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Following sequencing and assembly of the human
genome, the preferred methods for identification of
new drug targets have changed dramatically. Modern
tactics such as genome-wide association studies
(GWAS) and deep sequencing are fundamentally differ-
ent from the pharmacology-guided approaches used
previously, in which knowledge of small molecule
ligands acting at their cellular targets was the primary
discovery engine. A consequence of the ’target-first,
pharmacology-second’ strategy is that many predicted
drug targets are non-enzymes, such as scaffolding,
regulatory or structural proteins, and their activities are
often dependent on protein–protein interactions (PPIs).
These types of targets create unique challenges to
drug discovery efforts because enzymatic turnover
cannot be used as a convenient surrogate for com-
pound potency. Moreover, it is often challenging to
predict how ligand binding to non-enzymes might
affect changes in protein function and ⁄ or pathobiol-
ogy. Thus, in the postgenomic era, targets might be
strongly implicated by molecular biology-based meth-
ods, yet they often later earn the designation of ’un-
druggable’. Can the scope of available targets be
widened to include these promising, but challenging,
non-enzymes? In this review, we discuss advances in
high-throughput screening (HTS) technology and
chemical library design that are emerging to deal with
these challenges.
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Challenges Associated with Non-Enzyme
Targets

The majority of current drug targets are G-protein-coupled
receptors, nuclear receptors, ion channels or enzymes
(e.g., kinases, proteases, deacetylases, etc.) (1,2). Many of

these targets were historically identified based on their
pharmacology: agonists or antagonists were used to
probe the biology of the target, followed by progression to
therapeutic candidates. As a consequence, many of these
proteins, by definition, contain deep grooves that are ame-
nable to binding by low-molecular weight, ’drug-like’ small
molecules. In contrast, the modern shift toward molecular
biology- and genomics-based target identification has
often implicated other types of targets, including non-
enzymes (Figure 1). Non-enzymes make up a majority of
the human proteome, and they include proteins involved in
organizing signaling pathways, maintaining structural integ-
rity, assembly ⁄ disassembly of protein complexes, chaper-
oning, subcellular transport, transcription, translation, and
other critical functions. Rather than using enzymatic turn-
over to carry out their biology, most non-enzymes use
PPIs, either transient or stable contacts that form the
backbone of all major cellular pathways (3). In turn, the
challenges of targeting PPIs have been well documented
(4–6).

Modern drug discovery approaches, such as HTS, typically
rely on the measurement of enzymatic turnover to drive
discovery of potential clinical leads; thus, non-enzymes
pose a particular challenge. Rather, known ’inhibitors’ of
non-enzymes typically bind to the target and either block
binding to other proteins or otherwise alter structure-func-
tion (e.g., change oligomerization, alter protein stability,
etc.). It is often difficult to predict what will happen to bio-
logical pathways in response to these changes, and it is
more difficult to envision HTS platforms that will rapidly
identify potential ligands. To make matters worse, non-
enzymes often lack natural ligands or even ligand binding
sites, posing a further hurdle to drug discovery campaigns.
Finally, many non-enzymes are either structurally unchar-
acterized or intractable for structural biology (i.e., they con-
tain regions of intrinsic disorder), which often precludes
the use of most structure-guided design methods.

Despite these significant challenges, the prominent role of
non-enzymes in biology and pathobiology is certain, so
what can be performed to expand the number of ’drugga-
ble’ targets to include these proteins? What HTS methods
can be adapted for use against non-enzymes? What strat-
egies are amenable to hit identification in the absence of
structural information? Is it possible to identify a ligand
binding site de novo? If so, how can one predict whether
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or not such a site is ’druggable’? In this review, we pro-
vide an update on the methods being used to identify mol-
ecules that bind to non-canonical targets and categorize
them into affinity-, computational-, and stability-based
techniques. We also discuss how chemical library design
is evolving to meet the specific challenges of postgenomic
drug discovery.

Affinity-Based Techniques

A major problem in many potential drug discovery cam-
paigns involving non-enzymes is that it is difficult to identify
molecules that bind the target. In the absence of an enzy-
matic function, there is no convenient surrogate for ligand
binding, so the interaction must be directly measured.
Nuclear magnetic resonance (NMR)-based screening has
proven to be particularly amenable to the label-free, affin-

ity-based selection of ligands that bind a target of interest,
including non-enzymes (7). The most information-rich plat-
form for NMR-based screening uses a two-dimensional
experiment (HSQC or TROSY) and observes 15N or 13C
isotopically labeled protein. In these experiments, mixtures
of library compounds, generally low-molecular weight frag-
ments, are added to a solution of the protein. Hits result in
binding-induced perturbations of the chemical shifts asso-
ciated with N-H or C-H bonds (Figure 2A) and, if the NMR
spectrum is assigned to the protein’s primary sequence,
then the ligand binding site may be directly determined
from this experiment. The binding site is often used to pri-
oritize hits, and the screen may be carried out in the pres-
ence of a competitive orthosteric ligand to favor the
identification of second-site binders. False-positive rates
are typically low, and nonspecific binding is often readily
recognizable. However, protein-observed NMR screening
requires that the protein be highly soluble, stable, and

Figure 1: Non-enzyme targets
present unique challenges to drug
discovery. Classic enzyme targets
have well-defined active sites and
many have clear allosteric sites,
which make attractive binding
regions for orthosteric and alloste-
ric inhibitors. In contrast, most
non-enzymes lack obvious binding
pockets or they are involved in
protein–protein interactions that
involve larger, more diffuse con-
tact areas.

A B C

Figure 2: Selected biophysical methods for ligand discovery. (A) Ligand-induced changes in chemical shifts of a 1H, 15N HSQC spectrum
of a protein target suitable for nuclear magnetic resonance-based screening indicate binding. Fluorescent spots on a small molecule
microarray indicate the presence of a fluorescently labeled protein bound to the immobilized ligands. (B) Differential scanning fluorimetry
measures changes in the melting temperature (Tm) of a protein target induced by ligand binding. Similarly, hydrogen-deuterium exchange
can measure changes in stability to chemical denaturation due to small molecule binding. (C) The mixed-solvent molecular dynamics
method may be used for both binding site identification and the construction of a pharmacophore.
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homogenous at high concentrations (50 to 500 lM (8)),
able to be recombinantly expressed in isotopically enriched
media, and relatively small (less than approximately
80 kDa, although this limit depends on the type of labeling
and experiment used (9)). Thus, to complement the pro-
tein-observed experiments, a number of one-dimensional,
ligand-observed experiments may also be used, including
saturation transfer (10,11) and diffusion-based experiments
(12,13). These approaches are selection-based, meaning
that only the ligands interacting with the target protein are
identified from mixtures. Ligand-observed experiments
require relatively low concentrations of protein (typically 1–
10 lM), and the protein need not be isotopically labeled. In
addition, they have higher throughput and lower experi-
mental cost than protein-observed experiments. However,
ligand-observed methods do not distinguish between spe-
cific and nonspecific interactions, they offer no information
on the binding site, and they suffer from higher false-posi-
tive rates [although the combination of several ligand-
observed experiments may increase reliability (14)]. For
both ligand- and protein-observed NMR experiments, rela-
tively weak interactions (KD values between 0.1 lM and
10 mM) can be measured, but stronger interactions can
give false negatives (9).

In addition to its utility as a screening strategy, NMR can
be extremely valuable for de novo binding site identification
in targets for which no orthosteric site is known or for
which an allosteric site is desired (15–19). These methods
might even reveal sites that are not obvious from available
crystal structures because NMR is solution-based.
Because of the reliability of NMR in identifying binding sites
for small molecules, hit rates from fragment-based NMR
screens are often used to categorize a protein target for
its potential ’druggability’ (20). The theory in this approach
is that higher hit rates are suggestive of more and deeper
binding sites. For example, Hajduk and colleagues
observed a correlation between high experimental NMR hit
rates (>0.2%) and the success of medicinal chemistry
campaigns to develop molecules with high affinity
(<300 nM) among a set of 23 protein targets (20). This
approach might be particularly useful in targeting PPIs,
because of the notoriously shallow contact surfaces
involved and the advantages of using allostery to disrupt
these interfaces (21,22).

To illustrate the potential of NMR-based screening cam-
paigns, it is useful to consider the specific example of sur-
vivin. Survivin is a cell cycle regulator and inhibitor of
apoptosis that is upregulated in most tumor cell types but
absent in most other adult tissues (23). High levels of sur-
vivin have been associated with poor prognosis in patients
(24), and antisense oligonucleotides and siRNA against
survivin decrease proliferation in a number of cancer cell
lines (25,26). Survivin has no enzymatic activity or known
endogenous small molecule regulators, and, accordingly,
no robust biochemical assay of survivin function has been
established. Wendt and colleagues at Abbott Laboratories

chose to employ two complementary affinity-based
screening methods, NMR-based screening and affinity
selection mass spectrometry (AS-MS) to pursue lead gen-
eration of molecules that bind survivin (7). AS-MS experi-
ments start with the incubation of a mixture of ligands with
the protein target of interest, followed by a separation step
to remove unbound molecules and mass spectrometry-
based identification of eluted compound(s) (27). These
methods are highly sensitive and allow for the evaluation
of large chemical libraries (up to 108 to date, 28) without
the need to add labels (27,29). However, because it is
prone to false positives, this method is complemented by
protein-based NMR screening. Thus, the Abbott group
used these two methods in combination to discover a
novel small molecule-binding site on the dimer interface of
survivin. They also used the hit rates from the screening
campaign to evaluate the relative druggability of this new
site, concluding that the dimer interface may be particu-
larly promising (0.35% relative to 0.01% for a known pep-
tide-binding interface). One lead series was developed into
a class of compounds with nanomolar affinity for survivin
(7). Although it is not yet clear how interactions with this
binding site impact survivin biology, the lead compounds
from this campaign are expected to be powerful probes
for target validation.

Surface plasmon resonance (SPR) is a label-free platform
for the detection of direct binding interactions. Briefly, the
target protein is typically immobilized to a gold chip, and
potential ligands are introduced to this surface. Real-time
association and dissociation rates of the interaction are
measured, giving useful information about binding kinetics.
The well-known nutlin class of MDM2-p53 protein–protein
inhibitors originated from a competition SPR screen, in
which the ability of molecules to disrupt this PPI was mon-
itored (30). The throughput of SPR experiments is lower
than that of other affinity-based techniques, but these
rates are increasing with newer generations of the technol-
ogy; the latest instrument from GE Healthcare, the Biacore
4000, handles up to 4800 samples per daya. However,
this technique is still more widely applied to the evaluation
of small, focused libraries during lead optimization. Some
improvement in throughput can be obtained using biolayer
interferometry (BLI). In commercialized BLI platforms, pins
with immobilized ligand are dipped into wells of 96- or
384-well microtiter plates containing solutions of analytes,
and the association and dissociation rates are measured
in real-time. Using this approach, the OctetRed384 (Forte-
Bio) can process up to 7000 samples per dayb. Both SPR
and BLI are flexible platforms that are well suited to the
study of non-canonical targets because no structural infor-
mation is required, no ligand binding site needs to be
identified and no enzymatic activity is necessary.

Microarray techniques facilitate the discovery of new
ligands via binding of a target to arrays of immobilized
compounds. In this approach, small molecules or peptides
are covalently attached to modified glass microscope
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slides, followed by incubation with the protein target of
interest that is either directly labeled with a fluorophore or
detected using a fluorescent antibody (Figure 2A). This
approach has been used to discover new ligands for non-
enzymes, including the yeast transcription factor Hap3p
(31) and the extracellular signaling protein Sonic hedgehog
(32). In the Hap3p campaign, a collection of 12 400 immo-
bilized compounds was screened, leading to the discovery
of haptamide B. Haptamide B binds Hap3p and inhibits its
transcriptional activity (31), likely by blocking PPIs in the
transcription complex. In a similar strategy, Stanton and
colleagues screened 10 000 immobilized compounds and
identified robotnikinin, which binds the N-terminus of Sonic
hedgehog and inhibits signaling (32,33). In another recent
adaptation of this technology, Landry et al. combined
microarrays with ellipsometry to obtain affinity values for
binding to 104 immobilized small molecules (34,35). The
oblique-incidence reflectivity difference microscope that
was constructed for this use is not yet commercialized
(36), but it has the potential to accelerate affinity-based
lead discovery by microarrays by facilitating rank-ordering
of potential ligands.

Stability-Based Methods

Monitoring ligand-induced changes in protein stability is
another way to discover potential ligands for non-enzymes.
Historically, the drug discovery applications of ligand-
induced stability were pioneered in attempts to develop
’pharmacological chaperones’ or molecules that stabilize
the folded form of a mutated or damaged protein. Phar-
macological chaperones have been successfully used to
correct disease phenotypes in a number of disorders
caused by a loss of protein stability (37), including phenyl-
ketonuria (38,39), Gaucher disease (40,41), Tay-Sachs dis-
ease (42), cystic fibrosis (43,44), and transthyretin
amyloidosis (45,46). One molecule, tafamidis, has been
approved in Europe for the treatment of a form of transthy-
retin amyloidosis, familial amyloid polyneuropathy (47). Ta-
famidis kinetically stabilizes the tetrameric conformation of
transthyretin, increasing the activation barrier of dissocia-
tion of the tetramer to an unstable monomer (45). Similarly,
a recently discovered peptide inhibitor of caspase-6 acts
by stabilizing an inactive, tetrameric conformation of the
protein (48). Recent work suggests that even some classic
ligands might, in fact, use a pharmacological chaperone
mechanism; for example, nicotine appears to exert its
effects by thermodynamically stabilizing a specific confor-
mation of the acetylcholine receptor (49,50). There are a
number of methods available for discovering ligands that
bind and stabilize targets and, because these methods do
not rely on enzymatic turnover, they are particularly versa-
tile tools for discovery in a postgenomic era.

Differential scanning fluorimetry (DSF) is one technique for
measuring the ligand-induced changes in the thermal
stability of a protein (51). In these experiments, a protein

solution is heated, leading to thermal denaturation. This
unfolding is monitored using an environmentally sensitive
fluorophore, such as 1-anilinonapthalene-8-sulfonic acid
(1,8-ANS) (Figure 2B), and ligands are identified by their
ability to shift the apparent melting transition (DTm). DSF
experiments can be miniaturized for use in 384-well mi-
crotiter plates (52–55), permitting the screening of chemi-
cal libraries.

One illustrative example of a DSF campaign was reported
for the transcription factor p53, which is a tumor suppres-
sor that normally functions to regulate cell cycle arrest and
apoptosis. Knockout mice (p53) ⁄ )) have high rates of
spontaneous tumors, and p53 null or mutant tumors are
associated with poor prognosis and resistance to chemo-
therapy in a number of human cancers (56). The suppres-
sor oncogenes MDM2 and HDM2 engage in PPIs that
activate p53, leading to cell cycle arrest and apoptosis.
These observations suggested that inhibitors of the p53-
MDM2 ⁄ HDM2 interactions might be promising anti-tumor
agents, yet the drug target was clearly a non-enzyme, PPI
interface. A team at Johnson & Johnson used DSF to
screen a focused collection of 22,000 1,4-benzodiazepine-
2,5-diones for affinity to HDM2 (57,58). The screening hits
were then evaluated for inhibition of the p53-HDM2 PPI by
a competitive fluorescence polarization assay, resulting in
the development of inhibitors with nanomolar potency in
cancer cell lines (56). In this example, the candidate mole-
cules, discovered by DSF, appear to bind HDM2 and sta-
bilize a conformation that prevents the p53 interaction.
DSF has more recently been applied to an HTS campaign
against the F508D mutant of the cystic fibrosis transmem-
brane conductance regulator (CFTR) (59). This point
mutant is responsible for most cases of cystic fibrosis, and
it is known to destabilize the protein, causing F508D CFTR
to be aberrantly retained in the ER and degraded rather
than trafficked to the plasma membrane, where it normally
functions as a chloride channel. DSF was used to prioritize
hits from a cell-based primary screen, and it was found
that the most promising molecules bind to the first nucleo-
tide-binding domain of the CFTR, helping to restore the
folding free energy (DG) lost by the mutant. These efforts
resulted in the identification of a phenylhydrazone, RDR1,
which acts as a pharmacological chaperone for the mis-
folded F508D CFTR mutant (59). Finally, several variations
of DSF experiments have been reported. For example,
intrinsic fluorophores, such as tryptophan or a cofactor,
can be used in place of an extrinsic dye (60); cysteine resi-
dues can be used in combination with thiol-specific fluoro-
chromes in the same manner (61).

Hydrogen-deuterium exchange coupled with NMR or mass
spectrometry can be a powerful method for the detection
of ligand-induced changes in protein stability. When a
folded protein is placed in a buffer containing deuterated
water, exchangeable protons on amide nitrogens and side
chain heteroatoms are replaced with deuterons at a rate
that is proportional to their relative solvent accessibility.
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Upon unfolding of the protein, internal protons become
exchangeable (62); thus, ligands can be detected by their
ability to delay or prevent deuteration (Figure 2B) (63). This
technique has been developed for HTS by the Fitzgerald
laboratory using the prolyl isomerase cyclophilin A as a
model system (64–66). In this example, a library of 104

compounds was screened at a single timepoint and a sin-
gle denaturant concentration, with a throughput of approx-
imately 100 000 compounds per day.

In Silico Methods

Another tool in the discovery of ligands for non-enzyme
targets is de novo binding site identification, which uses
geometrical, energy-based, evolutionary, or probe map-
ping techniques to scan for sites that may be deep
enough to accommodate small molecules with good bind-
ing affinity (67,68). This approach is often used as a pre-
lude to the development of pharmacophores that might
bind the new site, which enriches subsequent HTS cam-
paigns with predicted inhibitors. Most of the available de

novo site prediction methods search for potential sites by
identifying concave ’pockets’ on the surface of a rigid pro-
tein structure (67). Alternatives include energy-based
approaches, which use a 3D potential grid to identify con-
tiguous regions of predicted low energy interactions (69)
and evolutionary (or genomic) methods, which consider
the degree of conservation of amino acids on a protein’s
surface (68,70). Lastly, probe mapping techniques coat
the surface of the protein with small organic molecules
and calculate the interaction energies between the probes
and the surface to predict likely sites (67). These four strat-
egies may be used alone or in combination (67).

One significant limitation of the current de novo methods
is that they are generally used with a rigid protein struc-
ture, which makes them fast but inaccurate for flexible
binding sites (68). However, one recent advance is based
on the multiple-solvent crystal structure (MSCS) approach
(71). In the MSCS experiment, a target protein is crystal-
lized and placed in solutions containing organic solvent.
The organic probes displace water, and they tend to accu-
mulate at sites where favorable interactions may be possi-
ble. When multiple solvents are used, the contributions of
aromatic, aliphatic, and hydrogen-bonding interactions are
identified (Figure 2C). The computational equivalent of the
MSCS approach is mixed-solvent molecular dynamics
(72), which employs an ensemble of protein structures
from multiple crystal or NMR experiments in a virtual box
of mixed aqueous and organic solvent molecules (e.g.,
benzene + propane + water). This system is minimized in
a molecular dynamics (MD) simulation to build pharmaco-
phore models of potential binding sites (72). While the
incorporation of explicit solvents and protein flexibility rep-
resent an improvement, the predictive power of any de

novo method remains to be demonstrated for any non-
enzyme.

Another possible contribution of in silico methods is that,
once binding sites are identified, they may be computa-
tionally assessed for potential druggability. Although this
subfield is in its early stages, a number of interesting stud-
ies have been reported (73–76). Briefly, these methods
use a combination of physical and physicochemical
parameters, including the shape, size, hydrophobicity, and
hydrogen-bonding capability of the pocket, and they com-
pare these values to training sets of known ligand-protein
pairs. Cheng et al. developed one such method for pre-
dicting maximal affinity using a scoring system based on
the hydrophobicity of the solvent accessible surface area
and the shape (curvature) of the ligand binding sites (73).
This method was able to confirm approximately 60 known
protein-ligand maximal affinities. More importantly, they
also carried out pilot screens of 11,000 compounds
against two target enzymes, one of which was predicted
to be ’druggable’ (i.e., good maximal affinities) by their
computational method and the other ’difficult’ (i.e., weak
maximal affinities). These screens gave hit rates of 1.8%
and 0.15%, respectively, consistent with the prediction.
Moreover, additional optimization at Pfizer produced ele-
ven sub-micromolar potency leads from the ’druggable’
target project, but none for the ’difficult’ one. Further
development of these methods may yield an important tool
for non-enzymes.

Application to Members of Highly Similar
Enzyme Families

While not the major focus of this review, another class of
’undruggable’ targets includes certain members of highly
similar enzymes (e.g., kinase families). The reason these
targets are ’undruggable’ is that the key amino acids pop-
ulating the enzyme active site are identical or highly con-
served, making it difficult to acquire selectivity. These
observations have led many groups to pursue secondary
sites, allosteric pockets, or PPIs to differentiate between
members of these families (recently reviewed in 77). Often,
the regions outside the active site cleft are not subject to
the same evolutionary pressure, and these surfaces can
be distinct among family members. Accordingly, the dis-
covery methods described here, such as NMR and SPR,
may be applicable to these targets. In some of these
approaches, it might even be beneficial to saturate the
enzyme active site to preclude or discourage discovery of
substrate-competitive inhibitors (78).

What is the Appropriate Chemical Space
for Libraries that Target Non-Enzymes?

One theory to describe the apparent ’un-druggability’ of a
non-enzyme target is that the types of molecules being
used in most HTS campaigns do not sample the appropri-
ate chemical space (79,80). For example, commercial
chemical libraries appear to be ill suited for the discovery

Makley and Gestwicki

26 Chem Biol Drug Des 2013; 81: 22–32



of inhibitors that bind PPIs (80,81). Inhibitors of PPIs tend
to have higher molecular mass and more complex topol-
ogy (e.g., macrocycles, high number of chiral centers) than
inhibitors of traditional, enzyme targets (recently reviewed
in 82). Thus, the success of HTS for non-canonical targets
may be critically dependent on the selection of the appro-
priate chemical library, and seemingly failed screens for
non-enzymes may, in fact, have arisen from poor sampling
of chemical space. Consequently, creative construction of
new chemical libraries is a vibrant and important area of
research that is likely to expand our definition of ’drugga-
ble’ targets.

Diversity-oriented synthesis (DOS) is one approach to
expand the chemical space sampled by synthetic chemical
libraries. Many current HTS libraries consist of molecules
representing a relatively small number of chemical scaf-
folds, with physicochemical properties resembling existing
drugs (79). DOS approaches rely on divergent synthetic
steps, in which the product of one complexity-generating
transformation is a substrate in a second, and so on (83–
85) (Figure 3A). Thus, in contrast to target-oriented synthe-
sis or medicinal chemistry, DOS methods tend to access
structures with increased scaffold complexity and variety in
a limited number of synthetic steps.

Natural products provided some of the original inspiration
for DOS libraries (86,87), because these natural com-
pounds tend to be more structurally complex, with more
chiral centers, a higher proportion of carbon, hydrogen,
and oxygen atoms and fewer nitrogen atoms than syn-
thetic compounds (reviewed in (88)). They also tend to be
larger (>500 Da) and frequently more water-soluble (89).
These compounds have evolved to be bioactive; thus, they
tend to have relatively favorable pharmacokinetic proper-
ties and high affinity and specificity (89). Unsurprisingly, a
large proportion (>60%) of FDA-approved drugs is natural
products or natural product derivatives (90–92). Inspired

by these favorable properties, libraries assembled based
on privileged core natural products have been constructed
around a number of scaffolds, including carbohydrates,
steroids and sterols, fatty acid derivatives, polyketides, lin-
ear and cyclic peptides, terpenoids, flavonoids, alkaloids,
macrolactones and macrolactams, and many others (88)
(Figure 3B). In a related concept, Hopkins and Groom pre-
sented the idea that the majority of drugs compete against
endogenous small molecule regulators for binding sites on
proteins (93). This concept has led to the use of metabolo-
mic profiling as a way to identify druggable binding sites
and to the development of metabolite and cofactor
mimetic libraries (94).

Another interesting property of natural products is that
they can sometimes inhibit otherwise intractable classes of
drug targets, such as PPIs (95). For example, we recently
screened a small library of plant-derived natural products
and successfully identified inhibitors of the challenging PPI
between the anti-bacterial targets DnaK and DnaJ (78,96).
The difficulty of targeting PPIs using commercial libraries is
thought to result, in part, from incompatible physicochemi-
cal properties (22,81). For example, a 2010 analysis com-
pared 66 PPI inhibitors with a diverse set of 557 typical
drugs, using 1666 molecular descriptors (81). The study
concluded that PPI inhibitors are larger, more lipophilic,
and have more aromatic rings and fused ring systems
(81). Thus, natural products may be especially suitable for
targeting PPIs, as many natural products overlap with this
region of chemical space (79,97).

Ribosomal and non-ribosomal peptides are natural prod-
ucts that exhibit a wide range of biological activities. Syn-
thetic peptides are often assembled by solid phase
synthesis, using functionalized polystyrene resin beads as
solid support. Natural and unnatural amino acids may be
modularly incorporated to rapidly assemble a large amount
of diversity using split-and-pool methods. In one-bead-

A B C

Figure 3: (A) Diversity-oriented synthesis uses sequences of modular, complexity-generating reactions to build compound libraries of
diverse scaffolds (figure adapted from 85). (B) Focused libraries of natural product-inspired scaffolds and cyclic peptides may be useful for
lead generation against non-enzymes and protein–protein interactions. (C) Fragment-based screening enables the evolution of low-affinity,
high-efficiency binders into high affinity leads.
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one-compound combinatorial libraries, each solid-support
resin bead is coated with a homogenous population of a
unique peptide or peptoid (98–100). Such libraries can
then be incubated with a fluorescently labeled target of
interest to find binding partners. Like other affinity-based
selection techniques, such as phage display (101), this
platform can be applied to any type of target molecule,
even non-enzymes (99). Linear peptides generally have
poor pharmacokinetic properties (poor absorption and
susceptibility to rapid degradation by proteases), but this
can be circumvented using a number of well-established
strategies (102). For example, synthetic biological agents
such as stapled peptides with covalently constrained sec-
ondary structure may be cell-permeable and resistant to
cellular proteases (103,104). Moreover, the conformational
restriction imposed by the covalent stabilization of second-
ary structure can efficiently mimic the binding surface of a
protein (most notably a-helices), resulting in tight and pro-
ductive binding. Stapled peptides have been successfully
developed to modulate a number of non-canonical targets
such as transcription factors as well as PPIs (105–107).
Cyclic peptides are another class of natural products suit-
able for use in targeting non-enzymes. The reduced con-
formational flexibility of cyclized peptides is advantageous
for target binding, membrane permeability, and stabiliza-
tion against digestion by endoproteases (108). Until
recently, the one-bead-one-compound technique was lim-
ited to the screening of linear peptide or peptoid libraries,
because Edman degradation sequencing requires a free
amino terminus. However, Liu et al. (108) developed a cle-
ver strategy to circumvent this obstacle, including both lin-
ear and cyclic versions of peptides embedded on either
the inner or outer layers of a polymeric resin support (Fig-
ure 3B) (108). In a proof-of-principle study, a library of 107

cyclic peptides was generated and screened against the
human prolactin receptor, resulting in molecules with low
micromolar affinity for an allosteric site on the receptor
(108). Similarly, a screen of a focused library of over 106

cyclic peptides designed to competitively inhibit the calci-
neurin-NFAT PPI resulted in the discovery of several
ligands with low micromolar potency (109).

DNA-encoded libraries (DELs) are another way to select
for small molecules with affinity for a target of interest
(29,110,111). Analogous to phage display, DELs link small
molecule selection with unique, covalently attached DNA
’bar codes’ (111). Molecules with affinity for the target are
identified by PCR amplification, and sequencing of the
DNA tag. DELs may be synthesized using split-and-pool
combinatorial assembly or DNA-templated synthetic meth-
ods (110). For example, Wrenn et al. synthesized and
screened 108 DNA-encoded 8-mer peptoids for binding to
the N-terminal SH3 domain of the proto-oncogene Crk
(p38) (28), which successfully resulted in the identification of
several peptoids with low- to mid-micromolar affinity for Crk.
One drawback of this approach is that synthetic transforma-
tions used in library construction must be DNA-compatible,
but a relatively wide range of orthogonal reactions have

been reported (112). Compound discovery by DELs may be
applied to any type of target class and is relatively inexpen-
sive after the initial investment of library construction.

Fragment-based screening utilizes chemical libraries con-
sisting of low-molecular weight, low complexity com-
pounds (’fragments’), which are tested for binding to a
target protein by NMR, x-ray crystallography, or SPR.
Low-affinity hits (generally with KD values between 0.1 and
10 mM (13)) are then evolved into higher-affinity binders
though structure-based design and medicinal chemistry
(Figure 3C). Fragment-based screening has gained wide-
spread application over the past decade (113) and pro-
vides several strategic advantages. First, fragment-based
screening libraries exhibit high sampling efficiency; they
offer greater coverage of chemical space with a smaller
number of library members (114). In fact, a library of 103

fragments represents the same chemical space as 1013

drug-like molecules (114). Second, fragment-based
screening produces weak but high-quality binders. Abso-
lute binding affinities range from micromolar to millimolar,
but ligand efficiency (or binding energy per non-hydrogen
atom (115)), is comparable to or stronger than HTS hits
(116). The reason for this observation is that molecules
binding to their target must overcome the entropic cost of
the interaction, estimated for a rigid body to be approxi-
mately 15–20 kJ ⁄ mol (115). As a result, a fragment that
binds with 100 lM affinity actually contributes over half of
the binding energy to an optimized, nanomolar KD mole-
cule (115), as long as the incorporated fragment still takes
advantage of the same binding interactions. Lastly, frag-
ment hits have favorable physicochemical properties as
starting points for pharmaceutical design. As compared
with typical HTS hits, fragment hits are much lower in
molecular weight, less lipophilic, and more soluble (117).

It may be the case that ’failure of a [well-designed] screen
to identify a chemical starting point can be simplified to one
of two factors: the target itself is un-druggable (unable to
be modulated appropriately by a small molecule), or the
screen did not test the correct compounds (yet)’ (118). The
expansion of screening collections may therefore increase
the number of targets that are considered ’druggable’.

The Concept of ’Druggability’ is Evolving

There is a fundamental dilemma associated with categoriz-
ing ’druggable’ targets and ’drug-like’ molecules on the
basis of past success stories (118). If we categorize ’drug-
gable’ targets as only those that resemble successfully
drugged targets and ’drug-like’ small molecules as only
those that resemble current FDA-approved compounds,
then, we discourage innovation and exclude the possibility
that either target space or drug space might be expanded
by new technology. In other words, until we try – and fail –
it is not clear that any target is ’undruggable’ and, even
then, it is only ’undruggable’ under the current paradigm.
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Accordingly, we have focused this review on high-through-
put methods for selecting ligands with affinity for non-
canonical targets. In many cases, these methods have
been used against targets that lack enzymatic activity,
structural information, existing ligands, or known ligand
binding sites. Combined with efforts to expand chemical
space and enrich for modulators of non-canonical targets,
these advances are helping to expand the definition of
’druggable’. However, it is unlikely that these examples
represent the final word on drug discovery for postgenomic
targets. The real lesson is that no target is ’undruggable’.
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