A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements

S. J. Kanani,1,2 C. S. Arridge,1,2 G. H. Jones,1,2 A. N. Fazakerley,1 H. J. McAndrews,3 N. Sergis,4 S. M. Krimigis,5 M. K. Dougherty,6 A. J. Coates,1,2 D. T. Young,7 K. C. Hansen,8 and N. Krupp9

Received 17 March 2009; revised 3 November 2009; accepted 4 January 2010; published 17 June 2010.

[1] The shape and location of a planetary magnetopause can be determined by balancing the solar wind dynamic pressure with the magnetic and thermal pressures found inside the boundary. Previous studies have found the kronian magnetosphere to show rigidity (like that of Earth) as well as compressibility (like that of Jupiter) in terms of its dynamics. In this paper we expand on previous work and present a new model of Saturn’s magnetopause. Using a Newtonian form of the pressure balance equation, we estimate the solar wind dynamic pressure at each magnetopause crossing by the Cassini spacecraft between Saturn Orbit Insertion in June 2004 and January 2006. We build on previous findings by including an improved estimate for the solar wind thermal pressure and include low-energy particle pressures from the Cassini plasma spectrometer’s electron spectrometer and high-energy particle pressures from the Cassini magnetospheric imaging instrument. Our improved model has a size-pressure dependence described by a power law $D_P^{1/5.0 ± 0.8}$. This exponent is consistent with that derived from numerical magnetohydrodynamic simulations.

1. Introduction

1.1. The Magnetopause

[2] The magnetopause is a magnetic and plasma boundary formed between a magnetized planet’s magnetic field and the shocked solar wind, separating the solar wind plasma from the planetary plasma. Saturn’s magnetopause was detected for the first time in 1979 by Pioneer 11, then by Voyager 1 in 1980 and Voyager 2 in 1981 [Russell and Luhmann, 1997].

[3] Saturn has many sources of plasma, including its rings, the solar wind, the ionosphere, and its moons. The Cassini spacecraft has confirmed that the plasma environ-

Copyright 2010 by the American Geophysical Union.
0148-0227/10/2009JA014262
1.2. The Pressure Balance Equation

[5] The magnetopause can be considered as a surface where the total (particle and field) pressure inside the magnetosphere balances the total pressure in the magnetosheath. In reality these pressures will not be perfectly balanced and the magnetopause will be in constant motion. Increases in solar wind dynamic pressure cause the magnetopause to contract, the magnetosphere to compress, and the magnetic field strength to increase, which, as a consequence, results in a magnetosphere exerting a greater outward pressure on the magnetosheath and reaching a new equilibrium magnetopause location. However, to first order, one can consider the magnetopause to be a pressure-balance surface, and as a simple approximation of this equilibrium, the magnetic pressure inside the magnetosphere balances the dynamic pressure of the solar wind ($D_p = \rho u_{SW}^2$):

$$\rho u_{SW}^2 = \frac{B^2}{2\mu_0},$$

(1)

where B is the magnetic field intensity inside the magnetosphere and μ_0 is the permeability of free space. Knowing B as a function of distance from the planet allows one to construct an expression for the standoff distance, R_0, of the magnetopause as a function of the dynamic pressure. For a pure dipole, $B \sim r^{-3}$, where r is the distance on the dipole equator, hence $D_p \sim r^{-6}$ and the standoff distance can be written $R_0 \sim D_p^{-1/6}$. This relationship has been confirmed by modeling of the terrestrial magnetopause [e.g., Shue et al., 1997]. However, some magnetospheric fields may not be correctly modeled as a dipole with a fixed dipole moment, favoring instead a stretched configuration with a magnetic field strength that varies more slowly than R_0^{-3} which requires a smaller increase in D_p to compress the magnetosphere than is required at Earth, and hence the $R_0 \sim D_p^{-1/6}$ power law has a somewhat larger exponent. In general we consider the following expression, where $\alpha = 6$ for a dipole and is smaller for more stretched configurations, and hence α can be considered a diagnostic of stress balance and internal structure within the magnetosphere:

$$R_0 \propto D_p^{-\alpha/(\alpha - 1)},$$

(2)

[5] The pressure balance expression (1) ignores thermal pressure in the magnetosheath and magnetosphere. Equation (3) represents pressure balance including these additional pressures:

$$\rho u_{SW}^2 + P_0 = \frac{B^2}{2\mu_0} + P_{MS}.$$

(3)

This equation represents the balance between the pressure components of the solar wind plasma, that is, the dynamic pressure and thermal static pressure (P_0), and the pressure components inside the magnetosphere, namely, the magnetic pressure and the internal particle pressures (P_{MS}).

[7] The pressures external to the magnetosphere are actually pressures in the magnetosheath, and to relate them to upstream (solar wind) conditions we can use Bernoulli’s equation. Assuming an adiabatic flow between the upstream bow shock and the magnetopause stagnation point, the stagnation pressure can be related to the pressure at any point upstream along the same streamline [Walker and Russell, 1995].

$$\frac{P_S}{P} = \left(1 + \frac{\gamma - 1}{2}M_S^2\right)^{(\gamma - 1)/2},$$

(4)

where P_S is the stagnation pressure, P is the pressure at a point along the streamline, γ is the ratio of specific heats, and M_S is the sonic Mach number ($M_S = u_{SW}/\sqrt{kP_{SW}/\rho}$). Using the Rankine-Hugoniot jump conditions, where the subscript SW refers to the solar wind, and combining these with the stagnation pressure equation, we obtain the equation relating the stagnation pressure to the solar wind thermal pressure:

$$P_S = kP_{SW}u_{SW}^2,$$

(5)

$$k = \frac{P_S}{P_{SW}u_{SW}^2} = \left(\frac{\gamma + 1}{\gamma - 1}\right)^{(\gamma+1)/(\gamma-1)} - \frac{1}{\gamma [\gamma - (\gamma - 1)/2M_S^2]^{\gamma/(\gamma-1)}}.$$

(7)

The coefficient k indicates by how much the pressure is diminished by the divergence of the flow and relates the dynamic pressure to the thermal pressure for the solar wind. For $\gamma = 5/3$ and $M_{SW} = \infty$, $k = 0.881$, which is a reasonable assumption for Saturn, where the solar wind is at a high Mach number regime. It is thus necessary to include k in the pressure balance equation as it relates the dynamic pressure in the solar wind to that in the magnetosheath.

[8] Away from the stagnation point these pressures are modified by flaring of the magnetopause, such that the plasma is no longer normally incident on the magnetopause. The flaring angle Ψ is the angle between the solar wind direction and the local normal to the magnetopause and is 0° for normal incidence (at the stagnation point). The flaring angle can be found from the cross product of the normal vector and the solar wind direction. The equation below is based on equation (3) but includes the k factor and terms to account for the flaring angle, so is valid everywhere on the magnetopause, not just at the stagnation point.

$$kD_p \cos^2 \Psi + P_0 = \frac{B^2}{2\mu_0} + P_{MS}.$$

(8)

At the subsolar point $\cos^2 \Psi$ is close to unity and the dynamic pressure dominates in this pressure balance, but as $\cos^2 \Psi$ decreases downstream the thermal pressure dominates. Petrinec and Russell [1997] showed that using equation (8) and applying Bernoulli’s equation along a streamline adjacent to the magnetopause resulted in imaginary flow velocities in the subsolar region. Hence, a $\sin^2 \Psi$ term is applied to the solar wind thermal pressure term in equation (8) to force the flow velocity to be real in the
subsolary region. The equation without the \(\sin^2 \Psi \) provides reasonably accurate results for high Mach number regimes, but including the term is the simplest formulation of the equation that satisfies both the demands of hydrodynamic flow at the stagnation point and the pressure balance demands downstream [Petrinec and Russell, 1997], as shown in the following equation:

\[
kD_p \cos^2 \Psi + P_0 \sin^2 \Psi = \frac{B^2}{2\mu_0} + P_{\text{MS}},
\]

[9] Studies of the terrestrial magnetopause are able to use monitors of the upstream solar wind conditions and hence the position of the magnetopause, as determined by particle and field data from a spacecraft, can be directly related to the upstream solar wind conditions. For the outer planets there is no upstream monitor, hence a pressure balance method is used in which equation (9) is applied to the measured interior magnetospheric pressures, allowing for an estimation of the dynamic pressure at each crossing of the magnetopause.

[10] Arridge et al. [2006] used this pressure balance technique to develop a new model for Saturn’s magnetopause but did not explicitly include the effects of internal particle pressure inside the magnetosphere. This paper addresses the closing comments of Arridge et al. [2006], who realized that their model required further attention to account for the effect of internal plasma pressure on the pressure balance and the assumption of a constant static pressure. Energetic particle pressures are now available and we can incorporate the internal pressures in Saturn’s magnetosphere into the pressure balance equation. We can also investigate the static pressure influences and thus establish an improved model.

2. Previous Models

[11] There are many models that estimate the location of a planetary magnetopause, making investigation of its behavior possible [e.g., Sibeck et al., 1991; Kawano et al., 1999; Joy et al., 2002; Hendricks et al., 2005]. It has been demonstrated that the power law relationship for a dipole magnetic field with a fixed magnetic moment [e.g., Shue et al., 1997], is valid at Earth’s magnetopause, as the plasma does not contribute much to the total pressure near the magnetopause and the ring current does not change significantly with system size [e.g., Bunce et al., 2007]. For Jupiter the pressure balance method yields an exponent between \(-1/4\) and \(-1/5\) [e.g., Slavin et al., 1985; Huddleston et al., 1998], and for Saturn different studies have shown both a terrestrial-type \(-1/6\) [e.g., Slavin et al., 1985] and a jovian-like \(-1/4\) [Arridge et al., 2006] response.

[12] Three types of pressure balance models of Saturn’s magnetopause have been developed: those by Slavin et al. [1983, 1985], Maurice et al. [1996] and Arridge et al. [2006]. The Slavin et al. [1985] model, herein referred to as S85, used the pressure balance equation expressed in equation (8) to derive a relationship between the standoff distance and the dynamic pressure. S85 assumed \(k = 1 \) and model did not include internal plasma pressures so the \(P_{\text{MS}} \) term in equation (8) was not used. S85 used the pressure balance method to infer \(D_P \) and fitted a conic section to a limited set of magnetopause crossings identified in Pioneer 11 and Voyager 1 and 2 data. S85 found \(\alpha = 6.1 \), that is, a magnetopause that scaled as a terrestrial magnetopause, but with increased flaring. However, the model was valid only between the subsolar point and the same distance tailward, between 19 and \(-19 R_S \) (Saturn radii). They argued that the increased flaring was due to the ratio between the solar wind dynamic and thermal pressures. Maurice et al. [1996] used a model for Saturn’s magnetospheric magnetic field to develop a new model for Saturn’s magnetopause. They used the field model to calculate the magnetic field pressure inside the magnetosphere and a numerical technique to find the surface that was in pressure balance with the solar wind (via equation (1)). Their model magnetopause was considerably less flared compared to the S85 model.

[13] Hansen et al. [2005], herein referred to as H05, used the results of MHD simulations to investigate how the distance to the subsolar magnetopause varied with dynamic pressure. The model included internal plasma sources but the internal mass loading rate was adjusted so that the magnetopause was located where Cassini actually crossed the magnetopause on its approach and insertion orbit. The model implicitly includes the effects of internal plasma pressure but does not include the multiple plasma populations that are present in Saturn’s magnetosphere or the high energy density in some of the energetic populations. H05 found that the magnetopause is less flared than in previous models and is asymmetrical in the dawn-dusk meridian. The modeled magnetotail showed a hinge at \(20 R_S \) due to the inclination of Saturn’s dipole to the solar wind, similar to that identified in Cassini observations [Arridge et al., 2008a; Carbary et al., 2008]. To establish a power law relationship between \(R_0 \) and \(D_P \), H05 used a constant solar wind speed and varied \(D_P \) by controlling the solar wind plasma density. H05 found an \(\alpha \) value of 5.2, between values previously calculated for Earth and Jupiter; corresponding to a magnetopause that is neither as rigid as the Earth’s nor as compressible as Jupiter’s.

[14] Using the lack of upstream solar wind dynamic pressure measurements as a prompt, the authors of the Arridge et al. [2006] study (herein referred to as A06) presented a new technique for making a pressure-dependent model. The model used data from Cassini and Voyagers 1 and 2 and the more elaborate form of the pressure balance equation as expressed in equation (9). For A06, \(k = 0.881 \), which is valid in high Mach number regimes, as discussed in section 1.

[15] The A06 model magnetopause is rotationally symmetric about the \(x \) axis, and the polar coordinates of the magnetopause crossings can be calculated using equation (10). \(R \) is the distance from the planet to a point on the magnetopause and \(\theta \) is the angle subtended at the planet by the \(x \) axis and a position vector to a point on the magnetopause:

\[
R = R_0 \left(\frac{2}{1 + \cos \theta} \right)^{k}.
\]
The pressure-dependent size and shape of the magnetopause are set through equations (11) and (12), respectively.

\[R_0 = a_1 D_P^{a_2} \]
\[K = a_3 + a_4 D_P \]

Figure 1 demonstrates how varying \(R_0 \) and \(K \) values affect the shape of the model magnetopause. \(R_0 \) affects the size, and varying \(K \) changes how much the magnetopause flares. The dynamic pressure is used to create a model magnetopause, by fitting for modeled polar coordinates. The process uses equations (10)–(12). Dynamic pressures are inferred by iteratively fitting the magnetopause shape for coefficients \(a_i \). The process is presented as a flowchart in Figure 2. At each iteration, \(\Psi \) and \(D_P \) are estimated, then the root mean square (RMS) residual is found between the observed and the modeled \(R \) values, and once the tolerance of this RMS deviation is reached, the fitting is complete. In fitting for the coefficients the model will converge successfully for any inputted values. The algorithm employed is the nonlinear fitting Levenberg-Marquardt routine, which searches for \(a_i \) by minimizing the RMS residual. The process converges so that estimated \(D_P \) values are consistent with fitted model parameters.

A06 obtain \(\Psi \) directly from model normals; the model normal vector is calculated at each iteration, and \(\Psi \) is computed from the scalar product of the model normal with the solar wind direction. This means that \(\Psi \) is model dependent; assuming a pressure balance, the magnetopause geometry affects the dynamic pressure. At each iteration \(D_P \) is also estimated as the coefficients \(a_i \) are evaluated; thus, as the shape of the model changes, \(D_P \) and the flaring angle also change for current \(a_i \) values.

Figure 2. Flow diagram explaining the algorithm for fitting the new model magnetopause, as discussed in section 2.
The A06 model has a pressure response described by $\alpha = 4.3 \pm 0.4$, which represents a magnetosphere that is as compressible as the Jovian system. However, the model does not take polar flattening into account owing to its axisymmetry, which was forced on the model because of the lack of high-latitude crossings, a problem that also presents itself in the new model.

A06 estimated the effects of a high plasma β on the model magnetopause by doubling the magnetic pressures at equatorial locations and inferring a power law relationship from this. In a high β regime, such as that discovered in the kronian magnetosphere [Sergis et al., 2007], A06 found a modeled power law of $\alpha = 5.5 \pm 0.7$.

3. Method

3.1. The New Model

The new model uses the A06 numerical algorithm for calculating Ψ and D_P, as discussed in section 2. Changes were made to the A06 form of the pressure balance equation to address the issues highlighted previously. A constant static pressure (P_0) value was replaced with a static pressure, dependent on the dynamic pressure. When the results of the A06 pressure balance equation were compared to numerical MHD simulations by H05, it became apparent that the static solar wind pressure component was too small in A06. Larger P_0 values failed to correct this, producing inconsistent results and often negative dynamic pressures. It was recognized that P_0 was varying with solar wind density, and so our model employs a solar wind density-dependent static pressure component. At constant temperature, the solar wind static pressure varies with density via $P_0 = nK_BT$, where n is the number density, T is the temperature, and k_B is Boltzmann’s constant. Since the pressure balance equation is dependent on the dynamic pressure, we expressed density, and thus P_0, as a function of dynamic pressure assuming a fixed solar wind speed and helium abundance. A factor of 1.16 was introduced to take into account an approximate 4% contribution of He^+ in the solar wind with a temperature equal to approximately four times the temperature of protons [Slavin et al., 1985]. Varying this factor did not have any significant effect on the fitted model parameters. The validity of assuming a fixed solar wind velocity was also tested by varying the velocity between 400 and 600 km/s. It was found that different values of u_{SW} did not notably change the best-fit coefficients beyond their uncertainties.

The most significant modification to the A06 methodology was to include internal plasma pressures in the pressure balance equation to investigate the effects of high plasma β regimes. Averages of high-energy ion pressures
were taken from the magnetospheric imaging instrument (MIMI) for 5 min intervals just inside the magnetopause at each crossing location [Sergis et al., 2009]. Corresponding averages of low-energy electron pressures were taken from the Cassini electron spectrometer (CAPS-ELS).

[23] Low-energy proton pressures were estimated using 20% of the low-energy electron pressures given the assumption that the total ion number density is ~20% protons. The proton temperature is approximately the same as the electron temperature. This assumption is based on the best available data at present; note that a possible contribution from water-group ions has not been included in the CAPS energy range owing to the fact that the water-group pressure is included in the energetic pressure calculation.

Figure 4. Magnetopause crossings used in this study. (a) All the crossings in the KSM plane. The plot shows that most crossings are in the noon-dawn local time sector. Triangles show crossings used in the A06 model. Crosses denote crossings used in the new model. The filled circle is a representation of Saturn’s position and the Sun is to the right. (b) A representation of the crossings in cylindrical coordinates to show the low-latitude coverage. Cassini’s trajectory for the period is shown by the solid line.
This cannot be improved at this time without a full multi-species pressure calculation from eV to keV ranges that account for the ion bulk velocity. Including these projected proton pressures generate results within the error margins, so the final results are stated without these estimates. The final pressure balance equation is expressed in equation (13), where \(m_p \) is the proton mass. Knowing the magnetic pressure, the MIMI pressure, and the CAPS-ELS pressure, and inferring \(\Psi \) from the model normals makes it possible to calculate \(D_P \) from the pressure balance equation.

\[
kD_P \cos^2 \Psi + \frac{k_B T_{SW}}{1.16m_p u_{SW}^2} D_P \sin^2 \Psi = \frac{B^2}{2\mu_0} + P_{MIMI} + P_{ELS}. \tag{13}
\]

3.2. The Data

[24] The coordinate system used for the new model is the Kronocentric Solar Magnetospheric (KSM) system, which is Saturn centered, where the \(x \) axis points toward the Sun, the \(x-z \) plane contains Saturn’s centered magnetic dipole moment, and the \(y \) axis completes the right-hand set, pointing duskward.

[25] The magnetopause crossings used in this study were identified using 1 s averaged CAPS-ELS data covering the period from before Saturn Orbit Insertion in June 2004 until the end of January 2006. In ELS data a magnetopause crossing can be identified as a boundary between higher-density, lower-temperature electrons in the magnetosheath and lower-density, higher-temperature electrons in the magnetosphere. A rotation in the magnetic field to a southward orientation is also seen as the boundary is crossed. However, variations in the plasma data that are not apparent in the magnetic field data can also be identified as crossings, as these are usually associated with the entry of the spacecraft into a boundary layer. Often, the crossings involved a high magnetic shear and were very apparent in all data sets. In some cases the crossing locations were not so clear in the magnetometer data; when this was the case, the plasma data were taken to be more reliable than the magnetic field data for the purpose of placing crossing locations. Figure 3 illustrates three typical clear magnetopause crossings, two into the magnetosheath and one into the magnetosphere, from 25 May 2005 when Cassini was slightly below the equatorial plane, at \(\sim 32 R_S \) from Saturn on the dawn flank. Each crossing of the magnetopause is associated with a large rotation in the magnetic field and an increase in the field strength. High-frequency waves and mirror-mode-type structures are visible in the magnetosheath. In the plasma data, upstream of the magnetopause the colder, denser magnetosheath electron population is apparent, whereas downstream of the boundary more energetic magnetospheric electrons are evident. Intense counts of electrons below about 10 eV are trapped spacecraft photoelectrons.

[26] The temporal uncertainty in locating magnetopause crossings is not more than 10 min, which corresponds to about 0.1 \(R_S \). This is well within the RMS spread for the model. The data collection consists of a set of 191 crossings [McAndrews, 2007] that were spatially averaged to remove any bias due to boundary waves, rapid boundary motion, and the spacecraft trajectory. Spatially averaging crossings
within 1 \(R_S \) of each other reduced the data set to 68 crossings. Figure 4 shows the spatial distribution of the magnetopause crossings used in A06 and the new study. Figure 4a demonstrates that the crossings are distributed evenly between local noon and the dawn flank/postmidnight sector at low latitudes. Figure 4b illustrates the distribution about the KSM \(x-y \) plane and shows the predominance of the crossings about the equator. The lack of high-latitude crossings may affect the outcome of the new study; this is discussed in further detail in section 4.

Figure 5 shows the histograms of the distribution of the magnetospheric pressure inside the magnetopause for the crossings used in this study. The inclusion for the first time of all internal pressures provides an excellent insight into the effects of the contributions of different partial pressures adjacent to the magnetopause inside the kronian magnetosphere. Figure 5a shows a histogram of the magnetic pressures inside the magnetosphere, taken from the MAG instrument. The magnetic pressure varies from \(10^{-4} \) to \(<10^{-1} \) nPa (corresponding to field strengths between 0.5 and 15 nT), with a peak near \(3 \times 10^{-3} \) nPa. This corresponds to a field strength of several nanoteslas, which is common in Saturn’s outer magnetosphere [e.g., Arridge et al., 2008b].

Figure 5b illustrates the distribution of suprathermal particle pressures inside the magnetopause, taken from the MIMI instrument. Here pressures vary between \(10^{-4} \) and 1 nPa, with a peak at approximately \(3 \times 10^{-3} \) nPa, similar to the magnetic pressure. Figure 5c shows low-energy electron pressures inside the magnetosphere, from the ELS instrument. The pressures due to low-energy particles are an order of magnitude less than the magnetic and suprathermal ion pressure, with a peak pressure of approximately \(10^{-4} \) nPa, but the distribution has a width of about four orders of magnitude, which is similar to the magnetic and suprathermal ion pressure. The total pressure histograms, Figures 5e and 5f, are thus dominated by the distribution of the suprathermal ion and magnetic pressure as the electron pressure is so low. These histograms also show possible evidence of the bimodal distribution as discussed by Achilleos et al. [2008], although these effects are beyond the scope of this model. Finally, Figure 5d shows plasma \(\beta \) inside the magnetopause that is found to range between \(10^{-4} \) and \(10^{2} \) and has a peak near 0.4, although the peak is quite broad, extending between -0.03 and 1.0. This highlights the clear importance of the plasma pressure for a large proportion of the magnetopause crossings in this study, but not all.

Table 1. Values for the Model Coefficients and Root Mean Square (RMS) for the A06 and New Models Calculated Using Equations (11) and (12), Showing the Differences Between \(\alpha \) and the RMS Values for the Two Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A06 model</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>9.7 ± 1.0</td>
<td>10.3 ± 1.7</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.24 ± 0.02</td>
<td>0.20 ± 0.03</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.77 ± 0.03</td>
<td>0.73 ± 0.07</td>
</tr>
<tr>
<td>(a_4)</td>
<td>-1.5 ± 0.3</td>
<td>0.4 ± 0.5</td>
</tr>
<tr>
<td>(\alpha) value</td>
<td>4.3±0.4</td>
<td>5.0±0.8</td>
</tr>
<tr>
<td>RMS</td>
<td>1.238</td>
<td>3.603</td>
</tr>
<tr>
<td>No. of data points used</td>
<td>64 (26)</td>
<td>191 (68)</td>
</tr>
</tbody>
</table>

*Using new model crossings and A06 model coefficients, the associated RMS was found to be 3.82, higher than the RMS for the new model.

4. **Discussion**

[28] Table 1 shows the values for the coefficients and RMS for A06 and our new model. The A06 and new models are also compared in Figure 6. First, the size coefficient \(a_1 \) is slightly larger than A06 but is in agreement with A06 within the estimated uncertainty. To first order the introduction of additional sources of pressure inside the magnetosphere results in the estimated dynamic pressure being somewhat larger at each crossing. Hence, the model magnetopause will be slightly larger for the same dynamic pressure compared to A06.

[29] The flaring parameter \(a_3 \) is slightly smaller in the new model compared to A06, resulting in a slightly more streamlined shape. We attribute this to the direct inclusion of a dynamic pressure-dependent \(P_0 \) in the new model, which increases the static pressure on the flanks and streamlining the obstacle. The pressure-dependent flaring parameter \(a_4 \) has changed the most between A06 and the new model; the large relative uncertainty in this parameter perhaps suggests that this parameter cannot be accurately resolved by the fitting technique and/or data set used.

[30] The power law dependence of the dynamic pressure on the size of the magnetosphere is also consistent with A06 within the estimated uncertainties. The power law \(R_S \sim D_P^{-1/\alpha} \) is described by \(\alpha = 5.0 \pm 0.8 \), compared to 6.1 for S85 and 4.3 ± 0.4 for A06. A power law exponent with \(\alpha < 6 \) indicates a magnetosphere that does not scale as a dipole with a fixed moment but is more compressible, possibly giving evidence for the disc-like geometry that is thought to exist at Saturn [Arridge et al., 2008b], enhanced plasma pressure within the disc, and response of the centrifugal component of the ring current to changes in system size [Bunce et al., 2007]. Thus, while the inclusion of magnetospheric plasma pressure has modified the value of \(\alpha \), the new value is still consistent with A06 and with the idea of a significantly compressible magnetosphere. This is in agreement with the results from MHD models presented by H05 but does not support the Pioneer/Voyager-era modeling in S85.

Figure 6. The new model magnetopause shape. (a) The new model magnetopause (dotted line) with crosses denoting the new model, scaled crossings, and the A06 model magnetopause (dashed line) with triangles denoting the A06 model, scaled crossings, both scaled to a standoff distance of 20 \(R_S \). This gives a \(D_P \) of 0.036 and 0.043 nPa for the new model and A06, respectively. It can be seen that the new model is less flared. (b) The new magnetopause shape scaled so that the standoff distance is at 21 and 27 \(R_S \), giving \(D_P \) as 0.028 and 0.008 nPa, respectively. Crossings are, once again, scaled for relevant dynamic pressures. In each of these plots the coordinates are along the \(Y_{KSM} \) axis and in the direction perpendicular to this, \((Y_{KSM} + Z_{KSM})^{1/2}\).
Figure 6
[31] Figure 6 illustrates the new model magnetopause shape, compared with A06 (Figure 6a) and for two dynamic pressures (Figure 6b), with crossings scaled for relevant dynamic pressures. The difference in the geometry of the new model with A06 is clear from Figure 6a. Figure 6b shows the geometry of the new model, with magnetopause locations scaled to represent high- and low-pressure solar wind conditions. The crossings are spread about the model, showing the validity of the assumptions used in the fitting. However, the crossings for this model are constrained to mainly dayside and lower latitudes, so this will have a bias on the results. In particular, we were not able to identify a dawn-dusk or north-south asymmetry owing to the asymmetry of the model and the spacecraft coverage of the magnetosphere.

[32] Variations between the models are due to the expanded data set and the inclusion of variable solar wind thermal pressure and magnetospheric plasma pressure effects. The results of this analysis show that the assumption of a vacuum magnetosphere is not entirely unreasonable for the data used by A06. The model derived in our study is close to that derived by A06 in their “high-β correction,” although smaller, and so this also supports the idea that the A06 high-β correction was overcorrecting to some degree. Finally, the RMS value is higher for the new model than for A06, but this might be expected, owing to the increased number of input parameters. The new model was run using the best-fit coefficient values for the A06 model and the associated RMS was found to be 3.82. This shows that while the two models are similar, including actual magnetospheric plasma data in the new model gives improved results. We have not included effects relating to periodic motion of the magnetopause [e.g., Clarke et al., 2006] but note that the peak-to-trough amplitude for such oscillations is about 2 R₆₉, which is smaller than the RMS of our new model. Hence, such oscillations represent noise in the context of this work; these effects are implicitly taken into account within the model. Future work may attempt to investigate whether the magnetopause is more or less compressible during such outward or inward periodic displacements.

[33] Other future work on this model could include using a larger database of crossings, making the model more current. A comparison of the model dynamic pressures with actual measurements would be hugely beneficial in aiding its validity. The crossings used are primarily in the dawn sector at low latitudes, which means that this model cannot account for any polar flattening effect, but evidence for such an effect is being sought (Achilleos et al., private communication). A lack of high-latitude crossings has prevented the investigation of this effect so future attempts to include these in the model would be important for the global understanding of the system.

5. Conclusions

[34] A new model of Saturn’s magnetopause was created using a multi-instrument Cassini data analysis. In the absence of an upstream monitor of the solar wind, dynamic pressures were calculated using an iterative process to fit a pressure balance model, including in it a variable solar wind thermal pressure and taking into consideration the total magnetospheric plasma pressure. The results support the finding of A06 and H05 that the magnetopause size scales for the absence of an upstream monitor of the solar wind, dynamic pressures were calculated using an iterative process to fit a pressure balance model, including in it a variable solar wind thermal pressure and taking into consideration the total magnetospheric plasma pressure. The results support the

References

