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[11 We present the first results from the NCAR
thermosphere/ionosphere/electrodynamics general circulation
model (TIE-GCM) coupled to a weather forecast/assimilation
system of the lower and middle atmosphere. Our results
emphasize the importance of a proper representation of
the latitudinal temperature variation at the base of the
thermosphere for calculating zonal mean zonal winds in
the thermosphere. The inclusion of a realistic cold summer
mesopause yields significantly improved agreement with
climatology in the calculated thermospheric winds in the
summer hemisphere. Having established this link between
the temperature structure of the mesosphere and the
thermospheric circulation, we next present observational
evidence that the year-to-year variability of thermospheric
winds can be linked to analogous variations in the onset
of the cold summer mesopause season. Since these
mesopause variations have previously been ascribed to
stratospheric weather variability, by extension, our results
suggest a new mode of coupling between the stratosphere
and thermosphere. Citation: Siskind, D. E., D. P. Drob,
J. T. Emmert, M. H. Stevens, P. E. Sheese, E. J. Llewellyn,
M. E. Hervig, R. Niciejewski, and A. J. Kochenash (2012),
Linkages between the cold summer mesopause and thermospheric
zonal mean circulation, Geophys. Res. Lett., 39, L01804,
doi:10.1029/2011GL050196.

1. Introduction

[2] It is now established that significant perturbations to
the thermosphere and ionosphere can result from meteoro-
logical disturbances that originate in the lower atmosphere.
In an effort to understand this variability, a new generation
of models now encompasses both the lower and upper
atmosphere. These models are often termed “seamless”,
because they have a single dynamical solver that simulates
the approximately 12 orders of atmospheric density from the
surface to the exobase [see Akmaev, 2011, and references
therein].
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[3] Here we present initial results using by coupling two
models together. While we give up the advantage of seam-
lessness, we acquire, as we will discuss, the ability to specify
better meteorological conditions for a given date and time.
Our primary thermosphere model is the NCAR TIE-GCM
[Richmond et al., 1992]. In this paper, we introduce a new
way to specify the lower boundary of the TIE-GCM by
using the NOGAPS-ALPHA forecast/assimilation system
[Eckermann et al., 2009]. As discussed by Ren et al. [2011],
the use of a mesospheric analysis can offer some advantages
in that it relaxes some of the requirements on a gravity wave
drag parameterization while still insuring that the larger
spatial scales are simulated accurately. We examine the
zonal mean zonal wind in the lower thermosphere and
demonstrate improved agreement with the Horizontal Wind
Model (HWMO7) [Drob et al., 2008].

[4] In addition, after establishing the link between
thermospheric zonal winds and the middle atmosphere
temperature structure, we will present observational evi-
dence suggesting that interannual variability in thermo-
spheric zonal winds can be linked to similar variability in the
mesopause. Several recent papers have linked variations in
stratospheric weather phenomena to the seasonal develop-
ment of the cold summer mesopause through gravity wave
modulation by the variable zonal wind. Smith et al. [2010]
linked long term trends associated with the growth of the
ozone hole with the cold mesopause. Karisson et al. [2011]
and Gumbel and Karlsson [2011] emphasized the dramatic
year-to-year variability in the onset of polar mesospheric
clouds (PMCs) in the Southern Hemisphere (SH) as recor-
ded by the NASA Aeronomy of Ice in the Mesosphere
(AIM) satellite. Our results offer observational support for
these published model predictions. We analyze data from
three instruments: temperatures from the Solar Occultation
for Ice Experiment (SOFIE) on AIM [Gordley et al., 2009],
and from the Optical Spectrograph and Infrared Imaging
System (OSIRIS) [Sheese et al., 2011], and winds from the
TIMED Doppler Interferometer (TIDI) [Niciejewski et al.,
2006]. Further, by showing that this interannual variability
extends well into the thermosphere, our results suggest a
new coupling mechanism between the stratosphere and the
thermosphere, and possibly the ionosphere.

2. Modeling Approach

[5] The TIE-GCM is a first-principles thermosphere-
ionosphere general circulation model that extends from
about 95 km to the upper thermosphere and includes a
specific calculation of tropical induced electric fields and
resultant ion drifts from ion-neutral coupling in the lower
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Figure 1. Temperature and geopotential height distributions as a function of latitude and longitude for two different bottom
boundary conditions for the TIE-GCM, (a) temperature perturbation from the GSWM model for December solstice, solar

minimum conditions with a fixed global average temperature

of 181 K, (b) temperature from the NOGAPS-ALPHA forecast

model for January 1, 2010, 00UT with a global average 10 K bias correction added (see text), (¢) geopotential heights asso-
ciated with Figure 1a, (d) geopotential heights associated with Figure 1b.

thermosphere. Fesen et al. [2000] showed that a realistic
diurnal variation of the equatorial ion drift could be
achieved, including the enhancement of the vertical drift
prior to its evening reversal. The TIE-GCM allows for the
specification of varying solar EUV irradiance and geo-
magnetic inputs such as particle precipitation and con-
vection electric fields. Since the simulations shown here
are for a period during the recent solar minimum, we used
fixed and low values for solar-terrestrial forcing (Solar
Fi97 index = 70 sfu, auroral hemispheric power = 8 GW,
and the cross polar cap electric potential drop = 30 kV).
[6] We are specifically interested in the bottom bound-
ary of the TIE-GCM, which is at a level z = —7, where
z = —In(P,/P) and P, is 5 x 107 mb. In the standard
configuration, (http://www.hao.ucar.edu/modeling/tgcm/doc/
description/model_description.pdf; we used V1.93 for this
work), the bottom boundary includes migrating diurnal and
semidiurnal tides as specified by the Global Scale Wind
Model (GSWM) [Hagan et al., 2001] together with a fixed,
globally averaged (i.e., independent of day of year, latitude,
and longitude) background temperature of 181 K and zero
background winds. This configuration has been used in
the most recent implementations of TIE-GCM [e.g., Kondo
et al., 2011; Solomon et al., 2011]. Here, we instead use
output from the Navy Operational Global Atmospheric
Prediction System- Advanced Level Physics High Altitude
(NOGAPS-ALPHA) forecast/assimilation model to provide
temperatures, geopotential heights, and zonal and meridio-
nal winds [Eckermann et al., 2009]. The NOGAPS-
ALPHA analysis uses the NRL Atmospheric Variational
Data Assimilation system (NAVDAS). One limitation of
NAVDAS is that its 6 hourly update cycle might lead to
aliasing of semi-diurnal and higher-order tidal modes. Also,
the bottom boundary of the TIE-GCM corresponds almost
identically to the top pressure of the NOGAPS-ALPHA
analysis. This is a problem because the top two pressure
levels of the analysis are used as a sponge layer. In con-
trast, the forecast model component of NOGAPS-ALPHA,
which can be initialized from the analysis, can be configured
to provide 1 hourly output and extends a decade in

pressure higher in altitude than the analysis. For the results
shown here, we used this 1 hourly product, re-initialized
every 6 hours, for the first 30 days of January 2010. The
resultant 720 hourly outputs were used as a bottom boundary
of the TIE-GCM.

[7] Figure 1 compares the temperatures and associated
geopotential heights for two possible bottom boundary
conditions for the TIE-GCM. Figure la shows a GSWM
temperature field for December solstice, solar minimum
conditions. The wave-two pattern of the semidiurnal tide is
clearly apparent in the winter hemisphere. Figure 1b shows a
sample output temperature field at 0.0005 hPa from
NOGAPS-ALPHA (initialized by NAVDAS) for January
1st, 2010, 00UT. NOGAPS-ALPHA also shows a wave-two
tidal pattern in the winter hemisphere; however, it addi-
tionally shows the sharp latitudinal temperature gradient in
the summer hemisphere, where temperatures fall below
130 K for this specific time. This reflects the effects of the
summer mesopause, which is at about 88-90 km, just sev-
eral km lower than the mean altitude associated with the
0.0005 hPa surface. Figure lc shows the near constant

temp at p=0.0005 hPa, January 2010
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Figure 2. Zonal mean temperature for the bottom boundary
of the TIE-GCM. The stars are from the 720 hourly outputs
of NOGAPS-ALPHA. A latitudinally invariant 10 K cold
bias was corrected for. The solid line is monthly averaged

data from OSIRIS for January 2010.
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Figure 3. Monthly mean zonal winds from the TIE-GCM for (a) a bottom boundary with migrating tides and globally
invariant temperature and (b) the NOGAPS-ALPHA bottom boundary as summarized in Figure 1. (c) Monthly mean clima-

tology from the HWMO07 climatology [Drob et al., 2008].

geopotential height distribution associated with the GSWM
temperature field. Figure 1d shows the geopotential heights
associated with the NOGAPS-ALPHA field. The pro-
nounced decrease in the heights towards the summer pole is
evident. This decrease, of about 3 km (from 94 to 91 km), is
typical of what is associated with the wintertime strato-
spheric polar vortex [cf. Andrews et al., 1987, Figure 5.6].

[8] To validate our bottom boundary, we compared an
average of zonal mean temperatures for January 2010 from
OSIRIS [Sheese et al., 2011] with the corresponding average
of the hourly forecast product. The results, given in Figure 2,
show excellent agreement, especially in the summer hemi-
sphere. In absolute value, the forecast model was colder than
OSIRIS, and thus Figures 1b and 2 have a 10 K latitudinally
invariant correction applied to the model; this bias correction
had no impact on our calculated thermospheric winds,
because it is the latitudinal gradient that is balanced by the
zonal flow, according to the thermal wind relation.

3. Modeling Results

[o] Figure 3 compares the monthly average zonal mean
zonal wind for the lower thermosphere from the two con-
figurations of the TIE-GCM. The left and center panels show
results using the lower boundary conditions summarized in
Figures 1a (GSWM) and 1b (NOGAPS-ALPHA), respec-
tively. The TIE-GCM was first “spun-up” for 30 days with
fixed inputs in order to ensure that the winds and tempera-
tures were balanced. The resulting winds differ strikingly
between the two solutions, particularly in the summer
hemisphere. The right panel shows the climatology of zonal
winds from the HWMO07 model. It is apparent that the
NOGAPS-forced model yields a dramatically improved
agreement with the climatology, most notably in a strong
summertime lower thermospheric eastward jet. This jet is the
simple result of thermal wind balance above the cold summer
mesopause and demonstrates the importance of an accurate
representation of mesospheric temperatures. Indeed, the dif-
ference between the NOGAPS-forced and the GSWM-forced
solution covers the entire domain that we present and extends
into the tropics, where ion-neutral coupling is known to be
important [Liu et al., 2010]. It is therefore plausible to sug-
gest that ionospheric calculations should also take into
account mesospheric temperature structures.

4. Observed Interannual Variability
in Temperatures and Winds

[10] Having established the importance of a proper rep-
resentation of the cold summer mesopause on simulations
of thermosphere circulation, we now consider interannual

variability in the mesopause and possible connections to
the thermosphere. Gumbel and Karisson [2011] have
shown that two recent years differed dramatically in the
onset of the cold SH summer season. In 2009 the season
occurred early, with PMCs detected by mid-November. In
2010 the season occurred unusually late, with PMCs not
detected until mid-December. Gumbel and Karlsson sug-
gest that the difference resulted from changes in the timing
of the breakdown in the stratospheric polar vortex, which is
associated with the Antarctic ozone hole. The polar vortex
blocks the gravity waves which, upon breaking, cause the
cold summer mesopause. Unfortunately, the NOGAPS-
ALPHA analysis does not extend past March 2010 so we can
not yet simulate this period. However, Karisson et al. [2011]
provided some model predictions for early and late seasonal
onsets. Here we present some observational data that we
compare with their predictions.

[11] Figure 4 shows averaged temperature profiles for the
onset period of the cold SH summer mesopause (late
November to mid-December). The SOFIE data extend from
the stratosphere up to 90-95 km and the OSIRIS data extend
from 88 to 105 km. It is apparent that in the region of
overlap, OSIRIS is colder than SOFIE; this is well known
and is currently being quantified by us in a SOFIE validation
paper (M. H. Stevens et al., manuscript in preparation,
2011). Here, however, we are only interested in the differ-
ence between 2009 and 2010 and this is the same for both
datasets. In the onset period for the early vortex breakdown
year (2009), the mesopause region was colder than during
the onset period for the year of late vortex breakdown
(2010). Interestingly, above the mesopause both SOFIE and
OSIRIS indicate a change in sign in the temperature differ-
ence between 2009 and 2010. Between 95 and 100 km,
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Figure 4. Temperatures, averaged over days 329-350 in
2009 (solid) and 2010 (dashed), from SOFIE (lower curves
with symbols) and OSIRIS (upper curves). The OSIRIS data
are a latitudinal average from 60°S to 70°S.
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Figure 5. Averaged zonal winds for 50°S—-60°S during
days 325-349 of 2009 (blue solid) and 2010 (green dashed)
from TIDI. All local times are nonuniformly sampled by this
bin. The local time sampling is the same for 2009 and 2010.
Error bars denote the standard error of the mean as deduced
from the instrumental uncertainty.

OSIRIS measured temperatures that are 20 K colder in 2010
(the late breakdown year). This is in good agreement with
Figure 6b of Karisson et al. [2011], who ascribe it to a
change in the breaking level of the eastward propagating
gravity waves.

[12] From thermal wind considerations, and bolstered by
our model results in Figure 3, we expect these temperature
anomalies to be balanced by concomitant zonal wind chan-
ges extending into the thermosphere. Figure 5 presents data
from TIDI that shows this is indeed the case. In general, the
colder polar temperatures are balanced by greater eastward
flow at higher altitudes (recall that thermal wind balance
actually refers to the vertical gradient of the zonal wind).
Note that TIDI does not give a true zonal mean since it does
not sample all local times evenly during the period consid-
ered; however, since the local time sampling repeats from
year to year, the interannual comparison is robust. Below
90 km, since 2009 is colder, we see greater eastward flow (or
equivalently, reduced westward flow in this case). This
agrees with Figure 6a of Karisson et al. [2011]. However,
above 95 km, since 2010 is colder at these altitudes, we see
greater eastward flow in this year. TIDI shows that this
interannual variability extends up to 115 km, the top of its
observable range. This is 15 km above the altitudes presented
by Karlsson et al. [2011], but is generally consistent with our
TIE-GCM results, which also show effects of mesopause
temperatures persisting well up into the thermosphere.

5. Discussion

[13] The combination of our coupled NOGAPS-ALPHA/
TIE-GCM results and the observed changes in temperatures
and zonal wind in 2009 and 2010 show that mesopause
temperature variability can influence altitudes well into the
thermosphere, at least up to 115 km. Since ion-neutral cou-
pling begins to be important above 100 km, we speculate that
these changes could influence ionospheric structure. Since, in
turn, mesopause temperature variability has been linked to
changes in the stratospheric polar vortex, itself linked to
trends in the Antarctic ozone hole, the combination of our
results with Karisson et al. [2011] and Smith et al. [2010]
suggests a new mode of coupling between the stratosphere
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and the thermosphere and possibly the ionosphere. Studies of
interannual ionospheric variability should consider interan-
nual variability and trends in the depth and duration of the
Antarctic ozone hole, in order to see if this connection is
robust.
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