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CHAPTER 1 
 
 

Research Objectives 
 
 

 
The major obstacles of cancer treatment are tumor recurrence and 

metastasis, making most cancers incurable. Recently, the model of cancer stem cells 

(CSCs) shed light on the causes of recurrence and metastasis. The CSC model 

suggests that tumor is initiated by a small subset of cancer cells, termed cancer stem 

cells. CSCs have intrinsic properties similar to those of normal stem cells, including 

longevity and the ability to self-renew. Normal adult tissues contain a small portion 

of stem cells that are responsible for the replacement of terminally differentiated 

cells. During self-renewal, tissue stem cell generates an identical stem cell and a 

progenitor cell that further gives rise to a number of differentiated cells. Similarly, 

among heterogeneous cell populations within tumors, only cells expressing CSC-

markers have the ability to initiate tumors in immune-deficient mice(1). CSCs were 

first identified in leukemia and later found in a broad spectrum of solid tumors, 

including those of breast (2). Breast CSCs are refractory to conventional 

chemotherapy or radiation, as evidenced by several preclinical and clinical studies 

(3, 4). As a result, CSCs survive through treatments. Once treatments cease, CSCs 

may again regenerate tumors and cause tumor relapse. In addition, CSCs may 

migrate to distal positions of the body and initiate metastasis. In support of the CSC 
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theory, tumor regression has not correlated reliably with long-term survival (5). 

The existence of CSCs could explain the high frequency of relapse and resistance of 

cancers to many currently used therapies. New approaches should be developed to 

effectively target the CSCs, which could vastly improve cancer therapies and 

outcome.  Despite much effort invested on the discovery of anti-CSC inhibitors, 

finding an effective compound to eliminate CSCs still remains challenging because 

CSCs are regulated by multiple pathways and cross-talks occur among these 

pathways. If we only target a single CSC-pathway, others pathways still exist to 

serve the same function. In this context, we hypothesize that modulation of multiple 

oncogenic signaling pathways simultaneously via inhibition of a single common 

target, such as heat shock protein 90 (Hsp90) or histone deacetylase (HDAC), 

effectively inhibit breast cancer stem cells. To test this hypothesis, we proposed 

three specific aims: Aim 1: To investigate efficacy of Hsp90 inhibitors to eliminate 

breast cancer stem cells in vitro and in vivo by modulation of multiple oncogenic 

signaling. Aim 2: To optimize the dose regimen for Hsp90 inhibitors for therapeutics 

of breast cancer stem cells in vivo. Aim 3: To study the efficacy of HDAC inhibitor to 

eliminate breast cancer stem cells in vitro and in vivo by multiple epigenetic 

modulations.   

Drugs that are currently available for clinical use were selected for this study 

because the regulatory requirements would be less stringent when developing these 

agents for the indication being investigated in our studies. A Hsp90 inhibitor, 

17AAG, was selected for its ability to inhibit multiple pathways that ae known to be 

vital to the maintenance of stem cell function in CSCs. A HDAC inhibitor, SAHA, was 
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selected as it has been reported to induce differentiation in cancer cells by 

modulating multiple gene expressions. Study designs to evaluate these two drugs on 

anti-CSCs and the relevant findings are outlined below.  

In Chapter 2, relevant background information is presented to familiarize 

readers with the breast cancer biology and its relevant therapy, particularly in CSC 

theory and up-to-date studies in CSCs and the relevant therapies. In addition, clinical 

evaluations of two drugs (17AAG and SAHA) in this study are reviewed.   

Chapter 3 explores 17AAG, a clinically evaluated member of Heat Shock 

Protein 90 (Hsp90) inhibitors. The rationale to evaluate this class of cancer therapy 

is that Hsp90 is involved in multiple CSC-associated surviving pathways. Since 

Wnt/b-catenin, Notch and Hedgehog pathways are emerging targets for anti-CSC 

treatment, a number of compounds that interfere with these pathways have been 

evaluated preclinically and clinically for their efficacy of targeting CSCs. However, 

these pathways display intensive crosstalk, so targeting a single pathway may not be 

sufficient to achieve the desired efficacy. Inhibiting Hsp90, in this sense, provides an 

ameliorated approach by simultaneously inhibiting multi-pathways crucial for the 

survival of CSCs and thereby eliminates CSCs.  This chapter provides in vitro and in 

vivo data showing 17AAG is effective at targeting CSCs. The mechanism through 

which 17AAG inhibits CSCs is investigated and reported in this chapter. The clinical 

relevance and significance of the contribution of our findings are discussed in this 

chapter.  

Chapter 4 explores the efficacy of 17AAG as an adjuvant therapy and as 

combinational therapy. Since CSCs represent only a very small subset of tumor cells 
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(<10%), even a complete elimination of CSCs may not translate to tumor shrinkage. 

In this context, tumor reduction that is typically used to evaluate the efficacy of anti-

cancer agents in clinical trials may not be an appropriate endpoint for CSC-targeting 

agents. Therefore, CSC-targeting agents are suggested to be evaluated in either 

combinational therapy together with chemotherapy or in adjuvant therapy as a 

single agent. In this case, the clinical benefit of targeting CSCs to reduce the tumor 

relapse may not be undermined by the highly proliferated cells.  

 In this chapter, efficacy of 17AAG to target CSCs in adjuvant- and advanced- settings 

is assessed in parallel. Mice bearing early-stage tumors were used to simulate the 

adjuvant setting where treatment is given to eliminate the residual cancer cells right 

after removing the primary tumor. Mice bearing well-grown tumors were used to 

simulate the advanced setting where therapy is given to patient with advanced 

tumors. In addition, efficacy of 17AAG in combination with Docetaxel, a standard 

chemotherapy for breast cancer, is evaluated and demonstrated.   

In Chapter 5, a differentiation approach is applied to target CSCs using SAHA. 

The reasons to explore SAHA, a histone deacetylase (HDAC) inhibitor, in this context 

are that (1) SAHA is approved by FDA to treat cutaneous T cell lymphoma and 

extensively evaluated in clinical trials for breast cancer, and (2) HDAC inhibitors 

have been shown to induce differentiation in cancer cells. The effect of SAHA on the 

CSC population was evaluated in vitro and in a mouse model. The molecular 

mechanisms underlying the inhibition of breast CSCs is revealed based on 

microarray analysis of gene expression. The studies in the chapter show that SAHA 

partially converts breast CSCs to non-stem cells, evidenced by reduced expression of 
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stem cells markers such as CD44, CD24 and ALDH1. Also, inhibition of breast CSCs 

after SAHA treatment may be mediated through BMI-1 and MYC pathways.  

1. Dontu, G., Al-Hajj, M., Abdallah, W.M., Clarke, M.F., and Wicha, M.S. 2003. Stem 
cells in normal breast development and breast cancer. Cell Prolif 36 Suppl 
1:59-72. 

2. Bonnet, D., and Dick, J.E. 1997. Human acute myeloid leukemia is organized 
as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 
3:730-737. 

3. Phillips, T.M., McBride, W.H., and Pajonk, F. 2006. The response of CD24(-
/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 
98:1777-1785. 

4. Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, 
S.G., Pavlick, A., Zhang, X., Chamness, G.C., et al. 2008. Intrinsic resistance of 
tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672-
679. 

5. Burton, A.L., Gilbert, J., Farmer, R.W., Stromberg, A.J., Hagendoorn, L., Ross, 
M.I., Martin, R.C., 2nd, McMasters, K.M., Scoggins, C.R., and Callender, G.G. 
2011. Regression does not predict nodal metastasis or survival in patients 
with cutaneous melanoma. Am Surg 77:1009-1013. 
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Chapter 2 
 

Background 

 

Breast cancer overview 

Breast cancer is the second leading cause of cancer-associated death in 

women and accounts for 14 % of the cancer deaths in the world (1, 2). Breast cancer 

incidence rates remain stable among all racial/ethnic groups from 2004 to 2008 (1). 

Breast cancer death rates have been decreasing since the early 1990s due to the 

improved screening technique and surgical interventions and therapy. The five-year 

survival rate for women diagnosed with localized breast cancer that has not spread 

to lymph nodes or other locations is 98%. The survival rate decreases to 84% or 

23% for when tumors spread to nearby lymph nodes or other organs, respectively. 

The survival rate continues to decline over time. Specifically, the survival rate is 

75% 10 years after diagnosis (1, 3). Around 6% of patients with breast cancer are 

diagnosed with distant metastases, and in 30% of patients with early breast cancer 

the disease will eventually have recurrent tumors, which is metastatic in most cases 

(4). Once metastatic disease develops, the possibility of a cure is very low and the five-

year survival rate declines to 20% (4).Despite advances in early detection and 

treatment of breast cancer, local or distant recurrence of tumors fare still 

unpreventable because the efficacy of current therapies is limited by the emergence 

of therapy-resistant cancer cells (5, 6). As a result, metastatic breast cancer remains 
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an incurable disease by current treatment strategies. This highlights the need for 

novel therapies to improve therapy-resistance. 

At present, therapeutic approaches to treat patients with breast cancers 

include surgery, radiation therapy, chemotherapy, hormone therapy, and targeted 

therapy. Most prevalent approach consists of surgical removal of tumors, followed 

by other types of therapy as adjuvant treatment. Chemotherapy and radiation are 

often used in adjuvant therapy to destroy any residual cancer cells and prevent 

tumor recurrence. The treatment to patients with breast cancer is selected first based on 

the hormone receptor status, such as such estrogen and progesterone receptors, and the 

status human epidermal growth factor receptor type2 (Her 2). Endocrine therapy (e.g. 

Tamoxifen) is commonly used to treat patients with advanced ER-/PR-positive 

breast cancer. Patients with Her2 amplified breast cancers are often treated with 

Herceptin®.  For the rest of breast cancer types or tumors resistant to endocrine 

treatment, chemotherapy is commonly used. In contrast to the localized therapies 

(e.g. radiation and surgery), Chemotherapy is classified as a systemic therapy 

because chemotherapy circulates through the whole body and can simultaneously 

treat the primary tumor and metastasized tumors.  

The available chemotherapeutic drugs for breast cancer are categorized into 

four types: alkylating agents (ex. cyclophosphamide), anthracyclines (ex. 

doxorubicin and epirubicin), antimetabolites (ex. fluorouracil and methotrexate), 

and taxanes (ex. Paclitaxel and docetaxel). Chemotherapy given as a combinational 

treatment with other drugs has been shown to be more effective than any one single 
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drug (7). For instance, a large, multicenter study reported that patients treated with 

doxorubicin and cyclophosphamide (AC), followed by Paclitaxel had significantly 

better disease-free survival and overall survival rates than patients treated with AC 

only. However, no combinational chemotherapeutic treatments have been 

demonstrated to cure metastatic breast cancer.  

Lastly, targeted therapy based on the status of cellular receptors has been 

shown to be an effective approach to treat otherwise resistant breast cancers. Based 

on expression levels of Her2, estrogen receptor (ER), and progesterone receptor 

(PR), breast cancer can be classified into Her2-positive, ER-/PR-positive or triple-

negative groups.  The most successful example of targeted therapy is Herceptin®, 

which is commonly used to treat Her2 over-expressed breast tumors. Her2 

overexpression is seen 20% of breast tumors.  Breast cancers that overproduce 

HER2 tend to be more aggressive and are more likely to recur. Herceptin® in 

conjunction with adjuvant chemotherapy can lower the risk of recurrence of HER2-

overproducing breast cancers by about 50% in comparison with chemotherapy 

alone. 

Cancer stem cells  

The emergence of cancer stem cell (CSC) hypothesis provides a potential 

explanation for tumor metastasis and resistance to chemotherapies.  The failures 

observed in current cancer treatments are not usually thought to be due to the lack 

of tumor response, but due to tumor recurrence or metastasis for which CSCs are 

thought to be responsible (8). In recent years, a growing body of evidence suggests 
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that a hierarchy of heterogeneous cell populations may exist in breast tumors (9-

11). CSCs are believed to be a small subpopulation of tumor cells that has unlimited 

capability to proliferate and sustain tumor formation and growth. On the other hand, 

other tumor cells only have limited proliferation ability (12). This CSC model 

accounts for the major obstacle of breast cancer-tumor recurrence and metastasis. 

As with any other stem cells, CSCs have the intrinsic self-renewal properties through 

which they can give rise to heterogeneous cells comprising the bulk of tumors. 

 Traditionally, chemotherapies have been developed based on the ability of 

these agents to cause tumor regression in animal models. Because CSCs are rare 

population (<10%), tumor regression induced by therapies is expected to mainly 

result from the elimination of the non-CSC population. However, if therapies fail to 

target CSCs, CSCs would remain after therapy and be able to regenerate the tumor, 

resulting in tumor relapse (12). As CSCs can migrate and lodge at distal sites from 

the primary tumor, the remaining CSCs can lead to metastasis by producing 

progenitor cells and bulk tumor cells through self-renewal and cell division. 

Moreover,  normal stem cells have great defensive mechanisms, such as 

increased expression of BCL-2 family proteins and increased expression of 

membrane transporters multiple drug resistance (13, 14), that make them relatively 

resistant to exogenous toxic agents. Similarly, CSCs may also adopt analogous 

defensive mechanisms and therefore be inherently resistant to chemotherapies 

(12).  Based on the evidence above, the CSC model provides an explanation for a 
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number of clinical observations including resistance to therapies, metastasis, and 

tumor relapse (9, 15) .  

Identification of cancer stem cells in breast carcinomas 

The concept that cancers may arise from CSCs dates back to 1968 in a study 

by Wodinsky et al. that observed only 0.1-1% of leukemic cells were able to form 

colonies in vitro and in vivo in mice spleens (16-18). The findings indicated that 

some cells are equipped with the ability to propagate disease. The subsets of cells 

that can develop leukemia in recipients were characterized and described as 

leukemic stem cells by Dick and Bonnet 30 years later. The evidence by Dick and 

Bonnet showed that an isolated population of CD34+/CD38– cells from human acute 

myeloid leukemia (AML) possesses tumor-initiating ability. As few as 5,000 

CD34+/CD38– cells were needed to initiate AML in immunodeficient mice through 

differentiation into leukemic blasts, while as many as 5,000,000 cells bearing 

phenotypes other than CD34+/CD38– failed to develop leukemia in mice. The 

capacities of CD34+/CD38– cells to self-renew and differentiate are two intrinsic 

features of stem cells. Therefore, CD34+/CD38– phenotype is recognized as markers 

for leukemic stem cells. Furthermore, evidence suggests that hematological 

malignancies are very likely to be regulated by a hierarchical system, where a small 

amount of cells are responsible for the generation of the bulk of tumors and 

progression of disease (19).  

As with blood cancers, solid tumors have also been speculated to harbor 

CSCs among the heterogeneous populations. A small proportion of cell bearing 
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specific phenotypes derived from neuroblastomas, pancreatic, colorectal, lung, and 

ovarian cancers cells have been demonstrated to be tumorigenic and capable of 

forming colonies in vitro and transfer disease in vivo (20, 21). The existence of CSCs 

in breast carcinoma was first discovered by Al-Hajj et al (12). As low as 100 

CD44+/CD24−/low lineage cells, derived from primary or metastatic sites in nine 

patients, were able to form tumors in immunodeficient mice, whereas 10,000 cells 

without this phenotype failed to form tumors. Moreover, the key feature of stem 

cells is that they can generate an identical daughter stem cell and a progenitor cell 

that continuously differentiates to various phenotypic cells that constitute 

cancerous tumors. When the CD44+/ CD24-/low cells from the above study were 

injected these cells into the breasts of NOD/SCID mice, tumors formed containing 

four different phenotypic groups of cells including CD44+/CD24- cells, CD44+/CD24+ 

cells, CD44-/CD24- cells and CD44-/CD24+ cells, as seen in primary tumors. The 

work of Al-Hajj et al. clearly demonstrated that CD44+/CD24- lineage breast cancer 

cells possess the capability to self-renew and differentiate, much like normal stem 

cells. Their work also suggests the existence of hierarchy in breast cancer, in which 

the majority of tumor cells that have limited proliferative ability are derived from 

the rare CSC population (12).  
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Figure 2.1 CD44+CD24−/lineage− cells recapitulated the phenotypic diversity. 
CD44+CD24−/lineage− cells, isolated and injected into the breasts of NOD/SCID mice, 
formed a tumor that contained heterogeneous cell types (Panel f) similar to those 
observed in the original tumor (Panel b) (12). 
 

Breast cancer stem cell markers 

Identification of reliable markers to differentiate the CSC populations from 

tumor cells is a key aspect of studying CSCs.  Apart from the aforementioned 

CD44+/CD24- surface antigens, the activity of aldehyde dehydrogenase 1 (ALDH1) is 

a widely accepted marker to identify breast CSCs. ALDH1 is the enzyme responsible 

for detoxifying a wide variety of aldehydes to carboxylic acids (22). Cells that have 

high ALDH activity have been associated with several types of murine and human 

stem hematopoietic cells as well as neural stem and progenitor cells (23, 24). 

Therefore, ALDH1 activity has been established as a potential marker for both 

normal and malignant stem and progenitor cells. ALDH1 activity, assessed using the 

Aldefluor assay, has been used to isolating stem cells from leukemia and multiple 

myeloma (24). 

In the context of breast carcinoma, Ginestier et al. demonstrated that ALDH1 

activity can be a promising marker to isolated stem cells from cancerous and normal 
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breast cells. Cells with high ALDH1 activity, as assessed by the Aldefluor assay, has 

been termed ALDH1-positive or Aldefluor-positive cells, and have been 

characterized to have phenotypic and functional characteristics of stem cells, as 

demonstrated by their ability to form tumors in mice but not Aldefluor-negative 

cells (25). Moreover, serial passages of Aldefluor-positive cells generate tumors that 

recapitulate the phenotypic diversity similar to the initial tumor. This data indicate 

that Aldefluor-positive cells possess the properties of stem cells. The breast cancer 

cells having Aldefluor-positive and CD44+/CD24−/low markers have the greatest 

tumorigenic ability, in which as few as 20 of these cells were capable of generating a 

tumor in mice (25).  In situ staining of 577 biopsy specimens of breast tumors for 

ALDH1 expression indicated a correlation between ALDH1 expression and poor 

prognosis, suggesting that ALDH1 is a powerful predictor of poor clinical outcome 

(26).  However, Ginestier et al. also reported that the overlap between cells 

expressing CD44+/CD24- and cells with high ALDH1 activity is only approximately 

1%. This raises a question of whether there is a uniform population or 

heterogeneous populations of breast CSCs in one single tumor (27). Recent studies 

have shed light on the heterogeneity of CSCs showing that CD44+/CD24- phenotype 

or high ALDH1 activity is strongly associated with intrinsic molecular subtypes (e.g. 

luminal or basal ) (27, 28). For these reasons, cell markers, CD44+/CD24- and 

ALDH1 activity, have been widely used to evaluate the ability of drugs to target 

CSCs.  

Origin of cancer stem cells 
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The Critical role of CSCs in the initiation, metastasis, and relapse of cancers, is 

widely accepted, and yet the origin of breast CSCs remains unclear. At present, three 

hypotheses have been proposed on the basis of experimental evidence to explain 

the origin of CSCs (Figure 2.1). One postulation is that CSCs originate from tissue 

stem cells. Small amount of multipotent and undifferentiated tissue stem cell are 

found in bone marrow, adipose tissues, heart, brain, lung, liver, pancreas, skin, 

retina, breast, ovaries and prostate. (29-39). Deregulating the self-renewal and 

proliferative pathways is thought to transform tissue stem cells into CSCs.  Several 

lines of evidences support this postulation. First, tissue stem cells and CSCs share 

common self-renewal pathways that are essential for their cellular function. 

Moreover, deregulating these pathways cause the expansion of CSCs. In addition, Al-

Hajj et al. believed that breast CSCs are likely to originate from basal mammary 

stem/progenitor cells due the similarities in the cell surface profiles. Both breast 

CSCs and mammary stem/progenitor cells display CD24-/CD44+ surface markers 

(12). Lastly, normal stem cells have long lifespan, which makes them more 

susceptible to accumulate mutations that eventually drive oncogenic transformation 

(40, 41).  

An alternate explanation of the origin of CSCs is that CSCs originate from a 

population of more differentiated progenitor cells. Progenitors, as compared to stem 

cells, have limited lifespan as well as ability of proliferation before they enter the 

terminal state.  Thus, progenitors need to first acquire the stem-like properties, such 

as self-renewal, so as to have the opportunity to accumulate additional mutations to 

become oncogenic [55]. This concept is supported by a number of evidence from 
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hematopoietic and solid malignancies.  First, co-expression of Bcl-2 and Bcr/Abl 

protein (a fusion protein that causes chronic myelogenous leukemia) in leukemia 

cells render these cells capable of initiating leukemia in mice [59]. Second, the 

finding of Molyneux et al. shows that majority of human BRCA1-associated and 

sporadic basal-like tumors are derived from luminal progenitors rather than from 

basal stem cells(42).  

Another plausible source of where CSCs originate from relative differentiated 

cells that have acquired the stem-like properties via epithelial–mesenchymal 

transition (EMT). EMT is a biologic process which enables epithelial cells to regain 

the mesenchymal stem cell properties such as invasiveness, ability to migrate, and 

resistance to apoptosis (43).  The association between CSCs and EMT is based on the 

facts that EMT activation is a required process during tumor invasion and 

metastasis. A recent study showed that immortalized human mammary epithelial 

(HMLE) cells that have undergone EMT have the gene expression profile similar to 

CSCs derived from HMLE cells. Moreover, HMLE cells that have undergone EMT 

have the ability to form tumorsphere in vitro and form tumors in vivo (44), which is 

an indication of self-renewal property found in stem cells. 
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Figure 2.2 Roles of CSCs in tumorigenesis and treatment resistance in breast 
carcinoma. Mammary stem cells self-renew and can differentiate into progenitor 
cells, which eventually differentiate into fully differentiated breast cells. CSCs can 
arise from normal stem cells, progenitor cells and even differentiated hepatocytes 
when oncogenic events occur during cellular processes. The expansion of CSCs 
results in the formation of the primary tumor, which is composed of a 
heterogeneous mass of cancer cells. When CSCs migrate to distal locations, they can 
give rise to a tumor, which results in distant metastases. When chemotherapy or 
radiotherapy is used, CSCs play an essential role in treatment resistance and can 
cause tumor recurrence. In contrast, CSC-targeted therapy can effectively eliminate 
CSCs so as to prevent tumor relapse (45).  
 

Resistance of CSCs to chemotherapies 

Increasing studies suggest targeting CSCs may be an approach to overcome 

the obstacles in cancer treatment including resistance, metastasis and recurrence of 
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tumors (Figure 2.2). First, CSCs are resistant to currently available chemotherapies 

despite tumor shrinkage. Secondly, the distinct difference between CSCs and 

differentiated cancer cells is the unlimited self-renewal potential, through which 

CSCs can initiate tumors as well as drive tumor progression. Thirdly, conventional 

chemotherapies, which are designed to target the highly proliferative tumor cells, 

may have little effect on CSCs because CSCs are thought to be relative quiescent, 

much like normal stem cells. Consequently, chemotherapies fail to target CSCs, and 

instead increase the percentage of CSCs in tumors as a result of massive loss of 

differentiated cells. These statements were supported by a number of studies.  

Phillips et al. investigated the response of CSCs to both a single dose and a 5-day 

course of radiation, and found that CD44+/CD24- tumorspheres, derived from MCF7 

and MDA-MB-231cell lines, were more resistant to radiation than cells in monolayer 

culture (46). Furthermore, in an analysis of clinical specimens from patients with 

breast tumors before and after treatment, chemotherapy increased the percentage 

of CD44+CD24-/low  cells in tumors from a baseline of 4.7% to 13.6% (95% CI = 

10.9% to 16.3%) after 12 weeks of chemotherapy. These findings support that 

chemotherapies enrich CSCs in tumors (47). For the reasons above, CSCs are 

believed to be responsible for tumor resistance and recurrence. 

CSCs are resistant to chemotherapies (e.g paclitaxel and doxorubicin) for 

various reasons including their slow proliferation, the ATP-binding cassette (ABC) 

transporters, and the efficient repairing system in response to DNA damage(48). 

The slow-proliferating CSCs may not be sensitive to many anti-cancer agents that 
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are designed to target rapidly proliferating cancer cells. For instance, imatinib is 

designed to target a fused protein, BCR-ABL kinase, which promotes proliferation of 

multipotent progenitors in Chronic Myelogenous Leukemia (CML). BCR-ABL is 

essential for the survival of rapidly proliferating progenitor cells, but not the 

quiescent CML stem cells(8).  ABC transporters, including multidrug resistance 

transporter 1 (MDR1) and breast cancer resistance protein (BCRP) drug transport pumps 

play an essential role in expelling anticancer drugs from cells, leading to chemo-

resistance (49). Apart from chemo-resistant, CSCs are also associated with radiotherapy, 

evidenced by the work in glioma stem cells by Bao et al. In their study, human glioma 

cells-derived tumor xenografts after radiation were shown to be enriched with CSCs, 

characterized as CD133+, as compared to non-radiated cells. The enrichment of CSCs 

in irradiated glioma cells in turn enhanced the frequency of tumor formation in 

mice. In addition, even though radiation causes equal damages to DNA in CSCs and 

non-CSCs, CSCs can recover from the damages more quickly than non-CSCs due to 

their efficient DNA repair system (50). Since CSCs are resistant to chemotherapy 

and responsible for tumor recurrence and metastasis, there is considerable interest 

in finding therapeutic agents targeted CSCs.  

Pathways regulate cancer stem cells  

Identification of the signaling pathways pivotal for the survival of CSCs is of 

greatest importance for developing drugs to target CSCs. The signaling pathways 

that are essential to maintain the stem-like trait in normal stem cells are also 

involved in the regulation of CSCs (51, 52). At present, several major pathways have 
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been suggested to be involved in the maintenance of CSCs including Wnt/β-catenin, 

Hedgehog, and Notch, which will be detailed as follows. 

1. Notch pathway 

Notch signaling is known to regulate cellular proliferation, differentiation and 

apoptosis to modulate the development of mammary gland development and 

mammary gland tumorigenesis. Notch signaling is commonly dysregulated in 

human malignancies with elevated expression of Notch receptors and their ligands 

in numerous cancers (53-55). Notch dysregulation is also associated with poor 

prognosis in breast cancer (56-58). 

Notch signaling is mediated by Notch receptors and their ligands. At present, 

four Notch transmembrane receptors have been identified, including Notch1, 2, 3 

and 4. Ligands are classified into two distinct families: Delta-like ligands (DLLs) 1, 3, 

and 4 and Jagged ligands 1 and 2.  Once ligands bind to Notch receptors, gamma-

secretase and ADAM protease family comes to cleave the intracellular-membrane 

domain of Notch receptors. Subsequently, the active Notch intracellular domain 

(NICD) is released into the cytoplasm and translocated to nucleus, where it binds to 

a transcription complex, to activate a number of genes (e.g. Myc, p21 and Hes) (59).  

In cancer stem cells, Notch signaling thought to play a role in the self-renewal 

function of mammary stem cells and CSCs. Dontu et al. have suggested that up-

regulation of Notch signaling can promote the self-renewal of mammary stem cells 

(60). In their study, activation of Notch pathway by a Notch-activating DSL peptide 

increased the mammospheres formation of mammary stem cells by 10-fold (60). 
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Additionally, Notch pathway is believed to be deregulated in CSCs, ultimately 

leading to uncontrolled CSC self-renewal. This notion is supported by a number of 

recent studies in breast CSCs. The work of Grudzien et al. demonstrated that breast 

CSCs have elevated activation of Notch signal, as compared with bulk tumor cells 

(61). When Notch signaling was blocked by a gamma-secretase inhibitor, MRK033, 

CSCs lost their ability to form colonies and spheres, suggesting CSCs lost their self-

renewal capability (61).  

 

 

Figure 2.3 Schematic representation of the Notch pathway and putative therapeutic 
targets (62). 

 

2. Hedgehog pathway  
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The Hedgehog (Hh) signaling pathway is known to be involved in controlling 

tissue polarity, patterning maintenance, and stem-cell maintenance during 

embryonic development (59). Hh signaling is mediated by two transmembrane 

proteins, Smoothened (Smo) and Patched (Ptc), and three ligands, Sonic Hh (Shh), 

India Hh (Ihh) and desert Hh (Dhh). Of three ligands, Shh is frequently associated 

with the development of cancers (ref). Shh is a binding ligand for Ptc, which is a 

suppressor Smo. When Shh binds to Ptc, Smo is released from Ptc and becomes 

active. The activated Smo in turn releases transcriptional factors, Gli1, 2 and 3 from 

a protein complex, SuFu (Fused (Fu) and suppressor of Fused). Upon release, Gli 

translocates to the nucleus where it activates Hh target genes, such as cyclin D1, 

cyclin E and Myc (63)    

The involvement of Hh signaling in CSCs has been defied in a variety of 

malignancies including breast, gastric, colon, pancreatic, and prostate cancers as 

well as leukemia (64-68) and poses as a potential target for drug therapy. For 

instance, Liu et al. have demonstrated that hedgehog pathway plays a crucial role in 

regulating self-renewal of human mammary stem cells and breast CSCs (69). 

Another recent study by Tanaka et al. revealed that Hedgehog signaling is essential 

for the maintenance of CSCs population, as characterized by CD44+CD24-/low in 

breast cancer (70). Due to its role in the breast cancer development, Hh pathway has 

been suggested as promising therapeutic target (70-72).  
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Figure 2.4 Schematic representation of the Hedgehog pathway and putative 

therapeutic targets (62). 

3. Wnt pathway 

The highly conserved Wnt pathway is characterized into two categories based 

on its dependence on β-catenin: canonical (β-catenin-dependent) and non-canonical 

(β-catenin-independent). In the canonical Wnt/β-catenin signaling, in the absence of 

Wnt ligands, β-catenin is sequestered in a complex consisting of APC (adenomatous 

polyposis coli), Axin2, GSK3β (glycogen synthase kinase-3β), and CK1 (casein kinase 

1). GSK3β triggers the ubiquitination of β-catenin, which induces degradation of β-

catenin by 26S proteasome. In the presence of Wnt, on the other hand, Wnt ligands 

bind to the complex consisting of Frizzled (Fzd) and Lrp5 (low density lipoprotein 

receptor-related protein 5) and Lrp6. The interaction will recruit Disheveled (Dvl), 
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which inhibit the GSK3 β-mediated ubiquitination and degredation of β-catenin. 

Thus, β-catenin is able to translocate to the nucleus where it binds to TCF/LEF 

transcription factors (T-cell factor/lymphoid enhancer factor) to activate Wnt target 

genes such as c-Myc, cyclin D1, and c-Jun.  

Aberrant β-catenin pathway has been frequently observed in colon cancer. 

The role of Wnt/β-catenin signaling was first described in colon cancer, where 90% 

of tumors harbored mutations that enable constitutive activation of Wnt pathway. 

Of oncogenic mutations in colon cancer, APC mutation is the most common type, 

which leads to β-catenin accumulation and then drives constitutive activation of 

Wnt pathway. The relevance of β-catenin signaling to stem cells is built on the 

observation that stem-like colon cancer cells with a high level of β-catenin signaling 

have a much greater tumorigenic potential than non-stem like cancer cells which 

have less β-catenin activity. Moreover, a growing body of evidence has suggests that 

deregulation of β-catenin is associated with CSCs in gastric, colon, prostate, liver, 

lung and breast cancers (73-80).   
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Figure 2.5 Schematic representation of the Wnt pathway and putative therapeutic 
targets (62). 

4. Cytokine network 

Apart from the mentioned pathways, cytokine networks have been suggested to 

regulate CSCs. Cytokines including interleukin-6 (IL-6), -8 (IL-8) and -1ß (IL- Iß) are 

known key factors to mediate chronic inflammation. The association between 

inflammation and cancer development was proposed nearly 150 years ago by 

Virchow when he observed that tumors tend to occur at sites with chronic 

inflammation (81). Despite the fact that some cytokines (e.g. interferon-γ, IL-1 and 

tumor necrosis factor-α (TNF-α)) are used as anti-cancer therapies, clinical and 

epidemiologic evidence support the notion that inflammation increases the risk of 

cancers. For example, inflammatory bowel diseases and hepatitis-induced 
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inflammatory increase risks of developing colorectal and hepatocellular carcinoma 

(82, 83). In breast cancer, the levels of IL-6 in plasma and IL-1α/β in tumors are 

associated with poor clinical outcome and stimulation of tumor growth, respectively 

(84-86).  

The relevance of cytokine networks in sustaining the growth of breast CSCs is 

supported by a number of recent studies. For example, Charafe-Jauffret et al. 

compared the gene expression profiles of CSCs isolated from 33 breast cancer cell 

lines and showed that IL-8 and its receptor, CXCR1, were preferentially expressed in 

CSCs (87). Furthermore, the role of IL-8/CXCR1signaling in the regulation of breast 

CSCs was confirmed by the in vitro finding that recombinant IL-8 can promote the 

stem-like property, as assessed by tumorsphere formation rate. Furthermore, a 

preclinical study showed that the blockade of CXCR1 by either a small molecule, 

Repertaxin, or CXCR1-specific antibody can effectively eliminate CSCs and reduce 

metastasis (88). In light of the identified role of IL-8/CXCR1 and the finding above, 

cytokine signaling poses as a potential target for CSC-targeted cancer therapy. 

Methodology used in studying breast CSCs. 
 
 
1. Transplantation in NOD/SCID mice 

Transplantation assay in immunodeficient mice is prevalently used to 

evaluate functional activity of CSCs in vivo. In this assay, breast cancer cells or 

human primary breast tumors are first injected into the mammary fat pads of non-

obese diabetic/severe combine immunodeficient (NOD/SCID) mice. After treatment, 
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the dissociated tumor cells are analyzed for the CSC population based on specific 

CSC markers. Next, the same numbers of dissociated tumors cells from the control 

or drug-treated mice are orthotopically re-implanted to a second group of 

NOD/SCID mice who do not receive any treatment. The capability of breast cancer 

cells derived from the primary NOD/SCID xenografts to form tumors in secondary 

mice is an indication of self-renewal capability of CSCs. If a drug effectively inhibits 

this pivotal stem-like feature, CSCs cannot generate various cells to form the bulk of 

tumors. Therefore, the efficiency of tumor engraftment upon re-implantation is a 

reasonable surrogate to evaluate the in vivo self-renewal capability. 

 

2. Non-adherent sphere culture 

Following the isolation of CSCs, the cells are propagated in a non-adherent 

sphere culture. The sphere culture enables studying CSCs in vitro for their self-

renewal property and evaluating whether compounds have inhibitory effect on 

CSCs. Non-adherent sphere culture was first developed by Reynolds and Weiss to 

isolate and expand putative stem cells from the brain.  Brain cells that are cultured 

in this manner formed a cluster of undifferentiated cells, which were referred to as a 

neurospheres. Moreover, upon inducing differentiation, the neurospheres derived 

from the culture was able to give rise to three differentiated cell types of the central 

neural system, indicating non-adhere culture can maintain the stem cell property of 

neurospheres (89). 

Later on, this sphere culture was successfully adopted to propagate CSCs 

(also termed tumorsphere formation in cancer cells), derived from brain, breast, 
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melanoma, lung, ovarian and colon cancers (40, 90-99). The unique feature of stem 

cells is the ability to grow in serum-free suspension, in contrast to differentiated 

cells that are typically anchor-dependent and die through anoikis process in 

suspension (98). The sphere culture takes advantage of this CSC property to 

propagate CSCs, which leaves differentiated cells to die out in suspension, while 

maintaining CSCs. The neurosphere culture was later adopted by Dontu et al. who 

successfully enriched normal breast cells with mammary stem cells (98). Later on, 

Ponti et al. employed Dontu’s mamospshere approach to derive tumorpshere from 

various breast cancer cell lines (40). They found that the tumorspheres are enriched 

with CD44+/CD24- cells, which is characteristic of breast CSCs (12) and are capable 

of generating tumors in immunodeficient mice with injections of as low as 1000 

cells derived from tumorspheres. The works above demonstrate that breast cancer 

cells can be enriched with CSCs and propagated using the non-adherent sphere 

culture.  

Cancer stem cell therapy 

According to the CSC model, the occult CSCs are refractory to the 

chemotherapies due to their dormancy. As a result, once the treatment stops, the 

surviving CSCs will once again give rise to tumors. Therefore, an effective cancer 

therapy must be able to not only kill all proliferating tumor cells, but also eliminate 

or induce differentiation of cancer stem cells.  

Therapies could be designed to induce differentiation in cancer stem cells by 

de-regulating the differentiation-associated signaling, or to eliminate cancer stem 
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cells by inhibiting the survival pathway of CSCs (100). Tissue stem cells are in 

charge of replacement of terminally differentiated cells through proliferation of the 

progenitor cells. Progenitors can further generate a great deal of highly proliferated 

and well-differentiated tissue-specific progeny cells. The well-differentiated cells 

only have limited ability to proliferate and eventually enter the terminal death. 

Likewise, tumor progression heavily relies on CSCs to continuously supply 

progenitors and differentiated cells. If therapies only target differentiated cancer 

cells, CSCs can replenish the loss through the self-renewal, leading to tumor 

recurrence. In contrast, if a therapy can completely wipe out CSCs, the tumors will 

die out without the support of CSCs. Therefore, de-regulation of differentiation-

associated pathway of CSCs, via modulation of proteins such as HDAC and Hsp90, is 

expected to be of great importance in cancer therapy.  

Histone deacetylase (HDAC)  

HDACs, along with HAT (histone actyltransferase), regulate gene 

transcription by controlling the number of acetyl groups on histones. To activate 

gene transcription, HAT neutralizes positive charges on histones by adding acetyl 

group on lysine and arginine. The N-terminal tail of histone, which is rich in lysine 

and arginine, is normally positively charged to bind to DNA, which are negatively 

charged. Acetylation of histone weakens the interaction between histones and DNA 

so that the transcriptional machinery consisting of RNA polymerase and 

transcription factors can access the loose segments of DNA to make the 

corresponding RNA. In contrast, the removal of acetyl groups by HDAC increases the 
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positive charges of histone tail, leading to the tight binding of DNA to chromatin.  

The increased interaction between DNA and histone thus condenses DNA, leading to 

transcriptional inactivation.  

Because activation of HDACs is associated with silencing differentiating 

genes in stem cells, inhibition of HDACs may reactivate the differentiation signals. 

This is illustrated and supported in a number of studies. Lee et al. reported that 

histone acetylation is required for the differentiation of mouse embryonic stem 

(MES) cells (101). Increase of histone acetylation using a HDAC inhibitor (TSA) 

promoted MES cells to a more differentiated status. Later, the study by Dovey et al. 

provide further evidence showing that HDAC1 but not HDAC 2 mediate the 

differentiation in MES cells (102). Knockout of HDAC1 enhances the differentiation 

of MES, accompanied by hyper-acetylation in Histone 3. Moreover, the same study  

reported that increased acetylation of histone 4 was observed during RA-induced 

Differentiation of mouse embryonic stem cells. In malignant cells, a number of 

studies support the use of HDAC inhibitors as differentiating therapies to treat 

various cancers (103-105). For instance, Göttlicher et al. illustrated the potential of 

a HDAC inhibitor, valproic acid (VPA), to inhibit colon, breast, and teratocarcinoma 

cancer cell lines by prompting differentiation (106). Also, Cinatl et al. reported that 

VPA induces differentiation of neuroblastomas cells, accompanied by reduced 

ability for metastasis. In this study, cells that underwent differentiation after 

treatment with VPA also lost the ability to penetrate endothelium, and thus could 

potentially reduce the incidence of metastases (107). All together, the capability of 
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HDAC inhibitors to stimulate differentiation on the basis of these reports warrants 

evaluating HDAC inhibitors as differentiating therapies against CSCs.  

CSCs transformed into non-stem like cancer cells via HDAC inhibition may be 

effectively targeted by currently available chemotherapies. On the strength of this 

proposal, the study by Milde et al. supports this poise showing that HDAC inhibitor 

(Vorinostate) is able to deprive the stem-like properties of ependymoma stem cells 

by inducing neuronal differentiation (108). Either direct elimination of CSCs or 

induction of differentiation of CSCs seem very promising and are warranted for 

more investigation.  

 
Heat shock protein 90 (Hsp90) 
 
 
1. HSP90 inhibitor in breast cancer 
 

Hsp90 (Heat-shock protein 90) is a chaperone molecule whose function 

includes regulating the stability and maturation of many oncogenic proteins 

including  Her2, EGFR, mutant ER, Hif-1α, Raf-1, Akt and mutant p53(ref). At 

present, more than 200 proteins have been identified as Hsp90 client proteins, some 

of which are involved in development and survival of tumors in various cancers 

(109). Moreover, many Hsp90 client proteins mediate a number of fundamental 

cellular processes, such as apoptosis, cell cycle control, cell proliferation, and 

differentiation (49-51), and most interestingly the regulation of CSC function (110-

112). In breast cancer, up-regulation of Hsp90 expression has been observed as 

compared to nonmalignant breast cells, particularly in poorly differentiated type of 
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breast carcinomas (113, 114). In addition, elevated Hsp90 expression strongly 

correlates with lymph node involvement and poor prognosis in patients with breast 

cancer (113-117). Diehl et al. analyzed specimens, including breast normal tissue, 

ductal carcinoma in situ, and invasive breast carcinomas using tissue microarray for 

Hsp90 levels. Their observation showed that the expression of cytoplasmic Hsp90 is 

significantly higher in ductal carcinoma in situ and invasive breast carcinomas as 

compared to normal breast tissue. There was no significant difference regarding the 

levels of nuclear Hsp90 among three types of breast carcinomas. However, 

significant correlation was found between the level of nuclear Hsp90 expression and 

the tumor-node-metastasis (TNM). TNM is a system to classify the stage of solid 

tumors based on the size of primary tumors, lymphatic involvement and the 

metastatic degree (118). The involvement of Hsp90 in cancer development is 

evident and presents as a potential target for cancer therapy. 

2. Function of Hsp90 

Hsp90 is a homo-dimeric protein, consisting of three conserved domains: a C-

terminal domain (CTD) responsible for dimerization, a N-terminal domain (NTD) for 

ATP binding, and a middle domain (MD) for client proteins binding (119), (120). In 

the chaperon cycle, ATP binding triggers the dynamic alternation of Hsp90 

conformation between the open and the close states. When ATP binds to Hsp90, 

NTD from each monomer come into contact with each other, much like two lids 

closing. Therefore, ATP-bound Hsp90 is referred as to the “closed” conformation. 

After ATP is hydrolyzed by Hsp90, NTDs move apart.  ADP-bound Hsp90 is thereby 

referred to as the “open” conformation.  
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The interaction between Hsp90 and its clients requires other co-factors, such as 

Hsp70, Hsp40 and Hop (Figure 2.6). A newly synthesized client protein first binds to 

a complex consisting of Hsp70 and Hsp40, and then Hop mediates the binding of the 

complex to Hsp90 in the open state. Upon hydrolysis of ATP on Hsp90, Hsp90 re-

arranges itself into the closed conformation. Subsequently, Hsp90 complex forms a 

late complex with other co-chaperones including p23, p50, cdc37 and 

immunophilins (IP), that catalyzes the conformational maturation of the Hsp90 

client proteins (121, 122). Once client proteins are folded correctly, they are 

released from Hsp90. In addition, the speed of Hsp90 chaperone cycle is regulated 

by co-factors. For instance, activator of Hsp90 ATPase (Aha1) accelerates the 

chaperone cycle by promoting the hydrolysis of ATP. The direct binding of Aha1 to 

MD of Hsp90 enhances the activity of ATPase by stabilizing the interaction between 

CTD and NTD of Hsp90 (122-125).  
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Figure 2.6 The Hsp90 chaperoning cycle. The Hsp90 chaperoning cycle is a dynamic 
process in which client proteins bind to Hsp90 in an intermediate complex 
containing the co-chaperones Hsp70, Hsp40, Hip and Hop. Upon ATP binding and 
hydrolysis, Hsp90 forms a mature complex, containing p23, p50/cdc37 and 
immunophilins (IP), which catalyzes the conformational maturation of Hsp90 client 
proteins. Hsp90-inhibitor drugs, such as geldanamycin (GM), bind to the N-terminal 
ATP-binding pocket of Hsp90 and inhibit ATP binding and hydrolysis, thereby 
locking Hsp90 in the intermediate complex. The client protein is subsequently 
ubiquitinated (possibly by a E3 ubiquitin ligase) and targeted to the proteasome for 
degradation (122) 

 

3. Hsp90 inhibitors in breast cancer therapy  

Because Hsp90 is involved in stabilizing a broad spectrum of oncogenic proteins, 

agents that target Hsp90 have become a major focus in cancer research. The reason 

for much focus is that, by simply targeting a single protein, multiple oncogenic 

pathways can be inhibited. In particular, Hsp90 inhibition via blocking of ATP 
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binding has been extensively studied, in both pre-clinical and clinical settings. A 

natural product, Geldanamycin (GA), is the first such compound (126). GA directly 

binds to and occupies the ATP-binding pocket in the NTD of Hsp90 to blocks the 

binding of ATP. As a result, Hsp90 client proteins cannot achieve the proper 

conformation, which then are degraded by proteasome. In pre-clinical settings, GA 

proved to be a potent inhibitor of Hsp90 and showed great promise as a novel agent 

for cancer therapy (127-130). 

Despite the fact that GA displayed the great potency in Hsp90 inhibition, 

significant hepatic toxicity (ref) associated with GA lead to the need for less toxic 

derivatives. Two such derivatives have gained significant interest, which are 17-

allylamino-17-demethoxygeldanamycin (17AAG) and the water soluble analogue of 

17AAG, 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). 

These agents have been formulated for clinical trials, which are Tanespimycin (17-

AAG, KOS-953; Bristol-Myers Squibb, New York, NY, USA) and IPI-504 (Infinity 

Pharmaceuticals, Cambridge, MA, USA). Tanespimycin, considered a first-generation 

geldanamycin derivative, has demonstrated robust anti-tumor activity in preclinical 

models of HER2-positive breast cancer (131). In accordance with Tanespimycin, the 

other formulation of 17AAG, IPI-504, showed antitumor activity in preclinical 

setting, causing simultaneous degradation of multiple oncogenic proteins (e.g. 

HER2, Akt, p-Akt, and p-MAPK). IPI-504 has also been found to display antitumor 

activity against pancreatic cancer xenografts and is a promising compound against 

gastrointestinal stromal tumors of platelet-derived growth factor receptor-α 
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mutant.  The advent of the less toxic derivatives revived the notion of Hsp90 

inhibition as a viable approach to cancer therapy. 

More importantly, Hsp90 inhibitors in combination with currently existing 

therapy have shown to be an effective cancer treatment strategy in recent 

preclinical studies and clinical trials. IPI-504 in combination with trastuzumab was 

able to re-sensitize Her2-positive breast cancer that is refractory to Herceptin® 

(132). Furthermore, a recent phase II trial of tanespimycin (17-AAG) in combination 

with Herceptin® was conducted in patients with HER2-positive metastatic breast 

whose disease had previously progressed while on Herceptin® treatment. 

Interestingly, co-administration re-sensitized these tumors to therapies and showed 

a great tumor response (133, 134). More Hsp90 inhibitors, such as IPI-504 and 

AUY922 (Novartis, Cambridge, MA, USA), are currently under evaluation in early-

phase clinical trials as single agents or in combination with trastuzumab.   
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Chapter 3 
 

Hsp90 inhibitor 17-(Allylamino)-17-Demethoxygeldanamycin Targets Breast 

Cancer Stem Cells 

 

Abstract  

 

The relative resistance of breast cancer stem cells (CSCs) to chemotherapies 

highlights the need to develop new agents to target this cell population. The present 

study suggests that 17-(Allylamino)-17-Demethoxygeldanamycin (17AAG), a Hsp90 

inhibitor, targets breast CSCs, identified using the Aldefluor assay, in vitro and in 

mouse xenografts at low doses. Breast Aldefluor-positive cells, which are known to 

display stem cell properties, exhibited a seven-fold higher sensitivity to Hsp90 

inhibition in vitro than the bulk population of breast cancer cells. Low 

concentrations of 17AAG (5-10 nM) reduced the amount of Aldefluor-positive cells 

by more than 50% and inhibited their tumorsphere formation rate. In mice, low-

dose of 17AAG (5 mg/kg) reduced the number of Aldefluor-positive cells in 

xenografts generated from human primary breast cancer MC1 cells by 60%. In 

addition, 17AAG was shown to impair the tumorigenicity of residual Aldefluor-

positive cells in secondary implantation in NOD/SCID mice. The western blot 

analysis and LEF-1/TCF reporter assay suggested that the inhibition of Aldefluor-

positive cell growth by 17AAG involves the dysregulation of Akt/β-catenin/Wnt 
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signaling, which is known to be a vital CSC survival pathway. To our knowledge, the 

current study is the first to investigate the efficacy of 17AAG on the breast CSC-like 

Aldefluor-positive cells. The findings of this study propose the inhibition of CSC as a 

new approach to evaluate the clinical importance of Hsp90 inhibitors for breast 

cancer therapy.   
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Introduction 

 

Cancer stem cells (CSCs) are defined by their unlimited potential to initiate 

tumors and are strongly associated with cancer relapse, metastasis, and resistance 

(1, 2). Conventional chemotherapies designed to eliminate the proliferative and 

differentiated cancer cells are ineffective against the quiescent and undifferentiated 

CSCs. As a result, resistant CSCs can potentially reinitiate tumors despite otherwise 

effective chemotherapies (2-4). The lack of effective treatments against tumor 

recurrence and metastasis mediated by CSCs clearly demonstrates a need for new 

therapeutic approaches to target this population (5).  

Heat shock protein 90 (Hsp90) is well established as a key target for the 

treatment of various cancers, due to its involvement in the regulation of multiple 

oncogenic pathways. Hsp90 over-expression in breast cancer has been associated 

with both tumor aggressiveness and poor prognosis (6-8). Hsp90 is an essential 

molecular chaperone for a wide variety of oncogenic proteins, including Akt, Her2, 

MEK and HIF-1α (9-12). The involvement of Hsp90 in multiple oncogenic pathways 

provides a key target for drug development in cancer therapy.   

17-(Allylamino)-17-Demethoxygeldanamycin (17AAG) is a Hsp90 inhibitor 

that has been studied extensively as an effective agent against a variety of tumors in 

preclinical models (13-15). However, 17AAG as a single agent has produced little 

clinical response in human, as tolerable doses proved inefficient at inducing tumor 

regression. A recent phase II clinical report by Gartner et al. indicated that 17AAG 

alone had no tumor response, and induced grade 3 and 4 toxicities in patients with 
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metastatic or advanced breast cancer (16). As off-target toxicities may result from 

the quinine moiety in 17AAG, many efforts have been made to develop less toxic and 

more efficacious Hsp90 inhibitors. For instance PU-H71, a purine-scaffold Hsp90 

inhibitor, has been demonstrated to induce complete tumor response in a triple-

negative breast cancer without inducing toxicity (17). Therefore, dose limiting 

toxicities (DLTs) are the major obstacles hindering the clinical development of 

17AAG.  

Resistance of CSCs to currently available therapies poses tumor reoccurrence 

as a major challenge in the treatment for cancers. Studies have shown a number of 

Hsp90 client proteins (Akt, Her2, p53, HIF-1α) to be involved in the regulation of 

CSC-associated signaling pathways. Through the inhibition of multiple Hsp90-

mediated signaling pathways, 17AAG may provide a novel strategy to target CSCs 

and prevent tumor reoccurrence. This notion was substantiated by several recent 

studies in bladder cancer (18) and glioblastoma multiforme (11). However, little 

work has been performed evaluating the efficacy of 17AAG on the CSC population in 

breast cancer. 

In this study, the inhibitory effects of 17AAG on breast CSCs, their self-

renewal ability, and the mechanism underlying the 17AAG-mediated CSC inhibition, 

were evaluated using in vitro and in vivo assays. The data showed that 17AAG 

significantly reduced the number of CSC-like cells, as determined by the Aldefluor 

assay, and damaged their self-renewal capability. Compared to differentiated cells, 

17AAG eliminated Aldefluor-positive cells at a 7-fold lower concentration. Lastly, 

our findings indicate that dysregulation of the Akt/β-catenin/Wnt self-renewal 
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pathway is associated with the inhibition of Aldefluor-positive cells by 17AAG. 

Taken together, our findings suggest further investigation is warranted for the use 

of low doses of 17AAG as a possible treatment option for inhibiting breast CSCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

53 

 

 

Methods 

 

Cell Lines and Reagents 

The SUM159 cell line (ER-, PR-, and Her2-) was originally obtained from Dr. 

Stephen Ethier (Karmanos Cancer Center, Detroit, Michigan); MCF7 cell line (ER+, 

PR+, and Her2-) was originally purchased from American Type Culture Collection 

(19). SUM159 cancer cells were maintained in Ham's F12 medium supplemented 

with 5% fetal bovine serum, 5 µg/ml insulin, 1 µg/ml hydrocortisone, 1% 

antibiotic/antimycotic (10,000 units/ml penicillin G sodium, 10,000 µg/ml 

streptomycin sulfate, 25 µg/ml amphotericin B), and 20 µg/ml gentamycin. MCF7 

cancer cells were maintained in RPMI1640 supplemented with 10% fetal bovine 

serum, 1% antibiotic-antimycotic, and 5 μg/ml insulin. The cells were maintained in 

culture at 37 °C and 10% CO2. 17AAG was purchased from LC Laboratories 

(Woburn, MA). Propidium iodide (PI) was obtained from Invitrogen (Carlsbad, CA). 

BIO was obtained from EMD Biosciences (San Diego, CA). DAPI (4’-6-Diamidino-2-

phenylindole) was purchased from Sigma-Aldrich (St. Louis, MO). Matrigel and anti-

H2Kd antibody were purchased from BD Biosciences (San Jose, CA). Antibodies 

against phospho-AktSer473, Akt, and phospho-GSK3βSer9 were purchased from Cell 

Signaling Technology (Danvers, MA). Antibodies against β-Actin and Cyclin D1 were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). ALDH1 antibody was 

obtained from BD Transduction Laboratory (Franklin Lakes, NJ). Active-β-catenin 

(anti-ABC) clone 8E7 mouse monoclonal antibody was obtained from the Millipore 
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Corporation (Billerica, MA). Antibodies against CD44 and CD24 were purchased 

from BD Biosciences (San Jose, CA). 

   

MTS Cell Proliferation Assay  

SUM159 cancer cells were seeded into 96 well microplates (3,000 cells per 

well). Cells were treated with increasing concentrations of 17AAG (0.001–1 μM). 

After 48 hrs, cell viability was assessed by the MTS assay (Promega, Madison, WI) 

according to the manufacturer’s instructions. Cellular IC50 was defined as the 

concentration of 17AAG necessary to decrease the viability of the cells to 50% 

compared to DMSO-treated cells (control).  

 

Aldefluor Assay and Flow Cytometry Analysis  

The Aldefluor assay was carried out according to the manufacturer’s protocol 

(Stemcell Technologies, Vancouver, BC). For both in vivo and in vitro studies, an 

Aldehyde Dehydrogenase 1 (ALDH1) substrate, BODIPY-aminoacetaldehyde (BAAA), 

was added to a single cell suspension at a concentration of 1.5 µM, which was then 

incubated for 40 min at 37 °C. Additionally, a portion of cells was incubated with a 

10-fold molar excess of an ALDH1 enzyme inhibitor, diethylamino benzaldehyde 

(DEAB), with BAAA and incubated similarly for 40 min. After Aldefluor staining, 

cells were washed with HBSS containing 2% fetal bovine serum. Subsequently, cells 

were stained with 1 µg/ml PI or DAPI to exclude non-viable cells. Flow cytometry 

was performed at the University of Michigan Cancer Center Flow Cytometry Core. 
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Data analysis was performed with the software program WEASEL (Walter and Eliza 

Hall Institute of Medical Research).   

 

CD44/CD24 staining and flow cytometry 

To assess the effect of 17AAG on the CSC-like cells, characterizing by 

CD44+/CD24-, MCF7 were treated with 5-10 nM 17AAG for three days and then 

subjected to CD44 and CD24 staining according to the manufacture’s protocol (20). In 

brief, cells were re-suspended in phosphate-buffered saline supplemented with 0.5% fetal 

bovine serum (1×10
6
 cells/50 μl). CD24-PE and CD44-APC (BD Biosciences, San Jose, 

CA) were added to the cell suspension and incubated at 4°C in the dark for 20 min. 

Subsequently, cells were stained with 1µg/mL DAPI to exclude non-viable cells. The 

identification was performed using flow cytometry at the University of Michigan Cancer 

Center Flow Cytometry Core.  Data analysis was performed with the software program 

Weasel (Walter and Eliza Hall Institute of Medical Research).   

 

Tumorsphere Formation 

SUM159 and MCF7 Aldefluor-positive cells were plated onto ultralow-

attachment 96 well plates (Corning, Corning, NY) at a density of one cell per well. 

Tumorspheres were treated with 1-10 nM 17AAG and cultured for seven days in a 

serum-free mammary epithelial basal medium (MEBM) (Cambrex Bio Science 

Walkersville, Inc.) supplemented with B27 (Invitrogen, Carlsbad, CA), 20 ng/ml EGF 

(BD Biosciences, San Jose, CA), 1% antibiotic-antimycotic (100 unit/ml penicillin G 

sodium, 100 µg/ml streptomycin sulfate and 0.25 μg/ml amphotericin B), 20 µg/ml 

http://www.wehi.edu.au/index.html
http://www.wehi.edu.au/index.html
http://www.wehi.edu.au/index.html
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Gentamycin, 1 ng/ml hydrocortisone, 5 μg/ml insulin, and 100 μM beta-

mercaptoethanol (Gibco Invitrogen, Carlsbad, CA) in a humidified incubator (10% 

CO2, 37 °C). Primary tumorspheres were collected, washed, and enzymatically 

dissociated into single cell suspensions for subsequent passages. Single cell 

suspensions were plated onto ultralow-attachment 96 well plates at low cellular 

densities of less than five cells per well, and cultured in the absence of drug 

treatment. Tumorsphere formation rate was denoted as the ratio of the number of 

tumorspheres to the number of seeded cells. 

 

Tumor Tissue Dissociation 

The excised tumors from mice were enzymatically dissociated to obtain 

single cell suspensions, as previously described (20). In brief, tumors were minced 

finely with scalpels and incubated in Medium 199 containing 10% 

collagenase/hyaluronidase (StemCell Technologies, Vancouver, BC) at 37 °C for 30 

minutes. Filtered (40 μm filter, BD Biosciencies, San Jose, CA) single cell suspensions 

were centrifuged (1500 rpm at 4°C) and pellets were resuspended in PBS for the 

Aldefluor assay and tumor re-implantation.  

 

Tumor Xenograft Model and Re-implantation 

All experiments involving mice were approved by the University Committee 

on the Use and Care of Animals at the University of Michigan. To evaluate the effect 

of 17AAG treatment on tumor growth in vivo, breast cancer xenografts generated 

from SUM159 cells and a primary human breast cancer (MC1) were used. MC1 has 
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previously been characterized as triple-negative (ER-, PR- and Her2-) (20). SUM159 

or MC1 cells mixed with Matrigel (50%, v/v) were injected into the fourth 

mammary fat pads of four-week-old NOD/SCID mice (Jackson Laboratories, Bar 

Harbor, MI).  Mice bearing SUM159 tumors received either the vehicle (1:1 (v/v) 

mixture of DMSO and ethanol) or a medium-dose 17AAG (35-50 mg/kg) three times 

a week for two and a half weeks. Mice bearing MC1 tumors received the vehicle or a 

low-dose 17AAG (5 mg/kg) three times a week for three weeks. Tumor size was 

measured twice a week.  

Tumor re-implantation was conducted as previously described (20, 21). In 

brief, single cell suspensions were stained with DAPI for viability assessment. The 

recovered live cells were stained with anti-H2Kd antibody to distinguish human 

breast cancer cells from mouse cells. Viable SUM159 or MC1 cells derived from mice 

treated with 17AAG or the vehicle were injected into the fourth inguinal mammary 

fat pad of secondary NOD/SCID mice. Tumor growth was measured weekly.  

 

Western Blotting 

Unsorted SUM159 cells were treated with 0.1-2 µM 17AAG for two days 

under adherent conditions. Then, Aldefluor-positive SUM159 cells were sorted into 

6-well ultralow-attachment plates (Corning) at a cellular density of 1x105 cells/well 

and cultured in non-adherent conditions for three days in the presence of 5-500 nM 

17AAG. At the end of each culture period, total cell lysates were prepared and total 

protein were quantified with BCA protein assay reagents (Pierce, Rockford, IL). 

Equal amounts of proteins were separated on a Tris-glycine 4-15% gradient precast 
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gel (Bio-Rad, Hercules, CA), transferred to a PVDF membrane, and then blocked with 

5% BSA. The Immobilized proteins were probed with Akt, phospho-Akt, GSK3β, 

phospho-GSK3β, Active-form β-catenin (ABC), Cyclin D1, ALDH1, and β-Actin 

primary antibodies. 

 

LEF-1/TCF TOP-GFP Reporter 

The MCF-7 cell line was used for the LEF-1/TCF TOP-GFP Reporter assay. 

MCF-7 cells transfected with the reporter genes were cultured in the presence of 

either 10 nM 17AAG, 300 nM BIO, or 10 nM 17AAG plus 300 nM BIO for three days 

under non-adherent conditions. The tumorspheres were dissociated as described 

above, stained with DAPI for viability, and analyzed for the portion of GFP-positive 

cells by flow cytometry. Meanwhile, parental MCF-7 cells were used as a negative 

control to gate for the GFP-positive cell population.   

Statistical Analysis 

The Student t-test was used to perform statistical analysis. Data are 

presented as the mean ± 2SD (n ≥ 3). All p values are two-tailed. 
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Results 

 

Aldefluor-positive cells were sensitive to Hsp90 inhibition by 17AAG in vitro 

The effect of Hsp90 inhibition on CSCs was evaluated by measuring the 

changes in the Aldefluor-positive cell numbers after 17AAG treatment (Figure 3.1A). 

Two common approaches to identify breast CSCs are CD44 and CD24 antibody 

staining and Aldefluor assay. However, SUM159 cells are known to be rich with the 

CD44+/CD24- phenotype (>90%) regardless of the presence of the stem cell 

population (22). Therefore, this assay does not effectively identify CSCs in SUM159 

cells. In contrast, Aldefluor assay has previously been demonstrated by Ginestier et 

al. to effectively identify CSC and progenitor cell population in breast carcinomas 

(20). For this reason, Aldefluor assay was chosen to identify breast CSCs in SUM159 

cells. SUM159 cells were cultured for three days in the presence of 1, 5 and 10 nM of 

17AAG or DMSO control. Consistent with percentages previously reported for this 

cell line (9, 23), an average of 5% of the control-treated SUM159 cells were 

Aldefluor-positive. Strikingly, concentrations as low as 5 nM 17AAG reduced the 

percentage of Aldefluor-positive cells to 1.88%, a 60% reduction as compared to the 

control cells (p<0.05) (Figure 3.1B). At 10 nM 17AAG, there was a 64% reduction in 

Aldefluor-positive cells as compared to the controls (p<0.01). Importantly, low 

concentrations of 17AAG (5-10 nM), which effectively inhibited Aldefluor-positive 

cells, had little effect on the bulk population of cancer cells (IC50 = 35 nM for the bulk 

population of SUM159 cell line) (Figure 3.1C). These findings indicate that 



 

60 

 

 

Aldefluor-positive cells from breast cancer are more susceptible to 17AAG 

treatment than differentiated cancer cells. 

 

17AAG impaired tumorsphere formation and proliferation of Aldefluor-

positive cells in vitro 

We examined the changes in the tumorsphere formation rate and the sphere 

size of Aldefluor-positive cells in response to 17AAG treatment. Measurement of 

tumorsphere formation rate and the sphere size via serial passaging of 

tumorspheres under non-adherent conditions are established surrogate method for 

evaluating the self-renewal capabilities of mammary stem cells and CSCs and the 

proliferative capabilities of progenitor cells (9, 24). Furthermore, only CSCs and 

their progenitor cells have been reported to survive in non-adherent conditions 

through formation of tumorspheres (25). When Aldefluor-positive SUM159 cells  

were treated with 5-10 nM 17AAG for seven days, 17AAG reduced the tumorsphere 

formation rate of SUM159 cells by 50% and 74% (n=3), respectively (Figure 3.2A).  

In order to examine whether 17AAG induces permanent self-renewal 

impairment of CSCs, primary tumorspheres were propagated for an additional 

passage. Single cell suspensions derived from 17AAG- and DMSO-treated primary 

tumorspheres were re-plated at a density of less than five cells per well and 

cultured in the absence of 17AAG or DMSO for seven days. Remarkably, secondary 

tumorsphere formation rate from 17AAG-treated cells was reduced to an even 

greater extent (76% and 90% in 5 nM and 10 nM 17AAG, respectively, n=3) than 

what was observed in the primary passage (50% and 74% in 5 nM and 10 nM, 
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respectively) (Figure 3.2A). The data suggests that 5-10 nM 17AAG induces long-

lasting impairment of self-renewal ability in the Aldefluor-positive cells. 

 In addition, the sizes of the derived tumorspheres, quantified with ImageJ, 

were substantially reduced by 60 and 80% in area at 5 nM and 10 nM 17AAG, 

respectively (n=1) (Figures 3.2B). This suggests that 17AAG treatment reduces the 

proliferative capability of breast cancer progenitor cells. 

Additionally, in order to examine if these results can be extended to breast 

CSCs found in other phenotypes besides basal breast cancer, Aldefluor-positive cells 

from the luminal breast cancer cell line MCF7 (ER+/PR+/Her2-) were treated with 

17AAG as described above. Consistent with our results using SUM159, 17AAG 

significantly abrogated primary tumorsphere formation by 60% (n=3) at a 

concentration of 5 nM (Figure 3.2C). Furthermore, as previously seen with SUM159, 

reduction in secondary tumorsphere formation rate under drug-free conditions was 

more pronounced (74% reduction, n=3) than what was seen in the primary passage 

(60%). Lastly, the sizes of primary and secondary tumorspheres decreased by 72% 

and 60% in area, respectively, at 5 nM 17AAG (n=1) (Figure 3.2D). Taken together, 

these data show that 17AAG diminishes the self-renewal capability of Aldefluor-

positive cells and their progenitor proliferation regardless of their phenotype. 

 

17AAG treatment reduced the amount of Aldefluor-positive cells and their 

tumor engraftment efficiency in mouse xenografts 

In order to verify the in vitro findings of 17AAG inhibition, SUM159 tumor 

xenografts were generated in NOD/SCID mice (21, 26). Numerous reports have 
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shown that in vitro techniques may not be adequate to estimate the effectiveness of 

potential therapeutic compounds, likely due to oversimplified culture systems that 

fail to account for the microenvironment-mediated resistance to treatment (2, 27). 

The treatment group (n=5) received a medium dose of 35 mg/kg 17AAG via I.P. 

injection, three times a week for two weeks, followed by 50 mg/kg dose for another 

half-week.  

The choice of dose and schedule were based on previous studies in mouse 

xeografts bearing various tumor types, where doses ranging from 20 to 100 mg/kg 

were used. During the course of our experiment, 35 mg/kg 17AAG only modestly 

reduced tumor growth. For this reason, we increased the dose to 50mg/kg for the 

last two treatments. Dose was increased to ensure that tumor size reduction would 

be observed, as tumor size was the only feasible assessment for the efficacy of 

17AAG during treatment. The tumor size reduction is expected to reflect the effect of 

17AAG on the differentiated cells rather than Aldefluor-positive cells. However, 

greater sensitivity of Aldefluor-positive cells to the drug in vitro suggested that if 

inhibitory effect is observed on the differentiated cells, then Aldefluor-positive cells 

are inhibited as well. The control group (n=5) received a vehicle with the same 

dosing schedule. At the end of the experiment, animals were sacrificed and the 

tumors were analyzed. A 31% reduction in tumor growth was observed in 17AAG-

treated mice as compared to vehicle-treated mice (Figure 3.3A). Aldefluor analysis 

of the tumors showed that 17AAG-treated mice had a 70% reduction in the 

percentage of Aldefluor-positive cells compared to vehicle-treated mice (n=5 for 
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each group) (Figures 3.3B and 3.3C). These data suggest that 17AAG is able to 

reduce the number of Aldefluor-positive cells in vivo.  

To confirm the 17AAG-mediated self-renewal impairment in Aldefluor-

positive cells in vivo, residual tumor cells from drug- or vehicle-treated primary 

mice were re-implanted into secondary mice to assess tumor engraftment efficiency. 

Tumor engraftment efficiency is defined as the ability of residual CSCs after drug 

treatment to initiate tumors in secondary mice and is commonly used to evaluate 

the in vivo self-renewal ability of breast CSCs (26, 28). Tumor engraftment efficiency 

was evaluated based on the time from cell implantation to tumor detection and the 

subsequent rate of tumor growth. Re-implantation of 50,000 cells from vehicle-

treated mice led to a detectable formation of tumors by week two with a growth rate 

of 1.63mm/week (Figure 3.3D). In contrast, re-implantation of cells from 17AAG-

treated mice took an additional four weeks to develop detectable tumors (week six), 

showing a two-fold reduction in growth rate (0.77 mm/week). Re-implantation of 

5,000 cells from vehicle-treated mice formed palpable tumors in week four with a 

growth rate of 1.07 mm/week, while those from 17AAG-treated mice did not form 

tumors in the 10 week period (Figure 3.3D). These findings indicate that 17AAG 

treatment significantly reduces the tumor engraftment efficiency and tumor growth 

of the remaining Aldefluor-positive cells. 

 

Low-dose 17AAG reduced the Aldefluor-positive cell population in primary 

tumor xenografts 
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Because Aldefluor-positive cells were seven-fold more sensitive to 17AAG as 

compared to differentiated cells in vitro, we further investigated whether 17AAG can 

inhibit breast Aldefluor-positive cells at lower dose of 5 mg/kg in vivo. Primary 

human breast cancer xenografts were generated in mice using MC1 cells, which are 

cells derived from a patient with metastatic breast cancer (29). Mice bearing MC1 

tumors were treated with 5 mg/kg 17AAG or the vehicle three times a week for 

three weeks.  Compared to the vehicle-treated mice, 17AAG treated mice (n=5) 

displayed a 60% reduction in tumor volume (Figures 3.4A and 3.4B). After three 

weeks of treatment, mice were sacrificed and the tumors were analyzed with 

Aldefluor assay. Treatment with 17AAG resulted in a 60% reduction of Aldefluor-

positive cells in the excised tumors (n=5) compared to controls (Figure 3.4C and 

3.4D).  

To investigate the effect of 17AAG on the self-renewing potential of the 

residual Aldefluor-positive cells in the primary human breast cancer xenografts, 

tumor engraftment efficiency was evaluated using the tumor re-implantation assay. 

Tumor cells derived from vehicle- or 17AAG-treated mice with primary human 

breast cancer xenografts were injected into the fat pads of secondary NOD/SCID 

mice at 2,000 or 20,000 cells per re-implantation. All mice (n=4) implanted with 

tumor cells from vehicle-treated mice (2,000 and 20,000 cells) developed palpable 

tumors in secondary NOD/SCID mice within four weeks (Figure 3.5A). In contrast, 

100% of mice (n=4) receiving 2,000 cells from 17AAG-treated mice remained 

tumor-free, and 75% of mice receiving 20,000 tumor cells remained tumor-free 

(Figure 3.5B). These results support our in vitro findings, and demonstrate that 
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doses as low as 5 mg/kg can reduce Aldefluor-positive cells and inhibit the tumor-

initiating potential of the residual cells.  

 

Inhibition of Aldefluor-positive cells by 17AAG is mediated by the Akt/β-

catenin/Wnt Pathway 

The co-chaperone function of Hsp90, which stabilize its client proteins 

including Akt, is instrumental in cancer progression. Additionally, Akt has been 

shown to facilitate the activation of the β-catenin/Wnt pathway, which regulates 

mammary stem cell proliferation and self-renewal (21). We therefore examined the 

effect of 17AAG treatment on the levels of Akt and its associated proteins in SUM159 

cells. Because unsorted SUM159 cells cultured under adherent conditions are 

mainly differentiated (>90%), the unsorted cells were used to represent the 

differentiated population. To obtain an accurate representation of the CSC 

population, sorted Aldefluor-positive cells were cultured under non-adherent 

conditions to prevent differentiation. To validate that non-adherent culture 

adequately delayed differentiation, we stained the cultured cells for ALDH1 

expression. High expression levels of ALDH1 observed in both DMSO- and 17AAG-

treated Aldefluor-positive cells, compared to the differentiated cells, indicated that 

the Aldefluor-positive cells remained undifferentiated after the three-day treatment 

period (Figure 3.6A). Strikingly, 10 nM of 17AAG downregulated phospho-Akt, 

phospho-GSK3β, and active β-catenin by more than 70% in Aldefluor-positive cells 

compared to DMSO-treated cells (Figure 3.6A). In the differentiated population, 10-

fold greater concentration of 17AAG, at 0.1 µM, demonstrated a similar reduction of 
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these protein levels (33-70%) after a two-day treatment (Figure 3.6B). Cyclin D1, a 

β-catenin transcriptional target gene, was also reduced by 47% in response to the 

reduction of active β-catenin in Aldefluor-positive cells. Because β-catenin is an 

essential component of Wnt signaling, the depletion of β-catenin implies that Hsp90 

inhibition with 17AAG suppresses Wnt signaling. 

To provide further evidence that the 17AAG-mediated reduction of β-catenin 

leads to an inhibition of β-catenin/Wnt signaling, MCF7 cells transfected with LEF-

1/TCF-driven GFP reporter were utilized to monitor the β-catenin transcriptional 

activity. The ability of 17AAG to eliminate the CSC-like population of the MCF7 cells 

and inhibit their self-renewal was verified prior to carrying out the report assay 

(Figure 3.7 and Figure 3.2C and 3.2D). Cells transfected with the LEF-1/TCF-GFP 

reporter system were treated with 17AAG in a non-adherent condition for three 

days to form tumorspheres. Following the dissociation of tumorspheres, the 

quantity of GFP-positive cells was analyzed by flow cytometry. Upon three-day 

treatment, 10 nM 17AAG reduced the percentage of GFP-positive cells by 40% as 

compared to treatment with DMSO, which indicated a reduction in β-catenin (n=3). 

In addition, this inhibition by 17AAG was reversed using a GSK3β inhibitor, BIO 

(Figure 3.6C). This data suggests that 17AAG-mediated β-catenin inhibition indeed 

occurs through upstream Akt regulation.  
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Discussion 

 

 Conventional chemotherapies, which target the bulk tumor population, can 

cause tumor regression but fail to eradicate CSCs (2-4). As a result, the remaining 

CSCs can regenerate tumors through self-renewal and contribute to tumor relapse. 

This may explain the observation that tumor regression correlates poorly with 

patient survival for breast and many other cancers (30-32). Thus, effective ways to 

target the CSC population are necessary in order to significantly extend survival in 

cancer patients. Furthermore, simply diminishing the number of CSCs may not be 

sufficient to successfully treat cancers, since residual CSCs can still reinitiate tumor 

growth. Hence, a more comprehensive approach for inhibiting CSCs would be 

completely eliminate CSCs, or one that reduces the number of CSCs and also 

diminishes their self-renewal capacity.  

 The results of the current study provide evidence to suggest 17AAG is an 

effective therapy to target the CSC-like Aldefluor-positive cells in breast cancer. 

Treatment with 17AAG significantly decreased the number of Aldefluor-positive 

cells and impaired their self-renewing capacity in SUM159 and MCF7 cells in vitro. 

The ability of 17AAG to eliminate Aldefluor-positive cells was further verified in 

SUM159 and MC1 xenografts. The MC1 xenograft model was used in our study 

because it is triple-negative (ER-, PR- and Her2-), which is similar to SUM159, and 

has been used in a previous study regarding breast cancer stem cells (20). A 70% 

reduction of Aldefluor-positive cells was observed after treatment with 17AAG (35-

50 mg/kg). More importantly, similar efficacy (60% reduction) was observed with a 
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low dose treatment (5 mg/kg). Lastly, the capability of 17AAG to impair self-

renewal was confirmed in vivo, as re-implantation of 17AAG-treated SUM159 and 

MC1 tumor cells into secondary mice showed a considerable delay of tumor 

initiation and an increased number of tumor-free mice.  

Based on the presented data, 17AAG may be expected to be effective against 

CSCs at doses that are significantly lower than the previously studied doses. In 

previous preclinical studies using mouse xenografts, efficacy in a variety of tumor 

types was observed only at medium to high doses (25-100 mg/kg) (33-35). 

However, the studies focused only on the reduction of bulk tumor size, rather than 

inhibition of CSCs. A pharmacokinetic study by Xu et al. (36) reported that the 

intravenous administration of 40 mg/kg of 17AAG gave rise to peak concentrations 

of approximately 10 µM and 1 µM in plasma and tumor sites, respectively. According 

to the above finding, the dose required to reach the concentration effective against 

CSCs (5-10 nM) can be expected to be much less than the previously studied dose. 

Illustrating this concept, the result of the present study shows that doses as low as 

5mg/kg effectively inhibits Aldefluor-positive cell growth and self-renewal 

capability in mice. Although the effective doses vary between cell types in mouse 

xenografts, the study suggests 17AAG effectively targets CSC-like cells at doses that 

are significantly lower than those reported in literature, which may avoid toxicities 

in human. 

While we demonstrated 17AAG could target breast CSC-like cells, this study 

implies that 17AAG may be clinically effective only when used in combination with 

other therapies. Indeed, clinical trials have found 17AAG has poor tumor responses 
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at clinically used doses when used by itself due to dose-limiting toxicities (DLTs) 

(16). However, in clinical trials, efficacy is assessed using Response Evaluation 

Criteria in Solid Tumors (RECIST), which are based on shrinkage of tumor size. 

Tumor shrinkage largely reflects changes in the differentiated cell population rather 

than the rare CSC population. Therefore, the failure of previous clinical trials using 

17AAG, which were dependent on RECIST, cannot be used to predict its efficacy 

against CSCs (37, 38). Consistent with these clinical trials, our study has shown that 

17AAG treatment at low to medium doses causes only cytostatic arrest of tumor size, 

rather than tumor regression. Therefore, the low dose 17AAG therapy would best be 

used in combination with an effective conventional treatment strategy, which 

targets the bulk cell population to reduce tumor size. A recent clinical trial 

combining 17AAG with Herceptin in HER2-positive metastatic breast cancer was 

successful, illustrating the potential effectiveness of a 17AAG combination therapy 

(39). Our study suggests a novel treatment method, utilizing conventional 

chemotherapy in combination with minimal doses of Hsp90 inhibitors. 

The present study also provides insight into the inhibitory mechanism of 

17AAG on the CSCs, and suggests 17AAG is an inhibitor of Akt/β-catenin signaling. 

Akt-mediated phosphorylation of GSK3β is known to inhibit the kinase activity of 

GSK3β (40). On the other hand, the non-phosphorylated active form of GSK3β is 

known to inhibit the β-catenin/Wnt pathway by inducing β-catenin degradation 

(41). These observations suggest that inhibition of Akt will lead to an increase in the 

non-phosphorylated active GSK3β, which in turn leads to degradation of β-catenin 

and inhibition of the β-catenin/Wnt pathway. Furthermore, a study by Korkaya et al. 
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has established the role of Akt in regulating Wnt/β-catenin signaling using 

mammary stem cells (21). This study showed that breast cancer tumorspheres, 

which are enriched with CSCs, had higher levels of phospho-Akt, phospho-GSK3β 

(inactive form) and β-catenin, as compared to differentiated cells. When these 

tumorspheres were treated with an Akt inhibitor, perifosine, reductions in the levels 

of inactive phospho-GSK3β and nuclear β-catenin levels were observed. To reverse 

the effects of Akt inhibition by perifosine, the investigator treated the cells with a 

GSK3β inhibitor, BIO, in addition to perifosine. Addition of BIO resulted in an 

increased level of nuclear β-catenin, which indicated increased Wnt/β-catenin 

signaling activity. The findings above are further corroborated by the observation in 

our study that the expression level of Cyclin D1, a transcriptional target of β-catenin, 

is reduced in response to 17AAG. In addition, a number of studies have shown that 

the constitutive activation of Akt is associated with the expansion of CSCs in thyroid 

(42), breast (9, 21), brain (43), colon (44) and prostate (45) cancers. Also, studies 

have shown the role of Hsp90 in stabilizing Akt and phospho-Akt (46-48). As Hsp90 

inhibition ultimately results in the disruption of multiple pathways, we cannot 

exclude the possibility that other disrupted pathways contribute to the inhibition of 

breast CSCs. However, our findings are in agreement with the current 

understanding of the Akt/β-catenin signaling pathway and implicate 17AAG as an 

inhibitor of Akt/β-catenin/Wnt signaling.  

 One limitation to the findings of our study is that in the re-implantation of 

tumor cells from 17AAG-treated and vehicle-treated mice, the number of re-

implanted CSCs was not controlled. Although the total number of re-implanted 
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tumor cells was controlled, the drug-treated tumors were composed of less 

Aldefluor-positive cells (1.37%) as compared to the vehicle-treated tumors (3.47%). 

Therefore, secondary mice receiving the re-implantation from vehicle-treated mice 

likely received more Aldefluor-positive cells than from 17AAG-treated mice. To 

address this concern, the number of Aldefluor-positive cells implanted into 

secondary mice was calculated based on the Aldefluor assay data in Figure 3.4B and 

compared to the tumor engraftment efficiency. Of 20,000 tumor cells, 694 cells are 

calculated to be Aldefluor-positive in the vehicle-treated mice and 274 cells are 

calculated to be Aldefluor-positive in the drug-treated mice. Of 2,000 tumor cells, 69 

cells are Aldefluor-positive in vehicle-treated tumors and 27 cells are Aldefluor-

positive in drug-treated tumors. The data implies that as low as 69 Aldefluor-

positive cells from vehicle-treated mice formed tumors in secondary mice 100% of 

the time, while as many as 274 Aldefluor-positive cells from drug-treated mice 

formed tumors only 25% of the time. This indicates that impaired tumor 

engraftment efficiency observed in the drug-treated tumors is not only due to the 

difference in the number of re-implanted Aldefluor-positive cells, but also to their 

self-renewal ability. These findings suggest that 17AAG is able to target Aldefluor-

positive CSC-like cells and inhibit their tumorigenic capability with even a low dose. 

 

 

 

 

 



 

72 

 

 

 

Conclusion 

 

This study is the first to demonstrate the inhibitory effect of 17AAG on breast 

CSC-like cells and to suggest the mechanism of the drug’s inhibitory action. 

Administration of 17AAG significantly reduced the number of Aldefluor-positive 

cells and impaired their tumorigenic potential. These effects may be mediated by 

Akt degradation and subsequent disruption of the β-catenin/Wnt pathway. 

Furthermore, low-dose 17AAG (5 mg/kg) was able to achieve efficacy similar to that 

of a medium dose (35-50 mg/kg) of drug, thereby diminishing the amount of 

Aldefluor-positive cells and their tumorigenic potential. Despite the fact that 17AAG 

was unable to completely wipe out all Aldefluor-positive cells, 17AAG substantially 

reduced the tumorigenicity of Aldefluor-positive cells via inhibition of the self-

renewal function. These data suggest that Hsp90 inhibitors should be evaluated as a 

novel approach to target breast CSC-like cells for therapeutic use.  
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FIGURES 

 

 

Figure 3.1 Effect of 17AAG treatment on the Aldefluor-positive cells. (A) Chemical 
structure of 17AAG. (B) Treatment with 1, 5 and 10nM of 17AAG for three days 
decreased the percentage of Aldefluor-positive cells by 59.6%, 64.2% and 78%, 
respectively, as compared to the control. (C) SUM159 cells, treated with increasing 
concentrations of 17AAG for two days, had an IC50 of 35 nM as assessed by the MTS 
assay. All values in (B) are represented as means of 3 independent experiments ± 
2SD. All values in (C) are represented as means of 6 independent experiments ± 2SD 
(*, p<0.05 and **, p<0.01). 
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Figure 3.2 Treatment with 17AAG inhibits the self-renewal capability of SUM159 
and MCF7 Aldefluor-positive cells in vitro. (A) Treatment with 5 nM and 10 nM 
17AAG reduced the tumorsphere formation rate by 50% and 74%, respectively. The 
inhibition was further enhanced in secondary passages in the absence of the drug 
(76% and 90%, respectively). (B) The diameter of SUM159 tumorspheres was also 
reduced in response to 17AAG treatment at all concentrations. Additionally, cell 
morphology became less compact compared to the control. (C) Tumorsphere 
formation assay of MCF7 Aldefluor-positive cells was performed in the same fashion 
as for SUM159. Upon exposure to 5 nM of 17AAG, tumorsphere formation rates 
significantly decreased, by 60%, in the primary passage. Formation of secondary 
tumorspheres was also reduced to a greater extent (74%) even after the removal of 
the drug. (D) The diameter of MCF7 tumorspheres was reduced in response to 
17AAG treatment at 5nM. All values are represented as means of 3 independent 
experiments ± 2SD (*, p<0.05 and **, p<0.01). 
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Figure 3.3 Treatment with 17AAG inhibits the growth and the self-renewal 
capability of the Aldefluor-positive population in SUM159 tumor xenografts. (A) 
1×106 SUM159 cells were injected into the fat pads of NOD/SCID mice and 
monitored for tumor growth. When tumors were approximately 2 mm, the mice 
were treated with 17AAG (35-50 mg/kg) or vehicle. The diameter of tumors treated 
with 17AAG was 31% smaller compared to vehicle-treated controls. (B and C) At the 
end of the experiment, tumors were collected and the proportion of Aldefluor-
positive population to the bulk population was analyzed using the Aldefluor assay. 
Treatment with 17AAG reduced the percentage of cells that are Aldefluor-positive 
by more than 70%. (D) Tumors were collected from 17AAG- or vehicle-treated mice 
and re-injected into secondary mice. 50,000 cells from vehicle-treated mice formed 
tumors in secondary mice in week two with a growth rate 1.63 mm/week. In 
contrast, cells from 17AAG-treated mice took an additional four weeks to form 
tumors (week six), showing a two-fold reduction in the growth rate (0.77 
mm/week). In the re-implantation assay, 5,000 cells from vehicle-treated mice 
formed palpable tumors in week four with a growth rate 1.07mm/week, while those 
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from 17AAG-treated did not form tumors in the 10-week monitoring period. All 
values are represented as means of 5 independent experiments ± 2SD (**, p<0.01).  
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Figure 3.4 Treatment with low-dose 17AAG (5 mg/kg) reduced tumor growth and 
the number of Aldefluor-positive cells in MC1 tumor xenografts. (A and B) Tumors 
in mice treated with 17AAG showed a 60% reduction in the tumor growth rate as 
compared to that in the vehicle-treated group. (C and D) In the drug-treated tumors, 
1.37% of the cells were Aldefluor-positive, compared to 3.47% in the vehicle-
treated tumors. Treatment of mice with 5 mg/kg 17AAG reduced the fraction of cells 
that are Aldefluor-positive cells in the tumors by 60%. All values are represented as 
mean of 5 independent experiments ± 2SD (**, p<0.01).  
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Figure 3.5 Treatment with low-dose 17AAG reduced tumor engraftment efficiency. 
(A) Mice receiving injections of 2,000 and 20,000 cells derived from vehicle-treated 
mice formed tumors at week 2.5 and 1.5, respectively, reaching an average volume 
of 1,133 mm3 and 1,631 mm3, respectively, at week 9.5. No significant tumor growth 
was observed in mice receiving tumor cells from 17AAG-treated mice at either 
dilution. (B) By week four, all mice receiving cells from vehicle-treated mice 
harbored tumors at both dilutions. In contrast, 75% of mice receiving 20,000 cells 
from 17AAG-treated mice remained tumor-free up to the end of the study. All mice 
receiving 2,000 cells from 17AAG-treated mice remained tumor-free over the 9.5-
week monitoring period. (C and D) Images of mice bearing tumors were taken at 
week 10. The black open circles indicate tumors. All values are represented as 
means of 4 independent experiments ± 2SD. 
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Figure 3.6 Treatment with 17AAG reduced the expression levels of the mediators of 
Akt/β-catenin/Wnt pathway. (A) Aldefluor-positive cells were isolated and treated 
with the indicated concentrations (5-500 nM) of 17AAG under non-adherent 
conditions. The intensities of protein bands, normalized to Actin levels, are listed 
below each band. As compared to Aldefluor-positive cells, 23-58% higher levels of 
p-Akt, p-GSK3β and ABC (Active β-catenin) proteins were observed in the DMSO-
treated Aldefluor-positive cells. In the 17AAG-treated group, more than 70% 
reduction in p-Akt, p-GSK3β, and ABC protein levels, and a 47% reduction of Cyclin 
D1 level were achieved with 17AAG concentrations as low as 10 nM. (B) Treatment 
with 17AAG decreased the levels of ABC, Akt, p-Akt, and p-GSK3β proteins in a 
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concentration-dependent manner. More than a 33% reduction in the expression 
level of these proteins were observed after treatment with 0.1 µM 17AAG. (C) To 
provide further support that 17AAG exerts its inhibitory effects via dysregulation of 
β-catenin/Wnt signaling, ABC transcriptional activity was monitored using LEF-
1/TCF driven GFP reporter system. Treatment with 17AAG reduced the percentage 
of cells that are GFP-positive by 40% compared to DMSO treatment. In addition, 
17AAG inhibition was reversed with administration of a GSK3β inhibitor, BIO. All 
values in figures A and B are measurements from a single experiment. All values in 
figure C are represented as means of 3 independent experiments ± 2SD. 
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Figure 3.7 Effect of 17AAG on MCF7 CD44
+
/CD24

-
 cells. A 32%, 46% and 69% 

reduction in the portion of CD44
+
/CD24

-
 cells was observed in MCF7 treated with 5, 10 

and 50 nM 17AAG, respectively, for three days. All values are represented as means of 3 

independent experiments ± SD (*, p<0.05 and **, p<0.01). 
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Chapter 4 

 

Preclinical evaluation of efficacy of 17AAG in combination with Docetaxel in 
adjuvant therapy 

 

 Abstract 

 

The CSC hypothesis suggests that tumors originate from a small subset of 

cancer cells, termed cancer stem cells (CSCs). CSCs, which are refractory to 

conventional chemotherapy, have been associated with tumor recurrence. Because 

anti-CSC agents target a small population, the current clinical endpoint using tumor 

reduction may be inadequate to assess the efficacy of anti-CSCs agents. Therefore, 

the use of anti-CSC agents as adjuvant therapy after conventional therapy or in 

combination with cytotoxic chemotherapy as primary therapy have been proposed 

as better models to examine the clinical relevance of anti-CSC drugs.  

A recent phase II clinical study of 17AAG suggests that 17AAG does not 

induce tumor response in patients with advanced tumors (1). In contrast, 17AAG in 

combination with other chemotherapy has a synergistic effect on clinical outcome 

(2, 3). The discrepancy in clinical outcome of 17AAG raises a question of which 

models may be appropriate to evaluate the clinical significance of 17AAG, which 

preferentially targets CSCs at low concentrations. Thus, we employed an animal 
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model to compare the extent to which 17AAG is able to achieve clinical benefit as a 

combination or single therapy in adjuvant or advanced settings. In adjuvant therapy 

setting, we treated mice with 17AAG one day after tumor inoculation. In contrast, 

we treated mice until 14mm3 tumors were developed in the advanced tumor growth 

setting.   

17AAG was able to substantially delay tumor progression by 95% in the 

adjuvant therapy setting compared to only 60% inhibition in the advanced tumor 

growth setting, despite the similar extent of inhibition on Aldefluor-positive cells 

(60%) in both experimental settings. These data suggested that 17AAG alone as 

adjuvant therapy or in combination with chemotherapy has potential to inhibit 

tumor recurrence and that early treatment has significantly better results when 

using 17AAG in treating breast cancer. The findings have important clinical 

implications regarding the use of 17AAG to treat cancers, and warrants further 

investigation on the novel clinical use of 17AAG. 
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Introduction 

 

A growing body of evidences supports the existence of CSCs in tumors for 

various cancers, including breast cancer (4-6). CSCs have been associated with 

tumor recurrence and metastasis, which are the major obstacles of current cancer 

therapy. CSCs have shown resistance to conventional therapies (7).Therefore, once 

the treatment ends, CSCs can again give rise to tumors leading to tumor relapse. 

Also, CSCs may detach from primary tumors and migrate to a distal location, leading 

to metastasis. Moreover, on the basis of the CSC model, the complete cure of cancers 

cannot be achieved unless all CSCs are eliminated. Consequently, a need exists to 

develop agents that target the rare CSC population.   

CSC research has progressed rapidly since the original discovery of CSCs in 

AML by Dick and Bonnet (8). Recently, advances in understanding the essential 

pathways involved in the regulation of CSCs, such as Notch, Wnt, Hedgehog, have led 

to the development of compounds targeting this tumorigenic population, some of 

which are under clinical evaluation.  

Evaluation of clinical efficacy of CSC-specific agents is a major obstacle in 

clinical development with conventional cancer treatments. Overall survival is an 

established measurement for clinical efficacy, which requires a large sample size 

and long follow-up period. Therefore, in Phase II clinical trials that involve much 

fewer patients, tumor regression as defined by RECIST criteria has been accepted as 
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an appropriate surrogate for clinical efficacy (9). Yet, the same may not hold true 

when assessing the clinical efficacy of cancer treatments that target CSCs. CSCs 

compose a very small proportion of tumors. Therefore, agents that are effective 

against CSCs may not necessarily induce tumor regression. Hence, endpoints that 

reflect the functional capability of CSCs should be used in order to assess the clinical 

benefit of these anti-CSC agents. Better surrogate endpoints are clearly needed for 

successful clinical development of these agents. 

Two approaches have been proposed to evaluate the clinical efficacy of CSC-

targeting agents.  First, combination therapy of CSC-targeting agents with 

conventional chemotherapy may eliminate both the bulk of tumor and the resistant 

CSC population. The merit of combination therapies is that conventional 

chemotherapies can be used to relieve the tumor burden from the bulk of tumor 

cells and CSC-targeting agent can be used to eliminate CSCs that are resistant to 

chemotherapies.  In this setting, tumor response based on shrinkage may still be an 

appropriate primary endpoint. Second, CSC-targeting agents may be an effective 

treatment when used in the context of adjuvant therapy (10).  Adjuvant therapy is 

the treatment that is given after an initial treatment for patients with a high risk of 

relapse. For instance, after removing detectable tumors, oncologists use statistical 

evidence to assess the risk of tumor relapse to evaluate whether patients need 

adjuvant treatment. In breast cancer, the objective of adjuvant treatment is to wipe 

out occult tumor cells so as to reduce the risk of recurrence and death.  In breast 

cancer, adjuvant therapy includes chemotherapy (e.g. doxorubicin, paclitaxel, 

docetaxel, cyclophosphamide, fluorouracil and methotrexate)(11-13), target 

http://en.wikipedia.org/wiki/Doxorubicin
http://en.wikipedia.org/wiki/Paclitaxel
http://en.wikipedia.org/wiki/Docetaxel
http://en.wikipedia.org/wiki/Cyclophosphamide
http://en.wikipedia.org/wiki/Fluorouracil
http://en.wikipedia.org/wiki/Methotrexate
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therapy (e.g. Herceptin®)(14), radiotherapy, or hormonal therapy (e.g. 

tamoxifen)(15). In the current paradigm of adjuvant treatment, chemotherapeutic 

agents are administrated to eliminate the residual cancer cells and prevent relapse 

after removal of primary tumors.  Since conventional chemotherapy is not designed 

to target CSCs, chemotherapy may be less effective when used in the adjuvant 

setting. In contrast, agents that targets CSCs may be more effective when 

administrated in adjuvant than in the advanced setting (referred as to late-staged 

tumors) since CSCs are the driving force of tumor recurrence.  

Even though the use of anti-CSC agents in combined therapy or adjuvant 

therapy has been proposed as a better approach to evaluate clinical relevance, there 

is no experimental evidence to support this concept. Therefore, the proposed study 

employed a preclinical model to evaluate the efficacy of anti-CSC agent, 17AAG, in 

the combination with Docetaxel or as a single treatment in adjuvant therapy.   
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Methods 
 

 
Cell Lines and Reagents 

The SUM159 cell line was maintained in Ham's F12 medium supplemented 

with 5% fetal bovin serum, 5 µg/ml insulin, 1 µg/ml hydrocortisone, 1% 

antibiotic/antimycotic (10,000 units/ml penicillin G sodium, 10,000 µg/ml 

streptomycin sulfate, 25 µg/ml amphotericin B) and 20 ug/ml gentamycin. SUM159 

cell line was maintained in culture at 37°C and 10% CO2. 17AAG and Docetaxel 

(Taxotere®) was purchased from LC Laboratories (Woburn, MA); Propidium iodide 

(PI) was obtained from Invitrogen (Carlsbad, CA); DAPI (4’-6-Diamidino-2-

phenylindole) was purchased from Sigma-Aldrich (St. Louis, MO); Matrigel and anti-

H2Kd antibody were from BD Biosciences (San Jose, CA). 

 

Xenograft Tumor Model 

All experiments involving mice were approved by the University Committee 

on the Use and Care of Animals at the University of Michigan. To evaluate the effect 

of 17AAG treatment on tumor growth in vivo, we used a primary human breast 

cancer xenograft generated from a patient (MC1). Injections of 105 MC1 cells mixed 

with Matrigel (50%, v/v) were administered into the fourth mammary fat pads of 4-

week-old NOD/SCID mice (Jackson Laboratories, Bar Harbor, MI). In the advanced 

tumor setting, mice were randomly assigned to one of two groups (n=5, each) at 

week 2.5, which had similar average tumor sizes, and began treatment. The control 

group was given the vehicle (1:1 (v/v) mixtures of DMSO and ethanol) and the 
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treatment group received 5 mg/kg 17AAG three times a week for three weeks. Mice 

in the adjuvant therapy began treatment one day after tumor inoculation. The 

control and treatment group were administrated the vehicle and 5 mg/kg 17AAG, 

respectively, three times a week for three weeks. The tumor size was measured 

using a caliper twice a week and the tumor volume was calculated by the following 

formula:  

Tumor volume = 1/2 (length × width2) 

Tumor Tissue Dissociation  

 At the end of treatment, tumors were collected from mice and enzymatically 

dissociated to obtain single cell suspensions, as previously described (16).  In brief, 

tumors were minced finely with scalpels and incubated in 10% 

collengenase/hyaluronidase (StemCell Techonologies, Vancouver, BC) in Medium 

199 at 37 °C for 30 minutes. Single cell suspensions were obtained by filtering the 

digested tumor through a 40 μm filter (BD Biosciencies, San Jose, CA). Single cell 

suspensions were centrifuged at 1500 rpm at 4°C, and pellets were resuspended in 

PBS for the Aldefluor assay and tumor re-implantation.  

 

Aldefluor Assay and Flow Cytometry Analysis 

The Aldefluor assay was carried out according to the manufacturer’s protocol 

(Stemcell Technologies, Vancouver, BC). In brief, an Aldehyde Dehydrogenase 1 

(ALDH1) substrate bodipyaminoacetaldehyde (BAAA) was added to a single cell 

suspension obtained from tumor tissue dissociation, at a concentration of 1.5 uM, 

which was then incubated for 40 min at 37°C.  A portion of dissociated cells was 
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incubated with a 10-fold molar excess of an ALDH1 enzyme inhibitor, diethylamino 

benzaldehyde (DEAB) in addition to BAAA. In the presence of DEAB, the ALDH1 

enzyme is inhibited from metabolizing BAAA and therefore functions as a negative 

control.  At the end of BAAA-staining, cells were washed once with HBSS containing 

2% fetal bovine serum. Subsequently, cells were stained with 1 ug/mL DAPI to 

exclude non-viable cells. Flow cytometry was performed at the University of 

Michigan Cancer Center Flow Cytometry Core.  Data analysis was performed with 

the software program WEASEL (Walter and Eliza Hall Institute of Medical 

Research).   

Lentivirus infection 

A highly efficient lentiviral expression system (pLentiLox 3.7; 

http://www.med.umich.edu/vcore/) from the UM Vector Core Facility was used to 

generate luciferase-expressing SUM159 cells. The cell lines were transfected with 

the lentiviruses as described previously. In brief, 70% of confluent SUM159 cells 

were incubated with letiviral particles encoding luciferase overnight. On the 

following day, the cells were replaced with fresh medium. To verify the expression 

of luciferase, transfected SUM159 cells were plated in a 96-well plate in a series of 

dilutions from 500 to 500,000 cells/well, increasing by one-fold after each well. 

After cell settled, 2 μL D-luciferin 0.0003% (Promega) was added in the culture 

medium and the counting photon flux was measure by device camera system 

(Xenogen).  

Bioluminescence imaging 

http://www.wehi.edu.au/index.html
http://www.wehi.edu.au/index.html
http://www.med.umich.edu/vcore/
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Bioluminescence detection procedures were performed as previously 

described (17). In brief, mice were anesthetized with a 2% isofluorane/air mixture 

and given a single i.p. dose of 150 mg/kg D-luciferin (Promega) in PBS. A charge-

coupled device camera system (Xenogen), equipped with a nose-cone isofluorane 

delivery system and heated stage for maintaining body temperature, was used to 

measure photo flux. The images were captured after 5 seconds of exposure and 

analyzed using Living Image software provided with the Xenogen imaging system. 

Normalized photon flux represents the ratio of the photon flux detected each week 

after inoculations and the photon flux detected before injection of tumor cells. 

 

Statistical Analysis 

The Student t-test was used to perform statistical analysis. Data are 

presented as the mean ± SD (n ≥ 3). All p values are two-tailed. 
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RESULT 
 

17AAG exhibited pronounced inhibitory effect on the tumor progression and CSCs 

in adjuvant setting 

To demonstrate that the efficacy of CSC-targeting agent, such as 17AAG, on 

tumor progression may be more pronounced when given during the early development of 

tumor (a.k.a. adjuvant treatment), two xenograft models were established to represent the 

adjuvant and advanced treatments. In the adjuvant therapy, 17AAG treatment was 

initiated one day after MC1 tumor cells were injected to mice. In contrast, drug treatment 

in the advanced therapy did not start until palpable tumors had developed.  

Mice were treated with 5mg/kg 17AAG or the vehicle three times a week for 

three weeks by i.p. and the tumor growth was measured weekly. By six weeks, a very 

effective inhibition in the tumor volume, by more than 95%, was observed in the adjuvant 

treatment setting (Figure 1A and 1B) in contrast to 60% reduction in the tumor volume in 

the advanced setting (Figure 1C and 1D) (n=5). 

At week six, tumors were collected from the control and treated mice and 

subjected to quantification of CSCs in tumors upon treatment using Aldefluor assay.  

17AAG treatments reduced the number of CSCs in drug-treated tumors by 61% as 

compared to vehicle-treated in the advanced setting (n=5 for each) (Figure 2A). 

Similarly, a 62% reduction in the number of CSCs in 17AAG-treated tumors was 

observed as compared to the vehicle-treated in the adjuvant setting (n=5 and 3 for 

vehicle- and drug-treated groups, respectively) (Figure 2B).   
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Interestingly, the CSC population in the adjuvant setting did not increase even 

after stop the drug treatment for three weeks. Unlike conventional chemotherapeutic 

agents that cause an expansion of CSCs, 17AAG did not increase the pool of CSCs even 

three weeks after the treatment stops (7, 18). Taken together these studies indicated that 

the tumor response to 17AAG was more pronounced when the drug was given in the 

early-stage tumors than in the advanced tumors.  

17AAG extend tumor-free period   

 To further verify that 17AAG used as an adjuvant therapy can prevent tumor 

relapse, an in vivo imaging was employed to monitor tumor initiation. SUM159 

breast cancer cell line was transfected with a lentiviral luciferase reporter system. 

Injections of 50,000 SUM159-luciferase cells were administered into the fat pad of 

NOD/SCID mice. One day after tumor injection, mice were treated with 5 mg/kg 

17AAG or vehicle three times a week for three weeks. The tumor progression was 

monitored once a week by bioluminescent imaging. 

Before treatment, mice were randomly assigned into two groups (e.g. 

control- and treatment- groups) to obtain a similar average bioluminescent signal. 

Two mice in the treatment group died in the first two week due to an accident. Two 

weeks after treatment stop (at week five), the tumor cells developed palpable 

tumors in the vehicle-treated mice whereas tumor cells gradually died out in the 

drug-treated mice (Figure 3A). In the period of 10 weeks, all mice treated with the 

vehicle developed tumors with a rapid growth curve. In contrast, only one out of 
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three mice in the drug-treated group formed tumors, which did not grow as rapidly 

as the control.   

To quantify the residual CSCs in tumors, tumors derived from the vehicle-

treated and the drug-treated mice were collected at the end of week 10 and 

subjected to Aldefluor assay and flow cytometry. Only 0.59% of cells were 

Aldefluor-positive in the drug-treated tumor (n=1), while 1.67% of cells were 

Aldefluor-positive in vehicle-treated tumors (n=5), which equals to a 62% reduction 

in Aldefluor-positive cells.  

Combinatory therapy of 17AAG and Docetaxel prevented tumor recurrence 

 To evaluate the extent to which co-administration of CSC-targeting and 

cytotoxic chemotherapy may inhibit recurrence, mice bearing SUM159-luciferase 

tumors were treated with vehicle alone, 17AAG alone,  Docetaxel alone ,or 17AAG 

and Docetaxel.  One day after inoculated with 50,000 SUM159-luciferase cells, mice 

were randomly divided into four groups (n=5) to achieve similar average of photo 

flux and treated with either vehicle, 5 mg/kg 17AAG, 10 mg/kg Docetaxel or 5 

mg/kg 17AAG plus 10 mg/kg Docetaxel every day for a week. At week three, tumor 

cells in control mice began growing aggressively, whereas those in other three 

groups (treated with 17AAG, Docetaxel, or 17AAG plus Docetaxel) did not (Figure 

4A). Tumor cells in Docetaxel treated mice did not progress until six week later. 

Interestingly, tumor cells in 17AAG treated mice or 17AAG plus Docetaxel remained 

the same over eight weeks. Both 17AAG-treated and 17AAG plus Docetaxel-treated 
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groups showed significant tumor response as compared to the control group. 

However, as compared to 17AAG alone and combined with Docetaxel, there is no 

significant difference in the sense of average photon flux. Regardless, 50% of mice in 

the combined treatment of 17AAG and Docetaxel had no bioluminescent signals, 

indicating that tumor cells perished (Figure 4B).  This finding suggests that targeting 

CSCs by 17AAG is able to constrain tumor progression. Looking at 17AAG alone and 

in combination with Docetaxel, no significant difference was found. The finding is in 

agreement with our current understanding that in the adjuvant setting where there 

is little the bulk of cells, targeting CSC by 17AAG is effective in suppressing tumor 

progression.  
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Discussion 

The CSC hypothesis has shown the clinical discordance between tumor 

response and long-term survival for many cancers.  Specifically in solid tumor, the 

efficacy of antitumor therapy is usually determined by mainly evaluating tumor 

shrinkage based on Response Evaluation Criteria in Solid Tumors (RECIST). RECIST 

defines a minimum of 30% and maximum of 100% shrinkage in tumor size to be 

considered a partial and complete response, respectively (19). Tumor size increases 

of 20% compared to the size before treatment are considered as progressive 

disease. Under RECIST, the assumption is that tumor reduction would result in 

clinical benefit. However, achieving tumor responses may not be associated with 

improvements in the duration of overall survival, due to tumor recurrence. For 

example, a number of large studies in patients with pancreatic or metastatic breast 

cancers show that the improved tumor response by the optimized combination 

chemotherapy does not necessarily extend the overall survival period (20, 21). The 

CSC model suggests that CSCs are cells that initiates tumors, so tumor re-growth 

following treatment implies that CSCs persist.  Along these lines, a number of recent 

studies in preclinical and clinical settings show that CSCs are relatively resistant to 

chemotherapy as compared to the bulk of tumor cell, and therefore tumors become 

enriched with CSCs after chemotherapy. In fact, colorectal and pancreatic tumor 

xenografts have been found to be enriched with CSCs following chemotherapy (22, 

23). In a clinical study involving patients with breast cancer, cells expressing CSC 

markers were increased after chemotherapy (7). The intrinsic properties of CSCs, 
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such as quiescence, overexpression of transporters, and high efficiency of repairing 

cytotoxic damages are thought to confer the resistance to chemotherapy (24). These 

evidences augment the notion that clinical outcome (e.g. disease-free survival or 

overall survival) is associated with the amount of CSCs that remain in patients, 

instead of the tumor response. For this, much effort has been made to develop 

therapies that can target CSCs.  

 Despite advances in developing anti-CSC therapies, reliable endpoints to 

assess the clinical efficacy of these agents are still unavailable. Tumor regression, 

the current standard for the clinical endpoint, is inadequate to assess the efficacy of 

anti-CSC agents because CSCs constitute only a small portion of cells within a solid 

tumor. RECIST is a good indicator of assessing cytotoxic chemotherapies that are 

designed to target differentiated cells. Because tumors are mainly comprised of 

differentiated cells, the effective targeting of these cells is reflected by tumor 

reduction. In contrast, the efficacy of agents targeting CSCs would be 

underestimated by merely measuring tumor size as an endpoint because CSCs 

represent only a small subset of tumor cells. Even if CSCs are completely eliminated, 

the size of tumors may not be greatly influenced. Thus, challenges to assess the 

therapeutic efficacy of drugs on breast CSCs in patients still remain. Since the 

readout of eliminating CSCs may not necessarily translate into rapid tumor 

reduction, the frequency of tumor recurrence may be the most informative 

endpoint. However, this endpoint may not be feasible in a Phase II clinical trial 

because it requires long-term long follow-up and a large pool of patients.  
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To overcome the issue stated above, Lu et al. proposed an alternative to 

evaluate anti-CSC agents in the adjuvant setting when drugs are given right after the 

removal of primary tumors (25). Tumor relapse as an endpoint for CSC-targeting 

agents may be more appropriate because the relapse mainly reflects the tumor-

initiating ability of the residual CSCs. In our study, even though a similar reduction 

of CSCs (60%) by 17AAG treatment was achieved in both early-staged tumors 

(adjuvant setting) and advanced tumors, the rate of tumor growth in the advanced 

setting was more rapid than that in the adjuvant setting. The observation in this 

comparative study clearly supports the notion proposed by Lu et al. that the 

adjuvant setting may a better model for assessing the efficacy of anti-CSC agents 

when used as a single therapy. However, the evidence obtained in our study 

augments their proposed approach. As shown in our data, 17AAG had limited effect 

in repressing tumor growth, despite its effect on CSCs, because the abundant 

differentiated cells still continued to proliferate. However, the use of 17AAG in the 

adjuvant setting still hampered tumor growth greatly, although it did not completely 

stop the tumor from growing in this case. Because 17AAG is expected to have little 

effect on differentiated cells at the concentrations used in our study, a possible 

explanation is that the substantial number of remaining differentiated cells was able 

to proliferate for several cycles and thus contribute to the tumor growth. 

Nevertheless, CSC-targeting agents given in early-staged tumors, which resemble 

adjuvant therapy, display better efficacy in suppressing tumor progression.  
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Elimination of both CSCs and differentiated cells is essential in order to 

achieve the maximal clinical benefit.  Even if CSCs are completely wiped out, the 

majority of remaining cells are differentiated cells, which can proliferate for several 

cycles and contribute to tumor progression. Therefore, targeting differentiated cells 

by a cytotoxic chemotherapy to alleviate tumor burden and eliminating CSCs by a 

CSC-targeting agent to prevent tumor occurrence may be the optimal therapy. The 

results from combination therapy of 17AAG and Docetaxel in our current study 

bolster the concept. Mice receiving Docetaxel developed palpable tumors, as 

assessed by the bioluminescent signal, six weeks post treatment, whereas mice 

receiving 17AAG or 17AAG and Docetaxel did not. Tumor re-growth in the Docetaxel 

treated mice may be due to resistant CSCs, which has been identified in a previous 

clinical study (7). In contrast, co-treatment of 17AAG and Docetaxel completely 

abolished tumor recurrence. The findings of our study verify the notion that 

elimination of both CSCs and differentiated cells is crucial for effective cancer 

therapy. 
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Conclusion 

The present study demonstrates that 17AAG is effective at targeting breast 

CSCs. Importantly, the use of 17AAG alone as adjuvant therapy or in combination 

with chemotherapy has shown to potentially inhibit tumor recurrence and improve 

the overall clinical outcome.  Altogether, evidence suggests that 17AAG warrants 

further clinical evaluation as a CSCs-targeting agent.  
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Figures 

A 

 

B 

 

Figure 4.1 Efficacy of 17AAG as given in the advanced setting.  
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B 

 

Figure 4.2 Efficacy of 17AAG as given in the adjuvant setting.  
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Figure 4.3 Effect of 17AAG on reducing Aldefluor-positive cells in advanced and 
adjuvant setting.   
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Figure 4.4 In vivo imaging of tumor development in response to 17AAG in the 
adjuvant setting.  
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Figure 4.5 Efficacy of combination therapy of 17AAG and Docetaxel.   
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Chapter 5 
 
 

HDAC inhibitor SAHA targets Breast Cancer Stem Cells  
 
 

Abstract  
 

The cancer stem cell (CSC) model suggests that CSCs confer chemo-

resistance, tumor relapse and metastasis. Therefore, effective targeting of CSCs may 

provide a cure for cancer. Emerging evidence has suggested that epigenetic 

modification plays an important role in the function of normal and cancer stem cells. 

Therefore, we investigated the effect of HDAC inhibition by SAHA on breast CSCs. 

SAHA reduced the number of cells expressing stem cell markers such as 

ALDH1 by 90% in SUM159 cell lines. Data from tumor sphere formation assay 

showed that as little as 0.5µM SAHA was able to inhibit tumorsphere formation 

efficiency by 77%. Of note, in the absence of drug, the sustained reductions (~80%) 

were observed in second and third passages, suggesting the impaired self-renewal 

capability by SAHA is maintained through several passages. The efficacy of SAHA in 

inhibiting CSCs was further verified in mouse xenografts bearing SUM159 or 

primary MC1 tumors. SAHA significantly inhibited tumor growth by 45% and 84% 

in SUM159 and MC1 tumor xenografts, respectively, compared to vehicle-treated 

groups. Aldefluor-positive cells in SUM159 and MC1 tumors were reduced by 50-
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90% after a three-week treatment of SAHA. Tumor re-implantation showed that 

SAHA greatly abolished the tumor engraftment ability of cells derived from drug-

treated mice in secondary mice. This suggested that SAHA was not only able to 

diminish the CSC population but also to damage the self-renewal ability of residual 

cells.   

Here we demonstrated that SAHA is able to induce depletion of Aldefluor-

positive cells and the impairment of their self-renewal potential, mediated through 

deregulation of two important self-renewal associated genes, Bmi-1 and c-Myc. Our 

findings have important implications for the utility of SAHA in treating breast cancer.  
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Introduction 

 

Emerging evidence suggests that breast cancers originate from a small subset 

of cancer stem cells (CSCs). CSCs were first discovery in acute myeloid leukemia. 

Since then, they have been indentified in a wide variety of solid tumors including 

breast(1, 2), lung (3, 4), liver(5, 6), pancreas (7-10),  prostate (11, 12),colon (13) 

and brain(14).   

 CSCs are endowed with distinctive attributes of stem cells, such as the self-

renewal capability and differentiation into multiple cell types. These stem-like 

properties enable CSCs to generate tumor through self-renewal and differentiation 

into heterogeneous cell populations. Therefore, they have been strongly associated 

with relapse, metastasis, and resistance of tumors to chemotherapy (15, 16). 

Conventional chemotherapies, which target bulk tumor population, can cause tumor 

regression, but fail to eradicate CSCs. As a result, the remaining CSCs regenerate 

tumors through self-renewal, which contribute to tumor relapse and apparent 

resistance to chemotherapy (16-18). The lack of effective treatments against tumor 

recurrence and metastasis mediated by CSCs clearly demonstrates a need for new 

therapeutic approaches to target this population (19).  

Dysregulation of epigenetic modification by histone acetylation is thought to 

be a key component of tumor initiation, progression, and differentiation (17). A 

hallmark of cancer cells is aberrant epigenetic regulation of gene expression, which 

contributes to tumor initiation and progression. A plethora of studies in hematologic 

and solid tumors have shown that cancer cells silence tumor suppressor genes to 
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gain selective growth and invasive advantage.  Silencing of the tumor suppressor 

genes is thought to be mediated by the dysregulation of epigenetic modification by 

histone acetylation. In addition, epigenetic modifications are important regulators of 

stem cell function and self-renewal.  Histone deacetylases (HDACs) and histone 

acetyl transferases (HATs) are two enzymes that help maintain homeostasis of 

histone acetylation.  

Epigenetic agents that target HDAC have been extensively studied in vitro for 

their anti-cancer effect. HDAC inhibitors have been shown to have pro-apoptotic and 

anti-proliferative effect on breast cancer cells. SAHA, also known as Vorinostat, is a 

pan-HDAC inhibitor that has recently been approved by the FDA for the treatment of 

cutaneous T cell lymphoma. Several other HDAC inhibitors are currently in various 

stages of clinical development. Thus, HDACs are clearly important therapeutic 

targets for treatment of cancers. However, despite widespread acceptance of HDAC 

as a therapeutic target, the mechanisms of how HDAC inhibition controls cancer 

growth is not fully understood.  In addition, the effect of HDAC inhibitors on breast 

CSCs is still unknown. Therefore, further investigations on HDAC inhibition is still 

needed to fully understand the effect and the therapeutic implications of HDAC 

inhibition for the treatment of cancers. 

We thus investigated the effect of SAHA mediated HDAC inhibition on breast 

cancer stem cells in vitro and in vivo, and the underlying mechanisms for the 

observed effects. Our findings showed that HDAC 1, 2 and 3 are highly expressed in 

the ALDH-positive cells, which are rich in breast CSCs, as compared to ALDH-

negative cells. The selective impairment of self-renewal capability of CSCs in 
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response to treatment with SAHA was demonstrated in vitro using tumorsphere 

formation assay in ALDH-positive cells and in vivo using SUM159 and primary MC1 

tumor xenografts. We also found data to suggest SAHA targets CSCs and inhibit their 

self-renewal capability through the dysregulation of stemness-associated genes, c-

Myc and BMI-1.  

To our knowledge, this is the first time to demonstrate that HDAC inhibition 

suppresses breast CSCs. Also, our findings support previous studies in other cancer 

models that demonstrate MYC and BMI-1 are essential for the maintenance of 

stemness in CSCs. Our findings provide important insight in the context of gene 

expression profiles in ALDH-negative and ALDH-positive population and the 

alternation of gene expression in response to SAHA.  
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Methods 

 

Cell Lines and Reagents 

 The SUM159 cell line was maintained in Ham's F12 medium supplemented 

with 5% fetal bovine serum, 5 µg/ml insulin, 1 µg/ml hydrocortisone, 1% 

antibiotic/antimycotic (10,000 units/ml penicillin G sodium, 10,000 µg/ml 

streptomycin sulfate, 25µg/ml amphotericin B) and 20µg/ml gentamycin. The MCF-

7 cell line was maintained in RPMI medium supplemented with 10% fetal bovine 

serum, 5 µg/ml insulin, and 1% antibiotic-antimycotic. Both cell lines were 

maintained in culture at 37°C and 10% CO2. SAHA was purchased from Cayman 

Chemical (Ann Arbor,MI); Propidium iodide (PI) was obtained from Invitrogen 

(Carlsbad, CA); BIO was obtained from EMD Biosciences (San Diego, CA); DAPI (4’-6-

Diamidino-2-phenylindole) was purchased from Sigma-Aldrich (St. Louis, MO); 

Matrigel and anti-H2Kd antibody were purchased from BD Biosciences (San Jose, 

CA). Antibodies against; Antibodies against BMI-1 was purchased from  Upstate 

(Billerica, MA); ALDH1 antibody was obtained from BD Transduction Laboratory 

(Franklin Lakes, NJ); Antibodies against CD44 and CD24 were purchased from BD 

Biosciences (San Jose, CA).   

MTS Cell Proliferation Assay 

 The SUM159 cell line was seeded into 96 well microplates at a density of 

5,000 cells per well. Cells were treated with increasing concentrations of SAHA 

(0.0001–10μM). After 72 hrs, cell viability was assessed by the MTS cell 
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proliferation assay (Promega, Madison, WI) according to the manufacturer’s 

instruction. Cellular IC50 was shown to be the concentration necessary to decrease 

viability to 50% of control untreated cells.  

 

Aldefluor Assay, CD44/CD24 Staining and Flow Cytometry Analysis.  

A cell population with elevated aldehyde dehydrogenase (ALDH) enzyme 

activity was reported to enrich in cancer stem/progenitor cells. The Aldefluor assay, 

used to detect ALDH enzyme activity, was carried out according to the 

manufacturer’s protocol (Stemcell Technologies, Vancouver, BC). For both in vivo 

and in vitro studies, the aldehyde dehydrogenase (ALDH) substrate 

bodipyaminoacetaldehyde (BAAA) was added to the single cell suspension at a 

concentration of 1.5µM, which was then incubated for 40 min at 37°C.  Additionally, 

a negative control was prepared by adding diethylamino benzaldehyde (DEAB) into 

a portion of cell suspension containing BAAA. DEAB, ALDH enzyme inhibitor, 

prevented BAAA from being metabolized into a fluorescent product. Staining for 

surface markers (CD44 and CD24) was performed according to the manufacturer’s 

protocol (20). Briefly, approximately 106 single MCF-7 cells were resuspended in 

HBSS supplemented with 2% BSA, mouse monoclonal anti-CD44-APC, and anti-

CD24-PE, incubated for 20 minutes at 4°C. After BAAA or anti-CD44/CD24 staining, 

the cells were then washed twice with 10 mL of HBSS containing 2% BSA and 

resuspended with HBSS supplemented with 2% BSA and DAPI (1μg/mL), and 

analyzed using the flow cytometry at the University of Michigan Cancer Center Flow 

Cytometry Core. DAPI was used to exclude non-viable cells. Data analysis was 
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performed with the software program Weasel (Walter and Eliza Hall Institute of 

Medical Research). 

 

Tumorsphere Formation  

Single SUM159 Aldefluor-positive cells, assessed with Aldefluor assay, were 

plated onto ultralow-attachment 96 well plates (Corning, Corning, NY) at a density 

of one cell per well. Tumorspheres were cultured for 7 days in a serum-free 

mammary epithelial basal medium (MEBM) (Cambrex Bio Science Walkersville, Inc,) 

supplemented with B27 (Invitrogen, Carlsbad, CA,), 20ng/mL EGF (BD Biosciences, 

San Jose, CA), 1% antibiotic-antimycotic (100unit/ml penicillin G sodium, 100µg/ml 

streptomycin sulfate and 0.25μg/ml amphotericin B), 20µg /ml Gentamycin, 1ng/ml 

Hydrocortisone, 5μg/ml Insulin, and 100μM beta-mercaptoethanol (Gibco 

Invitrogen, Carlsbad, CA) in a humidified incubator (10% CO2, 37°C). Primary 

tumorspheres were collected, and mechanically and enzymatically dissociated into 

single cell suspensions for subsequent passages.  Single cell suspensions were plated 

onto ultralow-attachment 96 well plates at a low cellular density of less than 5 cells 

per well, and cultured in the absence of drug treatment. Tumorsphere formation 

efficiency was denoted as the ratio of the number of tumorspheres to the number of 

seeded cells. 

 

Tumor Tissue Dissociation 

 A portion of each tumor was fixed in 10% buffered formalin and paraffin 

embedded for immunohistochemical staining. The remaining tissue was 

http://www.wehi.edu.au/index.html
http://www.wehi.edu.au/index.html
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mechanically and enzymatically dissociated to obtain single cell suspensions, as 

previously described (20). In brief, tumors were minced finely with scalpels and 

incubated in 10% collengenase/hyaluronidase (StemCell Technologies, Vancouver, 

BC) in Medium 199 at 37 °C for 30 minutes. Single cell suspensions were obtained 

by filtering the digested tumor through a 40μm filter (BD Biosciencies, San Jose, CA). 

Single cell suspensions were centrifuged at 1500 rpm at 4°C, and pellets were 

resuspended in PBS for the Aldefluor assay and tumor reimplantation.  

 

Xenograft Tumor Model and Reimplantation  

All experiments involving mice were approved by the University Committee 

on the Use and Care of Animals at the University of Michigan. To evaluate the effect 

of SAHA treatment on tumor growth in vivo, we used SUM159 cells and a primary 

human breast cancer xenograft generated from a patient (MC1). SUM159 or MC1 

cells mixed with Matrigel (50%, v/v) were injected into the fourth mammary fat 

pads of 4-week-old NOD/SCID mice (Jackson Laboratories, Bar Harbor, MI). When 

palpable tumors formed, mice were divided into two groups with the similar 

average tumor size.  The control and treatment group were administrated the 

vehicle (1:1 mixture of DMSO and ethanol) or SAHA, respectively, three times a 

week for three weeks. Tumor re-implantation was conducted as previously 

described (20, 21). In brief, single cell suspensions were stained with DAPI for 

viability assessment. The recovered live cells were stained with an anti-H2Kd 

antibody to distinguish breast cancer cells from mouse cells. Viable SUM159 or MC1 

cells derived from primary tumors treated with SAHA or the vehicle were injected 
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into the fourth inguinal mammary fat pad of secondary NOD/SCID mice (n>3 for 

each condition). The tumor growth was measured weekly.  

 

Gene expression profiling with DNA microarrays and analysis   

The microarray experiments were conducted using RNA extracts from 

SUM159 Aldefluor-negative cells and Aldefluor-positive cells (untreated and treated 

with SAHA) using RNeasy Mini kits, according to the manufacture’s instruction 

(Qiagen). The integrity of rRNA was checked using agarose gel electrophoresis. 

cDNA was synthesized using oligo-dT primers and Superscript II Reverse 

Transcriptase(Invitrogen), according to the manufacturer’s instructions. The 

hybridizations were performed using Affymetrix human U133 Plus 2.0 in UM 

Microarray core facilities. The microarray data (.cel files) was normalized by RMA 

(Robust Multichip Average) [z1] and subsequently analyzed by the dChip software 

[z2]. To assess the modulation of MYC activity by SAHA, 247 probesets, representing 

192 unique genes, were selected based on the MYC-activation signature. 

Hierarchical clustering was performed with the average linkage method. Rows were 

standardized by subtracting the mean and divided by the standard deviation of all 

samples. Correlation was used as the distance metric. The MYC activation score was 

defined as the difference in the mean log fold changes between the expected up-

regulated genes and the expected down-regulated genes. A positive value indicated 

activation, and negative one inactivation.  

To gain insight into the regulation of gene expression via HDAC activity in 

Aldefluor-positive and Aldefluor-negative cells, HDAC’s target genes were compiled 
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from multiple CHIP-seq or CHIP-chip experiments. A list of 1000 randomly selected 

genes was prepared as a control. Observed and expected numbers of up- and down-

regulated genes mediated by HDACs in Aldefluor-positive cells were compared 

against that for Aldefluor-negative cells. Chi-square test was used to assess the 

difference in observed and expected values. The ratio was calculated as following,  

Ratio = (N up genes / N down genes)/ (N exp up genes / N exp down genes) 

 A ratio >1 indicated activation and <1 indicated inactivation of HDAC target genes. 

Real-Time PCR 

 The amplification reactions were run at least in triplicate. Reactions were 

performed in MicroAmp 96 well plates (Applied Biosystems) and contained 5 μl 

DNA, 3 μl of primers mix (final primer concentration of 300 nM each), and 12.5 μl of 

Power SYBR Green PCR Master Mix (Applied Biosystems), in a final volume of 25 μl. 

Amplifications were carried out in an ABI PRISM® 7900HT Fast Real-Time. A final 

dissociation curve was always obtained for each quantitative run. Each sample was 

tested in triplicated and GAPDH was used as an internal control. Primers for c-MYC, 

p21, GAPDH, BMI-1, and ALDH1A1 are listed in Table 5.1. The Real-Time PCR data 

was analyzed using = 2-ΔΔCt relative quantization method following the 

manufacturer’s instructions.  

Western Blotting 

SUM159 tumorsphere were treated with SAHA for 2 days under non-

adherent conditions. Tumorspheres were harvested and lysed in RIPA buffer (PBS, 
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1% Nonidet P-40, 0.5% deoxycholate, 1% SDS, 1mM sodium orthovanadate, 0.5mM 

PMSF, 10mg/ml aprotinin, and 20 mg/ml leupeptin) with a protease inhibitor 

mixture (Roche Diagnostics, Indianapolis, IN) and a phosphotase inhibitor (Cell 

Signaling Technology, Danvers, MA) for 30 minutes. Supernatant was collected by 

centrifugation and subjected to protein quantification with BCA protein assay 

reagents (Pierce, Rockford, IL). Equal amounts of proteins were separated on a Tris-

glycine 4-10% gradient precast gel (Bio-Rad, Hercules, CA), transferred to a PVDF 

membrane, and then blocked with 5% BSA. The Immobilized proteins were probed 

with c-MYC and BMI-1 antibodies.  

Statistical Analysis  

The Student t-test was used to perform statistical analysis. Data are presented as the 

mean ± 95% CI (n ≥ 3). All p values are two-tailed. 
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Results 

 

Transcriptional activity of HDAC1, 2 and 3 are highly active in ALDH-positive 

cells. 

To evaluate whether breast CSCs have higher HDACs activities than non-

CSCs, we performed computational assessment on the expression profiles of the 

target genes of HDACs in ALDH-positive and ALDH-negative cells. Numerous studies 

have reported an enhanced expression of HDACs at mRNA and protein levels in 

solid tumors from stomach, esophagus, colon, breast, ovaries, lung, pancreas and 

thyroid (22-24) as compared to the respective tissues of origin. The analysis 

indicated that the target genes of HDAC1, 2 and 3 are significantly up-regulated in 

ALDH-positive cells as compared to ALDH-negative cells (Table 5.2). No significant 

difference in the target genes of the rest of HDAC family members was observed 

between the Aldefluor-positive and negative populations. This indicates that genes 

regulated by HDAC1, 2 and 3 may be associated with the maintenance of ALDH-

positive cells. 

HDAC inhibition by SAHA suppressed the CSC population.  

To evaluate whether HDAC inhibition diminishes the amount of CSCs, we 

examined the changes of the Aldefluor-positive cells in SUM159 breast cancer cell 

line in response to SAHA treatment. Breast cancer stem/progenitor cells have highly 

active ALDH enzyme activity (20), which can be detected with Aldefluor assay. 

Therefore, ALDH1activity is commonly used as a marker to identify the 
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subpopulation of cells that exhibit CSC properties. SUM159 cells were cultured in 

the presence of 0.5, 1 or 2 µM of SAHA or DMSO for two days and were analyzed 

using Aldefluor assay and flow cytometry. The data showed that treatment of bulk 

SUM159 cells with SAHA reduced the proportion of Aldefluor-positive cells in a 

concentration-dependent manner (Figure 5.1). At a concentration of 1µM, SAHA 

significantly reduced the proportion of Aldefluor-positive population by 54%, and 

2µM SAHA achieved a 79% reduction of Aldefluor-positive cells as compared to 

DMSO treated cells. Interestingly, Aldefluor-positive cells showed greater 

susceptibility to SAHA with IC50 of 1 µM, while that of the bulk cancer cells was 2µM 

(Figure 5.2). At 1 µM concentration, the number of bulk cancer cells was reduced by 

only 30%. This suggests that Aldefluor-positive cells are sensitive to HDAC 

inhibition by SAHA.  

 SAHA inhibited the tumorsphere formation efficiency of Aldefluor-positive 

cells  

To evaluate whether SAHA suppresses CSC self-renewal capability, 

tumorsphere formation assay was performed using SUM159 breast cancer cells. 

Aldefluor-positive cells were plated into a 96-well Ultra-low attachment plate at a 

density of one cell/well and were treated with SAHA under the suspension 

condition for 7 days. After 7 more days, tumorspheres were observed under a 

microscope. Subsequently, the tumorspheres were collected, dissociated to a single-

cell suspension, and cultured in the same manner in the absence of SAHA for two 

more passages. In the first passage, a 76% reduction in tumorsphere formation 

efficiency was observed in cells treated with 0.5µM SAHA as compared to cells 
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treated with DMSO (Figure 5.3). Of note, the inhibitory effect on the tumorsphere 

formation efficiency still remained for the second and third passages after removal 

of SAHA from the culture medium (74% and 75% reduction, respectively, as 

compared to DMSO treated cells). The data indicates that SAHA is capable of 

inhibiting self-renewing potential of CSCs in vitro. 

SAHA diminished the amount of ALDH-positive cells in vivo.  

To verify that SAHA could target breast CSCs in vivo, we used SUM159 and 

primary tumor (MC1) mouse xenograft models established in NOD/SCID mice. Two 

and half weeks after cancer cell inoculation, mice were treated with 25mg/kg SAHA 

three times per week by i.p. for 3 weeks. At the end of the study, SUM159 and MC1 

tumors in SAHA treated mice exhibited smaller volume, by 45% and 84% 

respectively, as compared to those in vehicle treated mice (Figure 5.4). At the end of 

treatment, tumors were harvested and the Aldefluor-positive cells remaining in 

tumors were assessed with Aldefluor assay and flow cytometry. SAHA reduced the 

proportion of Aldefluor-positive population by 90% in SUM159 tumors and 52% in 

MC1 tumors (Figure 5.5). The reduction in tumor volume and the proportion of 

Aldefluor-positive population after treatment with SAHA suggests SAHA can target 

CSCs in vivo. 

SAHA impaired tumorigenicity of tumor cells.  

To demonstrate that the residual Aldefluor-positive cells after SAHA 

treatment possess poor tumorigenicity, tumor re-implantation assay was 

conducted. Two dilutions of single-suspension cells obtained from vehicle- or SAHA-

treated primary SUM159 tumors were re-injected into secondary NOD/SCID mice. 
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The tumorigenic capacity was evaluated based on the onset of tumor formation and 

the rate of tumor growth.  All mice (n=5) receiving 100K of SUM159 cells derived 

from vehicle-treated mice developed tumors at week 1, whereas those (n=5) 

receiving the same number of cells from SAHA-treated mice took additional two 

week to form tumors (Figure 5.6). Similarly, mice injected with 10K cells derived 

from vehicle-treated mice all formed tumors at week 2. However, those inoculated 

with the same amount of cells from drug-treated mice did not form tumors until 

week 5. Of mice receiving 100K or 10K of SAHA-treated SUM159 cells, 20% and 

60% remained tumor-free, respectively, at the end of 4 to 5-week monitoring 

period. In contrast, all mice inoculated with cells from vehicle-treated mice had 

tumors at both dilutions. Moreover, once the tumor developed, the tumor growth 

rate of SAHA-treated tumor cells was significantly slower at both dilutions 

(74mm3/min and 4mm3/min for 100K and 10K, respectively) than those of vehicle-

treated cells (846 mm3/week and 160mm3/min for 100K and 10K, respectively).  

Similarly, tumor re-implantation assay was conducted using MC1 cells at two 

dilutions (20K or 2K cells). Correspondingly to the observations in the SUM159 re-

implantation data, MC1 cells from drug-treated tumors had longer time to tumor 

development and slower tumor growth rate, as compared to those from vehicle-

treated tumors. At a dilution of 20K cells, all mice (n=4) injected with vehicle-

treated tumors formed tumors at week 3 with an average tumor growth rate of 

61mmm3/min, whereas mice (n=4) injected with cells from drug-treated tumors 

took additional 3 weeks to form tumors. Over a 8-week period, only 50% of mice 

developed tumors with a tumor growth rate of 2mm3/min (Figure 5.7). Of mice 
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(n=3) receiving 2K cells from vehicle-treated tumors, all began to develop tumors at 

week 7 with a growth rate of 55mm3/week, while only 33% of mice receiving cells 

from drug-treated tumors began to form tumors at week 10 with a growth rate 

1.3mm3/week. Taken together, the findings show that SAHA treatment impaired the 

tumorigenicity of the remaining Aldefluor-positive cells. 

SAHA reduces the expression level of MYC  

To investigate the potential mechanisms underlying breast CSC targeting by 

SAHA, we conducted a microarray gene expression analyses of four cell groups: 

SUM159 untreated Aldefluor-negative cells, Aldefluor-positive cells treated with 

DMSO for 12hours, Aldefluor-positive cells treated with SAHA for 12 hours, and 

Aldefluor-positive cells treated with SAHA for 24 hours. Comparing Aldefluor-

positive and Aldefluor-negative cells, a general trend toward opposite gene 

expression profile was observed. Genes up-regulated in Aldefluor-positive cells 

were down-regulated in Aldefluor-negative cells and vice versa. Of genes that have 

been identified to play a role in the maintenance of CSC properties, CD44, ALDH1A1, 

and the target genes of MYC were identified show Aldefluor-dependent and 

treatment-dependent expression patterns. The vast difference in the gene 

expression profile between Aldefluor-positive and Aldefluor-negative cells reflects 

the phenotypic difference between CSC population of tumor cells and the 

differentiated tumor cell population. 

To assess the effect of SAHA on MYC activity, a genome-wide microarray 

analysis of MYC-targets was conducted on four subgroups, Aldefluor-negative 

group, Aldefluor-positive group exposed to DMSO, Aldefluor-positive group exposed 



130 
 

to SAHA for 12 hours and Aldefluor-positive group exposed to SAHA for 24 hours. 

Interestingly, the expression of MYC gene signature in the Aldefluor-positive 

subgroup was significantly different from that in Aldefluor-negative subgroup 

(Figure 5.8A). However, the MYC-signature genes of the Aldefluor-positive cells 

became similar to that of Aldefluor-negative cells after treatment with SAHA, which 

was clearly demonstrated at 12hrs and further more at 24 hr (Figure 5.8A).  

To quantitatively evaluate MYC activation, signature activation score was 

calculated from the microarray results above. Signature activation scores were 

calculated as the differences in the level of gene expression between genes expected 

to be elevated and genes expected to be decreased in cells with increased MYC 

activity. In other words, higher positive score is expected to correlate with higher 

MYC activity, while lower negative score is expected to correlate with decreased 

MYC activity. The MYC signature score of Aldefluor-positive subgroup was 40, which 

was significantly higher than the score of -30 in the Aldefluor-negative subgroup 

(Figure 5.8B). Upon exposure to SAHA for 12 hours or 24 hours, MYC signature 

activation score of the Aldefluor-positive cells significantly declined to 0 or -20, 

respectively. Collectively, the data displays treatment duration-dependent decrease 

in MYC expression after SAHA treatment.   

To confirm the results of the signature activation score, Real-Time PCR of the 

MYC gene was conducted on the four subgroups. A 2.5-fold higher MYC expression 

level was observed in Aldefluor-positive cells compared to Aldefluor-negative cells 

(Figure 5.8C). After a 12 hour treatment with SAHA, the gene expression level of 
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MYC in Aldefluor-positive cells was reduced to a level close to that of Aldefluor-

negative cells. The effect of SAHA on MYC expression appeared to be sustained at 

24hours. The reduction of MYC protein in response to SAHA treatment was 

observed as well (Figure 5.8D). Together, SAHA MYC overexpression in Aldefluor-

positive cells was reversed by SAHA treatment.  

Treatment with SAHA leads to reduction of BMI-1 expression in Aldefluor-

positive cells 

Studies in embryonic stem cells and cancer stem cells have shown that Bmi-1 

is a crucial component for the maintenance of the self-renewal capability [31, 75, 

76-80 ]. Previous studies have reported that BMI-1, a CSC regulator, was highly 

regulated in the CSC population To know whether the level of BMI-1 gene is up-

regulated in the CSC-like cells, the gene levels in four subgroups: Aldefluor-negative 

cells, DMSO-treated Aldefluor-negative cells, SAHA-treated Aldefluor-positive cells 

and SAHA -treated Aldefluor-negative cells were quantified with Real-Time PCR. As 

compared to Aldefluor-negative cells, the expression of BMI-1 genes was 

significantly 5-fold higher in Aldefluor-positive cells, which can be down-regulated 

by 2-3 folds upon SAHA treatment (Figure 5.9). Accompany by a decreased gene 

expression, the level of BMI-1 protein was down-regulated (Figure 5.8D). 

Effect of SAHA on CSC-markers: ALDH1A1 and CD44/CD24 

  As expected in cells with high ALDH activity, microarray analysis showed 

ALDH1A1 was significantly up-regulated in Aldefluor-positive cells as compared to 

Aldefluor-negative cells. The microarray data also showed a reduction of ALDH1A1 

expression after treatment with SAHA for 12 hours. These observations were 
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verified by Real-Time PCR, which showed that the gene expression of ALDH1A1 was 

3 fold higher in Aldefluor-positive cells than in Aldefluor-negative cells (Figure 5. 

10). Furthermore, a 2-fold reduction in ALDH1A1 expression level was observed in 

response to treatment with SAHA for 12 hours. The effect was sustained at 24 hours.  

 In addition, SAHA also affected the expression of CD44 and CD24 genes. Cells 

with the phenotype CD44+/ CD24- have been shown to be enriched with breast CSCs. 

The expression of CD24 gene was lower in Aldefluor-positive cells, as compared to 

that in Aldefluor-negative cells. However, upon SAHA treatment, CD24 expression in 

Aldefluor-positive cells was up-regulated (Figure 5.11). In contrast, the expression 

of CD44 gene was higher in Aldefluor-positive cells as compared to that in Aldefluor-

negative cells. Interestingly, two different responses of CD44 expression genes were 

observed in response to SAHA treatment. One set of probsets, which included 

at_212063 and at_229221, indicated that CD44 gene was down-regulated after drug 

treatment, whereas the other set including five CD44 probsets showed the opposite 

response. The levels of CD44 and CD24 proteins in response to SAHA were detected 

using CD44 and CD24 antibodies, followed by flow cytometry.  SAHA treatment 

significantly reduced CD44+/ CD24- cells (Figure 5.12A), which was accompanied 

with increases in CD44-/ CD24+ cells (Figure 5.12B). Together, the findings suggest 

that SAHA treatment converted cells from the tumorigenic phenotype to non-

tumorigenic phenotype.   
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Discussion 

Tumors are thought to originate from a subset of cancer cells termed cancer 

stem cells (CSCs), which possess the stem cell traits such as self-renewal capability 

and the ability to give rise to multiple cell lineages (25, 26).  Through self-renewal, 

CSCs drive tumorigenicity, tumor recurrence, and metastasis. Through 

differentiation, CSCs give rise to heterogeneous populations of cancer cells and 

perpetuate tumor growth. The existence of CSCs was first demonstrated by Dick et 

al., where they successfully identified a small population of leukemia cells that drive 

disease progression (27). The rare tumorigenic CSCs have been identified and 

isolated from various hematological and solid malignancies, including breast (1, 2), 

pancreatic (7-10), prostate (11, 12), colon (13), brain(14), skin (28) cancers. The 

CSC hypothesis describes that only CSCs are able to initiate tumors and maintain 

tumor growth through self-renewal and CSCs are thought to mediate tumor 

recurrence and metastasis.  

The identification and isolation of CSCs remain key challenges in studying 

CSCs despite widespread acceptance of the concept. In breast cancer, putative CSCs 

were first reported in the study of Al-Hajj et al. where breast tumor was 

demonstrated to contain a small population with stem cell properties bearing the 

CD44+/CD24-/lineage- phenotype (29). Subsequently, the work of Ginester et al. 

demonstrated that aldehyde dehydrogenase 1 (ALDH1) is a marker for 

stem/progenitor cells in healthy and cancerous human breast tissues (20). The 

study found that cancer cells with elevated ALDH1 activity, as assessed by Aldefluor 
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assay, exhibited tumorigenic capability because they were able to self-renew and 

generate heterogeneous cell populations. Moreover, the Aldefluor-positive cells had 

only approximately 1% of overlap with the previous described CD44+/CD24-/lineage- 

CSCs (30, 31). Still, increasing evidence indicates that higher percentage of 

Aldefluor-positive tumor cells may serve as a novel prognostic marker for poor 

clinical outcome in multiple human solid cancers including breast (20, 32, 33), 

lung(34), pancreatic(35), bladder (36) and prostate (37) cancers. In spite of the 

existence of varying findings in literature, ALDH1 activity still presents itself as a 

strong candidate for the identification of CSCs in vitro and in vivo.   

The analysis of gene expression indicated that the target genes of HDAC-1, 2 

and 3 were significantly up-regulated in Aldefluor-positive cells whereas the target 

genes of other HDAC isoforms were not different, as compared to Aldefluor-negative 

cells. Our finding is in agreement with previous studies citing increased expression 

of HDAC1 and 3 in breast cancer (23)and HDAC 1, 6, 8 overexpression is strongly 

associated with invasive potential of breast cancer (38). Down-regulation of HDAC1 

induces cellular differentiation was reported in breast cancer (39). HDAC1 

expression has shown to correlate with the degree of tumor differentiation in 

various cancers (40-42).  Although the exact mechanism for how the different HDAC 

isoforms are involved is unclear, the observations suggest that HDAC1, 2, and 3 may 

be involved in the regulation of Aldefluor-positive cells.  

Since CSCs govern tumor initiation, metastasis, and recurrence through 

aberrant self-renewal and differentiation to heterogeneous lineages, inhibition of 

CSC self-renewal is essential to preventing tumor progression. Tumorsphere 
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formation assay has been widely used to evaluate in vitro CSC self-renewal 

capability (43-49). Our in vitro studies demonstrated SAHA is effective against the 

CSC-rich Aldefluor-positive population within tumors to block the self-renewal. This 

finding coincides with the findings of Robertson et al. showing that SAHA inhibits 

the self-renewing ability of inflammatory breast cancer (IBC) cell lines (50). 

However, they used unsorted cells in tumorsphere formation assay and hence the 

readout may be a mixed response from both CSC and differentiated populations. To 

better characterize the effect of SAHA specifically on the CSCs, we sorted the cancer 

cells based on the Aldefluor assay prior to subjecting the cells to tumorsphere 

formation assay. Our data provides a more definitive evidence to suggest that HDAC 

inhibitors such as SAHA are effective at inhibiting self-renewal of breast CSCs.  

 The damaged self-renewal ability of Aldefluor-positive cells caused by SAHA 

led to the poor tumorigenic potential. In the re-implantation of tumor cells from 

SAHA-treated and vehicle-treated mice to assess the tumor engraftment efficiency, 

the number of re-implanted CSCs was not able to be controlled. Although the total 

number of re-implanted tumor cells was controlled, the drug-treated tumors were 

composed of less Aldefluor-positive cells (0.19%) as compared to the vehicle-

treated tumors (4.38%). Therefore, secondary mice receiving the re-implantation 

from vehicle-treated mice likely received more Aldeflour-positive cells than from 

SAHA-treated mice. To address this concern, the number of Aldefluor-positive cells 

inoculated into secondary mice was calculated based on the Aldefluor assay data in 

Figure 3D and compared to the tumor engraftment efficiency. Of 20K tumor cells, 

876 cells are calculated to be Aldefluor-positive in the vehicle-treated mice and 420 
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cells are calculated to be Aldefluor-positive in the drug-treated mice. Of 2K tumor 

cells, 88 cells are Aldefluor-positive in vehicle-treated tumors and 42 cells are 

Aldefluor-positive in drug-treated tumors. The data implies that as low as 88 

Aldefluor-positive cells from vehicle-treated mice formed tumors in secondary mice 

100% of the time in 8 weeks, while as many as 420 Aldefluor-positive cells from 

drug-treated mice formed tumors only 50% of the time. This indicates that impaired 

self-renewing potential observed in the drug-treated tumors is not only due to the 

difference in the number of re-implanted Aldefluor-positive cells, but also their self-

renewal ability. These findings suggest that SAHA is able to inhibit the 

tumorigenicity of Aldefluor-positive cells.  

The role Myc plays in promoting self-renewal of stem cells have been 

established in a variety of stem cells including embryonic stem cells (51-53), neural 

stem/progenitor cells (54-56), hematopoietic stem cells (57, 58), and glioblastoma 

stem cells (59). A recent study in glioma malignancy by Wang et al. reported that 

MYC knockdown in CSCs by siRNA attenuated their ability form neurosphere 

formation and abolished tumorigenic ability of form tumors in mouse. Their 

findings highlight the critical role of MYC in the regulation of CSC self-renewal. In 

accordance with their study, our findings showed that highly activated MYC in 

Aldefluor-positive cells was attenuated after SAHA treatment.  On strength of the 

role of MYC in self-renewal, inhibition of self-renewal and tumorigenicity of CSCs by 

SAHA may be mediated through MYC.   

Elevated BMI-1 gene expression observed in our study reflects the current 

understanding of gene expression profile of CSCs. BMI-1, a transcription repressor, 
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has been shown to play a role in the regulation of hematopoietic and neuronal stem 

cell self-renewal (25, 60). Recently, elevated expression of Bmi-1 is also increasingly 

being recognized as an important feature for the maintenance of stemness in CSCs. 

Ample studies revealed that BMI-1 is highly expressed in cancer cells with high 

tumor initiating capacities (60-66). Our observation of elevated BMI-1 gene 

expression in Aldefluor-positive cells in support of the speculation that elevated 

BMI-1 expression is a feature of cells possessing stem-like properties, including 

CSCs.  

Apart from being a feature of CSCs, BMI-1 may play a role as a mediator for 

the inhibitory effect of SAHA on CSCs. BMI-1 has been reported as a transcriptional 

target of HDAC inhibitors (67). Similarly, the findings of our experiment 

demonstrate that SAHA is capable of suppressing the levels of BMI-1 gene and 

protein expression. We have also shown both in vitro and in vivo that SAHA is able to 

inhibit the self-renewal capability of the CSC-like Aldefluor-positive cells. 

Furthermore, previous studies have demonstrated the relationship between the 

level of BMI-1 expression and the ability of CSCs to self-renew. For example, stable 

knockdown of BMI-1 in CD133-positive glioblastoma multiforme stem cells resulted 

in the inhibition of clonogenic potential in vitro and of brain tumor formation in 

vivo(65). Moreover, induction of BMI-1 over-expression via up-regulating a BMI-1 

upstream signal has been shown to promote the self-renewal in breast mammary 

and cancer stem cells (5). Similar findings have also been reported in prostate 

cancer (61, 62), head and neck small cell cancer (66), and hepatocelluar carcinoma 

(68). Taken together, the findings of our study suggest that BMI-1 may be one of the 
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mediators of the inhibitory action of SAHA on CSCs among numerous genes affected 

by HDAC inhibitors. 

Among varied genes caused by SAHA, genes associated with CSC markers 

such as ALDH1A1, CD44 and CD24 were changed modulated by SAHA.  Higher 

expression of ALDH1A1 gene was down-regulated in SAHA treated Aldefluor-

positive cells as compared to DMSO-treated. Apart from ALDH1A1 gene, the CSC-

phenotype of CD44+/CD24- was partially converted to CD44-/CD24+. Of note, two 

distinct responses of CD44 genes to SAHA were observed. One set including 5 gene 

probes was up-regulated by SAHA, whereas the other set including down-regulated 

by SAHA. This may due to the variant CD44 isoforms. Despite of the various 

responses, antibody staining for surface CD44 and CD24 markers confirmed that 

SAHA indeed reduced the portion of CD44+/CD24- cells and increased  CD44-

/CD24+ cells. Shipitsin et al. have showed that CD24 is preferentially expressed on 

more differentiated cells whereas CD44 is expressed on more progenitor-like cells 

(69). It is unclear whether the changes of ALDH1A1 and CD44 and CD24 

transcription are direct response of HDAC inhibition or the outcomes through 

mediators, such as MYC or BMI-1.  Nevertheless, the down-regulated ALDH1A1 and 

CD44 gene, and up-regulated CD24 upon HDAC inhibition support in vitro and in 

vivo findings that a significant reduction of Aldefluor-positive cells and impaired 

self-renewal after SAHA treatment.    

Beyond their established roles in the transcriptional regulation, HDACs have 

been shown to be involved in the post-translational regulation. For instance, HDAC6 

has been reported to acetylate many non-histone targets, such as heat shock protein 
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90 (Hsp90). Upon HDAC inhibition, hyper-acetylation would impair Hsp90’s co-

chaperon function. As a result, hyper-acetylated Hsp90 is unable to stabilize its 

client proteins and instead causes the degradation of client proteins (70). In our 

present study, we did not address whether the non-transcriptional effect of SAHA is 

associated with breast CSC inhibition, however, we could not exclude the possibility 

that acetylated non-histone targets might contributed to the suppression of breast 

CSCs. Several studies, including our previous studies, suggested that HSP90 

inhibition would be a promising therapeutic approach to target CSCs in bladder (71) 

and breast cancers (manuscript is under revision), glioma (72), leukemia (73, 74) 

and lymphoma (under revision). Thus, apart from gene modulation, HDAC-mediated 

Hsp90 inhibition might contribute partially to the inhibitory effect on breast CSCs 

observed in our current study.   
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Conclusion 

In summary, the current study provides evidence to suggest that HDAC 

inhibition could be a potential approach to target breast CSCs. Gene expression 

analysis of SUM159 cells indicated that the target genes of HDAC1, 2, and 3 are 

highly active in the Aldefluor-positive population compared to the Aldefluor-

negative population. HDAC inhibition by SAHA reduced the number Aldefluor-

positive cells as well as impaired capability of self-renewal, leading to poor tumor 

engraftment ability in secondary mice.  Last, inhibition of Aldefluor-positive cells 

might be mediated through two critical components, MYC and BMI-1.  Along with 

reduction in BMI-1 and MYC, two breast CSC markers, ALDH1A1 and CD44 were 

down-regulated, suggests that SAHA converted these cells from stem-like phenotype 

to more differentiated status. Our study has important implications for the use of 

HDAC inhibitors as a differential agent in anti-CSCs therapy.  
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TABLES 

 
      

 
Primer Oligo sequence (5' to 3') 

 

Bmi-1  Forward  GGAGACCAGCAAGTATTGTCCTATTT  

 

Bmi-1  Reverse  CATTGCTGCTGCTGGGCATCGTAAG  

 

c-Myc  Forward  ATGCCCCTCAACGTTAGCTTC  

 

c-Myc  Reverse  CTGAGACGAGGATGTTTTTGATGAAGG  

 

GAPDH  Forward  CTCAGACACCATGGGGAAGGTGA  

 

GAPDH  Reverse  ATGATCTTGAGGCTGTTGTCATA  

 

ALDH1A1 Forward  AGCCTTCACAGGATCAACAGA 

 

ALDH1A1 Reverse  GTCGGCATCAGCTAACACAA 

 

p21WAF1   Forward  ATGTCAGAACCGGCTGGGGA  

 

p21WAF1   Reverse  GCCGTTTTCGACCCTGAGAG  

    Table 5.1 Primers used for real-time RT-PCR analyses  
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Table 5.2 Highly activated genes in Aldefluor-positive cells (ratio >1 indicated 

activation and ratio <1 indicate inactivation) 
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FIGURES 

A 

 

B 

 

Figure 5.1 SAHA reduced the number of SUM159 Aldefluor-positive CSCs. 
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Figure 5.2 SAHA reduced the viability of SUM159 cancer cells. 
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A                                                                            B 

 

Figure 5.3 SAHA treatment inhibited the self-renewal and proliferative capability of 
SUM159 Aldefluor-positive cells in vitro 
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A 

 

B 

 

Figure 5.4 SAHA inhibited the growth of SUM159 and MC1 tumors.  
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A 

 

B 

 

Figure 5.5 SAHA reduced the portion of Aldefluor-positive cells in SUM159 and MC1 
tumors.  
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A 

 
 

Figure 5.6 SAHA impaired the tumor engraftment efficiency of SUM159 cells in 
secondary mice 
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Figure 5.7 SAHA impaired the tumor engraftment efficiency of MC1 cells in 
secondary mice 
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Figure 5.8 Effect of SAHA on the expression pattern of MYC target genes, and levels 
of MYC gene and protein.  
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Figure 5.9 SAHA reduced the expression of BMI-1 gene in Aldefluor-positive cells.   
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Figure 5.10 SAHA reduced the level of ALDH1A1 gene.  
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Figure 5.11 SAHA inhibits MCF7 CD44+/CD24- cells 
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A 

 

B 

 

Figure 5.12 Effect of SAHA on the expression CD44 and CD24 protein  
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