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[1] Bulk rock lithium and oxygen isotope compositions from ODP Site 1256 were analyzed to investigate
the seawater 01rculat10n in the upper oceanic crust formed at the East Pacific Rise (EPR) The upper extru-
sive basalts have 6'%0 values from +6.1%o to +9.2%, reflecting alteration of oceanic crust by seawater at
low temperatures (<200-250°C). Bulk rocks from the sheeted dike complex and plutonic section have over-
all lower 6'0 values (+3.0%0—+5.5%o). In the sheeted dike comglex bulk rock 6'0 values gradually
decrease with depth, and then increase toward the fresh MORB §'°0 value after reaching a minimum of
+3.0%o at ~1350 m below seafloor (mbsf). The entire sampled crust is dominated by rocks with low lithium
contents relative to fresh MORBs except for a few localized Li enrichment. The upper volcanic zone is char-
acterized by a spread of §’Li from low to high values relative to average unaltered MORB values
(6"Li = +3.4 & 1.4%o). The presence of rocks with low §'Li values in the upper crust most likely indicates
zones of upwelling of relatively hot (~200-250°C) hydrothermal fluids. In the sheeted dike complex, bulk
rock 6’Li values show wide range of variation, but exhibit a general trend from enriched to depleted values
at ~1280 mbsf and then return to that for fresh MORB within the u upper tens of meters of the plutonic
section at the bottom of the after reachmg aminimum at ~1350 mbsf (6'Li = —1.6%o). The downhole pattern
of §"Li principally reflects variations in water-rock ratio (w/r) together with a downhole increase of temper-
ature. Seawater flow in the upper volcanic zone is likely to be channeled with generally small but variable
w/r ratios. The w/r ratios increase rapidly with depth in the lower volcanic section into the sheeted dike
complex indicating water dominated pervasive hydrothermal flow due to intensive upwelling of hydrothermal
fluids.
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1. Introduction

[2] Hydrothermal circulation at mid-ocean ridges
through the permeable parts of the crust and upper
mantle accounts for 34% of the predicted global
oceanic heat flux and about 25% of the total heat
flux of the Earth [Stein and Stein, 1994]. Owing to
the differences in magma supply and the depth of
axial magma lenses, hydrothermal circulation pat-
terns at ridge axis differ with spreading rates
[Phipps Morgan and Chen, 1993; German et al.,
2004]. Seawater circulation at or near the mid
ocean ridges (MORs) plays an important role in the
modification of isotopic and chemical compositions
of the oceanic crust and the oceans [e.g., Humphris,
1995; Alt and Teagle, 2000]. Our understanding
of axial hydrothermal systems has been greatly
advanced via both theoretical modeling [e.g., Phipps
Morgan and Chen, 1993; Coumou et al., 2006;
Fontaine and Wilcock, 2007] and studies of alter-
ation patterns recorded in the oceanic crust [e.g.,
Alt et al., 1986, 2010; Gregory and Taylor, 1981,

Gillis et al., 2001; Heft et al., 2008]. However, some
critical questions still need to be further assessed,
such as the causes of spatial and temporal variability
of axial hydrothermal systems and the discrepancy
in the subsurface thermal structure between theoreti-
cal prediction and natural observations [Hefi et al.,
2008]. Oxygen isotopic compositions of altered
samples are useful tracers of seawater-rock interac-
tions and can provide information on the penetration
depth of seawater and evolution of hydrothermal
circulation [e.g., Gregory and Taylor, 1981; Alt et al.,
1986; Alt and Teagle, 2000; Gao et al., 2006].

[3] Lithium isotopes are potentially the most pow-
erful tracers of seawater-basalt interaction and crust-
mantle recycling [e.g., Chan et al., 1992, 2002;
Elliott et al., 2004; Tomascak, 2004, and references
therein]. Lithium is strongly mobilized by hydrous
fluids [e.g., Brenan et al., 1998a; Moran et al.,
1992; Seyfried et al., 1984,1998; Zack et al., 2003]
and is moderately incompatible during mantle
melting [Brenan et al., 1998b]. At low temperatures
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Li isotopes are subjected to a very large mass frac-
tionations with up to 80%o variation documented in
terrestrial samples [Rudnick and Nakamura, 2004].
Similar to oxygen isotopes, the lithium isotopic
compositions of altered samples are related to the
water/rock ratio (w/r) and the fluid temperature
[Bouman et al., 2004; Chan et al., 1992, 2002].
There is a large difference in Li content and isotopic
composition between seawater (0.2 zg/g and §'Li of
+31.1%0 [Chan et al., 1992]) and fresh N-MORBs
(6.7 pg/g and 6'Li of +3.4 & 1.4%o [Tomascak et al.,
2008]). Therefore, the lithium isotopic composition
of alteration products during seawater related alter-
ation processes are highly sensitive to the water/rock
ratios that define the amount of exchangeable Li. The
majority of Li incorporated into alteration minerals is
from the destruction/dissolution of rock, unless the
Wwi/r ratio is very high.

[4] Among the components entering subduction
zones, lithium concentrations and 6’Li compositions
of the lower oceanic crust (lowermost dikes and
upper gabbros) remain the least characterized [Chan
et al., 2002; Bouman, et al., 2004]. The lowermost
dikes and upper gabbros have been identified as the
root of axial high-temperature hydrothermal systems
[e.g., Alt, 1995; Alt et al., 1996; Gillis et al., 2001].
However, such extensive alteration regions or zones
of focused discharge near the dike/gabbro boundary
are poorly documented within oceanic settings, and
information from ophiolites may not be applicable to
in situ ocean crust [Bickle and Teagle, 1992;
Richardson et al., 1987; Schiffman and Smith, 1988].

[5] This paper presents paired Li and oxygen iso-
topic profiles derived from core samples through the
upper oceanic crust from ODP Site 1256 that sam-
pled from shallow extrusive levels to the uppermost
gabbros below the sheeted dikes. We compare our
results with the in situ lithium isotope profile [Chan
et al., 2002] of upper oceanic crust sampled at ODP
Hole 504B, which is located in 5.9-Ma-old crust
about 200 km south of the Costa Rica Rift formed
under an intermediate spreading rate (68 mm/yr [Alt
et al., 1986]). We use these data to investigate the
seawater-rock interaction in the upper oceanic crust
and to constrain the penetration and circulation of
seawater during the formation and evolution of
oceanic crust at a superfast spreading ridge.

2. Geological Setting and Methods

[6] ODP Site 1256 (6°44.2'N, 91°56.1'W) has been
drilled into the Guatemala Basin on the Cocos
plate. The oceanic crust at the drill site was formed

~15 m.y. ago on the eastern flank of the East Pacific
Rise (Figure 1), during an episode of superfast
spreading with rates up to 200 mm/yr [ Wilson, 1996;
Wilson et al., 2003]. This location was initially
within the equatorial high-productivity zone and
endured high sedimentation rates (>30 m/m.y.
[Farrell et al., 1995; Wilson et al., 2003]). The sed-
iment thickness is 250 m at Site 1256 and is within
the regional average (200-300 m [Wilson et al.,
2003]). Basement rocks were recovered from Hole
1256C and Hole 1256D, but the uppermost lavas
were sampled only in Hole 1256C due to the setting
of casing 19 m into basement in Hole 1256D [Wilson
et al., 2003]. Pilot Hole 1256C cored 250.7 m of
sediments and 88.5 m into the basement, that is
composed of a 32 m thick lava pond with thin sheet
flows above and below (Figure 2) [Wilson et al.,
2003]. The main hole with the deepest penetration,
Hole 1256D, lays ~30 m south of 1256C, started
coring at 276 m below seafloor (mbsf) within the
uppermost basement and penetrated 1271 m into the
oceanic basement completely through the volcanic
and dike sections and into the uppermost plutonic
rocks (Figure 2) [Wilson et al., 2006; Teagle et al.,
2006, 2012].

2.1. Lithostratigraphy of Hole 1256D

[71 The oceanic crust sampled at Hole 1256D was
portioned into six subdivisions based on the igne-
ous stratigraphy developed from the recovered core
(Figure 2) [Wilson et al., 2003; Teagle et al., 2006],
which, from top to bottom, are the lava pond,
inflated flows, sheet and massive flows, transition
zone, sheeted dike complex, and plutonic complex
[Teagle et al., 2006]. To facilitate the comparison
with other profiles of the oceanic crust (e.g., ODP
Site 504B and 896A [Chan et al, 2002]), we
interpret the igneous lithostratigraphy relative to the
following four subdivisions (Figure 2) based on the
descriptions by shipboard scientists [Wilson et al.,
2003; Teagle et al., 2006] and alteration processes
defined by Alt et al. [2010]: 1) volcanic section; 2)
transition zone; 3) sheeted dike complex; and 4)
plutonic section.

[8] The volcanic section includes, from the top to
the bottom, a lava pond (~276-350.3 mbsf),
inflated flows (350.3-533.9 mbsf) and sheet and
massive flows (533.9-1004.2 mbsf). The sheeted
and massive flows formed at the ridge axis, and are
covered by thick ponded lavas and flows formed up
to ~3 km off axis that make up the upper 284 m of
the volcanic section [Teagle et al., 2006, Tominaga
et al., 2009; Tominaga and Umino, 2010]. The
upper volcanic zone (down to 964 mbsf) has
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Figure 1. Location of Site 1256 in the eastern Pacific (modified after Teagle et al. [2006]). The location of DSDP/

ODP Hole 504B and isochrones (5 Ma intervals) are also shown.

reacted with seawater at low temperatures in
reducing conditions as indicated by the presence of
saponite & pyrite and the low abundance of red iron-
oxyhydroxide enriched alteration halos [A4/f et al.,
2010]. Uncommon oxidized alteration halos adja-
cent to iron oxyhydroxides and/or celadonite veins
occur irregularly and are mostly related to fracture
networks. The presence of pyrite-rich alteration
halos, mixed-layer chlorite/smectite, and anhydrite
in the lower volcanic section below 964 mbsf indi-
cates elevated alteration temperatures (100°C-200°C
[Teagle et al., 2006; Alt et al., 2010]). Overall, the
volcanic section is slightly to moderately altered, but
a highly altered 41 cm interval occurs at 648 mbsf
and has been interpreted as the presence of a narrow
zone of focused fluid flow [Alf et al., 2010].

[9] The transition zone (1004.2—-1060.9 mbsf) is
marked by subvertical intrusive contacts and the
appearance of greenschist faces minerals (including
chlorite, albite, actinolite [Teagle et al., 2006]).
Alteration in this zone is variable but commonly
more intense than the overlying volcanic section.
The alteration styles indicate that this section is a
mixing zone between upwelling hydrothermal
fluids and the downwelling seawater [Alf et al.,
2010]. Similar to the transition zone in Hole
504B, the change from low temperature seawater

alteration into higher-temperature hydrothermal
alteration occurs over a narrow interval in this
section [Alt et al., 1996, 2010].

[10] The sheeted dike complex (1060.9—1406.6 mbsf)
contains rocks that are highly to completely altered
[Teagle et al., 2006]. Alteration temperatures within
the sheeted dikes increase downward from ~250°C
at the top to ~400°C at the base [Teagle et al.,
2006; Alt et al., 2010]. Subgreenschist to greenschist
alteration occurs in the upper dikes and is indicated by
the presence of chlorite, actinolite, albite, epidote,
and titanite [Teagle et al., 2006]. The lowermost
dikes (1348.3—1406.6 mbsf) display granoblastic
textures that reflect strong contact metamorphism at
or near magmatic temperatures [Koepke et al., 2008;
France et al., 2009], superimposed on -earlier
hydrothermal alteration [Alf et al., 2010].

[11] The plutonic complex (1406.6—1507.1 mbsf)
contains two gabbro bodies separated by a grano-
blastically recrystallized dike screen. Metamorphic
conditions in this section are similar to those in the
lower dikes [Alf et al., 2010] but the margins of the
gabbro bodies are moderately altered with second-
ary minerals such as chlorite, amphibole, epidote,
laumonite and prehnite present [Teagle et al.,
2006].
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2.2. Samples and Methods

[12] The samples studied represent three subsets
of materials recovered at Site 1256 during ODP
Leg 206 and IODP Expedition 309/312 (Table 1):
1) Shipboard samples that were prepared onboard
and analyzed by atomic emission spectroscopy (noted
as SHIP); 2) Pool samples, collected and shared by a
group of shipboard scientists, were powdered at the
National Oceanography Centre Southampton (noted
as SA); 3) A set of samples collected from the
repository that were powdered at the University of
Houston (noted as UH). The SHIP samples were
selected to be the freshest observed and to be rep-
resentative of each igneous unit, although all rocks
recovered are partially altered to secondary minerals
as a result of fluid-rock interaction [Teagle et al.,
2006]. The subset of the Pool samples was selected
to be representative of the various types of alteration.
The UH samples were selected to mainly cover
the upper volcanic sections cored during ODP
Leg 206. In order to check the possible sampling
bias introduced during sample preparation (i.e.,
cutting and powdering), the UH sample set includes
several samples from the identical, or very close,
depth intervals to shipboard AES samples and Pool
samples.

[13] For samples prepared at the University of
Houston, bulk rock powders were completely
digested with mixed acid (HNOj, HF, and HCI)
either on hot plate in Savillex® PFA beakers or
within an oven in high pressure bombs. The clear
solutions obtained after digestion are split into two
aliquots for lithium isotope analysis and trace ele-
ment analysis by ICPMS, respectively [Gao et al.,
2009; Gao and Casey, 2011]. The aliquots for
lithium isotopic study were first dried down and
then re-dissolved in 10 mL 0.2 N HCI prior to
column chemistry. Separation of Li for isotopic
composition analysis was achieved by an organic
solvent free two-step liquid chromatography pro-
cedure in a clean laboratory at the University of
Houston following the procedure described by Gao
and Casey [2011]. To avoid the problems induced
from the usage of organic solvent, such as the deg-
radation of resin, 0.2 N HCI was used in both first
and second columns to elute Li [Gao and Casey,
2011]. All separations were monitored by ICP-MS
analysis to guarantee both high Li yield (>99.8%)
and low Na/Li ratio (<0.5). The total chemical pro-
cedural blank of Li was ~0.03 ng, which is negli-
gible compared with the samples used in this study
with >100 ng of Li. Lithium isotopic composmons

7pressed as 8'Li relative to L-SVEC as §'Li =
[("Li/°Li)sampte/('Li/°Li)Lsvec — 1] x 1000 were

measured with Nu Plasma MC-ICP-MS at the Uni-
versity of Maryland (UMD) following the proce-
dures described in Rudnick et al. [2004] and
Rudnick and Ionov [2007] with a precision of
<1%o. The repeated analysis of BHVO-2 (a basalt
reference material) during the course of this work
yield an average value of 4.3%o0 4= 0.2%0 [Gao and
Casey, 2011], which is comparable to the reported
value summarized in GeoRem [Jochum et al., 2005].

[14] Samples analyzed at the University of Bristol
(UB) had Li separated from matrix using two dif-
ferent protocols. The first data set was acquired by
using the methanol-HNO; method described in
Jeffcoate et al. [2004]. After conventional HF-HCI-
HNOjs-digestion, 20 mg aliquots of sample were
passed through cation exchange columns using
dilute HNOs-methanol/dilute HCIl-methanol as an
eluent. The second data set used the HCl-cation
exchange method after James and Palmer [2000]
further discussed in Marschall et al. [2007]. After
conventional HF-HCI-HNO;-digestion of 100 mg
samples including HCIO, for dissolving organic
compounds, an up-take of 20 mg in 0.2 N HCI
were passed through cation exchange columns using
0.2 N HCl as an eluent. Samples were then analyzed
on a Neptune MC-ICP-MS using a sample-standard
bracketing technique relative to the NIST L-SVEC
standard [Flesch et al., 1973] as detailed by Jeffcoate
et al. [2004] with a 20gp external reproducibility of
+0.3%o0 monitored by multiple analyses of several
international rock standards over a period of four
years [Pogge von Strandmann et al., 2011]. The
sample and standard intensities on the MC-ICPMS
were within 10% of each other.

[15] There is discrepancy between UMD and UB on
lithium isotope data for rocks from the same core
depth (Table 2). The differences between the two
data sets most probably reflect the heterogeneity of
lithium isotopes in the studied rocks even at cm
scale. The powders analyzed in the two labs for
those “duplicated samples” are not exactly the same
powders and were prepared in different laboratories
from different pieces of rocks from the same depth
(Table 2). There is in general better agreement in
the Li isotope data between the two laboratories
for “true duplicated” samples where the same
powders were analyzed (Table 2 and Figure 3).
For the 5 “true duplicates,” the mean differences are
0.75%o, and for the pseudo-replicates mean differ-
ences are 2.86%o (Table 2).

[16] For most samples oxygen isotopic composi-
tions were analyzed at the University of Goettingen,
Germany (UG) and reported as ¢'°0 =
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Table 2. Inter-laboratory Comparation for Li Isotope Analysis®

Analyzed at UMD and UH

Analyzed at UB

Top Bottom  Depth
Leg Site H Cor Sc (cm) (cm) (mbsf) Milled &’Li UMD Li(ppm) Milled &’Li UB Li (ppm)
206 1256 C  6R 4 64 72 261.71 UH 4.70 9.25 SA 2.87 7.96
206 1256 C 7R 5 42 52 271.33 UH 3.45 6.84 SA 1.06 4.24
206 1256 C  8R 1 101 108 276.51 SA 2.06 6.05 SA4 1.10 5.61
206 1256 D 12R 8 71 79 351.21 SA 5.86 5.24 SA 6.01 6.26
206 1256 D 27R 1 130 137 446.7 SHIP 5.57 5.02 SA 1.91 5.01
206 1256 D 32R 1 114 120 476.34 SA 4.14 5.10 SA 4.38 5.59
206 1256 D S7R 2 117 127 648.02  SHIP —1.01 16.72 SA —2.10 16.33
206 1256 D 74R 2 102 111 749.56  SHIP 6.48 4.59 SA 3.85 4.87
309 1256 D 85R 3 78 81 815.17  SHIP 10.99 6.09 SA 7.78 7.29
309 1256 D 114R 2 54 56 990.85  SHIP 10.37 2.63 SHIP 9.40 3.65
309 1256 D 147R 1 75 77 114595  SHIP 7.05 2.59 SA 3.35 4.09
309 1256 D 165R 3 101 103 1231.07 SHIP 11.03 1.48 SHIP 8.84 0.99

Table captions are same as Table 1. Duplicated rock powders analyzed in two labs (UMD and UB) could be either the aliqot of the same powders
(indicated by bold italic font) or different powders prepared from different pieces of rocks at the same core depths.

[(*°0/"°0)sampie/(*O/ O)spow  — 11 x 1000.
Oxygen was extracted from whole rock powders
using a laser fluorination technique with a CO, laser
and the produced oxygen was then guided through
a purification line to remove the surplus F,. The
purified oxygen is then transferred into the con-
tinuous flow isotope-ratio-monitoring gas chroma-
tography mass spectrometry to analyze the isotope
ratios [Gao et al., 2006; Wiechert et al., 2002]. The
average analytical precision is generally better than
0.2%o as assessed by duplicate analysis of UWG-2,
a garnet reference material [Valley et al., 1995].
A suite of samples from Leg 206 were analyzed at
the University of Alberta, Canada (UA) using the
conventional BrF5 method of Clayton and Mayeda

[1963] with average reproducibility better than
0.2%eo.

3. Results and Discussion

[17] Lithium and oxygen isotopic compositions
along with selected trace element compositions of
the rocks from Site 1256 are reported in Table 1 and
plotted in Figure 2 (analytical details for trace ele-
ments by ICP-MS are given in Gao et al. [2009]).

3.1. Oxygen Isotopes

[18] In Holes 1256C and 1256D, the bulk oxygen
isotope compositions of igneous rocks range from

14

12 A

s7Li

4 -
5.3 O UMD
@ UB
0 T T T T
8R-1 12R-8 114R-2 165R-3

Figure 3.

Inter-laboratory comparison of lithium isotope analysis at University of Bristol (UB, filled green square)

and University of Maryland (UMD, filled yellow square). The error bar is 1%o.
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6'80 = +3.0 to +9.2%o (Figure 2a). The majority of
the extrusive basalts from the upper 1000 m of Hole
1256C and 1256D have heavier oxygen isotope
compositions (6'%0 = +6.1 to +9.2%o) than fresh
MORB (+5.7 &£ 0.3%0 [Harmon and Hoefs, 1995]).
Interaction between seawater and oceanic crust at
temperatures lower than 250°C is known to enrich
the volcanic section of the oceanic crust in 'O [Alt
and Teagle, 2000; Alt, 2003; Bohlke et al., 1984;
Muehlenbachs and Clayton, 1972; Stakes and
O'’Neil, 1982]. In Hole 1256D the maximum §'%0
value occurs at ~650 mbsf within a zone of inten-
sive hydrothermal alteration [Alt et al., 2010].
However, there is no apparent trend for the bulk
rock ¢ 18O values with depth in the volcanic section
(Figure 2a). Similarly, no clear depth trend in the
upper volcanic section is reported in Atlantic DSDP
holes with ages of 3.2 to 10 Ma (Sites 332, 395 and
396) and 110 Ma (Site 417A [4lt, 2003]). In con-
trast, in the ODP Holes 504B and 896A (6.9 Ma) in
the Eastern Pacific a general downward decrease in
the bulk rock 6'%0 values is observed [Alf et al.,
1996, 1986; Teagle et al., 1996].

[19] A change from enriched to depleted &'%0
values compared to fresh MORB occurs at the
depth of ~1100 rnbsf near the top of the sheeted
dike complex. This '®0 depletion is accompanied
by the occurrence of chlorite, actinolite, epidote,
and albite, typical for greenschlst alteratlon [Teagle
et al., 2006]. This transition in §'*0 values indi-
cates the change of alteration conditions from lower
to higher temperatures (>250°C) within the sheeted
dike complex.

[20] In the sheeted dike complex there is a clear
trend of decreasing whole rock 6'%0 values to a
minimum §'%0 ~3%o at ~1373 mbsf. Below this
depth, the 6'%0 values increase toward the fresh
MORB "0 value within the plutonic section. The
§'80 minimum in the lower sheeted dikes approx-
imately coincides with the minimum value of §’Li
(Figure 2) and the maximum depletion of Li indi-
cated by the low Li/YD ratio (Figure 4).

3.2. Lithium Contents and Isotopic
Composition

[21] Reported §’Li values of MORB are highly
variable ranging between +1.5 and +6.5%0 [Chan
et al, 1992; Moriguti and Nakamura, 1998;
Tomascak and Langmuir, 1999; Tomascak et al.,
2008]. The heterogeneity of Li isotopes in the
upper mantle has been largely attributed to recycling
of subducted material [Elliott et al., 2004, 2006;

Nishio et al., 2004]. Evidence from isotopic sig-
natures of OIB and MORB led to the proposition of
a large and homogeneous reservoir in the upper
mantle with a §’Li value of +4%o [Ryan and Kyle,
2004; Tomascak et al. 2002] A newer study esti-
mated the N-MORB §’Li value to be +3.4%o
[Tomascak et al., 2008], similar to the reported & Li
value of the pristine upper mantle (about +3.5%o
[Jeffcoate et al., 2007; Magna et al., 2006]).

3.2.1. Lithium Contents

[22] The bulk rocks show a general trend of decreas-
ing lithium concentrations with depth, except for
few local zones of strongly elevated or depleted
Li contents (Figure 2c). The average Li concentra-
tion in fresh EPR MORBs has been reported to be
7.2 ug/g [Tomascak et al., 2008]. Li concentration
of ~3 ug/g was used by Chan et al. [2002] as pris-
tine value to investigate the Li exchange due to
alteration in the rocks from Holes 504B and 896A.
As an incompatible element Li contents are expec-
ted to vary during crystal fractionation [Ryan and
Langmuir, 1987; Brenan et al., 1998a]. In Hole
1256D, basaltic rocks have MgO content ranging
from 3.5 to 11 wt% (Figure 4a), indicating a sig-
nificant range of fractionation [Wilson et al., 2003,
2006; Teagle et al. 2006; Neo et al., 2009]. Thus, it
is unlikely that a single uniform Li concentration
can be used as a baseline to justify the changes in
Li contents induced by alteration.

[23] Li and Yb exhibit similar magmatic incompati-
bility and are essentially unfractionated from each
other during crustal low-pressure crystallization
processes [Brenan et al., 1998a, 1998b; Ryan and
Langmuir, 1987]. However, due to the fluid mobil-
ity of Li, these two elements will be strongly frac-
tionated by water-rock interactions [Brenan et al.,
1998b]. Based on the available data given in petDB
(http://www.petdb.org [Lehnert et al., 2000]), fresh
MORB glasses from EPR have an average Li/Yb
ratio of 1.75, which is similar to the global mean of
1.7 [Ryan and Langmuir, 1987]. Thus the measured
Li/YD ratio can serve as a good indicator of the Li
variation due to alteration. The Li/YDb ratios in the
rocks from Site 1256 are generally less than 1.75
(Figure 4b), indicating the loss of Li from the rocks.
Above ~900 mbsf, lithium contents show variation
with both high and low Li/Yb ratios, though low
Li/Yb ratios are most common in this upper section.
Local zones with significant change in Li content
occur near the base of the lava pond (~350 mbsf),
and at ~650 mbsf and ~850 mbsf, where there is
anomalously strong hydrothermal alteration and the
occurrence of smectite-chlorite mixtures [see Alt
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et al., 2010]. Below ~900 mbsf, the Site 1256 crust
is dominated by rocks with depleted lithium con-
tents relative to fresh MORB, except for a few
localized enrichments within or close to the transi-
tion zone. In the sheeted dike complex the Li/Yb
ratio decreases gradually with depth and reaches a
minimum value at ~1350 mbsf (Figure 4b), which
indicates the gradual loss of lithium. Rocks in the
plutonic section have slightly higher Li contents
than in the overlying granoblastic dikes.

[24] During hydrothermal alteration, Li is mobi-
lized during the destruction and recrystallization of
silicate minerals. Depending on the reaction tem-
perature, secondary minerals such as chlorites,
smectite, zeolite, and epidote may incorporate some
or none of the Li released from the primary phases
[Berger et al., 1987, 1988; James et al., 2003,
Pabst et al., 2011]. The uptake of Li into secondary
minerals can occur by both surface adsorption and
mineral structural incorporation via lattice substi-
tution [Berger et al., 1988; Vigier et al., 2008].
Experiments show that the Li partition coefficients
in clay minerals decrease with increasing tem-
perature and such phases can be sources of Li in
fluids at higher temperatures [Berger et al., 1988;
James et al., 2003; Magenheim et al., 1995;
Seyfried et al., 1984; Von Damm et al., 1985]. At
low temperatures (<150°C), basalts take up seawa-
ter Li through formation of alteration phases such as
clay minerals [e.g., Chan et al., 1992; James et al.,
2003; Seyfiied et al., 1984]. The uptake of Li into
secondary minerals can occur by both structural
incorporation and surface adsorption which is
enhanced at low temperature [Berger et al., 1988;
Vigier et al., 2008]. In contrast, at temperatures
above the upper stability of clay minerals (~200°C),
Li is leached from basalts [e.g., Chan et al., 1993,
2002; Seyfried et al., 1984, 1998; Von Damm
etal., 1985].

[25] Collectively, the overall low Li contents of
rocks from the sheeted dikes and plutonic section
(Figure 4c) most likely reflects fluids-rock interac-
tions at elevated temperatures (>200°C). Despite
the lower alteration temperatures suggested by the
generally elevated oxygen isotope compositions
(Figure 2a), the upper volcanic section also shows a
global depletion of Li contents, albeit with signifi-
cant variation (Figure 4c). This is in contrast to Hole

504B, where the volcanic section was dominated by
Li enrichment owing to the alteration by large
volumes of seawater, freely circulating through the
uppermost volcanic pile [4/f et al., 1996; Chan et
al., 2002]. The observed overall Li depletion in
Site 1256 volcanic section may indicate variable
but generally low w/r ratios in this part. Due to the
large difference of Li concentration between sea-
water and fresh basaltic rocks, the bulk rock Li
composition of altered oceanic crust is highly sen-
sitive to the water/rock (w/r) ratio, especially under
rock-dominated conditions. The quantitative mod-
eling given in the following section shows that the
enrichment of Li in altered oceanic crust at low
temperature requires a very high w/r ratio. In con-
trast, low w/r ratios could lead to Li depletion in
bulk rocks even at low temperature.

[26] In general, the observed downhole Li variation
trend is consistent with the abundance of secondary
minerals and the oxygen isotope values of alter-
ation veins at Hole 1256D. These show downward
increasing temperatures from 50 to 110°C in the
volcanic section to 250-350°C across the transition
zone [Alt et al., 2010].

3.2.2. Lithium Isotopic Compositions

[27] From the upper volcanic section down to
~750 mbsf the profile at Site 1256 is character-
ized by a wide spread of 6’Li values (—2.29%o to
+13.81%o0) both lower and higher than fresh MORB
(Figure 2). This trend is in contrast to observations
from Hole 504B, where the upper volcanic section
is dominated by enriched §’Li values that generally
decrease with depth [Chan et al., 2002]. A wide
spread of Sr isotope ratios (*’Sr/*°Sr) has been
reported in the upper volcanic zone of Troodos
ophiolite as a result of non-pervasive fluid-rock
alteration and kinetically limited process [Bickle
and Teagle, 1992]. At Site 1256, the variable 6'Li
values and the overall depleted Li concentrations of
the altered basalts may suggest that in this volcanic
zone the fluid circulation was also highly localized.
The fluids that circulated within the Site 1256 crust
appear to have evolved and variable 6’Li and Li
contents resulted from mixing of downwelling
seawater and upwelling hydrothermal fluids. The
minimum ¢'Li value observed at 650 mbsf is
associated with the highest §'0 and maximum

Figure 4. Variation of (a) MgO and (b) Li/Yb with depth for bulk rocks from Hole 1256C and 1256D, shown
with lithologic sections. The data sources for MgO content in wt% are: Wilson et al. [2003], Wilson et al.
[2006], Teagle et al. [2006], and Neo et al. [2009]. The igneous value of Li/Yb is given as 1.75 based on the
compiled fresh basalts from the east pacific rise (EPR, see text for details). Symbols are same as Figure 2.
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Figure 5. Relationships of (a) 6’Li with Li content and (b) § 80 in whole rocks from IODP site 1256 (open circle).
The values of Li and 6’Li for fresh MORB glass from east pacific rise (gray filled triangle [Chan et al., 1992;
Elliott et al., 2006; Tomascak et al., 2008]) and seawater (gray filled star [Chan et al., 1992]) are also shown.

Li concentration. This may be a localized zone in the
upper volcanic section where upwelling hydrother-
mal fluids are being discharged at low temperature.
Compared to unmodified seawater (0.2 ug/g Li,
+31%o 6’Li, and 0% &6'*0 [Chan et al., 1992]),
hydrothermal fluids have been reported to have
an average content of about 10 ug/g Li, §’Li of
+7.5%0, and 6'%0 of up to +8%0 [Chan et al.,
1993; Bray, 2001; Chan et al., 2002, Gregory
and Taylor, 1981]. The ¢'Li maximum together
with the elevated Li concentrations near the base
of the lava pond at ~310 mbsf in Hole 1256C and
~350 mbsf in Hole 1256D (Figure 2) may result
from enhanced lateral seawater circulation at this
location or alternately could represent a former
paleo-ocean floor, prior to being sealed by the
overlying lava pond [Alf et al., 2010].

[28] Sheet and massive flows and sheeted dikes
below ~750 mbsf are dominated by high §’Li
values compared to fresh MORB which continue

across the transition zone to the lower sheeted dike
complex (Figure 2b). From ~1280 mbsf in the
lower sheeted dike complex, §'Li values show a
steep gradient from high to low values. A minimum
value of §'Li ~ —1.6%o occurs at ~1350 mbsf
approximately coincident with the minimum value
of 6'®0. Below this level, the bulk §’Li values start
to generally increase toward the fresh MORB
composition (+3.4%o).

[29] The Li isotopic composition correlates with
neither Li concentration nor oxygen isotopic com-
position for whole rock samples from Site 1256
(Figure 5). This is in contrast to the observation at
Hole 504B, where good positive correlations among
Li, §’Li, and 6'®0 have been reported [Chan et al.,
2002]. As shown in the following discussions, this
may reflect the difference in fluid-rock reaction
passes related to the different seawater/hydrothermal
circulation patterns between these two sites.
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Figure 6. Modeling calculations illustrate the variation of oxygen isotope compositions of bulk rocks and fluids with
water/rock ratios and temperatures during interaction of basalt with seawater (see text for details of the modeling).

3.2.3. Sampling Bias

[30] To check the potential effect of sampling
strategies, analytical results were plotted by color-
coded symbols to denote the different sample set
(i.e., SHIP, SA, and UH). Generally, the UH and
SA data set show a broader variation for lithium
isotopes at given depth compared to the SHIP data
set. This reflects the fact that the SHIP samples
were selected to be the freshest and the most rep-
resentative rock in each igneous unit, whereas SA
and UH samples were selected to be representative
of the various types of alteration. However, the
discrepancies among the three sample set does not
mute the overall depth variation trend. For exam-
ple, as shown in Figure 2, the SHIP data defined a
trend that the upper volcanic section has a wide
spread of ¢'Li values though it was dominated by
fresh MORB like values, while the rocks below
~750 mbsf down to ~1300 mbsf are dominated
by high §’Li values compared to fresh MORB.
This observed overall trend doesn’t change when
SA and UH data set are added to the plot, though
it shows a much more scattered patterns at given
depth. Most probably, this reflects the fact that all
rocks recovered have been pervasively but vari-
ably altered to secondary minerals as a result of
fluid-rock interaction which might be more intense
at locations with concentrated alteration halos and/
or veins [Teagle et al., 2006].

[31] Thus, we believe that the obtained depth pro-
file is representative and not greatly affected by the
multiple sampling strategies and/or by the multiple

techniques and locations used for separating and
measuring Li isotopes.

3.3. Hydrothermal Circulation at a
Superfast Spreading Ridge

[32] The distribution, characteristics and intensity
of seawater circulation within the oceanic crust are
controlled by the thermal regime and permeability
structure and these are strongly influenced by
magmatic and tectonic processes. Elemental and
isotopic exchanges during water-rock interaction
leave fingerprints the evolving conditions of
hydrothermal circulation.

3.3.1. Quantitative Modeling

[33] The relationship between §'°0 values of the
altered igneous rock (&%) and the water/rock ratios
based on atom percent oxygen (W/R), in closed
systems, was defined bty Taylor [1977] to be
(W/R)A, closed system — (6r - 6lr)/(A - 65) In this
formula, A is the temperature dependent equilib-
rium fractionation constant between rock and water
assumed to be equal to that of H,O-plagioclase
(Ansg) to mimic the basaltic bulk rock, &; is the
initial §'®0 value of unaltered igneous rock.

[34] Figure 6 illustrates how water/rock ratio and
alteration temperature can affect the oxygen isotope
composition of bulk rocks. Our model assumes that
the amount of rock exchanging oxygen with the fluid
is determined by the relative mass of fluid and rock
(the water/rock ratio). In such a case, at (W/R)5 > 1
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the entire rock is equilibrated with the fluid uni-
formly, at (W/R), < 1 only a portion of the rock can
exchange oxygen isotope with fluid and the remain-
in§ part retains its igneous composition. Hence the
"0 value of bulk rock given in Figure 6 reflects a
mass balance of alteration and primary phases at
various water/rock ratios. As shown in Figure 6,
where basaltic rock (580 = +5.7%o0) reacts with
seawater (6'%0 = 0%o) at different temperatures, the
oxygen isotope composition of bulk rock is domi-
nantly determined by the alteration temperature,
especially at greater water/rock ratlos In these
examples, the bulk rocks are depleted in '*O at ele-
vated temperatures (>250°C), whereas at lower
temperatures rocks become enriched in '*0. Thus,
the obtained bulk rock §'*O values are most useful to
constrain alteration temperatures.

[35] The behavior of lithium isotopes during rock-
water interaction under equilibration is described in
the following two equations given by Magenheim
et al. [1995], where Li is partitioned into the fluid
and alteration phases assuming the rock is incre-
mentally destroyed.

Rl ==k x 1n<§R:KK;> (1)

_ Yr — aKY

R/W is rock/water ratio in weight units, K is dis-
tribution coefficient of Li between rock and fluid at
given temperature, « is equilibrium fractionation
factor between rock and water, X, Xrand Y, Yy are
the concentrations of °Li and "Li in alteration pro-
ducts and final fluids respectlvely, Xo and Y, are
the initial concentrations of °Li and 'Li in the
starting fluid.

[36] The distribution coefficient K varies with tem-
perature, with a tendency of becoming more incom-
patible to basaltic rock with increasing temperature
[Berger et al., 1988; Seyfried and Bischoff, 1981;
Seyfried et al., 1998]. In this model, K = 0.15-0.35
are used for the temperature range of 250°C—-500°C
based on the proposed values by Chan et al. [2002]
and adjusted based on the existing experimental
results [Berger et al., 1988; Seyfried et al., 1998;
Vigier et al., 2008]. For low temperature range of
2°C-200°C, K of 2-200 are proposed based on the
experimental results between a fresh natural basaltic
glass and seawater at 150°C with w/r mass ratio of 10
[Seyfried et al., 1984]. 1t is worth noting that the
obtained bulk partition coefficient of ~120 at 150°C
by Seyfried et al. [1984] is much higher than the

experimentally determined partition coefficients for
any clay minerals which are the main hosts for Li in
the altered basalt. For example, K =2.3 and K = 8.5
at 150°C for zeolite and smectite were derived from
an experimental study on the hydrothermal reaction
with a synthetic basaltic glass [Berger et al., 1988].
Thus the adopted partition coefficients of Li at low
temperatures in our model represent an upper limit.

[37] The isotopic fractionation factors of Li between
basaltic rock and seawater for the temperature range
of 2°C-500°C are extrapolated from the experi-
mentally determined equation for clinopyroxene
[Wunder et al., 2006] and adjusted according to
the observations on hydrothermal fluids [Bray,
2001; Chan et al., 1993] and direct measurement
on natural fluid-rock systems and basalt-seawater
leaching experiments [Chan et al., 1992, 1993,
1994; James et al., 2003; Seyfried et al., 1998].
Our model calculation used the following frac-
tionation factors: for temperatures of 250°C to
500°C « varies from 0.994 to 0.998 and for 2°C
to 200°C « ranges between 0.981 and 0.993.

[33] Modeling results for the evolution of bulk Li
content in the altered rocks during low and high
temperature alteration are shown in Figure 7. The
calculated results confirm that the w/r ratio is the
dominant factor controlling the Li concentration of
the altered bulk rock. Despite the strongly com-
patible nature of Li in the alteration products at low
temperatures (K = 200 at 2°C and K = 120 at
150°C), the measured Li enrichments in the bulk
rock can only occur under high w/r ratio conditions
(Figure 7a). For seawater as the reacting fluid, to
generate the Li enrichment in the final altered rock,
the w/r ratio has to be greater than 20 at tempera-
tures lower than ~200°C. Even for a fluid with an
elevated Li content (8 ug/g; e.g., a mixture of
upwelling hydrothermal fluids and seawater), a
minimum w/r ratio of ~10 is required to reach the
Li enrichments (Figure 7a).

[39] Athigher temperatures above the upper stability
of clay minerals (>200°C), chlorite or amphiboles
becomes the major secondary hydrous minerals in
altered basalts. Although these phyllosilicates can
potentially accommodate Li in their structures, it has
been documented that at elevated temperatures, Li is
leached from the basalt [e.g., Chan et al., 1993;
Seyfried et al., 1998]. This is confirmed by the
modeling results shown in Figure 7c. Owing to the
generally low bulk partition coefficients (K =10.15 to
0.35), Li is uniformly depleted in the bulk rock at
any given w/r ratios. The degree of depletion rapidly
increases with the increase of w/r ratio at rock-
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Figure 7. Calculations of changes of bulk rock Li content (ug/g) and isotopic compositions (%o) during interaction
with seawater/fluids with water/rock ratios at (a and b) low and (¢ and d) high temperatures according to the formu-
lation given by Magenheim et al. [1995]. Black dashed lines are calculated curves for the reaction between fresh basal-
tic rock (gray dashed line, Li = 7.2 ug/g, 6'Li = +3.5%0) and modified upwelling hydrothermal fluids (mixture of
hydrothermal fluids and fresh seawater, Li = 8 ug/g, §'Li = +10%o) and solid lines are for reaction with fresh seawater
(Li = 0.2 ug/g, §'Li = +31%o). Thick represents the starting composition of fresh Reaction temperatures (°C) are
marked adjacent to the lines. The modeling parameters used are: K = 200, o = 0.981 at 2°C; K = 120, oo = 0.992 at
150°C; K=0.32, a =0.995 at 300°C; and K = 0.15, a = 0.998 at 500°C (see text for the details).

dominated conditions (w/r < 1) and tend to be sta-
bilized at higher w/r ratios (Figure 7c). The degree of
depletion also increases with the increase of tem-
perature due to the decrease in bulk partition
coefficients.

[40] Collectively, modeling results suggest that the
observed Li enrichment in the volcanic sections
most likely occurred at low temperatures (<200°C)
with localized high w/r ratios (>10). In contrast, the
general Li depletion can be best explained by
reaction with fluids at high temperatures (>200°C)
beneath the transition zone or at low temperatures
(<200°C) but with low w/r ratios (less than ~2, see
insect of Figure 7a) in the volcanic section.

[41] The modeling results for Li isotope variation
during alteration (Figures 7b and 7c) show that the

6'Li value of altered bulk rock is also most sensi-
tive to the water/rock ratios. Fluid-rock interaction
at low temperatures (<200°C) will generate uni-
formly elevated §’Li values in altered rocks, no
matter whether the starting fluid is seawater or
modified hydrothermal fluid (Figure 7b). However,
as shown in Figure 7b, significant elevation of bulk
rock 6’Li at low temperatures can only occur at
conditions with relatively high w/r ratios (higher
than ~10 for modified hydrothermal fluid and
higher than ~20 for seawater). Under rock domi-
nated conditions (w/r < 1) at high temperatures
(>200°C) the bulk rock §’Li values decrease with
increasing w/r ratios and reaches minimum value at
w/r = 1. For w/r > 1, §'Li increases toward its
pristine composition with increasing w/r ratio and
the bulk rock will eventually obtain an elevated
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8’Li composition (Figure 7d) Compared to sea-
water (Ligw = 0.2 ug/g, 6’ LISW +31%o) basaltic
rock (Ligas = 7.2 pg/g, 6’ Ligas = +3.5%0) has a
similar Li composition as the proposed modlﬁed
hydrothermal fluid (Liyr = 8 pg/g, 6'Liyr =
+10%o). Thus the formation of altered rocks with
depleted ¢'Li compositions from a modified
hydrothermal fluid requires lower temperatures and
lower w/r ratios compared to unmodified seawater
as starting fluid (Figure 7d). Relatively low wi/r
ratios together with elevated alteration temperatures
are therefore required to cause the depletion of "Li
in altered bulk rock (Figure 7d). In contrast, the
enrichment of "Li in altered bulk rock could occur
at both low and high temperature conditions,
though relatively high w/r ratios are required to
generate rocks with significantly 'Li enrichment
(Figures 7b and 7d).

[+2] However, seawater Li (with 6’Li = +31%o) can
also be incorporated through surface adsorption into
the clay minerals which are formed during low tem-
perature alteration [Chan et al., 1992; James et al.,
2003; Pistiner and Henderson, 2003; Seyfried et al.,
1998]. Assuming no isotopic fractionation during
adsorption [Pistiner and Henderson, 2003; Vigier
et al., 2008], the uptake of seawater Li through
adsorptlon will result in an increase in 6’Li in the
weathered basalt following a binary mixing law.
The lack of positive correlation between Li con-
tent and 6’Li in rocks from IODP Site 1256
(Figures 2 and Sa) indicates that the surface
adsorption process is highly unhkely to be the
controlling factor for the observed &’Li variations.

3.3.2. Seawater Circulation in the Site
1256 Crust

[43] The downhole variations of Li content, Li iso-
topic and oxygen isotopic compositions of bulk rock
samples and modeling presented above indicate in
the Site 1256 crust a hitherto unseen alteration
sequence and conditions of seawater circulation.

[44] The absence of uniformly elevated 6’Li values
in the upper low-temperature alteration zone at Site
1256 compared to Hole 504B [Chan et al., 2002]
may indicate a combined effect of enhanced upwell—
ing of modified hydrothermal fluid with lighter 6’Li
values from the deeper sections, rapid sedimentation,
and presence of a sealing lava pond.

[4s] The seawater penetration in the upper volcanic
zone (above ~750 mbsf) was channeled along flow
boundaries, pillow margins, and fractures [Wilson
et al., 2003; Teagle et al., 2006; Alt et al., 2010].

Bulk rock 6’Li values (Figure 2b) show a wide
range although majority cluster tightly around the
fresh basalt composition. This is evidence for local-
ized fluid flow at variable w/r ratios. The overall
enriched §'®0 values of the basaltic rocks (Figure 2a)
suggest that the alteration temperature in this section
is generally lower than 250°C (Figure 6) [Alt et al.,
2010]. According to modeling results, the observed
overall Li depletion (Figures 2¢ and 4b) indicates that
the seawater penetration at low temperature in this
section was limited with w/r ratios most likely around
2-5 (Figure 7a). The occurrence of altered rocks with
hlgh Li contents together with elevated §'%0 and
8’Li values in the uppermost volcanic section
(Figure 2) may suggest that the rocks immediately
below the lava pond have been cumulatively exposed
to a greater amount of low temperature seawater
compared to the deeper volcanic sections. The mas-
sive nature of this lava pond likely acted as a barrier
to prevent the significant downward penetration of
cold seawater. Also the filling of minor basement
relief by the flow would have led to a subdued
basement topography, which would have reduced off
axis fluid flow [Fisher et al., 1994]. The relatively
low w/r ratio in this zone has also been suggested by
secondary mineral study [A4lt et al., 2010]. There is
much less visible oxidation in Site 1256 lavas formed
at superfast spreading rates compared to crust formed
at intermediate spreading rates (such as Hole 504B),
owing to the restriction of fluid flow due to efficient
and rapid sealing of the relatively smooth basement
with pelagic sediment accumulation [Alt et al.,
2010]. The presence of rocks with low 6’Li but
high 6'®0 concentration in this volcanic section are
possibly interpret by localized reactions between
basalt and upwelling hydrothermal fluids at relative
high temperatures (~200-250°C) under various w/r
ratios. For example, the compositions for sample at
~650 mbsf (206-1256D-57R2-117-127; 16.13 ug/g
of Li, —2.29%o of §’Li, and +8.6%o of 6180) could
be derlved from basalt alteration at 200°C and
w/r = 10 with a modified hydrothermal fluid (16 ug/g
of Li and 4.3%o of §’Li). This observation is con-
sistent with the previously described leaking of
higher temperature hydrothermal fluid upward
across the transition from the underlying dikes [A4/¢
et al., 2010].

[46] The w/r ratios increased rapidly below the
depth of ~750 mbsf indicated by the elevated 8'Li
values, as the significant enrichment of "Li can only
occur at conditions with high w/r ratios, especially
if at high temperatures (Figure 7d). The majority
rocks in the lower volcanic zone, the transition zone
and in the sheeted dikes down to ~1300 mbsf have
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low Li contents, and generally decrease with depth
(Figure 2c). According to modeling results
(Figure 7) the observed Li variation trend suggests
that the alteration temperature in this zone was gen-
erally higher than 200°C and increased downward,
demanding higher w/r to achieve the high 6Li
values. This is consistent with the evidence from
oxygen isotopes (Figure 2a) and the observed alter-
ation mineralogy [Alt et al., 2010]. This water-
dominated situation continues downward into the
lower section of the sheeted dike complex at around
1300 mbsf. Water/rock ratios then decrease as indi-
cated by the steep gradient from high to low bulk
rock 6’Li values. The minimum bulk rock §’Li
at ~1350 mbsf most likely reflects the change
from water dominant (w/r > 1) to rock dominant
(w/r < 1) conditions. The amount of penetrated sea-
water rapidly decreased after entering the plutonic
section. The presence of the relatively uniform high
6"Li compositions of the basaltic rocks in the lower
sheet and massive flows across the transition zone
down to the lower sheeted dike complex indicates a
fluid dominated pervasive hydrothermal alteration
due to the mixing of the down-flowing seawater and
up-welling hydrothermal fluids. The high water
content in this zone has also been reported by bulk
water analysis [Shilobreeva et al., 2011].

[47] Alteration temperatures increase downward
from lower than ~150°C in the upper volcanic
zone to greater than ~250°C across the transition
zone at ~1100 mbsf indicated by the transition of
880 values from enrichment to depletion and the
occurrence of the overall Li depletion in the basaltic
rock. The alteration temperature at the maxi-
mum depletion of 8180, ¢’Li and Li content at
~1350 mbsf is ~450-500°C calculated by oxygen
isotopic composition given w/r = 1 depending on
the fluid compositions. The alteration temperature
continues to increase downward as indicated by
the oxygen isotope compositions of secondary
minerals [Alt et al., 2010], whereas the increase of
8180, ¢"Li and Li content toward their fresh volcanic
values indicates the decrease of w/r ratios. The depth
of the minimum value of 6'%0, Li content, and
8"Li at ~1350 mbsf near the top of the granoblastic
dikes in the lower dike section marks a transition
from water-dominated to rock-dominated conditions.

[48] The above observations may act as an evidence
for the presence of effective hydrothermal upwell-
ing from the top of the plutonic rocks. This is the
predicted characteristics of hydrothermal system at
fast spreading ridges, due to the presence of melt
lens underneath the ridges [e.g., Humphris, 1995],
which would form a barrier to deeper penetration

while it existed. The oceanic crust formed at Site
1256 at a superfast spreading ridge has significantly
thinner sheeted dikes (346 m) and transition zone
(57 m) compared to Hole 504B formed at an inter-
mediate spreading rate (thickness of 1056 m and
209 m for sheeted dike and transition zone, respec-
tively [Alt et al., 1993]). The limited thickness of
sheeted dike and transition zone may have facili-
tated the intensive upwelling of the hydrothermal
fluid arising from the dike/gabbro contact zone.

4. Summary and Conclusions

[499] The combinations of lithium elemental and
isotopic compositions with oxygen isotope mea-
surements are useful to constrain the hydrothermal
circulation in the oceanic crust.

[s0] At ODP Site 1256, low-temperature alteration
(below 250°C) dominates above ~750 mbsf in the
volcanic section as indicated by §'*0 values
>6.0%o. The penetration of seawater in this region
was most likely channelized with generally low w/r
ratios. Lithium and oxygen data for the uppermost
lavas suggests that they may have been exposed to
low-temperature seawater for a longer duration than
the deeper volcanic sections prior sealing with
sediments. Based on the quantitative modeling, the
observed Li and oxygen isotope signature of the
bulk rock in the volcanic section are from hot
(~200-250°C), upwelling hydrothermal fluids.
These fluids might be the higher-temperature
hydrothermal fluids “leaking” upward across the
transition from the underlying dikes as proposed by
Alt et al. [2010].

[51] The uniformly enriched 6’Li values of altered
bulk rocks below the depth of ~750 mbsf suggest
that the w/r ratios increased rapidly below that
depth to form a water dominated situation which
continues downward to ~1300 mbsf into the lower
section of sheeted dike complex. The steep gradient
of bulk rock 6’Li values from enrichment to
depletion indicates the rapid decrease of the amount
of penetrating seawater. The observed maximum
depletion of §'Li at ~1350 mbsf marks the transi-
tion of the hydrothermal alteration system from
seawater dominated (w/r > 1) to rock dominated
(w/r < 1) with the amount of penetrated seawater
rapidly diminishing in the plutonic section.

[52] Alteration temperatures increase downward to
greater than ~250°C across the transition zone at
~1100 mbsf as shown by the transition of §'%0
values from enrichment to depletion and the
occurrence of low Li content in the basaltic rocks.
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The alteration temperatures at ~1350 mbsf are
450-500°C estimated by bulk oxygen isotopic
composition assuming w/r is close to 1. The alter-
ation temperature may continue to increase down-
ward into the plutonic section as suggested by
oxygen isotopes ratios of secondary minerals [A/t
et al., 2010]. Additionally, decreasing w/r ratios
are also indicated by the increase of 6'%0, §Li
and Li content toward fresh volcanic values.

[s3] The hitherto unseen isotopic and Li elemental
patterns at ODP Site 1256 can be explained by
its specific environment of formation. The early
emplacement of the massive lava pond covering
inflated and sheet flows and the efficient sealing of
the relatively smooth basement by rapid sedimenta-
tion may have considerably reduced exchanges
between seawater and the oceanic crust. Furthermore
the small thickness of the sheeted dike and transition
zone related to its superfast spreading rate may have
facilitated the rapid upwelling of hydrothermal fluids
arising from the dike/gabbro contact zone.
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