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[1] Motivated by the need to improve the modeling of land‐atmosphere carbon exchange,
this study examines the extent to which continuous atmospheric carbon dioxide (CO2)
observations can be used to evaluate flux variability at regional scales. The net ecosystem
exchange estimates of four terrestrial biospheric models (TBMs) are used to represent
plausible scenarios of surface flux distributions, which are compared in terms of their
resulting atmospheric signals. The analysis focuses on North America using the nine
towers of the continuous observation network that were operational in 2004. Four test
cases are designed to isolate the influence on the atmospheric observations of (1) overall
flux differences, (2) magnitude differences in flux across large regions, (3) differences in
the flux patterns within ecoregions, and (4) flux variability in the near and far field of
observation locations. The CO2 signals generated from the different representations of
surface flux distribution are compared using a Chi‐square test of variance. Differences
found to be significant are driven primarily by differences in flux magnitude over large
scales, and the fine‐scale (primarily temporal) variability of fluxes within the near field of
observation locations. Differences in the spatial distribution of fluxes within individual
ecoregions, on the other hand, do not translate into significant differences in the observed
signals at the towers. Thus, given the types of variation in flux represented by the four
TBMs, the atmospheric data may be most informative in the evaluation of aggregated
fluxes over large spatial scales (e.g., ecoregions), as well as in the improvement of how the
diurnal cycle of fluxes is represented in TBMs, particularly in areas close to tower
locations.
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1. Introduction

[2] Regional estimates of the imbalance in terrestrial
carbon sources and sinks (net ecosystem exchange, NEE)
generally have large associated uncertainties, due in part to
the spatial complexity of the individual processes con-
trolling carbon exchange at large scales. This is com-
pounded by the fact that, at the global and regional scales,
land‐atmosphere carbon exchange cannot be measured
directly [Cramer et al., 1999]. Climate change predictions
and carbon management decisions, however, depend on the
ability to appropriately assess and model carbon uptake
and release across various spatial scales. As a result, two
main modeling approaches have been developed to esti-
mate NEE at regional and continental scales: (1) terrestrial
biospheric models (TBMs), which are based on current

mechanistic understanding of how carbon is exchanged
within ecosystems; and (2) atmospheric inverse models,
which use measured atmospheric concentrations of CO2,
coupled with a transport model to infer surface flux dis-
tributions. In some cases, a combination of these approaches
is used to optimize TBM parameters using atmospheric
observations of CO2.
[3] TBMs have become an integral tool for better under-

standing the mechanisms controlling carbon exchange
across terrestrial ecosystems [Waring and Running, 2007].
Although TBMs can be used to link carbon sources and
sinks to explicit ecosystem processes, they depend heavily
on their simplifying assumptions, environmental driving
data and initial conditions, as well as the way in which the
processes controlling carbon exchange are formulated and
scaled within the model. A particular model may do well at
reproducing fluxes at a given location, however TBMs often
differ considerably in their estimates of fluxes over larger
regions [e.g., Schimel et al., 1997; Cramer et al., 1999;
D. N. Huntzinger et al., North American Carbon Project
(NACP) Regional Interim Synthesis: Terrestrial Biospheric
Model Intercomparison, manuscript in preparation, 2011].
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In addition, current understanding of the processes control-
ling carbon exchange is not sufficient to rank models in terms
of which is “best” at representing current fluxes or predicting
carbon exchange under future climate conditions [Heimann
et al., 1998; McGuire et al., 2001; Melillo et al., 1995].
One way to assess model performance is to evaluate TBMs
against atmospheric CO2 observations, where an atmo-
spheric transport model is used to transport surface fluxes to
observation locations. The signal from the surface fluxes
can be compared to the available observations, for example
in terms of the depth and timing of the seasonal cycle, as well
as interannual variations due to climatic factors, land‐use
change, and disturbances [Heimann et al., 1998; Nevison
et al., 2008; Dargaville et al., 2002; Denning et al., 2003].
This type of evaluation approach depends, in part, on the
ability of the atmospheric observations to detect differences
between the surface flux distributions of various models.
[4] Conversely, flux estimates from atmospheric inverse

models are more comprehensive, in the sense that all eco-
system sources and sinks, fossil fuel emissions, and any
other processes emitting or absorbing CO2 are, in principle,
captured in the atmospheric signal [Global Change Project
(GCP), 2010]. On the other hand, although inverse models
predict fluxes that are quantitatively consistent with atmo-
spheric measurements, atmospheric mixing, coupled with
the sparseness of observations, leaves the problem ill‐posed
and frequently underconstrained [e.g., Enting, 2002]. Thus,
multiple sets of surface flux estimates may be consistent
with a single record of observed CO2 concentrations [e.g.,
Kaminski and Heimann, 2001; Enting, 2002]. Generally, an
additional constraint, such as explicit prior flux estimates
from a TBM, must be included within the inversion to make
the problem more tractable [e.g., Kaminski et al., 1999;
Rödenbeck et al., 2003; Gurney et al., 2004; Baker et al.,
2006]. In underconstrained regions, given the sparseness
of the atmospheric network, many regional estimates from
atmospheric inversions tend to revert to these explicit prior
flux estimates, and, as a result, flux estimates can strongly
reflect the characteristics of the specific TBM used within
the inversion [e.g., Gurney et al., 2003; Butler et al., 2011].
Thus, the accuracy of inversion results depends on a number
of factors, including the resolution (spatial and temporal)
of the fluxes being estimated [Kaminski et al., 2001;
Peylin et al., 2005], the accuracy of the transport model
and prior estimates of flux [e.g., Gurney et al., 2003;
Rödenbeck et al., 2003; Baker et al., 2006], the density of
the monitoring network, and the sensitivity of available
atmospheric observations to the underlying flux distribu-
tion [e.g., Gloor et al., 2001; Gerbig et al., 2009; GCP,
2010]. To reduce aggregation errors, there has been an
increasing focus in inversions on estimating fluxes at finer
spatial and temporal resolutions in order to better resolve
the potential responses of various vegetation types and
the impact of human activities on regional carbon bud-
gets [e.g., Gerbig et al., 2003a; Rödenbeck et al., 2003;
Michalak et al., 2004; Peylin et al., 2005; Peters et al.,
2007; Lauvaux et al., 2008; Gourdji et al., 2010]. How-
ever, it remains uncertain, at finer spatial scales, whether a
unique surface flux distribution can be derived from con-
centration measurements given the diffusive nature of
atmospheric transport.

[5] The objective of the work presented here is to deter-
mine how much information atmospheric CO2 observations
can provide in either estimating surface flux distributions at
regional scales (e.g., from inversions), or evaluating pre-
existing sets of surface flux estimates (e.g., from TBMs)
across North America. This work is motivated by the need
to improve both forward and inverse models. For TBMs,
there is a need to validate flux estimates against observa-
tional data; thus, we examine the extent to which atmo-
spheric CO2 concentration data can be used to evaluate
TBM model performance. In order to evaluate the relative
merits of two or more TBMs, or to validate a single TBM
using atmospheric data, however, the atmospheric data must
be able to discriminate between models. Therefore, this
manuscript evaluates whether atmospheric data can be used
to do this, given the degree of variability between fluxes as
estimated by different models and the errors associated with
the ability to reproduce observations (i.e., model‐data mis-
match). Similarly, the recent focus in inverse modeling
studies on finer‐scale flux estimation raises questions about
the ability of the atmospheric network to provide sufficient
information to accurately infer fine‐scale flux variations
beyond those specified by any explicit prior flux estimates.
[6] To address the above objectives, the NEE estimates of

four TBMs are used to represent plausible scenarios of
surface flux distributions and magnitude, which are com-
pared in terms of their resulting atmospheric signals. The
analysis focuses on North America, and uses the nine towers
of the 2004 continuous monitoring network in the analysis.
Although the network has expanded since that time, the 2004
network is representative of the types of towers that are part
of the larger, current observational network. Therefore, the
2004 network can be used to identify more general rules
about what a tower is likely to “see” or detect, depending on
its height, location, regional meteorology, and the ecoregions
or land‐cover types that surround it.
[7] Comparing the CO2 signals originating from differ-

ent surface flux distributions only indicates whether the
concentration measurements, in general, can distinguish
between different representations (e.g., model estimates)
of flux. It does not provide information as to what is
driving the differences (e.g., spatial or temporal variations
in flux estimates, differences in flux magnitude), and to
what extent areas far away from towers contribute to
these differences. A biospheric modeler may be interested
in not only knowing whether CO2 measurements could be
used to validate a given model, but over what regions such
an analysis is appropriate and what type of information the
CO2 measurements can provide (e.g., spatial variability,
temporal variability). Similarly, an inverse modeler may
be interested in knowing how much information can be
extracted from the CO2 measurements, and how those
measurements inform flux estimates over various spatial
and temporal scales.
[8] Therefore, we use four (4) case studies to examine the

spatial (and, to some extent, temporal) features of the dis-
tribution of surface carbon flux that can be detected by
continuous tower observations of CO2. Case 1 examines
whether the atmospheric CO2 measurements can detect
overall differences between fluxes from different biospheric
models, which is a necessary, but not sufficient, condition
for evaluating fluxes with atmospheric CO2 data. Then,
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Cases 2 through 4 involve manipulating the surface flux
distribution estimated by the models to isolate the specific
influence of ecosystem‐scale variability, subecosystem‐
scale variability, and variability in the near versus far field
of observation locations on CO2 observations. Combined,
the results from the different case studies are used to eval-
uate the extent to which atmospheric data can be used to
evaluate and/or infer flux variability at various scales.

2. Methods

[9] To meet the objectives outlined earlier, synthetic CO2

observations were generated for the highest sampling ele-
vation of the nine towers that were collecting continuous
CO2 concentration measurements in North America during
2004 (Table 1). The highest measurement locations were
used because they sample the most well mixed air and,
thereby, better represent the influence of fluxes over the
largest spatial footprint. These synthetic CO2 signals were
generated using different representations of surface carbon
flux from four TBMs, and are influenced only by fluxes
occurring within the domain of study. Therefore, there is no
need to consider CO2 concentrations of air coming into the
North American domain, or the impact of fossil fuel emis-
sions on the synthetic CO2 signals. The signals were com-
pared and evaluated using a combination of case studies
(section 2.3) and statistical significance testing (section 2.4).

2.1. Sensitivity of CO2 Observations to Surface Fluxes

[10] Atmospheric transport was modeled using the Sto-
chastic Time‐Inverted Lagrangian Transport Model (STILT)
[Lin et al., 2003] driven by analyzed winds from the
Weather Research and Forecasting (WRF) model version 2.2
[Skamarock et al., 2005]. STILT simulates the influence of
upwind fluxes on observations by tracking the evolution of
an ensemble of air parcels backward in time [Lin et al.,
2003]. The sensitivities of 3‐hourly averaged atmospheric
measurements at the towers to 3‐hourly varying upwind
surface fluxes at a 1° by 1° resolution over North America
were derived following the methods outlined by Lin et al.
[2003] and Gourdji et al. [2010]. Thus, the footprint
describes how unit fluxes in a particular grid cell of the
domain at a particular time affect the CO2 concentration at
the tower. The integrated sensitivities or footprints for each
tower have units of ppm/(mmol/(m2s)), and represent the
influence of fluxes (in mmol m−2 s−1) that occurred up to
10 days prior to the measurement on CO2 concentrations
(ppm) at the tower. An example of the combined footprint
for all 9 towers is shown in Figure 1a.

2.2. Synthetic Observations

[11] The concentration footprints quantify the sensitivity
of atmospheric observations to upwind fluxes, and are
independent of the surface fluxes themselves. To simulate

Table 1. The 2004 North American Continuous CO2 Monitoring Network Tower Locations, Heights, and Estimated Model‐Data
Mismatch Variances

Tower Name Location Height (m) Tower Type sR
2 (ppm2)

LEF Park Falls, Wisconsin, USA 396 Tall 8.8
WKT Moody, Texas, USA 457 Tall 5.9
SBL Sable Island, Nova Scotia, Canada 25 Marine boundary 4.7
BRW Barrow, Alaska, USA 10 Marine boundary 1.7
ARM Norman, Oklahoma, USA 60 Short 11.7
HFO Petersham, Massachusetts, USA 30 Short 38.6
AMT Argyle, Maine, USA 107 Short 19.6
FRD Fraserdale, Ontario, Canada 40 Short 7.9
CDL Candle Lake, Saskatchewan, Canada 30 Short 4.0

Figure 1. (a) Average sensitivity of July 2004 observations
to surface fluxes. (b) Near field of measurement locations,
defined as the areas to which the observations are most sen-
sitive, with example shown for the week of 18 to 25 July
2004. High‐sensitivity areas are defined as the cells that
account for the upper 30% of the total sensitivity of the
observations to the underlying fluxes.
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synthetic CO2 signals at the towers, the footprints were
multiplied by a set of surface fluxes. Distinct representa-
tions of land‐atmospheric flux distribution were defined
using the 3‐hourly, 1° × 1° surface flux distributions
predicted by four TBMs: the Simple Biosphere Model
(SiB3.0) [Sellers et al., 1986; Baker et al., 2008], Carnegie‐
Ames‐Stanford‐Approach as configured for the Global Fire
Emissions Database v2 project (CASA GFEDv2) [Potter
et al., 1993; Randerson et al., 1997; van der Werf et al.,
2006], Organizing Carbon and Hydrology in Dynamic Eco-
systems (ORCHIDEE) [Krinner et al., 2005], and Vegetation
Global Atmosphere and Soil (VEGAS2) [Zeng, 2003; Zeng
et al., 2005]. Given the aims of this study, the choice of
TBM is somewhat subjective. However, these TBMs were
chosen because they (1) provide distinct temporally and
spatially variable maps of land‐atmospheric surface flux;
(2) have been widely applied across a variety of regions;
and (3) have been used as prior estimates in inverse mod-
eling studies [e.g., Gurney et al., 2003; Chevallier et al.,
2006; Peters et al., 2007; Wang et al., 2007]. Monthly
VEGAS2 and CASA GFEDv2 fluxes were temporally
downscaled to 3‐hourly resolution using the methods of
Olsen and Randerson [2004] and net shortwave radiation
and near‐surface temperature from the NASA Global
Land Data Assimilation System (GLDAS) [Rodell et al.,
2004]. The different flux representations from the four
TBMs are shown in Figure 2, along with an example of the
overall differences in their flux estimates, shown as the July
average across‐model standard deviation in 3‐hourly fluxes.
[12] Three‐hourly, synthetic observation signals were

generated for each tower in Table 1. For the two tall and
MBL towers, observations were generated throughout the
day and night. Atmospheric transport models generally have
difficulty in simulating the nocturnal planetary boundary
layer (PBL) height [Geels et al., 2007], which can result in
biased flux estimates when using nighttime data. Therefore,
following Carouge et al. [2010] and Gourdji et al. [2010],
only afternoon (1800–2400 UTC) footprints were used to
generate concentrations at the shorter towers (≤100 m)
(Table 1).
[13] Although errors in the transport model may impact

the resultant concentrations, the same atmospheric transport
model (i.e., same footprints) is used to create the four syn-
thetic concentration signals, and differences in the signals
are, therefore, due solely to the underlying fluxes. While a
different transport model could yield slightly different
conclusions, WRF/STILT was selected here because it has
been applied in several studies aimed at estimating CO2

sources and sinks within North America [e.g., Gerbig et al.,
2003b; Gourdji et al., 2010; Lin et al., 2004].

2.3. Case Studies

[14] Four test cases were designed to isolate the influence
on the atmospheric measurements of: (1) overall flux dif-
ferences (Case 1); (2) magnitude differences in flux across
large regions (Case 2); (3) differences in flux pattern within
ecoregions (Case 3); and (4) flux variability in the near
versus far field of measurement locations (Case 4). Cases 2
through 4 require manipulation of the surface flux dis-
tributions from the four TBMs in order to isolate specific
influences, as described below and illustrated in Figure 3.

2.3.1. Case 1: Differences in Both the Distribution
and Magnitude of Fluxes
[15] Case 1 examines the overall combined influence of

surface flux magnitude and spatial distribution on CO2

concentrations by using the unique flux distribution from
each TBM to generate synthetic observations at the 9 tower
locations (Figure 3a). As such, Case 1 examines whether the
concentration measurements resulting from flux distribu-
tions as estimated by different TBMs are different from one
another. Cases 2 through 4 are then used to determine the
relative importance of various components of across‐model
flux variability on the observed CO2 concentration vari-
ability in the synthetic observation signals.
2.3.2. Case 2: Subecoregion‐Scale Variability Removed
[16] To isolate the influence of differences in regional flux

magnitude on the generated CO2 signals, the flux distribu-
tions of the TBMs are normalized to remove subecosystem‐
scale variability, i.e., the spatial variability within each
ecoregion (Figure 3b). North America is divided into spa-
tially contiguous ecoregions based on the work of Olson
et al. [2001] and the model‐specific weekly mean flux is
calculated for each ecoregion and TBM. These mean fluxes
are then applied to every 3‐hourly period and 1° by 1° cell
within that ecoregion over the weekly period, thereby
removing subecoregion‐scale spatial and subweekly tem-
poral variability, while preserving differences in regional
flux magnitude.
2.3.3. Case 3: Normalized Net Ecoregion‐Scale Flux
[17] To examine how the distribution of fluxes within

ecoregions influences CO2 concentrations, the flux distri-
bution of each TBM is normalized to have the same net
area‐weighted weekly flux by ecoregion; however, the dis-
tribution of fluxes within each of these ecoregions remains
unique to each model (Figure 3c); that is, the 3‐hourly
temporal and 1° by 1° spatial variations in surface flux
remain defined by the TBMs.
2.3.4. Case 4: Isolating Influence of Near‐ Versus
Far‐Field Fluxes
[18] The near field and far field are terms used in the

literature to refer to those areas within close proximity to
atmospheric observations and those areas that are farther
away, respectively. For example, Gerbig et al. [2009]
defines the near field as the area within about 50 km
from the measurement location. Their work indicates that the
spatial variations of surface fluxes in the near field of mea-
surement locations contribute significantly to the observed
variability in CO2 concentrations [Gerbig et al., 2003b,
2009]. While observations may be more sensitive to the
spatial and temporal variability of fluxes within the near field
of tower locations, the ability of the observations to detect
differences in the spatial distribution of fluxes in the far field
is less well known. Thus, Case 4 was designed to assess the
impact of the subecosystem‐scale variability beyond the near
field of the towers.
[19] Here, the near field is defined as those 1° by 1° grid

cells contributing to the greatest or upper 30% of the
sensitivities of the atmospheric observations (Figure 1b),
resulting in a near field that is much larger than that
discussed by Gerbig et al. [2009]. In contrast to the high‐
resolution grid (20 km) near the towers used by Gerbig et al.
[2006, 2009], here we examine the influence of 1° by 1°
regional flux variations on CO2 concentrations. Thus, the
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definition of the near field must be based on this grid.
Furthermore, depending on the wind regime and the height
of the boundary layer, a given measurement location is
sensitive to different regions (i.e., fluxes) over time. As a
result, the spatial extent and shape of the near field is
expected to change with atmospheric transport. Therefore,
here, the cells defining the near field of observation loca-
tions are allowed to vary by week, and we define the near
field in terms of those areas to which the observations are

most sensitive, rather than specifying a fixed area or dis-
tance from the tower.
[20] For each tower and each week, the land cells are

sorted in terms of how sensitive the tower measurements are
to surface fluxes from that cell. Cells are ordered from those
having the greatest influence to those having the least. The
influences (i.e., sensitivities) are cumulatively summed and
divided by the overall or total sensitivity for that tower to the
entire domain. Cells that contributed to the top 30% of the

Figure 2. (a) Mean 2004 summer (June, July, and August) net ecosystem exchange (NEE) from the four
biospheric models used to generate different “representations” of the surface flux distribution. (b) Average
across‐model standard deviation in NEE estimates for all 3‐hourly periods in July 2004. Tower labels are
defined in Table 1.
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sensitivity are defined as the near field for that tower and
that week. Figure 1b shows an example of the combined
near field for all of the 9 towers in the 2004 network. The far
field is defined as all other land cells outside the near field.
Based on the above criteria for defining the near field, the
near field constitutes, on average, 14% of the land cells in
North America.
[21] To isolate the impact of the far field, an across‐

model, weekly mean is applied to every 3‐hourly period and
cell within the near field of the tower or observation loca-
tions. The subecosystem and temporal variability of the far
field is then defined as described in Case 3 (Figure 3d).

2.4. Significance Testing

[22] One of the goals of this analysis is to examine the
potential of using real atmospheric CO2 measurements to
help validate or compare different TBMs. However, even if

surface fluxes were perfectly known, a mismatch between
the modeled (i.e., surface flux convolved with an atmo-
spheric transport model) and observed CO2 observations is
expected, termed “model‐data mismatch” in the inverse
modeling literature [e.g., Bousquet et al., 1999; Gurney
et al., 2002; Peylin et al., 2002; Michalak et al., 2005].
This mismatch is primarily due to transport model errors, but
also includes aggregation, representation, and measurement
errors [Kaminski et al., 2001; Engelen et al., 2002], as well as
possible errors introduced by choices in the inversion setup
(e.g., correlation structure of fluxes).
[23] In order to assess whether the differences between the

synthetic CO2 concentrations modeled in this analysis using
the different TBMs are significant, the synthetic signals are
compared within the context of expected or estimated
model‐data mismatch error. Thus, the analysis takes into
account the sources of error described in the previous par-

Figure 3. Examples of the different test cases using fluxes from ORCHIDEE for the week of 18
to 25 July 2004. (a) Case 1: NEE as represented by the biospheric model. (b) Case 2: different
flux magnitude by ecoregion among the models, but with subecoregion‐scale variability removed.
(c) Case 3: same net flux by ecoregion across models, but with the distribution of fluxes within each
ecoregion remaining unique to each model. (d) Case 4: Near field assigned a constant flux equal to the
across‐model mean for that area, while preserving, for each model, the spatial distribution of fluxes in
the far field as defined in Case 3.
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agraph, and the impact these uncertainties can have on the
resultant CO2 signals seen at the towers. In essence, com-
paring signals within the context of the expected model‐data
mismatch errors makes it possible to assess how different
the signals have to be before this difference can confidently
be attributed to differences in flux rather than errors inherent
in the system. Although the current study factors out model
data mismatch errors by using the same transport model to
generate synthetic measurements for the four TBMs, the
resulting signals are still compared in light of the types of
uncertainties that would be present in comparisons with real
atmospheric data. Model‐data mismatch can be estimated in
a number of ways, such as obtaining values from the liter-
ature coupled with analysis of the atmospheric measure-
ments [e.g., Schuh et al., 2010, Butler et al., 2011],
assessing the temporal variability in the data around a
smoothed curve and assuming that this variability is repre-
sentative of model‐data mismatch errors [e.g., Bousquet
et al., 1999; Gurney et al., 2002], or by using a statis-
tical optimization method with the atmospheric measure-
ments [e.g., Michalak et al., 2005; Gourdji et al., 2010]. A
more detailed summary of how model‐data mismatch vari-
ance is quantified in inversion studies is provided by
Michalak et al. [2005].
[24] In order to obtain realistic estimates of model‐data

mismatch error, it is necessary to use real atmospheric
measurements. Because this study compares synthetic con-
centration signals generated using a single transport model,
using real atmospheric concentration measurements is the
only way to estimate transport model error and any aggre-
gation error below the 3‐hourly and 1° by 1° temporal and
spatial resolutions. For the current study, we use 3‐hourly
real atmospheric observations taken during the 2004 grow-
ing season at the towers included in this study (Table 1), and
optimize the model‐data mismatch (sR

2 ) using the Restricted
Maximum Likelihood (RML) approach as implemented by
Gourdji et al. [2010] at a 3‐hourly flux resolution. This
provides a conservative estimate of model‐data mismatch
variances for biospheric fluxes, because model‐data mis-
match evaluated using real data also includes the influence
of uncertainty in fossil fuel emissions. Although the model‐
data mismatch variances are specific to WRF/STLT as
estimated using the RML approach, we expect these to be
similar to variances obtained for other contemporary atmo-
spheric transport models.
[25] In general, model‐data mismatch tends to be relatively

low at tall and marine boundary layer towers (Table 1),
where the air is relatively well mixed, whereas model‐data
mismatch can be much higher at shorter towers where
local influences tend to have a greater influence on mea-
sured concentrations. This is particularly true of shorter
towers close to areas with large variability in the flux
distribution.
[26] Differences among pairs of synthetic observation

signals from different TBMs are quantified using their mean
squared difference (MSD). The MSD incorporates both the
variance and the bias or offset between the two signals, and
thus quantifies how different, on average, the model signals
are from one another. As such, it is directly comparable to
model‐data mismatch variance, sR

2 , or how different, on
average, we would expect modeled CO2 concentrations to
be from the true concentrations. If the MSD between two

synthetic concentration signals is greater than the estimated
model‐data mismatch variance (sR2) at a given tower, then
differences in the underlying flux distribution are more
likely to be detectable by the real atmospheric observations
at those towers. And, being able to detect these differences
is important for distinguishing between competing bio-
spheric models.
[27] The statistical significance of the difference between

pairs of synthetic observation signals is quantified using an
upper‐tailed, Chi‐square test of variance, where the Chi‐
square test statistic (c2) is defined as

�2 tð Þ ¼ � MSD

�2
R

; ð1Þ

where n is the number of degrees of freedom (n‐1), n is the
number of 3‐hourly synthetic concentration observations
over the examined period t at a particular tower, MSD
(ppm2) is the mean squared difference in 3‐hourly con-
centrations between a pair of the synthetic observation time
series over that same period, and sR

2 (ppm2) is the model‐
data mismatch variance for a given tower.
[28] The analysis is performed monthly, on all possible

pairs of synthetic observations in each test case. Statistical
significance is determined within a hypothesis testing
framework, where the null hypothesis is that the MSD
between signals at a given tower is equal to the estimated
model data mismatch variance (sR

2 ) for that tower. The
alternative hypothesis is that the MSD between the signals is
greater than sR

2 . For each pair of signals, a p value for the
test statistic (c2) is calculated using a Chi‐square distribu-
tion with n degrees of freedom. The p value represents the
significance of the difference between two synthetic con-
centration signals, and, therefore, the lower the p value, the
more significant the result. Thus, for each time period, the
test establishes the likelihood that the difference between
any two synthetic CO2 signals would be detectable.

3. Results and Discussion

[29] The weekly averaged synthetic CO2 signals generated
using the different TBMs for the examined test cases are
shown for four of the nine towers in the 2004 North
American continuous atmospheric monitoring network in
Figure 4. These four towers were chosen to provide an
example of a tall tower (LEF); a marine boundary layer
tower (SBL); a tower in an agricultural region (ARM); and
one located in a highly productive and spatially variable
forested region close to heavily populated areas with large
fossil fuel sources (HFO) (see Table 1 for details). Synthetic
observations at the temporal resolution used in the case
studies (3‐hourly) are presented for July 2004 in the
auxiliary material Figure S1.1 The results from each case
study are discussed below, along with the implications of
these results for the evaluation and comparison of TBM
estimates using atmospheric data, as well as the potential
implications of the results for the inference of fluxes through
atmospheric inversions.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JD015048.
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3.1. Case 1: Differences in Both the Distribution
and Magnitude of Fluxes

[30] Case study 1 is designed to assess the ability of the
atmospheric network to detect differences in the CO2 signal
resulting from different representations of surface flux
(section 2.3, Figure 3a). If the synthetic signals generated
from these different flux distributions are not statistically
significantly different from each other, then atmospheric
CO2 measurements may not be useful in evaluating or
comparing flux estimates from biospheric models. It would
also suggest that inversions cannot be used to infer the types
of differences in fluxes represented by the TBMs examined
in this study.
[31] The unique flux distributions from the four TBMs

yield different weekly averaged synthetic observation sig-
nals, both in terms of the depth and timing of their seasonal
cycles (Figure 4). Using 3‐hourly concentrations (e.g.,
auxiliary material Figure S1), the six possible signal pairs
are compared to evaluate the overall differences in atmo-
spheric signals generated by the examined TBMs. On a
weekly basis, the MSD between the 3‐hourly synthetic CO2

time series among these pairs is quite variable (Figure 5).

The significance of these differences is examined on a
monthly time interval using the model‐data mismatch vari-
ance estimated from real‐concentration data as described in
section 2.4. At most towers, the four TBMs generate sta-
tistically different 3‐hourly synthetic CO2 time series during
most months of the year (Figure 6). The differences among
the synthetic CO2 signals are less significant in the winter
months where there is less temporal variability in the
3‐hourly concentrations (and fluxes), and smaller overall
differences in the spatial distribution of fluxes among the
models. Differences between synthetic signals are not as
significant at BRW, where the land cells surrounding the
tower generally have a smaller influence on atmospheric
CO2 concentrations measured at the tower (e.g., Figure 1).
Differences are also less detectable at towers with a higher
model‐data mismatch variance. Towers such as HFO and
AMT are located in areas with stronger variations in fluxes
(e.g., highly productive forested regions or towers close to
large fossil fuel sources) and tend to have a higher model‐
data mismatch variance due to greater representation and/or
aggregations errors [Kaminski et al., 2001; Gerbig et al.,
2009; Gourdji et al., 2010].

Figure 4. Weekly average synthetic observation signals for each test case, for four of the nine towers in
the 2004 monitoring network (see Table 1). Towers were chosen to represent a tall tower (LEF), a marine
boundary tower (SBL), a tower in an agricultural region (ARM), and a tower in a forested region (HFO).
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[32] The magnitude of the estimated model‐data mismatch
variance has a direct impact on the significant testing results.
This can be visualized by imagining moving the black line
up or down in Figure 5 while keeping the MSD among the
six pairs of synthetic signals constant. The closer the black
line moves to zero, the more often the signal differences
exceed the model‐data mismatch variance, and therefore, the
more often these differences would be detectable by the
measurements. For a given grid or spatial resolution of fluxes,
it is expected that as the ability to model atmospheric trans-
port improves (i.e., sR

2 decreases), differences in atmospheric
concentrations, and therefore the underlying fluxes, will
become more detectable.
[33] In general, the results from Case 1 are encouraging,

in that the atmospheric measurements can detect overall
differences in CO2 concentrations resulting from competing
flux distributions (e.g., different TBMs). The differences in
flux among the TBMs examined in this analysis are

assumed to be comparable to the discrepancy between some
“true” flux distribution and flux as represented by a given
TBM. The degree to which the atmospheric data can be used
to evaluate models (e.g., Is one model better than another?
Are the fluxes predicted by a given model compatible with
the atmospheric observations?) depends on whether the
atmospheric data can detect differences among competing
flux distributions. The ability to evaluate models also de-
pends on the scales for which the atmospheric data are most
informative about the underlying flux distribution (e.g.,
close to the tower, large regional flux differences). Below,
the remaining cases examine how the temporal and spatial
variability in surface flux translates into the variability
observed in atmospheric CO2 concentration seen in Case 1.

3.2. Case 2: Subecoregion‐Scale Variability Removed

[34] Land‐atmosphere carbon fluxes exhibit variability at
different scales. Case 2 examines the ability of atmospheric

Figure 5. Weekly mean squared difference (MSD, ppm2) between the six combinations of 3‐hourly syn-
thetic observation signals. The estimated model‐data mismatch variance (sR

2 , ppm2) for four of the nine
towers in the 2004 monitoring network (see Table 1) is shown in black. Towers were chosen to represent
a tall tower (LEF), a marine boundary tower (SBL), a tower in an agricultural region (ARM), and a tower
in a forested region (HFO). When the MSD between the signals is above the black line, the tower would
be more likely to detect the difference between flux signals, taking into account measurement, transport,
and representation errors.
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concentration measurements to detect weekly differences in
large‐scale (net) carbon flux (section 2.3, Figure 3b). A
weekly time period was chosen for averaging fluxes to
preserve the large‐scale seasonal cycle of fluxes, while
isolating magnitude differences in flux across large regions.
[35] Overall, the towers are able to detect differences in

flux magnitude for large regions (Figure 5). However, the
MSD between the 3‐hourly concentration signals in Case 2
is smaller than observed in Case 1 (Figure 5). As a result,
fewer pairs of synthetic CO2 signals are significantly dif-
ferent from one another, particularly in the late winter and
early spring months (February through May). However, in
early winter (December and January) and later summer
(August and September), the differences in regional‐scale
net flux between the TBMs have a greater impact on tower
observations relative to other months. These seasonal var-
iations in differences are likely due to the larger tower
footprints in the winter months (i.e., the towers sampling air
from a larger region because the PBL may be below the
sampling height at taller towers and/or because wind pat-
terns change more frequently in the winter thereby allowing
a given tower to sample a larger area), as well as larger net
differences in flux during August and September among the
models.
[36] The results from Case 2 indicate that differences in

modeled flux magnitude over large ecoregions are gener-
ally detectable by atmospheric measurements, and these
observations can therefore be used, for at least some regions
and seasons, to discriminate among large‐scale fluxes as
predicted by different TBMs. This is also encouraging for
atmospheric inversions that estimate fluxes over large

regions, because the atmospheric data appear to provide
sufficient information to help constrain fluxes at these scales.
In fact, many inversions prescribe flux patterns within large
regions (similar to the ecoregions used in this study), and
adjust an initial or a priori estimate of the overall magnitudes
of fluxes at the regional scale [e.g., Peylin et al., 2001; Law
et al., 2002; Peters et al., 2007].
[37] Using inversions to scale fluxes for large regions

assumes that the atmospheric data are providing information
about the large‐scale regional variations in flux. Due to
spatial aggregation errors, however, there is a debate within
the inversion community about the number of estimation
regions to use, or whether they should be used at all (e.g.,
estimate fluxes at grid scale rather than by region) [e.g.,
Kaminski and Heimann, 2001; Kaminski et al., 2001; Peylin
et al., 2001]. Although the atmospheric data appear to
provide information about large‐scale fluxes that can be
used to scale regions, any errors in the prescribed sub-
ecosystem‐scale variability of the a priori fluxes within the
regions can lead to significant errors in the inversion result,
particularly in regions close to the tower. Cases 3 and 4
evaluate the influence of surface flux variability and the
scales (near versus far field) at which flux differences are
detectable by the atmospheric data.

3.3. Case 3: Normalized Net Ecoregion‐Scale Flux

[38] Case 3 is designed to evaluate whether the atmospheric
network can detect difference in CO2 observation signals
caused by how fluxes are distributed within ecoregions
(section 2.3, Figure 3c). If substantially different source/sink
configurations do not yield substantially different synthetic

Figure 6. Statistical significance of the difference between the 3‐hourly synthetic observation signals for
different months, given the estimated model‐data mismatch for each tower (Table 1). Shading indicates
the number of signal pairs where the mean squared difference (MSD) between the synthetic observation
signals is significantly above the model‐data mismatch variance at a significance level or a value of 0.05.
Towers are as defined in Table 1.
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CO2 time series, then the atmospheric data cannot be used
to evaluate the spatial distribution (e.g., 1° × 1° in this
study) of fluxes from TBMs. The implications for inver-
sions are slightly more complicated, particularly when the
flux distribution of the prior estimate is prescribed or fixed
by the inversion, as with inversions that estimate fluxes for
regions (e.g., ecoregions, continents) larger than the reso-
lution of the atmospheric transport model. For example, if
the flux patterns within ecoregions do not significantly
impact atmospheric observations, then, although an inver-
sion that prescribed patterns based on a particular prior set
of fluxes is able to reproduce observations, this does not
imply that the prior had the correct patterns. This would
imply that the results of such an inversion could not be
interpreted at subecoregion scales.
[39] Results from Case 3 suggest that the atmospheric

measurements can detect differences in the 3‐hourly syn-
thetic signals due to subecoregion‐scale differences in the
flux distribution (Figures 5 and 6) for some seasons and
regions. Differences among the signals are seen primarily
during the growing season (May through September), when
both the magnitude and spatial heterogeneity of fluxes is
greatest, and particularly in forested and northern regions
of North America. The towers with larger summertime
footprints (e.g., CDL, FRD, LEF) tend to have greater
overall observation sensitivities to surface fluxes in regions
farther from the tower location (Figure 1). A combination
of larger tower footprint, along with higher across‐model
differences in surface flux distributions (Figure 1b) con-
tribute to greater differences in the synthetic signals at
these towers (Figure 6).
[40] While the results from Case 3 indicate that the

atmospheric measurements are able to detect differences in
the fine‐scale (spatial and temporal) variability of flux, what
is not clear is the relative importance of the spatial distri-
bution of fluxes versus differences in the diurnal cycle of
those fluxes (e.g., timing, strength). In order to further
investigate the impact of differences in fine‐scale flux dis-
tributions, Case 3 was repeated with the diurnal cycle of
fluxes removed. Thus, the distribution of fluxes within each
ecoregion remained unique to each model, but the temporal
variability contained in the diurnal cycle was removed.
When diurnal variability is removed, the significance of the
difference between signals disappears for many model pairs
and towers (Figure 6). Thus, the differences in signals
observed in Case 3 are driven primarily by differences in the
diurnal cycle of fluxes between the TBMs (original Case 3)
rather than by differences in how the fluxes are spatially
distributed among the models (modified Case 3).
[41] The impact of the diurnal cycle prescribed by the

TBMs on the differences seen in the synthetic CO2 signals at
the towers has several potential implications for atmospheric
inversions. Most importantly, if the magnitude and/or timing
of the diurnal cycle in any prescribed fluxes are incorrect in
atmospheric inversions, significant errors could be intro-
duced into the inversion results. In order to avoid large
temporal aggregation errors (and biases), inversions that use
continuous observations have to account for the diurnal
cycle in some way [Law et al., 2004]. For example, the
inversion could be allowed to adjust the diurnal variability
in fluxes in order to properly account for the observed high‐
frequency variability in concentrations [e.g., Gourdji et al.,

2010], or the diurnal variability in the prior could simply
be assumed to be correct. The latter approach is the most
common among inversions, and is often implemented by
either subtracting from the atmospheric observations the
signal generated from a forward simulation run with the
prior that includes the diurnal cycle [e.g., Peters et al.,
2007], or relying by on the prior to define the high‐
frequency time variations in surface flux [e.g., Schuh et al.,
2010] and thus the concentration data. However, in cases
when the diurnal cycle is fixed by the a priori flux estimate,
any residuals caused by a mismatch between the “true”
diurnal cycle seen by the tower and that prescribed by the
fixed diurnal cycle of fluxes can be aliased onto other areas
or regions in the inversion estimation.

3.4. Case 4: Isolating Influence of Near‐ and Far‐Field
Fluxes

[42] Case 4 examines the influence of flux variability in
the far field on the synthetic observation time series (section
2.3, Figure 3d). Atmospheric data are not equally sensitive
to an entire ecoregion or all areas surrounding the tower.
Instead, observations tend to be most strongly influenced by
sources and sinks within the immediate proximity of the
towers [Gerbig et al., 2009]. Case 4 examines the extent to
which the results in Case 3 are impacted by differences in
fluxes in areas farther away from the tower (e.g., outside of
the tower’s near field). The ability of the tower to detect flux
differences in the far field depends on the tower’s height,
location, and the weather patterns or atmospheric trans-
port, and will have a strong impact on whether a tower’s
observations can be used to evaluate flux distributions
beyond its near field. Thus, Case 4 examines the spatial
range seen by the towers, and therefore whether the atmo-
spheric observations can be used to evaluate fluxes across
a large domain, or only those areas very close to tower
locations.
[43] Overall, much of the strong summertime differences

among the signals in Case 3 appear to originate from flux
variability (both spatial and temporal) within the near field
(Figure 6). Although differences among signals still remain
at many of the towers in Case 4, fewer pairs of signals have
statistically significant differences. Thus, when near‐field
variability is removed in the TBM fluxes, the resultant
signals are much less statistically significantly different.
This result is consistent with other studies that examined the
influence of near‐ and far‐field fluxes on observations [e.g.,
Gerbig et al., 2009]. However, at towers with larger foot-
prints (e.g., LEF, CDL, and FRD), differences among fluxes
in the far field do appear to translate into significant dif-
ferences among the synthetic CO2 signals. These towers are
also located near regions with greater across‐model vari-
ability in surface flux estimates between TBM (Figure 2b)
and have the lowest model‐data mismatch variances.
[44] As in the modified version of Case 3, the diurnal

cycle was removed from the far‐field fluxes to isolate the
impact of fine‐scale spatial and temporal differences in
estimated fluxes from the TBMs. Contrary to the modified
Case 3, however, the significance of the differences between
concentration signals remained largely unchanged, indicat-
ing that most of the differences in signals observed in Case 4
are driven by differences in the spatial distribution of
fluxes in the far field (Figure 6), rather than differences in
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the far‐field diurnal cycle as represented by each TBM.
This is likely due to the fact that transported fluxes from
regions farther away from tower locations are more likely to
be well‐mixed and diffuse, compared to near‐field fluxes.
Thus, differences in the diurnal cycle of fluxes in the far
field are likely less detectable at the towers.
[45] The combined results from Cases 2 through 4 suggest

that the observed differences in the CO2 signal are driven
primarily by differences in flux magnitude over large scales,
and the diurnal cycle of fluxes within the near field of tower
locations. Thus, the scale at which TBMs can be evaluated
using atmospheric CO2 observations may be limited to areas
within the near field of tower observations, or aggregated
net fluxes over large regions.
[46] The results from Case 4 are also important for inver-

sions that use prior flux estimates derived from TBMs.
Diurnal variability in surface fluxes within the near field of
tower observations appear to have a significant impact on the
high‐frequency variations in the atmospheric data. Thus, in
order to accurately account for the variability in the atmo-
spheric data, the prior has to accurately resolve the flux at
fine temporal scales over regions in close proximity to tower
locations, or the inversion needs to be able to adjust the
temporal (and spatial) variability of the prior.

4. Summary and Conclusions

[47] This study examined the ability of atmospheric
measurements to detect differences in the 1° by 1° land‐
atmosphere carbon fluxes from four different TBMs. Moti-
vated by the need to improve both forward and inversion
models, this study examined three main applications using
atmospheric data: (1) evaluating the relative merits of two or
more TBMs; (2) validating a single TBM using a transport
model and atmospheric concentrations; and (3) ability of the
atmospheric network to provide sufficient information to
accurately infer fine‐scale flux variations in the context of
atmospheric inversion.
[48] Using a Chi‐square test of variance, the CO2 signals

generated using the different representations of surface flux
were compared, and the results suggest that there is sufficient
information in the atmospheric record to evaluate or validate
at least some aspects of surface flux estimates from TBMs.
Given the types of differences in flux represented by the four
TBMs, atmospheric data may be most informative in evalu-
ating aggregated TBM fluxes over large spatial scales (e.g.,
ecoregions), as well as in the improvement of how the diurnal
cycle of fluxes is represented in TBMs, particularly in areas
close to tower locations. As the density of the atmospheric
network increases, more areas will fall within the near field of
tower locations, and the monitoring network will thereby
provide more information for model evaluation.
[49] The high sensitivity of the signals to slight differ-

ences in the diurnal cycle of fluxes stresses the importance
of accurately accounting for small‐scale temporal variability
in fluxes in models, both in inversions and process‐oriented
TBMs. This becomes particularly important when inver-
sions use prior flux estimates derived from TBMs. In order
to accurately account for the high‐frequency variations in
the atmospheric data, the prior either needs to be very good
at capturing the true flux variability at fine temporal scales,
or the inversion needs to be able to adjust this variability.

Whereas studies focused on evaluating inversion setups
have shown the potential impact of spatial aggregation
errors on estimates [e.g., Kaminski et al., 2001; Schuh
et al., 2009], the results of this study confirm that the
time domain runs the same risk of aggregation errors [e.g.,
Law et al., 2004; Peylin et al., 2005; Gourdji et al., 2010].
Results demonstrate that the impact of temporal aggrega-
tion may be equally important to the impact of aggregation
in the spatial domain.
[50] The high sensitivity of concentration observations to

the near field of tower locations further highlights the
importance of potential aggregation errors in inversions. For
example, to avoid spatial aggregation errors, some inversion
approaches optimize fluxes at small spatial scales [e.g.,
Gerbig et al., 2003a; Rödenbeck et al., 2003; Michalak
et al., 2004; Peylin et al., 2005; Gourdji et al., 2008;
Schuh et al., 2010]. Such flexibility is important consid-
ering the results from Case 4, which suggest that measure-
ments at many towers are highly influenced by small‐scale
flux variability in the near field. Unless an inversion can
adjust small‐scale variability, biased estimates may be
expected at large scales. Furthermore, by properly account-
ing for the near‐field, small‐scale variability, inversions are
likely to recover large‐scale fluxes more accurately.
[51] One of the limitations of this study is that the results

apply to individual towers, and do not quantify the com-
pounding benefit of multiple towers. Thus, although two
signals may not be statistically significantly different if
looked at from the perspective of any one tower, the results
might be different if the signals at multiple towers at con-
sidered together.
[52] Finally, the results from the significance testing are

strongly influenced by the estimates of model‐data mis-
match variance used in this study. As the ability to model
atmospheric transport improves (i.e., lower model‐data
mismatch variance), more subtle differences in surface flux
representation will be detectable through the atmospheric
data. Conversely, as TBMs improve, models may converge
toward a similar solution, making the differences between
models more difficult to detect.
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