Advanced Synthesis \& Catalysis

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2012

Intermolecular Gold(I)-Catalyzed Alkyne Carboalkoxylation Reactions for the Multicomponent Assembly of β-Alkoxy Ketones

Danielle M. Schultz,* Nicholas R. Babij, and John P. Wolfe*
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055

Supporting Information

Experimental procedures and characterization data for new compounds in Tables 1-2 and Equations 1-5.

Table of Contents

General Considerations
Preparation and Characterization of Products S1
Assignment of Stereochemistry of 26 and 27 S9
References S9
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S10

General: All reactions were carried out at room temperature in sealed tubes under a nitrogen atmosphere. All (NHC)AuNTf f_{2} and (phosphine)AuNTf ${ }_{2}$ catalysts were prepared according to procedures reported by Gagosz. ${ }^{[1]}$ All aldehydes, alcohols and alkynes used in Tables 1-2 and Equation 1 were purchased from commercial sources (Sigma-Aldrich Chemical Co. or Acros Chemical Co.) and used without further purification. Compounds 29 and 31 in Equations 3-4 were purchased from Sigma-Aldrich Chemical Co. and used without further purification. Dichloromethane was purified using a GlassContour solvent purification system. Structural and stereochemical assignments were made on the basis of 2-D COSY, HSQC, and NOESY experiments. Ratios of diastereomers were determined by ${ }^{1} \mathrm{H}$ NMR analysis. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR analysis unless otherwise noted.

Synthesis and Characterization of β-Alkoxy Ketone Products

General procedure: $\mathbf{A u}(1)$-catalyzed synthesis of β-alkoxy ketones. An oven-dried test tube was equipped with a magnetic stir bar and cooled under a stream of N_{2} before being charged with $\mathrm{SPhosAuNTf}_{2}$ ($5 \mathrm{~mol} \%$). The tube was then charged with a $0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of aldehyde (1 equiv), alkyne (1.5 equiv) and alcohol (3 equiv) before being sealed with a septum. The resulting mixture was stirred at room temperature and monitored by TLC analysis. After the starting material was consumed, the mixture was concentrated in vacuo and purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent.

3-(4-Bromophenyl)-3-methoxy-1-phenylpropan-1-one (10). The reaction of 2chlorobenzaldehyde ($65 \mathrm{mg}, 0.35 \mathrm{mmol}$) with phenylacetylene ($59 \mu \mathrm{l}, 0.53 \mathrm{mmol}$) and methanol ($43 \mu \mathrm{l}, 1.05 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded 65 mg (59%) of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ ($\mathrm{d}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$, 3.06 (dd, $J=4.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,140.5,136.9,133.2$, 131.7, 128.6, 128.4, 128.2, 121.7, 78.9, 56.9, 46.9; IR (film) 3052, 1688, 1265, $1098 \mathrm{~cm}^{-1}$. MS (ESI) 341.0159 (341.0148 calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

3-(4-Bromophenyl)-1-(3-chlorophenyl)-3-methoxypropan-1-one (15). The reaction of 4bromobenzaldehyde ($30 \mathrm{mg}, 0.16 \mathrm{mmol}$) with 3-chloro-1-ethynylbenzene ($30 \mu \mathrm{l}, 0.24 \mathrm{mmol}$) and methanol ($20 \mu \mathrm{l}, 0.48 \mathrm{mmol}$) was conducted according to the general procedure using $5 \mathrm{~mol} \%$ of JohnPhosAuNTf ${ }_{2}$ in place of SPhosAuNTf 2_{2}. This procedure afforded $40 \mathrm{mg}(69 \%)$ of the title compound as an off white solid: $\mathrm{mp}=68-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.79$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=4.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=8.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}$, 3 H), 3.01 (dd, $J=4.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.0,140.2,138.5,134.9$,
133.1, 131.7, 129.9, 128.4, 128.3, 126.3, 121.8, 78.8, 56.9, 47.0; IR (film) 3052, 1690, 1421, 1265, $1098 \mathrm{~cm}^{-1}$. MS (ESI) 374.9754 (374.9758 calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrClO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

3-Methoxy-3-(4-methoxyphenyl)-1-phenylpropan-1-one (16). The reaction of p-anisaldehyde ($40 \mathrm{mg}, 0.29 \mathrm{mmol}$) with phenylacetylene ($49 \mu \mathrm{l}, 0.44 \mathrm{mmol}$) and methanol ($35 \mu \mathrm{l}, 0.87 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded $54 \mathrm{mg}(69 \%)$ of the title compound as an orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.8,159.3,137.2,133.4,133.0,128.5,128.2,127.9,113.9,79.1$, 56.6, 55.2, 47.1; IR (film) 3053, 1684, 1511, 1264, $1172 \mathrm{~cm}^{-1}$. MS (ESI) 293.1154 (293.1148 calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}^{+}\right)$.

1-(4-Fluorophenyl)-3-methoxy-3-(4-methoxyphenyl)propan-1-one (17). The reaction of p anisaldehyde ($40 \mathrm{mg}, 0.29 \mathrm{mmol}$) with 1-ethynyl-4-fluorobenzene ($50 \mu \mathrm{l}, 0.44 \mathrm{mmol}$) and methanol ($59 \mu \mathrm{l}, 1.47 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded 68 mg (81%) of the title compound as an orange oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.97-7.93 (m, 2 H), 7.29 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10-7.06 (m, 2 H), 6.88 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 (dd, $J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 3.53 (dd, $J=8.4,16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (s, 3 H), 3.01 (dd, $J=4.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2,165.6(\mathrm{~d}, \mathrm{~J}=254.6 \mathrm{~Hz}), 159.2$, 133.6 (d, $J=3.1 \mathrm{~Hz}$), 133.1, 130.8 (d, $J=9.3 \mathrm{~Hz}$), 127.8, 115.5 (d, $J=21.8 \mathrm{~Hz}$), 113.9, 79.1 , $56.5,55.2,46.9$; IR (film) 3053, 1684, 1598, 1511, 1264, $1156 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 311.1059 (311.1054 calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}, \mathrm{M}+\mathrm{Na}^{+}$).

3-(2-Chlorophenyl)-3-methoxy-1-phenylpropan-1-one (18). The reaction of 2chlorobenzaldehyde ($40 \mathrm{mg}, 0.28 \mathrm{mmol}$) with phenylacetylene ($44 \mu \mathrm{l}, 0.43 \mathrm{mmol}$) and methanol
($34 \mu \mathrm{l}, 0.84 \mathrm{mmol}$) was conducted according to the general procedure using $5 \mathrm{~mol} \%$ of JohnPhosAuNTf f_{2} in place of SPhosAuNTf ${ }_{2}$. This procedure afforded $54 \mathrm{mg}(69 \%)$ of the title compound as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54$ (m, 2 H), 7.45 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (t, J = 7.5 Hz, 1 H), 7.24 (t, J = 7. $5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (dd, $J=3.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dd, $J=9.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (s, 3 H), 3.15 (dd, J = 3.0, 16.5 Hz, 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.1,138.9,136.9,133.1,132.6$, 129.6, 128.7, 128.5, 128.2, 127.3, 127.2, 76.1, 57.4, 45.5; IR (film) 3053, 1684, 1264, $1107 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (ESI) 297.0655 (297.0653 calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

(E)-1-(4-Fluorophenyl)-3-methoxy-5-phenylpent-4-en-1-one (19). The reaction of transcinnamaldehyde ($40 \mathrm{mg}, 0.30 \mathrm{mmol}$) with 1-ethynyl-4-fluorobenzene ($52 \mu \mathrm{l}, 0.45 \mathrm{mmol}$) and methanol ($36 \mu \mathrm{l}, 0.90 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded 48 mg (56%) of the title compound as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, $J=7.5,16.0$ Hz, 1 H), 4.44 (ddd, $J=4.5,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, J = 8.0, $16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (s, 3 H), 3.01 (dd, J = 4.5, 16.0 Hz, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1,165.7$ (d, J = 254.2 Hz), 136.2, 133.6 ($\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}$), 132.6, 130.9 (d, $J=8.8 \mathrm{~Hz}$), 128.6, 128.5, 127.9, 126.5, 115.6 (d, J $=21.6 \mathrm{~Hz}$), 78.3, 56.6, 44.7; IR (film) 3053, 2985, 1686, 1598, 1506, 1265, $1156 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 307.1111 (307.1105 calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

3-(Allyloxy)-3-(benzo[d][1,3]dioxol-5-yl)-1-phenylpropan-1-one (20). The reaction of piperonal ($39 \mathrm{mg}, 0.26 \mathrm{mmol}$) with phenylacetylene ($43 \mu \mathrm{l}, 0.39 \mathrm{mmol}$) and allyl alcohol ($53 \mu \mathrm{l}$, 0.78 mmol) was conducted according to the general procedure. This procedure afforded 52 mg (64%) of the title compound as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.93$ (d, $J=7.0 \mathrm{~Hz}, 2$ H), 7.53 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (d, J = 8.0 Hz, 1 H), 5.94 (d, J = $4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.87-5.79 (m, 1 H), 5.19-5.09 (m, 2 H), 4.95 (dd, $J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92-3.88 (m, 1 H), 3.80 (dd, $J=6.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, J = 8.0, $16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,147.9$,
$147.2,137.2,135.6,134.6,133.1,128.5,128.2,120.3,116.9,108.1,106.9,101.0,77.1,69.5$, 47.2; IR (film) 3053, 1686, 1487, 1264, $1040 \mathrm{~cm}^{-1}$. MS (ESI) 333.1110 (333.1097 calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}^{+}\right)$.

(2S)-3-(4-Bromophenyl)-3-(2-methylbutoxy)-1-phenylpropan-1-one (21). The reaction of 4bromobenzaldehyde ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) with phenylacetylene ($36 \mu \mathrm{l}, 0.32 \mathrm{mmol}$) and (S)-2-methylbutan-1-ol ($71 \mu \mathrm{l}, 0.66 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded $57 \mathrm{mg}(69 \%)$ of the title compound as a $1: 1$ mixture of diastereomers that were inseparable by flash chromatography. Data are for the mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.91$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2$ H), 4.87 (dd, $J=5.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{dd}, J=8.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.08-$ 3.03 (m, 1 H), 2.99 (ddd, $J=2.4,4.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54-1.48(m, 1 H), 1.36-1.26 (m, 1 H), 1.05-0.95 (m, 1 H), 0.78-0.76 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 197.7, 141.3, 137.3, 133.1, 131.6, 128.5, 128.4, 128.3, 128.2, 121.4, 77.8, 77.7, 74.5, 74.4, 47.2, 35.0, 34.9, 26.1, 26.0, 16.6, 16.4, 11.3, 11.2; IR (film) 3053, 1684, 1511, 1264, $1010 \mathrm{~cm}^{-1}$. MS (ESI) 397.0775 (397.0774 calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

1-(3-Chlorophenyl)-3-(4-methoxyphenyl)-3-(3-phenylpropoxy)propan-1-one (22). The reaction of p-anisaldehyde ($35 \mathrm{mg}, 0.26 \mathrm{mmol}$) with 3-chloro-1-ethynylbenzene ($48 \mu \mathrm{l}, 0.39$ mmol) and 3-phenyl-1-propanol ($106 \mathrm{mg}, 0.78 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded $56 \mathrm{mg}(53 \%)$ of the title compound as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=4.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (dd, $J=8.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55-3.31(m,1 H), 3.29-3.24 (m, 1 H$), 3.00$ (dd, $J=4.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61-2.49 (m, 2 H), 1.80-1.74 (m, 2 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9,159.3,142.1$, $139.0,134.8,133.7,132.9,129.8,128.5,128.4,128.2,127.8,126.4,125.7,113.9,77.8,67.9$,
55.3, 47.4, 32.3, 31.4; IR (film) 3052, 1689, 1511, 1263, $1098 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 431.1383 (431.1384 calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClO}_{3}, \mathrm{M}+\mathrm{Na}^{+}$).

3-(4-Bromophenyl)-3-(cyclohexyloxy)-1-phenylpropan-1-one (23). The reaction of 4bromobenzaldehyde ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) with phenylacetylene ($36 \mu \mathrm{l}, 0.32 \mathrm{mmol}$) and cyclohexanol ($64 \mathrm{mg}, 0.64 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded $48 \mathrm{mg}(57 \%)$ of the title compound as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=8.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H})$, 2.96 (dd, J = 4.4, $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87-1.84 (m, 1 H), 1.63-1.55 (m, 3 H), 1.41-1.39 (m, 1 H), 1.24-1.07 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,142.3,137.3,133.1,131.5,128.5$, 128.3, 128.2, 121.2, $75.6,74.4,47.7,33.4,31.1,25.7,24.0,23.8$; IR (film) 3052, 2933, 1685, 1448, 1265, $1010 \mathrm{~cm}^{-1}$. MS (ESI) 409.0783 (409.0774 calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

(E)-3-(Cyclobutylmethoxy)-1,5-diphenylpent-4-en-1-one (24). The reaction of transcinnamaldehyde ($42 \mathrm{mg}, 0.32 \mathrm{mmol}$) with phenylacetylene ($49 \mu \mathrm{l}, 0.45 \mathrm{mmol}$) and cyclobutanemethanol ($86 \mu \mathrm{l}, 0.91 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded 43 mg (42\%) of the title compound as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dd, $J=7.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.54 (dd, $J=7.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=7.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=8.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=6.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=5.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53$2.50(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,137.5,136.5,132.9,131.8,129.7,128.6,128.5,128.3,127.7,126.5,77.0,73.7$, $45.1,35.1,25.0,24.9,18.5$; IR (film) 3052, 2979, 1684, 1597, 1448, 1264, $909 \mathrm{~cm}^{-1}$. MS (ESI) 343.1682 (343.1669 calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

($3 R^{*}, 4 S^{*}$)-4-(4-Bromophenyl)-4-methoxy-3-phenylbutan-2-one (26). The reaction of 4bromobenzaldehyde ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) with 3-phenyl-1-propyne ($40 \mu \mathrm{l}, 0.32 \mathrm{mmol}$) and methanol ($27 \mu \mathrm{l}, 0.66 \mathrm{mmol}$) was conducted according to the general procedure. The crude product was formed as a 3:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR analysis. Purification by flash chromatography afforded $48 \mathrm{mg}(65 \%)$ of the title compound as a white solid with >20:1 dr. In addition, a small amount of the minor diastereomer ($10 \mathrm{mg}, 14 \%$) was also isolated.

Major ($3 \mathbf{R}^{*}, 4 \mathbf{S}^{*}$) diastereomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-$ 7.13 (m, 3 H), 6.99-6.98 (m, 2 H), 6.89 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.7,138.0,133.9$, 131.0, 129.0, 128.9, 128.6, 127.6, 121.4, 84.4, 65.8, 56.9, 30.9; IR (film) 3053, 1714, 1264, $1101 \mathrm{~cm}^{-1}$. MS (ESI) 355.0310 (355.0304 calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).
Minor ($3 R^{*}, 4 R^{*}$)-diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~m}$, 5 H), 7.22 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.75 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 ($\mathrm{s}, 3 \mathrm{H}$), 1.07 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,139.4,135.5,131.4,129.4,129.0,128.7$, 127.6, 121.8, 82.8, 66.6, 56.9, 30.5; IR (film) 3053, 1715, 1421, 1265, $895 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 355.0311 (355.0304 calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

($2 S, 3 R^{*}, 4 S^{*}$)-4-(4-Bromophenyl)-4-(2-methylbutoxy)-3-phenylbutan-2-one
(27). The reaction of 4-bromobenzaldehyde ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) with 3-phenyl-1-propyne ($40 \mu \mathrm{l}, 0.32$ mmol) and (S)-2-methylbutan-1-ol ($71 \mu \mathrm{l}, 0.66 \mathrm{mmol}$) was conducted according to the general procedure. This procedure afforded $65 \mathrm{mg}(76 \%)$ of the title compound as a 3:3:1:1 mixture of diastereomers that were inseparable by flash chromatography. Data are for the mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, J = $8.5 \mathrm{~Hz}, 0.7 \mathrm{H}$), $7.32-7.31$ (m, 1.32 H), 7.24 (d, J = 8.5 Hz , $1.7 \mathrm{H}), 7.20$ (d, J = $8.0 \mathrm{~Hz}, 0.7 \mathrm{H}$), 7.14-7.13 (m, 2 H), 7.03-7.01 (m, 1.4 H), 6.89 (d, J = 8.5 Hz , $1.4 \mathrm{H}), 4.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 1.7 \mathrm{H}), 2.88-2.80(\mathrm{~m}$, $0.3 \mathrm{H})$, 2.23 (s, 2 H), 1.89 (s, 1H), 1.57-1.54 (m, 0.7 H), 1.40-1.34 (m, 1 H), 1.16-1.06 (m, 1 H),
0.88-0.82 (m, 6.4 H), 0.67-0.64 (m, 1 H$), 0.59-0.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) 206.1, 206.4, $140.1,138.8,134.1,131.5,131.3,130.9,129.5,129.3,129.2,128.9,128.8,128.5,128.3,127.4$, $127.3,121.5,121.3,83.3,83.2,81.4,81.3,74.4,74.3,74.1,74.0,66.8,66.7,65.8,35.0,34.9$, $34.8,34.6,31.2,30.6,26.1,26.0,25.8,25.7,16.6,16.5,16.4,16.2,11.2,11.1,10.9$; IR (film) 3053, 2962, 1717, 1264, 1071, $1010 \mathrm{~cm}^{-1}$. MS (ESI) 411.0939 (411.0930 calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{2}$, $\left.\mathrm{M}+\mathrm{Na}^{+}\right)$.

3-(4-Bromophenyl)-1-[4-(tert-butyl)phenyl]-3-methoxypropan-1-one (30). The reaction of 4bromobenzaldehyde ($37 \mathrm{mg}, 0.2 \mathrm{mmol}$) with 4-(tert-butyl)phenylacetylene ($54.1 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and methanol ($24 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was conducted according to the general procedure. Flash chromatography yielded a mixture of the title compound and 4'-(tert-butyl)acetophenone. The ketone impurity was removed by placing the impure product under vacuum at 0.25 torr for 36 hrs. This procedure afforded $30.0 \mathrm{mg}(40 \%)$ of the title compound as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), 4.85 (dd, $J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (dd, $J=8.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22(\mathrm{~s}, 3 \mathrm{H}$), 3.05 (dd, $J=$ $5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,157.0,140.6,134.4$, 131.7, 128.5, 128.1, 125.5, 121.6, $79.0,56.9,46.8,35.1,31.0$; IR (film) $1680 \mathrm{~cm}^{-1}$. MS (ESI) 397.0769 (397.0774 calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

1-[4-(tert-Butyl)phenyl]-3-methoxy-3-phenylpropan-1-one (32). The reaction of benzaldehyde ($20.4 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with 4-(tert-butyl)phenylacetylene ($54.1 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and methanol ($24 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was conducted according to the general procedure. Flash chromatography yielded a mixture of the title compound and 4'-(tert-butyl)acetophenone. The ketone impurity was removed by placing the impure product under vacuum at 0.25 torr for 48 h . This procedure afforded $36.8 \mathrm{mg}(62 \%)$ of the title compound as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H})$, 7.33-7.29 (m, 1 H), 4.90 (dd, $J=4.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (dd, $J=8.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 ($\mathrm{s}, 3 \mathrm{H}$), 3.08 (dd, J = 4.5, 16.5 Hz, 1 H), $1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0,156.8,141.5$,
134.6, 128.5, 128.2, 127.8, 126.7, 125.5, 79.6, 56.9, 47.0, 35.1, 31.0; IR (film) $1684 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 319.1669 (319.1669 calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

3-(4-Bromophenyl)-3-hydroxy-1-phenylpropan-1-one (34). A flame-dried flask was cooled under a stream of N_{2} and charged with diisopropylamine ($169 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and THF (5 mL). The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}(0.79 \mathrm{~mL}, 1.4 \mathrm{M}$ in hexanes, 1.1 mmol$)$ was added slowly. After stirring for 10 min at $0^{\circ} \mathrm{C}$, acetophenone ($122 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added to the reaction flask and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min .4 -Bromobenzaldehyde $(278 \mathrm{mg}$, 1.5 mmol) was added to the reaction flask and the mixture was stirred for at $0^{\circ} \mathrm{C}$ for 1 hr . The reaction was quenched slowly with saturated aqueous ammonium chloride (5 mL) at $0^{\circ} \mathrm{C}$ and gradually warmed to rt. The mixture was transferred to a separatory funnel, extracted with ethyl acetate (5 mL), and the layers were separated. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $97 \mathrm{mg}(32 \%)$ of the title compound as a white solid with spectroscopic properties identical to those previously reported. ${ }^{[2]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.32 (dt, J = 3.0, 8.5 Hz, 1 H), $3.65(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 2 \mathrm{H})$.

Assignment of Stereochemistry of 26 and 27

The relative stereochemistry assignments of anti for compounds 26 and 27 were assigned based on the ${ }^{1} \mathrm{H}$ NMR chemical shifts of structurally related anti-4-hydroxy-3,4-diphenyl-butan-2one. ${ }^{[3]}$

References

[1] a) N. Mezailles, L. Ricard, R. Gagosz, Org. Lett. 2005, 7, 4133. b) L. Ricard, F. Gagosz, Organometallics 2007, 26, 4704.
[2] C. H. Cheon, H. Yamamoto, Tetrahedron 2010, 66, 4257-4264.
[3] B. Schetter, B. Ziemer, G. Schnakenburg, R. Mahrwald, J. Org. Chem. 2008, 73, 813.
nb6-187-2

Sample Name

Data Collected on:
Ga.Chem.LSA.UMich.edu-vnmrs400
Ga.Chem.LSA.UMic
Archive directory:
Sample directory:
FidFile: w-dms-nb6-187-2-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Jun 52012
Temp. 26.0 C / 299.1 K
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 6377.6 Hz
16 repetitions
DATA PROCESSING
DATA PROCESSING
Line broadening 0.3 Hz
FT size 65536

nb6-180-1
Sample Name:
Data Collected on:
Te-vnmrs500
Archive directory:

Sample directory:
FidFile: w-dms-nb6-180-1-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdc13
Data collected on: May 242012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.049 sec
Width 31250.0 Hz
256 repetitions
OBSERVE C13, 125.7485276 MHz
DECOUPLE H1, 500.0956704 MHz
Dewer 41 dB
Power 41 dB
continuously on
Continuously on
DATA PROCESSING
DATA PROCESSING \quad Line broadening 1.0 Hz
Line broaden
FT size 65536
Total time 4 min 54 sec

[^0]$200 \quad 180 \quad 16$
120
100
80
60
40
20
ppm
nb6-120-1

Sample Name

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-123-2-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Feb 22012
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions data processing
Line broadening 0.3 Hz
FT size 65536

Sample Name

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-132-2-13C

Pulse Sequence: CARBON (s2pul) Solvent: cdcl3
Data collected on: Feb 82012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.022 sec
Width 32051.3 Hz
96 repetitions
OBSERVE C13, 125.7485320 MH
DECOUPLE H1, 500.0956704 MH
Power 42 dB
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time 1 min 47 sec

nb-129-1

Sample Name

Data Collected on:
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-129-1-1H

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Feb 82012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions data processing
DATA PROCESSING
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-129-1

Sample Name:

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:

FidFile: w-dms-nb6-129-1-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Feb 82012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.022 sec
Width 32051.3 Hz
160 repetitions
OBSERVE C13, 125.7485276 MHz
DECOUPLE H1, 500.0956704 MHz
DECOUPLE
Power 42 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time 2 min 59 sec
nb6-130-2

Sample Name

Data Collected on:
Co. Chem.LSA. UMich. edu-vnmrs 400
Co.Chem.LSA.UMic

Sample directory

FidFile: w-dms-nb6-130-2-column

Pulse Sequence: PROTON (s2pul)
 Solvent: cdc13

Data collected on: Feb 82012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 6410.3 Hz
16 repetitions data processing
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec
nb6-148-2

Sample Name:

Data Collected on:
Ga.Chem.LSA. UMich.edu-vnmrs 400
Ga.Chem.LSA.UMic
Archive directory:
Sample directory:

FidFile: w-dms-nb6-148-2-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdc13
Data collected on: Feb 212012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.569 sec
Width 25510.2 Hz
48 repetitions
OBSERVE C13, 100.4628374 MHz
DECOUPLE H1, 399.5357121 MH
Power 42 dB
WALTZ-16 modulated
DATA PROCESSING
DATA PROCESSING
Line broadening 1.0 Hz
FT size 131072
Total time 2 min 8 sec

nb6-134-1

Sample Name:

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-134-1-1H

Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Apr 132012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions data processing
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-134-1

Sample Name:

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-134-1-13c
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Apr 132012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.049 sec
Width 31250.0 Hz
96 repetitions
OBSERVE C13, 125.7485345 MHz
OBSERVE C13, 125.7485345 MHz
DECOUPLE H1, 500.0956704 MHz
Power 42 dB
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time 1 min 50 sec

18

nb6-161-2

Sample Name

Data Collected on:
Te-vnmrs500
Archive directory:

Sample directory:

FidFile: w-dms-nb6-162-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Feb 272012
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions
data processing
DATA PROCESSING \quad ineadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

ثAgilent Technologies

nb6-161-2

Sample Name

Data Collected on:
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-162-1-13C

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Feb 272012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.022 sec
Width 32051.3 Hz
144 repetitions
OBSERVE C13, 125.7485349 MHz
DECOUPLE H1, 500.0956704 MHz
DECOUPLE
Power 42 dB
Power 42 dB
continuously on
continuously on
DATA PROCESSING
Line broadening 1.0 Hz
Line broadeni
Total time 2 min 41 sec

200
180
160
140
120
100
80
60
40
20
ppm
nb6-180-2
Sample Name:
Data Collected on:
Te-vnmrs500

Arcive arector:

FidFile: w-dms-nb6-180-2-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May 242012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0931699 MHz data processing
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-180-2

Sample Name:
Data Collected on:
Te-vnmrs500
Archive directory:

Sample directory:
FidFile: w-dms-nb6-180-2-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdc13
Data collected on: May 242012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.049 sec
Width 31250.0 Hz
256 repetitions
OBSERVE C13, 125.7485276 MHz DECOUPLE H1, 500.0956704 MHz
Power 41 dB
Power 41 dB
continuously on
WALTZ-16 modulated
Wata processing
Line broadening 1.0 Hz
Line broadeni
Total time 4 min 54 sec

[^1]80
60

Sample Name

Data Collected on:
Ga.Chem.LSA.UMich.edu-vnmrs400
Archive directory:

Sample directory

FidFile: w-dms-nb6-153-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Feb 212012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 6410.3 Hz
16 repetitions
data processing
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

\qquad

nb6-153-1

Sample Name

Data Collected on:
Ga.Chem.LSA. UMich. edu-vnmrs 400
Archive directory:
Sample directory:
FidFile: w-dms-nb6-153-1-13C
Pulse Sequence: CARBON (s2pul) Solvent: cdcl3
Data collected on: Feb 212012

Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.569 sec
Width 25510.2 Hz
112 repetitions
OBSERVE C13, 100.4628343 MHz
DECOUPLE H1, 399.5357121 MHz
Power 42 dB
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
TT size 131072
FT size 131072
Total time 4 min 59 sec

Data Collected on:
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-157-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Feb 232012
Operator: danims
Relax. delay 0.500 sec
Relax. delay 0.500
Pulse 45.0 degrees
Pulse 45.0 degrees
Acq. time 3.500 sec
Acq. time 3.500 se
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0931794 MHz
data processing
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb-157-1

Sample Name

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-157-1-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Feb 232012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.022 sec
Width 32051.3 Hz
64 repetitions
OBSERVE C13, 125.7485349 MHz
OBSERVE C13, 125.7485349 MHz
DECOUPLE H1, 500.0956704 MHz
Power 42 dB
WALTz-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time 1 min 11 sec

Sample Name:

Data Collected on
Ga.Chem.LSA. UMich . edu-vnmrs 400
Archive directory:

Sample directory:
FidFile: w-dms-nb6-176-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: May 222012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 6377.6 Hz
16 repetitions
DATA PROCESSING
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-176-1
Sample Name:
Data Collected on:
Ga. Chem. LSA. UMich. edu-vnmrs 400 Ga.Chem.LSA.UMic
Archive directory:

Sample directory
FidFile: w-dms-nb6-176-1-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdc13
Data collected on: May 222012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.621 sec
Width 25000.0 Hz
160 repetitions
OBSERVE C13, 100.4628324 MHz
DECOUPIE H1, 399. 5357121 MH
DECOUPLE H1, 399.5357121 MHz
Power 42 dB
WALTZ-16 moduly
WALTA PROCESSING
DATA PROCESSING $\quad 1.0 \mathrm{~Hz}$
TT size 131072
Total time 7 min 15 sec

Sample Name:
Data Collected on
Te-vnmrs500

Archive directory:

Sample directory:

FidFile: w-dms-nb6-171-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: May 142012

Temp. 25.0 C / 298.1 K
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions
DATA PROCESSING
DATA PROCESSING \quad Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-171-1
Sample Name:
Data Collected on:
Te-vnmrs500

Sample directory:
FidFile: w-dms-nb6-171-1-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May 142012
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.049 sec
Width 31250.0 Hz
96 repetitions 125 . 7485276
$\begin{array}{lll}\text { OBSERVE C13, } \\ \text { DECOUPLE } & 125.7485276 ~ M H z \\ 500.0956704 ~ M H z\end{array}$
DECOUPLE H1, 500.0956704 MHz
Power 41 dB
Continuously on
WALTZ-16 modula
DATA PROCESSING
Line broadening 1.0 Hz
Line broadeni
FT size 65536
Total time 1 min 50 sec

nط6-144-1

major diastereomer

Pulse Sequence: PROTON (s2pul) Solvent: cde13
Data collected on: Feb 172012
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Pulse ti.0 degrees
Acq. time 3.500 sec
Acq. time 3.500
Width 8012.8 Hz
16 repetitions
OBSERVE H1, 500.0931699 MHz dATA PROCESSING
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-144-1-1H

nb6-147-2-1

Sample Name:

Data Collected on:
Ga.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:
FidFile: w-dms-nb6-144-1-majord-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Feb 172012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.569 sec
Width 25510.2 Hz
112 repetitions
OBSERVE C13, 100.4628343 MHz
OBSERVE C13, 100.4628343 MHz
DECOUPLE H1, 399.5357121 MHz
Power 42 dB
WALTZ-16 modulated
DATA PROCESSING
DATA PROCESSING
Line broadening 1.0 Hz
FT size 131072
FT size 131072
Total time 4 min 59 sec

nb6-144-1
minor diastereomer
Sample Name:
Data Collected on:
Te-vnmrs500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-144-1-minord-1H

26 (minor diastereomer)

Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Feb 172012
Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions
OBSERVE HI,
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

Sample Name:

Data Collected on:
Ga.Chem.LSA. UMich.edu-vnmrs 400
Archive directory:
Sample directory:
FidFile: w-dms-nb6-148-1-minord-13C
Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Feb 212012
Operator: danims
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 2.569 sec
Width 25510.2 Hz
96 repetitions
OBSERVE C13, 100.4628324 ME
DECOUPLE H1, 399.5357121 MHz
Power 42 dB
continuously on
ata processing
Line broadening 1.0 Hz
FT size 131072
Total time 4 min 16 sec

26 (minor diastereomer)
nb6-161-1

Sample Name

Data Collected on:
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-161-1-1H
Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Feb 272012

Operator: danims
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 8012.8 Hz
16 repetitions DATA PROCESSING
DATA PROCESSING
Line broadening 0.3 Hz
FT size 65536
Total time 1 min 12 sec

nb6-161-1

Sample Name

Data Collected on:
Te-vnmrs 500
Archive directory:
Sample directory:
FidFile: w-dms-nb6-161-1-13C
Pulse Sequence: CARBoN (s2pul)
Solvent: cdcl3 Solvent: cdcl3
Data collected on: Feb 272012

Sample Name
Data collected on
Sn.Chem.LSA.UMich.edu-inova500
Archive directory:
Sample directory:
FidFile: NRB-4-73-1H
alse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Aug 312012

Operator: nbabij
Relax. delay 0.500 sec
Pulse 45.0 degrees
Acq. time 3.500 sec
Width 7998.4 Hz
16 repetitions
OBSERVE H1, 499.9042609 MHz
data processing
Line broadening 0.3 Hz
T size 65536
Total time 1 min 12 sec

Sample Name:
Data Collected on
Sn.Chem.LSA.UMich.edu-inova500
Archive directory:
Sample directory:
FidFile: NRB-4-69-1H
Pulse Sequence: PROTON (s2pul Solvent: cdcl3
Data collected on: Sep 102012

[^0]: |

[^1]: 2 1

