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Diagenetic behavior of barite in a coastal upwelling setting
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[1] Multiproxy data from ODP Hole 1017E (Point Conception, California) provide an excellent opportunity to
examine the behavior of barium, within a well-characterized sedimentary system. Barium,,.s is generally
considered to be a productivity proxy; however, in nearshore environments, Bagycess records can be
compromised by both sediment provenance and barite remobilization. For the last 60 kyr, ODP Hole 1017E
exhibits significant changes both in primary productivity driven by coastal upwelling and in the sediment
redox chemistry of underlying sediments. Significant barite enrichment occurs at an active diagenetic front
that marks the boundary between sulfate-rich and sulfate-poor pore waters. This boundary also intersects a
sediment facies change from deposition of relatively coarse-grained sediment before 35 ka to an interval of
fine-grained, organic-rich sediment after (i.e., Interstadial Event 8). Changes in diffusion rates associated
with the sediment facies change cause a strong but misleading correlation between a mobile zone of barite
enrichment and rapid climate change. Thus, within the Ba,, . record at ODP Hole 1017E is a history of

redox chemistry that has corrupted the paleoproductivity record of Bapiogenic-
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1. Introduction

[2] A common assumption in sedimentology is that strati-
graphic position determines age relationships such that
material within the same stratum is of equivalent age [Steno
and Winter, 1916]. This principle often extends to the cor-
relation between potentially mobile elements and sedimen-
tary particles. Associated with decaying organic matter
(Corg) in ocean water, marine barite (BaSO,) is a major
carrier of particulate barium to the seafloor and thus Ba has
been directly related to marine Corg sedimentation [Bishop,
1988; Ganeshram et al., 2003; Goldberg and Arrhenius,
1958; Paytan and Griffith, 2007]. Ba concentration cor-
rected for the presence of detrital Ba (Bagy.ess) has been
shown to be a reasonable proxy of past changes in oceanic
productivity in well-oxygenated deep sea sediments domi-
nated by biogenic sediments and with minimal terrigenous
sediment input [Eagle et al., 2003]. Paleoproductivity re-
constructions where Ba has been used as a proxy include the
Last Glacial Maximum in equatorial upwelling systems]
Paytan and Kastner, 1996], sapropel formation in the Med-
iterranean [Weldeab et al., 2003], and at the Paleocene-
Eocene Thermal Maximum [Bains et al., 2000; Paytan et al.,
2007].

[3] However, it is not reasonable to assume Bapiogenic 18
equivalent to Baycess in every marine environment. Bapiggenic
is an interpretation that assumes that all Ba concentrations
higher than estimated detrital input are the product of marine
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Corg sedimentation (marine barite). Implicit in this assump-
tion is that sources and delivery of detrital sediment remain
constant through time. Furthermore, there are still uncon-
strained issues associated with Bagycss, including the precise
carrying phase of the element and the significance of diage-
netic remobilization. Ba in aluminosilicate phases (i.e., li-
thogenic Ba) is typically immobile, while barite (BaSO,) is
extremely susceptible to dissolution under suboxic to anoxic
conditions [Brumsack, 1986; van Os et al., 1991]. The sol-
ubility of barite in sediments remains low until sulfate
depletion begins. As depletion of sulfate continues, the sol-
ubility of barite increases significantly, resulting in barite
dissolution and higher dissolved Ba concentrations within the
sediment pore waters [McManus et al., 1998; Torres et al.,
1996]. In continental margin settings where there is signifi-
cant detrital input and high oxidant demand for Corg respi-
ration, the use of Bagycess as a proxy for paleoproductivity
reconstruction is problematic. Thus understanding the history
of sediment redox conditions and detrital sediment delivery is
crucial for an accurate interpretation of Ba as a paleopro-
ductivty proxy.

[4] ODP Hole 1017E, (34'32"°N, 121'6"°W; 956 m water
depth), ~60 km to the west of Point Conception, on the
Southern California Margin provides an ideal location to
examine complications associated with the sedimentary Ba
record. This site lies beneath a persistent modern upwelling
cell and has yielded high-resolution paleoclimate records
due to significant terrestrial sediment input [Cannariato and
Kennett, 1999; Irino and Pedersen, 2000; Kennett et al.,
2000; Tada et al., 2000]. Bottom water oxygen concentra-
tions at ODP Hole 1017E have fluctuated through time due
to its position in the lower oxygen minimum zone (OMZ)
and high Corg rain rates from overlying productive surface
waters. Presently the OMZ is a significant feature along the
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Figure 1. Comparison of the concentration of (a) total barium (ppm) relative to (b) aluminum and
(c) bariumeycess (ppm), and (d) bariumey..ss as a percent value of detrital Ba with (e) pore water sulfate
concentrations (square symbols with concentrations indicated) at ODP Hole 1017E. Gray shading indi-
cates the maximum and minimum values of northern California rivers, while the dashed line represents

the average value.

California Margin; however, during the last glacial, waxing
and waning of the OMZ has been recorded both at this site
and others [Cannariato and Kennett, 1999; Zheng et al.,
2000].

[5] Multiproxy results from ODP Hole 1017E have allowed
researchers both to determine the history of past productivity
changes as well as understanding the redox chemistry of the
sediments [ Cannariato and Kennett, 1999; Hendy et al.,2004;
Hendy and Pedersen, 2005; Irino and Pedersen, 2000; Seki et
al., 2002; Tada et al., 2000]. Here the record of Bagycegs 1S
presented, demonstrating how the history of marine barite
preservation was compromised at the site. However, unex-
pectedly the position of an active diagenetic front appears to be
predetermined by the paleoproductivity and paleohy-
drodynamic history of the site. Thus, a significant quantity of
mobile Ba has precipitated within sediments associated with a
known climatic event (Interstadial Event 7), producing a
pronounced Bay..ss peak that could simply be misinterpreted

as Bapjogenic associated with climatically driven high ocean
productivity.

2. Methods

[6] Concentrations of Ba (Figure 1a) were determined for
337 samples from 5.9 to 15.4 mbsf using a Phillips PW
24000 X-ray spectrometer equipped with a 3 Kw Rh tube
following standard methods [Calvert, 1983; van Geen et al.,
1996]. All other major and minor elements, trace metals and
productivity proxies are discussed in detail by Hendy et al.
[2004] and Hendy and Pedersen [2005]. Ba levels above the
detrital background recorded in Northern California rivers of
~500 ppm or Ba/Al ratios of 0.0092 (Figure 1b) [Dean et al.,
1997] were calculated using the following formula [Paytan
and Griffith, 2007]:

Baexcess = Basample — ((Ba/Al)background X Alsamp]e)
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[7] Baexcess 1 displayed in Figure 1 as both Bagycess (ppm)
(Figure 1c) and Bagyeess (%) (Figure 1d) with shading to
display maximum and minimum values spanning the range
of Ba concentrations found in California rivers. This high-
lights the potential influence of changes in the terrigenous
provenance of detrital input.

[8] Major and minor element distributions has been related
to grain size at ODP Hole 1017E [Irino and Pedersen, 2000;
Tada et al., 2000]. Major and minor element data were sim-
plified by a Q-mode factor analysis with varimax rotation
using the computer program CABFAC to provide factors that
describe the distribution of elements known to be associated
with different grain sizes [Imbrie and Kipp, 1971; Leinen and
Pisias, 1984]. Two factors explaining 97.3% of the total
variance were extracted from the data set with communalities
mostly >0.95. Loading in factor 1 (54.4% of total variance) is
dominated by Ni, Cu, Zn, Fe, Mg and Ca. These elements are
often associated with the clay fraction. Factor 2 (42.9% of the
total variance) loading is influenced by Zr, Si, Na, and K.
These elements are frequently found in larger (silt-sand)
grains [Hendy et al., 2004]. These interpretations are sup-
ported by grain size analysis at the site [/rino and Pedersen,
2000; Tada et al., 2000].

[v] Chronology presented in this contribution is discussed
in greater detail by Hendy et al. [2004]. The climatic event
dates are based on the correlation of N. pachyderma coiling
ratios between ODP Hole 893A and 1017E as described by
Hendy [2010]. The chronology of ODP Hole 893A is
described by Hendy et al. [2002] and interstadials (IS) 5 to
17 are assumed to be synchronous with interstadial events in
the GISP2.

3. Sedimentary Barium Record at Point
Conception

[10] Baeycess 1S used to describe Ba concentrations in se-
diments that exceed detrital input, which is assumed to be
constant through time, and as such this term does not con-
strain the origin of Ba. The Bagycess record from the sedi-
ment water interface to 7.2 mbsf varies between —50 and 75
ppm (600 and 720 ppm total Ba), increasing at 2.6, 4, 5.1
and 5.6 mbsf and decreasing at 2.1 mbsf (Figure 1). A
dramatic increase in Ba (200 ppm Bacycess or 830 ppm total
Ba) occurs at 7.7 mbsf, with Ba.,.s values peaking at
600ppm (1200 ppm total Ba) at 7.2 mbsf. This is the only
region in the upper 15 m of the core where Bagy.css Values
exceed the entire regional detrital Ba range. Below this
horizon to 15.5 mbsf Bag, .. falls to background levels,
varying between —100 and 0 ppm (530 and 650 ppm total
Ba or 75 to 88 Ba/Al), which is similar to the average
regional detrital input [Dean et al., 1997]. Below the sedi-
ment depth (8 to 11 mbsf) of extreme Ba enrichment,
Baeycess Values drop zero indicating only detrital Ba remains
and elemental variations are likely related to changes in
sediment provenance.

4. Barium as a Productivity Indicator

[11] Barium concentrations are enriched in sediments
characterized by high concentrations of biogenic opal and
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Corg [Bishop, 1988; Dehairs et al., 1987; Dymond and
Collier, 1996; Goldberg and Arrhenius, 1958] and high
barite concentrations are attributed to overlying productive
surface waters [Gingele and Dahmke, 1994]. Profiles of
dissolved Ba in the water column are characterized by a
minimum in the nutrient-depleted euphotic zone and a
steady increase with water depth [Jeandel et al., 1996;
Monnin et al., 1999; Sternberg et al., 2008], whereas con-
centrations of particulate Ba are observed to increase just
below the euphotic zone, decreasing slightly with water
depth [Dehairs et al., 1980; Dymond and Collier, 1996;
Sternberg et al., 2008]. It would appear that precipitation of
marine barite occurs within or just below the euphotic
zone and it undergoes gradual dissolution with depth.
Laboratory and field experiments demonstrate that barite is
rapidly produced in suspensions of decaying phytoplank-
ton as a result of Ba release during the early stages of
organic decay [Bishop, 1988; Ganeshram et al., 2003].
These mechanisms strongly support both the use of sedi-
mentary Ba as a proxy for determining relative productivity
changes through time, and thus the assumption that Ba., e
is equivalent to Bapiogenic-

[12] If all Bacycess is assumed to be Bay,iggenic at ODP Hole
1017E, then Bagyss should be consistent with paleopro-
ductivity reconstructions. A number of independent,
coherent paleoproductivity proxies (e.g., % upwelling spe-
cies, % carbonate carbon, % opal, Corg/Al [Hendy et al.,
2004]; Figure 2), exist for comparison. Productivity
increased during warm climatic intervals including the
Holocene and interstadial events, with the most pronounced
interval of high productivity occurring during the Bolling. In
sediments <35 ka intervals of increased productivity appear
to correspond to low Bagycess cOncentrations, while periods
of decreased productivity appear to correspond to high
Bayess In sediments. The interval of extreme Ba enrichment
between 34 and 39 ka corresponds to minor productivity
increases at Interstadial Events (IS) 7 and 8. From 40 to 60 ka,
Bacycess Variations are insignificant and appear inconsistent
with other productivity proxies. It is apparent from compar-
ison between the records (Figure 2) that variability in the
Baeycess record at ODP Hole 1017E is not driven by changes
in the productivity of the persistent upwelling cell off Point
Conception. This result should be anticipated as the site is
located nearshore within the OMZ.

5. Detrital Sediment Provenance and Barium

[13] Due to the nearshore location of ODP Hole 1017E, a
significant detrital proportion of Ba in the sediments should
be derived from terrigenous silicates, and Fe-Mn oxides
and hydroxides. Delivery of detrital Ba to ODP Hole
1017E is predominantly from riverine input [Dean et al.,
1997; Klump et al., 2000]; however, site is located off-
shore of a semiarid environment and therefore eolian
deposition [Schroeder et al., 1997] cannot be excluded. Fe
oxides efficiently scavenge dissolved species from seawater
and as common components of eolian dust provide another
Ba delivery mechanism to sediment [Schroeder et al.,
1997], 20 to 40% of total Ba in some sediment is associ-
ated with aluminosilicate fractions [Gonneea and Paytan,
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Figure 2. Comparison of proxy records associated with phytoplankton and zooplankton [Hendy et al.,
2004] with barium. (a) The relative abundance (%) of upwelling associated species G. quinqueloba and G.
bulloides, (b) percent (%) carbonate composition of the sediments, (c) percent (%) opal(giatom) COMpO-
sition of the sediments, (d) Corg to Al weight ratio of the sediments, and (e) bariumeycess (ppm). Gray
bands represent warm intervals (interstadials and the Holocene). Interstadials (D-O events) are numbered
according to the GISP2 scheme with major climatic events labeled.

2006; Klump et al., 2000]. In this nearshore environment, however, remains enriched in Ba beyond the highest regional

variation in sediment provenance at the site may be as detrital value.

much as 60% of total Ba or 300ppm (see gray shading in

Figures lc and 1d). Thus much of the Ba variation

downcore could be the result of changing detrital sediment

provenance. The interval between 7 and 8 mbsf (34 to 40 ka), [14] It may be reasonable to assume that most Bagycess 1S
similar to Bapjogenic in OXic depositional environments;

6. Barium and Barite Dissolution

4 of 9



PA4103 HENDY: REMOBILIZATION OF BARITE PA4103
Rhenium (ppb) I/Br ratio Factor 2 (sand) Fine silt mode size (um)
10 20 30 05 1 15 2 025 05 075 8 10 12 14
0 1 L L | L L . . 1 . 1 . 1 .
Holocene
Younger Dryas
Allered
! « ° Bolling
;
L]
Interstadials
cO .
ocC
7 22s
48] [J]
(] T = O 4
D L]
330+ o
= 85 . 5
© 6
'g 7
Q
S 5e .
< ] 1 23, 9
&0 1 2<o 10
2 I =87 1
] 05—
o S
: 0 &< 12
1§32
1 1£3 13
IS8
50 1Z2& 14
()
I g"é
188 15
1<F
: O b 16/17
60 (a) b c (e) (f)

L I T
-100
Molybdenum ppm

0 100 200 300 400

Bariumeycess (PpmM)

500 600

Figure 3. Comparison of redox indicators [Hendy and Pedersen, 2005] with barium. Suboxic indicators
(a) rhenium (ppb), (b) molybdenum (ppm), (¢) iodine/bromine ratio, and (d) bariumeycess (ppm) with
sedimentary factors associated with (e) factor 2 (grain size [Hendy et al., 2004]), and (f) fine silt mode
grain size [Tada et al., 2000]. Gray bands represent warm intervals (interstadials and the Holocene).
Interstadials (D-O events) are numbered according to the GISP2 scheme with major climatic events

labeled.

however, pore waters at ODP Hole 1017E are presently
suboxic. Authigenic Ba in marine deposits occurs almost
entirely as barite (BaSQ,), which although stable in oxy-
genated seawater, readily dissolves under sulfate-depleted
conditions [Von Breymann et al., 1992]. High dissolved Ba
concentrations in the upper few centimeters of marine sed-
iment suggest that regeneration of Ba occurs within the
upper few millimeters where maximum remineralization of
Corg and other biogenic components occurs [Paytan and
Kastner, 1996]. High benthic fluxes of dissolved Ba have
been found in sediments underlying regions of high pro-
ductivity in the pelagic realm [Paytan and Kastner, 1996]
and in suboxic sediments [McManus et al., 1994].

[15] At ODP Hole 1017E, 95% of the dissolved pore
water oxygen is removed in the upper few centimeters of the
sediments where trace metal diffusion and subsequent pre-

cipitation in the sediments occurs. Similar redox conditions
in the upper few centimeters of ODP Hole 1017E, appear to
have prevailed throughout the Holocene and much of the
Last Glacial as Re and Mo are consistently enriched
(Figures 3a and 3b) [Hendy and Pedersen, 2005]. Notable
exceptions occurred during stadial events prior to major
interstadials (e.g., the Younger Dryas and prior to IS 11, IS
8, and the Belling; Figure 3c) when I/Br ratios increase
[Hendy and Pedersen, 2005]. Iodine enrichments relative to
bromine indicate organic matter deposition under oxic bot-
tom water conditions [Calvert and Pedersen, 1993]. Thus,
during the aforementioned stadial intervals oxic conditions
must have prevailed. Bagy.ss increased during two of these
intervals (just prior to the Bolling and during the Younger
Dryas) coincident with increased I/Br ratios [Hendy and
Pedersen, 2005].
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[16] The antiphase behavior of the Bagy.es record relative
to the records of redox-sensitive trace metals such as Mo
and Re indicates that the redox history of the site has
compromised Bag,.ess. Under these conditions Ba dissolves
close to the sediment-water interface and is lost to the
overlying water column. Examples of intervals where
anoxic sediment conditions existed include; the early
Holocene (8 ka), the Bolling (14.7 ka), 18 to 16 ka, and 22.5
to 20.5 ka. The reverse is true (i.e., increases in Bagycess
simultaneous with decreases in trace metals) during IS 2, the
LGM, just prior to the Bolling and during the Allered and
Younger Dryas (Figure 3). Yet, the period of extreme Ba
enrichment between 36 and 34 ka (IS 5 to 8) is different
from these examples in that there is a concurrent increase,
not a decrease, in the concentrations of redox-sensitive trace
metals. Prior to 34 ka, the antiphase relationship between
Ba.y.ess and redox-sensitive trace metals does not exist. It
appears that the waxing and waning of the OMZ that con-
trolled the shallow redox history at ODP Hole 1017E was
not the only influence on Ba,.es at the site.

7. Barium Remobilization and Diagenetic Fronts

[17] Barite may also be formed by direct precipitation.
When Ba-enriched hydrothermal fluids react with seawater
sulfate massive barite deposits form, however, this mecha-
nism is restricted to active hydrothermal regions (e.g., the
East Pacific Rise [Feely et al., 1987]). Nonhydrothermal
barite deposits also occur in layers or concretions in marine
sediments. Massive sediment-hosted barite with no associ-
ated massive sulfide occurs in a variety of geologic settings
and several diagenetic models have been proposed for the
origin of these nonvolcanogenic barites. One favored
mechanism for diagenetic barite formation is the remobili-
zation of Bapjogenic (in the presence of sulfate reduction) and
subsequent precipitation at an authigenic front [Goldberg
and Arrhenius, 1958; Torres et al., 1996].

[18] Below 8 mbsf (38 ka) at ODP Hole 1017E, Baeycess
variations are muted and the values approach or fall below
the detrital values suggesting little to no Bagyc.ss remains
in the sediment. The apparent absence of barite in sedi-
ments older than 37 ka suggests that at some point com-
plete barite dissolution occurred. The extreme Bagycess
enrichment immediately above this zone of Baggcess
absence (i.e., 7-8 mbsf, 38-34 ka) is suggestive of barite
precipitation at a diagenetic front. But what other evidence
do we have for this authigenic front? Limited pore water
studies at ODP Hole 1017E [Lyle et al., 1997] suggest that
pore water SO3 is almost completely depleted (<10 ;M)
somewhere between 5.5 and 9.5 mbsf (Figure le). By 19
mbsf, SO; is fully depleted and methanogenesis occurs
[Lyle et al., 1997]. The major Bacycess peak occurs within
the interval of sulfate depletion (i.e., 6.5 to 8 mbsf) sug-
gesting a linkage between the two.

[19] We hypothesize that BaSO, dissolution in the sul-
fate-depleted interval below ~8 to 9 mbsf resulted in upward
diffusion of Ba®" from the site of dissolution ]zjroducing a
pore water Ba gradient. Simultaneously, SO; migrates
down from regions of high concentration in the upper core.
Where dissolved Ba and SO3 converge in the sediments,
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barite precipitates. Under conditions of ongoing sedimen-
tation and geochemical steady state, continuous repetition of
dissolution, diffusion, and precipitation will transport Ba
progressively upward in the sediment profile and ultimately
concentrate it into a thin layer at the top of the sulfate
reduction zone [Gobeil et al., 1997]. A steeper SOF con-
centration gradient will yield a sharper diagenetic front [de
Lange et al., 1994], and there is no downward migration
of Ba by this mechanism [Gobeil et al., 1997].

[20] The depth of the Ba enrichment peak (Figure 3d)
therefore demonstrates the vertical range of an active dia-
genetic front at ODP Hole 1017E. The modern sulfate
depletion front is not, however, associated with redox sen-
sitive metal enrichment because the significant burial depth
of the front prevents trace metal diffusion from bottom
waters. Most examples of barite fronts have been observed
in deeply buried sediments [Riedinger et al., 2006; Torres
et al., 1996]. However, one recent study found barite
fronts at relatively shallow depth (~4 mbsf) in association
with burial of large amounts of organic matter under the
Benguela upwelling system [Riedinger et al., 2006].

8. Modern Authigenic Front and Submillennial
Climate Change

[21] The coincidence of the Bag,ess peak at 7.2 mbsf with
IS 7 (Figure 3d) may be highly suggestive of a climatic cause
for the enrichment, but Bagy.ss Was not directly manipulated
by submillennial climate change. A sediment facies change
between stadial and interstadial (Figure 3) [Hendy et al.,
2004; Tada et al., 2000] may have led to an indirect influ-
ence on Bagyss. Increased Corg deposition occurred during
interstadials when the local upwelling cell was active [Hendy
et al., 2004]. Past productivity shifts and resulting changes in
sedimentary Corg concentration are currently controlling the
oxidant demand at depth at ODP Hole 1017E. High oxidant
demand would result in a more rapid SO5 reduction and
upward migration of the active SO;  depletion front within
the diagenetic zone. Grain size also has a major affect
on porosity and hence diffusion rates within the sediment.
Fine grain sediment is less porous reducing diffusion rates,
restricting Ba movement up-core and SO3~ down-core, and
hence promoting precipitation of authigenic barite.

[22] Interstadials (IS) 5, 7 and 8 have major element
sediment compositions indicative of low sand and high
clay content, and the fine silt mode grain size decreases
(Figures 3e and 3f) [Hendy et al., 2004]. There is a sharp
increase in Bagy e at IS 8 where dissolution of authigenic
barite slows due to low diffusion rates of SO out of the fine-
grained sediments of the interstadial and low oxidant demand
in the Corg-poor sediments of the preceding stadial event. At
the termination of IS 5, 6 and 7 there are sharp decreases in
Baycess- Here authigenic barite formation is delayed by slow
upward diffusion of Ba through the fine-grained sediment of
IS 5 and 6, despite the SO3 -rich pore waters in the Corg-
poor, coarse sediments of the following stadials. A potential
future scenario could be that the sulfate depletion front will
quickly diffuse upward through the Corg-poor, coarse sedi-
ment of younger stadial events before slowing again at a
younger interstadial event (IS 4). Thus, it would appear that
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the paleoceanographic history of sediment deposition at the
ODP Hole 1017E has preconditioned the position of an active
diagenetic Ba front.

[23] Significant Baeycess enrichments have been identified
in sediments associated with past climatic change, and have
been employed as indicators of increased export production
[Bains et al., 2000; Brumsack, 2006; Paytan et al., 1996;
Paytan et al., 2007; Weldeab et al., 2003]. As Ba is one of
an elemental suite provided by commonly employed bulk
sediment geochemistry techniques, interpretation of this
element is easily incorporated into paleoceanographic
studies. However, caution should be used when the Corg
content of sediments increases dramatically or the oxygen
concentration of overlying bottom waters decreases
[Brumsack, 2006; McManus et al., 1998].

9. Implications of the Ba...s Record at Point
Conception

[24] The sedimentary record from ODP Hole 1017E
serves as a warning for interpretation of Bacycess a8 Bapiogenic
in the geologic record. Knowledge of the depositional
environment (nearshore and within the lower OMZ) would
exclude this site as an appropriate location for Baeycess Use as
a paleoproductivity proxy. Furthermore, although benthic
foraminiferal assemblages [Cannariato and Kennett, 1999]
and redox sensitive metals [Hendy and Pedersen, 2005]
demonstrate that sulfide production occurred at the bottom
water-sediment interface, indicators capable of identifying
the deep diagenetic front within the core are less readily
obtainable.

[25] Changes in OMZ strength, productivity and their
associated proxies are decoupled from the Ba diagenetic
front in both space (~7 mbsf) and time (~35 kyr). Trace
metal enrichment and benthic foraminiferal assemblages
temporally concurrent with the active diagenetic front are
displaced ~7 m up core. Trace metal enrichment and benthic
foraminiferal assemblages that occur at the same strati-
graphic depth and therefore are spatially congruent with the
front were generated 35 kyr before Ba precipitation at the
front occurred. Thus, the benthic foraminiferal assemblage
and trace metal concentration at ODP Hole 1017E are
ineffective in identifying the origin of the most significant
Ba enrichment (the modern mobile Ba diagenetic front) in
the sediments at the site.

[26] The deep sulfate reduction front was identified by
pore water analyses. Pore water analyses are destructive,
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requiring large amounts of sediment, and consequently are
restrictive. Sulfur isotopes within the Bagycess peak could
identify the origin of Bagycss Within ODP Hole 1017E.
Barite produced within the water column should have §**S
values similar to seawater; however as microbial reduction
of dissolved sulfate occurs, **S enrichment in the newly
formed H,S should deplete the remaining pore water sulfate.
Thus the 6**S values of barite forming at the mobile Ba
diagenetic front should be predictably high relative to
Bayiogenic [Paytan et al., 2002]. Finally as Bacycegs 1S sug-
gested to overestimate Bayjogenic due to the incorporation of
terrigenous silicates [Eagle et al., 2003], it has been sug-
gested that in environments where a significant detrital
input occurs, a sequential extraction technique is required
[Reitz et al., 2004]. This precludes new and increasingly
employed analytical methods such as scanning XRF where
bulk sediment Ba values are produced.

10. Conclusions

[27] ODP Hole 1017E, located beneath highly productive
surface waters, provides an excellent opportunity to examine
the burial, dissolution and precipitation of barite in marine
sediment. In this location, high productivity as a result of
persistent upwelling produces biogenic barite deposition. In
the upper few cm of the sediment column, Corg degradation
and low bottom water oxygen concentrations result in sul-
fate reduction, dissolving much of the Bayiogenic and pre-
cipitating Re out of seawater. Consequently, throughout the
upper 7m of the core Bac.ess and Re are antiphase. This
relationship changes within a zone of extreme Bagycess
between 38 and 34 ka (IS 5 to 8) that directly overlies se-
diments where pore water sulfate is completely reduced and
suggests that extreme Baeycess €nrichment is in fact a modern
authigenic front. Changes in sediment grain size and Corg
content, related to rapid climate and associated hydrographic
change, appear to have preconditioned the position of the
authigenic front. Thus, despite the significant temporal
disconnect between rapid climate change events and the
modern authigenic front, the two processes have become
coupled. The results of this test case demonstrate that
Bacycess a8 a paleoproductivity proxy should be carefully
assessed, particularly in nearshore highly productive ocean
settings. Additional information on sedimentary redox
conditions from pore water analysis, and/or sulfur isotopes
should be provided in support of Ba.,..ss based paleopro-
ductivity reconstructions.

Bains, S., R. D. Norris, R. M. Corfield, and
K. L. Faul (2000), Termination of global
warmth at the Palaecocene/Eocene boundary
through productivity feedback, Nature, 407
(6801), 171-174, doi:10.1038/35025035.

Bishop, J. K. B. (1988), The barite-opal-organic
carbon association in oceanic particulate matter,
Nature, 332(6162), 341-343, doi:10.1038/
332341a0.

Brumsack, H. J. (1986), The inorganic chemistry
of Cretaceous black shales (DSDP Leg 41) in
comparison to modern upwelling sediments
from the Gulf of California, in North Atlantic
Paleoceanography, edited by C. P. Summer-

hayes and N. J. Shackleton, Geol. Soc. Spec.
Publ., 21, 447-462.

Brumsack, H. J. (2006), The trace metal content
of recent organic carbon-rich sediments:
Implications for Cretaceous black shale forma-
tion, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
232(2-4), 344-361, doi:10.1016/j.palaeo.
2005.05.011.

Calvert, S. E. (1983), Elemental analyses, in Sed-
imentology, Physical Properties, and Geo-
chemistry in the Initial Reports of the Deep
Sea Drilling Project, edited by G. R. Heath,
pp. 177-191, World Data Cent. for Geophys.
and Mar. Geol., Boulder, Colo.

7 of 9

Calvert, S. E., and T. F. Pedersen (1993), Geo-
chemistry of recent oxic and anoxic sediments:
Implications for the geological record, Mar.
Geol., 113, 67-88, doi:10.1016/0025-3227
(93)90150-T.

Cannariato, K. G., and J. P. Kennett (1999), Cli-
matically related millennial-scale fluctuation
in the strength of the California margin oxy-
gen-minimum zone during the past 60 k.y.,
Geology, 27, 975-978, d0i:10.1130/0091-
7613(1999)027<0975:CRMSFI>2.3.CO;2.

de Lange, G. J.,, B. van Os, P. A. Pruysers, J. J.
Middelburg, D. Castradori, P. van Santvoort,
P. J. Miiller, H. Eggenkamp, and F. J. Prahl



PA4103

(1994), Possible early diagenetic alteration of
paleo proxies, in Carbon Cycling in the Gla-
cial Ocean: Constraints on the Ocean’s Role
in Global Change, edited by R. Zahn et al.,
NATO ASI Ser., Ser. I, 17, 225-258.

Dean, W. E., J. V. Gardner, and D. Z. Piper
(1997), Inorganic geochemical indicators of
glacial-interglacial changes in productivity
and anoxia on the California continental mar-
gin, Geochim. Cosmochim. Acta, 61(21),
4507-4518, doi:10.1016/S0016-7037(97)
00237-8.

Dehairs, F., R. Chesselet, and J. Jedwab (1980),
Discrete suspended particles of barite and bar-
ium cycle in the open ocean, Earth Planet. Sci.
Lett., 49(2), 528-550, doi:10.1016/0012-821X
(80)90094-1.

Dehairs, F., C. E. Lambert, R. Chesselet, and N.
Risler (1987), The biological production of
marine suspended barite and barium cycle in
the western Mediterranean Sea, Biogeochemis-
try, 4(2), 119-140, doi:10.1007/BF02180151.

Dymond, J., and R. Collier (1996), Particulate
barium fluxes and their relationships to bio-
logical productivity, Deep Sea Res., Part I,
43(4-6), 1283-1308, doi:10.1016/0967-0645
(96)00011-2.

Eagle, M., A. Paytan, K. R. Arrigo, G. van Dijken,
and R. W. Murray (2003), A comparison
between excess barium and barite as indicators
of carbon export, Paleoceanography, 18(1),
1021, doi:10.1029/2002PA000793.

Feely, R. A., M. Lewison, G. J. Massoth, G.
Robertbaldo, J. W. Lavelle, R. H. Byrne,
K. L. Vondamm, and H. C. Curl (1987), Com-
position and dissolution of black smoker particu-
lates from active vents on the Juan de Fuca Ridge,
J. Geophys. Res., 92(B11), 11,347-11,363,
doi:10.1029/JB092iB11p11347.

Ganeshram, R. S., R. Francois, J. Commeau, and
S. L. Brown-Leger (2003), An experimental
investigation of Barite formation in seawater,
Geochim. Cosmochim. Acta, 67(14), 2599—
2605, doi:10.1016/S0016-7037(03)00164-9.

Gingele, F., and A. Dahmke (1994), Discrete
barite particles and barium as tracers of paleo-
productivity in South Atlantic sediments, Pa-
leoceanography, 9(1), 151-168, doi:10.1029/
93PA02559.

Gobeil, C., R. W. MacDonald, and B. Sundby
(1997), Diagenetic separation of cadmium
and manganese in suboxic continental margin
sediments, Geochim. Cosmochim. Acta, 61
(21), 4647-4654, doi:10.1016/S0016-7037
(97)00255-X.

Goldberg, E. D., and G. O. S. Arrhenius (1958),
Chemistry of Pacific pelagic sediments, Geo-
chim. Cosmochim. Acta, 13(2-3), 153-212,
doi:10.1016/0016-7037(58)90046-2.

Gonneea, M. E., and A. Paytan (2006), Phase
associations of barium in marine sediments,
Mar. Chem., 100(1-2), 124-135, doi:10.1016/
j.marchem.2005.12.003.

Hendy, I. L. (2010), The paleoclimatic response
of the Southern Californian Margin to the rapid
climate change of the last 60 Ka: A regional
overview, Quaternary Int., 215(1-2), 62-73,
doi:10.1016/j.quaint.2009.06.009.

Hendy, I. L., and T. F. Pedersen (2005), Is pore
water oxygen content decoupled from produc-
tivity on the California Margin? Trace element
results from Ocean Drilling Program Hole
1017E, San Lucia slope, California, Paleocea-
nography, 20, PA4026, doi:10.1029/
2004PA001123.

Hendy, I. L., J. P. Kennett, E. B. Roark, and B. L.
Ingram (2002), Apparent synchroneity of sub-

HENDY: REMOBILIZATION OF BARITE

millennial scale climate events between Green-
land and Santa Barbara Basin, California from
30-10 ka, Quat. Sci. Rev., 21(10), 1167-1184,
doi:10.1016/S0277-3791(01)00138-X.

Hendy, 1. L., T. F. Pedersen, J. P. Kennett, and
R. Tada (2004), Intermittent existence of a
southern Californian upwelling cell during sub-
millennial climate change of the last 60 kyr,
Paleoceanography, 19, PA3007, doi:10.1029/
2003PA000965.

Imbrie, J., and N. G. Kipp (1971), A new micro-
paleontology method for quantitative paleocli-
matology: Application to a late Pleistocene
Caribbean core, in Late Cenozoic Glacial
Ages, edited by K. K. Turekian, pp. 71-181,
Yale Univ. Press, New Haven, Conn.

Irino, T., and T. Pedersen (2000), Geochemical
character of glacial to interglacial sediments
at Site 1017, Southern Californian Margin:
Minor and trace elements, Proc. Ocean Drill.
Program, Sci. Results, 167, 263-271.

Jeandel, C., B. Dupre, G. Lebaron, C. Monnin,
and J. F. Minster (1996), Longitudinal distribu-
tions of dissolved barium, silica and alkalinity in
the western and southern Indian Ocean, Deep
Sea Res., Part I, 43(1), 1-31, doi:10.1016/
0967-0637(95)00098-4.

Kennett, J. P., E. B. Roark, K. C. Cannariato, B. L.
Ingram, and R. Tada (2000), Latest Quaternary
paleoclimatic and radiocarbon chronology,
Hole 1017E, southern California margin, Pro-
ceedings of the Ocean Drilling Program, Scien-
tific Results, 167, 249-254.

Klump, J., D. Hebbeln, and G. Wefer (2000),
The impact of sediment provenance on bar-
ium-based productivity estimates, Mar. Geol.,
169(3-4), 259-271, doi:10.1016/S0025-3227
(00)00092-X.

Leinen, M., and N. Pisias (1984), An objective
technique for determining end-member compo-
sitions and for partitioning sediments according
to their sources, Geochim. Cosmochim. Acta,
48(1), 47-62, doi:10.1016/0016-7037(84)
90348-X.

Lyle, M., 1. Koizumi, and C. Richter (1997),
Proceedings of the Ocean Drilling Program,
Initial Reports, vol. 167, Ocean Drill. Pro-
gram, College Station, Tex.

McManus, J., W. M. Berelson, G. P. Klinkhammer,
T. E. Kilgore, and D. E. Hammond (1994),
Remobilization of barium in continental mar-
gin sediments, Geochim. Cosmochim. Acta,
58(22), 4899-4907, doi:10.1016/0016-7037
(94)90220-8.

McManus, J., et al. (1998), Geochemistry of bar-
ium in marine sediments: Implications for its
use as a paleoproxy, Geochim. Cosmochim.
Acta, 62(21-22), 3453-3473, doi:10.1016/
S0016-7037(98)00248-8.

Monnin, C., C. Jeandel, T. Cattaldo, and
F. Dehairs (1999), The marine barite satura-
tion state of the world’s oceans, Mar. Chem.,
65(3—4), 253-261, doi:10.1016/S0304-4203
(99)00016-X.

Paytan, A., and E. M. Griffith (2007), Marine
barite: Recorder of variations in ocean export
productivity, Deep Sea Res., Part II, 54(5-7),
687-705, doi:10.1016/j.dsr2.2007.01.007.

Paytan, A., and M. Kastner (1996), Benthic Ba
fluxes in the central equatorial Pacific, impli-
cations for the oceanic Ba cycle, Earth Planet.
Sci. Lett., 142(3-4), 439-450, doi:10.1016/
0012-821X(96)00120-3.

Paytan, A., M. Kastner, and F. P. Chavez (1996),
Glacial to interglacial fluctuations in productiv-
ity in the equatorial Pacific as indicated by

8 of 9

PA4103

marine barite, Science, 274(5291), 13551357,
doi:10.1126/science.274.5291.1355.

Paytan, A., S. Mearon, K. Cobb, and M. Kastner
(2002), Origin of marine barite deposits: Sr
and S isotope characterization, Geology, 30,
747-750, doi:10.1130/0091-7613(2002)
030<0747:00MBDS>2.0.CO:;2.

Paytan, A., K. Averyt, K. Faul, E. Gray, and
E. Thomas (2007), Barite accumulation, ocean
productivity, and Sr/Ba in barite across the
Paleocene-Eocene Thermal Maximum, Geol-
ogy, 35, 1139-1142, doi:10.1130/G24162A.1.

Reitz, A., K. Pfeifer, G. J. de Lange, and J. Klump
(2004), Biogenic barium and the detrital Ba/Al
ratio: A comparison of their direct and indirect
determination, Mar. Geol., 204(3—4), 289-300,
doi:10.1016/S0025-3227(04)00004-0.

Riedinger, N., S. Kasten, J. Groger, C. Franke,
and K. Pfeifer (2006), Active and buried
authigenic barite fronts in sediments from
the Eastern Cape Basin, Earth Planet. Sci. Lett.,
241(3-4), 876-887, doi:10.1016/j.epsl.
2005.10.032.

Schroeder, J. O., R. W. Murray, M. Leinen, R. C.
Pflaum, and T. R. Janecek (1997), Barium in
equatorial Pacific carbonate sediment: Terrige-
nous, oxide, and biogenic associations, Paleo-
ceanography, 12(1), 125-146, doi:10.1029/
96PA02736.

Seki, O., R. Ishiwatari, and K. Matsumoto
(2002), Millennial climate oscillations in NE
Pacific surface waters over the last 82 kyr:
New evidence from alkenones, Geophys.
Res. Lett., 29(23), 2144, doi:10.1029/
2002GL015200.

Steno, N., and J. G. Winter (1916), The Prodromus
of Nicolaus Steno’s Dissertation Concerning a
Solid Body Enclosed by Process of Nature
Within a Solid, vii, pp. 169-283, Macmillan,
New York.

Sternberg, E., C. Jeandel, E. Robin, and M. Souhaut
(2008), Seasonal cycle of suspended barite in
the Mediterranean Sea, Geochim. Cosmo-
chim. Acta, 72(16), 4020-4034, doi:10.1016/
j-gca.2008.05.043.

Tada, R., S. Sato, T. Irino, H. Matsui, and J. P.
Kennett (2000), Millennial-scale composi-
tional variations in Late Quaternary sediments
at Site 1017, Southern California, Proc. Ocean
Drill. Program, Sci. Results, 167, 277-296.

Torres, M. E., H. J. Brumsack, G. Bohrmann,
and K. C. Emeis (1996), Barite fronts in con-
tinental margin sediments: A new look at bar-
ium remobilization in the zone of sulfate
reduction and formation of heavy barites in
diagenetic fronts, Chem. Geol., 127(1-3),
125-139, doi:10.1016/0009-2541(95)00090-9.

van Geen, A., R. G. Fairbanks, P. Dartnell, M.
McGann, J. V. Gardner, and M. Kashgarian
(1996), Ventilation changes in the northeast
Pacific during the last deglaciation, Paleocea-
nography, 11(5), 519-528, doi:10.1029/
96PA01860.

van Os, B. J. H., J. J. Middelburg, and
G. J. Delange (1991), Possible diagenetic
mobilization of barium in sapropelic sediment
from the eastern Mediterranean, Mar. Geol.,
100(1-4), 125-136, doi:10.1016/0025-3227
(91)90229-W.

Von Breymann, M. T., K. C. Emeis, and E. Suess
(1992), Water depth and diagenetic constraints
on the use of barium as a paleoproductivity
indicator, in Upwelling Systems: Evolution
Since the Early Miocene, edited by C. P. Sum-
merhayes et al., Geol. Soc. Spec. Publ., 64,
273-284.



PA4103 HENDY: REMOBILIZATION OF BARITE PA4103

Weldeab, S., K. C. Emeis, C. Hemleben, Zheng, Y., A.v. Geen, R. Anderson, J. Gardner,
G. Schmiedl, and H. Schulz (2003), Spatial and W. Dean (2000), Intensification of the I. L. Hendy, Department of Geological Sciences,
productivity variations during formation of northeast Pacific oxygen minimum zone during  University of Michigan, 1100 N. University Ave.,
sapropels S5 and S6 in the Mediterranean the Bolling/Allered warm period, Paleoceano- ~ Ann Arbor, MI 48109, USA. (ihendy@umich.edu)
Sea: Evidence from Ba contents, Palaeogeogr. graphy, 15(5), 528-536, doi:10.1029/
Palaeoclimatol. Palaeoecol., 191(2), 169—190, 1999PA000473.
doi:10.1016/S0031-0182(02)00711-3.

9 of 9




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


