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Abstract. We have incorporated faults as plate margins into 
time-dependent mantle convection models by using a mixed 
Eulerian and Lagrangian finite element formulation. Plate 
margins in our models can migrate dynamically in response to 
variations in mantle buoyancy, and this enables us to study 
the dynamics of mantle and plates including changes in plate 
size. Convection models in a cylindrical geometry with such a 
faulted converging margin, non-Newtonian theology, and 
continents indicate that the converging margin tends to 
migrate oceanward. The oceanward trench migration leads to 
an increase in the size of the overriding continental plate. 

Introduction 

The angular velocity of plates with respect to their Euler 
poles is nearly constant within a plate, but across plate 
margins velocity changes abruptly in magnitude and direction. 
This change in plate velocity ultimately is related to brittle 
failure and displacement along pre-existing faults. While 
brittle faulting occurs on relatively short time scales, 
numerous faulting events and fault planes define the nature of 
the discontinuity of plate margins on longer geologic time 
scales. The velocity of an overriding plate near a converging 
plate margin is predominantly horizontal at depth (Figure la), 
which is rather clear for South American subduction zones 

where the overriding plate is a non-subducting continent. 
However, the velocity of a subducting plate must have both 
significant horizontal and vertical components in the hot spot 
reference frame in order to achieve subduction (Figure la). If 
velocities of the overriding and subducting plates are resolved 
on the plate boundary separating the plates, the tangential 
velocity along the plate boundary must be discontinuous from 
one plate to another (Figure la). This discontinuous tangential 
velocity reflects the deformation accomplished primarily by 
thrust-faulting earthquakes. This analysis holds independent 
of the motion of the overriding plate, as long as subduction is 
one-sided. Besides having a discontinuity in relative motion, 
plate margins also migrate with respect to the hot spot 
reference frame. The migration of plate margins is usually 
accompanied with changes in plate size. 
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It is necessary to include tectonic plates in models of 
mantle convection [Davies, 1988; Gurnis and Hager, 1988; 
Gable, et al., 1991], and we believe that plate margins hold 
the key to simulating plates properly. Dynamic models of 
mantle convection have shown that the negligibly small 
strain-rates within a single plate can be obtained if the 
effective viscosity of plate margins is substantially smaller 
than that of the plate interior [Christensen, 1983]. In most 
previous models, plate margins have been fixed in space and 
usually only a single plate is incorporated. As a result, they 
have difficulties in addressing how convection influences 
plate dynamics, including the evolution of plate size. It is 
necessary to formulate convection models with realistic plate 
margins that include the discontinuity in velocity and their 
mobility. 

Tectonic faults have been incorporated into a viscous 
medium to study long term lithospheric deformation [Bart and 
Houseman 1992, 1994; Zhong and Gurnis, 1994]. Faults are 
treated as interfaces which have discontinuous tangential 
velocity but continuous normal velocity. Dynamic models of 
subduction zones with a fault representing a converging 
margin can explain outer rise - trench - back arc basin 
topography and the covariation of trench depth with age of the 
lithosphere and dip angles of the fault and slabs [Zhong and 
Gumis, 1994]. The basic techniques for incorporating faults as 
plate margins into time dependent mantle convection models 
are formulated in this paper. 

Implementation of Time Evolution of Faults 

The basic governing equations for mantle convection are 
mass, momentum, and energy conservation which can be 
numerically solved using a finite element method [e.g., King, 
eta/., 1990]. The strategy for solving these equations is first 
to solve the energy equation and update temperature using the 
velocity at the previous time step and second to solve the 
momentum equation with an incompressibility constraint and 
update the velocity using the new temperature. 

To solve for the flow when a fault is present is equivalent to 
solving the momentum equation in the presence of constraints 
derived from the fault [Zhong and Gurnis, 1994]. There are two 
constraints resulting from a fault [Barr and Houseman, 1992, 
1994; Zhong and Gurnis, 1994]. 1) Across the fault, both 
normal velocity and normal stress are continuous, but the 
tangential velocity may be discontinuous. 2) The flow can be 
decoupled or weakly coupled on either side of the fault, 
depending on an imposed shear stress on the fault. A Lagrange 
multiplier method is used to enforce the constraints into the 
momentum equation. Our techniques are general and can be 
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Results and Discussion 

We will first present four cases (1 - 4) to show the basic 
behavior of faults under the influence of buoyancy forces and 
then present two cases (5 and 6) with tectonic plates to show 
how faulted converging margins and plate size evolve with the 
subduction process. Cases 1 - 4 with constant viscosity are 
computed with a two dimensional Cartesian box of an aspect 
ratio 2 with 128x64 bilinear elements. Cases 5 and 6 with 

plates are computed in a cylindrical annular geometry with 
temperature- and strain rate-dependent viscosity. For all the 
cases, a reflecting boundary condition is applied on the two 
side walls; on the top and bottom boundaries, free slip and 
isothermal (if applicable) boundary conditions are used. Zero 
shear stress is applied on the faults. 

Figure 1. (la) Typical plate velocity pattern of subduction 
zones. Vo and Vs represent overriding and subducting plate 
velocities, respectively. (lb) Model setup for case 5. (lc) 
Layouts of finite elements and a fault in two different 
coordinates. 

used to model normal, thrust, or strike-slip faults in two or 
three dimensions [Zhong and Gurnis, 1994]. 

In general, the resulting tangential velocity on faults is 
discontinuous and the normal velocity does not vanish [Barr 
and Houseman, 1992]. While the discontinuous tangential 
velocity does not alter fault geometry, the normal velocity 
implies that the fault must migrate horizontally or change dip 
with time. In reality, tectonic faults may result from brittle 
behavior of rocks rather than viscous behavior. Faults migrate 
in our formulation such that fluid does not "cross" the fault. 

The horizontal motion of faults is consistent with the 

observation that plate margins migrate. By incorporating the 
time evolution of faults, we can study how plates change their 
geometry in response to convection. 

The time-dependence of mantle convection is introduced 
through the energy equation. In order to accommodate a 
mobile fault, the procedure of solving the system of equations 
must be modified. Our procedure is' 1) solve the energy 
equation and update the temperature field using velocity at the 
previous time step, 2) update the position of faults using 
normal velocity of faults from the previous time steps, 3) 
remesh such that the updated faults are located on mesh nodes 
and interpolate the updated temperature onto the new mesh, 
and 4) solve the momentum equation with constraints derived 
from the newly located fault and update velocity with the 
updated and interpolated temperature. While an Eulerian 
formulation is used to solve for temperature and velocity, a 
Lagrange formulation for tracking faults and remeshing is 
required. Temperature is continuous on the fault during the 
solution of the energy equation. 

For simplicity, during the process of updating positions of 
the faults, the faults are constrained to be straight lines and the 
depth to which the faults extend is assumed constant. A least- 
squares method is used to fit the updated positions of faults 
into straight lines, and the straight lines represent the new 
faults used in the remeshing. In general, remeshing is 
computationally expensive, because the finite element 
stiffness matrix must be reconstructed after remeshing. 
However, since the stiffness matrix must be reconstructed at 

the end of each time step in simulating plates when theology 
is temperature- and strain rate-dependent, a few remeshings do 
not result in significant additional computational cost. 

Faults Under the Influence of Buoyancy Forces 

Cases 1 and 3 have a different dip angle and case 2 does not 
include a fault. For these three cases, only the momentum and 
continuity equations are solved; no time evolution is 
involved. In the three cases, an identical patch of negative 
buoyancy is included at the center of the box. 

In case 1, a fault with a dip angle of 45 ø and depth of 0.25 is 
located at x1=0.875 on the top boundary (Figure 2a). There are 
kinks on stream lines across the fault (Figure 2a), reflecting 
the discontinuity in tangential velocity across the fault 
(Figure 3a). For comparison, Figure 2b shows stream lines for 
case 2 which is identical to case 1 but without the fault. The 

lower plane of the fault has a larger tangential velocity than 
the upper plane (Figure 3a). The normal velocity on the fault 
(Figure 3a) indicates that the fault tends to rotate and move 
toward the symmetry plane of the box. In case 3, the dip angle 
and the length of the fault are 90 ø and 0.25, respectively 
(Figure 2c). Since the fault is aligned with the symmetry plane 
of the flow system, the fault does not have effect on the flow 
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Figure 2. Flow fields for cases 1 (2a), 2 (2b) and 3 (2c), the 
flow field at the final stage of case 4 (2d), and meshes near the 
faults for the initial (2e) and final (20 stages of case 4. The 
shaded regions in Figures 2a, 2b, and 2c represent the 
distribution of buoyancy. The straight lines attached to the 
top boundaries in Figures 2a, 2c, and 2d represent fault planes. 
Faults in Figures 2e and 2f are represented by a thick line. 
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Figure 3. Tangential and normal velocities on the fault 
plane for case 1 (3a) and the time evolution of the two ends of 
the fault for case 4 (3b). A positive tangential velocity is 
defined as along the down dip direction; a positive normal 
velocity is defined as that with a positive x2 component. 

and the flow (Figure 2c) is identical to that for case 2 excluding 
the fault (Figure 2b). 

Case 4 is used to study time evolution of a fault. The initial 
geometry of the fault (Figure 2e) is identical to that of case 1 
(Figure 2a). The initial temperature used here is given such that 
two symmetric convection cells would develop with the 
downwelling limb on the center plane if no fault were present. 
With this initial condition, the initial 45 ø dipping fault 
becomes progressively vertical and aligned with the center 
plane (Figure 3b). The final flow field is shown in Figure 2d. 
Along with the locations of the fault, meshes near the fault at 
the initial and final stages are shown in Figures 2e and 2f, 
respectively. 

Even though we could not confirm our numerical results 
with analytic solutions for the buoyancy driven faults, we find 
that for flows with a fault but no body force our fault algorithm 
yields solutions that compare well with analytic solutions 
developed by Bart and Houseman [1994] with an error less 
than 1%. 

A Resolution Study with Plates 

Case 5 is computed in a quarter of a cylinder (Figure lb) to 
study how plates defined by faults interact with mantle 
convection. Material properties and dimensions representing 
the mantle are used for all the parameters (Table 1). A fault 
with a 30 ø dip representing a converging plate boundary is 
assumed to extend down to the bottom of an overriding plate. 
The overriding plate is assumed to be a continental plate. 
Outside of the continent, regions are occupied by ocean floor 
(Figure lb). The formulation of the governing equations in a 
cylindrical geometry was introduced in Zhong and Gurnis 
[1993]. Similar to Gurnis and Hager [1988], an isothermal 
interior (1600øC) with a cooling oceanic plate is included as 
an initial condition. Initially, no horizontal gradient in 
temperature is included in the continent which covers the 
region between the converging margin and a weak margin at 
0=•r/2 (Figure lb). A high temperature is initially set at the 
diverging margin of overriding plate (i.e., the weak margin at 
0=-rd2 in Figure lb) to mimic a continental rifting event. 

Different theologies are used for the continent, oceanic 
plates, and mantle. For the continent and regions below 410 

km depth, the viscosity is Newtonian but still temperature- 
dependent; above 410 km except within the continent, the 
viscosity is temperature- and strain rate-dependent. A 
generalized rheological law is used to describe both Newtonian 
and non-Newtonian rheologies [Zhong and Gurnis, 1995]. The 
average effective radial viscosity structure (Table 1) is similar 
to that inferred from geoid studies [e.g., Hager, 1990]. A 
uniformly high viscosity is used for the continent (Table 1). 
While converging margins develop with the temperature- and 
strain rate-dependent viscosity near the fault, diverging 
margins are prescribed by weak zones that presumably take 
into account the weakening by partial melting. 

For computational convenience, the fault is assumed to be a 
straight line in a Cartesian coordinate system for r and 0 in 
which elements are laid out (Figure lc); in actuality, the fault 
is slightly curved toward the surface (Figure lc). The fault is 
updated using the normal velocity on the fault. Positions of 
the continent are updated assuming that the continent has a 
constant length. For this case with non-Newtonian rheology, 
iteration on the effective viscosity is needed for obtaining 
convergent solutions. A mesh with 150x60 elements which 
are refined within plates and near faults is used. 

The negative buoyancy introduced with the cooling 
lithosphere yields subduction soon after the model starts. 
After the subducted slab sinks into the mantle (Figure 4a for 
temperature and flow at time A), both subducting and 
overriding plates increase in velocity (Figure 4c). Surface 
velocity (Figure 4a) indicates "plate-like" velocity and that 
overriding and subducting plates move towards each other. As 
the continent moves oceanward along with the converging 
margin (trench), the overriding plate is enlarged due to 
addition of the ocean floor vacated by the continent, but the 
subducting plate shrinks in size (Figure 4a). Although the 
enlarged overriding plate consists of both continental and 
oceanic parts, they form a coherent plate, as indicated by the 
surface velocity (Figure 4a). As the slab further enters the 
mantle, the overriding plate velocity starts to decrease 
synchronously with the decrease in the rate of trench 
migration. The subducting plate velocity, however, keeps 
increasing during this period (Figure 4c). At time B, the slab 
has reached the bottom boundary with a steep dip (Figure 4b), 
and the overriding plate has been enlarged by about 1200 km, 
the same as the amount of trench migration (Figure 4c). While 
the velocities on the continent side are predominantly 
horizontal, on the subducting side the vertical and horizontal 

Table 1. Physical Parameters for Cases 5 and 6 

Parameter 

Thickness of the fluid layer, D 
Outer radius, R o 
Temperature contrast, T b - To 
Reference density, Po 
Thermal conductivity 
Thermal diffusivity, K 
Acceleration of gravity, g 
Thermal expansion, c• 
Viscosity of the continent 
Average effective viscosity 
in the lower mantle (below 670 kin) 
in the transition zone (410-670 kin) 
in the upper mantle (120-410 kin) 
in the oceanic lithosphere (above 120 km) 

value 

2.9x106 m 
6.37xl 06 m 

1600 K 

3.3x103 kgm -3 
3.0 Wm'lK '1 
10-6 m 2 s-1 

10ms -2 
2.0x10-5 K-1 

2.0x 1025 Pa's 

- 2x1022 Pa's 
- 4x1021 Pa's 
- 4x1020 Pa's 
- 2x1023 Pa's 
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Figure 4. Temperature (T), stream function (SF), and surface 
velocity (SV) for case 5 at times (4a) A and (4b) B; (4c) time 
history of overriding (Vo) and subducting (Vs) plate velocities 
and trench migration for case 5 (thin lines) and 6 (thick lines); 
and (4d) velocity on the two sides of the fault for the flow field 
in Figure 4a. 

components of velocities are comparable to each other (Figure 
4d), indicating an unsymmetric subduction. Since normal 
velocities do not vary significantly along the fault (Figure 
4d), the fault in case 5 does not change its dip significantly 
with time while migrating. 

Case 5 with realistic plate margins and rheology reveals 
many features of plate tectonics including migrating plate 
margins and the resulting variations in plate sizes. In order to 
assure that the dynamics from case 5 are not influenced by 
frequent remeshing and the moving of material boundaries, a 
resolution study (case 6) has been performed. Case 6 is 
identical to case 5 but with 250x60 elements. The time 

evolution of plate velocities and trench migration from case 6 
is almost identical to those from case 5 (Figure 4c) with a 
relative difference of plate velocities less than 1% between 
cases 5 and 6 at the end of the model run, indicating that case 5 
has sufficient resolution and that the algorithm is stable. 

We have incorporated faults as plate margins into time- 
dependent mantle convection models with a mixed Eulerian 
and Lagrangian finite element formulation. The faults are 
represented as interfaces on which normal velocity and normal 
stress are continuous but tangential velocity may be 
discontinuous. Plate margins defined with such faults can 
move dynamically in response to mantle flow. Mantle 
convection models with multiple plates can be formulated by 
incorporating faulted plate margins and rheology, and these 
techniques enable us to study the dynamics of the mantle and 
plates. Convection models in a cylindrical geometry with such 
a faulted converging margin show that the converging margin 
tends to migrate oceanward. The oceanward trench migration 
results in an increase in the size of the overriding plate. 
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