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Point source modeling of matched
case–control data with multiple
disease subtypes
Shi Li,a Bhramar Mukherjeea*† and Stuart Battermanb

In this paper, we propose nonlinear distance-odds models investigating elevated odds around point sources of
exposure, under a matched case-control design where there are subtypes within cases. We consider models
analogous to the polychotomous logit models and adjacent-category logit models for categorical outcomes and
extend them to the nonlinear distance-odds context. We consider multiple point sources as well as covariate
adjustments. We evaluate maximum likelihood, profile likelihood, iteratively reweighted least squares, and a
hierarchical Bayesian approach using Markov chain Monte Carlo techniques under these distance-odds models.
We compare these methods using an extensive simulation study and show that with multiple parameters
and a nonlinear model, Bayesian methods have advantages in terms of estimation stability, precision, and
interpretation. We illustrate the methods by analyzing Medicaid claims data corresponding to the pediatric
asthma population in Detroit, Michigan, from 2004 to 2006. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: asthma cases; conditional likelihood; disease subclassification; iteratively reweighted least square;
Markov chain Monte Carlo; matched case–control; point source modeling

1. Introduction

In case–control designs, matching is commonly implemented to avoid bias due to potential confounders.
In an individually matched case–control study, effects of potential risk factors are typically ascertained
through a conditional likelihood approach such as conditional logistic regression (CLR) [1]. Extension
of CLR to situations with multiple subtypes of cases or controls has been made through polychotomous
CLR (PCLR), which is more efficient than carrying out separate CLRs for subgroups [2]. Liang and
Stewart [2], Becher and Jockel [3], and Becher [4] applied PCLR models to matched case–control stud-
ies with two control groups, typically hospital and population controls. Thomas et al. [5] and Durbin
and Pasternack [6] applied PCLR models to analyze multiple disease groups with one set of controls.
Sinha et al. [7] considered a Bayesian semiparametric model for analyzing matched case–control data
with multiple disease states and missing exposure values. Mukherjee et al. [8] considered cases having
multiple disease states with a natural ordering in matched case–control studies. Mukherjee et al. [9] pro-
posed a methodology to fit stratified proportional odds models by amalgamating conditional likelihoods
obtained from all possible binary collapsing of the ordinal scale.

Studies since the 1990s [10–13] have investigated elevated risk of respiratory diseases around puta-
tive point sources of environmental pollution. Diggle et al. [14] described an extension to matched
case–control designs of the parametric modeling framework in [10, 12], using a conditional likelihood
approach. Asthma and chronic obstructive airways disease were associated with proximity of residence
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to major roads in East London. The possibility of residual spatial variation always exists in such envi-
ronmental epidemiology studies. Diggle et al. [15] modeled the residual spatial variability as a Gaussian
random field and proposed a Bayesian inferential approach using Markov chain Monte Carlo (MCMC)
methods. Recently, there has been an increasing interest in modeling disease risk in relation to point
sources of pollution in a Bayesian framework [16–18]. Wakefield and Morris [16] described a Bayesian
hierarchical modeling of disease risk around a point source, embedding models proposed by Diggle
et al. [13]. They discussed issues of the sensitivity to prior specification for this class of models. Dreassi
et al. performed a sensitivity analysis to investigate how the specification of the distance-odds func-
tions and the choice of prior distributions affect results under case–control studies [19]. Rodrigues
et al. [20] provided a semiparametric approach for point process modeling using generalized additive
model and illustrated the flexibility of this approach with applications in epidemiology and criminol-
ogy. All of the aforementioned spatial environmental epidemiology studies considered only the standard
binary case–control states.

The purpose of this article is to incorporate the distance-odds model around point sources into the
analysis of matched case–control data with multiple disease or control states. We extend the idea of the
polychotomous logit model and the adjacent-category logit model from the standard categorical data
literature [21] to the nonlinear distance-odds model framework. The extensions with nonlinear odds
function lead to some unique observations specific to the distance odds model. We evaluate maximum
likelihood, profile likelihood, iteratively reweighted least squares (IRLS), and a hierarchical Bayesian
approach using MCMC under the proposed models. We compare inference methods and various types
of point source models using an extensive simulation study. Simulation studies that compare the fre-
quentist properties (such as bias, mean squared error (MSE), and coverage probability) of the proposed
methods and models are not available in the literature, not even for binary case–control states.

We organize the rest of the paper as follows. Section 2 describes the general model formulation.
Section 2.1 reviews the distance-odds model with binary outcomes as proposed by Diggle et al.;
Section 2.2 considers the extension of the distance-odds model with polychotomous outcomes under
matched case–control data and considers various inference approaches. Section 3 explores the perfor-
mance of the proposed models and inference methods using extensive simulation studies. We consider
Analysis of the Detroit Asthma Morbidity, Air Quality and Traffic (DAMAT) study as a case study in
Section 4. Section 5 concludes with a discussion.

2. Model formulation

2.1. Review of distance-odds model with binary outcome by Diggle et al. [14]

Diggle et al. [10, 12] proposed the distance-odds model for characterizing elevated risk around putative
point sources of environmental pollution in case–control studies. The model assumes that the odds of
disease, r.x/ as a function of distance x from the point source, is proportional to the decay function
f .x/, as given in the following:

P.Y D 1jx/

P.Y D 0jx/
D

p.x/

1� p.x/
D r.x/D �f .x/ and

f .x/D 1C ˛ exp .�.x=ˇ/2/; .˛; ˇ/ 2 .�1;1/� .0;1/;

(1)

where Y is the disease status (Y D 1 for case; Y D 0 for control), x is the distance from the point source,
and � is the background odds of disease in the case–control population. (For a case–control study that
is embedded in a cohort study, � is typically given by � D .q1=q2/�, where � is the background odds
of disease in the study cohort and q1 and q2 are the proportions of cases and controls sampled from the
cohort respectively.) The parameters .˛; ˇ/ in model (1) have a natural interpretation: ˛ is proportional
to the disease odds at the point source (˛ D Œr.0/=��� 1); ˇ measures the rate of decay with increasing
distance from the point source, in the unit of distance x. Under this model setting, as x !1, we have
f .x/ ! 1 and the risk function p.x/ D P.Y D 1jx/ D �f .x/=.1 C �f .x// ! �=.1 C �/, that is,
the background risk in the case–control population [14]. Note that, if f .x/ D exp .ˇx/ is chosen with
r.x/ D �f .x/ in model (1), then one would have that log.r.x// D log.�/C ˇx, which becomes the
usual logistic regression model that assumes a linear distance-odds relationship with log odds ratio ˇ
and intercept log.�/. However, usually the odds of disease changes nonlinearly with increasing distance
from the point source, for example, with increasing distance to an industrial park, the odds of asthma
might decrease much faster within 0–200 m than within 1000–1200 m. Another possible disadvantage of
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the log-linear model is that for ˇ < 0 (that implies increasing odds with decreasing distance), r.x/! 0

and p.x/ ! 0 as x ! 1, but these do not converge to background odds or risk, which would be a
desirable property. For non-rare diseases such as asthma, the log-linear distance-odds model is question-
able. These disadvantages of log-linear model lead us to focus on the nonlinear distance-odds model (1)
proposed by Diggle et al. [10].

As an extension to model (1), Diggle and Rowlingson [12] assumed multiplicative risk factors for
the combined effects of S point sources and allowed for covariate adjustment via additional log-linear
terms. In the presence of S point sources and W spatially referenced covariates Zw.x/; w D 1; : : : ;W ,
the resulting distance-odds model takes the form

r.x/D �f .x/ and f .x/D exp

 
WX
wD1

�wZw.x/

!
SY
sD1

fs.xs/; (2)

where x D .x1; : : : ; xS / and xs and fs.xs/ are the distance and the decay function for the sth
point source, respectively. Here, each fs.xs/ takes the same functional form as in model (1), that is,
fs.xs/D 1C ˛s exp .�.xs=ˇs/2/.

For a 1:M matched case–control study with N matched pairs, the risk of disease for an individual at
distance x in the i th stratum can be expressed as [14]

Pi .Y D 1jx/D
ri .x/

1C ri .x/
D

�if .x/

1C �if .x/
; i D 1; : : : ; N;

where the baseline odds �i for the i th stratum can potentially vary across matched pairs under the
matched case–control design. The conditional likelihood, given the exposure vector at distance xi D
.xi1; xi2; : : : ; xi.MC1// for the i th stratum, that the case is at distance xi1 is

Li .˛; ˇ/D P.Yi1 D 1; Yi2 D � � � D Yi.MC1/ D 0jYi1C Yi2C � � � C Yi.MC1/ D 1; xi/

D

�if .xi1/QMC1
jD1

.1C�if .xij //

�if .xi1/QMC1
jD1

.1C�if .xij //
C �if .xi2/QMC1

jD1
.1C�if .xij //

C � � � C
�if .xi.MC1//QMC1
jD1

.1C�if .xij //

D
f .xi1/PMC1
jD1 f .xij /

; i D 1; : : : ; N;

(3)

where Yij and xij are the disease status and distance for the j th individual in the i th stratum respectively,
i D 1; : : : ; N I j D 1; : : : ;M C 1. The general form of the conditional likelihood is (3). For one point
source binary model, f .x/ is as given in (1), where as for multiple point sources, binary model (with
possible covariate adjustment) f .x/ is as given in (2).

Denote the conditional likelihood by L, the corresponding log-likelihood by l
�
l D log.L/ DPN

iD1 log.Li / D
PN
iD1 li

�
, and the parameters to be estimated by � . The maximum likelihood estimates

(MLEs) of � D .˛; ˇ/ in the one point source binary outcome model can be obtained by maximizing the
logarithm of the conditional likelihood

l.˛; ˇ/D

NX
iD1

log

 
f .xi1/PMC1
jD1 f .xij /

!
D

NX
iD1

log

 
1C ˛ exp .�.xi1=ˇ/2/PMC1

jD1

�
1C ˛ exp .�.xij =ˇ/2/

�
!
:

Similarly, the MLEs of � D .˛;ˇ;�/ D .˛1; : : : ; ˛S ; ˇ1; : : : ; ˇS ; �1; : : : ; �W / in the S point sources
binary outcome model with W covariates can be obtained by maximizing

l.˛;ˇ;�/D

NX
iD1

log

 
f .xi1/PMC1

jD1 f .xij /

!

D

NX
iD1

log

0
@ exp

�PW
wD1 �wZw.xi1/

�QS
sD1

�
1C ˛s exp

�
�.xi1s=ˇs/

2
��

PMC1
jD1

h
exp

�PW
wD1 �wZw.xij /

�QS
sD1

�
1C ˛s exp

�
�.xijs=ˇs/2

��i
1
A ;
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where xij D .xij1; : : : ; xijS / and xijs is the distance of the j th individual in the i th stratum from the sth
point source. We can find more detailed discussion of parameter estimation and inference for the models
with binary outcomes in [14].

2.2. Distance-odds model with polychotomous outcome

In this section, we extend the distance-odds model reviewed in Section 2.1 to situations where cases
can have multiple disease states. Without loss of generality, we illustrate the methods and formula-
tion in the following sections for a 1:M matched case–control data set with N matched pairs, where
outcomes can belong to one of the K disease categories (for example, with K D 2; poor progno-
sis: Y D 2; fair prognosis: Y D 1) and one control group (Y D 0). These methods can be readily
applied to situations with multiple control states and to situations with variable matching ratios. The
distance-odds model is adapted to both polychotomous-category model (PCM) and adjacent-category
model (ACM) setting (Remark 1). The PCMs are considered when one tries to distinguish nominal dis-
ease subtypes to the controls. The ACMs are more appropriate when there is a natural ordering of the
disease subclassifications.

2.2.1. Polychotomous-category distance-odds model. For the PCM setting, the odds of disease for the
j th individual in the i th stratum at distance xij is modeled as

rk.xij /D
P.Yij D kjxij /

P.Yij D 0jxij /
D �ikfk.xij /; i D 1; : : :; N I j D 1; : : :;MC1I k D 1; : : :; K; (4)

where the baseline odds �ik can potentially vary across matched pairs i and disease categories k and the
distance-odds function fk.x/ can also vary among disease categories. Note that, if fk.x/ D exp .ˇkx/
is chosen in model (4) with multiplicative nuisance parameters �ik D �i � �k , one would have that

log.rk.xij //D log

�
P.Yij D kjxij /

P.Yij D 0jxij /

	
D log.�i /C log.�k/C ˇkxij ; (5)

which becomes the polychotomous logistic regression models [21] that assumes a linear distance-odds
relationship. Nonlinear distance-odds models such as (1) are desired, with advantages over log-linear
models as discussed in Section 2.1. With the use of the K equations in (4) along with one more con-
straint that

PK
kD0 P.Yij D kjxij / D 1, the risk of disease can be written in terms of �ik and fk for the

corresponding individual, that is,

P.Yij D 0jxij /D
1

1C
PK
kD1Œ�ikfk.xij /�

;

P.Yij D kjxij /D
�ikfk.xij /

1C
PK
kD1Œ�ikfk.xij /�

; k D 1; : : :; K:

Let ki denote the disease states of the case subject in matched set i, ki 2 .1; : : :; K/. The conditional
likelihood for the i th stratum, given a matched case–control pair at distance xi D .xi1; xi2; : : :; xi.MC1//,
that the case (in category ki ) is at distance xi1 is

L
ki
i D P.Yi1 D ki ; Yi2 D � � � D Yi.MC1/ D 0jYi1C Yi2C � � � C Yi.MC1/ D ki ; xi/

D
�ikifki .xi1/=

QMC1
jD1

h
1C

PK
kD1 �ikfk.xij /

i
PMC1
jD1 �ikifki .xij /=

QMC1
jD1

h
1C

PK
kD1 �ikfk.xij /

i
D

fki .xi1/PMC1
jD1 fki .xij /

: (6)

The general form of the conditional likelihood is (6). For one point source PCM, fk.x/ is given
as fk.x/ D 1 C ˛k exp

�
�.x=ˇk/

2
�
; for multiple point sources PCM, fk.x/ is given as fk.x/ D

exp
�PT

tD1 �ktZkt .x/
�QS

sD1 fks.xs/, where fks.xs/D 1C ˛ks exp
�
�.xs=ˇks/

2
�
.
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2.2.2. Adjacent-category distance-odds model. For the ACM setting, the adjacent odds of disease
between category K versus K � 1 for the j th individual in the i th stratum can be modeled as

rk.xij /D
P.Yij D kjxij /

P.Yij D k � 1jxij /
D �ikfk.xij /; i D 1; : : :; N I j D 1; : : :;M C 1I k D 1; : : :; K:

(7)
Again, the baseline odds �ik can vary across matched pairs i and disease categories k, and the distance-
odds function fk.x/ can vary across disease categories. One point source ACM and multiple point
sources ACM (with possible covariate adjustment) can be formulated similarly as PCM with different
choices of fk . For these nonlinear settings, ACM cannot be represented as a reparameterization of PCM
as in log-linear models (Remark 1). Thus, both ACM and PCM are needed for ordered and nominal
disease subclassifications, respectively. Note that if fk.x/ D exp

�
ˇ�
k
x
�

is chosen in model (7) with
multiplicative nuisance parameters �ik D ��i � �

�
k

, one would have that

log.rk.xij //D log

�
P.Yij D kjxij /

P.Yij D k � 1jxij /

	
D log

�
��i
�
C log

�
��k
�
C ˇ�kxij ; (8)

which reduces to the polychotomous logistic regression models in adjacent category setting [21] that
assumes a linear distance-odds relationship. The risk of disease can be represented in terms of �ik and
fk as

P.Yij D 0jxij /D
1

1C
PK
kD1

hQk
hD1 �ihfh.xij /

i ;

P.Yij D kjxij /D

Qk
hD1 �ihfh.xij /

1C
PK
kD1

hQk
hD1 �ihfh.xij /

i ; k D 1; : : :; K:

It follows that the conditional likelihood for the i th stratum is

L
ki
i D P.Yi1 D ki ; Yi2 D � � � D Yi.MC1/ D 0jYi1C Yi2C � � � C Yi.MC1/ D ki ; xi

D

Qki
hD1

�ihfh.xi1/=
QMC1
jD1

h
1C

PK
kD1

hQk
hD1 �ihfh.xij /

ii
PMC1
jD1

hQki
hD1

�ihfh.xij /
i
=
QMC1
jD1

h
1C

PK
kD1

hQk
hD1 �ihfh.xij /

ii

D

Qki
hD1

fh.xi1/PMC1
jD1

hQki
hD1

fh.xij /
i :

(9)

One special case of interest is the homogeneity of the adjacent odds ratios with one unit increase in
distance across case categories, that is,

rK.xC 1/

rK.x/
D
rK�1.xC 1/

rK�1.x/
D � � � D

r1.xC 1/

r1.x/
; 8x , ˛1 D ˛2 D � � � D ˛K and

ˇ1 D ˇ2 D : : :D ˇK :

(10)

We call this special case in (10) the homogeneous ACM.

Remark 1 (Connection between the ACM and the PCM)
For the log-linear case of the ACM and the PCM as given in Equations (5) and (8), respectively, the log-
arithm of the polychotomous odds can be rewritten as the sum of the logarithm of the adjacent-category
odds, that is,

log

�
P.Yij D kjxij /

P.Yij D 0jxij /

	
D

kX
hD1

log

�
P.Yij D hjxij /

P.Yij D h� 1jxij /

	
D k log

�
��i
�
C

kX
hD1

log
�
��h
�
C

kX
hD1

ˇ�hxij :

(11)
Comparing Equation (11) with (5), one would have the well-known one-to-one mapping between the
polychotomous odds ratio and the adjacent-category odds ratio, that is, ˇk D

Pk
hD1 ˇ

�
h
; k D 1; : : : ; K.
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However, similar mapping between PCM and ACM for the nonlinear distance-odds model cannot be
established even for the simplest case with K D 2. For example,

P.Yij D kjxij /

P.Yij D 0jxij /
D

kY
hD1

P.Yij D hjxij /

P.Yij D h� 1jxij /
; k D 1; 2

) 1C ˛k exp
�
�.xij =ˇk/

2
�
D

kY
hD1

�
1C ˛�h exp

�
�
�
xij =ˇ

�
h

�2��
; k D 1; 2:

When k D 1, ˛1 D ˛�1 and ˇ1 D ˇ�1 ; when k D 2, the aforementioned equation does not have
closed-form solutions for .˛2; ˇ2/ in terms of

�
˛�1 ; ˇ

�
1 ; ˛
�
2 ; ˇ

�
2

�
. Therefore, PCM is not a natural repa-

rameterization of ACM as in the log-linear model case. Consequently, ACM or homogeneous ACM
cannot be fitted as a special case of the PCM setting.

2.3. Estimation and inference

2.3.1. Maximum likelihood approach. Without loss of generality, the first subject in each stratum is
always considered as the case when deriving the likelihood and fitting the models, that is, Yi1 D ki ; ki 2
.1; : : :; K/. Thus, the actual contribution of the i th stratum to the conditional likelihood isLkii as given in
(6) for PCM or as given in (9) for ACM, respectively. For example, the MLEs for ACM can be obtained
by maximizing the logarithm of the conditional likelihood

NX
iD1

log
�
L
ki
i .˛;ˇ/

�
D

NX
iD1

log

 Qki
hD1

fh.xi1/PMC1
jD1

Qki
hD1

fh.xij /

!

D

NX
iD1

log

 Qki
hD1

�
1C ˛h exp

�
�.xi1=ˇh/

2
��

PMC1
jD1

Qki
hD1

�
1C ˛h exp

�
�.xij =ˇh/2

��
!
;

(12)

or the following in the most general case with multiple sources and covariate adjustment

NX
iD1

log
�
L
ki
i .˛;ˇ;�/

�
D

NX
iD1

log

 Qki
hD1

fh.xi1/PMC1
jD1

Qki
hD1

fh.xij /

!

D

NX
iD1

log

0
@

Qki
hD1

h
exp

�PW
wD1 �hwZhw.xi1/

�QS
sD1

�
1C ˛hs exp

�
�.xi1s=ˇhs/

2
��i

PMC1
jD1

Qki
hD1

h
exp

�PW
wD1 �hwZhw.xij /

�QS
sD1

�
1C ˛hs exp

�
�.xijs=ˇhs/2

��i
1
A :
(13)

Under the homogeneity assumption in (10), maximizing (12) or (13) would be reduced to the constrained
optimization problem with restriction .˛1 D � � � D ˛K ; ˇ1 D � � � D ˇK/ or .˛1s D � � � D ˛Ks; ˇ1s D
� � � D ˇKs;8s/, respectively. The MLEs of PCMs can be obtained similarly. Standard errors of the
parameter estimates can be calculated from the square root of the diagonal elements of the inverse of
the Hessian matrix of the corresponding conditional likelihood, and then the 95% Wald-type confidence
intervals (CI) can be constructed.

2.3.2. Profile likelihood approach. Parameter estimates and CIs can also be obtained using the profile
likelihood. For the one point source homogeneous ACM, the simplest case with two parameters, the pro-
file likelihood method reduces l.˛; ˇ/ to a function of a single-parameter ˇ, by treating ˛ as nuisance
parameter and maximizing over it. The profile likelihood for ˇ is defined as

Ql.ˇ/Dmax
˛
l.˛; ˇ/:

Suppose that the maximum of the function Ql.ˇ/ is located at Q̌ and the corresponding optimizer over
˛ is Q̨ . Q̌/. Thus, . Q̨ . Q̌/; Q̌/ would be the MLE based on the profile likelihood. The CI based on profile
likelihood for ˇ is defined as n

ˇ W 2Œl. Q̨ . Q̌/; Q̌/� Ql.ˇ/�6 �21;0:95
o
;
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where �21;0:95 is the 95th upper quantile of the �2 distribution with one degree of freedom. This approach
reduces the number of independent parameters by expressing some of them as functions of the oth-
ers, instead of dealing with all the parameters simultaneously. It is helpful in the presence of many
parameters, such as in (12) and (13).

Remark 2 (Identifiability and Monte Carlo tests)
The likelihood-based inference described in Sections 2.3.1 and 2.3.2 assumes that usual regularity con-
ditions hold [22]. Under these regularity conditions, approximate CIs for the MLEs can be derived from
the asymptotic multivariate normality of the MLEs and the estimated Hessian matrix. The likelihood
ratio statistics for testing H0 W f .x/D 1 has an asymptotic chi-squared distribution under the same reg-
ularity conditions. Diggle et al. [14] pointed out that with an insufficient sample size, the log-likelihood
surface of .˛; ˇ/ may be far from quadratic and standard likelihood-based asymptotics are unreliable.
Moreover, these models have an irregularity at the null hypothesis of H0 W f .x/D 1, because f .x/D 1
corresponds to one of the two parameters of .˛; ˇ/ equal to 0 with the other indeterminate, in the sit-
uation where there is no covariate adjustment. Monte Carlo tests can be used as an alternative. One
thousand data sets can be simulated under the null, and the observed values of the likelihood ratio statis-
tics LR D 2 � .l. Ǫ ; Ǒ/ � l.˛ D 0 or ˇ D 0// D 2

�
l. Ǫ ; Ǒ/�N log

�
1

MC1

��
can be ranked among

the 1000 simulated LR values. If the observed LR ranks kth largest among 1000 simulated values, the
p-value of the Monte Carlo test is k=1001 and the test is exact [14, 23].

2.3.3. Iteratively reweighted least square regression. Another alternative approach is IRLS regression.
As the strata are mutually independent under the matched case–control design, it is not necessary to
further consider the correlation between the residuals from different strata. Typically, one can write the
nonlinear regression model with binary response Yi as

Yi D pi .xi ;�/C "i ;

where Yi is the observed binary response, pi .xi ;�/ is the predicted probability from the model for sub-
ject i, and "i ÏN.0; 	2/ are independent and identically distributed random errors, i D 1; : : :; N . Under
the conditional framework given there being a matched case–control pair at distance xi, we can treat
each stratum as a single ‘subject’ with response

PMC1
jD1 I.Yij D ki / D I.Yi1 D ki / (assumed the first

subject to be the case) and predicted probability Lkii as given in Section 2.2. The sum of squared error
(SSE) is given by

SSE.�/D

NX
iD1

�
I.Yi1 D ki /�L

ki
i .xi ;�/

�2
:

One can further assume that the variance structure of the errors to be "i Ï N
�
0; 	2

k

�
for fi W ki D kg,

that is, for all the strata where case response equals to k. Then, the IRLS estimation can be realized by
iteratively minimizing the weighted SSE

SSE.�;†/D

KX
kD1

2
4 X
i WkiDk

�
I.Yi1 D k/�L

k
i .xi ;�/

�
†�1k

�
I.Yi1 D k/�L

k
i .xi ;�/

�35 ; (14)

where †k is the pooled variance of errors from all strata where the case response equals k. In the
initial step of IRLS, � is estimated by minimizing the weighted SSE with all †.0/

k
set to identity. An

estimate for †.1/
k

is then calculated by .1=dfk/
P
i WkiDk

r
.0/2
i , where the residuals r .0/i D I.Yi1 D

ki / � L
ki
i1

�
xi ; O�

.0/
�

and dfk is the degree of freedom (the size of the set fi W ki D kg minus the num-

ber of parameters in the model). The estimated O†.1/
k

are used as the weights in the next step of IRLS
to minimize the weighted SSE. Parameter estimation is simply realized by iterating this process fur-
ther, calculating updated estimates for †k’s, estimating the model parameters � with updated weights,
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and iterating until convergence. The standard errors can be calculated from the Hessian matrix of the
corresponding log-likelihood

KX
kD1

X
i WkiDk

2
4�1

2
log

�
2
	2k

�
�
1

2

 
I.Yi1 D k/�L

k
i .xi ;�/

	k

!235 :
IRLS estimate and MLE were shown to be consistent and asymptotically normal under the assumption
that the errors are normally distributed as "i ÏN

�
0; 	2

k

�
for fi W ki D kg [24].

Remark 3
For the three methods discussed in Section 2.3.1–2.3.3, instead of working directly on .˛ks; ˇks/ with
a range of .�1;1/ � .0;1/, we performed unrestricted optimizations on the one-to-one transformed
parameters .uks; vks/ D .log.1C ˛ks/; log.ˇks// that span the whole real plane and then transformed
the results back in terms of the original parameters .˛ks; ˇks/.

2.3.4. Bayesian approach. The Bayesian approach provides an alternative to the frequentist inferential
strategies described in Section 2.3.1–2.3.3. A proper Bayesian approach would be to use the full like-
lihood and specify a prior distribution on the nuisance parameters � D .�1; : : :; �N /. However, the full
likelihood approach would encounter the difficulty of prior specification and estimation of �. One can
use a marginal likelihood instead, which integrates out the nuisance parameters with respect to a random
distribution. Rice [25, 26] discussed the equivalence between the use of conditional and marginal likeli-
hoods for matched case–control study. Diggle et al. pointed out that the conditional likelihood approach
is consistent with the full likelihood approach for the binary outcome model with independent priors for
� and � [14]. Therefore, we proceed with the conditional likelihood as the basis for Bayesian inference.

Prior specification. We primarily considered in this paper the following sets of mutually independent
prior distributions on .u; v/D .u11; : : :; uKS ; v11; : : :; vKS /,

log.1C ˛ks/D uks ÏN
�
�uks ; 	

2
uks

�
;

log.ˇks/D vks ÏN
�
�vks ; 	

2
vks

�
; k D 1; : : :KI s D 1; : : :S;

where the mean and variance of ˛ks are �˛ks D exp
�
�uks C

1
2
	2uks

�
� 1 and 	2˛ks D�

exp
�
	2uks

�
� 1

�
exp

�
2�uks C 	

2
uks

�
, respectively. Similarly, �ˇks D exp

�
�vks C

1
2
	2vks

�
and 	2

ˇks
D�

exp
�
	2vks

�
� 1

�
exp

�
2�vks C 	

2
vks

�
. We considered both informative and noninformative (or vague)

prior distributions. For informative priors, with our knowledge of roadway effects on asthma and the
literature reviewed in Section 1, the prior distribution of ˛ks was set with mean �˛ks D 0:5 and variance
	2˛ks D 0:25 (thus, P.0:1 < ˛ks < 1:0/� 0:95). For other types of health outcomes or pollution sources,
different informative priors could be used. Given the fact that the point source effects on health outcomes
(e.g., roadway effects on asthma) last only for a few hundred meters in most of the literature, prior dis-
tributions of ˇks were set with means �ˇks D 400 and variance 	2

ˇks
D 150 (thus, P.50 < ˇks <

750/ � 0:95). For noninformative priors, the same mean .�˛ks ; �ˇks / D .0:5; 400/ with large variance�
	2˛ks ; 	

2
ˇks

�
D .0:5; 400/ were used for (˛ks , ˇks). It follows that P.�0:2 < ˛ks < 2:0/ � 0:95 and

P.50 < ˇks < 1500/� 0:95, which should contain the prior knowledge about .˛; ˇ/. For the rest of the
paper, we focus on .˛;ˇ/ and primarily proceed using models without covariate adjustment.

We perform a sensitivity analysis by comparing the posterior distributions derived from various
normal priors with the same means of .�uks ; �vks / but different choices of

�
	2uks ; 	

2
vks

�
. Wakefield

and Morris [16] suggested using independent Uniform prior distribution on .˛; ˇ/ on the range of
.�1; ˛max/� .0; ˇmax/ for the one point source binary model (1), where ˛max and ˇmax are the maxi-
mum plausible values based on current epidemiological knowledge. We also consider this Uniform prior
distribution on .˛ks; ˇks/ with different choices of ˛max and ˇmax as part of the sensitivity analysis.

Sampling algorithm. The joint posterior distribution can be expressed as


.u; vjX; Y // 
.u; v/�L.u; v/:

where 
.u; v/ is the prior distribution and L.u; v/ is the conditional likelihood in terms of the trans-
formed parameters .uks; vks/ D .log.1C ˛ks/; log.ˇks//. Because the full conditional distributions of
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the parameters do not follow a standard distributional form, the MCMC method is used to generate
random draws from the posterior distributions. For two-parameter models such as the one point source
homogeneous ACM, the random walk Metropolis–Hastings algorithm is used to generate a Markov
chain that has the limit distribution equal to the target posterior distribution. For four(or more)-parameter
models such as one point source ACM, computationally it is hard to draw simultaneously from the
joint distribution using Metropolis–Hastings algorithm. Instead, we use a componentwise Metropolis–
Hastings within Gibbs algorithm. We discuss the computational strategy corresponding to these MCMC
algorithms in Appendices B and C (Supporting information‡). The convergence of these Markov chains
are examined using Gelman and Rubin’s convergence diagnostic [27]. In this study, the random walk
Metropolis–Hastings or Metropolis–Hastings within Gibbs algorithm for the proposed models converge
to their limit distributions after 2000–4000 runs. The chains have autocorrelations up to 20. Therefore,
the chains are refined by choosing a common burn-in period of 5000 and a common thinning frequency
of 20. We performed these MCMC algorithms for a length of T D 45000. After burn-in and thin-
ning, the resulting Markov chains of length 2000 are treated as random draws from the target posterior
distribution.

As a Bayesian counterpart to the Monte Carlo test discussed in Remark 2, Bayes factors [28] are con-
sidered to test the null hypothesis thatH0 W f .x/D 1. The Bayes factor for comparing the current model
M1 to the null modelM0 is defined as the ratio of the posterior probability to the prior probability, which
is given by

B D
P.M1jY /=P.M0jY /

P.M1/=P.M0/
D

R
� 
.Y j�;M1/
.�jM1/d�R
�

.Y j�;M0/
.�jM0/d�

D
P.Y jM1/

P.Y jM0/
:

The calculation of the Bayes factor B is not straightforward using MCMC. We used the importance
sampling estimator 1

T

PT
tD1

�
l.�t/
.�t/=g.�t/

�
as suggested by Diggle et al. [14], where the prior

distribution on � is used as the importance distribution g.�/ and �t are sampled from g.�/. Kass and
Raftery [28] suggested calculating 2 log.B/ as a Bayesian analogue of a log-likelihood ratio statistics or
deviance. Values greater than 2 indicate increasing evidence against M0: between 2 and 6 is ‘positive’
evidence, 6 to 10 is ‘strong’, and over 10 is ‘very strong’ evidence against M0 [14, 28]. We can find a
number of alternatives in [29].

3. Simulation study

We consider two case subgroups (K D 2) and one control group and up to two point sources in the
following simulation study. Specifically, we conduct four different settings of simulations where the
true models are as follows: (1) one point source PCM; (2) one point source ACM; (3) one point source
homogeneous ACM; and (4) two point sources homogeneous ACM.

3.1. Simulation design

We generate a large cohort of LD 1; 000; 000 people initially. We include two independent risk factors,
age and gender, for this cohort, of which we set the distributions similar to those for the pediatric popula-
tion of the Detroit Medicaid data source. Specifically, we generate gender from a Bernoulli distribution
with probability 0.55 for being a male; we generate age from a piecewise Uniform distribution with
a range of 2–18 and then rounded to integer values. We generate the exposure variable, distance to the
point source, from a mixture distribution of Uniform and Gamma. Specifically, we generate distances (in
meters) from the first and second sources from 0:15 �Uniform.0; 500/C0:85 �Gamma.shapeD 3; rateD
0:003/ and 0:2 � Uniform.0; 500/ C 0:8 � Gamma.shape D 3; rate D 0:005/, respectively. Simulation
studies are based on this fixed cohort with mutually independent covariates of age, gender, and distances
with distributions described previously.

The disease status for the cohort would be different for different choices of distance-odds model or
true parameter settings. For example, for one point source ACM, the disease states (k D 0; 1; 2) are gen-
erated using the subject-specific risk functions p.x/ in (15) with certain fixed values of .˛1; ˇ1; ˛2; ˇ2/.

‡Supporting information may be found in the online version of this article.
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Specifically, the outcome for the l th patient Yl is generated from the multinomial distribution with
probabilities

P.Yl D 0jxl/D
1

1C �l1f1.xl/C �l1�l2f1.xl/f2.xl/
;

P.Yl D 1jxl/D
�l1f1.xl/

1C �l1f1.xl/C �l1�l2f1.xl/f2.xl/
;

P.Yl D 2jxl/D
�l1�l2f1.xl/f2.xl/

1C �l1f1.xl/C �l1�l2f1.xl/f2.xl/
; l D 1; : : :; L:

(15)

The subject-specific nuisance parameter for the l th patient can be generated using �lk D
exp .b0k C b1 � agel C b2 � genderl/, k D 1; 2. The parameters .b01; b02; b1; b2/ can be obtained from
the Detroit Medicaid data. Here, we use b1 D �0:05 and b2 D 0:3. The intercepts b01 and b02 can be
varied within a range of .�2:0;�0:5/ to generate different desired disease prevalence. Typically, about
20% of subjects of the cohort are generated as cases, of which all disease subcategories have roughly
the same proportion (k D 1;� 10%I k D 2;� 10%). After the disease status is generated for the cohort,
R D 500 matched case–control data sets are then generated, each with N 1:1 matched pairs. We also
consider different sample sizes N D 500, 1000, and 2000. Specifically, for each of the R matched case–
control data sets,N cases are randomly drawn from the cohort, and then they are randomly matched with
controls by age (within 2 years) and gender. We did not consider covariate adjustment in the simulation
study because both covariates of age and gender are matched.

Under each model setting, we calculate parameter estimates with 95% CIs by using MLE, profile
likelihood, and IRLS described in Section 2.3.1–2.3.3. Because of the identifiability problem of the
likelihoods for the proposed models, there are a few runs (< 5%) that fail to converge or converge
for the point estimates but can not obtain CIs (for example, failure to invert the Hessian matrix using
maximum likelihood method). We removed the nonconverged data sets among the R D 500 ones. We
summarize the simulation results on the remaining R0 data sets where all three frequentist methods con-
verge. We summarize the R0 estimates in terms of relative bias (e.g., relative bias for a parameter � is�
1
R0

PR0

iD1
O�.i/ � �true

�
=�true�100%), MSE (e.g.,MSE D 1

R0

PR0

iD1.
O�.i/��true/

2), and coverage proba-

bility (the proportion that the 95% CIs cover the true value is calculated as an ad hoc estimate of the true
coverage probability among these R0 runs). For the Bayesian approach, the posterior mode as well as
95% highest posterior density (HPD) interval are estimated based on 2000 draws (after burn-in and thin-
ning) from the posterior distribution. Because the posterior distributions of ˛ and ˇ are both positively
skewed (a heavy right tail for ˇ), the posterior mean is not used. To compare with the frequentist results
such as MLE, we use the posterior mode instead of the median, because the posterior mode asymptoti-
cally converges to MLE. We summarize theR0 posterior modes in terms of relative bias and MSE for the
same R0 data sets. We calculate the coverage probability as the proportion of times that the 95% HPD
intervals cover the true value.

3.2. Simulation results

Table I shows a summary of the simulation results comparing convergence rate, relative bias, and cov-
erage probability by different methods and by different sample sizes for the four distance-odds models
(i.e., one point source PCM, ACM and homogeneous ACM, and two point sources homogeneous ACM).
We summarize the MSE comparison in Figure 1. Because the three frequentist methods of MLE, profile
likelihood, and IRLS regression provide very similar and consistent results, we primarily focus on the
difference between the broad class of frequentist and Bayesian approaches, which is described in the
following text in terms of convergence, relative bias, MSE, and coverage probability separately. Addi-
tionally, the following results hold for ˛’s and ˇ’s. The complete numerical simulation results are shown
in Tables A.1–A.6 (Supporting information).

Convergence. For all four distance-odds models with a large sample size such asN D 2000, the frequen-
tist methods perform well in terms of convergence with a joint convergence rateR0=R > 90%. Typically,
less than 5% of runs failed to converge for each of the three frequentist methods. With a decreased sample
size of N D 500, the 90% joint convergence rate remains for the two homogeneous models. However,
failures increase to 30% for one point source PCM and ACM using frequentist methods. Thus, we per-
formed and presented the simulations for these two models for a sample size of N D 1000 in Table I,
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Figure 1. Mean squared errors for two settings of true parameter values under various distance-odds models,
using MLE, profile likelihood, IRLS, and Bayesian methods with R D 500 simulations. Bayesian P1 and P2

refer to two choices of prior distributions; Prior 1: .�˛; �ˇ/ D .0:5; 400/ and
�
	2˛; 	

2
ˇ

�
D .0:25; 150/; Prior 2:

.�˛; �ˇ/D .0:5; 400/ and
�
	2˛; 	

2
ˇ

�
D .0:5; 400/. Y -axis (MSE values) is scaled by a multiplier of 100.

where a joint convergence rate of 85% occurs using frequentist methods. In the Bayesian approach, we
numerically assessed the convergence of the posterior chains by the Gelman–Rubin convergence diag-
nostic [27]. We detected no problems either numerically or via examining the trace plots in our limited
simulation study. The MCMC method does not require the usual regularity conditions [22] or any asymp-
totic normality assumption, and it yields exact posterior distributions for all sample sizes. It also avoids
the identifiability issue but needs a careful choice of the covariance matrix of the proposal distribution
because of the strong correlations among the model parameters.
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Relative bias. When N D 2000, we observe low relative biases (with range .�9:2; 10:7/% for ˛’s and
.�2:9; 4:2/% for ˇ’s) for both frequentist and Bayesian methods for all models with different choices
of true parameter settings (shown in Table I; numerical details shown in Tables A.1 and A.2 (Support-
ing information)). Thus, both methods have performed well with large sample size in terms of relative
bias. For smaller sample sizes (N D 500 for the two homogeneous models; N D 1000 for one point
source PCM and ACM), relative biases of ˛ are usually as high as 25%, whereas relative biases of ˇ
are still well controlled (< 5%, except few extreme setting). Note that estimates of ˛ are biased upwards
(Table I) using frequentist methods with these small sample sizes, whereas Bayesian methods do not
suffer as much. The aforementioned results are consistent across inference methods for each model as
shown in Table I (numerical details shown in Tables A.3–A.6 (Supporting information)).

Mean squared error. When the sample sizeN D 2000, the MSEs are consistent across methods for each
distance-odds models with different true parameters. Figure 1 shows the MSEs corresponding to each
method with smaller sample sizes of N D 500 or 1000. The three frequentist approaches using MLE,
profile, and IRLS method show very similar MSE values, whereas the Bayesian approach shows consis-
tently lower MSEs than frequentist approach for each distance-odds model regardless of true parameters
values. Note that, for the Bayesian approach, the MSEs derived from informative priors are much lower
than those from noninformative (vague) priors for each setting as expected. Thus, if prior knowledge is
available, it should be used to enhance precision for these distance-odds models.

Coverage probability. In Table I, when N D 2000, the coverage probabilities are around 95% for all
the models and methods in our simulation study. For smaller sample sizes of N D 500 or 1000, the
coverage probabilities fall below the nominal level for some parameter settings; however, they are still
around 95% on average (shown in Table I; numerical details shown in Tables A.3–A.6 (Supporting
information)). Note that these percentages are estimated based on the R0 data sets where all three fre-
quentist methods converge. In addition, the Bayesian approach provides comparable percentages based
on all R D 500 data sets. Therefore, it is more stable than the frequentist methods in terms of coverage
probability and convergence.

In summary, Bayesian methods, especially incorporated with prior knowledge, have advantages in
terms of estimation stability and precision for the proposed nonlinear distance-odds models with multiple
disease subtypes.

4. A case study: the Detroit asthma morbidity, air quality and traffic study

The present study describes a population-based matched case–control analysis investigating associations
between acute asthma outcomes and proximity of residence to major roads in Detroit, MI.

4.1. Study design: health data and distance measurements

We examined the pediatric population (2 � 18 years of age) served by Medicaid for the study period
from 2004 through 2006. The Medicaid data provide the most complete and readily available source of
healthcare utilization across Detroit. The population consists mainly of African American children from
lower income families and is considered a high-risk population for asthma-related events [30]. The data
included an encrypted Medicaid identifier, age, sex, race/ethnicity, utilization dates, and diagnostic codes
for inpatient admissions and emergency department visits, and geocoded home residence at the time of
each healthcare visit. To ensure a full claims history, the study population was restricted to those with
continuous Medicaid enrollment (more than 11 months in each year), full Medicaid coverage, and no
other insurance. Asthma cases were identified as all children who made at least one asthma claim during
the 3-year study period, indicated by primary diagnostic code 493.X (International Classification of Dis-
eases, 9th Revision, Clinical Modification). Controls were defined as children whose primary diagnosis
was injury or poisoning. Each asthma case was matched with one control on the basis of gender, race,
and age (within 2 years). Asthma cases were further grouped into multiple disease categories (K D 2),
based on the frequency of acute asthma outcomes (Y D 2 for claimants with two or more asthma claims;
Y D 1 for claimants with exactly one asthma claim). We can find details on the descriptive analysis of
this data set in [31].

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3617–3637
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Figure 2. Estimated natural spline terms of distance showing the distance-odds relationships for asthma
claimants versus controls, using (binary) conditional logistic regression model with spline of distance as its

argument. The solid lines show the point estimates; the dashed lines show the 95% confidence bands.

The geocoded residence information was used to estimate the distance to major roads in Detroit,
defined as state and interstate freeways and major arterials with annual average daily traffic flows exceed-
ing 50,000 and 20,000 vehicles per day, respectively. The freeways and the arterials are considered as the
first and second point sources, respectively. Shape files providing coordinates of road centerlines were
obtained from the Southeast Michigan Council of Governments. These files and the geocoded claim
data were merged into ARCGIS 9.3 (Environmental Systems Research Institute, Redlands, CA, USA) to
determine the proximity to each major road. Because of confidentiality concerns, claim locations were
reported only to the closest 10 m. The road centerline does not account for the width of the highway and
median strip, if any, which can exceed 30 m for sections of some freeways. Taken together, these factors
suggested that differences on the order of at least 20 to 50 m would be meaningful.

4.2. Results and discussion

We performed separate analyses for one and two point source(s) models. For one point source (free-
ways) models, the study region was restricted to 1000 m buffer of freeways, which consisted of 2669 1:1
matched case–control pairs. For two point sources (freeways and arterials) models, the study region was
restricted to 1000 m buffer of freeways or arterials, which consisted of 4081 1:1 matched case–control
pairs. Figure 2 illustrates the natural spline fit and 95% confidence band for the relationship between
distance to roadways and odds of being an asthma claimant, using a CLR model with only spline of dis-
tance as its argument. These plots provide an exploratory analysis of the data, which indicate increasing
risk with proximity to both types of roads, where the freeways appear to have stronger effects. There
may be a threshold distance beyond which the roadway effect vanishes. The increase of odds at 600m of
freeways is not statistically significant, which could be an artifact of the smoothing parameter (df D 3
in the natural spline).

Method comparison. The frequentist methods of MLE, profile likelihood, and IRLS provide similar
point estimates and CIs with essentially the same AIC values for each distance-odds model (Tables A.7
and A.8 (Supporting information)). Thus, we primarily discuss results as frequentist method (MLE as
demonstration) versus Bayesian method in the main text. Table II shows the parameter estimates and 95%
CIs using likelihood method and posterior modes with 95% HPD intervals using Bayesian methods, for
one point source models. Additionally, the corresponding contour plots of the conditional log-likelihood
surfaces for these one point source models are shown in Figure A.1 (Supporting information). Note that
these log-likelihood surfaces are not far from quadratic in shape given the large sample size of 2669
asthma cases in the DAMAT study. Note also that the contour lines near u D 0 (or equivalently ˛ D 0)
are almost vertical, which implies the identifiability issue that a wide range of ˇ can provide the same
value of likelihood values. Fortunately, the peaks of the likelihood surfaces are not close to the null for
these one point source models. For the Bayesian method, estimated marginal posterior densities for one

3630
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point source models are shown in Figures A.2 and A.3 (Supporting information), where the locations
of the posterior modes are close to each other for the two prior choices for each parameter under each
model. Posterior densities of ˇ are highly right skewed, especially for noninformative prior distribution
with much wider HPDs than those derived from informative priors (shown in Table II). Thus, the fre-
quentist likelihood-based inference method or a noninformative Bayesian method should be avoided for
these distance-odds models in presence of well-elicited prior knowledge.

Model selection. Generally, the distance-odds models are selected a priori in the study design stage. For
example, different choices of the numbers of point sources would provide different study regions with
different sample sizes. As discussed in Section 2.2, the choice between PCMs and ACMs can also be
considered a priori on the basis of the interest of nominal or ordered disease subclassifications. Model
selection can also be based on AICs for frequentist method or DICs for Bayesian method. For example,
ACM (homogeneous) has the smallest AIC value among the four one point source models as shown in
Table II. However, the differences among these AICs are very small and of little practical concern. In
this case, all these one point source models fit almost equally well. For both informative and noninfor-
mative priors, one point source PCM and ACM have similar and relatively lower DIC values than the
other two models. There is evidence that the more sophisticated models that allow different functional
forms of odds between case subtypes are preferred even after penalizing for the additional number of
parameters using the Bayesian approach. Therefore, a PCM (smallest DIC) with informative priors is
the preferred approach among all one point source models for the DAMAT study (different numbers of
point sources with different sample sizes are not directly comparable). Similarly, Table III shows the
corresponding results for the two point sources binary model and homogeneous ACM, where the latter
with an informative prior Bayesian approach is preferred.

Estimation and interpretation. Table II shows the parameter estimates and 95% CIs using MLE, and
posterior modes with 95% HPD intervals using Bayesian methods, for the one point source models
(binary/ACM/PCM). Generally, the point estimates of Ǫ and Ǒ lay within 0.1–0.4 and 100–300 respec-
tively for the one point source models, which implies that the roadway effect on asthma only lasts up to
a few hundred meters and that the increase in risk is modest. Take the one point source PCM that has
the smallest DIC as an example, the MLE (or posterior mode) Ǫ2 D 0:39.0:32/ is slightly larger than
Ǫ1 D 0:21.0:25/ as shown in Table II. It implies that, at the point source, the odds of asthma for claimants
with two or more claims (k D 2) versus controls is slightly higher than the odds for claimant with exactly
one claim (k D 1) versus controls. Table III shows the results for two point sources models. In general,
we have Ǫ11 > Ǫ12 and Ǒ11 > Ǒ12, which implies that the odds of asthma at freeways is higher than the
odds at arterials and the freeways effects last longer than arterials. Figure 3 shows the estimated distance-
odds functions Of k for the one point source PCM, using MLE and Bayesian method with informative
priors. Note that the Bayesian method with prior knowledge provides consistently higher estimates of
f k than MLE. For both case subgroups, Of k deceases rapidly within 0–300 m, and then the roadway
effect on asthma lasts up to 400 m off freeways using MLE method and 600 m using Bayesian method,
respectively. The 95% credible regions are above unity up to a distance of 350 m. Note that the MLE
of f k.˛;ˇ/ is estimated by plugging in the MLE of (˛;ˇ) using their invariant property; the posterior
distribution of f k.˛;ˇ/ is estimated by draws from the posterior distribution of (˛;ˇ) for fixed grid
values of distance x (every 0.5 m). Note also that, for interval estimates of a function of parameters, the
95% Bayesian credible region can be directly obtained from the draws; however, the calculation of the
frequentist confidence bands for the MLE of f k.˛;ˇ/ is not straight forward. This requires the Delta
theorem (calculation of the first and second derivatives of the complex likelihood function) and relies on
asymptotic properties needing a large sample size.

Table IV shows the p-values of the Monte Carlo test and the Bayes factors for testing H0 W f .x/D 1
for one and two point source(s) distance-odds models. Evidence of associations (H1 W f .x/ > 1) is found
for most models using the MC test (p-value< 0:05) or Bayes factors (B > 2). Strongest associations are
found for PCM among one point source models and for homogeneous ACM among two point sources
models respectively, which is consistent with the results shown in Tables II and III.

Sensitivity analysis. The results in Tables II–IV show consistency for different choices of the distance-
odds models under a matched case–control study. Similar conclusion can be drawn using these models
that there is evidence of the roadway effect on asthma and that the effect is modest and only lasts up to

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3617–3637
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Figure 3. Estimated distance-odds functions for the one point source polychotomous-category model. The solid
blue line shows the MLE of the odds function; the solid red line shows the Bayesian posterior mode estimate
with 95% credible region (dashed lines). Parameters of prior distribution used are .�˛; �ˇ/ D .0:5; 400/ and�

	2˛; 	
2
ˇ

�
D .0:25; 150/.

Table IV. Monte Carlo test p-values and Bayes factors 2 log.B/ for the null hypothesis
that H0 W f .x/D 1 for various point source(s) models.

MC test Bayes factors

Model p-value P1 P2

One point source
Binary model 0.04 3.52 2.89
ACM (homogeneous) 0.06 4.32 3.41
ACM (general) 0.02 6.29 6.16
PCM <0:01 7.12 6.04

Two point source
Binary model 0.04 3.11 2.57
ACM (homogeneous) <0:01 6.69 5.98

Bayesian P1 and P2 refer to two settings of prior choice; Prior 1: .�˛ ; �ˇ / D .0:5; 400/ and�
	2˛ ; 	

2
ˇ

�
D .0:25; 150/; Prior 2: .�˛ ; �ˇ /D .0:5; 400/ and

�
	2˛ ; 	

2
ˇ

�
D .0:5; 400/.

a few hundred meters. As a sensitivity analysis of the prior specification, posterior densities are derived
and compared from different choices of prior distributions for the one point source PCM. For normal
priors on .u; v/ with different variances

�
	2u ; 	

2
v

�
, the posterior modes are close to each other for each

parameter under each model shown in Figure 4. However, the posterior modes are sensitive to the choice
of ˛max and ˇmax using Uniform priors on .�1; ˛max/ and .0; ˇmax/. When ˛max and ˇmax are large, these
Uniform priors still put equal weights on the whole range of .�1; ˛max/ and .0; ˇmax/ that may overly
weight the upper extreme values. Wakefield and Morris [16] have also pointed out the influence of the
Uniform priors, which reflects the fact that there is little information in the likelihood as a result of
sparsity of data in the upper extremes. Thus, the parameterization .u; v/ with normal priors appear to be
more robust.

5. Discussion

In this paper, we extended the distance-odds model of Diggle et al. [14] to models where there are
subtypes within cases under a matched case–control design. The extension to subclassification within
cases is nontrivial with these nonlinear odds functions under a matched design. Maximum likelihood,
profile likelihood, IRLS, and a Bayesian approach using MCMC methods were evaluated under the
proposed models. We compared these methods via an extensive simulation study evaluating frequentist
properties, such as relative bias, MSE ,and coverage probability, and showed that Bayesian methods have
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(a) Estimated posterior densities using normal  
priors on log (1 + ) and log ( )
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Figure 4. Estimated posterior densities for different settings of prior choices for the one point source
polychotomous-category model for the Detroit Medicaid data, as a sensitivity analysis.

advantages in terms of estimation stability, precision, and interpretation. The Bayesian methods are able
to yield direct HPD for complex nonlinear distance-odds functions and does not require large sample
approximation. There is no simulation study in the literature that compares the convergence, relative
bias, MSE, or coverage probability for these point source models, even for the basic binary outcome
model. We apply the proposed models and methods to a population-based matched case–control study
investigating associations between acute asthma outcomes and proximity of residence to major roads by
analyzing Medicaid claims data for the pediatric asthma population in Detroit, MI, from 2004 to 2006.
We also perform a sensitivity analysis to investigate how the choice of distance-odds models and spec-
ification of the prior distributions affect the results. Typically, the results were consistent for different
choices of models and normal prior distributions on the transformed parameters for the DAMAT study.

We did not consider the extension of the nonlinear distance-odds model to the proportional odds model
setting in the study, which is most commonly used for ordered data. We realize that the conditional like-
lihood does not apply to this model because of the nuisance parameters remaining in the nonlinear
odds functions. Moreover, the prospective–retrospective conversion for case–control data is only valid
for a multiplicative intercept model. In addition, the residual spatial correlations can be modeled either
parametrically or semiparametrically. These issues remain to be explored in future research.
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