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[11 This work derives the fracture flow equation from the two-dimensional steady form of
the Navier-Stokes equation. Asymptotic solutions are obtained whereby the perturbation
parameter is the ratio of the mean width over the length of the fracture segment. The
perturbation expansion can handle arbitrary variation of the fracture walls as long as the
dominant velocity is in the longitudinal direction. The effect of the matrix-fracture
interaction is also taken into account by allowing leakage through the fracture walls. The
perturbation solution is used to obtain an estimate of the flow rate and the fracture
transmissivity as well as the velocity and the pressure distribution in fractures of various
geometries. The analysis covers eight different configurations of fracture geometry
including linear and curvilinear variation as well as sinusoidal variation in the top and
bottom walls with varying horizontal alignment and roughness wavelengths. The zero-
order solution yields the Reynolds lubrication approximation, and the higher-order
equations provide a correction term to the flow rate in terms of the roughness frequency
and the Reynolds number. For sinusoidal and linear walls, the mathematical analysis
shows that the zero-order flow rate could be expressed in terms of the maximum to
minimum width ratio. For equal widths at both ends of the fracture, the first-order
correction is zero. For sinusoidal fractures, the flow rate decreases with increasing
Reynolds number and with increasing roughness amplitude and frequency. The effect of
leakage is to create a nonuniform flow distribution in the fracture that deviates
significantly from the flow rate estimate for impermeable walls. The derived flow
expressions can provide a more reliable tool for flow and transport predictions in fractured

domain.
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1. Introduction

[2] Fracture flow is commonly described by a simple
equation relating the flux rate with the cube of the aperture
width. This equation is known as the cubic law and
originally describes the steady and laminar flow of a
Newtonian fluid running between two smooth parallel
plates. Such dynamic conditions and geometric uniformity
simplify significantly the mathematical representation of the
flow. However, recent experimental evidence and field
studies have indicated that the validity of the cubic law is
questionable [e.g., Pyrak-Nolte et al., 1987; Raven et al.,
1988]. The cubic law exhibits the tendency to overestimate
real flow rates; the measured transmissivity is lower than the
predicted value and the velocity distribution within the
fracture is not parabolic but rather skewed [Brown et al.,
1995; Waite et al., 1998]. Attempts to explain the deviation
of the experimental results from the theoretical predictions
focused on studying the effect of nonuniform apertures, the
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roughness, and the tortuosity of the walls on the flow. In
the absence of alternative procedures, corrections and
improvements to the parallel plate model were made.
Empirical and semiempirical models were developed in
attempt to correct for those deviations. These include the
inclusion of a correction factor [Witherspoon et al., 1980],
the extension to a two-dimensional aperture system using the
Reynolds equation [Brown, 1987], the development of a
conceptual channel model [Tsang and Tsang, 1987], and
the incorporation of the effect of surface roughness and
tortuosity in the Reynolds’ equation [Ge, 1997]. Most of
these improvements are based on the underlying cubic law
assumptions, namely, that the flow behaves locally as in
plane Poiseuille flow with a parabolic velocity profile, that
the flux component perpendicular to the fracture plane is
nonexistent, and that inertia effects are negligible.

[3] From a mathematical point of view, the high com-
plexity of the flow conditions inside the fractures constituted
a major obstacle to the development of a rigorous analysis.
The description of flow in fractures should be based on the
three-dimensional Navier-Stokes equation. For a one-di-
mensional steady parallel flow, the Navier-Stokes equation
yields the cubic law equation. A natural extension is to
include the two-dimensional (2-D) features of fracture flow
using the two-dimensional version of the Navier-Stokes
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equations. Attempts to solve the 2-D Navier-Stokes equa-
tion analytically are relatively few. Hasegawa and Izuchi
[1983] derived the perturbation solution of the two-dimen-
sional equation for a related problem of flow through a
channel bounded by one flat wall and one sinusoidal wall.
Kitanidis and Dykaar [1997] presented a fourth-order
perturbation solution by assuming that the Reynolds num-
ber is negligibly small so that the acceleration terms can be
discarded. Sisavath et al. [2003] used the perturbation result
of Van Dyke [1987] and the creeping flow assumption to
relate the mean pressure drop with the mean flow rate and
allow the estimation of the conductance or transmissivity of
a fracture. The above analyses were restricted to either a
symmetrical sinusoidal variation of both walls [Kitanidis
and Dykaar, 1997; Sisavath et al., 2003] or to a sinusoidal
top wall with a flat bottom wall [Hasegawa and Izuchi,
1983].

[4] The previous studies assumed impermeable fracture
walls. Such an assumption allowed the transformation of
the governing equation and the elimination of the pres-
sure terms using the definition of stream function. The
stream function formulation reduces the number of de-
pendent variables from three to one. However, it is
restricted to flows between impermeable walls in which
the side-leakage effects are neglected. The analysis of
leakage necessitates the use of the Navier-Stokes equation
expressed in its primary variables of velocity and pressure
in order to apply the appropriate boundary conditions on
the permeable walls. Furthermore, since the stream func-
tion formulations cancel the pressure terms and thereby
bypass the need of pressure boundary conditions, a flow
rate is normally defined at the boundary and the ensuing
pressure drop across the fracture length is derived in
order to obtain the expression for the transmissivity.
However, in experimental setups, the pressure value at
the entrance and at the exit of the fracture is prescribed
and the flow rate is unknown. Hence pressure boundary
conditions are more suitable for modeling and inverse
analysis.

[s] The use of the cubic law is prevalent in solute
transport models and other groundwater models that deal
with fracture flow. A better description of fracture flow is
therefore needed to provide a more reliable tool for flow
and transport predictions in fractured domain. An approx-
imate fracture flow equation can constitute a basis for the
formulation of conceptual models for numerical modeling
of flow in discrete fracture networks and in fractured soils
wherein there is a significant interaction between the
fracture and the enclosing soil matrix. In the present work,
a theoretical study of fracture flow is presented in the hope
of providing an adequate and simple equation for fracture
flow estimation. Perturbation expansion of the two-dimen-
sional Navier-Stokes equation is carried out to the second
order whereby the perturbation parameter is the ratio of the
mean width over the length of the fracture segment. An
expansion to the fourth order is also presented for the case
of Stokes flow within impermeable fracture walls. The
second-order perturbation expansion takes into account
the effect of inertia and the vertical viscous force component
and can handle arbitrary variation of the top and bottom
walls, whether symmetric or asymmetric. The effect of
matrix-fracture interaction is also taken into account by
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allowing leakage into the soil matrix through the bottom
fracture wall. The solution for leaky walls is more compli-
cated than the impermeable wall case because the flow rate is
not constant but varying with space.

[6] The present perturbation analysis assumes primarily
that the mean fracture width is smaller than the fracture
length and that the dominant velocity is in the longitudinal
direction. The focus of the investigation is therefore directed
toward the effect of the geometry of the fracture walls, the
contribution of the neglected terms in the governing equa-
tion, and the effect of the leakage through the fracture
planes rather than on the geometrical complexity of the
flow paths. The perturbation solution is used to obtain the
velocity and the pressure distribution in saturated fractures
of various geometries from which flow rate expressions as
well as expressions of the fracture transmissivity and of the
friction factor are derived. The derived analytical results
allow also the investigation of the various conditions under
which the Reynolds and the Stokes approximations apply.
Various wall configurations were examined, including linear
and curvilinear variation as well as sinusoidal variation in
the top and bottom walls with varying horizontal alignment
and roughness frequency. The sinusoidal wall profile
includes those of previous analytical and experimental
works in which the top and bottom sinusoidal walls are
aligned, misaligned, or symmetric about the center axis. In
case of leaky fractures it is assumed that the seepage is
through a flat bottom wall while the upper varying wall is
impermeable.

[7] Section 2 derives the governing Navier-Stokes equa-
tions in dimensionless form, and section 3 uses perturbation
expansion techniques to obtain an approximate second-
order solution of the fracture flow equation and a fourth-
order solution for the Stokes equation. Section 4 presents
the flow rate expressions for the various geometries and
flow conditions. Section 5 provides a discussion of the
results, and section 6 concludes the study.

2. Theory
2.1.

[8] The governing equations of steady incompressible
flow in saturated fractures are given by the Navier-Stokes
equations in two-dimensional form

Governing Equations
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Equation (1) is the continuity equation while the momentum
equations are expressed by equations (2) and (3), where u
and w are the velocity components in the x and z directions,
respectively, v is the constant kinematic viscosity, g is the
gravitational acceleration and / is the piezometric head,
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h = p/y + (, whereby p is the pressure, vy is the specific
weight of water, and ( is the coordinate pointing in the
direction of g. The first two terms on the left-hand side of
the momentum equations are the advective acceleration and
represent the inertia effects; the third term is the head
gradient while the last two terms represent the viscous
forces. The dominant flow direction is denoted herein by the
x-axis, while the direction perpendicular to the fracture
plane is denoted by the z-axis.

2.2. Boundary Conditions

[9] The boundary conditions are given by the no-slip and
seepage flux conditions on the fracture walls
z=b, u=0 w=0
4)
z=b, u=0 w=gq
where b, is the top width profile, b, is the bottom width
profile, and ¢, is the seepage flux through the bottom wall
into the adjoining matrix. The above conditions set that the
upper wall is impermeable and that the leakage is only
through the lower wall. For impermeable walls, the fracture
has an arbitrary width distribution b, — b;, while for the
leaky fracture case the leaky bottom wall is assumed to be
flat. The general case of arbitrary bottom wall variation with
leakage can be handled by the present perturbation
approach, but the mathematics become too complicated
and cumbersome with no additional gain in insight.
[10] The leakage flux g; can be expressed using Darcy’s
law

hy —h
— (5)

qs =k

where & = h(x, b,) is the head at the bottom wall of the
fracture and /%, is the hydraulic head at a distance d across
the bottom matrix of a hydraulic conductivity k. It is herein
assumed that steady state flow prevails in the fracture-
matrix domain so that /4, is constant in time but varying in
space.

[11] Additional boundary conditions are given by the
prescribed uniform head conditions at the entrance and exit
of the fracture

x=0 ]’l:hl
(6)
h=h,

x=1

Equation (6) implies that the pressure drop across the
fracture length is known, from which an expression of the
flow rate can be derived. Alternate boundary conditions to
equation (6) were presented by previous investigators of the
Navier-Stokes equation. The most common boundary
condition is the specification of a constant flow [Ge,
1997; Sisavath et al., 2003]. The classical Jeffrey-Hamel
problem for a converging or diverging smooth walls
assumes a particular form of the velocity distribution at
the boundary [Schlichting and Gersten, 2000], which
implies a nonuniform head distribution at the entrance and
exit of the fracture [Oron and Berkowitz, 1998]. Hasegawa
and ITzuchi [1983] used an average formulation of the
pressure gradient to relate the flow rate with the pressure
drop, while Kitanidis and Dykaar [1997] formulated the
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auxiliary condition by equating the viscous dissipation with
the work done by pressure forces using the energy equation.

2.3. Dimensionless Form
[12] Introducing the following dimensionless variables,
X

X =-
/

I
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(7)

Z = H =

z
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b
§ =2
/
where / is the length of the fracture, b,, is the mean aperture
width, § is a geometrical parameter representing the ratio of
the mean aperture over the length of the fracture, and ¢, is

the cubic law flow rate per unit width of flow for a uniform
fracture of mean width b,, [L%/T],
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one obtains the following dimensionless form of the Navier-
Stokes equations:
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The dimensionless boundary conditions become

Z=B, U=0 W=0

Z=B, U=0 W=0, (12)
X=0 H=I
X=1 H=0 (13)

where B = b/b,,. The dimensionless seepage term O, is
obtained from equation (5) and the definition of W and H:

gl I kAR
Op . NHy—H) X 7 d (14)
The parameter X is the ratio of the flow into the matrix over
the flow in the fracture. Hence it ranges from 0 for
impermeable walls to near 1 for the improbable case of total
seepage of fracture flow into the matrix.

[13] The above dimensionless variables are defined such
that the continuity equation is satisfied at every order and
that the head gradients in the X and Z directions are of the
same order of magnitude. It should be noted that the above
definition of the dimensionless velocities assumes that the
ratio w/u is of the order d, which implies that the dominant
velocity is assumed to be in the longitudinal direction.
Hence the present mathematical analysis cannot apply to
flow in fractures in which the flow path is bidirectional.
Note also that the definition of the dimensionless velocity
variables is in terms of the parallel wall flux ¢, as given by
the cubic law (8). Hence the dimensionless flow rate is
defined by O = ¢/gq, and numerical values of O different
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from 1 quantify the magnitude of the error in applying the
cubic law.

3. Perturbation Solution

[14] Exact solutions to the Navier-Stokes equation are
difficult to obtain except for the simplest flow cases in
which the flow is one-directional. The prime example is the
Couette-Poiseuille flow between parallel plates, whereby
the nonlinear inertia terms vanish in a natural way, and
Jeffery-Hamel flows between straight nonparallel walls,
wherein the circumferential component of the velocity is
equal to zero [Schlichting and Gersten, 2000]. However,
one method to attain approximate solutions is through
perturbation techniques that consist of expanding the
nonlinear terms in a perturbation series to yield a set of
linear differential equations. The choice of the perturbation
parameter is instrumental in the success of the perturbation
analysis. In the above equations, the choice of dimension-
less variables produced the parameter 6.

[15] Defining the following perturbation series

U=Uy+0U + 80U, +8Us + 8'Us + O(5)  (15)

W =Wy + W, + W, + 8 W + 8wy + 0(8°) (16)

H=Hy+ 0 +8H, + ¥Hy + 8'Hy + 0(8°)  (17)
and substituting equations (15)—(17) into (9)—(11) and into
(12)—(14), one obtains the differential equations and the
associated boundary conditions at various orders. Fortu-
nately, the perturbation expansion results in a series of
ordinary differential equations that are amenable to an
analytical solution.

3.1. Zero-Order Term
[16] The zero-order set of equations is
oly oWy
ax "oz ~° (18)
0*Uy OHy
oz o =0 (19)
O0Hy
—122=0 (20)

The zero-order boundary conditions are given by equations
(12)—(13). Integrating the continuity equation (18) over the
width of the fracture using the boundary conditions, one
obtains

9o

a = Op =

N(H), — Hp) (21)

where Oy is the zero-order dimensionless seepage rate. The
zero-order steady flow rate Qg is obtained by integrating
the zero-order velocity U, over the width. The velocity Uj is
the solution of equation (19) with the given boundary
conditions. Equation (20) implies that the zero-order head
Hy is function of X only; hence the gradient 0Hy/0X in
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equation (19) is independent of Z and the integration of (19)
is straightforward, yielding the parabolic velocity profile

Us = 6(Z — B)(Z — By) %ﬁl;’ (22)
The flow rate Q, is then
B,

o = / UpdZ = —33% (23)

By

where B(X) = B(X) — B,(X). Substituting equation (23) into
the continuity equation (21), one obtains the governing
differential equation for the zero-order head distribution:

O*H, OH,
04 3p2g 70

3
B ox? X

— NHy + \H, =0 (24)

The term B’ is the first derivative of B with respect to X.
Using the boundary conditions, equation (24) can be solved
to give the head distribution for any given simple width
distribution B and matrix head distribution H,. The flow
rate is then derived from the head distribution H using
equation (23).

[17] For impermeable wall surfaces, O, = 0, equation (21)
yields that the flow rate Qy is constant. Integrating equation
(23) over X, one gets the zero-order dimensionless head
distribution. Substituting the boundary conditions and solv-
ing for Oy, one obtains

o-([%)

0

(25)

Equation (25) is the integrated cubic law equation that
captures the primary characteristics of flow in fractures for
impermeable fracture walls. It is also equivalent to the
Reynolds approximation for one-dimensional flow.

3.2. First-Order Term
[18] The first-order equations are

ou,  ow,
6_X+ oz =0 (26)
>’ OH, Uy U,
a7 IZa—X R, (an_X+ Wo 82) (27)
OH,
o7 =0 (28)

with W, = Qp at Z = B, and zero boundary conditions
elsewhere. Integrating the continuity equation (26) over the
width of the fracture, one obtains

8Q1

o = On =— (29)

The right-hand side of equation (27) is function of the zero-
order velocities and their gradients. The zero-order velocity
W, is obtained from equations (18) and (22) using Wy(B,) =

Opo. Equation (28) implies also that H, is function of X
only. Hence the first-order velocity U; can be obtained from
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equation (27) by a straightforward integration over Z.
Further integration over the width of the fracture yields the
first-order flow rate
0 =-BH| + —R B0} — R .BOYO,
where H' = OH/OX and Qf = BQO/(?X. Substituting equation

(30) into (29) yields the differential equation for the first-
order head distribution

(30)

0*H,
0X?

OH,
0X

C9R, D [, 3 !
M =28 oy (B QO_EBQ"QO)
(31)

The solution of equation (31) can be derived for a given
width distribution and the zero boundary conditions on H.
Having derived the first-order head distribution H;, the first-
order flow rate Q; is obtained from equation (30).

[19] For impermeable walls, the right-hand-side of equa-
tion (29) is zero, and consequently, the first-order flow rate
is constant. Integrating equation (30) from X =0 to X = 1
and using the zero boundary conditions on H, one obtains
the first-order flow rate directly:

B +3B°B —

1
9RO} [ OB dX
70 ) ox B
0

O (32)

One notices that for equal entrance and exit widths, B(0) =
B(1), the first-order term is zero since the integral in (32)
cancels out. The first-order flow rate is also zero for Stokes
flow R, = 0.
3.3. Second-Order Term

[20] The second-order partial differential equations are

U, oW,
07+a7—0 (33)
PU, _oH,  PU
o7z~ Pox tax
B U, U,  oU, U,
—Re(UO 8X+U1 X + Wo—5 oz + W 82) (34)
OH, O*W,
1257 ~ oz = G3)

The corresponding second-order boundary conditions are
similar to the first-order boundary conditions. Integrating
the second-order continuity equation (33) over the width of
the fracture, one obtains

3Q2

S T M =0 (36)

where Hy;, = H>(X, B;) is the head at the bottom wall. The
second-order head distribution is not constant across the
fracture width, unlike the lower-order head terms.
The second-order flow rate O, is derived from equation
(34) using (35). Integrating (35), one gets

1 oW,

m(X.2) = 12 07

+F(X) (37)
Substituting equation (37) and the various zero- and first-

order velocity expressions in equation (34) yields a second-
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order ordinary differential equation that can be integrated to
obtain an expression of the second-order velocity U, in
terms of F’(X). Further integration of U, over the width
yields the second-order flow rate Q, in terms of the lower-
order flow rates and F'(X)

0=~ B 00+ L ROOE — 5 RO0,B
o]
(B oo
+ (g +B,,)B;j - B~ (4 + %)B Bb} 0o
- :124—70REQ1B + (153 + 2By + 3—Bz+% ﬁQZB)
~ (B+25, )Blb} Q0 ~ 6312;(9)0 .00y
e

For leaky fracture walls, one must use equation (38) along
with equation (36). Equation (38) is expressed in terms of
the unknown function /. One must then relate the second-
order head H, to the function F using (37) in order to use
the remaining boundary conditions on H,. Expressing the
head H, at the bottom wall Z = B,(X) in terms of F using
(37), and substituting the resulting expression and equation
(38) into the continuity equation (36), one obtains a second-
order differential equation in F. The corresponding
boundary conditions on F at X = 0 and at X = 1 are
obtained by first integrating equation (37) over the width,
substituting the boundary conditions on H,, and expressing
the resulting equation at X = 0 and at X = 1. Once the
solution of the differential equation in F is obtained, one can
then derive the expression for the second-order flow rate
from equation (38).

[21] For impermeable walls, the flow rates at all orders
are constant, as attested by equation (36). Equation (38) by
itself can then be used to obtain the second-order flow rate.
The function F’(X) is first expressed in terms of the head H,
by differentiating (37) over X and integrating the resulting
expression over the width. Substituting the result in equa-
tion (38) and integrating from X = 0 to X = 1 using the
boundary conditions on H,, one obtains an expression for

(&)
1
0, 9000\R. [ B
00 35 R %
0
1
1 BIZ B// BI 13Q3R2
B +B))|dx + —=0=¢
/LO(B +Bz) B3( + )}d t 3475 13475
0
! B/Z SB”
/ (ﬁ_m)dx (39)

0

3.4. Higher-Order Terms

[22] The number of terms grows exponentially as the
order of the perturbation expansion increases. However, for
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Fracture wall configurations: (a) one-cycle and (b) two-cycle mated sinusoidal walls (¢ = ),

two-cycle unmated sinusoidal walls with (¢) £ = 90° and (d) € = 0, flat bottom wall with (¢) sinusoidal top
wall, (f) linearly and (g) quadratically varying top wall, and (h) linearly varying top and bottom walls
(converging or diverging). The dimensionless amplitude of the sinusoidal variations is @ = 0.1, and the
maximum to minimum ratio is 3 = 1.5 for the other geometries.

creeping flow in which the Reynolds number is taken to be
zero, the algebra can still be manipulated. The third-order
term vanishes and the fourth-order term is the solution of
the following set of equations:

Uy oWy

ox Tz O (40)
Py  PUs % (41)
072 " X2 X
FPwW, W, OH,
a7 Taxe gz 0 (42)

For impermeable walls, the fourth-order flow rate is

1

Q / /2 // / / /
=__ B”? +B 10B, (B + B,)|dXx
) O 1033 [( + )+ ( + )} + Qo
1 .
/ 1[ 23B* N 188 B?B’ 1 B”? 17 BB" B" ax
50 358 105 B2 168 B 210 B 840
0

BI B/3 1B B" BIH
2 - = (14B" +10B!) — — — =2 |ax
+QO/SB{ 5ty p4B H108) —
0

B/Z B// B /! 1
3BB" — 2B?). b (p?_ b
+ 0 / [533 ( )-+ 382 20 ) 30B

B//Z
(T + B’B"’) } ax

(43)

Equation (43) can be simplified further for a flat-bottom
wall or for symmetrical walls.

4. Results

[23] In order to study the effect of wall geometry on
fracture flow, various wall configurations were examined.
Figure 1 presents the various fracture geometries in dimen-
sionless coordinate systems. Although arbitrary variation of
the walls can be handled by the perturbation solution,
simplified geometries are more useful in shedding light on
the fracture flow process. Three fracture configurations have
a flat bottom wall and a varying top wall while the rest have
both walls varying symmetrically and asymmetrically. The
average dimensionless width is the same for all fractures
and is equal to 1. The roughness wavelength is equal to one
half of the fracture length in the two-cycle sinusoidal
fractures (Figures 1b—1le), and it is equal to the fracture
length in the other cases (Figures 1a and 1f—1h). The relative
phase € of the roughness elements for the top and bottom
sinusoidal walls is varying from 0° to 180°. Figure 1b
depicts mated sinusoidal walls with interlocking roughness
(£=180°), Figure 1c show two out-of-phase sinusoidal walls
(£=90°), while Figure 1d corresponds to unmated sinusoidal
walls with mirror image roughness (¢ = 0°). The sinusoidal
wall profile includes those of previous analytical and exper-
imental works in which the top and bottom sinusoidal walls
are aligned or misaligned [Brown et al., 1995] and symmet-
ric about the center axis [Kitanidis and Dykaar, 1997;
Sisavath et al., 2003]. A parabolic shaped top wall
(Figure 1g) is also included in order to compare with the
linearly varying case (Figure 1f) and analyze the effect of the
wall curvature on the flow. Figure 1h is an example of a
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linearly diverging (or converging) symmetrical fracture. The
fracture geometry in case of leaky walls was limited to
parallel fracture walls and to linearly varying top wall
(Figure 1f) in order to isolate the effect of matrix-fracture
interaction on the flow from the effect of fracture geometry.

[24] The results presented herein are expressed in terms
of the dimensionless flow rate Q. The second-order flow
rate is expressed by O = Qg + 60, + 50, whereby the flow
rate terms for impermeable walls are given by equations
(25), (32), and (39). For Stokes flow R, = 0 and imperme-
able walls, the flow rate to the fourth order is O = Qp +
§°0, + 6*0, where Q, is given by equation (43). The flow
rate terms for leaky walls are derived from the head
distribution at various orders using equations (23), (30),
and (38). The head distribution is obtained by solving the
ordinary differential equations for the zero-order head
(equation (24)), the first-order head term (equation (31)),
and the second-order head term with their corresponding
boundary conditions.

[25] The zero-order flow rate is the Reynolds approxima-
tion while the higher-order solution for R, = 0 is the Stokes
approximation. The higher-order solution for a nonzero R,
is the asymptotic solution of the full Navier-Stokes equa-
tions. The zero-order term accounts primarily for the
geometry of the fracture while the higher-order terms
account for inertia and other viscous effects. A value of QO
different from 1 quantifies the magnitude of the error in
applying the cubic law. The higher-order flow rate equations
are also expressed as a ratio of the second-order flow rate
over the zero-order flow rate. Hence a ratio O/Q, different
from 1 quantifies the deviation from the Reynolds approx-
imation and indicates a significant contribution of inertia
and the vertical viscous effect on the flow.

4.1. Impermeable Walls

4.1.1. Parallel Walls

[26] For a parallel wall fracture, B(X) = 1, and B'(X) =
B"(X) = 0. The first- and second-order terms of the flow rate
are then equal to zero. The second-order head distribution is
linear, H = 1 — X, and the dimensionless flow rate reduces
to 1 as expected.
4.1.2. Sinusoidal Variation

[27] For a sinusoidal fracture, the top width is given by

B/(X) = % — acos(2nmX) 0<a< % (44)
while the bottom wall is either flat B, = —1/2 or sinusoidal
with varying longitudinal displacement:

By(X) = —%—i—acos(ZmrX—i—e) 0<e<m (45

The parameter « is the relative amplitude of the roughness
element, n is another measure of roughness within the
fracture, and e is the relative phase of the roughness
elements. Note that @ is a dimensionless quantity normal-
ized with respect to the mean width b,,. A value of a = 0.25
implies that the amplitude of the roughness is 25% of the
mean width for a flat-bottom wall and 50% of the mean
width for symmetrical walls with mirror image roughness.
The maximum value of a for mirror walls is 0.5, at which
there is a contact of the two walls. For € = =, the sinusoidal
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fracture walls are aligned with no longitudinal displacement
(Figure la—1b) while € = 0 pertains to mirror walls
(Figure 1d). Since the amplitude of the sinusoidal variation
is smaller than the mean width, one can safely assume that
the dominant flow is in the longitudinal direction.
4.1.2.1. Mated Walls Case

[28] The zero-order flow rate for mated sinusoidal walls
(e = m) is equal to the parallel wall flow rate Qo = 1. The
first-order term for this case and the various sinusoidal
configurations is equal to zero because for B(0) = B(1) the
integral in equation (32) cancels. However, the second-order
flow rate (39) is different for each sinusoidal configuration
because of the different contribution of the inertia and
viscous effects. For € = m, the fourth-order flow rate is

0=1-221n"8 + %az (1 +10a*)w*n*s* (46)
One notices that the contribution of the inertia term is zero
for this case as the higher-order terms are independent of R...
4.1.2.2. Mirror Walls Case

[20] For symmetrical sinusoidal variations with mirror
walls, the second-order flow rate is

0 20 21 —4d® (1 26RI05\
=1-2 e a2 4
Oos T2 \5 1 13475 )° (47)
where
/2
(1 - 4a?)’
QOS = —1 T 242 (48)

4.1.2.3. Flat-Bottom Case
[30] For a flat-bottom sinusoidal fracture, the second-
order approximation is given by

0 ya o, l=d (6 26R2Q%) .
-1 2 e=0s ) g 49
Oos T 2 \5 7 13475 (49)
where
21— a?)’?
= 0 50
Qo v a (50)

Equation (49) agrees with equations (29) and (30) of
Hasegawa and Izuchi [1983], which was also referenced by
Zimmerman and Yeo [2000, equation (16)].
4.1.2.4. Misaligned Walls Case

[31] The second-order flow rate for an out-of-phase
sinusoidal configuration with £ = ©/2 is

0 o o [3143a> 1BOLR:1-24%],
=1-2 = s e & 51
Oos IS T e T 13475 1+ a2 (51)
where
/2
(1-2a%)°
QOs:—l +a2 (52)

4.1.2.5. Zero-Order General Case
[32] The zero-order flow rates (48), (50), and (52) for the
various alignments of the sinusoidal walls (Figures la—1¢)
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can be expressed by a single formula in terms of the
minimum width y = b,

2y -y
= 53
Oo 3427 (53)
where y = 1 for ¢ = = (Figures la and 1b), y =1 — v/2a for
e = /2 (Figure 1c), y =1 — V3a fore = /3, y=1 —
2+ 2a for e = /4,y =1 — 2a for € = 0 (Figure 1d),
and y = 1 — a for the flat-bottom wall (Figure 1e¢). Hence
the zero-order flow rates for a sinusoidal fracture with a flat-
bottom wall and for sinusoidal fracture walls with € = 120°
are equal since the minimum width for both cases is 1 — a.
The zero-order flow rate can also be expressed in terms of
B = bmax/bmin

64p°

Ons = B+1)1°(3+28+38)

(54)

A similar generalization to the second-order flow rate is not
possible because the effects of viscous and inertia forces are
different for the different sinusoidal configurations.

[33] The zero-order solutions show that the zero-order
flow rate is independent of the roughness frequency » and
of the misalignment of the roughness corrugations €. The
presence of the factor nd implies that the higher-order
solutions are dependent on the period of the wall waviness.
The number of cycles #n can increase as long as 6 is small
such that n6 is within limits. The terms n and § always
appear as a factor in all the higher-order terms, proving that
the flow rate for the head drop in n cycles is equivalent to
the flow rate for an average head drop per cycle. The
product and can also be expressed in terms of the slope of
the roughness since the product in dimensional terms is
independent of the width and function of the amplitude to
wavelength ratio an/l. Hence the various solutions can
estimate the flow rate for a decreasing mean aperture,
without a change in the roughness amplitude and wave-
length, by increasing a while keeping and constant. The
second-order solutions show that the deviation of the flow
rate from its zero-order estimate is of the second-order &2,
which partly explains the small contribution of the higher-
order terms and the robustness of the Reynolds approxima-
tion for the sinusoidal configuration for small 6. Moreover,
the second-order flow rates for the various sinusoidal
alignments are dependent on a* as can be shown from
Taylor’s series expansion for small a. This shows that
the discharge is affected slightly by the roughness ampli-
tude if the corrugations do not approach the center (i.c.,
small a).

4.1.3. Linear and Curvilinear Variation

[34] For a linear variation in the fracture width, the top

width is given by

B,(X) = cll <%+cx> (55)

while the bottom wall is either flat B, = —1/2 or linearly
varying in a mirror image of the top width B,(X) = —B/(X).
The zero-order flow rate can be expressed in a single
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formula for the linearly varying wall whether converging or
diverging (Figure 1g) or with a flat bottom (Figure 1f)

16m?
(m + 1)4

Ou = (56)

The parameter m = B(1)/B(0) is the ratio of the width at the
exit over the width at the entrance. It can be considered as
a measure of the extent of nonuniformity in the fracture
width. Values of m greater than 1 imply a diverging
fracture, while values of m less than 1 are for converging
fracture walls. For diverging fractures, the definition of
m is equivalent to the maximum to minimum width ratio
B used in equation (54). The relationship between the
slope ¢ and the parameter m for the flat bottom wall is ¢ =
2(1 — m)/(m — 3), and for the symmetrical case, it is ¢ =
(m — 1)/2. The opening half-angle o of the diverging or
converging fracture can also be expressed in terms of m
using the geometrical result tan o = (m — 1)/(m + 1) for
the symmetrical case and tan o = 2(m — 1)/(m + 1) for the
flat-bottom case.
4.1.3.1. Symmetrical Linear Profile

[35] For a symmetrical linear variation of both walls, the
second-order flow rate is

0 1 m—1
214" |oR,
00 t3mi Qor +

m— 1262R203, + 1155
m+1 55

86 (57)

The flow rate in the linear wall configuration is function of

the first-order 6 and is nonzero, unlike the case for

sinusoidal walls. Hence the effect of the roughness

frequency is to the first-order, and its contribution is larger

in the linear case than in the sinusoidal case where it was of

order &. For Stokes approximation, the fourth-order flow
9

rate is
m—1\*[3 1/m-1\*
=14 () 2o (=) 88 58
Qo[ +<m+l) 5 7<m+1) :| ( )

One notices that for Stokes flow, the fourth-order flow rate
is the same whether the fracture is converging or diverging.
It is the first-order term that takes into account the nature of
the flow.
4.1.3.2. Asymmetrical Linear Profile

[36] The second-order flow rate for a flat-bottom wall and
linearly varying top wall is

o) 1 m—1
24— =" |oR,
o0 T3mta Qor +

m— 1262R2Q%, — 770
m+ 1 55

86 (59)

For symmetrical fractures and flat-bottom walls, the
solution is similar in form except for the numerical
coefficient that is the result of the vertical viscous
dissipation. However, the terms proportional to R, are the
same in equations (57) and (59). The inertia effect terms
always include the factor R,Q,0 where Q, is the Reynolds
approximation. The definition of the Reynolds number R, in
equation (7) is expressed in terms of the flow rate for a
parallel fracture, which is constant for all fractures with
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equal mean width. Therefore the term R¥ = R.Q, accounts
for the variation of geometry and the factor 6R? accounts for
the spatial frequency of the fracture. The fourth-order

Stokes flow rate is
+ Afm-1 262 82 (60)
7 \m+1

o _ 2 <m—1) |
Ou  S\m+l1
4.1.3.3. Parabolic Profile

[37] In order to study the effect of curvature on the flow, a
parabolic variation is assumed for the top wall (Figure 1h)

given by
3,
2c+3 ( X )

while the bottom wall is flat, B, = —1/2. The zero-order
flow rate is expressed by

Bi(X) = (61)

216m*v/m — 1
(m+2)* [Vm = 1(3m + 2) + 3m? arctan v/m — 1

Oop = (62)

where m = B(1)/B(0) and is related to ¢ by ¢ = 3(1 — m)/
(m — 4). Other wall configurations can similarly be handled;
however, a numerical evaluation of the integral terms might
then be necessary.

4.2. Leaky Walls

4.2.1. Parallel Walls
[38] The solution of equation (24) for parallel walls
(B =1), and uniform H, is

Ho(X) = sinh[(X - 1)\/§/2]

sinh(Xv/\/2) _ cosh(Xv/3/2)
: [(1 —2H,) cosh(v/A/2)  sinh(vX\/2) ] o

The zero-order flow rate is obtained from equation (23)

AN

0o(X) :m

{Hb cosh (X\/X) +(1 — Hp) cosh [(X -

The first-order flow rate can be obtained by solving
equation (31) and similarly for the second-order flow rate.
The total seepage loss through the bottom fracture wall is
then given by O(0) — O(1).
4.2.2. Linear Variation

[39] For a linear variation in the top fracture wall with a
head-dependent leakage through the bottom wall, the zero-
order head distribution for Hj, = 0 is given by equation (24)
whereby the width B is expressed in terms of m. The
solution is in terms of the modified Bessel functions of
the first and second kind [Hildebrand, 1976, p. 153]

! LA

Ho(X) = :
o )_1+(m—lX12[A(

K [A(X)] = BIAX)]K [A(
DIK:[4(0)] — L[A4(0)]K>[A4(1
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where A(X) = \/\/B(m + 1)/|m — 1|. The zero-order flow
rate is obtained from equation (23).

5. Discussion
5.1.

[40] Various definitions exist for quantifying the hydraulic
conductivity of a fracture. The dimensionless transmissivity
T is defined by QO = —TdH/dX. Since the dimensionless
gradient is dH/dX = —1, the dimensionless transmissivity 7
becomes then equal to Q0. The dimensional transmissivity is
T=b,>gT/v.

[41] The permeability of a fracture is also quantified in
terms of an equivalent hydraulic aperture B, that would
yield the same flow rate when substituted in the cubic law
QO = —B2OH/OX. Hence the dimensionless transmlssmty
and the equ1valent hydraulic aperture are equal, i.e., B,

T = Q. The dimensional hydraulic aperture is b, = mee.

[42] Another relationship between the head drop and the
mean velocity can be formulated usmg the definition of the
friction factor f'as —dh/dx = ( ﬁdh)(V /2g) where V,, = q/b,,
is the mean velocity and dj, = 2b,, is the hydraulic diameter
[Schlichting and Gersten, 2000, p. 103]. Defining the
Reynolds number 1n terms of the hydrauhc diameter and
the mean velocity, R, = V,,d;/v and using equation (7) and
dH/dX = —1, the fr1ct10n factor relationship becomes fR” =
96/Q, Wthh shows that the friction factor is inversely
related to the flow rate. For decreasing values of Q, the
friction factor increases, while for QO = 1 it reduces to the
friction factor relationship for laminar flow conditions. Note
that R = 2R* = 2R,Q, if Q is given by the zero-order flow
rate.

[43] In summary, the second-order flow rates O presented
in the previous section permit the estimation of the trans-
missivity, equivalent hydraulic aperture, and the friction
factor for various geometries and flow conditions.

5.2. Effect of Geometry

[44] The zero order flow rate is the Reynolds approxima-
tion that captures the sole effect of the fracture geometry on
the flow without the additional effect of roughness frequency
and inertia. Figure 2 presents the zero-order flow rate for a
sinusoidal fracture with varying longitudinal displacement
of the bottom wall. Equations (48), (50), and (52) are used
to plot the corresponding curves. For no displacement
(e = m), the zero-order flow rate is equal to the parallel
wall flow rate, i.e., Oy = 1. For increasing longitudinal
displacement, the flow rate decreases significantly. For € =
7/2, the zero-order flow rate decreases by 10% to O, = 0.9
for a = 0.125 and by more than 30% to Oy = 0.67 for a =
0.25. For mirror sinusoidal walls (e = 0), the zero-order flow
rate decreases further to 0.43 for a = 0.25, which implies a
57% decrease from the cubic law prediction. By comparing
the slope of the curves in Figure 2, one notices that O
decreases faster for larger values of a than for smaller values
of a. This finding agrees with experimental observations in
which the initial linear decrease of the effective permeability
with a is followed by a more rapid decrease for increasing
values of a.

[45] The above variations can be represented by a single
curve using equation (53) or (54) as shown in Figure 3,
which presents the zero-order flow rate as a function of 3 for
a linear, parabolic, and a sinusoidal fracture. The parameter

Conductance
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Figure 2. Zero-order flow rate for a sinusoidal fracture
with various horizontal alignments ¢ of the bottom wall. The
flow rate for a parallel wall fracture of equivalent mean
width is equal to 1.

B = bmax/bmin 18 equivalent to m for a diverging fracture and
to 1/m for a converging fracture. Equations (54), (56), and
(62) are used to generate the three curves. For the parallel
wall case 3 = 1, the second-order flow rate is equal to 1, as
expected. Figure 3 shows that in terms of (3, the zero-order
flow rate variations are quite close. The parabolic variation
produces a slight decrease over the linear wall case. For
B = 2, the flow rate decreases by 20% to 30%, but the
difference between the linear and the parabolic fracture is
within 2% and it is roughly 10% between the sinusoidal
fracture and the linear one. The decrease in the flow rate for
a linear wall profile and increasing values of m as shown in
Figure 3 agrees with Figure A3 by Oron and Berkowitz
[1998] in which the discharge decreases with increasing
value of «.

5.3. Effect of Roughness

[46] Figure 4 presents the second-order flow rate as a
function of the amplitude of the sinusoidal corrugations for
one-cycle (n = 1) and two-cycle (n = 2) roughness wave-
lengths with § = 0.3. Hence the roughness frequency is n6 =
0.3 for n =1 and n6 = 0.6 for n = 2. The three sets of curves
pertain to the case of aligned sinusoidal fractures (Figures la
and 1b), mirror sinusoidal walls (Figure 1d), and sinusoidal
fracture with a flat-bottom wall (Figure 1e). Equations (46),
(47), and (49) are evaluated using R, = 0 in order to isolate
the effect of inertia from the viscous dissipation. Since the
parameter n appears only in the second-order term, a large
difference between the curves n = 1 and n = 2 indicates the
importance of the second-order term and the significant
contribution of the vertical viscous effects on the flow rate.
For symmetrical walls (¢ = 0), the effect of the increased
roughness is relatively small since the curve for the one-cycle
and the two-cycle are very close. On the other hand, the
second-order flow rate for mated sinusoidal walls (e = )
decreases significantly with increasing roughness cycles
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Figure 3. Zero-order flow rate for a linear, quadratic, and
sinusoidal wall as a function of the maximum to minimum
width ratio 3.

(n=2), indicating the increasing effect of the vertical viscous
dissipation. The strong dependence of QO on nd for ¢ = «
shows the limitation of the zero-order equation in capturing
the flow characteristic for this fracture geometry. The case of
the fracture bounded by one flat wall and one sinusoidal wall
shows a similar trend; however, the decrease in the second-
order flow rate for n = 2 is smaller than the decrease for the
other two cases in which both walls are varying, because

1.0+

0.6

Dimensionless Second-Order Flow Rate @

04— ----- flat, n =1
--+-- flat, n =2
| e=n,n=1
024 —=—¢e=n,n=2
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Figure 4. Second-order flow rate for various sinusoidal
fracture wall configurations: one-cycle and two-cycle
(symbols) mated (¢ = w) (solid lines) and unmated (e = 0)
sinusoidal walls (dotted lines), and with a flat bottom
(dashed lines). The perturbation parameter is o = 0.3 and the
Reynolds number is zero.
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Figure 5. Normalized second-order flow rate in a
converging, diverging, and sinusoidal fracture as a function
of the Reynolds number. The perturbation parameter is
6=10.3.

the viscous dissipation effect is smaller for a fracture
with one smooth wall since there is less disruption of
streamlines.

[47] One can compare the results shown in Figures 2 and 4
with the lattice gas automata (LGA) simulations of Brown et
al. [1995] for sinusoidal walls with either a steep slope (ad =
V/3/8) or a gentle slope (ad = v/3/32) of the roughness. The
trends shown in Figures 2 and 4 agree with the results
shown in their Figures 3 and 4. For an amplitude of the
roughness a of the same order as the separation gap of the
maximum protrusions, which corresponds to a = 0.25 for
symmetrical walls, the flow rate increases as the phase
alignment increases from 0 to w. Using the Reynolds
approximation, the relative magnitude of the increase varies
from 1 to a maximum of Qy(w)/Qy(0) = 1/0.43 = 2.3;
however, using the second-order estimate, the maximum
variation between the different misalignments ¢ decreases,
as shown in Figure 4. The Reynolds estimate for a perfectly
aligned sinusoidal roughness (e = m) is equal to 1 since the
apparent aperture is constant everywhere in the fracture.
The zero-order solution (Reynolds approximation) for
mirror walls (¢ = 0) gives Oy = 0.43, which is a factor of
2 lower than the parallel plate approximation. However, the
second-order flow rate for a gently sloping roughness (a =
0.25 and & = v/3/8) is equal to Q = 0.42, which is very close
to the Reynolds estimate, while the second-order flow rate
for a steeply sloping roughness (a = 0.25 and 6 = v/3/2) is
10% lower and equal to Q = 0.38.

5.4. Effect of Inertia

[48] Figure 5 presents the second-order flow rate normal-
ized with respect to the zero-order flow rate 0,/Q, for 6 =
0.3 and for various flow conditions R¥% whereby the Rey-
nolds number is defined by R% = R.Qy. Three different
fracture geometries are considered: converging (m = 1/3)
and diverging (m = 3) symmetrical linear walls, and
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symmetrical sinusoidal walls (¢ = 0.25). Equations (47)
and (57) were used to plot the three curves. The three
geometries are somewhat similar in that 3 = b, /bmin = 3 in
all three cases. It should also be mentioned that the effect of
the vertical viscous dissipation is limited for these particular
geometries. The Reynolds and the Stokes approximations of
the flow rate are very close. Hence the effect of inertia
through the presence of the Reynolds number is isolated
from the effect of geometry and the viscous dissipation
effects. Figure 5 shows that the contribution of the inertia
term is dependent on the geometry of the fracture. The
waviness of the sinusoidal fracture wall decreases the flow
rate through viscous and inertia forces. The flow rate
decreases due to the increase of viscous dissipation near
the throats of the sinusoidal openings. The deviation of the
flow rate from the Reynolds approximation is in agreement
with the experimental results of Iwai [1976] reproduced by
Zimmerman and Yeo [2000] and the LGA simulations of
Brown et al. [1995]. The LGA simulation results pertain to
the same geometry of a sinusoidal fracture with ¢ ~ 0.25
and & = /3/2. The reduction of the flow rate shown in their
Figure 5 is in very close agreement with the flow rate shown
in Figure 5 for R% < 40, noting, however, that the definition
of their Reynolds number is equivalent roughly to R%/2.

[49] For the diverging wall case m > 1, the flow rate
increases monotonically for R, > 0, while for the converging
wall case, m < 1, the flow rate decreases with R* before
increasing again. In the latter case, the converging flow lines
cause energy dissipation as the Reynolds number increase
until the inertia effects overwhelm the viscous effects for
higher Reynolds number. In the diverging fracture, the
inertial effects accelerate the flow without causing much
dissipation. This nonmonotonic behavior of the converging
fracture can also be inferred from equation (57), where the
factor (m — 1) is positive for diverging fractures and negative
for converging fractures. Hence the viscous and inertia terms
are of opposite signs in converging fractures, which produ-
ces this nonmonotonic behavior. One should also note that
the accuracy of the second-order perturbation solution might
be breaking down at high Reynolds numbers and that higher-
order terms might need to be included.

[s0] The corresponding curve for a flat bottom wall is
roughly the same (slightly lower) as for the mirror case if
the ratio b /bmin = 3 1s preserved. An increase in the value
of § creates also a similar trend as shown in Figure 5 but
with a further deviation of the flow rate from 1 in the Stokes
limit (R% = 0). One can safely assume that the inertia effects
can be neglected for 6R% < 7 for sinusoidal fractures and for
OR% < 1 for saw-toothed profiles for a tolerance level of 10%
on the flow rate.

5.5. Effect of Seepage

[s1] Figure 6 presents the entrance and exit flow rate as a
function of the matrix conductivity parameter \. The curves
pertain to the second-order flow rate with 6 = 0.3 in a leaky
parallel wall fracture m = 1 for various flow conditions, R, =
0 and R, = 15, and to the zero-order Stokes flow R, = 0 in
fractures of various top wall inclinations, m = [1/3, 1/2, 3].
The effect of inertia on the leaky fracture flow was limited
to parallel walls because of the complexity of the resulting
mathematical solutions for the case of linear walls. The
results pertain also to the condition that the hydraulic head
across the matrix is equal to the exit head value, &, = A, i.c.,
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Figure 6. Second-order flow rate at entrance (solid) and
exit (dotted) as a function of the matrix conductivity
parameter for various wall inclinations and flow conditions.
The flow rate is normalized with respect to the flow for
impermeable wall conditions. The perturbation parameter is
0=10.3.

H,, = 0. The flow rates are normalized with respect to the
zero-order flow rate for impermeable walls (equation (56)).
Therefore a value different from 1 quantifies the error in
assuming impermeable walls. For X = 0, the entrance and
exit flows are equal to 1, as expected. For increasing values
of \, the leakage into the matrix increases and the normal-
ized flow rate deviates from 1. For R, = 0 and m = 1, the
entrance flow increases from 1 by more than 10% and the
exit flow decreases from 1 since part of the entrance flow is
lost to leakage. The deviation from 1 increases further for
converging fractures (m < 1) while it is insensitive to the
slope of the wall for diverging fractures (m > 1). For
diverging walls, the entrance flow rate and the entrance to
leakage flow rate ratio are independent of m and of the
Reynolds number. The amount of total leakage increases
from less than 5% of the entrance flow for a value of X=0.1
to 20% for X = 0.5. For converging walls, the inclination of
the top wall has a significant effect on the flow rate and the
leakage rate because of the increase of the head within the
converging fracture that provides a further driving force for
seepage into the matrix. The exit flow rate is the same for a
given slope m regardless if the fracture has a converging or
a diverging top wall. It is close to and slightly lower than the
exit flow rate for m = 1. The effect of inertia is to increase
the flow rate at the entrance and at the exit in equal
proportions as the leakage is almost independent of R, for
parallel walls.

5.6. Head Distribution

[52] Figure 7 presents the plot of the zero-order head
distribution for impermeable and leaky parallel walls (A =
0.5), impermeable linear (3 = 3), and sinusoidal symmetrical
(a = 0.25) fractures. The head distribution is obtained from
equation (23) for impermeable walls and from equation (63)
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for the leaky wall case. For a linear variation of the fracture
walls, the zero-order head distribution is not linear anymore.
The head loss per unit length varies significantly from
entrance to exit, while it is constant for a parallel fracture.
The head profile for converging and diverging profiles
shows a substantial head loss per unit length at the throat
of the fracture. The throat is located at the entrance (X = 0)
for the diverging fracture (m > 1) and at the exit (X=1) for a
converging fracture. The head distribution of a symmetrical
sinusoidal fracture is sinusoidal revolving around the par-
allel wall head profile. The head distribution for a parallel
impermeable fracture is linear and deviates from linearity
for increasing values of leakage. However, the effect of
leakage on the head distribution is relatively small. The
effect of leakage for any geometric configuration is to
decrease the head slightly, since seepage implies a head
loss. The decrease in head is slightly greater for converging
fractures than for diverging fractures because of the
corresponding increase in seepage.

5.7. Velocity Profiles

[53] Figure 8 shows the velocity profiles for impermeable
and leaky (A = 0.5) parallel fracture, and impermeable
symmetrical linear (m = 3) and sinusoidal (¢ = 0.25)
fractures. The profiles are computed from the perturbation
solution for the various geometries assuming R, = 20 in
order to accentuate the difference. The curves shown
correspond to the velocity distribution at the entrance and
at the exit of the fracture and at the maximum width for the
sinusoidal fracture. The velocity profile is symmetric with
respect to the centerline for impermeable fractures and
skews downward for increasing leakage. The effect of
inertia is to increase the maximum velocity variation from
entrance to exit. Similarly, an increase in the wall inclination
results in an increase of the difference between the profile at
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Figure 7. Zero-order head distribution for various flow
and geometric configurations: leaky (\ = 0.5) and imperme-
able parallel fracture, symmetrical sinusoidal fracture,
converging and diverging linear fracture.
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Figure 8. Second-order longitudinal velocity for parallel,
linear (m = 3) and sinusoidal (a = 0.25) fracture geometry at
entrance (solid) and exit (dotted). The leakage coefficient is
X = 0.5, the perturbation parameter is 6 = 0.3, and the
Reynolds number is R, = 20.

entrance and at exit. The maximum velocity for the diverg-
ing fracture (m = 3) varies from two thirds to twice the
maximum velocity of a parallel plate. The velocity profile
for a converging fracture is similar except that the maximum
velocity occurs at the exit (throat) rather than at the
entrance. The maximum velocity at both ends of a leaky
parallel fracture is greater than their impermeable equivalent
because of the increase in the flow rate for the same head
gradient.

[s4] Figure 8 shows that the velocity profiles are not
parabolic for nonuniform apertures and leakage through the
fracture walls, which clearly demonstrates the inapplicabil-
ity of the Poiseuille flow assumption. Furthermore, the
velocity profile at the wall cavity (X = 0.5) of the sinusoidal
fracture shows a flow reversal in the wall cavity. There is a
significant flow concentrated within a strip connecting the
fracture throats and backflows near the walls. Flow separa-
tion is found to depend on the wall profile, its slope, and its
curvature as well as on the Reynolds number. The primary
cause of separation is the adverse pressure gradient, i.c.,
wherever the pressure increases in the downstream direc-
tion. The point of separation is that point on the boundary
where the shear and the normal-gradient of the velocity are
zero, i.e., when OV,/On = 0 at Z = B, where V, is the
tangential velocity. For sinusoidal profiles, the flow sepa-
rates in the diverging region of the fracture for large
roughness values of @, roughness frequency 6, and Reynolds
number. However for linear profiles, there is no flow
separation up to the second order. The second-order solution
cannot capture the flow reversal developed in Jeffery-Hamel
flows probably because the prescribed uniform head bound-
ary conditions and the uniform wall profile preclude any
flow reversal. The solution of the classical Jeffery-Hamel
problem predicts a flow reversal for diverging nozzles at
high Reynolds number, due to the presence of a source at
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the origin that creates a singular flow condition and a
nonuniform head distribution at the boundaries.

[55] Nonetheless, the velocity profiles of the Jeffery-
Hamel problem and the present one are close for R, = 0.
The Jeffery-Hamel flow problem assumes that the compo-
nent velocities are of prescribed forms. The symmetrical
radial velocity component is V,(r, 0) = F(0)/r and the
circumferential velocity is ¥y = 0. These assumptions reduce
the Navier-Stokes equations in polar coordinates for R, = 0
to

F" +40’F =0 F(-1)=0 F0)=1 F(+1)=0 (66)
where F(0/at) = V,/Viax 1s the normalized radial velocity
profile with respect to the maximum velocity Vi,.x = F(0)/r
at the center axis of the fracture and « is the opening half
angle. The variable » varies from a minimum of (csc o —
sec a)/2 at the entrance to a maximum of (csc a + sec a)/2
at the exit of a diverging fracture. The radial velocity profile
can be obtained from equation (66) using the definition of
the total flow rate Q in polar coordinates. It is expressed as

0O cos(20) — cos(2c)
7 sin(2a) — 2acos(2a)

Viy = (67)

Using the perturbation solution, the transformation of the
velocity vector from the Cartesian coordinate to the radial
coordinate with origin at the apex of the extended fracture
walls shows that the circumferential velocity is zero and the
velocity is only radial. In polar coordinates (r, 8), where X =
rcos® — 1/(m — 1)and Z=[X+ 1/(m — 1)]tan 0, the zero-
order velocity components are given by V,y = +U, cos 6 +
Wy sin 0 and Vyy = —Uj sin 0 + W, cos 0. Substituting the
zero-order velocities, one obtains that Vo = 0 and

_ 30 cos(20) — cos(2a) cos

T8 3

Vo
! cos* 0 sin” o

(68)

A similar derivation using the second-order velocity terms
would again show that Vg, = 0 and provide a higher-order
term to equation (68). A plot of equations (67) and (68)
shows that the velocity profiles are quite close. The
maximum difference is at the centerline 6 = 0 where the
ratio V,o/V,., is given by (3/4)(a + cot o« — « cot® a)cot o
and is roughly 0.90 for o = 0.5.

5.8. Region of Validity

[s6] The basic premise of the perturbation expansion is
that the ratio of the vertical velocity over the longitudinal
velocity is of the order of §, as can be deduced from the
definition of the dimensionless velocities (equation (7)).
Hence the perturbation solution is valid so long as the
dominant flow is in the longitudinal direction. The pertur-
bation expansion is not well suited for fracture flows in
which the dominant flow is bidirectional. For example, it is
less valid for aligned or mated sinusoidal fracture walls
(e = m) than for sinusoidal fracture walls with mirror image
roughness (¢ = 0), especially for large amplitude or fre-
quency of the corrugations since the flow path tends to
follow the wall variation and the component velocities
become of equal order w/u = O(1).

[57] The present perturbation results compare well with
the results of previous asymptotic studies. Hasegawa and
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Izuchi [1983] derived the perturbation solution of the
sinusoidal channel with a flat wall using the stream function
formulation with similar boundary conditions and the same
perturbation parameter 8. The two asymptotic solutions
yield exactly the same results. The stream functions can
be obtained from the above perturbation results by integrat-
ing the velocity expressions over the depth Z. Equations
(21)—(25) of Hasegawa and Izuchi [1983] can be rederived
by integrating the expressions for Uy, U, and U, over Z.
Conversely, the flow rate can be obtained from the stream
function results of Hasegawa and Izuchi [1983] by substi-
tuting Z = B in their results. The flow rate for a sinusoidal
fracture with a flat bottom wall (equation (49)) agrees with
their equation (equations (29) and (30)) that was also
referenced by Zimmerman and Yeo [2000, equation 16].

[s8] Kitanidis and Dykaar [1997] presented a fourth-
order perturbation solution of the Stokes equation for the
symmetrical sinusoidal fracture using the same perturbation
parameter 6 but with a different auxiliary condition based on
an energy argument. The second-order flow rate expression
is given in integral form by their equations (33) and (34),
which upon integration yields a result similar to equation
(47) for R, = 0 except for an extra numerical factor of 6 in
the second-order term that is the result of the different
boundary conditions. Sisavath et al. [2003] used the per-
turbation result of Van Dyke [1987] and the creeping flow
assumption to obtain the second-order flow rate for the
same sinusoidal geometry but with a different auxiliary
condition and a different perturbation parameter. Their
perturbation parameter was the roughness amplitude to
wavelength ratio, and their second-order flow rate is given
in a rational form.

[s9] Hasegawa and Izuchi [1983] and Sisavath et al.
[2003] assessed the extent of the error of their perturbation
expansion by comparing with numerical models. Hasegawa
and Izuchi [1983] showed that the flow rate results are
accurate to within 10% for 6 = 0.4 and small R,, and for § =
0.3 and R, < 50. They also mentioned that the perturbation
solution is more accurate for flow in symmetrical sinusoidal
fractures. The latter statement was also corroborated by
Sisavath et al. [2003], who found very good agreement
between the perturbation and the numerical solution for the
case of a symmetrical sinusoidal fracture for 6 < 1 and a <
0.3. Using Figure 3 of Sisavath et al. [2003], one can
quantify the difference between the various perturbation
solutions and their numerical model that uses a prescribed
parabolic velocity distribution at the boundary. For a = 0.3
and & = 0.5, Figure 3 shows the numerical model result as
O = 0.23, the Sisavath et al. [2003] prediction gives
0 = 0.215, the Kitanidis and Dykaar [1997] expression
yields O = 0.197, while equation (47) gives Q = 0.264. The
difference in the various results is due to the approximation
error involved as well as the different boundary conditions
used in the various models. Kitanidis and Dykaar [1997]
and Sisavath et al. [2003] specify the flow or velocity at the
entrance of the fracture, while Hasegawa and Izuchi [1983]
and the present work specify the pressure at the boundary.

[60] Figure 9 delineates the region in the & — R, param-
eter space for which the second-order flow rate and the
zero-order flow rate (Reynolds approximation) differ by
more than 10%. The region below the lines is the parameter
space for which the Reynolds approximation holds and the
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Figure 9. Region of the parameter space 6 — R% below
which the second-order term is less than 10% of the zero-
order term.

inclusion of higher-order terms are not warranted. The
curves correspond to contours of 0,/Qy equal to 0.9 or
1.1. They pertain to a converging (m = 1/3) and a diverging
(m = 3) symmetrical fracture, sinusoidal symmetric (¢ = 0)
and asymmetric fracture (€ = 1/2) for 3 =2 and 3 = 3 where
B = bmax/bmin. The curves for linear fractures with different
widths ratios m are close or within the two curves shown in
Figure 9. The shapes of the curves corresponding to the
diverging and converging fracture imply that the contribu-
tion of the higher-order terms is small for small Reynolds
number and is significant at high Reynolds number even for
small values of 8. Hence the zero-order solution by itself is
insufficient to estimate the flow for high R¥ even if § is
small. The contribution of the inertia terms is more signif-
icant for diverging than converging fractures.

[61] For sinusoidal fractures, the location of the delineat-
ing curves is a function of the alignment of the corrugations
and B8 = bpax/bmin- The sinusoidal symmetrical fracture
curve follow the same trend as the linear fracture case in
that the zero-order term is the dominant term for a wide
range of 6 and small R¥ since the curves point upward for R
near zero. As (3 increases, the curves shift downward,
implying that the contribution of the higher-order terms
becomes more significant for lower values of R% and o.
Figure 9 clearly shows that the Reynolds approximation is
valid for a wider range of R%¥ and & for the symmetric
fracture than for the asymmetric fracture. The contribution
of the higher-order terms at R%¥ = 0 for the asymmetric
fracture (¢ = w/2) becomes important at & = 0.37 for 3 = 2
and at 6 = 0.23 for 3 = 3 and at smaller values of & for
increasing R¥. One can also use the solution of the mated
sinusoidal walls (e = m) to define the criterion for which the
Reynolds equation applies. For the difference between the
Reynolds approximation and the Stokes approximation to
be within 10%, the second-order version of equation (46)
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gives us that & < (awy/20)"'. For a = 0.25, the limit is
roughly & < 0.3. The value of the perturbation parameter &
is also limited by the ratio of the vertical and longitudinal
velocities. Numerical results show that this criterion is
satisfied for misaligned sinusoidal variations (¢ = w/2) if
0 < a w/2 and for mirror sinusoidal walls if 6 < am.

6. Concluding Remarks

[62] We derived the perturbation solution of the two-
dimensional Navier-Stokes equation for flow in fractures
of simple geometries taking into account the effect of
leakage into the adjoining soil matrix. The perturbation
analysis provides the Reynolds lubrication approximation
as the leading-order approximation and higher-order terms
that incorporate the contribution of the roughness amplitude
and frequency and the inertia effects. Flow rate expressions
for various simple geometries were obtained as a function of
the various parameters. Numerical results indicated the
significant effect of the roughness and inertia on the
estimation of the flow in fractures. The flow rate decreases
significantly from its cubic law estimate for sinusoidal
fractures, and only in instances of high inertia in diagonal
fracture walls is the flow greater than the cubic law
estimate. The contribution of the higher-order terms for
creeping flow is insignificant for diagonal walls and sym-
metrical sinusoidal walls. Flow rate values for leaky frac-
tures are significantly different from the flow rate estimate
for impermeable walls condition. The numerical results also
show that the head and velocity distribution deviate signif-
icantly from their respective linear and parabolic distribu-
tion of a parallel fracture. The flow rate expressions derived
for the various simple geometries can constitute a basis for
the formulation of conceptual models for numerical model-
ing of flow in discrete fracture networks and in fractured
soils wherein there is a significant interaction between the
fracture and the enclosing soil matrix. The derivative results
of velocity profiles and flow reversal are also useful for
studies that deal with transport processes in fractures. The
above approximate solutions might provide a reliable tool
for flow and transport predictions in fractured domain.
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