size seven nodes appearing or overrepresented across all
transformed bistable reaction mechanisms. In both motifs, there is a cycle between
two species with an input and output into one of the species in that cycle. Node
identifiers and chemical pathways underlying the motifs are listed for clarity.
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3.5 Discussion

The normalized z-scores for each motif across the 16 transformed reaction config-

urations were calculated and plotted in Figure 3.4. By comparing the original motifs

to a randomized background, we are able to obtain information about motif signifi-

cance. The top two most frequently observed chemical motifs (17214571108, 8424074

)are overrepresented in the networks in which they each appear. The results from

the normalized z-scores of the other motifs are less straightforward. The third most

frequent motif (2282756144, appearing in 44% of the original set of approximately

4500 bistable networks) was found to be underrepresented in one network suggesting

it is not necessarily important to bistable behavior in these networks. The fourth mo-

tif (17197861382) was found in approximately 41% of the original bistable reaction

configurations. This motif was underrepresented in four networks, again suggesting

the motif is not necessary for bistable behavior. We see similar inconclusive results

for motifs 5 (140806753879236) and motif 6 (35459790546950). The final chemical

motif presented in the original paper is represented as two distinct bipartite motifs

in the transformed networks. In networks where both motifs appeared, motif 16920

was always overrepresented while motif 164 was always underrepresented. Using the

normalized z-scores, we find that many of the motifs that are identified as appearing

more frequently across a set of bistable networks are not necessarily overrepresented

and can in fact be underrepresented in some networks.

These results speak to the spurious nature of using motif frequencies. Perhaps

motifs appearing with greater frequency across the original bistable reaction configu-

rations are a result of the inherent nature of the full set of reaction configurations. An

original set of twelve reactions were used to computationally generate the full config-

uration set. In a similar fashion, reaction mechanisms are generated based on a small

fundamental set of uni- and bi-molecular interactions producing a maximum of two

species. We identified motifs of size three that were overrepresented in our bistable
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reaction mechanisms. The overrepresentation of a motif means that it appeared in

the original network. Several three-node motifs appeared with 100% frequency across

all eleven bistable mechanisms. These motifs are the bipartite graph representation

of some of the fundamental set of elementary chemical pathways found in all reac-

tion mechanisms (per our definition). These results indicate when analyzing bipartite

networks with colored edges, using motifs of size three and four nodes may aid in clas-

sifying networks by type (e.g. reaction mechanism versus overall reaction) but are

not necessarily useful in discriminating networks with different dynamical behaviors.

Additionally, these results highlight that the types of motifs identified in bistable

systems will differ based on the network classification. The ‘chemical motifs’ identified

as important to the bistable overall reaction configurations either were not identified

or were not overrepresented in the bistable chemical reaction mechanisms. The overall

reaction configurations have a topology very different from mechanisms which are

developed from elementary (uni- and bi-molecular) chemical pathways. An enzyme

catalyzed reaction mechanism includes an intermediate complex (E + S ↔ C →

P + E). In the original paper, some of the chemical reaction configurations assume

that the conversion from S to P through E is instantaneous and irreversible (E+S →

P + E). It has been shown that decomposing (‘unpacking’) overall reactions into a

set of intermediate elementary pathways results in the loss of bistable behavior [114].

One example of decomposing the bistable overall reaction configurations is presented

in the supplementary information of the original study [103].

The results of mining for five-node motifs show a balance that is required for input

and output from the cycle. For the two bistable systems requiring edge coloring to

capture all stoichiometric information, both overrepresented motifs contain cycles

between two species. The first motif (2692776208) has input into one species in the

cycle and the second motif (537399576) has output out of one of the cycle species.

Mapping back to the original chemical reaction mechanism, we find that the input
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and output species are the same. Viewing these motifs in tandem, we see a balance

between a flux into and out of a species involved in a cycle.

In order to search for a potential bistable motif, we mined all transformed bistable

reaction mechanisms for motifs of seven nodes. The two motifs identified across all

bistable networks are actually two different representations of the same set of chemical

pathways, only the node identifiers are different. Due to software limitations, we were

only able to search for a maximum of seven-node motifs in networks with two node

colors (bipartite networks). We expect that once software capable of searching for a

motif of ten nodes (four reactions and the six species A, B, C, D, AC, and ABC)

within a bipartite graph is available, a single motif will be identified across all eleven

transformed bistable reaction mechanisms.

3.6 Conclusion

Our novel methodology to search for motifs in chemical reaction systems was suc-

cessful in obtaining motifs from the bistable systems presented in the systematic study

by Ramakrishnan and Bhalla [103]. We found that using frequencies of motifs across

networks of a particular dynamical behavior can give spurious results. By comparing

subgraph appearances to a randomized background, we were able to pinpoint some

motifs identified as ‘motifs in bistable switches’ to be underrepresented in some of the

bistable reaction configurations. On the one hand, these motifs may not be important

to bistable behavior in these minimal systems. On the other hand, motifs underrep-

resented across all bistable reaction configurations may point to possible means to

break bistability. Including these underrepresented motifs into a bistable reaction

configuration could lead to a loss of bistable behavior (a loss of function motif).

As far as we know, applying a bipartite graph transformation to elementary chem-

ical reaction mechanisms and mining these networks using motif mining software is

novel. Using motif information, we found that each bistable network in our sample
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requires that a cycle between two species be present. Each network also requires an

input to one node in the cycle as well as an output from the same node in that species.

While the cycle retains a balance between the two species concentrations, the influx

into and outflux out of one species allows the steady state concentration to change

while keeping the concentration from increasing to a maximum. This novel bipartite

motif information points to specific chemical pathway combinations that may be im-

portant bistability. Using bipartite motifs found in the bistable mechanisms analyzed

here, we may be able to predict bistability in large systems where the dynamical

behavior is often unknown. Additionally, we hope that these results will encourage

additional motif mining algorithm and software development to search for single mo-

tifs driving bistability. In the next chapter, we use the network transformation and

motif mining described here to characterize aggregation and make predictions about

dynamical behavior of aggregation systems.
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CHAPTER IV

Motifs characterizing protein aggregation

mechanisms and dynamics

4.1 Introduction

Over the last half century, mathematical modeling has been employed to study

protein misfolding and aggregation. To date, there are a few mathematical models

which can describe the threshold of protein misfolding and aggregation in confor-

mational and prion diseases as a bistable system [107, 54, 61]. These models are

phenomenological, however, and do not explain the threshold for protein aggregation

in a mechanistic manner [58]. Additionally, there is no agreed upon universal mecha-

nism of aggregation [16]. Current mechanistic models generally describe aggregation

due activation of a monomer (e.g. a protein misfolds). This is the major hypothesized

proximal event initiating aggregation in conformational disease.

Mechanistic models of protein aggregation are often classified based on qualita-

tively characteristics such as dimerization or monomer addition. In a recent review of

known models of protein aggregation, five categories of protein aggregation are listed:

(1) subsequent monomer addition, (2) reversible association, (3) prion aggregation,

(4) “Ockhams razor”/minimalistic 2-step model and (5) quantitative structure activ-

ity relationship models [82] (see Chapter II). These classifications do not include any
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information about dynamical behavior; this information is important to describe the

protein misfolding and aggregation threshold phenomena.

The evidence discussed in Chapter III regarding bistability are based on the com-

putational creation of different types of chemical networks. A natural next line of

investigation is how relating these findings to aggregation mechanisms. Are there

reactions present in the above bistable networks that also exist in mechanisms of

protein aggregation? As discussed in Chapter II, there are few mechanistic models

of threshold behavior in protein aggregation. One of the only mechanistic bistable

models of protein aggregation was developed by Rieger et al. [107]. In this closed

model, protein aggregation occurs through the addition of unfolded protein to create

oligomers (of up to three monomers in size). While the total oligomer size is only

three, this model is one of the first to capture toxic protein aggregation threshold

via bistability using mass-action kinetics. Molecular chaperones are primary actors

in the model, aiding in folding and disaggregation processes. These are mechanistic

interactions, providing further insight into reaction mechanisms underlying the bista-

bility captured by this model. In this model, after dimerization, aggregate formation

is more thermodynamically favored. This introduces a positive feedback through the

parameters instead of directly through the mechanism, highlighting how both reaction

topology and parameter values impact dynamical behavior.

More comprehensive theoretical mechanistic studies of protein aggregation would

increase our understanding of toxic protein aggregation threshold phenomena as well

as the system properties underlying threshold phenomena in general. With a devel-

oped set of mechanisms capable of threshold phenomena in protein aggregation, we

might be able to identify the key reactions important for the dynamical behavior.

In this chapter, we present the use of network motifs (described in Chapter III) to

quantitatively characterize aggregation mechanisms. Specifically, we employ overrep-

resented motifs to classify published protein aggregation models. Second, we predict
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aggregation mechanisms are (and are not) capable of threshold phenomena through

bistability. Finally, we present AggMod, an online repository of characterized macro-

scopic models of protein aggregation. Gaining knowledge of aggregation model mech-

anism and dynamical behavior is an important step in step in the development of

successful therapeutic strategies to modulate conformational diseases.

4.2 Materials and Methods

4.2.1 Creation of a library of protein aggregation mechanisms and net-

works

We first defined mechanisms as a complete list of the intermediate steps in protein

misfolding and aggregation. Each step in the mechanism must be an elementary

reaction, solely comprised of uni and/or bimolecular reactions. To obtain published

mechanisms of protein aggregation, literature searches were performed using PubMed

[36], Google Scholar [43], and Web of Knowledge [106]. Examples of search terms

used include ‘protein aggregation mechanism’, ‘kinetic mechanism aggregation’, and

‘mathematical model protein aggregation.’ .

Found mechanisms were transformed in bipartite networks with edge coloring (a

one-to-one transformation) using the procedure described in Chapter III. Redun-

dant networks could also be identified applying a change of variables in the origi-

nal mechanisms. For example, a published mechanism could contain the reaction

A + B → AB where A represents an unfolded protein, B represents a misfolded

protein, and AB represents the heterodimer of unfolded and misfolded protein. A

separate published mechanism could contain the reaction N+A→ NA where N rep-

resents a non-aggregation-prone protein, A represents an aggregation-prone protein,

and NA represents the heterodimer resulting from association of N and A. After

change of variable in the two mechanisms (A and N to U and B and A to M , re-
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spectively), the resulting reaction is U + M → UM . All redundant networks were

removed from the network set prior to motif mining.

4.2.2 Motif mining and clustering

Bipartite networks with edge coloring were mined for motifs of size four and five

nodes and bipartite networks without edge coloring were mined for motifs of size

six and seven nodes using the method in Chapter III. Briefly, pairwise correlations

between the various networks were calculated using normalized z-scores based on

motifs of size four nodes. A normalized z-score ranged from -1 to 1, where a negative

normalized z-score described an ‘underrepresented’ motif and a positive normalized

z-score described an ‘overrepresented’ motif. Motif mining results for five, six and

seven node motifs were used to make threshold predictions.

4.2.3 Creation of an online repository

The library of protein aggregation mechanisms and networks (Section 4.2.1) were

stored in a MySQL database accessible through a public web-interface at

http://aggmod.ccmb.med.umich.edu. Each model describing the aggregation mecha-

nism was implemented and curated in Berkeley Madonna [72] and/or Mathematical

Modeling Language (MML) [105]. These implemented models were curated and an-

notated to meet Minimal Information Requested In the Annotation of biochemical

Models (MIRIAM) standards [85]. Four levels of curation were used (zero through

three). A model was given a curation level of zero when the peer-reviewed, published

paper describing the model into the repository. The model was moved to status one

after a curator implemented the model in a given format (e.g. Berkeley Madonna

or MML). A curation status of two was achieved when a curated checked a model

and determined it to be consistent with the published paper. A model reached sta-

tus three when is was checked for typographical errors, completeness (parameters,
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equations, mass conservation and physical constrains), and unit consistency. If the

curated model differed from the published model, due to errors introduced into the

model during the publication process or missing information (e.g. parameter values

or initial conditions), the model was annotated describing these additions.

4.3 Results and Discussion

4.3.1 Unique mechanisms were found in less than a fifth of published

modeling papers

After searching the protein aggregation literature, we identified 120 published

mathematical models of protein aggregation for 29 different proteins ( Figure 4.1).

Not all of the papers contained a mechanistic description underlying the presented

system of ordinary differential equations. After removing those models without an

associated mechanism, 53 published models remained. The resulting 53 mechanisms

were transformed into bipartite graphs (i.e networks) with edge coloring. Of these 53

networks, 35 were redundant (duplicate) networks. Our final set of bipartite networks

based on published mechanisms of protein aggregation numbered 18 describing 29

different proteins ( Table 4.1).

Redundant networks often appeared as multiple papers applied the same mecha-

nisms to model aggregation of a particular protein. For example, Buswell and Mid-

delberg [12] published a model of lysozyme protein aggregation (M2). A year later,

Dong et al. [26] published a model describing lysozyme aggregation using the same

mechanism. Several years after these two groups published, M et al. [71] published a

paper on lysozyme aggregation based on the original paper by Buswell and Middelberg

[12]. All three models are built upon the same mechanism resulting in three identical

networks developed from the original set of 54 mechanisms.

From the network pairwise correlations using four node motifs, we found that all of
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Figure 4.1: Pie chart of models taken from peer-reviewed, published literature. The
majority (56%) of modeling papers did not include a mechanistic description of the
aggregation process. Of all of the modeling papers identified, only 15% contained
unique mechanisms.
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Table 4.1: The final 18 bipartite networks organized by group determined by mo-
tif clustering. The different protein systems and qualitative classifications [82] are
also listed. Abbreviations listed are subsequent monomer addition (SMA), reversible
association (RA), prion aggregation mechanism (PAM). Those networks that are un-
classified in the literature are classified as ‘none.’

Group Network Protein(s) Classification(s)
A M1 carbonic anhydrase, interferon-

gamma, DNase [8]
none

A M5 actin [37], beta-amyloid [137],
beta-lactoglobin [6], prion [27],
granulocyte colony-stimulating
factor [141]

SMA

A M7 insulin [11], colloids [76] SMA
A M8 alpha-lactalbumin, beta-amyloid,

thaumatin [83]
SMA

A M9 beta-amlyoid [92, 67] SMA
A M11 alpha-chymotrypsinogen A [4],

beta-amyloid [64, 99], huntingtin
[99], polyglutamine [99]

SMA

A M12 huntingtin, polyglutamine [107] RA
A M17 actin [135], glutamate dehydroge-

nase [53, 130]
SMA

A M18 actin [42, 134], beta-lactoglobulin
[1], concavalin [33], glutamate de-
hydrogenase [53, 129, 130, 104],
hemoglobin [51, 34], Sup-35 [133],
tubulin [35]

SMA, RA

B M2 lysozyme [12, 26, 71] SMA
B M13 actin [108], beta-amyloid [108],

granulocyte-colony stimulating
factor [110], hemoglobin [108],
interleukin-1 receptor antagonist
[14]

SMA

B M14 beta-lactoglobulin [111] SMA
C M3 carbonic anhydrase [18] none
C M10 patatin [98] SMA
C M15 prion [117] PAM
D M4 prion [25] PAM
D M16 citrate synthase, malate dehydro-

genase, ribulose-1,5-bisphosphate
carboxylase oxygenase E [128]

SMA

E M6 immunoglobulin [57] none
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the networks within our library are all closely related ( Figure 4.2). The fact that the

networks are closely correlated is in part due to more recent mechanisms being based

on those previously appearing in the literature. The original lysozyme network (M2

in class B) by Buswell and Middelberg [12] is partially based upon a model (M3 in

class C) by Cleland et al. [18] used to model carbonic anhydrase. Another member of

class B, is network (M13) by Roberts [108] proposed to describe actin, beta-amyloid,

and hemoglobin aggregation mechanisms. The Cleland et al. [18] study is also cited in

Roberts [108]. Along with the motif information, this lends evidence that the Cleland

et al. [18] network - develop to model carbonic anhydrase - is a common ancestor of

the Buswell and Middelberg [12] and Roberts [108] networks describing aggregation

mechanisms of four additional proteins.

4.3.2 Aggregation models were classified into six groups

Using the motif normalized z-scores, the set of unique aggregation networks clus-

tered into five groups. As some of the agregation networks had a small number of

nodes and edges, a four-node motif was the largest motif available to cluster without

reducing the sample size. We then identified overrepresented motifs found in each

cluster. Two overrepesented motifs occurred in all networks. These motifs are to be

expected in mass action networks and were observed across other non-aggregation

networks based on reaction mechanisms (e.g the bistable networks in Chapter III).

Published papers of aggregation models from our original sample without a mecha-

nism were organized into the sixth group.

The first group of networks, A, contained nine networks and was by far the largest

class, containing 50% of the total sample set. All networks in group A contain an over-

represented reversible protein conformation change motif. Additionally, all networks

in this group (save the smallest network, M1) have an overrepresented reversible iso-

mer addition motif. Finally, eight of ten networks contain a conformational change
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Figure 4.2: Network clustering based on pairwise correlation of normalized z-scores
for four-node motifs. The correlation scale is denoted by the heatmap colors where
red is negatively correlated, green is positively correlated and black is no correlation.
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plus dimerization motif (the other two networks are based on mechanisms lacking a

homodimerization reaction). Three networks clustered into group B characterized by

an overrepresented a reversible conformational change and permanent isomer addi-

tion motif. Group C contains three related aggregation networks characterized by a

conformational change, formation of a homodimer and permanent isomer addition.

Two networks cluster together into group D characterized by a reversible protein

conformational change motif, a conformational change and dimerization motif, and

a permanent isomer addition motif. The permanent isomer addition motif distin-

guishes this group from group A, with which it shares two of the same motifs. The

least closely correlated network appears in group E. This group is characterized by a

conformational changes via isomer dimerization motif and an isomer addition motif.

There did not appear to be any correlations between the network clustering and the

protein type.

4.3.3 Nine protein aggregation networks are predicted to have threshold

behavior

Using the predicted bistable motifs in Chapter III and the motif mining informa-

tion obtained above, we identified nine networks predicted to have threshold phenom-

ena via bistability. All but one of these networks is from class A and taken as a whole,

these networks describe the majority of the proteins in our library. The final network

is from class F, the monoclonal antibody aggregation network. Thus far, we have

confirmed our prediction of bistability for two of these nine networks. One potential

bistable network from class A (M12) is a published bistable mechanism [107] while we

confirmed a second network in class A (M8) using using Chemical Reaction Network

Theory [29] (discussed in Chapter III). The remaining 9 networks in our sample did

not contain the bistable motifs. All of the mechanisms underlying these networks are

closed (there are no fluxes into or out of the system). Additionally, the final aggre-
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Figure 4.3: Classification of aggregation bipartite networks with edge coloring using
four-node motifs. Examples of chemical reactions underlying each motif are given.
∗In class A, two networks did not have a dimerization event and a third network did
not have a monomer addition event. Abbreviations: reverse conformational change
(RCC), reversible isomer addition (RIA), permanent isomer addition (PIA), reversible
conformational change (RCC), permanent conformational change (PCC), homodimer-
ization (D), heterodimerization (HD)
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gation step(s) are irreversible. At steady state, all species in these mechanisms will

have been converted to aggregates.

4.3.4 Models and networks are stored in AggMod, a repository of protein

Aggregation Models

Figure 4.4: Screenshot of search results for ‘actin.’ The AggMod website is available
for free use at http://aggmod.ccmb.med.umich.edu.

Protein aggregation models derived from published, peer-reviewed papers, asso-

ciated mechanism, network (when available), and classification were organized into

AggMod, an online repository ( Figure 4.4). Models were implemented in Berke-

ley Madonna [72] and MML [105]. Berkeley Madonna is inexpensive, runs on both

Windows and Mac OS, and employs a user interface that allows utilization by non-

experts in mathematical and computational modeling. After downloading Berkeley

Madonna, users can upload time series data into a particular model and fit data to
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the model. Models implemented in Berkeley Madonna are provided with parameter

sliders so that users can easily manipulate model parameters and obtain instant sim-

ulation results. Also, Berkeley Madonna has a built-in sensitivity analysis package

allowing users to quantify a given parameter’s influence on a system variable. (A free

version of Berkeley Madonna can be also be downloaded. This version includes all of

the functionality of the full version except models cannot be saved, graphs and tables

cannot be saved or copied and a watermark appears on all printouts.)

For users who only want to simulate the model and/or who cannot or do not

want to download extra software, models are also implemented in MML [105]. These

models run within the web browser using the JSim Java program housed on a server.

JSim reads XML formatted models and therefore allows for a more direct conversion

to other XML languages such as CellML and SBML. Code for models in these formats

are added as it becomes available.

Curation and annotation is important to the sharing and reuse of mathematical

models. Therefore, models in the AggMod repository undergo annotation in an effort

to meet MIRIAM standards. These standards provide guidelines for curation and

annotation of computational models related to reference correspondence, attribution

annotation and external resource annotation [85]. Each model has an individual web

page based on a single reference and includes a reaction schematic (when available)

for easy mapping of the model to the biological processes. The model web page

links to the file(s) implementing the model in public machine-readable format(s).

Additionally, each model file is annotated with the following information in order

to comply with MIRIAM standards: a model name based on the model reference, a

digital object identifier (DOI), name and contact information of the model encoder(s),

the date and time of creation, the date and time of the last modification and a

statement about the terms of distribution.

The AggMod repository provides a centralized location for models of macroscopic
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mechanisms of protein aggregation. As far as we are aware, these models are not cur-

rently available in any other online databases. The site can be searched based on the

model name, abstract, original paper authors, title, network, classification, or protein

name. Models within the repository can also be browsed by protein or classification.

All models in AggMod are in the public domain and are freely distributable.

4.4 Conclusion

We have developed a library of 120 published protein aggregation models and

mechanisms modeling 29 unique protein systems. After transforming these mech-

anisms into networks, we identified overrepresented motifs and classified the ag-

gregation models into six groupings (the sixth class containing all models without

networks). We characterized the five groups of networks using motif information,

creating, as far as we are aware, the first quantitative classification of aggregation

mechanisms. We found that the networks were very similar in nature and the ma-

jority of networks were found within one class. We identified a potential bias in

the protein aggregation literature, perhaps due to new mechanisms being based on a

handful of unique published mechanisms. In order to address this bias in future ag-

gregation mechanism development, we propose the following alternative approaches.

The first approach is to use the motifs identified here as the core motifs when building

a network and then expand based on experimental data. The second approach is to

generate aggregation networks that do not use these core motifs but are still based

on experimental data.

Additionally, we successfully predicted threshold phenomena for two of nine pre-

dicted bistable networks in our library using bistable motif information. The re-

maining networks predicted to not have threshold phenomena via bistability were

determined to be monostable. It is still possible that these networks can manifest

threshold phenomena through a monostable switch-like response (Chapter II). We

57



are currently developing a methodology to assess dynamical behavior of the remaining

seven aggregation networks predicted to have threshold phenomena via bistability.

The aggregation models, mechanisms and networks are stored in an online repos-

itory: AggMod. Systems biologists have successfully created model repositories in

specific areas: the BioModels Database [86] is a repository of quantitative kinetic

models of biochemical and cellular systems, JWS Online [87] is a model repository of

kinetic models of biochemical pathways with a web-based simulation tool and Mod-

elDB [49] is a repository of computational neuroscience models. The stored models

in these repositories are derived from published, peer-reviewed papers. The AggMod

repository provides a centralized location for models of macroscopic mechanisms of

protein aggregation. As far as we are aware, these models are not currently avail-

able in any other online databases. These structured, human and computer readable

files allow AggMod to be a useful resource to both experimentalists and theoreticians

interested in mathematical models of protein aggregation. Additionally, by quantita-

tively classifying aggregation models in the AggMod library using chemical reaction

motifs, we hope to aid in future development of testable mechanisms towards the

ultimate goal of mitigating protein aggregation.
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CHAPTER V

A model of threshold behavior reveals rescue

mechanisms of bystander proteins in

conformational diseases

5.1 Introduction

In Chapter III, we identified specific motifs important to bistability in bistable

mechanisms. We followed with an identification of motifs important to aggregation

and used this information to classify aggregation (Chapter IV). Along with inter-

actions (motifs) occurring in an aggregation mechanism, kinetic parameters are also

important to the dynamical behavior of a mechanism [45, 121]. Experimental evidence

suggests misfolded isomer or aggregate protein concentration can exhibit bistability

with changes in temperature [75], pressure [31], and pH [41]. There is also evidence

of guanidinium chloride concentration dependent bistability in the transition between

unfolded and folded transthyretin protein states [60].

Evidence suggests that misfolded proteins can interact with bystander isomers to

elicit a misfolded phenotype [40]. A bystander protein is one that, in the absence of

misfolded proteins, will be routed to its normal physiological pathway. The bystander

protein pool is composed of the unfolded isomers and native (folded) proteins. In the

presence of misfolded proteins, bystander proteins misfold resulting in decreased na-
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tive protein levels and increased levels of protein aggregation [40]. This phenomenon

has recently been characterized in the autosomal dominant Mutant INS-gene Induced

Diabetes of Youth [68, 50, 69].

To date there are few mathematical models which can describe the threshold of

protein misfolding or aggregation in conformational diseases as a bistable system

[107, 54, 61, 97]. Generalizations of the Smoluschowski’s theory of coagulation have

been applied to investigate protein polymerization and aggregation [19]. However,

these models do not explain the threshold for protein misfolding or aggregation in a

mechanistic manner [58].

The lack of mechanistic models in the literature is not unexpected since exper-

imental determination of protein misfolding or aggregation pathways is technically

demanding [16]. A major difficultly lies in obtaining accurate characterization of

the diverse, short-lived intermediate misfolded and aggregate isomers that may oc-

cur during formation of both polymorphous and highly structured aggregates (“fib-

rils”). An alternative to focusing on the mechanism of misfolding or aggregation

itself is to investigate the progression of cellular dysfunction from the perspective of

bystander protein production. The bystander protein pool can be detected experi-

mentally through nonreducing Tris-Tricine-urea-SDS-PAGE if the misfolded protein

is the result of disulfide mispairing [140, 66, 67]. Loss-of-function diseases are char-

acterized by a reduction in native protein levels, which could be caused by protein

misfolding. Understanding the mechanisms that deplete bystander protein levels will

be important in the search for therapeutic interventions aimed at controlling confor-

mational diseases.

In this chapter, we present a general model describing the bystander protein dis-

appearance (loss-of-function) through direct or indirect interaction with misfolded

protein to explore threshold behavior in conformational diseases. Our model also

describes the production of misfolded isomers, which makes it applicable to investi-
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gate toxic gain-of-function in conformational diseases. We find that a mathematical

formulation of our model can exhibit the threshold behavior typically found in some

conformational diseases. The threshold behavior is explained by the appearance of

bistability in our mathematical model. Furthermore, we find that bistability is a

function of two parameters: the bystander isomer residence time in the endoplasmic

reticulum lumen and the ratio of the basal inflow rates of misfolded to bystander

protein. We also derive the necessary conditions for the manifestation of the thresh-

old behavior based on this ratio and the order of the reaction with respect to the

misfolded and bystander isomers. After analyzing our model, we propose three mech-

anisms to rescue bystander protein in conformational diseases. Our results provide

mechanistic insight into the threshold behavior in conformational diseases and open

potential therapeutic avenues to regulate conformational diseases.

5.2 Model

5.2.1 A model of bystander protein disappearance in the presence of

misfolded protein

We model the process of protein production and folding in the endoplasmic retic-

ulum (ER) lumen as occurring within a continuous flow reactor ( Figure 5.1). In our

model, there is a continuous flow of the recently synthesized conformational isomers,

the bystander N and misfolded M proteins, which is the direct result of basal protein

synthesis and depletion [44, 48]. Under normal conditions, bystander and misfolded

proteins inflow with the constant basal rates [N0]/tN and [M0]/tM , respectively. [N0]

and [M0] represent, respectively, the basal concentrations of bystander and misfolded

protein. ti is the ER residence time of isomer i. Bystander unfolded isomers are de-

pleted through the ER-assisted folding pathway, while the bystander folded protein is

exported from the ER [5]. On the other hand, misfolded proteins are depleted from
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the ER, either through ER-assisted degradation [84] or protein translocation [59]. We

assume that the rate of these outflow processes is of first-order kinetics. Therefore, the

system of differential equations governing the bystander N and misfolded M isomer

concentration in the ER lumen is:

d[N ]

dt
=

[N0]− [N ]

tN
−R([N ], [M ]) (5.1)

d[M ]

dt
=

[M0]− [M ]

tM
+R([N ], [M ]), (5.2)

where R([N ], [M ]) is the reaction rate between bystander and misfolded proteins.

Note that we are denoting concentration with square brackets.

In the next subsection we discuss the determination of the reaction rateR([N ], [M ])

between the bystander and misfolded proteins.

5.2.2 A general mechanism of bystander and misfolded protein interac-

tion in conformational diseases

The irreversible aggregation typical of conformational diseases is highly sensitive

to protein conformation. The misfolded protein pool (M) encompasses nonnative de-

natured and misfolded isomers. This pool is aggregation prone due to the exposure of

hydrophobic groups and disulfide bonds, which can result in strong, and irreversible

protein-protein contacts [18]. Therefore, there is compelling biochemical evidence

suggesting that the misfolded isoforms are responsible for the onset of certain confor-

mational diseases [82].

Protein aggregation is initiated by the reversible aggregation of misfolded isomers,

M , followed by structural rearrangements. These rearrangements lead to the forma-

tion of an intermediate committed to the aggregation pathway [109, 82]. Protein

aggregation proceeds as more misfolded isomers are committed to the aggregation
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Figure 5.1: Schematic diagram of a continuous flow reactor model of the endoplas-
mic reticulum lumen (ER). In this model, the bystander protein pool, composed of
unfolded and folded isomers, has an inflow rate of [N0]/tN , where [N0] is the basal
bystander protein concentration and tN is the bystander ER residence time. The mis-
folded protein has an inflow rate equal to [M0]/tM , where [M0] is the basal misfolded
protein concentration and tM is the misfolded ER residence time. Bystander and
misfolded proteins interact with reaction rate R([N ], [M ]) which is a function of the
bystander and misfolded protein concentrations. The outflow rate of bystander and
misfolded proteins follows first-order kinetics. The outflow of isomers is driven by the
ER-assisted folding (ERAF), ER-assisted degradation (ERAD), protein export and
translocation pathways.
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pathway [100]. There are two sources of misfolded isomers. Misfolded isomers M

are formed by the spontaneous and first-order conversion of bystander isomers, N

[137, 82]. This conversion is sporadic and represents a minor source of misfolded pro-

tein formation in conformational diseases. The main source of misfolded isoform M

is the conversion of bystander protein N into a misfolded isoform M through process

catalyzed by M [81, 82]. This process can be represented by a phenomenological

reaction rate of the form:

R([N ], [M ]) = k [N ]n[M ]m. (5.3)

In the above equations, the exponents n and m specify the order of the reaction

with respect to the bystander and misfolded proteins, respectively. k is the rate

constant of order (n+m). Note that n ≥ 1 and m ≥ 1.

The (n + m)th order of our phenomenological rate Eq. 5.3 does not imply that

we are proposing a single, multimolecular, elementary step. There are multiple com-

binations of bimolecular steps that when combined together give an overall reaction

rate with this (n + m)th order form. For example, we can consider the scenario in

which aggregation of misfolded isomers M follows an association-limited aggregation

mechanism [109]. The conversion of bystander N into misfolded isomer M involves a

two-step mechanism involving an aggregate intermediate A:

M + M
k1−−⇀↽−−
k−1

A (5.4)

N + A
k2−→M + A. (5.5)

In this mechanism, two misfolded isomers form a dimer, which then plays the

catalytic role to convert the bystander into a misfolded isomer. If the reverse reaction

constant of the dimerization is higher than the forward reaction constants, k−1 � k1
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and k−1 � k2, then the dimerization step Eq. 5.4 is rate-limiting for the formation of

the smallest aggregate [126, 38], and the overall rate of disappearance of the bystander

isomer N will be Eq. 5.3 with n = 1 and m = 2.

5.2.3 Bystander isomer concentration at steady state

We can understand the reaction dynamics by studying the steady states. At the

steady state, Eqs. 5.1–5.2 are:

d[N ]

dt
=

[N0]− [N ]

tN
−R([N ], [M ]) = 0 (5.6)

d[M ]

dt
=

[M0]− [M ]

tM
+R([N ], [M ]) = 0. (5.7)

By adding Eqs. 5.6–5.7, the ER reactor model has the following steady state

relationship:

[N0]

tN
+

[M0]

tM
=

[N ]

tN
+

[M ]

tM
. (5.8)

We now can derive an expression for the bystander isomer concentration at steady

state. Using the steady state relationship Eq. 5.8 and phenomenological reaction rate

Eq. 5.3, we can uncouple Eq. 5.6 and Eq. 5.7. This yields an expression for the

bystander isomer concentration at the steady state of the form

[N0]− [N ]

tN
− k Nn

[
tM
tN

([N0]− [N ]) + [M0]

]m
= 0 . (5.9)

5.2.4 Dimensionless bystander isomer concentration at steady state

Before we can analyze our model, we derive a suitable dimensionless form of

Eq. 5.9. The non-dimensionalization allows us to reduce the number of parameters

in our model and give an absolute measure of the model parameters independent
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of units of measurement. Following Segel [120] concepts of scaling, we scale the

bystander isomer concentration [N ] with a parameter that provides an estimate of its

maximum value. We choose the dimensionless variable:

u =
[N ]

[N0]
. (5.10)

Substituting Eq. 5.10 into Eq. 5.9 and re-arranging, we obtain the dimensionless

equation for the bystander isomer concentration at steady state

1− u
τu
− un[τr(1− u) + θ]m = 0 (5.11)

with the non-dimensional parameters defined as

τu = ktN [N0]
(n+m−1), τr =

tM
tN
, and θ =

[M0]

[N0]
. (5.12)

In Eq. 5.11, τu is the bystander isomer dimensionless residence time in the ER, τr

is the ratio of the misfolded to bystander isomers residence times, and θ is the ratio

of the misfolded to bystander isomer initial concentrations.

There are limits to the values of our variable and some of our parameters. The

bystander isomer u lies in the range of

0 ≤ u ≤ 1 . (5.13)

Under normal physiological conditions, the ratio of misfolded to bystander isomer

initial concentrations θ lies in the range of

0 ≤ θ � 1 , (5.14)

because misfolded isomers are usually in lower concentrations than the bystander

proteins. On the other hand, the ER residence time of misfolded isomers is larger
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than the ER residence time of bystander isomers (tM � tN) [5]; this implies that τr

lies in the range of

τr � 1 . (5.15)

There are no bounds on τu.

Note that the misfolding reaction will be completed when the bystander and mis-

folded isomers have reached steady state. Therefore, we can define the extent of the

reaction, x, as

x = 1− u . (5.16)

At the beginning of the reaction x = 0. At the end of the reaction, the bystander

protein can be depleted to a low steady state concentration or the production of

misfolded isomer can reach a high steady state concentration. This makes our model

applicable to investigate loss-of-function disease due to bystander protein depletion

or toxic gain-of-function due to misfolded protein production. Substituting Eq. 5.16

into Eq. 5.11 yields an expression for the rate of the extent of the reaction at steady

state

y(x) = τ−1u x︸︷︷︸
yf (x)

− (1− x)n(τrx+ θ)m︸ ︷︷ ︸
yr(x)

= 0 . (5.17)

The above expression has two dimensionless rates: the bystander reactor flow rate

in the ER, yf (x), and the bystander reaction rate, yr(x). Our analysis will benefit

from the division of the model into these two rates as will be evident in the next

section.
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5.3 Results

5.3.1 The model can exhibit bistability

In our mathematical model, the extent of the reaction can attain a value which

balances the bystander flow rate, yf (x), with the bystander reaction rate, yr(x). When

this happens, the bystander isomer and misfolded isomer concentrations are at steady

state. From Eq. 5.17, the steady states are given by the solutions of the equation

yf (x)− yr(x) = τ−1u x− (1− x)n(τrx+ θ)m = 0 . (5.18)

This is a (n + m)th-order polynomial, meaning x can have up to (n + m) steady

states. We are only interested in the physically realistic solutions in the range x =

[0, 1].

A convenient way to investigate the total number of steady states is to find the

intersections of yf (x) and yr(x) in the flow diagram for different values of τu, τr,

θ, n, and m. The flow rate yf (x) is a straight line with slope determined by τu.

The reaction rate yr(x) is a higher-order polynomial, which can potentially have

(n+m) roots between x = [0, 1]. Surprisingly, yr(x) has a simple concave downwards

form between x = [0, 1) with a maximum at x = 1 − n(τr + θ)/τr(n + m) (see A).

For a fixed value of τu, the flow rate yf (x) will remain fixed in the flow diagram.

Depending on the values of τr, θ, n, and m, the system can exhibit more than one

steady state. An easy way of changing the number of steady states is to vary the

ratio of the misfolded to bystander isomer initial concentrations (θ), while keeping

τr, n, and m constant. Increasing θ increases the maximum value of yr(x) without

affecting yf (x). The manner in which the steady states change with θ is illustrated

in ( Figure 5.2), showing three steady states at intermediate values of θ. The actual

values of the steady states are not important here. What is important, however, is

the existence of one, three, or again, one steady state solution as θ increases from θ1
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Figure 5.2: Steady states for the extent of the reaction (5.17) as a function of θ. The
steady states are given by the intersections of yf (x) and yr(x). Panel A shows the
flow diagram to illustrate the origins of bistability, which creates a threshold behavior
in the model. Panel B shows the geometrical picture of the rate of the reaction y(x).
From the graph we can determine all the steady state and their stability. The model
exhibits one, three, or again, one steady state solution as θ increases from θ1 to
θ3, where θ1 < θ2 < θ3. The open circle represents an unstable steady states and
closed circles represent stable steady states for θ = θ2. Note that the model exhibits
bistability for θ2. The insets are a blown up portion of the figures showing the lower
steady state value. Parameter values are: n = 2, m = 4, τr = 4, τu = 0.1, θ1 = 0.05,
θ2 = 0.5, and θ3 = 0.75.
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to θ3, where θ1 < θ2 < θ3. By inspection, x2 is linearly unstable, since ∂y(x)/∂x > 0

at x = x2, while x1 and x3 are stable steady states, since at these points ∂y(x)/∂x < 0

( Figure 5.2B). The model, therefore, exhibits bistability which creates the threshold

behavior found in some conformational diseases. A similar pattern in the change of

steady states can be observed for fixed τr, θ, n, and m, and varying the flow rate of

the bystander isomer (τu) ( Figure 5.3).

The model can exhibit physically unrealistic steady states if parameters are not

appropriately bounded. We need to set up limits for the critical point x = 1−n(τr +

θ)/τr(n+m), where yr(x) achieves a maximum. Given that the extent of the reaction

x is bounded by 0 and 1, the critical point may lie in the range

0 < 1− n (τr + θ)

τr (n+m)
< 1 . (5.19)

We find that the condition given by Eq. 5.19 is valid when

θ

τr
<
m

n
. (5.20)

Note that θ/τr is equivalent to the ratio of basal misfolded isomer to bystander

isomer inflow rates into the ER, which we define as

λ =
θ

τr
≡ [M0]/tM

[N0]/tN
. (5.21)

The parameter λ plays an important role in the model as can be appreciated

in Figure 5.2. The variation of θ is effectively a variation of λ as the value of τr

remains constant. We also further investigate the influence of λ on the threshold

behavior in the sections below.
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Figure 5.3: Steady states of the model (5.17) for changes in the bystander isomer
residence time in the ER (τu). Panel A shows the steady states as the intersections of
yf (x) and yr(x). The flow diagram illustrates that bistability can arise by increasing
τu. The bistability explains the threshold behavior in our model. For a fixed yr(x),
the model is bistable when τu− < τu < τu+ . Panel B shows the stationary steady
state locus in the bifurcation digram as a function of the bystander residence time
τu. In the bifurcation curve, stable steady states are denoted by a solid line while
the dashed line denotes unstable steady states. The lower stable steady state branch
is characterized by the fast flow of bystander isomers in the ER. The higher stable
steady state branch is characterized by a high bystander isomer depletion and high
misfolded isomer production. Parameter values are: n = 1, m = 2, τr = 6, τu− = 0.10,
τu+ = 0.42, and θ = 0.1.

71



5.3.2 Influence of τu and λ on the threshold behavior

Now we investigate how the model jumps from one to three steady states when the

functions yf (x) and yr(x) become tangential in the flow diagram ( Figure 5.2A). The

expressions for the tangency of yf (x) and yr(x) allow us to determine the parameters

contributing to the threshold behavior.

In chemical reaction models, the tangency of curves in flow diagrams and the

appearance of more than one steady state is relatively common. For tangency our

model requires simultaneously that

yf (x) = yr(x) and y′f (x) = y′r(x) . (5.22)

In terms of τu, these equations become

τ−1u = x−1(1− x)n(τrx+ θ)m (5.23)

τ−1u = [mτr(1− x)

−n(τrx+ θ)](1− x)(n−1)(τrx+ θ)(m−1) . (5.24)

Dividing the above equations and rearranging gives a quadratic expression for the

tangency points:

x± =
(m− 1)− λ(n− 1)±

√
D

2(m+ n− 1)
, (5.25)

where

D = λ2(n− 1)2 − 2λ(nm+ n+m− 1) + (m− 1)2 . (5.26)

By examining Eq. 5.25 and Eq. 5.26, we find that multiple intersections and

tangencies are only possible if
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n ≥ 1 and m ≥ 2 . (5.27)

By using the above expressions, we can investigate the influence of the τu on the

bistability, which creates the threshold behavior in our model. Substituting Eq. 5.25

into Eq. 5.23, we determine the critical bystander isomer dimensionless residence time

points τu∓ for tangency in the flow diagram:

τu∓ =
x±

(1− x±)n(τrx± + θ)m
. (5.28)

In the flow diagram ( Figure 5.3A), for a fixed yr, the family of flow rates yf

between the low flow rate yf (x; τu+) and high flow rate yf (x; τu−) exhibits three steady

states: two stable steady states and one unstable steady state. Therefore, the model

is bistable for τu− < τu < τu+ . The reaction has a single steady state for τu < τu− or

τu > τu+ .

The bifurcation diagram x versus τu ( Figure 5.3B) has an S-shaped curve. At

short bystander residence time with τu < τu− , the reaction has only one steady state

characterized by low bystander isomer depletion and low misfolded isomer produc-

tion. As the bystander residence time increases, but remains bounded by τu < τu+ ,

the bystander isomer depletion increases slightly along a low bystander isomer de-

pletion steady state branch. We call this branch ‘the fast flow’ branch because it is

characterized by the fast flow of bystander isomers in the ER lumen, which decreases

the probability of misfolded isomers to react with the bystander isomers. At a long

bystander residence time τu > τu+ , then the reaction moves to a new steady state

branch characterized by a high bystander isomer depletion and a high production of

misfolded isomer. We name this branch ‘the outbreak branch’ because the confor-

mational disease is manifested on this branch. Note that for τu− < τu < τu+ the

fast flow and outbreak branches co-exist. In the absence of perturbation, the system
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will remain in one steady state branch. For example, a sustained and progressive

increase in the bystander residence time τu will cause a discontinuous change in the

steady state from the fast flow branch to the outbreak branch at τu+ . In this case,

τu+ becomes ‘the threshold behavior point’, where a sudden shift occurs between low

levels of bystander isomer depletion to high levels of bystander depletion. If τu is de-

creased progressively from a long bystander residence time τu > τu+ , the system will

remain on the outbreak branch, even as τu is reduced below the threshold behavior

point through the region where the two steady state branches co-exist. The system

will exhibit a discontinuous change in the steady state from the outbreak branch to

the fast flow branch at τu− . We call this critical point the ‘bystander isomer rescue

point’ because the bystander isomer concentration level increases from this point as

τu− decreases. The existence of two different critical points (to change between steady

state branches) as we progressively vary a parameter shows that our model exhibits

hysteresis.

Interestingly, the model also exhibits hysteresis for progressive variations of the

ratio of basal misfolded isomer to bystander isomer inflow rates λ into the ER. Al-

though we cannot determine analytically a closed-form solution for the critical λ±

points, we know that the variation of λ produces a discontinuity in the number of

the steady states from one to three, and back to one as we progressively increase λ

( Figure 5.2). Moreover, the x–λ bifurcation diagram has a S-shape curve similar to

the x–τu bifurcation diagram shown in Figure 5.3B with both a threshold behavior

point and the bystander isomer rescue point.

Now we are in the position of investigating the effects of both τu and λ on the

appearance of the threshold behavior. There is a domain in the τu–λ parameter plane

where the three physically realistic steady states of the model Eq. 5.11 exist and the

threshold behavior will appear. This is shown in Figure 5.4. The analytical expression

for the boundary curves is given parametrically and implicitly by substituting Eq. 5.25
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into Eq. 5.28. The two roots τu± move closer together as λ increases. They intersect

at the cusp point C, where τu− = τu+ . The representation of the bistable area in

the τu–λ parameter plane also confirms that the model exhibits a hysteresis effect.

Suppose that we have a fixed λ between the critical points λ− and λ+, and τu moves

from zero vertically. As the value of τu increases, the system will discontinuously

jump from one steady state to three steady states back to one steady state. The

same discontinuous jump can be observed for a fixed τu as λ increases from zero

horizontally in Figure 5.4.

Figure 5.4: The threshold behavior depends on the nondimensional bystander isomer
residence time in the ER (τu) and the ratio of basal misfolded isomer to bystander iso-
mer inflow rates into the ER (λ). We illustrate this result in the τu–λ parameter plane,
which shows the number of physically realistic steady states for the model (5.17). The
boundary curves are given implicitly and parametrically by the solutions of (5.25) for
n = 1 and m = 2. At the cusp point C, λ− = λ+ and τu− = τu+ . The model exhibits
three steady states inside the closed area, and one steady state outside. The inset is
a blown up portion of the figure.
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5.3.3 Necessary conditions for the threshold behavior

To this point, the analysis of our model shows that there are three possible steady

states for the extent of the reaction. According to the parameter plane analysis

( Figure 5.4), the threshold behavior is a function of τu and λ. In reality, the model can

exhibit the threshold behavior if we guarantee the existence of two physically realistic

and distinct tangency points. The conditions for the existence of two realistic and

distinct tangency points will provide us with necessary conditions for the appearance

of the threshold behavior in our model. After careful examination of the tangency

point(s) given by Eq. 5.25, the model can have two real and distinct tangency points

if the discriminant D is greater than zero

D = λ2(n− 1)2 − 2λ(nm+ n+m− 1) + (m− 1)2 > 0 . (5.29)

As we discussed before, from the above inequality, the model requires n ≥ 1 and

m ≥ 2.

The analysis of Eq. 5.29 needs to be divided into two cases: n = 1 and n ≥ 1.

For the special case n = 1, the λ2 term is eliminated from the discriminant D, which

leads to the necessary condition

λ <
(m− 1)2

4m
. (5.30)

However, note that the condition (Eq. 5.20) for the model to exhibit a physically

realistic steady state when n = 1,

λ < m , (5.31)

is stronger than condition given by Eq. 5.30. Therefore, for the special case n = 1,

Eq. 5.31 is a necessary condition for the model to exhibit threshold behavior. For the
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more generic case n > 1, we need to solve the quadratic expression of Eq. 5.29. After

some basic analysis, we find that the following expression

λ <
m(n+ 1) + (n− 1)− 2

√
nm(n+m− 1)

(n− 1)2
(5.32)

is a necessary condition for the system to exhibit the threshold behavior when

n > 1. Eqs. 5.31 and 5.32 permit us to assess the dependence of the threshold behavior

on the ratio of basal misfolded isomer to bystander isomer inflow rates and the order

of the reaction with respect to the misfolded isomer ( Figure 5.5). For a fixed value

of λ, there are reaction order values that are favorable for the threshold behavior, as

well as reaction order values that will guarantee monostability in the model. In the

case that the reaction order exponents are favorable for the appearance of bistability,

the threshold behavior will be exhibited if λ and τu are both in a parameter plane

analysis region ( Figure 5.4) where the model has three steady states.

5.4 Conclusion

We presented a model of bystander and misfolded protein interaction to investi-

gate how the threshold behavior in protein misfolding is triggered in conformational

diseases. In our model, bystander isomers are converted by the misfolded isomers

through a process catalyzed by the misfolded isomers with a phenomenological rate

Eq. 5.3. We model the ER as a reactor with a continuous flow of bystander and

misfolded isomers ( Figure 5.1), which is the direct result of basal protein synthesis

and depletion. Conformational disease can either result from a dominant-negative

effect of misfolded isomers, leading to a loss-of-function of the native folded protein,

or from a toxic gain-of-function of the misfolded isomer. Interestingly we can investi-

gate both loss-of-function and toxic gain-of-function diseases by modeling the extent

of the overall reaction between bystander and misfolded isomers.
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Previous studies [107, 54, 61, 97] showed that the threshold behavior in confor-

mational diseases is caused by the nonlinear phenomenon known as bistability. Our

mathematical model also displayed bistability, though it is qualitatively different from

the other models. In Rieger et al. [107], protein misfolding and aggregation are reg-

ulated by folding chaperones. In our model protein misfolding cannot be reversed by

folding chaperones. The other models [54, 61, 97] focus on the quantification of prion

infection dynamics. We do not investigate the role of protein misfolding in infection

by proteins. In our model, there are three possible steady states; two of these steady

states are stable to small perturbations and are easily observable under physiological

conditions. The stable steady state with the lower bystander isomer depletion and

lower misfolded production is characterized by the fast flow of bystander isomers in

the ER lumen. On the other hand, the stable steady state with the higher bystander

depletion and higher misfolded production causes the outbreak of the conformational

disease ( Figure 5.3). Our analysis showed that the appearance of the threshold be-

havior depends on two parameters: the ratio of basal misfolded isomer to bystander

isomer inflow rates λ, and the bystander isomer residence time τu ( Figure 5.4).

These parameters are external to the misfolding reaction mechanism, because they

are driven by the ER protein production, folding and export machinery. We also

found that there are values of the order of the reaction with respect to the misfolded

isomer that favor the appearance of the threshold behavior ( Figure 5.5). This reac-

tion order is an internal property of the reaction mechanism, because it can depend

specifically on the nature of the elementary reactions driving protein misfolding.

The appearance of bistability has important implications for the onset and res-

cue of conformational diseases. What are the factors that can cause the outbreak of

protein misfolding in conformational diseases? Here we must relate the parameters

controlling the appearance of bistability to the steady state values of the model x?

shown in Figure 5.6. A low x? implies a high bystander isomer concentration (and
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Figure 5.5: The order of the reaction with respect to the misfolding isomer plays
an important role in the appearance of the threshold behavior. We illustrate this
point by showing the number of steady states in the parameter domain λ–n–m for
our model (5.17). The domains are defined by necessary conditions obtained from
the solutions of the inequality (5.29) for cases n = 1 and n > 1. In Panel A, condi-
tion (5.31) defines the domains for one steady state, and one-or-three steady states
for the special case n = 1. In Panel B, condition (5.32) defines the same domains for
one steady state, and one-or-three steady states for the case n > 1. The panels show
that there are reaction order exponents which are favorable for the appearance of the
threshold behavior for a fixed value of λ.

79



a low misfolded isomer production) at steady state, while a high x? implies a low

bystander isomer concentration (and high misfolded isomer production) at steady

state. An outbreak of misfolding isomer production can be the result of increasing

the transition time of the bystander protein in the ER ( Figure 5.6A, control ver-

sus τu = 1.5) above the threshold behavior point. Current experimental evidence

supports this observation. An increase in the bystander proinsulin transition time

in the Akita mice results in Mutant INS-gene Induced Diabetes of Youth [68, 50].

Alternatively depletion of bystander protein will reach a loss-of-function point if we

increase the ratio of basal misfolded isomer to bystander isomer inflow rates in the

ER ( Figure 5.6A, control versus λ = 0.13) above the threshold point. This ratio

can be increased by overexpression of the basal misfolded isomer levels. There is

experimental evidence to support this model prediction. In the Akita mouse, higher

levels of misfolded proinsulin results in fulminant diabetes within two weeks of life [56]

and in a reduction of bystander insulin [50]. Similar results have been reported for

the toxicity of Dutch E22Q and Flemish A21G mutant amyloid β proteins in human

cerebral microvessel and aortic smooth muscle cells [133]. Interestingly, our model

predicts that an increase of the order of the misfolded isomer can trigger the outbreak

in misfolding isomer production and the depletion of bystander protein ( Figure 5.6A,

control versus n = 5). This reaction order exponent will increase if the number of

misfolded isomers involved in the recruitment of bystander proteins into aberrant iso-

mer complexes increases. More work is needed to precisely characterize the reaction

mechanisms involved in the recruitment of bystander proteins into misfolded isomer

complexes.

From the disease rescue point of view, what can be done to rescue bystander

isomers or decrease misfolded isomer production? A general increase in the folding

capacity of the ER can reduce the bystander isomer residence time [17], resulting in

the rescue of bystander protein ( Figure 5.6B, disease versus τu = 003). Rieger et al.
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Figure 5.6: Parameters involved in the onset and rescue of conformational diseases. A
low x? implies a high bystander isomer concentration at steady state, while a high x?

implies a low bystander isomer concentration at steady state. In Panel A, we illustrate
how the onset of conformational disease can be caused by increasing the transition
time of the bystander protein in the ER (τu), the ratio of basal misfolded isomer to
bystander isomer inflow rates in the ER (λ), or the misfolded isomer reaction order
(m). Parameter values for control: τu = 0.45, λ = 0.025, n = 4, m = 5. In Panel
B, bystander protein concentration is rescued by decreasing τu, λ, or m. Parameter
values for disease: τu = 0.10, λ = 0.1875, n = 4, m = 5.
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[107] proposed that the overexpression of molecular chaperones can increase folding

capacity, reducing protein misfolding and aggregation in neurodegenerative diseases.

Of course, the ability to rescue bystander protein by decreasing the bystander resi-

dence time will likely depend on the specific nature of the protein itself, which will

in turn influence the folding and trafficking pathways accessible to the protein [118].

Alternatively bystander proteins can be rescued by decreasing the ratio of basal mis-

folded isomer to bystander isomer inflow rates in the ER ( Figure 5.6B, disease versus

λ = 0.063). This ratio can be decreased by the upregulation of basal isomer inflow

or downregulation of the basal misfolded isomer inflow. This rescue mechanism can

be tested by increasing the expression of bystander isomer with varying levels and

verifying that rescue is not caused by a general increase in folding capacity of the ER.

Another strategy for rescuing from the conformational disease is to reduce the reaction

order of the misfolded isomer ( Figure 5.6B, disease versus m = 3). The reduction

of reaction order m can be achieved through the introduction of pharmacological

inhibitors, which block elementary reactions involving the association of misfolded

isomers into complexes. Pharmacological agents can also affect τu by changing the

reaction coefficient k.

The above potential therapies must account for the hysteresis in bistable systems.

The rescue of the system to the high bystander concentration (or low misfolded iso-

mer production) requires a decrease of τu, λ, and m below the threshold point level

to overcome the hysteresis phenomena due to bistability. Our model proposes qual-

itative ideas for the rescue of conformational diseases. It is not easy to determine

an optimal strategy quantitatively, particularly since the specific nature of the pro-

tein and its misfolding pathway must be taken into account. Therefore, a more

detailed description of the bystander and misfolded protein reaction mechanism and

their interactions with the ER machinery is required. The modeling of these detailed

mechanisms will allow us to investigate the control of the threshold behavior and to
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develop a more complete and quantitative theory for the design of rescue strategies

for specific conformational diseases.

83



CHAPTER VI

Educational component: outlining a mathematical

modeling course

6.1 Introduction

Many colleges, particularly small and rural colleges and minority secondary insti-

tutions, do not have the infrastructure to support ’wet’ laboratories. Additionally,

rural colleges are increasingly employing online or distance learning, reducing student

access to hands-on laboratory experience students [10]. It is in these laboratories that

students would perform traditional experiments to test hypotheses formulated around

biological problems. One way to address this limitation is to employ mathematical

and computational models to test hypotheses and investigate biological problems.

Mathematical modeling is used to investigate a wide array of biological process

such as cell cycle control, gene expression, tissue and organ development and protein

folding pathways. Models are also employed to investigate mechanisms of protein

aggregation. As part of my dissertation, I developed an example mathematical biology

laboratory applied to bistable prion aggregation [54] (Appendix B). This laboratory is

a starting point for a ‘virtual biology laboratory’ I am interested in developing in the

future. This resource would allow students from the types of schools mentioned above

to gain similar skills as their counterparts at larger, more resource heavy institutions.
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In this chapter, my focus is on developing a mathematical biology course de-

scription and an example laboratory. The course description includes the following

information: the course level, prerequisites, learning objectives, course organization,

and assessment. This chapter serves as the first step towards developing a math-

ematical biology course to address institution infrastructure and increased distance

learning.

6.2 Course Description and Philosophy

This course is a one semester course designed to introduce seniors and advanced

juniors students to using differential and difference equations to model biological sys-

tems. The course philosophy is centered around active student involvement in gather-

ing background information, generating hypotheses, developing and using sound and

realistic models to test hypotheses, and analyzing and writing the results. Students

will learn how to use mathematical modeling as a way to ask and answer questions

while engaging in scientific study of life sciences questions.

Throughout the course, students will be asked to read the scientific literature,

synthesize material read and presented in class, and use this information to develop

mathematical models based on the general approach outlined in Figure 6.1.

The expectation is that students will have successfully completed a first course in

calculus, introductory biology, and introductory chemistry prior to engaging in this

course. In terms of calculus concepts, a student will be expected to have prior expo-

sure to the study of functions of one variable, limits and continuity, algebraic func-

tion differentiation, introduction to integrals, and curve sketching. Students should

have been exposed to concepts in cellular and molecular biology, genetics, evolution

and diversity of organisms, plant anatomy and physiology and mammalian anatomy,

physiology and ecology. Finally, students should be familiar with general chemistry

concepts including stoichiometry, atomic structure, periodicity, chemical bonding,
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Figure 6.1: Mathematical modeling incorporates biology and mathematics to make
predictions. Modeling involves a continuous cycle of mathematical formulation, anal-
ysis, prediction and validation.

states of matter, redox, concentration units, acids and bases, kinetics, equilibria, and

electrochemistry.

6.3 Learning Objectives

After completing this course, students will be able to:

• employ online resources to search for and access peer-reviewed literature

• critically read and synthesize scientific literature

• write a hypothesis statement

• develop a mathematical model using difference (discrete) and differential (con-

tinuous) equations to test hypotheses

• utilize Berkeley Madonna to run numerical simulations on differential equation

models
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• create a phase portrait and perform a phase plane analysis of a two-dimensional

system

• calculate steady states and assess stability of two-dimensional ordinary differ-

ential equation models

• interpret a bifurcation diagram

• discuss and critique mathematical models of biological systems

6.4 Course Organization

As is often the case in educational modules, the labs within the educational module

will be laid out in a sequential manner. The concepts in the later labs will build upon

those concepts learned earlier in the sequence. The technology necessary to complete

these labs is minimal. Each lab will use Berkeley Madonna, a Windows and MacOS

software program that runs on any standard desktop. Berkeley Madonna is available

for free (with some minor limitations) and the full version is relatively inexpensive.

Berkeley Madonna is useful for analysis of dynamical systems. A dynamical sys-

tem is a mathematical formulation which describes the time evolution of some ’thing’

in a space; e.g. the number of foxes in a forest, the volume of water in a pipe, or

the number of people with AIDS in New York City. Ordinary differential equations

(ODEs) are used to represent dynamical systems. Once the ODEs are encoded in a

Berkeley Madonna readable format, one can simulate the change in some ’thing’ over

time based on certain conditions. These conditions are determined by the parameters

of the model. The ’thing(s)’ are represented as variables of the ODEs.
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6.5 Assessment

Student learning will be assessed each course using a ungraded quiz at the begin-

ning of each laboratory and lecture. These quizzes will be reviewed by the instructor

to identify students who are struggling early in the course. At the end of each lec-

ture, students are also required to ask a question or make a comment about the

day’s lecture or laboratory in writing. These two ungraded activities will be used as

a real-time assessment of student learning and will be used to guide future classes

throughout the course.

Student grades will be based upon the following:

• critical quarterly self-evaluation (10%)

• biweekly homeworks, graded in teams by students (30%)

• team research paper and projects (30%)

• two take home exams (30%)

Peer graded homeworks will be reviewed by the instructor. At the midpoint and

end of the course, students will be asked to complete a course survey. This tool

(in concert with the daily quizzes and comments) will be used to guide the course

instructor.

6.6 Summary

The course proposed here is centered around introducing mathematical model-

ing for the life sciences using team-oriented activities and active student learning.

Throughout the course, the lectures and laboratories (e.g. B) will stress the power of

mathematical modeling. Students will be challenged to critically analyze the models

and use them to explore the biological systems they represent. Most importantly,
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students will learn scientific reasoning and a powerful scientific tool - mathematical

models - in a course that is implementable at institutions with limited resources.
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CHAPTER VII

Conclusion

Conformational diseases originate from the failure of specific proteins to adopt or

maintain their native conformational state [79]. Misfolded proteins are implicated in

the reduction of native protein levels and the formation of aggregates in a variety of

conformational diseases, such as β-amyloid toxicity, Charcot-Marie-Tooth, diabetes,

pre-senile dementia, and α1-antitrypsin deficiency with liver disease [119]. Proteins

misfold due to cellular stress as well as inherited or stochastic mutations [84].

The formation of misfolded proteins in conformational diseases often displays a

threshold behavior that is characterized by a sudden shift in the concentration of

proteins from low misfolded concentration (non-toxic) to high misfolded concentration

(toxic) levels. For example, an increase in mutant type I collagen expression above a

critical threshold results in an aortic rupture due to a breakdown in collagen formation

[102]. Vascular toxicity appears to occur in a dose dependent manner with β-amyloids,

which are a misfolded form of amyloid precursor protein and the main component of

aggregates found in patients with Alzheimer’s disease [133]. Both of these examples,

and several others, are the result of dominant negative mutations that give rise to

increased misfolded protein levels. Misfolded isomers exert a dominant-negative effect

(toxic gain-of-function) possibly through an interaction with a protein binding partner

expressed in cells [119]. A key to controlling conformational diseases, therefore, is
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to understand the underlying mechanisms responsible for threshold behavior under

conditions of increased protein misfolding.

The threshold behavior in conformational diseases can arise from a sigmoidal dose-

response curve or the appearance of bistability within a certain range of parameters.

In dynamical and complex systems, bistability is characterized by two steady states

and a third unstable steady state [45, 28]. Experimental evidence suggests that this

threshold phenomenon is associated with bistability; misfolded isomer or aggregate

protein concentration can exhibit bistability with changes in temperature [75], pres-

sure [31], and pH [41]. There is also evidence of guanidinium chloride concentration

dependent bistability in the transition between unfolded and folded transthyretin

protein states [60]. To date there are few mathematical models which can describe

the threshold of protein misfolding or aggregation in conformational diseases as a

bistable system [107, 54, 61, 97]. Generalizations of the Smoluschowski’s theory of

coagulation have been applied to investigate protein polymerization and aggregation

[19]. However, these models do not explain the threshold for protein misfolding or

aggregation in a mechanistic manner [58].

In this thesis, we critically reviewed the aggregation literature and discussed cur-

rent qualitative classifications of aggregation mechanisms (Chapter II). We presented

evidence from the literature for a threshold phenomena in aggregation. Bistability is

one manner in which threshold phenomena can be described. The exact conditions

underlying bistability in chemical reaction networks are undefined. In Chapter III,

we presented a novel method to search for one type of condition (motifs) in chemical

reaction configurations. We applied this method to reproduce previously published

results of chemical motifs found in bistable reaction configurations [103]. Our method

was then applied to discover two novel motifs in a set of published bistable chemical

reaction mechanisms. These motifs differed from previously published motifs as our

reaction networks were developed from chemical mechanisms generated by uni and
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bimolecular reactions.

Qualitative characterizations can result in classifying identical mechanisms (from

separate studies) into different categories. For example, Morris et al. [82] classify

a mechanism of bovine liver glutamate dehydrogenase aggregation by Thusius [129]

as ‘reverse association.’ This mechanism describes the indiscriminate aggregation

of monomers and polymers of any length. Certain cases of this mechanism look

identical to the ‘subsequent monomer association’ mechanism describing a nucleation

event [134]. The result is dual classification for identical mechanisms, confounding

clarification of mechanism(s) of protein aggregation.

In future studies, our method can be used to discriminate between network types

(e.g. overall reaction configurations versus mechanistic) and aid in clarifying in some

of the discrepancies found in the aggregation literature. First, we see that misfolded

proteins (often act as the instigator, interacting with different protein conformations

as the initial step in the aggregation reaction. This ‘activated monomer’ hypothesis

is proposed for a variety of different protein aggregation systems. For example, in

a model of insulin aggregation based on the “Ockham’s razor’/minimalistic 2-step

model’, insulin must undergo a transformation from a non-aggregating to aggregat-

ing species in order for the aggregation reaction to occur [39]. Amyloid β is an

aggregate prone species originating from amyloid precursor protein and is implicated

in the formation of protein aggregates in Alzheimer’s disease [92], which provides

another example of the ‘activated monomer’ hypothesis. Second, we see that het-

erodimerization occurs across most of the bistable networks. An inherent bias in

published mechanisms of protein aggregation is a predicted homodimerization (M1

+ M1) event. There are a handful of mechanisms that do predict dimerization of

two different conformations of the same protein. Mechanistic models of calcitonin

aggregation [55] and amyloid β aggregation [70] both have heterodimerization events.

Dimerization of misfolded and bystander (wild-type unfolded or folded) proinsulin
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is experimentally observed in a MIDY mouse model and hypothesized to underlie

the dramatic decrease in insulin secretion and β-cell mass in this diabetic phenotype

[50, 69, 67, 68]. Third, many of the networks include both intermediates and a final

aggregate form. One of the issues of currently available aggregation models is that

those capturing dynamical behavior of threshold phenomena are phenomenological.

Several of the standardized networks presented here include intermediate steps and

retain bistable behavior. This suggests that mechanistic models of protein aggrega-

tion capturing threshold phenomena can be developed by applying what is known

of currently available bistable networks. Finally, some of these standardized bistable

networks are open. Most available mechanisms of protein aggregation are of closed

systems. It is known that fluxes can impact dynamical behavior [29, 30] and cellular

systems are inherently open systems.

Using our novel method, we identified aggregation motifs and created a quanti-

tative classification of our library of published models of protein aggregation (Chap-

ter IV). During this process, we discovered a possible bias in the aggregation lit-

erature. We completed this chapter with a prediction of dynamical behavior of the

aggregation mechanisms. We hope that this motif information can be used to gen-

erate novel unbiased aggregation mechanisms. A necessary future step would be to

experimentally test hypothesized mechanisms of threshold behavior in a way that

would distinguish square hyperbolic, sigmoid saturation, and switch-like saturation

(reversible and irreversible) systems

As other factors beyond motifs are important to dynamical behavior, we devel-

oped and analyzed a model of protein misfolding and aggregation in conformational

disease (Chapter V). We identified particular kinetic parameters important to bista-

bility. Within this chapter, we predicted pathways for recovery from abnormal protein

misfolding and aggregation that are experimentally testable. The final chapter (Chap-

ter VI) presents the beginnings of a mathematical biology course with an example
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laboratory using a mathematical model of protein aggregation. This chapter will aid

in transferring research based results to the classroom; future science research begins

with the education of future scientists.

94



APPENDICES

95



APPENDIX A

Bystander Model Appendix

A.1 Flux perturbation

A.2 The shape of yr(x)

To distinguish between unique and multiple steady states we need to understand

the shape of yr(x) for x = [0, 1]. yr(x) is a (n+m)th order polynomial of the form

yr(x) = (1− x)n(τrx+ θ)m . (A.1)

First, we proceed to calculate the critical points of Eq. A.1 by determining the values

of x for which the derivative of Eq. A.1 with respect to x is equal to zero. This

becomes

y′r(x) = [mτr(1− x)− n(τrx+ θ)](1− x)(n−1)(τrx+ θ)(m−1)

= 0 . (A.2)
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The critical values satisfying the above equation are:

x =

{
− θ
τr
, 1− n(τr + θ)

τr(n+m)
, 1

}
. (A.3)

Using the second derivative test, we determine that the function yr(x) is concave

downward and has a maximum at the critical point x = 1− n(τr + θ)/τr(n+m):

y′′r

(
x = 1− n(τr + θ)

τr(n+m)

)
< 0. (A.4)

The maximum value is, therefore,

yr(x)max =

(
n(τr + θ)

τr(n+m)

)n(
m(τr + θ)

n+m

)m

. (A.5)
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APPENDIX B

Mathematical Biology Laboratory Appendix

B.1 Mathematical biology laboratory: modeling prion infec-

tion

B.1.1 Background

Learning goals: introduction to prion diseases, understanding parameters and

variables, phase portraits, numerical solutions, steady states and stability

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs),

are a family of neurodegenerative disorders affecting humans and animals. These dis-

eases often progress rapidly and always result in the death of the infected human or

animal. Prion diseases are thought to be caused by a proteinaceous infectious parti-

cle (prion), an infectious agent composed primarily of protein. Infectious abnormally

folded prions (PrPSC) induce abnormal folding of normal prion proteins (PrP). Mis-

folded prions form stable aggregated structures that accumulate in tissues, leading to

cellular damage and death.

Several mathematical models of prion diseases have been proposed, including the

one introduced below. In this model, Kacser and Small [54] propose that prion infec-
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tion can be described by a bistable mechanism. Bistability is a dynamical behavior

characterized by two stable steady states (and a middle unstable steady states) within

a particular parameter range(s). A bistable system is one that can switch between two

very different steady states through a very slight perturbation; e.g. a bistable system

can switch from low levels of infections prions to high levels of infectious prions by

slightly changing a system parameter.

B.1.2 The model

Figure B.1: ‘A bistable system involving feedback activation’ [54] where v1 = k1,

v2 = k2A, v3 = k3B, v4 = k4, v5 = k5C, v6 = k6AC2

ks+C
, A: PrP∗ (prion polypeptide),

B: PrPC (normal prion protein), and C: PrPSc (infectious prion protein).

This schematic can be described by the following set of equations

dA

dt
= v1− v2− v4− v6 (B.1)

dB

dt
= v2− v3 (B.2)

dC

dt
= v4− v5 + v6 (B.3)
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where the six rates describing prion infection are

v1 = k1 (B.4)

v2 = k2A (B.5)

v3 = k3B (B.6)

v4 = k4A (B.7)

v5 = k5C (B.8)

v6 =
k6AC

2

ks + C
(B.9)

B.1.3 Problem Set

1. Explain what each variable (A, B, and C) and each rate (v1, v2, v3, v4, v5 and

v6) means in biological terms.

2. Run the model using several different initial conditions. What do you notice?

Comment on the difference between the results.

3. Now investigate the effect that changing the k1 parameter has on the dynamical

behavior of the system. To do this, graph A, B, and C versus time for three

very different values of k1 while keeping the same initial conditions. Can you

estimate the value of k1 that results in a change in the behavior of the system?

4. Construct phase portraits of A vs. B, B vs. C and A vs. C using values of k1

that give the behaviors observed in Question 3. What do you notice about the

relationship between the three variables in the two cases?

B.1.4 Berkeley Madonna code

{DOI: 10.1006/jtbi.1996.0157}

{How Many Phenotypes From One Genotype? The Case of Prion Diseases}
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{Kacser H, Small JR}

{J Theor Biol. 1996 Oct 7;182(3):209-18}

{Coded: June 03, 2010}

{Version 3.0; updated June 25, 2010}

{Berkeley Madonna version 8.3.18}

{Numerical Integration Method}

METHOD STIFF

STARTTIME = 0

STOPTIME=15

DT = 0.02

{Model Variables}

{A: Prp*, peptide product}

{B: PrPC, normal prion protein}

{C: PrPSc, infectious prion protein}

{Model Equations}

d/dt (A) = v1 - v2 - v4 - v6

d/dt (B) = v2 - v3

d/dt (C) = v4 - v5 + v6

{Rates}

v1 = k1

v2 = k2*A
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v3 = k3*B

v4 = k4*A

v5 = k5*C

v6 = (k6*A*C*C)/(ks+C)

{Model Parameters}

k1 = 10

k2 = 7.5

k3 = 6.5

k4 = 0.06

k5 = 0.75

ks = 1

k6 = 1.25

{Initial Conditions}

INIT A = 1e-6

INIT B = 1e-6

INIT C = 1e-6
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