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•. A steady state solution for the self-consistent 
electrostatic potential due to a plasma confined in a magnetic 
flux tube is considered. A steady state distribution function 
is constructed for the trapped particles from the constants of 
the motion, in the absence of waves and collisions. Using 
Liouvi!!e's theorem, the particle density along the 
geomagnetic field is determined and found to depend on the 
local magnetic field, self-consistent electric potential, and the 
equatorial plasma distribution function. A hot anisotropic 
magnetospheric plasma in steady state is modeled by a bi- 
Maxwelltan at the equator. The self-consistent electric 
potential along the magnetic field is calculated assuming 
quasineutrality, and the potential drop is found to be 
approximately equal to the average kinetic energy of the 
equatoria!!y trapped plasma. The potential is compared with 
that obtained by Alfv6n and F[ilthammar [ 1963]. 

Introduction 

Alfv•n and Fglthammar [1963] were the first to study the 
generation of an electrostatic potential structure due to 
trapped particles in a magnetic mirror (magnetic flux tube). 
They demonstrated that an anisotropic collisionless plasma in 
a magnetic field can be in quasineutral equilibrium without a 
parallel electric field only if the magnetic field is 
homogeneous or if the pitch-angle anisotropy is the same for 
both electrons and ions. They considered a single particle 
approach and determined that the electrostatic potential 
energy difference (lelq0) between the ionosphere (B=Bi) and 
equator (B=B0) is on the order of the mirror ratio T~Bi/B0 
multiplied by the mean perpendicular particle energy. For a 
typical mirror ratio (T~40 for an L shell of 4 and an altitude 
of 2000 km), the potential energy determined by Alfv6n and 
Fiilthammar [1963] can be well in excess of the total kinetic 
energy of the trapped plasma which creates this potential. 

in steady-state, Persson [1963] evaluated the particle 
distribution functidn using Liouville's theorem and confirmed 
the results of Alfv6n and F•ilthammar [1963]. However, 
Persson [1963] never computed the total potential necessary 
for quasineutrality when the electrons and ions have different 
anis0tropies. Whipple [1977] considered a generalization of 
the work by Alfvdn and F•ilthammar [1963]. The integral 
formalism of Whipple [1977], using a delta function for the 
trapped plasma at the equator, reproduces the results of 
Alfv6n and F/ilthammar [1963]; however, the electric 
p.otential, due to a variety of trapped distributions (in the 
absence of other plasma sources), was not investigated and 
compared to the Alfv6n and F•ilthammar [1963] model. Chiu 
and Schulz [ 1978] considered a self-consistent treatment for 
th6 electrostatic potential; however, their analysis included 
ionospheric plasma extracted upward by parallel electrostatic 
fields and backscattered electrons. Chiu and Schulz [1978] 
state that the Alfv6n and F•ilthammar [1963] model would 
produce unrealistically large potential drops (on the order of 
several hundred keV), but they never discuss the validity of 

Copyright 1993 by the American Geophysical Union. 

Paper number 93GL01251 
0094-8534/93/93 GL-01251 $03.00 

the Alfv6n and Fglthammar [1963] model. They do, 
however, mention that the large electric potentials would 
decrease in the presence of ionospheric plasma. Chiu and 
Schulz [1978] found potential drops on the order of the 
plasma kinetic energy; however, it is unclear from their 
analysis as to the magnitude of the electrostatic potential in 
the absence of ionospheric plasma and backscattered 
electrons. 

In this paper, we construct a steady-state distribution 
function, in the absence of waves and collisions, from the 
kinematic constants of the motion, namely the total energy 
and the magnetic moment. Using Liouville's theorem, the 
local density for species j is given in terms of an integral over 
the equatorial distribution function for that species, where the 
limits of integration are determined from the constants of the 
motion. The limits of integration and, consequently, the 
particle density are found to depend on the self-consistent 
electrostatic potential and the local magnetic field. For a 
given equatorial distribution function, the electric potential is 
determined through the condition of quasineutrality. The 
self-consistent treatment for the electric potential is compared 
to the electric potential determined by Alfv6n and 
F•ilthammar [1963]. We will show three main results in this 
paper. Firsfly, we will show that the self-consistent theory 
produces potential drops approximately equal to the total 
kinetic energy of the equatortally trapped plasma. Secondly, 
we will show that the Alfv6n and F•ilthammar [1963] 
(hereafter referred to as the A-F model) model predicts 
electric potentials which are bounded and do not scale 
generally as the magnetic mirror ratio times the average 
kinetic energy of the trapped particles (lelq0;qtWa,/e). Not only 
is the electric potential from the A-F model bounded, but at 
the mirror points (which corresponds to the maximum 
potential possible), the potential is independent of the 
magnetic mirror ratio and is proportional to the average 
kinetic energy of the trapped plasma. Thirdly, we will 
demonstrate that for a bi-Maxwellian distribution for 
electrons and ions, the A-F model produces a potential which 
agrees within a factor of 2 (at the average mirror point) with 
that from the self-consistent theory; however, the spatial 
dependence from both theories are very different. This 
difference will be shown to come from the single-particle 
formalism of the A-F model, which loses information 
concerning the finite velocity spread and infinite number of 
reflection points characterized by a bi-Maxwellian. 

Kinetic Model 

Theory 

Since the plasma is considered to be collisionless, the time- 
independent distribution function depends only on the 
constants of the motion, namely, the particle's total energy 

E = m----iJ (v,•, + v:)+ ejq0 2 
(•) 

and magnetic moment 

mjv2• 
it = (2) 

2B 
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where ej and mj are the species charge and mass, v, and V.L 
are the parallel and perpendicular velocities, 9 is the electric 
potential, and B is the magnetic field. The potential 
difference can be related to the parallel electric field from the 
following relation 

i o q)(s) =- E, (s')ds' (3) 
where Ell is the parallel electric field and where the potential 
at the equator is assumed to be zero (q•(s=0)=0, s=0 is the 
equator). 

From Liouville's theorem, the particle distribution is 
constant along any particle trajectory which is characterized 
by the constants of the motion; therefore, the distribution 
function at any point along the geomagnetic field can be 
calculated provided it is known at the equator (since we have 
an equatorially trapped plasma). For convenience, we will 
transform our distribution function and integration variables 
from (v, ,V.L) to constants of the motion (g, E). The particle 
density for species j can then be written as 

(4) 

which is similar to that found by Whipple [19771 and where 
fj+ and fj_ 'are the particle distributions for v, > 0 and vii < 0, 
respectively. Using the total energy (E) and magnetic 
moment (it), we have lost the distinction between particles 
moving in opposite directions along the magnetic field. For 
trapped particles, however, we can invoke symmetry between 
both directions and included a factor of two in the integrand 
of .Eq,(4). 

The particle density, at arbitrary positions along the 
magnetic field, is easily determined provided the distribution 
function is known at the equator. The region of 
determination for the integrals (limits of integration), in Eq. 
(4), is obtained by considering the condition of reflection 
which occurs for vii =0 and is given by 

=0 (5) 

which is a function of the total equatorial energy, the local 
electric potential and magnetic field, and the sign of the 
charged particle. Equation (5) depends only on the final 
position s' and is a necessary but not sufficient condition to 
guarantee accessibility of an equatorial particle to s'. For 
particles to gain access to s', they must not be reflected at 
intermediate positions (0 < s < s') along the magnetic field. 
This introduces a constraint on the functional dependence of 
the electric potential with respect to the magnetic field and 
was discussed in detail by Chiu and Schulz [1978]. They 
found two constraints on the electric potential 

dq> > 0 (6) 
dB 

dZq> < 0 (7) 
dB 2 - 

which must be valid at all positions between the equator and 
s' (see Chiu and Schulz [1978] for more details). Equations 
(6) and (7) require the potential to increase monotonically 

with B throughout the entire region 0 < s <s'. Thus, any 
solution of Eq.(4), where Eqs.(6) and (7) are not valid, must 
be discarded, since it would be based on a false mapping of 
the distribution function in Eq.(4). 

Provided Eqs.(6) and (7) are valid, the condition of 
reflection at s' yields E = ej9(s')+l. tjB(s' ) where particles 
having E <ejq>(s')+lljB(s') are reflected before reaching s'. 
Particles with E • ej(p(s')+lljB(s'), reach s' and contribute to 
the particle density nj(s'). Using the limits of integration, the 
particle density for species j can be written as 

roB(2 )3/2 2fj (g, E) n,=T[,•'•j J'•7=o•;%,•o+•jt,•,dEdg(E-ejqo,gB)(8) 
and depends on the electric potential, magnetic field and 
equatorial distribution function. Since we have assumed a 
zero potential at the equator, the total energy at the equator is 
only the kinetic energy which is positive definite. Hence, for 
our application, caution must be used so that the lower bound 
on the energy integral is over positive energies (i.e., for I.t=0 
and e_j(D(S ) <0, E' <0). For this reason, we introduce a 
Heaviside function into the equatorial distribution, forcing 
the integration over positive energies regardless of the 
electric potential. With a zero electric potential at the 
equator, the bi-Maxwel!ian distribution function can be 
written as 

(9) 

where n0 is the equatorial density, Tj,0 is the parallel thermal 
energy (Tj,=mjv},/2), 'I)j.0 is the perpendicular thermal 

2 

energy (Tj.l?m•vj.•/2), H(E) is a Heaviside function, and B 0 
is the equatorial magnetic field (note: the subscript 0 
throughout this paper denotes equatorial values). Given the 
functional form of the equatorial distribution function, the 
particle density, at arbitrary positions along the magnetic 
field, can be written as 

L j•.o ,•L T-•ø 
nj =n o (10) 

where q)=ejq0(s)/Tjl10. The expression multiplying the 
Heaviside function in Eq.(10) only contributes to the 
exponential if 1• < 0 due to the nature of the Heaviside 
function. 

From the assumption of quasineutrality, ne(q>)=ni(q>), and 
using Eq.(10) for the densities, the electrostatic potential 
becomes 

I e I q>(s) 
Tell0 

_•_=Ao.Ln T•.,o -•' T-•, ø 
T•'ø 1 - 
T,,o T,,o J J 

(11) 
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with 

-57o 
where •)j=lejlq>(s)/Tjl10. Equation (11) guarantees quasi- 
neutrality for various equatorial electron and ion anisotropies. 
in the limit of a homogenous magnetic field or if the 
electrons and ions have the same anisotropy, Equation (! 1) 
produces a zero electric potential. Subsequently, only for 
unequal electron and ion anisotropies is an electric potential 
generated and, subsequently, an electric field. 

_Alfv•n... and FMthammar Model 

The A-F model calculates the total electrostatic potential 
drop along the magnetic field using a single particle approach 
(see Alfvdn and FMthammar [19631 page 165) and can be 
written as 

where ¾=Bi/Bo is the ratio of the magnetic field strength at 
the ionosphere to equator, Will0 (1/2mjvll 2) and Wj.L0 
(1/2mjV.L 2) are the parallel and perpendicular energies at the 
equator. From Eq.(8), and assuming quasineutrality, the self- 
consistent integral model reproduces the results of A-F 
[Eq.(12)l for a delta function distribution in energy and 
magnetic moment [Whipple, 1977l. 

The total potential drop, given by Eq.(12), is on the order of 
the mean perpendicular energy of the plasma times the 
magnetic mirror ratio (T=Bi/B(i). For large mirror ratios, the 
total potential drop can be in excess of the total plasma 
kinetic energy which would seem to violate energy 
conservation; however, implied in the analysis and not 
explicitly found in Eq.(12) is that the analysis is invalid 
above (toward ionosphere) the mirror point of the particles. 
This condition restricts the magnitude of the potential and 
can be easily seen by the following considerations. From 
conservation of energy, the total energy at the mirror point 
can be related to the total energy at the equator from the 
following relationship, 

Wj.L m + ejq) m -.- Wjñ 0 + Will0 + ejq) 0 (13) 

where m refers to the mirror point, W.L and Wii are the 
perpendicular and parallel energies and where we have 
assumed Willre=0 (vii=0). Considering electrons and ions, the 
electric potential can be removed from Eq.(13) to produce the 
following relationship 

We,0+ Wi, 0 = (B-•0-1)(W•0 +W•0) (14) 
Inserting' Eq.(14) into Eq.(12), we obtain a relationship for 

the A-F electric potential at the mirror point 

lelq>• W•.o q- Woz (15) 

which is independent of the mirror ratio. Assuming the 
electron energy is in the perpendicular direction (We,0=0) and 
the ion energy is in the parallel direction (Wi.L0=0), the 
electrostatic potential drop becomes proportional to the ion 

parallel energy, lelq>~Wilf0. Hence, the A-F model conserves 
energy up to the mirror point, Eq.(15). Above the mirror 
point (s> Stairrot), the A-F model [Eq.(12)] no longer 
conserves energy and produces unreasonably large electric 
potentials, in excess of the total plasma energy, as will be 
shown in following section. 

Results 

We found in Section 2 that the self-consistent and A-F 
models are identical for a delta function distribution; 
however, the models are generally not identical for various 
trapped particle distributions. in this section, results are 
investigated using a bi-Maxwellian for the equatorial plasma. 
The average parallel and perpendicular energies for the 
plasma are calculated at the equator, and the potential from 
the A-F model is determined [Eq.(12)] along the geomagnetic 
field. Using the average parallel and perpendicular 
temperatures associated with the bi-Maxwe!lian plasma, the 
electric potential at the mirror point [Eq.(15)] is determined. 
The potential from the self-consistent model [Eq.(11)] is then 
compared to that calculated from the A-F model. 

Figure 1 shows two curves, for the electric potential in keV, 
as a function of normalized distance along the geomagnetic 
field line. Since the electric potential is symmetric about the 
equator, only half of the magnetic field line is shown, while 
the equator is designated by s=0. For an L=4 geomagnetic 
field line, 4 RE from the equator toward the ionosphere 
corresponds to an altitude of approximately 1900 km in the 
ionosphere. We have chosen, for the electrons and ions, bi- 
Maxwellian distributions with the following temperatures and 
anisotropies: Tell=25 keV, Tiil=25 keV, Te2fT½11=2, TLL•ili=I 
(note: for equal electron and ion anisotropies both theories 
yield the same vanishing electric field along the magnetic 
field). The A-F potential (q>^.v, solid curve) is exponential in 
nature and at the ionosphere has a maximum value of 552 
keV. The potential drop from the A-F model, at the 
ionosphere, is much larger than the total plasma energy at the 
equator, scaling as the magnetic mirror ratio times the 
average energy at the magnetic equator lelq0'-ffWave. 

The A-F model, however, characterizes each particle with 
an average parallel and perpendicular energy calculated from 
the equatorial distribution function; therefore, an average 

Electrostatic Potential 
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Fig. 1. The electric potential for the Alfv6n and F•i. lthammar 
(solid) and self-consistent (dashed) models as a function of 
normalized distance along an L=4 flux tube for an equatorial 
distribution function with the following parameters Tell=25 
keV, Till=25 keV, T,_L/T,ii=2, Ti.L/TilI=l. 
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mirror point is associated with all the particles. The electric 
potential, at the average mirror point, is determined from 
Eq.(15) and is found to be 8.3 keV for this case. This electric 
potential corresponds to a spatial location of 1.2 RE from the 
equator and is on the order of the average energy of the 
equatorially trapped plasma [Eq.(15) and Figure 1 ]. Since no 
particles exist above the average mirror point (s > 1.2 Rœ), 
the A-F model is not valid for distances greater than 1.2 Rœ. 
The assumption that the magnitude of the electric potential is 
approximately the mirror ratio time the average energy is 
valid only for distance below (toward equator) the mirror 
point (s < stairrot). The A-F model conserves energy, for 
distance smaller than 1.2 RE, and produces potentials 
approximately equal to those from the self-consistent model. 
The self-consistent potential (q0s, dashed curve) shows a very 
gradual increase in magnitude off the equator and has a 
maximum value of 18 keV at the ionosphere. The 
information of a distribution of particles in velocity space is 
lost in the A-F formalism, while this information is an 
integral part of the self-consistent model. Because of this 
fundamental difference, the A-F potential increases more 
rapidly off the equator and explains the divergence between 
the two potentials. 

Summary 

We have constructed a time-independent distribution 
function for each species, in the absence of waves and 
collisions, from the kinematic constants of the motion, 
enabling a self-consistent treatment for the generation of an 
electrostatic potential due to trapped particles in a magnetic 
flux tube. A relationship for the density of each species 
(electrons and ions) was derived that can be expressed in 
terms of an integral over the species equatorial distribution 
function. Integration limits were determined, from the 
constants of the motion, which depend on the local potential 
and magnetic field. Through the condition o. c quasineutrality, 
an electrostatic potential was found for trapped electrons and 
ions with different anisotropies. 

Three main results were obtained in this paper. The first 
result is that the self-consistent electrostatic potential 
[Eq.(!2)!, due to an equatorially trapped plasma in the 
absence of thermal ionospheric plasma, is on the order of the 
mean kinetic energy of the trapped plasma. A simple 
physical scenario as to why this result is reasonable comes 
from considering a plasma confined in a gravitational field. 
A polarization electric field develops which offsets the 
charge separation due to the different masses of the particles. 
For this case, the electric force is approximately half the 
gravitational force (To=T•), i.e., the electric potential is on the 
order of the gravitational potential. The source of energy, for 
this instance, is from the gravitational field, while for the case 
presented in this paper, the free energy can only come from 
the total energy of the plasma. We chose a bi-Maxwellian 
distribution for the trapped particles; however, we have 
investigated the electric potential due to a number of different 
trapped distributions and found similar results as those using 
a bi-Maxwellian. In all cases, the electrostatic potentials are 
on the order of the kinetic energy of the plasma. 

The second result is that the A-F potential scales as the 
magnetic mirror ratio times the average plasma kinetic 
energy only in a limited region of configuration space, 
centered about the equator. The A-F model is valid provided 
the particle density is nonzero, which is true for distance 
below the mirror point (toward equator). Using conservation 
of energy, the electrostatic potential at the average mirror 
point of the particles [Eq.(15)] was determined, removing the 
dependence on the magnetic mirror milo. The potential at the 
mirror point is the largest potential possible given the 

magnetic field geometry and the total plasma energy. The 
mirror point potential, therefore, is an upper bound on the 
magnitude of the A-F potential. Thus, the general statement 
that the A-F potential scales as the magnetic mirror ratio time 
the average plasma kinetic energy [Alfv6n and F',ilthammar, 
!963; Persson, !963, 1966;, Block and Falthammar, 1976; 
Chiu and Schulz, 1978] must be modified to include the 
spatial region of applicability. 

The third result concerns the application of the A-F model 
for particle distributions which are not delta functions in 
energy and magnetic moment. We were able to use the A-F 
model for a bi-Maxwellian by determining the average 
parallel and perpendicular energies for the electrons and ions. 
The electric potential for both cases diverge slightly near the 
equator rs< 1.2 R•). Above the mirror point (toward 
ionosphere, s> 1.2 RE), the A-F potential exponentially 
increased to values well in excess of the total plasma kinetic 
energy; however, the self-consistent potential showed a 
gradual increase toward the ionosphere. The discrepancy 
between these theories is due to the average single particle 
nature of the A-F model, while the self-consistent theory 
allows for a distribution of velocities and an infinite number 
of reflection points. 
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