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Summary. Restricted mean lifetime is often of direct interest in epidemiologic studies involving censored survival times.
Differences in this quantity can be used as a basis for comparing several groups. For example, transplant surgeons, nephrolo-
gists, and of course patients are interested in comparing posttransplant lifetimes among various types of kidney transplants
to assist in clinical decision making. As the factor of interest is not randomized, covariate adjustment is needed to account
for imbalances in confounding factors. In this report, we use semiparametric theory to develop an estimator for differences
in restricted mean lifetimes although accounting for confounding factors. The proposed method involves building working
models for the time-to-event and coarsening mechanism (i.e., group assignment and censoring). We show that the proposed
estimator possesses the double robust property; i.e., when either the time-to-event or coarsening process is modeled correctly,
the estimator is consistent and asymptotically normal. Simulation studies are conducted to assess its finite-sample performance
and the method is applied to national kidney transplant data.

Key words: Average causal effect; Cox regression; Cumulative treatment effect; Double robust estimator; Inverse
weighting.

1. Introduction
It is often of interest in biomedical studies to compare groups
of subjects with respect to their survival time. In almost all
cases, the study’s observation period may conclude before all
subjects have experienced the event of interest, resulting in
censored data. In observational studies, lack of randomiza-
tion requires that the groups of interest be compared in a
manner which accounts for the possibility that the group-
specific adjustment covariate distributions may be different.
Proportional hazards regression (Cox, 1972) has become the
dominant method of survival analysis in settings where co-
variate adjustment is needed. In the application of the Cox
model, groups may be contrasted through the hazard ratio,
provided that the group-specific hazard functions are propor-
tional. If proportionality fails, the “overall” hazard ratios es-
timated by a Cox model with time-constant group effects will
have an awkward interpretation, as identified by Struthers
and Kalbfleisch (1986). Moreover, investigators are often more
interested in contrasts among mean survival times than ratios
of hazards. Because the baseline hazard is handled nonpara-
metrically, restricted mean lifetime is often estimated when
Cox regression is employed, and several methods have been
proposed for this purpose (e.g., Karrison, 1987; Zucker, 1998;
Chen and Tsiatis, 2001).

If one wished to compare group-specific restricted mean
survival time, two general approaches could be employed.
In the first, differences in restricted mean lifetime are esti-
mated via directly modeling the relationship of survival time
with covariates, then explicitly averaging across the fitted val-

ues from such models for each treatment (Karrison, 1987;
Zucker, 1998; Chen and Tsiatis, 2001). Zhang and Schaubel
(2011) developed methods for comparison of group-specific
restricted mean lifetimes in the presence of dependent cen-
soring based on this general idea. A second possibility would
be to use inverse probability of treatment weighting (Hub-
bard, van der Laan, and Robins, 1999; Wei, 2008) to essen-
tially equalize the adjustment covariate distribution across
groups; in this case, the probability of receiving treatment
conditional on covariates is modeled. Covariates operate as
confounding factors when they affect both survival time and
treatment assignment. The two aforementioned methods lead
to valid inference, under appropriate conditions regarding
censoring, because each of them eliminates confounding by
tackling one of the two pathways. With respect to censor-
ing, the first approach requires that survival and censoring
time are independent conditional on treatment and baseline
covariates; whereas the second approach requires the more
restrictive conditional independence assumption given treat-
ment only. Both assumptions can be relaxed if the relation-
ship of censoring and covariates is further modeled, as in
Zhang and Schaubel (2011). If censoring has been appropri-
ately accounted for, either by exploiting its conditional inde-
pendence or through modeling, each of the first and second
methods leads to consistent and asymptotically normal esti-
mators of treatment-specific restricted mean lifetimes (and,
hence, between-treatment differences therein) under correct
specification of the regression models for survival time or
treatment assignment probability, respectively.
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Restricted mean lifetime is a very meaningful quantity in
the solid organ transplant setting. For example, a kidney
transplant is typically not going to last the remainder of the
transplant recipient’s life, particularly if the deceased organ
donor was older than the recipient. This makes restricted
mean lifetime a more useful quantity than mean survival
time itself. Consider a study of simultaneous pancreas-kidney
(SPK) transplant recipients. Pancreas transplantation is risky
and controversial, and its merits are not universally accepted
by nephrologists. A useful way to evaluate the benefit receiv-
ing a pancreas (in addition to a kidney) is to compare out-
comes between SPK and kidney-alone (KA) recipients. Be-
cause the majority of SPK recipients are Type I diabetics, it
makes sense to restrict attention to this subgroup of patients.
Typically for SPK patients, the pancreas is transplanted along
with the kidney in an attempt to, in a sense, “cure” the dia-
betes. However, the surgery is considerably more complicated,
meaning that survival may actually end up being lower for
SPK than KA patients, despite the potential benefits of suc-
cessful pancreas transplantation. As described in the preced-
ing paragraph, one could compare SPK and KA transplanta-
tion with respect to average restricted mean lifetime by either
modeling posttransplant survival times, or by modeling the
probability that a pancreas is received. Because it is possible
for at least one of the two models to be incorrect, it would
be preferable to use a method that requires the correctness of
only one model.

In this article, we propose a method which adjusts for con-
founding factors by modeling covariate effects on each of sur-
vival time, treatment assignment, and censoring. The method
is developed from the perspective where the treatment assign-
ment and censoring are viewed as a coarsening (generalization
of missing data) process, and will be explained in Section 3.
The benefit of modeling both the death hazard and coars-
ening process is that valid inference on causal parameters is
obtained when either one of two processes are modeled cor-
rectly; i.e., either the model for survival time is correct, or
the models for both treatment assignment and censoring are
correct. Such a property has been termed double-robustness
by several previous authors who developed analogous meth-
ods in other contexts; e.g., Scharfstein, Rotnitzky, and Robins
(1999); Robins, Rotnitzky, and van der Laan (2000); van der
Laan and Robins (2003), Lunceford and Davidian (2004); and
Bang and Robins (2005).

The remainder of the article is organized as follows. In Sec-
tion 2, we set up the requisite notation and state the required
assumptions. We describe the proposed double-robust method
in Section 3. Asymptotic results are provided in Section 4,
with their applicability to finite samples assessed through sim-
ulation in Section 5. The proposed method is then applied
in Section 6 to compare SPK and KA transplants using data
from the Scientific Registry of Transplant Recipients (SRTR).
The article concludes with some remarks in Section 7.

2. Notation and Assumptions
In this section we set up the requisite notation. Let A denote
the treatment group, which is not randomized, and for sim-
plicity of presentation we assume there are only two treatment
groups to be compared (A = 0, 1); extension to situations
with more than two groups can be accomplished, as we dis-

cuss later. We let T denote survival time, which is subject to
right censoring, C . We assume that T and C are independent
given A and baseline covariates Z , denoted by T⊥⊥C |(A, Z),
where ⊥⊥ denotes “independent of.” We let U = min(T, C)
and Δ = I(T ≤ C). Because A is not randomized, imbalances
in baseline covariates may exist between the two groups. Ele-
ments of the Z vector which affect both A assignment and T
are referred to as confounders and require adjustment in order
for comparisons between the A = 1 and A = 0 groups to be
valid. In a study with n subjects, the observed data may be
summarized by {Ai , Ui , Δi , Z i}, assumed to be independent
and identically distributed across subjects i = 1, . . . , n.

Treatment groups are to be compared in terms of restricted
mean lifetime up to time L, min(T, L). In particular, interest
focuses on the comparison of average survival time up to time
L under two specific scenarios: (i) the treatment is applied to
the entire population, in which case Ai = 1 for all i = 1, . . . , n,
and (ii) the treatment is applied to no member of the popula-
tion, such that Ai = 0 for i = 1, . . . , n. The causal parameter
of interest may be defined in terms of potential outcomes;
as studied, for example, by Rubin (1974, 1978) in the general
causal inference setting and by Chen and Tsiatis (2001) in the
context of censored data. Let T j (j = 0, 1) denote the poten-
tial (or counterfactual) lifetime of a randomly selected subject
from the population under study if, possibly contrary to fact,
s/he received treatment A = j. Therefore, there is a two- di-
mensional potential outcome (T 0, T 1) corresponding to each
subject. The treatment-specific difference in restricted mean
lifetime is defined as δ = E{min(T 1, L)} − E{min(T 0, L)};
which is equal to

∫ L

0 {S1(t) − S0(t)}dt, where Sj (t) represents
the survival function of T j . We set μj = E{min(T j , L)}. Be-
cause μj represents a population mean, a natural estimator
would be n−1

∑n

i=1 min(T j
i , L), with an estimator for δ defined

accordingly. However, such estimators cannot be implemented
in practice because potential outcomes T 0

i and T 1
i can never

be simultaneously observed for subject i, even if there were no
censoring. That is, for a subject who actually receives Ai = j,
the observed lifetime Ti is equal to her/his potential lifetime
T j

i , with T 1−j
i then being missing. Because subjects who re-

ceive A = j are not a random sample of the population, the
sample average of restricted lifetimes across subjects who ac-
tually receive A = j does not consistently estimate μj and,
consequently, differences in such sample averages do not con-
sistently estimate the causal parameter of interest, δ. Specifi-
cally, n−1

j

∑n

i=1 Aij min(T j
i , L), and n−1

1

∑n

i=1 Ai1 min(T 1
i , L) −

n−1
0

∑n

i=1 Ai0 min(T 0
i , L), where Aij = I(Ai = j), j = 0, 1 and

nj =
∑n

i=1 Aij , do not consistently estimate μj or δ, respec-
tively, in the presence of confounders.

Valid inference is possible when all confounders are cap-
tured in the data; i.e., there are no unmeasured confounders.
Formally, this assumption can be stated as (T 1, T 0)⊥⊥A|Z ,
which can be interpreted as the assignment of A being ran-
dom, conditional on Z . Under this assumption, P (T > t|A =
j, Z) = P (T j > t|A = j, Z) = P (T j > t|Z), which we denote
by Sj (t|Z), where the first equality is because T = T j , if
A = j, and the second equality is because of the no unmea-
sured confounders assumption. As Sj (t) = EZ {Sj (t|Z)}, it is
straightforward that δ =

∫ L

0 EZ {S1(t|Z) − S0(t|Z)}dt, where
the expectation EZ is taken with respect to the marginal
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distribution of Z . This assumption allows us to represent
the causal parameter, defined in terms of potential outcomes
(T 1, T 0), as a function of observed variates. Generally, the no-
unmeasured-confounders assumption is essential to carrying
out valid inference pertaining to the counterfactual variates
using only the observed data.

3. Proposed Method
We propose a method based on semiparametric theory, for
which the estimators are valid under the frequently employed
assumption that T⊥⊥C |(A, Z). The resulting estimator pos-
sesses the so-called double robustness property. Before intro-
ducing the proposed method, we explain its motivation and
its relationship to existing methods.

3.1 Motivation and Connection to Existing Methods
First, let us assume that, contrary to fact, treatment A =
j was applied to the entire population. Suppose in addi-
tion, for the time being, that survival and censoring times
were independent given treatment; i.e., T⊥⊥C |A. Under such
assumptions, a natural estimator for μj would then be∫ L

0 exp{−Λ̂�
j (t)}dt, where

Λ̂�
j (t) =

∫ t

0

n∑
i=1

dNi (u)

n∑
i=1

Yi (u)

,

is the Nelson–Aalen estimator for Λj (t), the marginal cumula-
tive hazard function of T j , with Ni (t) = I(Ui ≤ t, Δi = 1) and
Yi (t) = I(Ui ≥ t) denoting the death counting process and
at-risk process, respectively. The estimator Λ̂�

j (t) or, equiv-
alently, dΛ̂�

j (t) can be viewed as the solution to the following
estimating equation,

n∑
i=1

{dNi (t) − Yi (t)dΛj (t)} = 0,

which is an unbiased estimating equation in the setting where
all subjects receive treatment A = j. In reality, not everyone
in the population receives treatment j and, when confounders
exist, treatment-specific Nelson–Aalen estimators do not con-
sistently estimate Λj (t) for j = 0, 1.

It is well established that, under the no-unmeasured-
confounders assumption specified previously, inverse probabil-
ity of treatment weighted (IPTW) estimating equations lead
to consistent estimators (Robins, Rotnitzky, and Zhao, 1994;
Lunceford and Davidian, 2004; Tsiatis, 2006). IPTW estimat-
ing equations are developed from the perspective of missing
data problems; i.e., the treatment indicator Aij may be viewed
as a missingness indicator for the counterfactual outcome T j

i

(Aij = 1, if T j
i is observed and Aij = 0, if T j

i is missing).
Tsiatis (2006; chapter 7) discusses how to construct inverse
probability weighted (IPW) estimating equations for general
cases. Specifically, for estimating dΛj (t), assuming again that
T⊥⊥C |A, the IPTW estimating equation is given by

n∑
i=1

wij (θ̂){dNi (t) − Yi (t)dΛj (t)} = 0, (1)

where wij (θ̂) = Aij /pij (θ̂) and pij (θ̂) estimates P (Aij = 1|Z i ),
modeled through a parametric model (e.g., logistic regression)
with parameter θ. Solving this equation leads to the IPTW
estimator proposed by Wei (2008),

Λ̂inv
j (t) =

∫ t

0

n∑
i=1

wij (θ̂)dNi (u)

n∑
i=1

wij (θ̂)Yi (u)

. (2)

Under the assumption that T⊥⊥C |A, if the assumed model for
P (Aij = 1|Z i ) is correct, then Λ̂in v

j (t) is consistent for Λj (t). If
not, then (2) fails to be consistent for Λj (t), even if treatment
assignment is modeled correctly.

In most observational studies, the assumption that T⊥⊥C |A
is too restrictive. A more realistic assumption would be that
T⊥⊥C |(A, Z), which is the setting we consider in developing
the proposed estimator.

3.2 Coarsened Data
The IPTW estimating equation was developed from the per-
spective of missing data problems. Thus far, the missingness
we have considered pertains to subject i having missing expe-
rience with respect to the group to which the subject does
not belong. Let us now consider a broader view of miss-
ingnes, in particular, the more general concept of coarsening
(Heitjan and Rubin, 1991; Gill, van der Laan, and Robins,
1997; Tsiatis, 2006). In the case of missing data, some com-
ponents of the full data are not observed for some subjects.
More generally, in the case of coarsened data, one observes
a many-to-one function of the full data for some of the sub-
jects in the sample and different many-to-one functions may
be observed for different subjects. Specific to our setting, the
full data that one would like to observe are coarsened be-
cause of treatment assignment and censoring. In the context
of estimating μj , the full data that one would like to observe is
(T j

i , Z i ), i = 1, . . . , n. When Aij = 0, T j
i is completely missing

and, for subject i, one observes Z i , which is a many-to-one
function of the full data. When Aij = 1 and Ci = t < T j

i , the
many-to-one function that one observes is {I(T j

i ≥ t), Z i}.
The coarsening mechanism in our case is of a special form,
known as monotone coarsening (Tsiatis, 2006; chapter 8),
which generalizes the notion of monotone missingness. The
observed data for subject i is in the most coarsened form when
Aij = 0, less coarsened when Aij = 1 and Ci = t1 < T j

i , even
less coarsened when Aij = 1 and Ci = t2 < T j

i , t1 < t2, and
not coarsened at all when Aij = 1 and Ci ≥ T j

i . In summary,
coarsening prevents one from observing the full data that one
would like to observe and in our setting, the full data, T j

i ,
i = 1, . . . , n, are subject to coarsening at time t = 0, because
of treatment assignment, and at any time t > 0 thereafter,
because of censoring.

Using the IPW principle, one can inverse weight an unbi-
ased estimating function based on full data by the probability
of observing the complete case (not being coarsened), i.e., the
probability of assigning to treatment j and not being censored
by t. The IPW estimating equation for dΛj (t) based on the
observed data is
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n∑
i=1

wij (θ̂)eΛ̂C
ij (t)

κi (t)dMT
i (t; dΛj )

≡
n∑

i=1

wij (θ̂)eΛ̂C
ij (t){dNi (t) − Yi (t)dΛj (t)} = 0, (3)

where κi (t) = I(Ci ≥ Ti or Ci ≥ t), dMT
i (t; dΛj ) = dNT

i (t) −
Y T

i (t)dΛj (t), NT
i (t) = I(Ti ≤ t), and Y T

i (t) = I(Ti ≥ t), with
ΛC

ij (t) denoting the cumulative conditional hazard function
of C at t given (Z i , Ai = j). Note that, we use κi (t) defined
above, as opposed to I(Ci ≥ Ti ), because the more explicit
formulation is useful in the asymptotic derivations given in
the Web Appendix. The key difference between (3) and (1)
is that (3) is weighted by the estimated inverse of the proba-

bility of remaining uncensored, e
Λ̂C

ij (t). In (1), such additional
weighting is unnecessary under the assumption that T⊥⊥C |A.

3.3 Proposed Double-Robust Method
The IPW estimating equation can be augmented in such a
way that the resulting estimator is double robust (Scharfstein
et al., 1999; Tsiatis, 2006). In the case of monotone coarsening,
a double-robust estimating equation can be written in closed
form, as discussed in detail in Tsiatis (2006, chapter 10). Using
similar principles, we construct a double-robust estimator for
dΛj (t) by augmenting (3) as follows,

n∑
i=1

[
wij (θ̂)eΛ̂C

ij (t)
κi (t)dMT

i (t; dΛj ) + Aij (t)
]

= 0, (4)

where the augmentation term is defined as

Aij (t) = {1 − wij (θ̂)}E
{
dMT

i (t; dΛj )|Aij = 1, Z i

}
+ wij (θ̂)

∫ t

0

E
{
dMT

i (u; dΛj )|Aij = 1, Z i , Ui ≥ u
}

× e
Λ̂C

ij (u )
dM̂C

ij (u),

with dM̂C
ij (u) = dNC

ij (u) − Yij (u)dΛ̂C
ij (u) and NC

ij (t) =
Aij I(Ui ≤ t, Δi = 0). The resulting estimator for dΛj (t) is
double-robust in the sense that it will be consistent if either
the models corresponding to the weight (product of the in-
verse of probabilities of treatment assignment and censoring)
or the model corresponding to E{dMT

i (t; dΛj )|Z i , Aij = 1}
are correctly specified. Solving this equation leads to the
following estimator for Λj (t),

∫ t

0

n∑
i=1

{
wij (θ̂)eΛ̂C

ij (t)
dNi (u) + AN

ij (u)
}

n∑
i=1

{
wij (θ̂)eΛ̂C

ij (t)
Yi (u) + AY

ij (u)
} ,

where we specify

AN
ij (u) = {1 − wij (θ̂)}E

{
dNT

i (u)|Z i , Aij = 1
}

+ ŵij (θ̂)
∫ t

0

E
{
dNT

i (u)|Aij = 1, Z i , Ui ≥ u
}

× e
Λ̂C

ij (u )
dM̂C

ij (u)

AY
ij (u) = {1 − wij (θ̂)}E

{
Y T

i (u)|Z i , Aij = 1
}

+ wij (θ̂)
∫ t

0

E
{
Y T

i (u)|Aij = 1, Z i , Ui ≥ u
}

× e
Λ̂C

ij (u )
dM̂C

ij (u).

In practice, the expectations need to be replaced by their em-
pirical counterparts. The fact that NT

i (t) and Y T
i (t) are func-

tions of Ti suggests modeling Ti as a function of the factors
which potentially affect it, namely Ai and Z i .

In the next subsection, we describe in detail the proposed
method and why it exhibits the double-robust property.

3.4 Assumed Models and Proposed Estimator
In our proposed method, we build working models for (i) sur-
vival time T given A and Z , (ii) treatment A given covariates
Z , and (iii) censoring C given A and Z . Specifically, for each
treatment A = 0, 1, we assume a proportional hazards model
(Cox, 1972, 1975),

λij (t) ≡ λ(t|Ai = j, Z i ) = λ0j (t) exp
(
βT

j Z i

)
, j = 0, 1, (5)

where λ(t|Ai = j, Z i ) is the conditional hazard function given
Z i and [Ai = j] and λ0j (t) is an unspecified treatment-specific
baseline hazard function. Estimators for βj and Λ0j (t) =∫ t

0 λ0j (u)du can be obtained by the maximum partial like-

lihood (PL) estimator, β̂j , and the Breslow (1972) esti-
mator, Λ̂0j (t), respectively. Defining the counting process
by Nij (t) = Aij I(Ui ≤ t, Δi = 1) and the at-risk process by
Yij (t) = Aij I(Ui ≥ t), β̂j is the solution to the estimating
equation

n∑
i=1

∫ τ

0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z i −

n∑
i=1

Z i exp
(
βT

j Z i

)
Yij (t)

n∑
i=1

exp
(
βT

j Z i

)
Yij (t)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
dNij (t) = 0,

j = 0, 1,

where τ satisfies P (U ≥ τ ) > 0 and, in practice, can be set to
the maximum observation time; although the Breslow estima-
tor for Λ0j is defined as

Λ̂0j (t) =
∫ t

0

n∑
i=1

dNij (t)

n∑
i=1

exp(β̂j Z i )Yij (t)

, j = 0, 1.

Finally, estimators for Λij (t) =
∫ t

0 λij (u)du can be obtained

by Λ̂ij (t) = exp(β̂j Z i )Λ̂0j (t). If model (5) is correct, then β̂j
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and Λ̂0j consistently estimate βj and Λ0j , respectively. Other-
wise, β̂j and Λ̂0j will not converge to their respective targets
but, under suitable regularity conditions (listed in the Web
Appendix) will converge in probability to well-defined limits
(Struthers and Kalbfleisch, 1986; Lin and Wei, 1989) which
we denote by β∗

j and Λ∗
0j (t), respectively. For notational con-

venience, we also define Λ∗
ij (t) = exp(β∗

j Z i )Λ∗
0j (t).

We also assume that treatment assignment is governed by
the following logistic model,

logit{P (Ai = 1|Z i )} = θT X i , (6)

where X i is a vector made up of (possibly trans-
formed) elements of Z i and an intercept. Inference on
model (6) can be made through maximum-likelihood, with the
maximum-likelihood estimator for θ, θ̂, solving the estimating
equation,

n∑
i=1

X i{Ai − expit(θT X i )} = 0, (7)

where expit(u) = exp(u)/{1 + exp(u)}. If model (6) is correct,
then θ̂ consistently estimates the true parameter, θ. Other-
wise, under suitable regularity conditions (listed in the Web
Appendix), θ̂ converges to a limit, denoted θ∗, which need
not equal θ. We define pij (θ) = expit{(−1)j+1θT X i}, which
equals the probability of receiving treatment A = j when the
assumed model is correct.

With respect to censoring, for each treatment A = 0, 1, we
assume a proportional hazards model,

λC
ij (t) ≡ λC (t|Ai = j, Z i ) = λC

0j (t) exp
(
αT

j ZC
i

)
, j = 0, 1,

(8)

where λC (t|Ai = j, Z i ) is the conditional hazard function of
Ci given Z i and [Ai = j], λC

0j (t) is an unspecified treatment-
specific baseline hazard function of Ci , and ZC

i is a vec-
tor made up of elements of Z i with a superscript C indi-
cating that the vector may be different from that in model
(5). As described previously, estimators for αj and ΛC

0j (t) =∫ t

0 λC
0j (u)du can be obtained by the maximum-PL estima-

tor and the Breslow estimator, respectively, denoted by α̂j

and Λ̂C
0j (t). Estimators for ΛC

ij (t) can be obtained by Λ̂C
ij (t) =

exp(α̂T
j ZC

i )Λ̂C
0j (t). Similarly, if model (8) is correct, α̂j and

Λ̂C
0j (t) consistently estimate αj and ΛC

0j (t), respectively; oth-
erwise, under suitable regularity conditions (see Web Ap-
pendix), convergence is instead to limits α∗

j and ΛC ∗
0j (t). We

define ΛC ∗
ij (t) = exp(α∗T

j ZC
i )ΛC ∗

0j (t).
The proposed estimator for Λj (t) is given by

Λ̂j (t) =
∫ t

0

n−1
n∑

i=1

[
wij (θ̂)eΛ̂C

j
(u )

dNij (u) + e−Λ̂ij (u )dΛ̂ij (u){1 − wij (θ̂)Ĝij (u)}
]

n−1

n∑
i=1

[
wij (θ̂)eΛ̂C

ij (u )
Yij (u) + e−Λ̂ij (u ){1 − wij (θ̂)Ĝij (u)}

] , (9)

where Ĝij (u) = 1 − ∫ u

0 e
Λ̂C

ij (s)+Λ̂ij (s)
dM̂C

ij (s). Consequently, one

can estimate Sj (t) by Ŝj (t) = e−Λ̂j (t) and μj by μ̂j =

∫ L

0 Ŝj (u)du. Finally, the proposed estimator for δ is given by

δ̂ = μ̂1 − μ̂0. The proposed estimators for μj and δ are consis-
tent and asymptotically normal when (i) the working model
(5) is correct, or (ii) the working models (6) and (8) are both
correct.

The proposed estimator for Λj (t) in (9) differs from the
IPTW estimator of Wei (2008), from (2), in two ways.
First, the weight in (2) is the inverse of the probabil-
ity of treatment assignment, although the weight in (9) is
also comprised of the inverse probability remaining uncen-
sored. Second, there are additional terms in the numera-
tor, n−1

∑n

i=1[e
−Λ̂ij (u )dΛ̂ij (u){1 − wij (θ̂)Ĝij (u)}], and denom-

inator, n−1
∑n

i=1[e
−Λ̂ij (u ){1 − wij (θ̂)Ĝij (u)}], which we refer to

as augmentation terms. From this perspective, the proposed
estimator may be viewed as an augmented IPW estimator
(Tsiatis, 2006).

When the models for treatment assignment and censoring
are both correctly specified, wij (θ̂) converges in probability

to wij (θ) ≡ Aij /pij (θ), and e
Λ̂C

ij (u ) converges to e
ΛC

ij (u ). Then,
using an iterated conditional expectation argument by first
conditioning on Z i or (Ai = j, Z i ), the augmentation term in
the denominator converges in probability to 0 because

n−1
n∑

i=1

[
e−Λ̂ij (u )

{
1 − wij (θ̂) + wij (θ̂)

×
∫ u

0

e
Λ̂C

ij (s)+Λ̂ij (s)
dM̂C

ij (s)

}]
p−→ E[e−Λ∗

ij (u ){1 − wij (θ)}]

+E

{
e
−Λ∗

ij (u )
wij (θ)

∫ u

0

e
ΛC

ij (s)+Λ∗
ij (s)

dMC
ij (s)

}
=E

{
e
−Λ∗

ij (u )

[
1−E

{
Aij

pij (θ)

∣∣∣∣Z i

}]}
+E

[
e
−Λ∗

ij (u )
wij (θ)E

{∫ u

0

e
ΛC

ij (s)+Λ∗
ij (s)

dMC
ij (s)|Ai = j, Z i

}]
,

= 0,

where dMC
ij (s) = dNC

ij (s) − Yij (s)dΛC
ij (s) is a martingale in-

crement when the model for C is correctly specified. Sim-
ilarly, iterating conditional expectations, the augmentation
term from the numerator also converges in probability to zero
under the same conditions. Therefore, even if the assumed
hazard function model for T is incorrect, when the assumed

models for treatment probability and censoring are correct,
we would expect that the proposed estimator converges to the
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same limit as the IPW estimator, the consistency of which can
be understood intuitively. Under the same conditions, the pro-
posed estimator for Λj (t) is consistent; hence the consistency
of Sj (t) and δ.

The consistency of the proposed estimator when the model
for survival time is correct but the model for treatment prob-
ability or censoring is possibly incorrect is less obvious. The
proposed estimator can be rewritten as

∫ t

0

n−1
n∑

i=1

[
e−Λ̂ij (u )dΛ̂ij (u) +

{
wij (θ̂)eΛ̂C

j
(u )

κi (u)dNT
i −e−Λ̂ij (u )dΛ̂ij (u)wij (θ̂)Ĝij (u)

}]
n−1

n∑
i=1

[
e−Λ̂ij (u ) +

{
wij (θ̂)eΛ̂C

ij (u )
κi (u)Y T

i (u)−e−Λ̂ij (u )wij (θ̂)Ĝij (u)
}] , (10)

which can be shown to be consistent for Λj (t), if λij (t) is mod-
eled correctly by (5). To see this, note the first term of the

denominator, n−1
∑n

i=1 e−Λ̂ij (u ), converges to Sj (u), although

the first term of the numerator, n−1
∑n

i=1 e−Λ̂ij (u )dΛ̂ij (u), con-
verges to −dSj (u). In addition, it can be shown that the sec-
ond term in the numerator and denominator of (10) converge
in probability to 0 if model (5) is correct (details presented in
Web Appendix). These results collectively imply that Λ̂j (t)
would then converge in probability to Λj (t). Therefore, even
if the model for treatment probability or censoring is incor-
rect, our proposed estimator for δ is consistent, as long as the
model for survival time is correct.

Arguments in the above two paragraphs heuristically
explain why the proposed method is expected to possess
the so-called double-robustness property; detailed theoretical
properties of the proposed method are presented in the next
section.

4. Asymptotic Properties
In this section, we list the large sample properties of the pro-
posed estimators. To begin, it is convenient to introduce the
following notation:

R
(d )
j (t; β) = n−1

n∑
i=1

Yij (t)Z⊗d
i exp(βT Z i ),

r
(d )
j (t; β) = E

{
R

(d )
j (t; β)

}
,

Z j (t; β) =
R

(1)
j (t; β)

R
(0)
j (t; β)

, zj (t; β) =
r

(1)
j (t; β)

r
(0)
j (t; β)

,

Ωj (β) =
∫ τ

0

{
r

(2)
j (t; β)

r
(0)
j (t; β)

− zj (t; β)⊗2

}
E{Yij (t)λij (t)}dt,

and V (θ) = E

[
exp(θT X)X⊗2

{1 + exp(θT X)}2

]
,

for d = 0, 1, 2, where for a column vector a, a⊗2 = aaT,
a⊗1 = a, and a⊗0 = 1. In addition, parallel to the nota-
tion defined above, we define a set of notation, with ei-
ther superscript or subscript C , that will be used in proofs
related to censoring C ; specifically, R

(d )
C j (t; α), r

(d )
C j (t; α),

Z
C

j (t; α), zC
j (t; α), and ΩC j (α) are defined similarly as

above except that Z i , β, λij (t), Nij (t), and Λ0j are replaced by
ZC

i , α, λC
ij (t), NC

ij (t), and ΛC
0j accordingly.

We assume a set of regularity conditions, listed in the Web
Appendix, in the proof of consistency and asymptotic nor-
mality of the proposed estimators. Before introducing the
main theorem, we list some pertinent results from the ex-
isting literature. Under the assumed regularity conditions,

Lin and Wei (1989) show that β̂j converges in probability to
β∗

j , and that β̂j is asymptotically normal with n
1
2 (β̂j − β∗

j ) =
Ω−1

j (β∗
j )n

− 1
2
∑n

i=1U ij (β∗
j ) + op (1), where

U ij (β∗
j ) =

∫ τ

0

{Z i − zj (t; β∗
j )}dM ∗

ij (t),

with dΛ∗
0j (t) =

E{dNij (t)}
r

(0)
j j

(t; β∗)
,

dΛ∗
ij (t) = exp

(
β∗T

j Z i

)
dΛ∗

0j (t),

and dM ∗
ij (t) = dNij (t) − Yij (t)dΛ∗

ij (t).

We can then show (see Web Appendix) that Λ̂ij (t) converges
in probability to Λ∗

ij (t) and that

n
1
2 {Λ̂ij (t)−Λ∗

ij (t)} = KT
ij (t; β

∗
j )Ω

−1
j (β∗

j )n
− 1

2

n∑
i=1

U ij (β∗
j )

+ eβ
∗T
j Z i n− 1

2

n∑
i=1

∫ t

0

dM ∗
ij (u)

r
(0)
j (u; β∗

j )

plus a term that converges in probability to zero, where
K ij (t; β∗

j ) =
∫ t

0 {Z i − zj (u; β∗
j )}dΛ∗

ij (u). Similar results hold
for α̂j and Λ̂C

ij (t) in the model for censoring. In addi-
tion, θ̂ converges in probability to θ∗ and θ̂ is asymptoti-
cally normal with n

1
2 (θ̂ − θ∗) = V −1(θ∗)n− 1

2
∑n

i=1 X i{Ai −
expit(θ∗T X i )} + op (1); see Zeng and Chen (2009). When
model (5) is correct, β∗

j and Λ∗
ij (t) are equal to their respective

true underlying target values, βj and Λij (t). Similarly, θ∗ = θ
when model (6) is correct.

The asymptotic properties of the proposed estimators for
μj and δ are summarized by the following theorem.

Theorem 1. Under conditions (a) − (h) listed in the Web
Appendix, as n → ∞, if the working model specified in (5)
or the working models in (6) and (8) are correct, then μ̂j

converges in probability to μj and n
1
2 (μ̂j − μj ) is asymp-

totically normal with mean zero and variance E(φ2
ij ), where
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φij = − ∫ L

0 Sj (u)ϕij (u)du,

ϕij (t) = BT
j (t; θ∗, β∗

j , α
∗
j )V

−1(θ∗)X i{Aij − pij (θ∗)} + F T
j (t; θ∗, β∗

j , α
∗
j )Ω

−1
j (β∗

j )U ij (β∗
j )

+
∫ t

0

Jj (u, t; θ∗, β∗
j , α

∗
j )

dM ∗
ij (u)

r
(0)
j (u; β∗

j )
+ P T

j (t; θ∗, β∗
j , α

∗
j )Ω

−1
C j (α

∗
j )U

C
ij (α∗

j ) +
∫ t

0

Hj (u, t; θ∗, β∗
j , α

∗
j )

dMC ∗
ij (u)

r
(0)
C j (u; α∗

j }

+
∫ t

0

wij (θ∗)eΛC ∗
ij (u )

dM †
ij (u) + {1 − wij (θ∗)Gij (u)}e−Λ∗

ij (u ){dΛ∗
ij (u) − dΛj (u)}

Dj (u; θ∗, β∗
j , α

∗
j )

,

and dM †
ij (u) = dNij (u) − Yij (u)dΛj (u), with Bj (t; θ∗, β∗

j ,
α∗

j ), F j (t; θ∗, β∗
j , α

∗
j ), Jj (u, t; θ∗, β∗

j , α
∗
j ), P j (t; θ∗, β∗

j , α
∗
j ),

Hj (u, t; θ∗, β∗
j , α

∗
j ), Gij (u), and Dj (u; θ∗, β∗

j , α
∗
j ) defined in

the Web Appendix. In addition, under the same conditions, δ̂
converges in probability to δ and n

1
2 (δ̂ − δ) is asymptotically

normal with mean zero and variance E(φi1 − φi0)2.

The above theorem is stated without explicitly assuming
which working model is correctly specified; i.e., model for
the survival time, or for the coarsening mechanism. When
one or all of the working models are correct, some of the
terms in ϕij (t) and, correspondingly, in φij are identically
zero, depending on which model is correct. For example, us-
ing iterated conditional expectation arguments, we may show
that if model (5) is correct, then Bj (t; θ∗, β∗

j , α
∗
j ) is equal

to zero, and if the models for the coarsening mechanism, (6)
and (8), are true, then F j (t; θ∗, β∗

j , α
∗
j ) and Jj (u, t; θ∗, β∗

j , α
∗
j )

are identically zero. In the implementation of the proposed
method, one models both survival time and coarsening mech-
anism, hoping that at least one of the modeling procedures
is correct and therefore considerably increasing the chance of
valid inference for the true causal parameters. As one does
not know which working model is correct, to estimate vari-
ance of the proposed estimators, all terms in ϕij (t) must be
computed, even though some components are actually zero.
Because of its complexity, a direct plug-in estimator of the
asymptotic variance is rather involved and would accumu-
late a substantial amount of estimation error. Therefore, we
suggest estimating the variance of the proposed estimator by
bootstrapping instead. In our simulations, we used a standard
nonparametric bootstrap, where one draws bootstrap samples
from (Ai , Ui , Δi , Z i ), i = 1, . . . , n with equal probability and
with replacement. An alternative is the weighted bootstrap of
Kosorok, Lee, and Fine (2004), which we do not evaluate in
this report. SAS (SAS Institute, Cary, NC) code for imple-
menting the proposed methods is available at http://www-
personal.umich.edu/∼mzhangst/.

5. Simulation Studies
We carried out simulation studies to evaluate the finite sample
properties of the proposed method. All reported results are
based on 1000 Monte Carlo data sets, each with a sample
size of n = 600, or n = 300. Variances of all estimators are
estimated by a bootstrap procedure which used 50 bootstrap
replicates.

For each Monte Carlo data set, we generated data as fol-
lows. First, we generated a baseline covariate vector, Z =
{Z1, Z2, Z3}T as multivariate normal with mean zero, unit
variance, corr(Z1, Z3) = 0.2, and all other pairwise correla-

tions equal to 0. To be consistent with the assumed regularity
conditions, we truncated each component of Z at −4 and 4.
The treatment indicator, A, was then generated as Bernoulli
with parameter expit(−0.5Z1 − 0.5Z2) . In order for the ele-
ments of Z to serve as confounders, each should also be pre-
dictive of the survival time. As such, we generated T from an
exponential distribution with parameter exp(−2.5 − 1.5Z1 −
Z2 − 0.7Z3) for treatment A = 0 and exp(−3 − Z1 − 0.9Z2 −
Z3) for A = 1. Finally, censoring time C was generated as ex-
ponential with parameter exp(−5 + Z1 + 1.2Z2) for treatment
A = 0 and exp(−4.5 − 0.2Z1 − 0.7Z2) for A = 1, which lead to
approximately 28% censoring.

In addition to the proposed method, we evaluated three
other methods. The first is the method of Chen and Tsiatis
(2001), where one builds treatment-specific Cox models for
T given Z . The second is the IPTW method of Wei (2008),
wherein one instead builds a regression model for A given Z .
The third method is that of Hubbard et al. (1999), which in-
volves building working models for each of T , A, and C given
Z and, like our method, is double-robust. The key difference
between our proposed estimator and that of Hubbard et al.
(1999) is that the latter involves estimating the survival func-
tion directly, in contrast with our method which does so indi-
rectly through the cumulative hazard. In a sense, our method
can be viewed as a double-robust extension of the Nelson–
Aalen method to account for nonrandom treatment assign-
ment and conditionally independent censoring. The Hubbard
et al. (1999) method corresponds to an extension of the sur-
vival function estimator obtained as a sample average of the
number of subjects at risk, weighted by the inverse probability
of not being censored.

We considered each of the four estimators in settings where
the required assumptions hold, and when they fail. Specifi-
cally, for the T |A, Z model used in the proposed, Hubbard
et al. (1999) and Chen and Tsiatis (2001) methods, the cor-
rect model was fitted using covariates (Z1, Z2, Z3), although
the incorrect model was fitted using (Z1, Z3). For the A|Z
model used in the proposed, Hubbard et al. (1999) and Wei
(2008) methods, the correct model was fitted using (Z1, Z2),
although the incorrect model was fitted using Z1 only. For
the C |A, Z model used in the proposed and Hubbard et al.
(1999) methods, the correct model was fitted using (Z1, Z2),
although the incorrect model using Z2 only.

Results for estimating μ1 and δ based on data with a sample
size of n = 600 are reported in Tables 1 and 2, respectively,
with L set to 10 and 20. Additional results with n = 300 are
reported in the Web Appendix. The proposed estimators ap-
pear to be approximately unbiased for the true parameters
under all scenarios in which either the survival time or the
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Table 1
Estimation of restricted mean lifetime with sample size n = 600 and restriction time L = 10. T , Z , and C : indicate whether the
model for T , Z , or C , respectively, is true or false. Bias is the Monte Carlo bias; ESD is the Monte Carlo standard deviation of
estimates; ASE is the Monte Carlo average of estimated standard errors; CP is the coverage probability of nominal 95% Wald

confidence intervals.

Method T Z C Bias ESD ASE CP Bias ESD ASE CP

μ̂0 (μ0=5.978) μ̂1 (μ1=6.949)

Proposed T T T 0.010 0.199 0.201 0.934 0.003 0.201 0.191 0.929
T F F 0.020 0.199 0.201 0.931 −0.002 0.201 0.191 0.929
F T T 0.010 0.205 0.224 0.947 0.002 0.204 0.204 0.946
F F F 0.408 0.211 0.214 0.496 −0.298 0.219 0.205 0.689

Hubbard et al. T T T 0.026 0.199 0.204 0.935 0.029 0.201 0.191 0.927
T F F 0.038 0.199 0.201 0.932 0.028 0.201 0.191 0.928
F T T 0.027 0.207 0.227 0.947 0.028 0.205 0.205 0.940
F F F 0.437 0.211 0.215 0.434 −0.272 0.219 0.206 0.724

IPTW T −0.101 0.221 0.268 0.964 0.034 0.212 0.226 0.962
F 0.259 0.220 0.251 0.838 −0.269 0.227 0.229 0.790

Chen & Tsiatis T 0.012 0.195 0.196 0.940 0.006 0.195 0.184 0.928
F 0.290 0.207 0.212 0.717 −0.335 0.211 0.201 0.603

δ̂ = μ̂1 − μ̂0 (δ=0.871)

Proposed T T T −0.008 0.217 0.218 0.947
T F F −0.021 0.217 0.218 0.949
F T T −0.007 0.228 0.266 0.970
F F F −0.706 0.261 0.260 0.217

Hubbard et al. T T T 0.003 0.218 0.222 0.950
T F F −0.010 0.217 0.218 0.945
F T T 0.001 0.229 0.269 0.970
F F F −0.708 0.262 0.260 0.212

IPTW T 0.135 0.251 0.351 0.976
F −0.528 0.280 0.340 0.683

Chen & Tsiatis T −0.006 0.208 0.207 0.946
F −0.624 0.254 0.253 0.318

coarsening mechanism are modeled correctly. Moreover, the
95% coverage probabilities approximately achieve the nominal
level. Such results are consistent with the purported double-
robust property of the proposed method. Estimators using
the method of Hubbard et al. (1999) behave similarly to the
proposed method. However, they appear to have larger bias
for estimating both μ0 and μ1, especially when sample size
is small (see Web Appendix). In contrast, the estimators of
Chen and Tsiatis (2001) and Wei (2008) perform well when
the corresponding assumed model is correct, but with large
biases observed if the assumed model is incorrect.

6. Application
We applied the proposed method to compare restricted mean
posttransplant lifetime between SPK and KA transplant re-
cipients. We restricted the study population to Type-I diabet-
ics because the majority of SPK patients are in this category.

Data were obtained from the SRTR, a nationwide solid
organ transplant registry. The study population consisted of
deceased-donor kidney transplant recipients who were trans-
planted at age ≥18 during 2000–2008. Only primary kidney
transplant patients were eligible, with repeat transplants ex-
cluded. We included 6054 SPK and 7513 KA transplants.
Follow-up began at the date of transplant. The event of inter-

est was graft failure, defined as the minimum time of death or
when repeat kidney transplantation occurred. Patients were
censored at loss to follow-up or at the end of the observation
period (December 31, 2008). Adjustment covariates included
age at transplant, gender, race, blood type, pretransplant time
on dialysis, and donor age. All of the adjustment covariates
are significant at the level of 0.05 in the fitted model for treat-
ment assignment. In the fitted models for survival, age at
transplant, blood type, time on dialysis, and donor age are
predictive of survival for SPK transplant subjects, and age at
transplant, time on dialysis, and donor age are predictive for
KA transplant subjects. We set the restriction time to L = 5
years, reflecting the amount of available follow-up.

In Figure 1, we plot average survival curves for SPK and
KA transplant patients estimated using the proposed double-
robust method; for comparison, survival curves from Kaplan–
Meier method are also plotted. Using the proposed double-
robust method, average survival is initially greater for the
KA group. However, survival is estimated to be equal by ap-
proximately the t = 2.5 year point, and is greater for SPK
patients thereafter. If one eyeballs the area under each of the
survival curves, they appear to be approximately equal. Note
that the considerable nonproportionality of the SPK and KA
hazard functions would invalidate an analysis based on a pro-
portional hazards model using an indicator for SPK.



Double-Robust Estimator for Differences in Restricted Mean Lifetime 1007

Table 2
Estimation of restricted mean lifetime with sample size n = 600 and restriction time L = 20. Entries as in Table 1

Method T Z C Bias ESD ASE CP Bias ESD ASE CP

μ̂0 (μ0=9.806) μ̂1 (μ1=11.488)

Proposed T T T 0.017 0.391 0.406 0.953 0.018 0.426 0.411 0.944
T F F 0.039 0.402 0.408 0.953 0.011 0.426 0.409 0.936
F T T 0.010 0.399 0.446 0.966 0.019 0.437 0.443 0.950
F F F 0.838 0.474 0.451 0.519 −0.675 0.459 0.434 0.648

Hubbard et al. T T T 0.022 0.395 0.419 0.955 0.073 0.427 0.413 0.940
T F F 0.068 0.397 0.409 0.955 0.070 0.427 0.410 0.937
F T T 0.019 0.404 0.456 0.972 0.073 0.437 0.446 0.947
F F F 0.891 0.482 0.459 0.481 −0.622 0.460 0.436 0.699

IPTW T −0.415 0.423 0.516 0.896 0.131 0.458 0.508 0.962
F 0.273 0.441 0.505 0.948 −0.569 0.477 0.495 0.796

Chen & Tsiatis T 0.024 0.387 0.392 0.950 0.022 0.412 0.398 0.942
F 0.431 0.412 0.425 0.827 −0.669 0.439 0.424 0.639

δ̂ = μ̂1 − μ̂0 (δ=1.682)

Proposed T T T 0.002 0.442 0.450 0.941
T F F −0.029 0.452 0.450 0.943
F T T 0.009 0.461 0.549 0.972
F F F −1.513 0.580 0.546 0.200

Hubbard et al. T T T 0.051 0.447 0.464 0.951
T F F 0.002 0.447 0.451 0.945
F T T 0.055 0.466 0.560 0.975
F F F −1.513 0.586 0.554 0.200

IPTW T 0.545 0.516 0.726 0.944
F −0.842 0.577 0.708 0.830

Chen & Tsiatis T −0.002 0.418 0.424 0.957
F −1.099 0.512 0.517 0.454
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Figure 1. Average survival probability for simultaneous pancreas-kidney (SPK; Ai = 1; dashed line) and kidney-alone (KA;
Ai = 0; solid line) transplant recipients.

To compare restricted mean lifetime, we applied (i) the
proposed method, which uses working Cox models for post-
transplant survival and censoring and a logistic model for the
SPK probability, (ii) the method of Wei (2008), which requires

only a model for SPK probability, and (iii) the Chen and Tsi-
atis (2001) method, which uses Cox models for posttransplant
survival. Variance for the proposed estimator is estimated by
bootstrap using 100 bootstrap replicates. Results are listed in
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Table 3
Five-year restricted mean lifetime for simultaneous

pancreas-kidney (SPK; Ai = 1) and kidney-alone (KA;
Ai = 0) transplant recipients.

Method μ̂1 ŜE(μ̂1) μ̂0 ŜE(μ̂0) δ̂ ŜE(δ̂) p

Proposed 4.54 0.024 4.53 0.017 0.012 0.031 0.69
IPTW 4.55 0.023 4.54 0.017 0.0098 0.030 0.74
Chen & 4.56 0.022 4.55 0.014 0.0097 0.027 0.72

Tsiatis

Table 3. Mean 5-year posttransplant lifetimes were very simi-
lar for SPK and KA transplant recipients, with the difference
being comfortably nonsignificant for all three methods. For
example, based on the proposed method, SPK live, on aver-
age, for δ̂ = 0.012 years (i.e., 4.4 days) longer than KA recip-
ients, out of first 5 posttransplant years. In addition to being
nonsignificant (p = 0.69), this difference is not at all impor-
tant clinically. Both the SPK and KA groups live an average
of 4.5 years of the first 5 posttransplant years, which would
be considered excellent. Based on our analysis, relative to the
receipt of a KA, the additional transplantation of a pancreas
(i.e., in addition to a kidney) did not extend mean survival
time among Type I diabetics; at least not based on the first
5 posttransplant years.

Results are very similar across the three methods, implying
that both the logistic and Cox models appear to be correct.
To be more specific, the Cox model assumed by the Chen and
Tsiatis (2001) method was not misspecified to the extent that
relaxing the assumption of its correctness made any meaning-
ful difference; similar statements apply to the logistic model.

7. Discussion
We propose a semiparametric double-robust estimator of the
difference in treatment-specific restricted mean survival time.
The proposed method uses working models for the coarsen-
ing mechanism (treatment assignment and censoring) and the
death hazard, but is consistent if either coarsening mechanism
or death hazard are modeled correctly. Asymptotic proper-
ties of the proposed estimator are derived and shown through
simulation to be applicable to finite samples. The method is
applied to national kidney transplant data.

In this report, we focused on the setting of two treat-
ment groups. The proposed method can be extended to set-
tings with more than two groups. Suppose there are K treat-
ment groups to be compared and that Ai takes values from
1, . . . , K . We are interested in estimating μj for j = 1, . . . , K ,
and comparisons between groups can be carried out by es-
timating their pairwise differences. In considering the esti-
mation of μj , recall that the proposed method is developed
from the point of view that the full data is possibly coarsened
by treatment assignment and censoring. For each treatment
j = 1, . . . , K , the full data corresponding to estimating μj is
(T j , Z i ), i = 1, . . . , n, which may be coarsened at time t = 0,
if Aij = 0 and at time t > 0, if Aij = 1 and Ci = t < T j

i . Be-
cause this is a direct extension of the setup described pre-
viously, Λj (t) and μj can be estimated using the proposed
methods, except that the regression model for Ai needs to ac-

commodate a response with > 2 categories (e.g., a generalized
logit model), with the estimation of P (Aij = 1|Z i ) modified
accordingly.

Through the proposed method (and existing methods), we
demonstrate that Type-I diabetic SPK transplant recipients
had almost identical 5-year restricted mean lifetime to KA
transplant recipients. This would appear to be a fairly nega-
tive statement about the value of SPK among Type-I diabetic
patients with end-stage renal disease. Two considerations are
important. First, because the data are observational, there is
always the potential for unmeasured covariates to induce bias.
Such bias, in this case, would strongly favor the KA group.
For example, although both groups consisted of Type I dia-
betics, there is the possibility that KA patients tended to have
more of a manageable degree of diabetes such that pancreas
transplantation was not indicated. Second, because survival
was greater for the SKP group from t = 2.5 years onward,
it is possible that greater restricted mean lifetime could be
observed in the SPK group if a data set implying a longer
restriction time (e.g., L = 10 years) were used.

8. Supplementary Materials
A Web Appendix, referenced in Section 4, is available with
this paper at the Biometrics website on Wiley Online Library.
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