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[1] The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observation System’s Terra
satellite have been measuring aerosol optical thickness (AOT) since early 2000. These
remote‐sensing platforms complement the ground‐based Aerosol Robotic Network
(AERONET) in better understanding the role of aerosols in climate and atmospheric
chemistry. To date, however, there have been only limited attempts to exploit the
complementary multiangle (MISR) and multispectral (MODIS) capabilities of these
sensors along with the ground‐based observations in an integrated analysis. This paper
describes a geostatistical data fusion technique that can take advantage of the spatial
autocorrelation of the AOT distribution, while making optimal use of all available data
sets. Using Level 2.0 AERONET, MISR, and MODIS AOT data for the contiguous
United States, we demonstrate that this approach can successfully incorporate information
from multiple sensors and provide accurate estimates of AOT with rigorous uncertainty
bounds. Cross‐validation results show that the resulting AOT product is closer to the
ground‐based AOT observations than either of the individual satellite measurements.
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1. Introduction

[2] Atmospheric aerosols play an important and dynamic
role in climate and atmospheric chemistry. The climatic
effects of aerosols had already been recognized in the 1970s
[Andreae, 1995] but the focus of scientific attention shifted
only during the late 1980s due to the impact of the growing
concentrations of CO2 and other greenhouse gases.
Although the radiative forcing of aerosols is still highly
uncertain [Intergovernmental Panel on Climate Change
(IPCC), 2007], it is well understood that aerosols contrib-
ute significantly to reflected solar radiation (the aerosol
direct effect) and modify cloud properties (the aerosol
indirect effect), producing a net cooling of the Earth surface,
and can also absorb sunlight, thereby warming the ambient
atmosphere. Because aerosols have short atmospheric life-
times of about a week [Andreae et al., 1986], they have a
heterogeneous spatial and temporal distribution. Accurately
capturing this heterogeneity, and assessing the impact of
tropospheric aerosols on regional and global energy bud-

gets, therefore requires diurnally resolved observations from
some combination of satellite and suborbital measurements.
[3] Two space‐based instruments that aim to fulfill this

need are the Multiangle Imaging SpectroRadiometer (MISR)
and Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard the NASA Earth Observation System’s
Terra satellite, which are used to derive observations of the
tropospheric aerosol optical thickness (AOT), among other
parameters [Diner et al., 1998; Kaufman et al., 1997]. Col-
umn AOT is defined as the integral of aerosol extinction
from the surface to the top of the atmosphere. Although these
two sensors are on the same platform, discrepancies exist
between them in retrieved AOT over both land and ocean
regions [Penner et al., 2002;Myhre et al., 2005; Kinne et al.,
2006]. These discrepancies are due to the differences in
assumptions in the retrieval algorithms [Kahn et al., 2007],
observed wavelengths and viewing geometries [IPCC,
2007], and the spatial resolution of observations [Xiao et
al., 2009], among other reasons. Methods for evaluating
data from these and other instruments are needed, as are
approaches for assessing the information content of these
data for providing the best possible representation of the
spatial and temporal variability in AOT.
[4] The common way of validating the satellite AOT

retrievals has been through the use of the ground‐based
Aerosol Robotic Network (AERONET) [Holben et al.,
1998], which provides sparse but relatively reliable AOT
observations. Comparisons between AOT retrieved from
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space‐based instruments and AERONET data have been
used in a variety of contexts to explore the similarities and
differences between the MISR and MODIS products. These
comparisons have focused on MISR and AERONET [Liu
et al., 2004a; Kahn et al., 2005a, 2005b; Jiang et al.,
2007; Chen et al., 2008], or MODIS and AERONET [Chu
et al., 2002; Levy et al., 2003, 2005; Remer et al., 2005],
and have been specifically targeted at refining the retrieval
algorithms of the individual sensors for different aerosol
regimes.
[5] Several studies have also looked at the discrepancies

between MISR and MODIS [e.g., Abdou et al., 2005; Liu
et al., 2007; Prasad and Singh, 2007; Vermote et al., 2007;
Xiao et al., 2009; Kahn et al., 2009], mostly by comparing
them with the AERONET measurements. These studies have
concluded that the major differences can be attributed to
location (for example, retrievals near aerosol source regions
and/or presence of clouds, retrievals over land versus water)
and the aerosol retrieval algorithms over those locations.
Recently, Kahn et al. [2009] compared MISR and MODIS
data sets, and found strong correlations of 0.9 and 0.7
between MISR and MODIS over ocean and land, respec-
tively. Discrepancies between the instruments were traced
back to sampling differences, known algorithmic issues, or
other mechanisms contributing to aerosol retrieval error.
Some of these mechanisms that have been highlighted pre-
viously are aerosol model differences [Abdou et al., 2005;
Kahn et al., 2007], the presence of clouds [Martonchik et al.,
2004; Kahn et al., 2007; Xiao et al. 2009; Kahn et al.,
2009], dust [Kalashnikova and Kahn, 2006; Martonchik
et al., 2004], or biomass burning [Kahn et al., 2005a; Chen
et al., 2008], as well as other biospheric and anthropo-
genic factors [Prasad and Singh, 2007; Xiao et al., 2009].
Statistical comparisons have also been carried out between
MISR, MODIS and AERONET by Liu and Mishchenko
[2008] and Mishchenko et al. [2009], although some of
the statistical techniques used have subsequently been
questioned [e.g., Kahn et al., 2009]. Overall, the existing
literature has resulted in a complex set of conclusions
regarding the ways in which MISR, MODIS, and
AERONET record AOT [Xiao et al., 2009]. For example,
Liu et al. [2007] conclude that MODIS generally retrieves
higher AOT relative to MISR over land, whereas both
MODIS and MISR tend to underestimate AERONET AOT
measurements for AOT higher than about 0.5. Similar
underestimation is reported by Jiang et al. [2007] and
Kahn et al. [2005a], whereas others conclude that MISR
overestimates AERONET AOT observations over water [e.g.,
Liu et al., 2004a; Abdou et al., 2005; Kahn et al., 2005b].
[6] Given the limitations inherent to each of the available

data streams, combining multiple data types may provide an
opportunity to optimally estimate the spatial and temporal
distribution of AOT. Some studies have found the correla-
tion between the AOT data from multiple sensors to be
sufficiently strong to justify the use of ground‐based and
space‐based observations together [Liu et al., 2004a; Prasad
and Singh, 2007; Jiang et al., 2007]. However, most of the
data fusion attempts have been limited to merging data from
multiple space‐based instruments, including Level 1B (i.e.,
radiance) data [Loeb et al., 2006], Level 2 data of geo-
physical parameters [Gupta et al., 2008] and aerosol optical
depth [Nguyen 2009], and gridded level 3 data sets [Acker

and Leptoukh, 2007]. Recently, Kinne [2009] presented an
approach for integrating a weighted composite of remote
sensing AOT observations with AERONET AOT through
an empirical averaging procedure.
[7] Given the complementary capabilities of the AERO-

NET, MISR and MODIS sensors (see section 2), it seems
natural to investigate whether it is possible to merge data
from these different sensors in a statistically rigorous frame-
work to obtain an improved AOT product. Such a product
could be used to address scientific issues related to air quality
and the radiative effects of aerosols, and in particular, be
used to evaluate model predictions of aerosol distributions.
[8] The objective of this work is to investigate the appli-

cability of universal kriging, a simple geostatistical data
fusion approach, for merging multiple AOT data sets. The
approach yields a statistical best estimate of the AOT spatial
distribution, together with a quantification of the associated
uncertainty. The estimated AOT distribution is based only on
the available AOT data, and does not incorporate informa-
tion or assumptions about atmospheric transport or source
regions. Given that the availability of multiple satellite data
sets has already resulted in a research shift from modeling‐
only to observational‐based assessments of aerosol forcing
[Yu et al., 2006], geostatistical data fusion can potentially
provide useful optimal fused data sets, taking advantage of
the strengths, and minimizing the limitations, of each indi-
vidual sensor in a new way.
[9] The remainder of this paper is organized as follows.

Section 2 provides a description of the MISR, MODIS and
AERONET data used in the presented analysis. Section 3
gives an overview of the applied method and examined
test cases. Results are presented and discussed in section 4.
The code used to obtain the presented results is available from
http://puorg.engin.umich.edu/code.php under the acronym of
GDF AOT.

2. Data

[10] The description of the data sets presented here covers
only the specific data products used in this study. The
reader is referred to Martonchik et al. [2009] and L. A.
Remer et al. (Algorithm for remote sensing of tropospheric
aerosol from MODIS: Collection 005, Rev. 2, 2009, 97 pp.,
http://modis‐atmos.gsfc.nasa.gov) for descriptions of the
retrieval algorithms and Yu et al. [2006] for an overview of
how tropospheric aerosols are measured. All analyses are
performed using data from 2001.

2.1. AERONET

[11] AERONET is a globally distributed network of over
200 automated ground‐based instruments covering all major
tropospheric aerosol regimes [Holben et al., 1998, 2001].
The instruments used are CIMEL sun/sky radiometers that
make direct sun measurements with a 1.28° full field‐of‐
view every 15 min in eight spectral bands [Holben et al.,
1998]. Level 2 (validated) AOT data are used here for
32 sites within the continental United States. The AERONET
data archive (http://aeronet.gsfc.nasa.gov), includes AOT at
different wavelengths, relative errors of AOT, Angstrom
exponents (a) among different bands, and sampling dates
and time. AERONET AOT measurements at 440 nm and
675 nm were interpolated to 555 nm to allow a straight-
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forward comparison with the MISR and MODIS AOT
products, using the methodology of Liu et al. [2004a],

��1��2 ¼ � ln ��1=��2ð Þ
ln �1=�2ð Þ ; ð1Þ

where tl1
and tl2

are AOTs at wavelengths l1 and l2,
respectively. The estimated standard deviation of the
AERONET optical depth data errors is reported to be
approximately 0.01 at wavelengths above 440 nm, and
below 0.02 for shorter wavelengths [Holben et al., 1998;
Eck et al., 1999].

2.2. MISR

[12] The MISR instrument aboard the Terra satellite has
been providing continuous observations of AOT and aerosol
type since late February 2000. These data are hosted at the
Langley Research Centre Distributed Active Archive Centre
(DAAC). The MISR data used in this study were obtained
using the AMAPS system [Paradise et al., 2010]. The green
band (0.55 mm) RegBestEstimateSpectralOptDepth data
field was extracted for the study area from the Level 2
aerosol product, version F09_0017 and later. The spatial
resolution of the data set is 17.6 km. Theoretical sensitivity
studies for MISR [Kahn et al., 2001] have estimated the
standard deviations of the measurement error associated
with the optical depth to be 0.05 (or 0.2t, whichever is
larger) with a systematically tighter envelope over ocean
than over bright land surfaces. About two thirds of MISR‐
AERONET coincidences fell within this envelope globally
for the early post launch algorithm [Kahn et al., 2005a].

2.3. MODIS

[13] The MODIS instrument is also aboard the Terra
satellite. Terra Collection 005 Level‐2 data at 0.55 mm were
obtained using the AMAPS system. The “standard” aerosol
product data field Corrected_Optical_Depth_Land was em-
ployed, which has a spatial resolution of 10 km and has been
screened for quality 3 (QC = 3) over land. MODIS performs
near‐global daily observations of atmospheric aerosols, and
can measure aerosol optical thickness with an error standard
deviation of 0.05 + 0.15t over the land and 0.03 + 0.05t
over the ocean [Remer et al., 2005, 2008].

3. Methods

3.1. Comparison of MISR, MODIS, and AERONET
Data

[14] Correlation coefficient analysis has been widely
applied for comparing satellite retrievals with ground‐based
measurements [Chu et al., 2002; Liu et al., 2004a; Abdou
et al., 2005]. The goals of the analysis presented here are to
characterize AOT differences between sensors by location
and season. Correlation coefficients provide an assessment
of the fraction of variance (i.e., variability) in the AERONET
AOT that can be explained by the MISR and MODIS
observations. In other words, this analysis assesses the
degree to which the spatial and temporal variability of the
MISR or MODIS observations are consistent with that of
the AERONET data.
[15] The AOT data from the three sensors cannot be

compared directly, in part because they are reported at

different spatial resolutions. Therefore, following the meth-
odology of Liu et al. [2004a], the mean of MISR andMODIS
observations within a 0.5° by 0.5° bounding box around each
AERONET site is used as a basis for comparison to
AERONET data, which are themselves averaged over
±30 min from the Terra overpass. Correlation coefficients
are used to characterize the agreement between daily data
pairs from the 32 AERONET sites and the corresponding
MISR or MODIS observations at those sites.

3.2. Investigation of the Spatial and Temporal
Variability in MISR and MODIS AOT

[16] AOT varies spatially and temporally. This variability
can be quantified using variogram analysis, a geostatistical
spatial analysis tool. Although the AERONET network is
too sparse to independently characterize the spatial vari-
ability at the continental scale, it can be used for regional
analyses in areas when the network is relatively dense. On
the other hand, the dense MISR and MODIS data coverage
provides good information about AOT spatial variability as
captured by these instruments. Analysis of the MISR and
MODIS AOT spatial variability provides insights into dif-
ferences in the way that these instruments capture the AOT
distribution. Differences may be due to the differences in the
observational spatial resolution and sampling, instrument
signal‐to‐noise ratios, or retrieval algorithms.
[17] For assessing the AOT temporal variability, the

AERONET network is the better candidate, due to its fre-
quent temporal sampling during daylight hours, unlike the
snapshots from MISR and MODIS. However, when the
spatial and temporal variability is examined simultaneously,
the MISR and MODIS AOT retrievals can also provide
useful information about space‐time variability. For sim-
plicity, the spatial and temporal analysis is presented here
using the MISR and MODIS data, but the conclusions about
the temporal variability are consistent with those obtained
using the AERONET observations (results not shown). The
temporal component of the analysis is useful for identifying
the time scales over which the AOT data can be integrated
into relatively contiguous maps without introducing errors
due to correlations in the temporal variability of the AOT.
[18] The spatiotemporal autocorrelation analysis is per-

formed using variogram analysis [e.g., Chiles and Delfiner,
1999]. For all pairs of AOT data from a given instrument
(e.g., MISR), the raw variogram is evaluated as

� hx; htð Þ ¼ 1

2
z xi; tið Þ � z xj; tj

� �� �2h i
; ð2Þ

where z are the AOT observations at locations xi and xj and
times ti and tj, hx is the spatial separation distance between
the two observation locations, and ht is the temporal lag in
days between the observations. The distance hx is calculated
as the great circle distance between the locations xi and xj,

hx xi; xj
� � ¼ r cos�1 sin�i sin�j þ cos�i cos�j cos �i � �j

� �� �
; ð3Þ

where (�i, �i) are the longitude and latitude of location xi,
and r is the Earth’s mean radius. In the analysis presented
here, a raw variogram is created for each repeat cycle of
MODIS and MISR (i.e., each available 16 day period in
2001).
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[19] Once the raw variograms are obtained, the variability
can be visualized by binning the variances g into preset
ranges of separation distances (hx) and time lags (ht). The
binned version of the raw variogram is referred to as the
experimental variogram. If the temporal autocorrelation of
the observations across multiple days is negligible, the
experimental variogram can be presented as a function of
spatial lag only, and a theoretical model can be selected to
represent the observed spatial‐only variability. In the anal-
yses presented here, an exponential model was found to
represent the spatial autocorrelation of the AOT data well,

�theo hxð Þ ¼
0 hx ¼ 0

�2
n þ �2

b 1� exp � hx
l

� �� �
hx > 0

;

8><
>: ð4Þ

where s2 ( = sn
2 + sb

2) represents the variance of observed
AOT at large separation distances (i.e., for uncorrelated
observations) and l is the range parameter. The correlation
length beyondwhich autocorrelation between points becomes
negligible is defined as approximately 3l [e.g., Chiles and
Delfiner, 1999]. The variance sn

2 is the nugget, representing
both the measurement error and the small‐scale variability at
distances smaller than those resolved by available observa-
tions, whereas sb

2 represents the variance of the portion of the
AOT variability that is spatially correlated. These parameters
are optimized using a least squares fit to the spatial raw var-
iogram. Conceptually, a higher variance is indicative of greater
overall variability, and a shorter correlation length indicates
greater spatial variability at smaller scales.

3.3. Geostatistical Data Fusion Approach

[20] Universal kriging [e.g., Chiles and Delfiner, 1999], a
geostatistical data fusion approach, makes it possible to fuse
auxiliary variables with full spatial coverage (e.g., MISR
and MODIS AOT) to improve the interpolation of a primary
data set with observations at a finite number of locations (e.g.,
AERONET AOT). The auxiliary variables fill a role analo-
gous to regressors in multiple linear regression, but within a
framework that accounts for the spatial autocorrelation of the
estimated field, and can reproduce observed AERONET
AOT measurements exactly at sampling locations.
[21] The objective is to estimate the AOT distribution (s)

at m locations and times (typically defined on a regular
grid), given the AERONET AOT measurements at n loca-
tions and times, where s (m × 1) is modeled as the sum of a
deterministic but unknown component Xsb (also known as
the trend or drift), and a zero‐mean stochastic component n,

s ¼ Xsbþ n; ð5Þ

where Xs (m × p) defines the model of the trend. b is a p × 1
vector of drift coefficients that define the weights assigned to
each of the p variables in the model of the trend, and are
estimated as described in equation (11). Note that in the field
of geostatistics, the trend or the drift refers to the component
of spatial variability that can be represented as a deterministic
function of other available variables. This is different from the
fields of atmospheric and climate sciences where the term
‘trend’ typically refers to a net temporal change. For the case
examined here, the model of the trend Xs includes a column

of ones, which will multiply a b representing an overall
constant or intercept, as well as columns with the MISR and
MODIS AOT data sets at all estimation locations and times.
Because AERONET, MISR, and MODIS all measure AOT,
a linear relationship between the AERONET, and MISR and
MODIS AOT is both the simplest and a reasonable model,
yielding a linear model of the trend,

Xs ¼

1 MISRAOT1 MODISAOT1

1 MISRAOT2 MODISAOT2

� � �

� � �

1 MISRAOTm MODISAOTm

2
6666666666664

3
7777777777775

: ð6Þ

Analogous to a multiple regression model, the constant
term is the first component of this linear model of the trend,
and aims to capture a net offset or intercept (i.e., the mean
of the portion of the AOT distribution that is not captured
by MISR and MODIS). This constant term thereby also
represents any systematic offset between the combinedMISR
and/or MODIS AOT and the AOT distribution as sampled by
AERONET.
[22] At the AERONET locations, the stochastic compo-

nent n in equation (5) represents the observed spatial and
temporal residuals between the AERONET AOT measure-
ments and the weighted MISR and MODIS AOT observa-
tions. At the estimation locations, this component represents
the predicted residuals between the true AOT and the
weighted MISR and MODIS AOT at those locations/times.
The covariance of these residuals is described using a matrix
Q, where the covariance function is defined based on the
variogram analysis (equation (4)), such that the covariance
between two points xi and xj is defined as

Qij ¼ �2 � �theo hxð Þ

¼
�2
n þ �2

b hx ¼ 0

�2
b exp � hx

l

� �
hx > 0

8><
>:

: ð7Þ

In this case, the variogram analysis is carried out on the
detrended AERONET AOT data (z–Xsb) within the specific
regions where universal kriging is applied. The detrending is
carried out by subtracting the trend composed of the constant
plus the MISR and MODIS AOT (Xs) by their corresponding
drift coefficients (b, equation (11)) from the AERONET
AOT. The analysis presented in section 4 focuses on regions
where the AERONET network is sufficiently dense to esti-
mate the spatial variability on regional scales using the
AERONET data. The nugget (sn

2, equation (4)) in this case is
found to be zero. Because the nugget represents both mea-
surement error and microvariability, this indicates that the
measurement error of AERONET AOT is negligible relative
to the total amount of variability, which is consistent with the
reported AERONET AOT precision of ±0.01, as described in
section 2.1.
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[23] The estimates of AOT at the target times and loca-
tions are obtained by solving the linear system of universal
kriging equations [e.g., Chiles and Delfiner, 1999],

Qzz Xz

XT
z 0

2
4

3
5 LT

M

2
4

3
5 ¼

Qzs

XT
s

2
4

3
5; ð8Þ

where Qzz is the n × n spatial covariance matrix defined
between AERONET observation locations based on
equation (7), Xz (n × p) is the model of the trend defined at
the measurement locations based on equation (6),Qzs (n ×m)
represents the covariance evaluated between themeasurement
and the estimation locations again based on equation (7),
and Xs (m × p) is the model of the trend defined at the
estimation locations again based on equation (6). When
multiple time periods are used in the analysis, as is true for
the test cases described in section 3.4, the correlation between
time periods is assumed to be zero. The system of equations
is solved for M, a p × m matrix of Lagrange multipliers, and
L, the m × n matrix of weights to be assigned to AERONET
AOT observations for interpolation to each of the m loca-
tions and times,

ŝ ¼ Lz; ð9Þ
where ŝ is the final AOT estimate at m locations/times that
include information derived from all three sensors, and z
are the n AERONET observations. The covariance matrix
defining the uncertainty associated with these estimates is:

Vŝ ¼ Qss �LTQzs � XsM; ð10Þ

where the diagonal elements of Vŝ represent the predicted
error variance (sŝ

2) of individual elements in ŝ, i.e., of the
estimates of AOT at individual locations and times. Finally,
the influence of MISR and MODIS on the final estimates ŝ
can be quantified by calculating the estimated drift coeffi-
cients b (p × 1) and their corresponding uncertainties for
these two data sets:

b̂ ¼ XT
z Q

�1
zz Xz

� ��1
XT

z Q
�1
zz z ð11Þ

Vb̂ ¼ XT
z Q

�1
zz Xz

� ��1
; ð12Þ

where the diagonal elements of Vb̂ represent the uncertainty
of the individual drift parameters (sb̂

2), and the off‐diagonal
terms represent the estimated covariance of the errors asso-
ciated with these estimates.
[24] Using these drift coefficients, the estimated AOT

field in equation (9) can also be expressed as

ŝ ¼ Xsb̂ þ QT
zsQ

�1
zz z� Xz b̂
� �

: ð13Þ

Comparing the estimated drift coefficients (b̂) and their
uncertainties (sb̂) for MISR and MODIS observations gives
an indication of which of the satellite observations con-
tributes more strongly to the estimated AOT. The signifi-
cance of the contribution of each set of observations can be
assessed by calculating the coefficient of variation of its drift
coefficient (sb̂/b̂). A coefficient of variation below 0.5
implies a statistically significant contribution to the esti-
mated trend at the 0.05 (i.e., 2sb̂) significance level.
[25] Recall that the drift coefficients are the weights

assigned to the MISR and MODIS AOT data sets. These
weights remain constant over the domain of analysis. As a
consequence, the relationship between the true (as re-
presented by AERONET) AOT, and MISR and MODIS
AOT, is implicitly assumed to remain constant within an
examined region. This is one of the reasons for which the test
cases examined in section 3.4 are conducted regionally,
because the relationship between MISR, MODIS, and
AERONET cannot necessarily be assumed to remain con-
stant throughout the continental United States.
[26] Ordinary kriging, a simple geostatistical interpolation

technique, is used for comparison to the universal kriging
estimates in the presented analyses. Ordinary kriging is one of
the most commonly used techniques in geostatistical gap
filling, but it lacks the advantage of using information from
multiple sensors. In the ordinary kriging approach, the
model of the trend is defined as Xs = [1…1]T, and the
covariance is derived using a variogram of the AERONET
observations without detrending. The other equations
remain unchanged. Past applications of ordinary kriging in
aerosol science have been limited to the estimation of
aerosol species over various regions [Zapletal, 2001;
Delalieux et al., 2006], and have not been aimed at com-
parison with other estimation techniques. In this work,
because the true AOT distribution is unknown, the ordinary
kriging estimates are used as a baseline for evaluating the
estimates from universal kriging. By comparing the two
kriging estimates, we identify the effect of using additional
satellite observations on both the AOT estimates and the
uncertainty associated with those estimates.

3.4. Test Cases

[27] The correlation analysis (section 3.1) is carried out
for three regions over the contiguous United States for
selected periods in 2001. Recognizing that aerosol dis-
tributions can be both site and season specific, the United
States are divided into three regions (Western, Central, and
Eastern), as illustrated in Figure 1. In the Western region, we
expect dust to be dominant, along with biomass burning
during the summer and autumn months. Biogenic aerosols
often dominate the southeast, especially in summer, where
biomass burning may also be important in some seasons.

Figure 1. Location of AERONET sites used in the correla-
tion analysis. The examined regions are outlined in blue.
Solid circles represent observation locations also used in
the universal kriging test cases.
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Four seasons are considered: Winter (DJF), Spring (MAM),
Summer (JJA) and Fall (SON). Following previous studies
[Kahn et al., 2005a; Liu et al., 2004a; Abdou et al., 2005],
the correlation analysis was carried out at a daily scale.
[28] The spatiotemporal analysis is carried out using the

MISR and MODIS data sets. The analysis is performed at
the native resolution of MISR (i.e., 17.6 km) and MODIS
(i.e., 10 km) AOT for each 16 day repeat cycle of the Terra
satellite in 2001. By doing this analysis for each 16 day
repeat cycle, the seasonal changes in spatiotemporal vari-
ability of AOT can be assessed, as well as how these changes
relate to the periodic changes in the underlying AOT pro-
cesses over the continental United States.
[29] Finally, the geostatistical data fusion analysis is pre-

sented using two test cases, the first being over the Eastern
United States during autumn, and the second over the
Western United States during summer (Figure 2). Table 1
outlines the details of these two test cases. For these test
cases, the study region is broken up into 0.2° × 0.2° grid
cells at which the AOT estimates are obtained. The MISR
and MODIS observations used for this analysis are averages
of all the MISR and MODIS AOT observations falling
within a given 0.2° × 0.2° grid cell. This particular esti-
mation resolution was chosen to show the flexibility of the
universal kriging approach in estimating AOT at very fine
resolutions, but in general could be performed at coarser
estimation scales as well.

[30] As will be shown in section 4.2, there is little sig-
nificant temporal autocorrelation in the day‐to‐day vari-
ability in the MISR and MODIS AOT within a 7 day period.
As a result, the geostatistical data fusion is performed in
1 week increments, using weekly averaged AOT data from
AERONET, MISR and MODIS. These averaged AOT data
are used to obtain estimates of the average spatial distribu-
tion of AOT over those 7 day periods. For each 7 day period,
AERONET sites that have AOT data for at least 3 of the
7 days, and which have overlapping MISR and MODIS data,
are used in the analysis. As a result, for the Eastern Test Case
during autumn, two to ten sites are used during the various
weeks, whereas for the Western Test Case during summer,
two to eight sites are used in each week. Figure 2 shows the
locations of all the sites used in the test cases. It should be
noted here that there may be cases in which significant
temporal autocorrelation may exist (e.g., near sources) where
shorter time scale variations are predominant, or where
strong gradients occur in transported aerosols. In such cases
the data fusion approach should be applied with caution.
[31] The AOT estimates obtained from universal kriging

(henceforth denoted as AOTUK) are compared with AOT
estimates obtained from ordinary kriging (henceforth de-
noted as AOTOK). Cross validation is used to compare
the two estimates. In this approach, individual AERONET
7 day observations at a given site are sequentially eliminated
from the analysis, and estimates at these locations and times
are obtained using the remaining AERONET observations,
and, for AOTUK, using available MISR and MODIS data as
well. Because AERONET measurements have traditionally
been used for validating satellite observations of MISR and
MODIS [Kahn et al., 2005a; Remer et al., 2005; Yu et al.,
2006], the withheld AERONET observations are used to
evaluate the relative precision and accuracy of the AOTOK

and AOTUK estimates.
[32] The evaluation of AOTOK and AOTUK estimates is

carried out using three metrics. First, the root mean square
error (RMSE) is calculated between the estimated AOT and
the AERONET observations. Second, the magnitude of the
predicted kriging uncertainties is evaluated by calculating
the root mean square prediction error (RMSPE) of the kri-
ging uncertainties (equation (10)). Third, the accuracy of
these predicted uncertainties is evaluated by verifying the
percent of true AERONET AOT observations that fall
within two standard deviations of the estimated AOT, where
the standard deviations are those predicted by the kriging
analyses (equation (10)). This third metric is less sensitive to
extreme outliers, and, in an ideal scenario, 95% of the true
AOT should fall within this interval. Values significantly
below 95% would indicate an underestimation of the true
uncertainties, while values substantially above 95% indicate
overly conservative estimates. All three metrics are calcu-
lated across the entire season for both test cases.

Figure 2. AERONET sites used for the Western and East-
ern test cases. The AERONET sites in the Western region
are Missoula (MIS), Rimrock (RIM), BSRN‐BAO‐Boulder
(BSR), Railroad Valley (RAI), Rogers Dry Lake (ROG), La
Jolla (LAJ), Maricopa (MAR), and Sevilleta (SEV); the
AERONET sites in the Eastern region are Rochester
(ROC), Cartel (CAR), Harvard Forest (HVF), GISS (GIS),
Philadelphia (PHI), MD Science Centre (MDS), GSFC
(GSF), Big Meadows (BIG), Wallops (WAP), and Cove
(COV).

Table 1. Test Case Specifications

Test Case Time Period Spatial Extent

Estimation Resolution Number of AERONET
LocationsSpatial Temporal

Eastern Fall 70°W‐85°W 25°N‐50°N 0.2° × 0.2° Average over a 7 day period 10
Western Summer 105°W‐120°W 25°N‐50°N 0.2° × 0.2° Average over a 7 day period 8
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[33] Overall, the two examined test cases are designed to
(1) demonstrate the versatility of the universal kriging
technique in estimating AOT over different regions and
across seasons and (2) evaluate the improvement of uni-
versal kriging estimates over ordinary kriging estimates
(or simply the AOT fields observed by MISR or MODIS
individually) as a function of the strength of the relationship
between MISR, MODIS, and AERONET AOT.

4. Results and Discussion

4.1. Comparison of MISR, MODIS, and AERONET
Data Sets

[34] The results of the correlation analysis are presented in
Table 2, and reveal that MISR data have a stronger corre-
lation to AERONET data (0.47 < r < 0.92) than do MODIS
data (0.09 < r < 0.61) across seasons in the Western and
Central regions. Given that the correlation coefficient is an
indication of the degree of linear covariability between the
data sets, this implies that MISR is better able to explain the
variability in the AERONET AOT than MODIS over these
regions. Note that for MODIS, the “standard” product was
used in this paper, and it is plausible that using the more
recent “Deep Blue” product, which was not available at the
time of analysis, would have shown better agreement with
the AERONET AOT, at least over bright surfaces. On the
other hand, the particle properties used in the MODIS
standard AOT retrieval over land are assumed based on
AERONET values [Levy et al., 2007], whereas for MISR,
particle properties are retrieved along with AOT as part of a
self‐consistent process [Martonchik et al., 2009].
[35] The weak correlation in the Western region for both

instruments is primarily due to low AOT values in this
region, which are near the lower limit of retrieval sensitivity
for MISR and MODIS. Liu et al. [2004a] points out that low
values of AOT, as well as coarse‐particle dominated sce-
narios, may produce poor correlations with AERONET
AOT. This does not necessarily indicate poor MISR or
MODIS performance; rather, at very low AOT values, the
correlation coefficients are not informative because the
uncertainty associated with the satellite retrievals is large
compared to the magnitude of the AOT itself. The high
surface albedo in the Western sector and the frequent
atmospheric loading with nonspherical mineral dust are
additional obstacles to obtaining good satellite retrievals of
AOT over this region.
[36] In the Eastern region, the MISR (0.52 < r < 0.86) and

MODIS (0.70 < r < 0.87) data show comparable correla-
tions to AERONET across seasons, and are able to capture

the AERONET AOT variability better than across the other
two examined regions. The year‐round correlation coeffi-
cients (r = 0.78 for MISR and r = 0.84 for MODIS) are
similar to values that have been reported previously for
continental sites in this region [Chu et al., 2002; Liu et al.,
2004a; Kahn et al., 2005a].
[37] Overall, results from this analysis are consistent with

previous findings that indicate that differences between
MISR and MODIS AOT relative to AERONET AOT are
caused by site‐specific effects and aerosol‐size‐distribution
effects.
[38] This initial analysis indicates that the information

provided by MISR and MODIS with regard to the AOT
distribution as measured by the AERONET network varies
regionally and seasonally throughout the continental
United States. Based on these results, it is expected that the
universal kriging analysis should outperform ordinary kri-
ging in the Eastern region, where the correlations between
the AERONET data and the MISR and MODIS data are
strong. In other regions, the additional information provided
by MODIS and MISR is less significant, and the universal
kriging and ordinary kriging analyses are expected to be
more similar to one another.

4.2. Spatiotemporal Variability Analysis

[39] The spatiotemporal variability analysis is performed
for MISR and MODIS AOT for each 16 day repeat cycle in
2001 for the Terra satellite. For each repeat cycle, a spatio-
temporal experimental variogram is obtained. Example var-
iograms are presented for MISR and MODIS in Figures 3a
and 3b, for 11 to 26 April 2001. These variograms represent
the expected variance of pairs of MISR (Figure 3a) or
MODIS (Figure 3b) observations, separated by a given dis-
tance in space and time lag.
[40] Figures 3a and 3b do not exhibit any noticeable

temporal autocorrelation in the day‐to‐day variability of the
AOT distribution for time lags up to 7 days. The temporal lag
(shown on the vertical axis) in Figures 3a and 3b represents
the number of days between the times when two observations
are recorded. A temporal lag of 1 day could therefore rep-
resent, for example, the expected variance between observa-
tions taken on days 14 and 15, or on days 1 and 2 of the
repeat cycle. The lack of temporal correlation indicates that
the coherent temporal variability in the AOT takes place
either at subdiurnal scales that cannot be captured by the
examined remote sensing data products, and/or at longer
time scales, potentially representative of seasonal variability.
[41] Since the results of this analysis indicate that temporal

correlation is not significant for time lags up to 7 days,

Table 2. Correlation Coefficients Between AERONET Measurements and MISR and MODIS Observations Classified by Region
(Figure 1) and Season for the Year 2001a

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) All Months

MISR MODIS MISR MODIS MISR MODIS MISR MODIS MISR MODIS

Western 0.49 0.09 0.67 0.29 0.47 0.32 0.59 0.09 0.63 0.30
Central 0.92 0.51 0.68 0.61 0.73 0.58 0.67 0.43 0.80 0.59
Eastern 0.79 0.70 0.52 0.77 0.86 0.87 0.82 0.80 0.78 0.84

aLow correlation coefficient (0–0.5) cases are in italics, medium correlation coefficient (0.5–0.75) cases are boldface, and high correlation coefficient
cases (0.75–1.00) are italic boldface. The lowest correlations occur in the west, where bright surfaces and mixtures of spherical particles and nonspherical
dust dominate, and in the winter months, when total‐column AOT tends to be low, and AOT is near the sensitivity limit of the satellite instruments. DJF,
December–February; MAM, March–May; JJA, June–August; SON, September–November.
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MISR and MODIS data taken over a week can be integrated
into a single map. In other words, multiple days of data can
be used concurrently to inform the data fusion analysis.
Note that the lack of temporal autocorrelation does not
necessarily imply a lack of temporal variability, but simply
that the observed AOT is not correlated from day to day.
[42] On the other hand, Figures 3a and 3b reveal that the

MISR and MODIS AOT data do exhibit strong spatial
autocorrelation, as evidenced by the fact that the variance
increases as the spatial separation distance increases. This is
more clearly visible in Figures 3c and 3d, where all data
from the 11 to 26 April repeat cycle are examined in a single
spatial variogram. Figures 3c and 3d display both the
experimental and the fitted theoretical spatial variograms for
MISR and MODIS. They indicate that the correlation length
of AOT data (i.e., the lag distance at which the semivariance
reaches an asymptote) is approximately 900 km for both
instruments for the examined time period, indicating that
observations separated by longer distances are essentially
independent.
[43] Figures 3e and 3f present the parameters of the fitted

theoretical spatial variograms for each of the 25 Terra repeat

cycles in 2001. This analysis shows that the spatial auto-
correlation of the MISR and MODIS AOT data are quite
consistent with one another (blue lines in Figures 3e and 3f).
The correlation lengths vary significantly throughout the
year, ranging from 500 km to 1500 km, with higher values
prevalent during the summer months. On the other hand, the
total amount of variability (i.e., variance) of the MODIS
AOT is always significantly higher than that of MISR.
During the winter months, both MISR and MODIS show
shorter correlation lengths and increased variance, repre-
sentative of a more heterogeneous distribution of aerosols.
In general, the long‐range transport of dust in late spring and
summer, and smoke from summer through early autumn, are
likely to contribute to the longer correlation lengths during
the summer months, whereas local aerosol sources explain
the smaller‐scale variability observed during other seasons.
[44] Seasonal changes in the spatial variability of AOT will

impact the uncertainty estimates obtained from universal
kriging. During the summer months, due to the longer cor-
relation lengths and smaller variance, the AOT estimates will
have lower uncertainty, while, conversely, during the winter
months, we expect higher estimation uncertainties.

Figure 3. Spatial and temporal variograms of AOT over a 16 day period from April 11 to April 26, 2001
for (a) MISR and (b) MODIS. The color bar indicates the semivariance. Spatial variogram over the
same period from (c) MISR and (d) MODIS, using all data over the 16 day period. Correlation length
(3l) and variance (s2) of AOT for all 16 day periods in 2001 for (e) MISR and (f) MODIS. Note that
MODIS had no data for one repeat cycle in June.
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[45] One interesting conclusion from Figure 3 is that the
MODIS AOT variance is higher than that for MISR, across
all seasons. This is due in part to the fact that the more
frequent and finer‐scale MODIS sampling captures more
small‐scale AOT variability than MISR. The second reason
for this higher variance is that, due to its exclusively near‐
nadir viewing geometry, MODIS has a greater sensitivity to
variability in surface brightness on small spatial scales,
which in turn introduces some additional variability into the

MODIS AOT retrievals. Neither of these features hinders
the application of the universal kriging approach presented
in this work. However, it has implications for researchers
pursuing assimilation of MISR and MODIS radiance data,
or looking to improve the retrieval algorithms of these two
sensors.

4.3. Data Fusion Results

[46] Figures 4 and 5 show the estimated AOT field for
1 week for each of the case studies described in Table 1. The
Eastern test case demonstrates that the universal kriging
AOT estimates are better than the ordinary kriging estimates
when MISR and MODIS are significantly correlated with
the AERONET AOT observations. The associated un-
certainties for the AOTUK estimates are significantly lower.
Cross validation at the AERONET locations confirms that
the AOTUK estimates are more realistic than the AOTOK

estimates, as shown for one of the 7 day periods in Figure 6
(see Figures S1 and S2 in the auxiliary material for the entire
season).1 Overall, for this test case, the RMSE for AOTUK is
0.053, which is lower than that of AOTOK (0.067) and each
of the individual satellite data sets (0.054 for MISR and
0.056 for MODIS). The true AOT falls within the 2 standard
deviations of both the kriging estimates for 93% of
AERONET observations, but the RMSPE of AOTUK

(RMSPE = 0.035) is significantly lower than that of AOTOK

(RMSPE = 0.069). These results confirm that, when strong
correlation exists between multiple data sets, the universal
kriging approach can be used to obtain better predictions
with smaller uncertainties relative to estimates based on
measurements from a single sensor. This is evident not only
from the reduction in uncertainty, but also from the lower
RMSE and RMSPE values of AOTUK relative to AOTOK.
[47] The Western test case demonstrates that the universal

kriging estimates are comparable to the ordinary kriging es-
timates in regions where the correlation with MISR and
MODIS is low. The predicted uncertainty (Figure 5b and 5d)
is similar for the two methods. This is consistent with our
findings from the correlation analysis because MISR and
MODIS are not strongly correlated with the AERONETAOT
in this region (Table 2), and are therefore unable to capture
the AERONET AOT variability. Cross‐validation results
shown in Figure 7 confirm that the two approaches provide
similar estimates with high uncertainty (see Figure S3 and S4
in the auxiliary material for the entire season). The AERO-
NET, MISR and MODIS AOT values are also plotted in
Figure 7, and demonstrate that, for the examined case, both
ordinary and universal kriging do better than using the MISR
and MODIS data sets individually. This is further validated
by the metrics calculated for the entire season. The RMSE
for AOTUK and AOTOK is 0.047 and 0.048, respectively,
which is lower than the RMSE of 0.082 for MISR and 0.260
for MODIS. The true AERONET AOT fall within 2 standard
deviations of AOTUK and AOTOK estimates for 98% of
available observations. Finally, the RMSPEs are similar for
the ordinary (RMSPE = 0.066) and universal (RMSPE =
0.061) kriging approaches, reaffirming their similarity to one
another for this test case.

Figure 4. Comparison of AOTOK with AOTUK for Eastern
test case for one period from 29 October to 4 November.
The black asterisks indicate the locations of the AERONET
sites. The white gaps indicate the 7 day satellite coverage
mask that is imposed on both universal and ordinary kriging
for ease of comparison. (a) Best estimates obtained from
ordinary kriging. (b) Uncertainty associated with the ordi-
nary kriging estimates, expressed as a standard deviation.
(c) Best estimates obtained from universal kriging. (d) Uncer-
tainty associated with the universal kriging estimates, ex-
pressed as a standard deviation.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JD013765.
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[48] In addition to predicting AOT, the universal kriging
approach can be used to quantify which of the satellite
observations has more influence on the estimation procedure,
by looking at the drift coefficient (b̂) values, their uncertainties
(sb̂), and the corresponding coefficients of variation (sb̂ / b̂),
as shown in Table 3. For the Eastern Test Case, the MODIS
AOT observations have a more significant drift coefficient
(sb̂2

/ b̂2 = 0.18) than the MISR data, and these latter data are
therefore used primarily to adjust the spatial pattern in

MODIS AOT to more closely resemble the AERONET AOT
observations. Conversely, for the Western Test Case, the
MISR AOT observations seem to be a significant predictor of
AERONET AOT measurements (sb̂1

/ b̂1 = 0.43). In addi-
tion, the drift coefficient values for the constant term (b̂0) are
not significantly different from zero for either examined case,
indicating an absence of any systematic offset between the
AOT predicted by the weighted combination of MISR and
MODIS, and the AOT observed by AERONET.
[49] Finally, although this analysis used both MISR and

MODIS in the data fusion process, one could easily use
either MISR or MODIS individually, or some other AOT
product(s). The approach presented combines the best

Figure 6. Cross‐validation results for 29 October to
4 November for Eastern test case. Error bars represent 1sŝ
and 2sŝ uncertainty bounds.

Figure 7. Cross‐validation results for 21–27 July for West-
ern test case. Error bars represent 1sŝ and 2sŝ uncertainty
bounds.

Figure 5. Comparison of AOTOK with AOTUK for West-
ern test case for a 7 day period from 21 to 27 July. The black
asterisks indicate the locations of the AERONET sites. The
white gaps indicate the 7 day satellite coverage mask that is
imposed on both universal and ordinary kriging for ease of
comparison. (a) Best estimates obtained from ordinary kri-
ging. (b) Uncertainty associated with the ordinary kriging
estimates, expressed as a standard deviation. (c) Best esti-
mates obtained from universal kriging. (d) Uncertainty asso-
ciated with the universal kriging estimates, expressed as a
standard deviation.
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available information from all available sensors to identify
the optimal representation of the AOT distribution.

5. Conclusions

[50] A geostatistical data fusion technique is implemented
for combining remote‐sensing and ground‐based observa-
tions of AOT. Results show that adopting the universal
kriging approach based on the combination of MISR,
MODIS and AERONET enables better estimation of AOT
with reduced uncertainties, relative to estimates based on
observations from a single instrument.
[51] All three examined data sets were found to display

strong spatial autocorrelation in their measured AOT dis-
tributions. Although the total degree of AOT variability
differed between MISR and MODIS, the spatial scales of
this variability were similar for these instruments. The day‐
to‐day temporal autocorrelation in MISR or MODIS AOT
observations was found to be minimal, due at least in part to
limited temporal sampling, making it possible to integrate
such observations over multiple days to better infer the
spatial distribution of AOT.
[52] As an increasing number of remote sensing observa-

tions become available, data fusion approaches such as the
one presented here may hold the key to furthering our
understanding of atmospheric aerosols. Although differences
between instruments are always present, the approach im-
plemented here takes advantage of their complementary
features by combining the three data sets in a manner that is
statistically robust. The approach relies on the availability of
auxiliary variables (MISR and MODIS AOT, in the pre-
sented analysis) at all locations where the AOT is to be
estimated, and assumed that the relationship between these
auxiliary variables and the primary observations (AERONET
AOT, in the presented analysis) remains constant throughout
the examined region.
[53] Finally, this study reinforces the complementary

value of remote‐sensing and ground‐based observations of
AOT. Long‐term monitoring of aerosol distributions is
possible via remote sensing measurements, and these can be
used to capture the spatiotemporal distribution of aerosols.
Expected refinements in retrieval algorithms and sensor
capabilities will improve the accuracy of the retrieved AOT
further. By fusing these measurements with ground‐based
observations using techniques such as the one presented
here, it will be possible to obtain reliable long‐term esti-
mates of AOT at national and even global scales.

[54] Acknowledgments. We thank our colleagues on the Jet Propul-
sion Laboratory’s AMAPS system team for providing us with the MISR
and MODIS data sets as well as Charles Antonelli for making the codes
publicly available. We also specially thank three anonymous reviewers
and Angela Benedetti for providing us with excellent suggestions and feed-

back. The authors would also like to thank the AERONET principal inves-
tigators for collecting the aerosol data over the United States. The
University of Michigan component of this research was funded through
the Jet Propulsion Laboratory’s Director’s Research and Development
Fund under a contract with the National Aeronautics and the Space Admin-
istration. Additional support was provided through NASA grant
NNX08AJ92G. The work of Ralph Kahn was supported in part by NASA’s
Climate and Radiation Research and Analysis Program, under H. Maring,
NASA’s Atmospheric Composition Program, and the EOS‐MISR project.

References
Abdou, W. A., D. J. Diner, J. V. Martonchik, C. J. Bruegge, R. A. Kahn,
B. J. Gaitley, K. A. Crean, L. A. Remer, and B. Holben (2005), Com-
parison of coincident Multiangle Imaging Spectroradiometer and Mod-
erate Resolution Imaging Spectro‐radiometer aerosol optical depths
over land and ocean scenes containing Aerosol Robotic Network sites,
J. Geophys. Res., 110, D10S07, doi:10.1029/2004JD004693.

Acker, J., and G. Leptoukh (2007), Online analysis enhances use of NASA
Earth science data, Eos Trans. AGU, 88(2), 14–17, doi:10.1029/
2007EO020003.

Andreae, M. O. (1995), Climatic effects of changing atmospheric aerosol
levels, in World Survey of Climatology, vol. 16, Future Climates of
the World, edited by A. Henderson‐Sellers, pp. 341–392, Elsevier,
Amsterdam.

Andreae, M. O., et al. (1986), External mixture of sea salt, silicates,
and excess sulfate in marine aerosols, Science, 232, 1620–1623,
doi:10.1126/science.232.4758.1620.

Chen, W.‐T., R. Kahn, D. Nelson, K. Yau, and J. Seinfeld (2008), Sensitiv-
ity of multi‐angle imaging to optical and microphysical properties of bio-
mass burning aerosols, J. Geophys. Res., 113, D10203, doi:10.1029/
2007JD009414.

Chiles, J.‐P., and P. Delfiner (1999), Geostatistics: Modeling Spatial
Uncertainty, Wiley‐Intersci., Hoboken, N. J.

Chu, D. A., Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanré, and B. N.
Holben (2002), Validation of MODIS aerosol optical depth retrieval over
land, Geophys. Res. Lett., 29(12), 8007, doi:10.1029/2001GL013205.

Delalieux, F., R. van Grieken, and J. H. Potgieter (2006), Distribution of
atmospheric marine salt depositions over continental western Europe,
Mar. Pollut. Bull., 52(6), 606–611, doi:10.1016/j.marpolbul.2005.
08.018.

Diner, D. J., J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, and
R. A. Kahn (1998), Multi‐angle imaging spectroradiometer (MISR)
instrument description and experiment overview, IEEE Trans. Geosci.
Remote Sens., 36, 1072–1087, doi:10.1109/36.700992.

Eck, T. F., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill,
I. Slutsker, and S. Kinne (1999), Wavelength dependence of the optical
depth of biomass burning, urban, and desert aerosols, J. Geophys. Res.,
104(D24), 31,333–31,349, doi:10.1029/1999JD900923.

Gupta, P., F. Patadia, and S. A. Christopher (2008), Multisensor data
product fusion for aerosol research, IEEE Trans. Geosci. Remote Sens.,
46, 1407–1415, doi:10.1109/TGRS.2008.916087.

Holben, B. N., et al. (1998), AERONET–A federated instrument network
and data archive for aerosol characterization, Remote Sens. Environ.,
66(1), 1–16, doi:10.1016/S0034-4257(98)00031-5.

Holben, B. N., et al. (2001), An emerging ground‐based aerosol climatology:
Aerosol optical depth from AERONET, J. Geophys. Res., 106(D11),
12,067–12,097, doi:10.1029/2001JD900014.

Intergovernmental Panel on Climate Change (IPCC) (2007), Intergovern-
mental Panel on Climate Change Fourth Assessment Report, Working
Group I Report: The Physical Science Basis, edited by S. Solomon
et al., Cambridge Univ. Press, Cambridge, U. K.

Jiang, X., Y. Liu, B. Yu, and M. Jiang (2007), Comparison of MISR aero-
sol optical thickness with AERONET measurements in Beijing metropol-
itan area, Remote Sens. Environ., 107(1–2), 45–53, doi:10.1016/j.rse.
2006.06.022.

Table 3. Drift Coefficient Values, Their Associated Uncertainties, and the Coefficient of Variation for the Two Test Cases From the
Universal Kriging Model

Test Case

Constant MISR MODIS

b̂0 sb̂0
sb̂0

=b̂0 b̂1 sb̂1
sb̂1

=b̂1 b̂2 sb̂2
sb̂2

=b̂2

Eastern 0.010 0.014 1.4 0.017 0.16 9.42 0.68 0.12 0.18
Western 0.027 0.024 0.88 0.37 0.16 0.43 0.040 0.070 1.75

CHATTERJEE ET AL.: GEOSTATISTICAL DATA FUSION FOR AOT D20207D20207

11 of 12



Kahn, R. A., P. Banerjee, and D. McDonald (2001), The sensitivity of mul-
tiangle imaging to natural mixtures of aerosols over ocean, J. Geophys.
Res., 106(D16), 18,219–18,238, doi:10.1029/2000JD900497.

Kahn, R. A., B. Gaitley, J. Martonchik, D. Diner, K. Crean, and B. Holben
(2005a), MISR global aerosol optical depth validation based on two years
of coincident AERONET observations, J. Geophys. Res., 110, D10S04,
doi:10.1029/2004JD004706.

Kahn, R. A., et al. (2005b), MISR calibration, and implications for low‐
light level aerosol retrieval over dark water, J. Atmos. Sci., 62(4),
1032–1052, doi:10.1175/JAS3390.1.

Kahn, R. A., M. J. Garay, D. L. Nelson, K. K. Yau, M. A. Bull, B. J. Gaitley,
J. V. Martonchik, and R. C. Levy (2007), Satellite‐derived aerosol opti-
cal depth over dark water from MISR and MODIS: Comparisons with
AERONET and implications for climatological studies, J. Geophys.
Res., 112, D18205, doi:10.1029/2006JD008175.

Kahn, R. A., D. L. Nelson, M. J. Garay, R. C. Levy, M. A. Bull, D. J.
Diner, J. V. Martonchik, S. R. Paradise, E. G. Hansen, and L. A. Remer
(2009), MISR aerosol product attributes and statistical comparisons with
MODIS, IEEE Trans. Geosci. Remote Sens. , 47 , 4095–4114,
doi:10.1109/TGRS.2009.2023115.

Kalashnikova, O. V., and R. Kahn (2006), Ability of multiangle remote
sensing observations to identify and distinguish mineral dust types: 2.
Sensitivity over dark water, J. Geophys. Res., 111 , D11207,
doi:10.1029/2005JD006756.

Kaufman, Y. J., D. Tanré, L. A. Remer, E. Vermote, A. Chu, and B. N.
Holben (1997), Operational remote sensing of tropospheric aerosol over
land from EOS Moderate Resolution Imaging Spectroradiometer, J. Geo-
phys. Res., 102(D14), 17,051–17,067, doi:10.1029/96JD03988.

Kinne, S. (2009), Remote sensing data combinations: Superior global maps
for aerosol optical depth, in Satellite Aerosol Remote Sensing over Land,
edited by A. A. Kokhanovsky and G. de Leeuw, pp. 361–381, Springer,
Berlin, doi:10.1007/978-3-540-69397-0_12.

Kinne, S., et al. (2006), An AeroCom initial assessment—Optical proper-
ties in aerosol component modules of global models, Atmos. Chem.
Phys., 6, 1815–1834, doi:10.5194/acp-6-1815-2006.

Levy, R. C., L. A. Remer, D. Tanré, Y. J. Kaufman, C. Ichoku, B. N. Holben,
J. M. Livingston, P. B. Russell, and H. Maring (2003), Evaluation of the
Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of
dust aerosol over the ocean using PRIDE, J. Geophys. Res., 108(D19),
8594, doi:10.1029/2002JD002460.

Levy, R. C., L. A. Remer, J. V. Martins, Y. J. Kaufman, A. Plana‐Fattori,
J. Redemann, and B. Wenney (2005), Evaluation of the MODIS aerosol
retrievals over ocean and land during CLAMS, J. Atmos. Sci., 62(4),
974–992, doi:10.1175/JAS3391.1.

Levy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman
(2007), Second‐generation operational algorithm: Retrieval of aerosol
properties over land from inversion of moderate resolution imaging spec-
troradiometer spectral reflectance, J. Geophys. Res., 112, D13211,
doi:10.1029/2006JD007811.

Liu, L., and M. I. Mishchenko (2008), Toward unified satellite climatology
of aerosol properties: Direct comparisons of advanced level 2 aerosol
products, J. Quant. Spectrosc. Radiat. Transfer, 109(14), 2376–2385,
doi:10.1016/j.jqsrt.2008.05.003.

Liu, Y., J. A. Sarnat, B. A. Coull, P. Koutrakis, and D. J. Jacob (2004a),
Validation of Multiangle Imaging Spectro‐radiometer (MISR) aerosol
optical thickness measurements using Aerosol Robotic Network (AERO-
NET) observations over the contiguous United States, J. Geophys. Res.,
109, D06205, doi:10.1029/2003JD003981.

Liu, Y., R. J. Park, D. J. Jacob, Q. Li, V. Kilaru, and J. A. Sarnat (2004b),
Mapping annual mean ground‐level PM2.5 concentrations using Multian-
gle Imaging Spectroradiometer aerosol optical thickness over the contig-
uous United States, J. Geophys. Res., 109, D22206, doi:10.1029/
2004JD005025.

Liu, Y.,M. Franklin, R. Kahn, and P. Koutrakis (2007), Using aerosol optical
thickness to predict ground‐level PM2.5 concentrations in the St. Louis
area: A comparison between MISR and MODIS, Remote Sens. Environ.,
107(1‐2), 33–44, doi:10.1016/j.rse.2006.05.022.

Loeb, N. G., W. Sun, W. F. Miller, K. Loukachine, and R. Davies (2006),
Fusion of CERES, MISR, and MODIS measurements for top‐of‐
atmosphere radiative flux validation, J. Geophys. Res., 111, D18209,
doi:10.1029/2006JD007146.

Martonchik, J. V., D. J. Diner, R. Kahn, B. Gaitley, and B. N. Holben
(2004), Comparison of MISR and AERONET aerosol optical depths
over desert sites, Geophys. Res. Lett., 31, L16102, doi:10.1029/
2004GL019807.

Martonchik, J. V., R. A. Kahn, and D. J. Diner (2009), Retrieval of aerosol
properties over land usingMISR observations, in Satellite Aerosol Remote
Sensing Over Land, edited by A. A. Kokhanovsky and G. de Leeuw,
pp. 267–293, Springer, Berlin, doi:10.1007/978-3-540-69397-0_9.

Mishchenko, M., I. V. Geogdzhayev, L. Liu, A. A. Lacis, B. Cairns, and
L. D. Travis (2009), Toward unified satellite climatology of aerosol
properties: What do fully compatible MODIS and MISR aerosol pixels
tell us?, J. Quant. Spectrosc. Radiat. Transfer, 110(6‐7), 402–408,
doi:10.1016/j.jqsrt.2009.01.007.

Myhre, G., Y. Govaerts, J. M. Haywood, T. K. Bernsten, and A. Lattanzio
(2005), Radiative effect of surface albedo change from biomass burning,
Geophys. Res. Lett., 32, L20812, doi:10.1029/2005GL022897.

Nguyen, H. (2009), Spatial statistical data fusion for remote‐sensing appli-
cations, thesis, Univ. of Calif. Los Angeles, Los Angeles. (Available at
http://theses.stat.ucla.edu/104/Data_fusion_Hai_Nguyen.pdf)

Paradise, S., B. Wilson, and A. Braverman (2010), The Aerosol Measure-
ment and Processing System (AMAPS), Earth Sci. Inform., 3, 159–165,
doi:10.1007/s12145-009-0042-7.

Penner, J. E., et al. (2002), A comparison of model‐ and satellite‐derived
optical depth and reflectivity, J. Atmos. Sci., 59(3), 441–460,
doi:10.1175/1520-0469(2002)059<0441:ACOMAS>2.0.CO;2.

Prasad, A. K., and R. P. Singh (2007), Comparison of MISR‐MODIS
aerosol optical depth over the Indo‐Gangetic basin during the winter
and summer seasons (2000–2005), Remote Sens. Environ., 107(1–2),
109–119, doi:10.1016/j.rse.2006.09.026.

Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and
validation, J. Atmos. Sci., 62(4), 947–973, doi:10.1175/JAS3385.1.

Remer, L. A., et al. (2008), Global aerosol climatology from the MODIS
satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/
2007JD009661.

Vermote, E. F., J. C. Roger, A. Sinyuk, N. Saleous, and O. Dubovik (2007),
Fusion of MODIS‐MISR aerosol inversion for estimation of aerosol
absorption, Remote Sens. Environ., 107(1–2), 81–89, doi:10.1016/j.
rse.2006.09.025.

Xiao, N., T. Shi, C. A. Calder, D. K. Munroe, C. Berrett, S. R. Wolfinbarger,
and D. Li (2009), Spatial characteristics of the difference between MISR
and MODIS aerosol optical depth retrievals over mainland Southeast
Asia, Remote Sens. Environ.113(1), 1–9 doi:10.1016/j.rse.2008.07.011.

Yu, H., et al. (2006), A review of measurement‐based assessments of the
aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6(3),
613–666, doi:10.5194/acp-6-613-2006.

Zapletal, M. (2001), Atmospheric deposition of nitrogen and sulphur
compounds in the Czech Republic, Sci. World J., 1(2), 294–303.

A. J. Braverman, C. E. Miller, and S. R. Paradise, Jet Propulsion
Laboratory, Pasadena, CA 91109, USA.
A. Chatterjee and A. M. Michalak, Department of Civil and

Environmental Engineering, University of Michigan, Ann Arbor, MI
48109‐2125, USA. (amichala@umich.edu)
R. A. Kahn, NASA Goddard Space Flight Center, Greenbelt, MD 20771,

USA.

CHATTERJEE ET AL.: GEOSTATISTICAL DATA FUSION FOR AOT D20207D20207

12 of 12



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


