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[1] The analytical formulation of the Dessler-Parker-Sckopke (DPS) equation relating
the energy content of the ring current to the magnetic field depression at the Earth’s
center is examined. To conduct this study, a method is presented for numerically
integrating inner magnetospheric pressure distributions according to the Biot-Savart
law to obtain magnetic field perturbations at an arbitrary location. It is found that the
implicit assumption of the DPS relation requiring that all of the particle pressure is
included in the integration can generate large errors relative to the true perturbation.
When there is a nonzero pressure just inside the outer boundary of the integration
volume, the DPS relation implicitly includes large azimuthal currents at this pressure
discontinuity. By including ghost cells of adiabatically decreasing pressure beyond the
outer boundary, a ‘‘true’’ perturbation from the currents within the simulation is obtained.
The ratio of this corrected value to the DPS value systematically varies according to a
simple pressure ratio. Other aspects of the DPS relation are also confirmed with this
code, including the validity criterion imposed by the plasma pressure anisotropy and the
validity of the relation for any local time asymmetry. The inclusion of closure currents in
the perturbation calculation, which were not part of the DPS derivation, changes the local
time profile of the perturbation and can make either a negligible or a substantial
contribution in either a positive or a negative sense to the globally averaged
perturbation. INDEX TERMS: 2778 Magnetospheric Physics: Ring current; 2788 Magnetospheric

Physics: Storms and substorms; 2730 Magnetospheric Physics: Magnetosphere—inner; 7819 Space Plasma
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1. Introduction

[2] Dessler and Parker [1959] developed an extremely
compact and remarkably useful formula relating the total
energy of the ring current ERC to the magnetic field
perturbation at the center of the Earth �B(0)

�B 0ð Þ
BE

¼ � 2ERC

3UE

; ð1Þ

where BE is the equatorial surface magnetic field strength of
the Earth’s dipole and UE is the magnetic energy of the
dipole field beyond the Earth’s surface. This equation can
be rewritten in standard units in the following form:

�B nT½ � ¼ �3:98 10�30
� �

*ERC keV½ �: ð2Þ

Dessler and Parker’s original analysis only considered two
particle distributions, isotropic and completely equatorial,
but Sckopke [1966] extended the validity of this formulation
for all pitch angle distributions of the form singa, where a is

the equatorial pitch angle and g � 0. Equation (1) (and
equation (2)) is now known as the Dessler-Parker-Sckopke
(DPS) relation and has been used extensively in geomag-
netic storm analyses to understand the Dst index and to
parameterize the overall strength of the ring current [see,
e.g., Roeder et al., 1996; Jorgensen et al., 1997; Greenspan
and Hamilton, 2000]. Large-scale ring current modeling has
shown that this formula can reproduce the observed Dst*
(the ring current contribution to the Dst index, often treated
as equivalent to �B(0)) to within 20% during most storms
[e.g., Jordanova et al., 1998, 2001; Ebihara and Ejiri,
1998; Kozyra et al., 1998, 2002; Liemohn et al., 1999,
2001a]. Differences between the observed and predicted
Dst* values have normally been attributed to the simulation
boundary conditions or background magnetic and electric
field choices. Because of its simplicity and relative
accuracy, it remains one of the most used formulas in ring
current analyses.
[3] Problems and inadequacies in this relation have not

gone unnoticed, however. These studies do not disprove
the derivation of the DPS relation so much as quantify the
errors introduced in the analytical assumptions used by
Dessler and Parker [1959] and Sckopke [1966]. For
instance, Carovillano and Siscoe [1973] presented a
detailed analysis of the early studies examining and aug-
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menting the DPS relation. These include the omission of a
nonlinear energy term in the original derivation [Parker
and Stewart, 1967; Baker and Hurley, 1967; Maguire and
Carovillano, 1968]. This term was omitted because Dessler
and Parker [1959] assumed linear field distortions and did
not take into account effects of the field perturbation on the
motion of the particles creating the magnetic field depres-
sion. This feedback is a natural consequence seen in the
virial theorem, which equates changes to the total magneto-
hdrodynamic energy in a volume to the energy flow
through its boundary surface. Estimations of the magnitude
of this nonlinear term reveal that the DPS relation has up
to a 30% underestimation of the true magnetic field
perturbation [Hoffman and Bracken, 1967; Sozou and
Windle, 1969a, 1969b; Lackner, 1970].
[4] Another assumption is azimuthal (local time) sym-

metry of the magnetospheric pressures and currents.
Carovillano and Siscoe [1973], however, showed that
the DPS relation is actually valid for asymmetric currents;
it just takes into account only the perpendicular magne-
tospheric currents and neglects the perturbation from the
field-aligned and ionospheric closure currents. If one
assumes that the field-aligned current contribution is
masked by the ionospheric Pedersen current contribution
to the perturbation, as is done for deconvolving high-
latitude magnetometer data [e.g., Ahn et al., 1983], then
the DPS relation is valid for any current configuration in
the inner magnetosphere.
[5] More recently, Siscoe and Petschek [1997] and

McPherron [1997] examined the validity of the DPS rela-
tion and found that another term, the net inflow of particle
energy into the volume, must also be included in the
calculation of the field depression. This term accounts for
the dynamics of the stormtime ring current, being largely
responsible for the growth and decay of the total particle
energy and thus the magnetic perturbation. Siscoe and
Petschek [1997] showed that during substorms, most of
the magnetic energy released during dipolarization is de-
posited directly into the ionosphere (Joule heating and
precipitative power) rather than transferred into magneto-
spheric particle energy. This results in a recovery in addition
to any substorm current wedge influences on Dst, which are
also positive [Friedrich et al., 1999; Munsami, 2000]. It
should be noted, however, that while Dst and AL have been
correlated [Davis and Parthasarathy, 1967; Cade et al.,
1995], others have found that the source of the ring current
energy cannot be substorms [McPherron, 1997; Wolf et al.,
1997; Grafe, 1999, Fok et al., 1999; Grafe and Feldstein,
2000; Liemohn and Kozyra, 2002].
[6] The present study examines yet another difference

between reality and the assumptions used in obtaining the
DPS relation. Specifically, the impact of a nonzero pres-
sure at the outer boundary of the integration volume is
investigated. Details are presented of a method for calcu-
lating the magnetic field depression generated by energetic
particles in the inner magnetosphere. This formulation is
derived and presented for an arbitrary location of the
‘‘virtual magnetometer.’’ Comparisons are made between
�B from the DPS relation and �B at virtual magneto-
meters placed at several locations. It is concluded that the
DPS formulation overpredicts the perturbation from the
inner magnetospheric currents because of the truncation

error associated with a nonzero pressure just inside the
outer boundary. The ramifications of this adjustment to
our understanding of the DPS relation are discussed in
section 5.

2. Numerical Solution of the Biot-Savart Integral

[7] As is known from classic electrodynamics, a line of
current generates a cylindrical magnetic field around it. The
formal equation relating these two quantities is known as
the Biot-Savart law, which gives the resulting magnetic field
vector �B at an arbitrary location r from a vector current
density field J(r0) distributed throughout a volume V

�B rð Þ ¼ m0
4p

Z
V

J r0ð Þ 	 r� r0ð Þ
jr� r0j3

dr0; ð3Þ

where m0 is the permeability of free space. The current
density in the inner magnetosphere can be easily derived
from the hot particle pressures [e.g., Parker, 1957]

J? ¼ B0

B2
0

	 rP? þ Pk � P?
� �rB0

B0

� �
; ð4Þ

where B0 and B0 are the vector and total magnitude
quantities of the background magnetic field, respectively.
For this study the numerical method of Liemohn et al.
[2001b] will be used to determine the perpendicular currents
in the magnetosphere J?. Note that there is both a ‘‘radial’’
and an ‘‘azimuthal’’ component to J? (both orthogonal to
the local field line direction, so the radial component is
actually directed straight outward only at the equator). The
particle pressures in equation (4) are found from the
moments of the local plasma distribution function f

P? ¼ p
R
f v;að Þmv2sin3advda

Pk ¼ 2p
R
f v;að Þmv2cos2asinadvda;

ð5Þ

where v and a are the particle velocity and local pitch angle
and m is the particle mass. Again, the numerical approach
described by Liemohn et al. [2001b] will be employed.
Because the bounce period of hot ions and electrons is fast
compared to their drift and collisional timescales, it is a
valid approximation to assume that f at an arbitrary point in
space can be found by mapping the distribution at the
equatorial plane (‘‘eq’’ subscript) along the field line,
changing a according to the first adiabatic invariant

sin2a
B0

¼ sin2aeq

B0;eq
: ð6Þ

[8] Liemohn et al. [2001b] discussed the calculation of
field-aligned currents from the divergence of equation (4).
The perturbation arising from this component of the current
(as well as from the ionospheric currents that must exist to
close the field-aligned currents) is included in Appendix A.
Only a small portion of the results presented below will
include the closure currents, however. The reason for this is
that a detailed description of the ionospheric conductances
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is needed for a proper definition of the ionospheric cur-
rents, and this is beyond the scope of the parametric case
studies to be presented. Because these currents can be close
to the usual placement of the virtual magnetometers (on the
Earth’s surface or at the origin), incorrect placement of
these currents can result in significant errors in �B. For
instance, under the assumptions of a vertical field line and
uniform conductance the ionospheric Pedersen currents will
have a signal that exactly cancels that from the field-
aligned currents, and only the ionospheric Hall currents
need to be considered [e.g., Roble and Ridley, 1987]. If an
electrojet is assumed, then the influence can be tens of
nanoteslas [e.g., Siscoe and Crooker, 1974]. In addition,
high-latitude field-aligned currents can cancel the lower-
latitude currents emanating from the integration volume
[e.g., Crooker and Siscoe, 1981], and so the domain must
expand to include all relevant currents that might contribute
to the perturbation. This influence is especially strong
when examining the local time asymmetries of the mag-
netic perturbation. Therefore the results below will focus
almost entirely on the magnetospheric perpendicular cur-
rents and their resulting perturbation. To minimize the
effect of this calculational omission, most of the results
will be for a symmetric current distribution in azimuth.
Longitudinally asymmetric currents will only be shown in
section 4.3, along with the influence of the closure currents
on the magnetic perturbation.
[9] The numerical algorithm and relevant equations of the

integration method are presented in Appendix A, and so
only an overview of the general calculational flow scheme
is given here. The calculation begins with the definition of a
distribution function f in the equatorial plane. This is
mapped along the field line using Liouville’s theorem to
obtain a three-dimensional (3-D) distribution of parallel and
perpendicular pressures. Then, equation (4) is used to
convert these pressures into currents, and finally equation
(3) is used to extract a magnetic perturbation. In addition to
calculating �B from equation (3), a numerical integration
of the total energy content of the plasma (from the 3-D
particle distribution) is used to obtain a value for ERC. This
can then be used in equation (2) to get a DPS perturbation
value for comparison. Note that a dipole magnetic field is
used throughout this calculation for consistency with the
derivation of the DPS relation.
[10] The largest obstacle in solving equation (3) is that the

natural coordinates for this calculation are the dipolar unit
vectors, because it is convenient to define a particle distri-
bution in the equatorial plane and then map it along the field
lines throughout the volume. This system, though, is quite
inconvenient for taking cross products and vector subtrac-
tions (as is necessary). In the following presentation (as well
as in Appendix A) the indices of i, j, and k will be used to
denote integration grid cells in the r, j, and l directions in
dipolar space, respectively. Note that l is not invariant
latitude, but rather the actual latitude of the grid location
(along a field line). All vectors, however, are presented in x,
y, and z Cartesian coordinates, including the pressure
gradients. Therefore the method includes a lengthy routine
to calculate the angles and interpolation coefficients for the
various derivatives (see Appendix A).
[11] It should be noted that there is a limitation to the

validity of this approach. Specifically, all of the numerical

grid cell increments should be small compared to both the
|r0-r| distance and, to a lesser degree, to the pressure and
magnetic field gradients. This is because it is assumed that
the entire grid cell is considered to be at a point at the center
of the cell. If |r0-r| is comparable to the grid spacing, then
the perturbation at r will greatly depend on its position
relative to the nearest grid cell centers. Similarly, if the
gradient quantities are large across the grid cell spacing,
currents may be incorrectly placed within the volume,
leading to errors. This second source of error grows in
significance as the first source of error becomes an issue
(that is, close to the virtual magnetometers). Both of these
limitations can be presumably overcome by reducing the
grid spacing (or subgridding).

3. Energetic Particle Distribution Mappings

[12] The topic of collisionless mapping of distributions
along field lines (i.e., application of the Liouville theorem)
has a long and rich history. Studies have focused on a
variety of issues regarding this mapping, on the formation
of electrostatic potential differences along a field line [e.g.,
Alfvén and Fälthammar, 1963; Whipple, 1977; Chiu and
Schulz, 1978; Miller and Khazanov, 1993], the current-
voltage relationship [e.g., Knight, 1973; Stasiewicz, 1985],
or ionospheric outflow quantification [e.g., Lemaire and
Scherer, 1973, 1974; Khazanov et al., 1997; Wilson et al.,
1997; Su et al., 1998]. All of these applications use the same
general approach in that they assume a particle distribution
function at a reference point along the field line and then
collisionlessly map it through the changing B field strength
and changing potential energy amplitude. In the discussion
below (and in Appendix B), quantities at the reference point
along the field line are denoted by the subscript ‘‘r.’’
[13] For the present study it is assumed that the magnetic

field lines are equipotentials and that the plasma can be
described by a bi-Maxwellian distribution function at the
equatorial plane (the chosen reference point). The details of
the derivation of the pressures are given in Appendix B, and
only the final solutions are shown here. The method of
Liemohn and Khazanov [1998] was used to determine the
pressures, but because of the assumptions listed above, the
other approaches should yield exactly the same formulas.
The parallel and perpendicular pressures at any point along
a field line is expressed in terms of the equatorial plane
pressures, Pkr and P?r, and the magnetic field ratio RB =
Br/B and have the form

Pk ¼ Pkr
Aþ 1

1þ ARB

ð7aÞ

P? ¼
Pk

1þ ARB

¼ Pkr
Aþ 1

1þ ARBð Þ2
; ð7bÞ

where A = Pkr/P?r � 1. Because the bounce period of
typical ring current ions is fast compared to their collisional
and drift timescales, the pitch angles that are magnetically
connected to the ionosphere are quickly depleted of
particles. Analytical formulas for the pressures under an
empty loss cone assumption require another magnetic field
ratio RBI = BI/B, relating the field strength at the ionospheric
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endpoint (denoted by subscript ‘‘I’’) to the local field
strength. The pressures then have the form

Pk ¼ Pkr*
A*þ 1

1þ A*RB

RBI � 1

RBI � RB

� �1=2
1� 1þ A*RB

RBI þ A*RB

� �
ð8aÞ

P? ¼
Pk

1þ A*RB

¼ Pkr*
A*þ 1

1þ A*RBð Þ2
RBI � 1

RBI � RB

� �1=2

� 1� 1þ A*RB

RBI þ A*RB

� �
;

ð8bÞ

where A* = P*kr/P*?r � 1. Because of the presence of an
empty loss cone, the reference values are slightly modified
to recover the original reference values at the equatorial
plane

Pkr* ¼ Pkr 1� RB þ ARB

RBI þ ARB

� �
ð9aÞ

P?r
* ¼ P?r 1� RB þ ARB

RBI þ ARB

� �
: ð9bÞ

For the present study the ionospheric endpoint is taken at
120 km above the Earth’s surface.
[14] Figure 1 shows some examples of pressure distribu-

tions along a field line. The pressure values are normalized
to arbitrary units, and a McIlwain L parameter L = 4 dipolar
field line is chosen (as a good midpoint of the typical ring
current L range). The three panels of Figure 1 show the
pressure profiles assuming different anisotropies: A < 0 in
the left panel (pancake distribution), A = 0 in the middle
panel (isotropic distribution), and A > 0 in the right panel

(cigar distribution). For the filled loss cone distribution
(solid lines) it can be seen that the pressures decrease for
all latitudes when A < 0, are constant with latitude for A = 0,
and increase with latitude for A > 0. Because the higher-
pitch angle particles are removed by the mirror force as the
magnetic field strength increases along the field line, the
low-pitch angle part of f dominates the pressure values at
higher latitudes. For the empty loss cone distribution (dotted
lines), the pressure drops to zero at the ionospheric endpoint
of the field line. The two distributions are quite similar for
most of the field line, and it is only near the endpoint that
they diverge.
[15] Results using only one of these distributions will be

chosen for the remainder of the analysis. The numerically
easier choice is the filled loss cone distribution, but the
more intuitively correct choice is the empty loss cone
distribution. Because we are assuming that the distributions
change slowly enough to validate a collisionless mapping
along the field line, it makes sense that the loss cone
should be depleted. Figure 2 is a quantitative comparison
of these two distributions against a simulated distribution
from the kinetic drift-loss modeling results of Kozyra et al.
[2002]. Shown in Figure 2 are comparisons for three times
during the magnetic storm of 4–6 1991, with the left panel
taken from the main phase, the middle panel taken from
the early recovery phase, and the right panel taken from
the late recovery phase. For all three of these times the
distribution is taken from the location L = 4 at magnetic
local time (MLT) = 2100, which is near the peak in the
simulation results during the main phase. The equatorial
perpendicular and parallel pressures are set equal to the
simulation result values, and then the two collisionless
mapping profiles are shown along with the result from
equation (5) using the local velocity space distribution from
the simulation results. It is seen that the empty loss cone
mapping is much closer to the results from the drift-loss
model for all three cases. Therefore the empty loss cone

Figure 1. (top) Parallel and (middle) perpendicular pressure distributions and (bottom) their ratio along
an L = 4 field line for three different anisotropy values. The left panel shows profiles for a pancake
distribution, the middle panel shows profiles for an isotropic distribution, and the right panel shows
profiles for a cigar distribution. The solid lines are for filled loss cone distributions, while the dotted lines
are for empty loss cone distributions.
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distribution will be used in the following section. Using the
filled loss cone distribution will, of course, slightly change
the numbers in the plots below, but the main conclusion is
unaffected.

4. Comparisons of �B Calculations

[16] Using an equatorial plane pressure distribution, the
current density throughout the inner magnetosphere can be
determined and, using equation (3), the magnetic perturba-
tion at any location can then be calculated. While any
definition of Pk and P? in the inner magnetosphere can
be used with this technique (that is, extracted from remotely
sensed or in situ observations, first-principles models, or
empirical descriptions), the following analysis will use an
analytically defined pressure distribution. This allows for a
better understanding of the comparisons to be made, and the
reasons for discrepancies between the methods can be more
readily understood.

4.1. Test Calculations

[17] A series of parametric tests have been conducted to
determine the accuracy and validity of the method described
in sections 2 and 3. Presented here are descriptive highlights
of those calculations.
[18] It is useful to quantify the error in the calculation

as a function of the plasma pressure distribution. One
battery of tests was run with thin shells of plasma around
the Earth, essentially a delta function in L shell with
azimuthal (local time) symmetry. Figure 3 shows the
results of such a calculation for a shell at L = 4. The
pressure distribution is isotropic with an empty loss cone.
The Figures 3a–3d show the equatorial plane pressure
distribution, the pressure distribution in the x-z plane, the
azimuthal currents resulting from the pressure gradients

using equation (4), and the contribution to �B at the
center of the Earth from those currents. Note that Figures
3a–3d are normalized to their maximum values (as in all
similar plots to follow). It is seen in Figure 3 that the
pressures are correctly mapped, the azimuthal currents are
correctly determined, and that the contributions to the
perturbation are correctly calculated. Westward currents
appear on the outer edge of the shell and eastward
currents on the inner edge, with corresponding negative
and positive contributions to �B. Note that the contours
in Figure 3d appear to be more confined toward the
equator than the contours in Figure 3c. This is because
of the geometrical preference of equatorial currents in
producing axially aligned perturbations. The magnetic
perturbation at Earth’s center from this shell is �1.58.
The total energy in this thin shell can also be calculated,
yielding another perturbation estimate from the DPS
relation (equation (2)), which is �1.69. The ratio of the
�BBSI value to the �BDPS value is 0.934 for this location
and specification of a thin shell. Ebihara and Ejiri [2000,
2001] also found similarity between the perturbation from
the DPS relation and that from a Biot-Savart integration of
their model results.
[19] To understand if this ratio is particularly good or

bad, the shell was moved to many L shells. The resulting
�BBSI/�BDPS ratios are given in Figure 4. It is seen that
the ratio drops from 1.04 at L = 2 to 0.92 at L = 6.5, with
most of the decrease occurring at low L values. A change
to a different pressure anisotropy value changes the offset
of this line but not the shape. Specifically, it shifts
upward for P? > Pk and downward for Pk > P?. The
difference between this ratio and unity is therefore a
systematic error introduced in one or both of the different
approaches. It is not a numerical integration error, because
increasing the grid resolution (doubling and even tripling

Figure 2. (top) Parallel and (middle) perpendicular pressure distributions and (bottom) their ratio along
an L = 4 field line at magnetic local time (MLT) = 2100 for three times during a magnetic storm. The
main phase is given in the left panel, the peak of the storm is given in the middle panel, and a time well
into the recovery phase is given in the right panel. The dashed lines are field line profiles from a kinetic
drift-loss model of hot ion transport in the inner magnetosphere, while the solid lines and dotted lines are
filled and empty loss cone profiles using the equatorial values of these simulated distributions.
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the number of cells in each spatial coordinate) has no
effect on these ratios (meaning the chosen resolution is
sufficient). This systematic error will be discussed in
more detail in section 4.3.
[20] Other plasma pressure distributions were also used

for testing the algorithm. Figure 5 shows results for an
azimuthally symmetric ‘‘thick shell’’ of plasma, with a
constant isotropic pressure inside the shell. As expected,
the eastward and westward currents are confined to the
inner and outer edges of the shell, respectively, with
corresponding �B contributions. For this distribution,
�BBSI/�BDPS = 0.932. Because the shell is centered at
L = 4, this value is amazingly close to the thin shell values
for this L shell. Changing the location and thickness of the
shell results in similar ratios to the thin shell analysis L shell
dependence.
[21] As a final presentation of a test case distribution,

Figure 6 shows results from a parabolic equatorial pressure
variation with L shell, again centered at L = 4 with Pk = P?.
It is seen that the currents and �B contributions are located
as expected with reasonable magnitudes. The resulting �B

ratio is 0.932, exactly the same as the uniform pressure
results. As with the thick shell �B values, the �B from the
parabolic pressure variation also changes like the thin shell
results as the location and spread of the distribution is

Figure 4. The ratio of �BBSI to �BDPS for isotropic thin
shell distributions as a function of shell location.

Figure 3. (a) Equatorial plane pressure distribution for a thin shell distribution at L = 4, (b) perpendicular
pressure distribution in the x-z plane assuming an isotropic distribution with an empty loss cone,
(c) azimuthal current distribution in the x-z plane, (d) relative contribution to the north-south magnetic
perturbation at the origin (x = 0, z = 0). Contours are drawn at 0.2 intervals, from �1.0 to 1.0, with dotted
contours for negative values and solid contours for positive values. No contour is drawn at 0.0.
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changed. Other distributions were also applied with similar
results.

4.2. Examination of the Truncation Current

[22] In applying the method to real plasma distributions in
the inner magnetosphere, it is useful to reduce these distri-
butions to analytical forms. This will provide ease of
interpretation of the results without a loss of generality. In
examining pressure profiles from in situ satellite data [e.g.,
Lui et al., 1987, 1994; Lui and Hamilton, 1992; Sheldon and
Hamilton, 1993; Greenspan and Hamilton, 2000; Pulkkinen
et al., 2001] and model results [e.g., Chen et al., 1994, 2000;
Liemohn et al., 2001a], a particular functional form arises as
a good fit to the L shell profile of the pressure

Pk;? ¼ xexp � x� Lpeak

�L

� �

for

L > Lmin ¼ Lpeak ��L;

ð10Þ

where x = L � Lmin. The parameters Lpeak and �L vary
depending on local time, activity level, and storm phase, but

the overall functional form appears to be a decently robust
fit. As a nominal case, values of Lpeak = 4 and �L = 0.625
will be chosen.
[23] Figure 7 shows the resulting currents and �B con-

tributions from this distribution. Note that because the DPS
relation assumes inclusion of all plasma pressure within the
integration volume V, the pressure is truncated beyond L =
6.5 to zero. As can be seen in Figure 7, this truncation
results in a massive westward current density at L = 6.5 and
a correspondingly large �B contribution. While such a
current system is unrealistic, the resulting �BBSI to �BDPS

ratio is 0.926. The closeness of this number to all the test
calculations (which were also peaked/centered at L = 4)
indicates that this ‘‘truncation current’’ at the boundary is
implicitly included in the DPS relation. That is, when
equation (2) is used to determine the magnetic perturbation
from an inner magnetospheric plasma distribution that does
not reach zero, the DPS relation imposes this pressure
constraint and thus inserts and integrates over this trunca-
tion current.
[24] This should not be a surprising result, because the

original derivations by Dessler and Parker [1959] and
Sckopke [1966] analytically solved equation (3) for an
infinitesimally small volume element. That is, they included

Figure 5. Same four panels as in Figure 3, but for an isotropic thick shell distribution centered at L = 4
with a 2 RE width at the equator.
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in the solution the eastward and westward currents at the
inner and outer edges of these volume elements. The
neighboring cells, however, cancel some or all of these
currents, yielding the correct total perturbation results. So
the DPS relation is linearly additive, and any volume
integration is equivalent to the sum of N integrations over
the N parts of the total volume. At the inner boundary the
chosen pressure profile goes to zero, because the plasma
stops in the upper atmosphere (and well before that in the
equatorial plane). At the outer boundary, often taken at or
near geosynchronous orbit in studies of the inner magneto-
sphere, the pressure is never zero. So this truncation current
is always present.
[25] By the inclusion of ghost cells with nonzero pressure

beyond the simulation domain, the truncation current can be
removed from the Biot-Savart integration. The outcome of
this exercise is shown in Figure 8. The resulting �BBSI/
�BDPS ratio is 0.700, substantially less than the ratio with
the truncation current included. To better understand the
quantitative reduction of the perturbation (and to remove the
systematic difference between the Biot-Savart integral (BSI)
and DPS results), it is useful to consider the ratio of �BBSI

with the ghost cells included to �BBSI without them. This

ratio Br is 0.755 for this case. This means that 25% of the
DPS value is caused by the truncation current. Because this
is a nonphysical current which should not have been
included in the integration, the DPS relation is always
systematically overestimating the perturbation from inner
magnetospheric plasma.
[26] Figures 7 and 8 show results for the nominal pressure

distribution. The free parameters of Lpeak and �L can be
varied to investigate the magnitude of this overprediction by
the DPS relation (that is, the contribution from the boundary
current). In the course of systematically varying these
parameters, an interesting result becomes evident. For a
given Lpeak, as �L is increased, the ratio Br drops. For the
same �L, as Lpeak is increased, this ratio drops. Upon a
more careful examination of the results, it becomes clear
that there is a governing relationship of the variation in this
�B ratio. The independent variable is the ratio of the peak
pressure to the boundary pressure (in this case, the pressure
at L = 6.5). Figure 9 shows the relationship of Br to this
pressure ratio Pr for an isotropic and a pancake pressure
distribution. Eighteen points are shown in Figures 9a and
9b: six values of �L for each of three values of Lpeak. The
correlation is remarkable with a precise one-to-one relation-

Figure 6. Same four panels as in Figure 3, but for an isotropic pressure distribution with a parabolic L
shell dependence, centered at L = 4 with a 4 RE width at the equator.

SMP 18 - 8 LIEMOHN: A CAVEAT TO THE DPS RELATION



ship between the �B ratio and the pressure ratio. A line can
be fitted through these points which has a functional form of

Br ¼ A� Pr � B

C

� �D
ð11Þ

The four free parameters (A, B, C, and D) are fitted through
an iteration routine that randomly changes the values by up
to 1% per iteration, seeking to minimize the error between
the curve and the points by reducing the following deviation
parameter:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

Bfit
r ið Þ � Br ið Þ

� �2
vuut : ð12Þ

Several disparate initial condition sets for A, B, C, and D
were used to ensure that a global minimum of d is found.
For the isotropic pressure results (Figure 9a) the best fit
coefficients are A = 0.9914, B = 18.80, C = 18.57, and D =
11.52, while for the pancake pressure results (Figure 9b) the
best fit values are A = 0.9896, B = 18.49, C = 18.07, and

D = 11.35. These two sets of values are very similar, with
the main difference being a slight downward shift for the
pancake pressure results (i.e., a larger influence of the
truncation current in the DPS relation). This downward shift
is understandable because the pancake distribution confines
the currents near the equatorial plane, where they will
contribute most to the axial magnetic perturbation at the
origin.
[27] In understanding the significance of Figure 9 it is

useful to make note of some critical values in the fitted
relationships. Table 1 lists some of these numbers for the
two cases shown in Figure 9, including the pressure ratios
where the magnetic field ratio is 0.0, 0.5, and 0.9. It is
interesting that neither fit passes through the origin but
rather the magnetic field ratio reaches zero when the
pressure ratio is still above unity. This is, of course, an
extrapolation of the calculated results, but it demonstrates
that the DPS relation profoundly breaks down as the
truncation current increases into becoming the dominant
contributor to �B. Another revelation of Figure 9 and Table
1 is that a pressure ratio of more than 40 is needed for the
truncation current to contribute <10% to the �B value.
Another quantity listed in Table 1 is the Br value for a

Figure 7. Same four panels as in Figure 3, but for an isotropic pressure distribution with a real L shell
dependence, with a truncated pressure at the outer boundary of the integration volume.
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Figure 9. Magnetic perturbation ratio versus pressure ratio, as described in the text, for (a) an isotropic
pressure distribution and (b) a pancake pressure distribution, with many parameter settings in the real L
shell dependence profile formula.

Figure 8. Same four panels as Figure 3, but for an isotropic pressure distribution with a real L shell
dependence, with an adiabatic pressure profile extending into several ghost cells beyond the outer
boundary of the integration volume.
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pressure ratio of 10.0. This is a typical pressure ratio,
indicating that 25–30% of the total magnetic perturbation
predicted by the DPS relation is from the truncation current
and therefore not really from the pressure distribution inside
the integration volume.
[28] In examining pressure profiles from observations and

numerical experiments, the pressure ratio (for an outer
boundary at geosynchronous orbit) is typically around
10–15 during quiet times. It then moves to lower values,
perhaps as low as 4–5, during the main phase injection of
the stormtime ring current. Finally, during the recovery
phase of a magnetic storm, when the ring current is still
enhanced but the plasma sheet ion population has returned
to normal, Pr can increase to values as high as 40 (or more,
in rare cases). Therefore there is a systematic progression
along the curves shown in Figure 9 during the course of a
magnetic storm, with the DPS relation being an excellent
predictor of magnetic perturbation (from the particles inside
the integration volume) during the recovery phase but a
particularly bad predictor of this quantity during the main
phase (that is, the truncation current is significantly, perhaps
dominantly, contributing to the �BDPS value).
[29] The significance of this result is that the overpredic-

tion of the perturbation inherent in the DPS relation is a
systematic error that can be taken into account through a
simple pressure ratio. The robustness of the result is
validated by the number of cases contributing to each line
(that is, each point in Figure 9 is a uniquely shaped pressure
profile in the inner magnetosphere).

4.3. Further Analysis of the DPS Relation

[30] By varying other parameters of the pressure distri-
bution, additional revelations about the DPS relation can be
made. One such variation is in the pressure anisotropy.
Figure 10 shows the dependence of �BBSI/�BDPS on P?/Pk
for the nominal real pressure distribution. It is seen that for
pancake distributions the perturbation ratio slowly rises to
just above unity and appears to be asymptoting. For cigar-
shaped distributions the �B ratio quickly drops. This is a
numerical confirmation of the Sckopke [1966] generaliza-
tion of the original Dessler and Parker [1959] study.
Sckopke [1966] noted that the DPS relation is valid for a
plasma distribution function with the form f / singa, with
g � 0. The present study goes a step further, showing that
the DPS relation systematically overpredicts the true per-
turbation when g < 0 (that is, for Pk > P?). In other words, it
is not that the DPS relation’s validity for g < 0 is uncertain;
it is certainly invalid.
[31] This overprediction can be explained by considering

Figure 1. For a cigar-shaped distribution, the pressure along
the field line maximizes away from the equator. Off
equatorial currents, however, split their perturbation be-
tween a z component and an x-y component. This split is
not taken into account in the DPS relation. It is believed that

the systematic error seen in Figure 4 is primarily due to the
overprediction of the axial perturbation from off equatorial
currents. Figure 10 can be used as a general guideline for
correcting the DPS relation for the average plasma anisot-
ropy. Note, however, that this curve is for a specific spatial
distribution of the pressure and assumes the same plasma
anisotropy everywhere in the equatorial plane.
[32] Another parametric variation that can be investigated

is the local time asymmetry of the pressure distribution. To
thoroughly examine this effect, the �B calculation was
performed not only at the Earth’s center but also at 24
locations (every hour in MLT) around the equator of the
Earth’s surface (L = 1). Figure 11 shows these results for
two different asymmetry configurations. Figure 11a is for a
sine wave pressure amplitude around the nightside (zero
from 0600 to 1800 MLT) and Figure 11b is for a delta
function spike at 0000 MLT. Both calculations used an
isotropic pressure with the nominal L shell variation as
defined above. The values are normalized by j�BDPSj to
show the correct sign of the perturbation as a function of
local time. In Figure 11, only the perturbation from the
azimuthal currents in the inner magnetosphere is included
in the results; the influence of the closure currents is
discussed below. Even though both distributions yield a
�B that is asymmetric in MLT, the average of the 24 values
around the Earth is amazingly similar to the �B value at the
center of the Earth. For the results in Figure 11a, �BBSI(0)/
�BDPS is 0.926223 while h�BBSI(L = 1)i/�BDPS is
0.926825. For the delta function results in Figure 11b,
these two ratios are 0.926223 and 0.926830, respectively.
Note that the influence from induced currents inside the
Earth are not included in Figure 11 or in these ratios. For
comparison, these ratios for an azimuthally symmetric
pressure distribution are 0.926224 and 0.926834, respec-
tively. These are all well within the uncertainty level of the
numerical integration algorithm. So even though the DPS
relation neglects the closure currents of the asymmetric ring
current (remember that these currents are also neglected in
the BSI results for a direct comparison), the DPS relation
captures all of the perturbation from the magnetospheric
azimuthal currents. This is also an expected result from the
original derivation of the DPS relation, because the volume
elements were not a priori defined to be azimuthally
symmetric (symmetry was assumed only so that all of the
current was included in the calculation).

Table 1. Pr and Br Values of the Fitted Relationships

Quantity P? = Pk Value P? = 2Pk Value

Pr(Br = 0.0) 1.277 1.544
Pr(Br = 0.5) 3.825 4.570
Pr(Br = 0.9) 41.00 48.30
Br(Pr = 10.0) 0.7355 0.7032

Figure 10. Ratio of �BBSI to �BDPS as a function of P?/
Pk for an isotropic pressure distribution with a real L shell
dependence.
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[33] It is interesting to note that the magnitude of the �B
asymmetry (�Bmax � �Bmin) is quite similar for the two
pressure distributions, with values of 0.474 and 0.609 for
Figures 11a and 11b, respectively. This result can be
understood by examining the radial displacement R = r-r0

dependence of the Biot-Savart law (equation (3)). With R in
the numerator and jRj3 in the denominator, there is a net
R�2 dependence of �B. An illustrative calculation to
perform is to put a delta function of current (a spike in all
three spatial coordinates) in the equatorial plane and then
calculate the �B values on the nearside and farside of the
Earth. The results of this exercise are shown in Figure 12. It
is seen that the average of these two �B values is larger
than their difference for R > 3.5. Because this is a delta
function of current, this is the maximum possible asymme-
try. As the current is extended in local time, the total
asymmetry decreases, eventually reaching zero for a uni-
form ring of current around the Earth. Therefore observa-
tions of asymmetries on the order of the average
perturbation are most likely from very-near-Earth, localized
currents. The most obvious possibilities are field-aligned
and ionospheric currents.
[34] Let us briefly examine the current closure. The

discussions of Figures 11 and 12 are incomplete in that
the field-aligned and ionospheric closure currents of the
azimuthally asymmetric perpendicular currents in the mag-
netosphere are neglected. This means that the values plotted

in Figures 11 and 12 implicitly include a closure current
configuration that yields no net �B contribution [e.g.,
Vasyliunas, 1999]. Such a configuration may be unrealistic.
Using the formulas in Appendix A, a complete calculation
for the entire current loop can be performed. Figure 13
shows the normalized �B (�BBSI(MLT)/j�BDPSj) for three
current segments (magnetospheric perpendicular currents,
magnetospheric parallel currents, and ionospheric perpen-
dicular currents) as well as the perturbation from the entire
current loop. As in Figure 11, Figures 13a and 13c show
results for a ‘‘broad’’ asymmetric pressure distribution (sine
wave dependence across the nightside), while Figures 13b
and 13d show the results for a delta function spike at
midnight. The left-and right-hand plots show results with
two different assumptions regarding the ionospheric closure
of the partial ring current. Figures 13a and 13b show results
for a nightside electrojet (that is, east-west directed) of
current in the ionosphere with Jiono = 0 at noon. Figures
13c and 13d show results for the other extreme, with the
current closing in a zonal electrojet around the dayside
ionosphere with Jiono = 0 at midnight. The resulting MLT-
averaged perturbations for each of these segments are given
in Table 2. In all cases the field-aligned currents contribute
substantially to the observed local time asymmetry but do

Figure 11. Ratio of �BBSI to j�BDPSj as a function of
MLT for (a) a broad asymmetric distribution (sine wave
dependence on the nightside, zero on the dayside) and for
(b) a delta function in MLT at midnight. The pressure is
isotropic with a nominal real L dependence (as in other
figures). The solid line is the ratio for �BBSI values as
calculated at a chain of virtual magnetometers located every
hour in MLTaround the equator of the Earth (that is, at L = 1)
and the dotted line is ratio for the average of these values.

Figure 12. Parameters relating to the perturbation from a
delta function of current a distance L from the center of
Earth. (top) Perturbation as seen by a virtual magnetometer
on the nearside of the Earth and that seen by one on the
farside of the Earth (both at the equator). (middle) The
average of the nearside and farside perturbation values
(SYM, solid line) and the ratio of the nearside value to the
farside value (ASYM, dotted line). (bottom) The ratio of
ASYM to SYM.
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not influence the MLT-averaged value (given our configu-
ration of currents and virtual magnetometers). Because the
ionospheric currents have a net flow from the dusk side of
the planet to the dawn side of the planet, they also
contribute to the local time asymmetry in the same sense
as the magnetospheric and field-aligned current segments
(negative on the nightside and positive on the dayside).
Depending on the direction of the ionospheric closure,
however, the contribution to the MLT-averaged value can
be either positive or negative. When the currents close
across midnight, most of the magnetometers see a positive
perturbation, and so the average is the opposite sense as the
magnetospheric segment. This is similar to the Crooker and
Siscoe [1974] result of �20% of the perturbation from a
model partial ring current resulting from the eastward
electrojet in the ionosphere. When the currents close across
noon, the reverse is true, and the average perturbation is in
the same sense as that from the magnetospheric currents. It
is seen that nearly all of the local time asymmetry is due to
the currents that are close to the Earth, while a majority of
the globally averaged perturbation is from the perpendicular
currents in the magnetosphere. Of course, these are simply
idealized examples of pressure asymmetries in the inner
magnetosphere with simplistic assumptions about the nature
of the closure current. Allowing north-south closure in the
ionosphere would certainly change the resulting perturba-

tion. It should be noted that the�B asymmetry for the entire
current loop perturbation profiles shown in Figures 13a–
13d are 3.641, 5.503, 3.644, and 5.508, respectively (nor-
malized to �BDPS). Asymmetries of this size are never
observed (e.g., examine SYM-H and ASY-H available online
at the World Data Center for Geomagnetism at http://
swdcwww.kugi.kyoto-u.ac.jp/index.html, which show that
ASY-H rarely exceeds jSYM-Hj). So these idealized cases are
either unrealistic and/or not a complete set of relevant
currents. For a real event study a robust conductance model
should be used to solve Poisson’s equation to get the true
ionospheric current pattern for each time throughout the
event including high-latitude currents, which will presum-

Figure 13. The ratio of �BBSI to j�BDPSj as a function of MLT (as in Figure 11) for (a and c) a broad
asymmetric distribution and (b and d) a delta function in MLT at midnight. Shown are the perturbations
from the magnetospheric current segments (dotted line), the field-aligned current segments (dashed line),
the ionospheric current segments (dash-dotted line), and the entire current loop (solid line). Results from
two different assumptions about the closure are shown, with the ionospheric currents flowing zonally
across the nightside (Figures 13a and 13b) with Jiono = 0 at noon and across the dayside (Figures 13c and
13d) with Jiono = 0 at midnight.

Table 2. Magnetic-Local-Time-Averaged Perturbationsa

Segment Broad Peak Narrow Peak

All J (nightside Jiono) 0.8146 0.8146
All J (dayside Jiono) 1.161 1.762
Jperp only 0.9268 0.9269
Jpara only 0.000 0.000
Jiono only, nightside jet �0.1123 �0.1123
Jiono only, dayside jet 0.2341 0.8334

aNormalized by �BDPS for the current segments in the azimuthally
asymmetric configurations of the pressure distribution (as shown in
Figure 13).
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ably cancel much of the asymmetry from the midlatitude
currents.

5. Discussion and Conclusions

[35] The main finding of this study is that the truncation
current, which is implicitly included in the DPS relation
whenever the plasma pressure is nonzero at the outer
boundary, causes the DPS relation to overpredict the size
of the perturbation from the particle energy inside the
integration volume. This truncation current is introduced
because the DPS relation assumes that all of the plasma
pressure is contained within the integration volume. If it is
not, then the DPS relation introduces ghost cells of zero
pressure at the outer edge of the volume and then includes
in its total magnetic perturbation the contribution from the
large azimuthal current associated with this pressure trun-
cation. As shown above, the perturbation from this non-
physical current can be significant, but there is a simple
formula relating this error to the ratio of the peak pressure to
that at the boundary.
[36] Some studies report that Dst can be well predicted by

the DPS relation using only the inner magnetospheric ion
energy content, while others say that additional currents
must be taken into account. For instance, Greenspan and
Hamilton [2000] showed experimentally that the DPS
relation works well. Other studies, such that of as Roeder
et al. [1996], showed that a DPS integral of observed ion
fluxes were only able to account for 40–70% of the
observed Dst value, but this study used data that have a
lower energy cutoff of 40–50 keV, which misses a signif-
icant portion of the ring current ions [see, e.g., Liemohn and
Kozyra, 2002]. Modeling results also predict most or all of
the observed Dst* with a DPS conversion of the total energy
content in the simulation results [e.g., Jordanova et al.,
1998; Kozyra et al., 1998; Liemohn et al., 1999]. Studies
that contradict this equity are those that predict a non-
negligible contribution to Dst from other currents. The tail
current is one that has received attention recently, with
predictions of 25–50% of the Dst perturbation from this
system [Alexeev et al., 1996; Turner et al., 2000, 2001;
Ohtani et al., 2001]. The question, then, is how to reconcile
these seemingly contradictory results regarding the forma-
tion of Dst.
[37] The present study provides a possible answer to this

dilemma. The truncation current implicitly included in the
DPS relation is, in some qualitative sense, accounting for
the tail current or any current beyond the outer boundary
(that is, it could even be additional symmetric or partial ring
current). The perturbation from the truncation current is, of
course, just an estimate of the perturbation from any real
currents beyond the integration volume because the mag-
netic field quickly becomes nondipolar and dynamic. How-
ever, the overprediction of the DPS relation can be thought
of as a crude estimate of the contribution from these other
currents. Because typical ring current pressure profiles have
Pr values of 10–20, the typical truncation error is 20–30%
of the DPS perturbation value. This number roughly
matches the estimates of the contribution to the Dst index
from tail currents and other currents beyond geosynchro-
nous orbit. Therefore using the DPS relation for the energy
content of only the ring current and then directly comparing

it against Dst* (Dst corrected for the magnetopause cur-
rents, quiet time offsets, and induced currents in the Earth)
is probably an acceptable proxy for the contribution from
the ring current and the tail current combined.
[38] It is useful to compare this result with the more

general form of the DPS relation derived from the virial
theorem [Olbert et al., 1968; Siscoe, 1970]

�B 0ð Þ
BE

¼ � 2ERC þ URC þ Ui þ Ub �
H
ptr � nds

3UE

ð13Þ

In equation (13), URC is the magnetic energy of the ring
current, Ui is the magnetic interaction energy between the
Earth and the ring current, Ub is the magnetic energy
associated with the boundary currents, and the integral is the
boundary current term. In this study, URC and Ui are
assumed to be small compared to ERC. The question that
arises as to the relationship between the truncation currents
discussed in this paper and the boundary currents included
in equation (13). The fundamental difference is that the
boundary current in equation (13) is assumed to be
generated by a nonzero pressure outside of the integration
volume (with zero pressure immediately inside the
boundary). Such a pressure configuration produces a
positive magnetic perturbation in and on the Earth. This is
the situation on the dayside magnetopause, with a quiet time
magnitude of 10–20 nT and peak values in the range 50–
100 nT [e.g., Burton et al., 1975; O’Brien and McPherron,
2000; Vasyliunas, 2001]. In the present study the situation is
reversed; there is a nonzero pressure immediately inside the
volume boundary and a zero-pressure level beyond it. This
reversal results in a negative contribution to the perturbation
at Earth. To the best of our knowledge the perturbation from
such a pressure configuration has never been discussed.
Therefore, while the concept of a boundary current
contribution to the magnetic perturbation at Earth is not
new, this particular manifestation of the boundary current is
new, and so this study presents yet another caveat to using
the DPS relation.
[39] As a final note, the role of the field-aligned and

ionospheric current contributions to �B have not been
rigorously addressed in this study. These currents arise not
only from the closure of the partial ring current within the
integration volume of the inner magnetosphere, but also
from the region 1 and region 2 currents flowing into and out
of the ionosphere at higher latitudes. While the method
presented above is flexible enough to handle these currents,
the ionospheric current closure requires accurate knowledge
of the ionospheric conductances, particularly those in the
subauroral nightside, of which very little is known. In this
study, it was shown that the closure currents always con-
tribute to the local time profile of the magnetic perturbation,
but the contribution to the globally averaged perturbation
can be either large or small and either positive or negative.
Others have found that the closure current contribution is
largely from the Hall current [e.g., Siscoe and Crooker,
1974; Chen et al., 1982], which was not considered in this
study. Another contributor is the longitudinal offset between
region 1 and region 2 currents, which also causes a dawn-
dusk asymmetry but very little globally averaged (i.e., Dst)
influence [e.g., Crooker and Siscoe, 1981]. During storms
this offset will increase owing to twisting of both patterns,

SMP 18 - 14 LIEMOHN: A CAVEAT TO THE DPS RELATION



and the asymmetry can get even larger. In conclusion, an
accurate calculation of any of these influences requires a
self-consistent solution. It was the point of this study to
show the influence of the truncation current, which can be
significant, and the details of the perturbation from these
other currents are left for future investigations.

Appendix A: Biot-Savart Law Integration

[40] Given an array of virtual magnetometer stations
(indexed below as n) each at a position rn, the north-south
(H) component of the perturbation field generated by a
current density throughout a volume V(r0) can be found
from equation (3). For this calculation, V will be dissected
into an arbitrarily large array of grid cells in L0, j0, and l0

(indexed below as i, j, and k). Note that while the grid is in
dipolar coordinates (chosen for ease in distribution function
mapping), the vector variables at these locations are often
specified in terms of Cartesian coordinate directions (cho-
sen for ease in vector manipulations). Also, in dipolar
coordinates,

r0 ¼ REL
0cos2l0 ðA1Þ

is the dependence of geocentric radial distance of L shell on
latitude.
[41] The main text discussed the calculation of the

perpendicular current densities in the magnetosphere. The
current densities parallel to the magnetic field lines are
found from the divergence of I? (current, not current
density)

B � r
Jk

B

� �
¼ r � J?; ðA2Þ

which is accumulated along the field line. These field-
aligned currents can have a positive or negative flow along
B0, and in fact it often has opposite signs in the two
hemispheres along the same field line. These parallel
current densities are used as a source term in Poisson’s
equation for the ionospheric potential � [e.g., Vasyliunas,
1970]

r ��r�ð Þ ¼ Jksiny; ðA3Þ

where � is the height-integrated ionospheric conductance
tensor and y is the magnetic field inclination angle. Once a
spatial distribution of � is known from equation (A3), the
ionospheric Pedersen and Hall currents can be defined using
Ohm’s law,

Jiono ¼ ��r�: ðA4Þ

[42] The perturbation from any of the currents defined by
equations (4), (A2), or (A4) can be written out in index
notation as follows,

�Ha nð Þ ¼
X
i; j; k

C�H

n
cosln JxRy � JyRx

� �
sinln cosjn JyRz � JzRy

� ��
þ sinjn JzRx � JxRzð Þ�

o
; ðA5Þ

where the sine and cosine terms are included to select the H
component of the perturbation. The relative position vector,
R = r � r0, is given by

Rx ¼ rx nð Þ � r0x i; j; kð Þ

x ¼ x; y; z;
ðA6Þ

where the components of r (location of the virtual
magnetometer) can be defined from a Cartesian, spherical,
or dipolar perspective, but the components of r0 (location of
the current) is defined by a transformation from dipolar
coordinates and C�H has this form for the magnetospheric
currents (J? and Jk)

C�H r0ð Þ ¼ m0
4p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Beq ið Þ
B i; kð Þ

s
REL

0 ið Þcos3l0�s i; kð Þ�req�j

R2
x þ R2

y þ R2
z

� �3=2 ðA7aÞ

and the following form for Jiono:

C�H r0ð Þ ¼ m0
4p

r02 cosl0�siono��iono r0ð Þ�j

R2
x þ R2

y þ R2
z

� �3=2 : ðA7bÞ

In equation (A7) the subscript ‘‘eq’’ denotes the value is
taken at the equatorial plane, and the subscript ‘‘iono’’
indicates that the value is taken at the ionosphere. Also, the
volume element has been given several forms, such as

dr0 ¼ �rð Þ r0cosl0�jð Þ r0�lð Þ

¼
ffiffiffiffiffiffiffi
Beq

B

r
�req

 !
L0REcos

3l0�j
� �

�sð Þ: ðA8Þ

Note that both hemispheres (northern and southern) must be
included in the integration domain, including the conjugate
ionospheres for each field line. It should also be pointed out
that equation (A5) yields �H in units of nT given J in
nanoamperes per squared meter and all distances in m. In
equation (A7a), �s is the length of the grid cell along the
field line and is determined by a cell-centered difference
using equation (A1). In (A7b), �siono is the vertical extent
of the ionospheric currents, which will eventually cancel out
of the formulation. Also in equation (A7b), ��iono is the
ionospheric projection of �req.
[43] Let us now consider how to obtain the currents from

the various formulas in section 3. For equation (4) the
calculation of the gradient curvature component of this
current is straightforward,

Jx1;GC¼
Pk i; j; kð Þ � P? i; j; kð Þ
� �

B3 i; kð Þ Bx2 i;kð Þ@B i; kð Þ
@x3

�
�Bx3 i;kð Þ@B i; kð Þ

@x2

�
;

ðA9Þ

where x1, x2, and x3 cycle through x, y, and z for each vector
direction. Because B is assumed to be dipolar, its spatial
derivatives can be expressed analytically. The magnetiza-
tion term, however, requires a Cartesian coordinate
derivative of P?,

Jx1;M ¼
Bx2 i; kð Þ
B2 i; kð Þ

@P? i; j; kð Þ
@x3

�
Bx3 i; kð Þ
B2 i; kð Þ

@P? i; j; kð Þ
@x2

; ðA10Þ
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which will have to be performed numerically. However, the
derivative of P? on the dipolar grid is straightforward, and
these can be converted into the needed values. Figure A1
shows the geometry between a grid cell and its nearest
neighbors for the three dipolar coordinate directions. In
Figure A1a, �s1 and �s2 are defined similarly to �s above
and b1 and b2 are the angles (with respect to the x-y plane) to
the southern and northern neighboring cells along the field
line, respectively, and can be written as

b1 ¼ atan
Bz i; kð Þ þ Bz i; k � 1ð Þ
Bxy i; kð Þ þ Bxy i; k � 1ð Þ

� �

b2 ¼ atan
Bz i; kð Þ þ Bz i; k þ 1ð Þ
Bxy i; kð Þ þ Bxy i; k þ 1ð Þ

� �
;

ðA11Þ

where the ‘‘xy’’ subscript denotes the component of the
vector in the x-y plane. In Figure A1b, g1 and g2 are the
angles (with respect to the x-z plane) to the western and
eastern neighboring cells, respectively, and can be written as

g1 ¼ j0 jð Þ � :5�j

g2 ¼ j0 jð Þ þ :5�j:
ðA12Þ

In Figure A1c, a1 is the angle normal to the local
geomagnetic field (in the direction of decreasing B) and
can be written as

a1 ¼
asin

Bz i; kð Þ
B i; kð Þ

� �
� p

2
; l < 0

p
2
� asin

Bz i; kð Þ
B i; kð Þ

� �
; l � 0:

8>><
>>: ðA13Þ

Also in Figure A1c, �r = �req cos3 l0 is the distance
between field lines along a1 in each direction and l1 and l2
are the latitude of the intersection of the normal vectors with
the inner and outer field lines, respectively, defined as

l1 ¼ atan
r0z i; j; kð Þ ��rsina1

r0xy i; j; kð Þ ��rcosa1

" #
ðA14aÞ

l2 ¼ atan
r0z i; j; kð Þ þ�rsina1

r0xy i; j; kð Þ þ�rcosa1

" #
ðA14bÞ

Given this geometry, the dipolar coordinate derivatives of
P? can be written as follows:

dPi ¼ c2P? iþ 1; j; k l2ð Þð Þ½ þ 1� c2ð ÞP? iþ 1; j; k l2ð Þ � 1ð Þ�

� c1P? i� 1; j; k l1ð Þð Þ½ þ 1� c1ð ÞP? i� 1; j; k l1ð Þ � 1ð Þ�
ðA15aÞ

dPj1 ¼ P? i; j; kð Þ � P? i; j� 1; kð Þ ðA15bÞ

dPj2 ¼ P? i; jþ 1; kð Þ � P? i; j; kð Þ ðA15cÞ

dPk1 ¼ P? i; j; kð Þ � P? i; j; k � 1ð Þ ðA15dÞ

dPk2 ¼ P? i; j; k þ 1ð Þ � P? i; j; kð Þ; ðA15eÞ

where k(l1) and k(l2) are indices of the closest cell (to the
north) to l1 and l2 along those field lines, respectively, and
c1 and c 2 are interpolation factors

c1 ¼
l0 i� 1; k l1ð Þð Þ � l1

l0 i� 1; k l1ð Þð Þ � l0 i� 1; k l1ð Þ � 1ð Þ ðA16aÞ

c2 ¼
l iþ 1; k l2ð Þð Þ � l2

l iþ 1; k l2ð Þð Þ � l iþ 1; k l2ð Þ � 1ð Þ : ðA16bÞ

Figure A1. Geometries for the angle definitions used in
the calculation, with schematics showing (a) b1, b2, and l0

in the X-Z plane; (b) j0,�j, g1, and g2 in the X-Y plane; and
(c) l1, l2, and a1 in the X-Y plane.
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Note that equation (A16a) does not need to be used if P?
can be calculated exactly at l1 and l2. Using equations
(A11)–(A14), the difference values in equation (A15) can
then be converted into Cartesian coordinate derivatives as
follows:

@P?

@x
¼ 1

2

�Picosa1cosj0

�r
þ�Pk;icosb1cosj0

�s1

�
þ�Pk;2cosb2cosj0

�s2

��Pj;1cosg1 þ�Pj;2cosg2
2r0xy i; kð Þ�j

!
ðA17aÞ

@P?

@y
¼ 1

2

�Picosa1sinj0

�r
þ�Pk;icosb1sinj0

�s1

�
þ�Pk;2cosb2sinj0

�s2

þ�Pj;1cosg1 þ�Pj;2cosg2
2r0xy i; kð Þ�j

!
ðA17bÞ

@P?

@z
¼ 1

2

�Pisina1

�r
þ�Pk;1sinb1

�s1
þ�Pk;2sinb2

�s2

� �
; ðA17cÞ

which can be used in equation (A10).
[44] For Jk the value of J? at the cell interface is

determined by an interpolation of the nearest neighbors.
From equations (A9) and (A10), J? is known in Cartesian
coordinates on the dipolar grid, and using the geometry in
Figure A1, the Cartesian vectors at the interfaces can be
written as

Ji�1=2;x ¼
1

2
J?;x i; j; kð Þ þ c1J?;x
�

i� 1; j; k l1ð Þ � 1ð Þþ 1� c1ð Þ

� J?;x i� 1; j; k l1ð Þð Þ� ðA18aÞ

Jiþ1=2;x ¼
1

2
J?;x i; j; kð Þ þ c2J?;x
�

iþ 1; j; k l2ð Þ � 1ð Þþ 1� c2ð Þ

� J?;x iþ 1; j; k l2ð Þð Þ� ðA18bÞ

Jj�1=2;x ¼
1

2
J?;x i; j; kð Þ þ J?;x i; j� 1; kð Þ
� �

ðA18cÞ

Jjþ1=2;x ¼
1

2
J?;x i; j; kð Þ þ J?;x i; jþ 1; kð Þ
� �

; ðA18dÞ

and so J?;ij�1=2 ¼ �Jij�1=2 � n̂ij�1=2 can be written from
equation (A18) as

J?;i�1=2 ¼ �Ji�1=2;xcosa1cosj0 � Ji�1=2;ycosa1sinj0 �i�1=2;z sina1

ðA19aÞ

J?;j�1=2 ¼ �Jj�1=2;xsing1 � Jj�1=2;ycosg1: ðA19bÞ

In addition, the surface areas of the cell faces are given by

A?;j�1=2 ¼
ffiffiffiffiffiffiffi
Beq

B

r
�req

 !
�sð Þ

A?;i�1=2 ¼ r0
i�1=2cosl

0�j
� �

�si�1=2

� �
;

ðA20Þ

and the flux tube cross section can be written as

Ak ¼ r0cosl0�jð Þ
ffiffiffiffiffiffiffi
Beq

B

r
�req

 !
: ðA21Þ

Using these definitions, the solution of Jk is clear. This
scalar is then directed along B for use in equation (A5). For
the final component of the current, Jiono, its value from
equation (A4) can be used directly in equation (A5), as
discussed above.

Appendix B: Derivation of Pressure Formulas

[45] For collisionless mapping along a magnetic field
line, the distribution function only depends on two constants
of motion [Whipple, 1977], the total energy E

E ¼
mn2k
2

þ mn2?
2

þ� ðB1Þ

and the first adiabatic invariant m (slightly rewritten from
equation (6))

m ¼ mn2?
2B

: ðB2Þ

In equation (B1), � is the total potential energy, which
includes the electrostatic potential � as well as other
potential fields like gravity, centrifugal acceleration, or
ponderomotive effects [see, e.g., Khazanov et al., 1998].
The moments of the distribution can then be written in terms
of these new variables E and m,

Pk ¼
2

m

� �3=2

pB
Z ZZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � mB��
p

f E; mð ÞdEdm ðB3aÞ

P? ¼
ffiffiffi
2

p
pB2

m3=2

Z ZZ
mf E; mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � mB��

p dEdm ðB3bÞ

The advantage of switching to these variables is that the
distribution function is now invariant in E-m space with
position along the field line, and the proper moment values
are obtained simply by integrating over a changing region
of E-m space. Figure B1a shows a typical integration region,
which extends over the range of positive m above a line
defined by E � mB+ � (i.e., the region where the particle
kinetic energy KE is greater than zero). Note that the
integration must be doubled to account for both hemi-
spherical directions in velocity space (or a second integra-
tion should be done for the oppositely flowing particle
distribution). This technique was originally developed by
Whipple [1977], but his formulation (and that of most
others) is limited in applicability by a set of rather stringent
criteria on the relationship between � and B [Chiu and
Schulz, 1978]. A more generalized approach of piecewise
integration in E-m space was developed by Liemohn and
Khazanov [1998] and applied for geophysical topics by
Khazanov et al. [1998].
[46] That technique that will be used here for mapping of

the distribution functions and calculating the pressures. It
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allows for an arbitrary � distribution and B variation along
the field line because it builds the total integral in equation
(B3) from additive and subtractive summations of integrals
over only a portion of E-m space, each with simple boundary

conditions in E and m. Figure B1b illustratively shows an E-
m region requiring several piecewise integrations. Any holes
in velocity space (such as a loss cone) are included by
subtracting away piecewise integrations over those regions
of E-m space. The additional lower boundary lines necessi-
tating this piecewise approach arise owing to � and B not
satisfying the Chiu and Schulz [1978] criteria.
[47] It will be assumed that the distribution is defined by a

bi-Maxwellian function. In the chosen variables this func-
tion has the form

f ¼ m

2p

� �3=2 no Aþ 1ð Þ
T
3=2
k

exp �E ��o þ mBoA

Tk

� �
; ðB4Þ

where A = Tk/T? � 1 = Pkr/P?r � 1 is an anisotropy index
of the parallel and perpendicular temperatures at the
reference point along the field line (in this case, the
equatorial plane). Also, nr, �r, and Br are the density,
potential, and magnetic field strength at the reference point,
respectively. Inserting equation (B4) into equation (B3)
yields rather complicated expressions for the pressures

Pk ¼
nr Aþ 1ð ÞBffiffiffi

p
p

T
3=2
k

exp
�r

Tk

� �X
a

Sa

Zma;2
m¼ma;1

exp � mBrA

Tk

� �

�
Z1

E¼mBaþ�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � mB��

p
exp � E

Tk

� �
dE

2
64

3
75dm ðB5aÞ

P? ¼ nr Aþ 1ð ÞB2

2
ffiffiffi
p

p
T
3=2
k

exp
�r

Tk

� �X
a

Sa

Zma;2
m¼ma;1

mexp � mBrA

Tk

� �

�
Z1

E¼mBaþ�a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � mB��

p exp � E

Tk

� �
dE

2
64

3
75dm ðB5bÞ

where the summation over ‘‘a’’ runs over all of the
piecewise integrals necessary to construct the ‘‘filled’’
velocity space region in E-m space, and Sa is either plus
or minus one depending on whether the piecewise
integral should be added into the total integral or
subtracted away from the total. The integration endpoints
ma1 and ma2 are the intersection points of the E = mBa +
�a line with the E = mBa�1 + �a�1 line and the E =
mBa+1 + �a+1 line, respectively (left and right endpoints
of the integration domain). The E = mBa + �a line
defines the lower bound of the integration domain, which
extends up to infinity in the E direction. Holes in the
distribution are then created by subtracting other piece-
wise integrals from the region already included in the
additive piecewise integrals. In addition, because of the
square of the velocities in equations (B1) and (B2), there
must be a set of ‘‘a’’ integrals for each direction along
the field line, which may or may not have the same
integration boundaries or distribution function (depending
on the profile of B and � along the field line and the
boundary conditions on f ).
[48] Because a bi-Maxwellian was chosen, though, every

piecewise integration in equation (B5), no matter what the
complexity of B or �, has an analytical solution [Liemohn

Figure B1. Schematics showing the filled and empty
regions of velocity space in the E-m plane for (a) a single
baseline defining the lower integration limit, (b) an example of
how three baselines can combine to form the lower integration
limit, thus requiring three piecewise integrations to obtain a
moment of the velocity distribution, and (c) the specific case
for this study, showing thebaselineat the referencealtitude, the
baseline at the local altitude, and the loss cone baseline that
must be subtracted if assumed to be empty.
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and Khazanov, 1998; Khazanov et al., 1998]. An assump-
tion that greatly simplifies the solution of equation (B5) is
that the magnetic field lines are equipotentials (that is, � = 0
everywhere). This not only eliminates terms in equation
(B5), but it reduces the number of piecewise integrations to
a minimum. For the case of a filled loss cone distribution,
there is only a single ‘‘a’’ value, defined by the local
magnetic field strength. For an empty loss cone distribution,
another integration must be included in the scenario to
subtract off this part of E-m space. These integration
boundaries are shown in Figure B1c.
[49] For a reference point at the equatorial plane, the

solution to equation (B5) is given in the main text in
equation (7) for the filled loss cone case and in equation
(8) for the empty loss cone case. Note that this latter
solution requires a modification of the equatorial values in
equation (8), as shown in equation (9), in order to maintain
the original pressure values at the reference point. Note that
equation (8) has already taken into account a conversion of
nr to n*r for this equatorial plane value adjustment

nr* ¼ nr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BI þ ABr

BI � Br

r
: ðB6Þ

The reader is referred to Whipple [1977] for more
information regarding the development and application of
E-m space, to Chiu and Schulz [1978] for information about
the validity criteria for Liouville theorem mappings that
only consider the endpoint values of B and �, and to
Liemohn and Khazanov [1998] and Khazanov et al. [1998]
for a method to extend Liouville theorem mappings to an
arbitrary B-� relationship along the field line.
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