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[1] The effects of nonlinear energy transfer on the development of the short wave
spectrum are evaluated using a diffusion approximation and a modification of this
approximation to include nonlocal effects. Both formulations were used to compute the
evolution of a JONSWAP‐type spectrum, and the results are compared with direct
numerical simulations. Terms corresponding to each of these formulations were then
incorporated into the wave action equation, and the resulting equation was numerically
integrated using a second‐order Runge‐Kutta method. The results show an increase in the
angular width of the spectrum and in the spectral density at high wave numbers as
compared with solutions of the action equation without the nonlinear energy transfer term.
Example results are presented for the case of a moderately strong internal wave in a
light wind, and implications for the remote sensing of these waves using microwave radar
are discussed.
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1. Introduction

[2] Modeling of the microwave radar signatures of oceanic
internal wave and current fronts has traditionally been done
using the wave action equation, coupled with a Bragg or
two‐scale radar backscatter model [e.g., Lyzenga and Bennett,
1988; Thompson et al., 1988; Thompson, 1988]. The wave
action equation describes the changes in the amplitude or
spectral density of surface waves due to their interactions with
spatially variable surface currents. This equation also includes
the generation and growth of waves by the wind, dissipation
by molecular viscosity and nonlinear effects, and in principle
energy transfer among waves of different wavelengths due
to nonlinear interactions, although the latter have largely
been neglected in the past because of the complexity and
computational cost of including them. Most of the interest in
this context is in wavelengths on the order of centimeters,
because of their influence on the backscatter of electro-
magnetic waves in the microwave region, which are most
useful for remote sensing purposes. However, longer‐scale
waves are also strongly perturbed by internal waves and
current fronts. Thus, the coupling of these longer waves with
centimeter‐scale waves cannot safely be neglected.
[3] In this paper, the roles and effects of nonlinear sur-

face wave interactions are investigated using the diffusion
approximation of Jenkins and Phillips [2001] as well as a
simple modification of this approximation. The evolution of
a JONSWAP‐type spectrum is computed using these approx-
imations, and the results are compared with direct numerical
simulations reported by Tanaka [2001, 2007] and Yokoyama

[2004]. Terms corresponding to these approximations are
then incorporated into the wave action equation, numerical
solutions of the wave action equationwith the added terms are
described, and solutions with and without the nonlinear
transfer terms are compared and discussed.

2. Wave Action Equation

[4] The wave action equation can be written in fixed wave
number coordinates [Phillips, 1984; Lyzenga and Bennett,
1988] as
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whereN(kx, ky, x, y, t) is the action spectral density, k = (kx, ky)
is the wave number vector, cg = (cgx, cgy) is the group
velocity, and u = (u,v) is the surface current. The quantity
Fs(N) on the right‐hand side of the equation is the net source
function, which accounts for wind input, wave energy dis-
sipation, and nonlinear wave‐wave interactions. Using polar
coordinates with � being the wave propagation direction
measured clockwise from the x axis and � = ln(k), the wave
action equation becomes
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@y. Equation (2) can also be written in

terms of the linear wave number k, the frequency w, or the
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logarithmic frequency w = ln(w) by replacing V� with Vk =
kV�, Vw = cgVk, or Vw = (cg/c)V�, respectively. Using N =
rcBk−4, where B = k4S(k, �) is the dimensionless saturation
or curvature spectrum, this equation can also be written as
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If the x axis is oriented at an angle �x measured clockwise
from north, the wave propagation direction relative to
north is � + �x and the wave propagation direction relative
to the wind direction �w (also measured clockwise from
north) is �r = � + �x − �w.

3. Source Function

[5] Using a wind input term that is proportional to the
spectral density [Snyder et al., 1981; Plant, 1982] and a dis-
sipation term proportional to the cube of the spectral density
[Phillips, 1985], the source function for the curvature spec-
trum B(k, �) can be written as

Fs Bð Þ ¼ ð� � 4� k2ÞB� �0 !B
3 þ Fnl Bð Þ; ð4Þ

where b is the wind growth rate, n is the kinematic viscosity
of water, and Fn1(B) is the source term due to nonlinear wave‐
wave interactions. A theory for nonlinear resonant inter-
actions among gravity waves has been developed by
Hasselmann [1962] and others, but this theory requires the
evaluation of a sixfold integral in wave number space, which
is not practical for inclusion in wave‐current interaction
models of the type described later in this section. The effects
of nonlinear interactions can also be seen in direct numerical
simulations of surface gravity wave evolution, such as those
by Tanaka [2001, 2007] and Yokoyama [2004]. However,
such simulations are also impractical for routine application
to the remote sensing problems discussed below. Jenkins and
Phillips [2001] showed that a nonlinear source term of the
form
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conserves energy, action, and momentum for any function
y (k) that goes to zero rapidly enough as k → 0 and k → ∞.
Using the gravity wave dispersion relation and defining

y ¼ !
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as proposed by Jenkins and Phillips [2001] on dimensional
grounds, this formulation for the nonlinear energy transfer
term is equivalent to the diffusion approximation of Polnikov
[2002] and Polnikov et al. [2002]. Equation (5) is also valid
when surface tension effects are included, in which case it can
be written as
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where t is the ratio of the surface tension to the density of
water. The term involving ∂2y/∂�2 in (7) causes an increase
in the angular width of the spectrum at intermediate wave-

lengths, but the factor l − 3tk/cg
2 causes the spectrum to

narrow again at high wave numbers. This behavior is con-
sistent with the properties of the wave spectra inferred from
microwave scatterometry data (see Figure 10 and the related
discussion in section 5 below).
[6] The inclusion of surface tension effects calls into

question the appropriateness of the form of the y function in
(6), however. The dependence on the cube of the spectral
density in (6) is consistent with the fact that resonant inter-
actions among gravity waves occur at third order, i.e., among
sets of four wave numbers. Resonant interactions occur among
gravity‐capillary waves at both second and third orders, i.e.,
among sets of three as well as four wave components, so the
source function for such interactions may be expected to
have terms proportional to the square as well as the cube of
the spectral density. However, there is little information at
present on the relative magnitudes of these terms, and in the
absence of such information we have chosen to neglect
second‐order terms for the present. The scale factors for
the cubic terms are determined by comparisons with the
Hasselmann theory for gravity waves (see Figure 1), and
surface tension effects have been omitted for the purpose of
these comparisons as well as for comparison with Tanaka’s
and Yokoyama’s gravity wave simulations (Figures 2–7).
[7] Surface tension effects have been included in the cal-

culations described in section 5, however, because these
effects are known to be important in the wave number region
of interest for microwave radar backscatter calculations. This
inclusion is not necessarily inconsistent with the neglect of
second‐order terms, since gravity‐capillary waves interact at
both second and third orders, but this neglect means that our
results are probably incomplete and may be considered as
providing a lower bound for nonlinear interaction effects
involving gravity‐capillary waves at high wave numbers. The
second‐order terms must go to zero for gravity waves, and
presumably transition smoothly (i.e., increase slowly) as
the wave number increases into the region where capillary
effects are important, so the results presented here should be
valid for at least the lower part of the gravity‐capillary regime.
[8] The source function (7) can be written in terms of the

logarithmic frequency w as
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The first derivative in this equation can be eliminated by
defining y = w−1/2y , which results in the expression
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Using equation (6), the term involving y/4 becomes
1
4a1(cg/c)B

3. An evolution equation for B in the absence of
currents can then be written as

@B

@t
¼ ð� � 4�k2ÞB� � 0

0 !B
3

þ �1k
2!1=2 cg

c

� � @2y

@w2
þ 1� 3�k

c2g

 !
@2y

@�2

" #
; ð10Þ

where a ′0 = a0 + 1
4a1cg/c.
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[9] The diffusion approximation discussed above accounts
only for local interactions in wave number space, since it
only involves derivatives of the spectrum, but the resonant
interaction theory also involves nonlocal interactions among
widely spaced wave numbers. Such nonlocal interactions
can be incorporated heuristically by redefining the function
y(k) as

y ¼ !

k2

Zw
0

B3ðw0; �Þdw0; ð11Þ

which still satisfies the requirements stated by Jenkins and
Phillips [2001]. The derivative of this function with respect
to w can be written as
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Thus, it is not necessary to make an additional change of
variable to eliminate the first derivative in equation (8). The
nonlinear source function then becomes
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Using this formulation, the evolution equation for B in the
absence of currents is
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where a ′0 = a0 + a1cg/c.

Figure 2. Evolution of normalized frequency spectra from
numerical simulations by Tanaka [2007].

Figure 3. Normalized frequency spectra from growth
model using nonlinear source term of Jenkins and Phillips
[2001] with a1 = 2.5.

Figure 1. Comparison of nonlinear source terms from
Resio and Perrie [1991] (solid lines) with approximate
source terms (dashed lines) using (a) the diffusion approx-
imation of Jenkins and Phillips with a1 = 2.5 and (b) the
modified version of this approximation with a1 = 20.
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[10] The nonlinear transfer terms for both of these for-
mulations, i.e., using (6) and (11), are compared in Figure 1
with numerical evaluations of Hasselmann’s theory by Resio
and Perrie [1991] for the Pierson‐Moskowitz spectrum

S f ; �ð Þ ¼ 2�ð Þ�4 �g2f �5e�1:25 fp=fð Þ4F �� �wð Þ; ð15Þ

with a = 0.01, fp = 0.3 Hz, and F(�) = (2/p) cos2� for j�j <
p/2. For purposes of this comparison the source function
term for B given in (5) was converted into the equivalent
source function for the frequency spectrum, i.e.,

Snl ¼ 2� k�3c�1
g Fnl Bð Þ: ð16Þ

A scale factor of a1 = 2.5 was used for the original Jenkins
and Phillips formulation (6) and a1 = 20 was used for the
modified version (11), to approximately match the magni-

tude of the source function calculated by Resio and Perrie
[1991]. Both formulations show qualitatively similar fea-
tures, but the modified version agrees much more closely
with the Hasselmann theory, at least for the Pierson‐
Moskowitz spectrum.
[11] In order to further test these formulations, the evo-

lution of an initial wave spectrum due to the source func-
tions (9) and (13) was computed and the results were
compared with the numerical simulations made by Tanaka
[2001, 2007] and Yokoyama [2004]. In order to match the
conditions of these simulations, the growth and dissipation
terms in (10) and (14) were omitted (although the artificial
dissipation term used by Yokoyama was included for the
comparisons with his results, see below). The simulations by
Tanaka [2007] were done using a variant of the JONSWAP
spectrum, which can be written as

S !; �ð Þ ¼ �g2!�5e�1:25 !p=!ð Þ4	exp½�1
2ð!=!p�1Þ2=
2 � G �ð Þ; ð17Þ

Figure 5. Normalized 1‐D action spectra from numerical
simulations by Yokoyama [2004].

Figure 6. Normalized 1‐D action spectra using Jenkins
and Phillips [2001] source term.

Figure 7. Normalized 1‐D action spectra using modified
Jenkins and Phillips source term.

Figure 4. Normalized frequency spectra from growth
model using modified version of Jenkins and Phillips source
term with a1 = 20.

LYZENGA: EFFECTS OF NONLINEAR ENERGY TRANSFER C10001C10001

4 of 11



where a = pEe5/4/g, E = hh2i wp
4/g2 is the nondimensional

energy density, wp is the peak frequency, g = 3.3, and


 ¼
0:07 ð! < !pÞ

0:09 ð! � !pÞ

8<
: : ð18Þ

Results were presented by Tanaka in the form of the non-
dimensional spectrum

Y !ð Þ ¼ !5
p=g

2
Z�
��

S !; �ð Þd�; ð19Þ

which was calculated at t = 0, 25Tp and 100Tp (where
Tp = 2p/wp) using an initial spectrum with an angular dis-
tribution G(�) = (2/p) cos2� (for j�j < p/2) and a non-
dimensional energy density E = 0.003. A plot of these results
is reproduced in Figure 2. The corresponding results obtained
by integrating (10) and (14) (without the growth and dissi-
pation terms) are shown in Figures 3 and 4, respectively.
These equations were integrated using a Runge‐Kutta method
as described in the following section. The same constants as
in Figure 1 (a1 = 2.5 for the original Jenkins and Phillips
formulation and a1 = 20 for the modified formulation) were
used for this calculation. A peak wave period of 5 s was
used for both models, although the normalized results are
independent of this value because surface tension effects are
not included. Both models show an increase in the spectral
density at frequencies above the spectral peak, but the second
model produces much larger increases at high frequencies,
in closer agreement with Tanaka’s results. Both models also
show a slight downshift of the spectral peak as expected,
although this downshift does not appear in Tanaka’s results
over the time scales shown.
[12] The results presented by Yokoyama [2004] were gen-

erated using the same spectral form as Tanaka but with an
additional factor of e−(k/kc)

4

where kc = 2kp, which produces
a much faster falloff at frequencies above the spectral peak.
He also used an isotropic angular distribution and selected a
scale factor to produce a normalized energy density of 0.005
(instead of 0.003). In addition, Yokoyama included an artifi-
cial dissipation proportional to k16 in his evolution equation
for the spectral amplitude, for numerical stability purposes.
Yokoyama’s results are presented in the form of the normal-
ized 1‐D action spectrum,

N1 kð Þ ¼ !pk
3
p

Z�
��

kN k; �ð Þd�; ð20Þ

where N(k, �) = S(k, �)/w is the 2‐D action spectrum. The
spectrum is plotted versus the normalized wave number in
Figure 5 for times ranging from 0 to 2000/wp. The corre-
sponding results from the models described in this paper are
shown in Figures 6 and 7. In this case, the diffusion approxi-
mation produces very little energy transfer in the region of
the rapid spectral falloff, presumably because of the local
nature of this approximation. The modified approximation
produces a growth in the high wave number region similar
to that seen in Yokoyama’s results. We take this as an indi-
cation that energy is being transferred over relatively long
distances in wave number space. The 1‐D action spectrum

falls off approximately as k−3 in this region, as in Yokoyama’s
spectrum, and this falloff would continue to higher wave
numbers were it not for the artificial dissipation term used
in these calculations. The details near the spectral peak and
at low wave numbers are slightly different from those in
Yokoyama’s results, but these differences have not been
pursued here because the focus of this paper is on the evo-
lution of the high frequency end of the spectrum.

4. Numerical Solution

[13] For purposes of a stability analysis, (10) can be written
in terms of the variable y as
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where Dw = 3a1w (cg/c)B
2 and D� = 3a1w (1 − 3tk/cg

2)B2.
Heuristically, the stability criterion for an explicit numerical
solution of (17) is

Dt � 1ffiffiffi
2

p
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n o 1=2
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Dtw ¼ ðDwÞ2
2Dw

andDt� ¼ D�ð Þ2
2D�
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Dw and D� being the grid spacings in the logarithmic fre-
quency w and the angle �, respectively [Press et al., 1992].
Note that at high wave numbers the coefficient D� becomes
negative, causing an inherent instability at these wave
numbers. To prevent this instability, D� is set to zero for
3tk/cg

2 > 1. This procedure probably causes the angular
width of the spectrum to be overestimated at high wave
numbers but still preserves the main features observed in
empirical data (see Figure 10 below).
[14] We have used a second‐order Runge‐Kutta or mid-

point method, with the step size discussed above, to numer-
ically integrate (10). To implement this method, we first
evaluate the source function at the current time step and
calculate the first‐order solution B1 = B0 + Fs(B0)Dt. We
then compute the source function at B1, take the average of
the two source functions Fs = [Fs(B0) + Fs(B1)]/2, and use this
to calculate the second‐order solution B2 = B0 + FsDt at each
wave number.
[15] A heuristic stability analysis of (14) can be carried

out by writing this equation as
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where y I = y i−1 + (wi/ki
2)Bi

2Dw represents the value of the
function defined in (11) at the frequency sample i and g(y)
is a functional of y that includes the derivatives of y at
other frequency samples but not at the ith sample. The time
step size for this formulation is therefore the same as that
given in (22) but divided by the logarithmic frequency sample
spacing Dw. Equation (14) is then numerically integrated in
the same way as previously described, using this modified
step size.
[16] In the presence of variable surface currents, i.e., when

the advective terms in (3) are included, the evolution
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equation for B can be solved using the same method but
with a step size given by

Dt ¼ 1ffiffiffi
5

p
max jvjf g ; ð24Þ

where

jvj2 ¼ Vx=Dxð Þ2 þ Vw=Dwð Þ2 þ V�=D�
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for the original formulation of Jenkins and Phillips [2001]
and

jvj2 ¼ Vx=Dxð Þ2 þ Vw=Dwð Þ2 þ V�=D�
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þ 2Dw
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 !2

þ 2D�
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2
4

3
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for the modified formulation using (11) instead of (6). The
maximum value is computed over the entire computational
grid. A small amount of numerical diffusion in the x direction
is also added to damp the spatial oscillations that sometimes
occur in the solution, by adding a term 0.01[B(x + Dx) −
2B(x) + B(x − Dx)] to the solution.
[17] The solution of (3) without the nonlinear transfer

term can be obtained in the same way by setting a1 = 0, but
in this case the step size is given by

Dt ¼ 1ffiffiffi
3

p
max jvjf g ; with

jvj2 ¼ Vx=Dxð Þ2 þ Vw=Dwð Þ2 þ V�=D�
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: ð27Þ

If there are no currents (and the nonlinear transfer term is
neglected), the growth equation can be solved analytically
using the change of variable z = 1/(2B2), which results in
the equation

@z

@t
¼ �0!� 2�

0
z ; ð28Þ

where b′ = b − 4nk2. This equation has the solution z = z0 +
z1e

−2b ′t, where z0 = a0w/(2b′) and z1 is determined by the
initial value of z. Reversing the change of variable, the
solution for B can be written as

B t þDtð Þ ¼ B tð Þ �0!

�0 1� e�2�0Dt
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for arbitrary Dt. Note that as Dt→∞, this approaches the
equilibrium solution
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0

for

for

� > 4�k2

� � 4�k2

8<
: : ð30Þ

5. Example Results

[18] Results are presented here for three versions of the
net source function: (1) a version containing wind input,
viscous dissipation, and nonlinear dissipation terms but no
energy transfer, (2) the nonlinear energy transfer term of

Figure 8. Equilibrium spectra B(k, �) for three versions of
the net source function, for a wind speed of 5 m/s.
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Jenkins and Phillips [2001], as defined by (5) and (6) with
a1 = 2.5, and (3) the modified nonlinear transfer term
defined by (5) and (11), with a1 = 20. The wind input term
was taken to be that of Snyder et al. [1981], as defined by
the equation

� ¼ �o max½ Uw=cð Þ cos � > ��wð Þ � 1; 0�!; ð31Þ

where bo = 3 × 10−3, Uw is the wind speed, and �w is the
wind direction. In all three cases, the scale factor for the
nonlinear dissipation term was taken as a0 = 100 in order to
produce a reasonable magnitude for the equilibrium spec-
trum. However, no attempt has been made as yet to adjust
this parameter or to experiment with other dissipation
models in order to optimize the form or magnitude of the
equilibrium spectrum.
[19] Plots of the equilibrium spectra for all three cases are

shown in Figure 8, for Uw = 5 m/s. For version 1 of the
source function, the equilibrium spectrum was calculated
analytically from (30). For versions 2 and 3, the spectrum
was obtained by numerically integrating (10) and (14),
respectively, using (30) as the initial value. The time step-
ping was repeated until the spectrum reached a limiting
value, as defined by the criterion Fs(k, �) < 0.005 B(k, �) for
all (k, �). Note that there is a noticeable increase in the
angular spreading, as well as an increase in the spectral
density at large wave numbers from cases 1 to 3, but there is
a larger difference between 2 and 3 than between 1 and 2.
[20] For comparison with commonly used spectral shapes

and measurements, these equilibrium spectra, as well as the

corresponding ones for wind speeds of 10 and 15 m/s, were
converted into frequency spectra using

Sð!Þ ¼ k�3

cg

Z�
��

Bðk; �Þd�; where !2 ¼ gk þ �k3; ð32Þ

Figure 10. Angular widths of equilibrium spectra for (top)
source functions 2 and (center) source function 3 compared
with (bottom) model functions of Donelan et al. [1985] and
Caudal and Hauser [1996] (circles and curves, respectively)
for three wind speeds.

Figure 11. Internal wave surface currents calculated from
model of Choi and Camassa [1999].

Figure 9. Equilibrium frequency spectra for all three
source functions, for wind speeds of 5, 10, and 15 m/s.
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and the angular width was computed by taking the square
root of

�2
� � ¼ Z�

��

�2B k; �ð Þd�
Z�
��

B k; �ð Þ
,

d�: ð33Þ

Figure 9 shows the frequency spectra multiplied by w4 for
each version of the net source function. No explicit compar-
isons are made with existing spectral models, because we
have not yet attempted to tune the other terms in the net source
function, but we note that for source function 3 the quantity

Figure 12. B(k, �, x) at (left) � = 0° and (right) � = 180°, for (top) source function 1, (center) source
function 2, and (bottom) source function 3.
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w4S(w) is nearly flat at intermediate frequencies, in agreement
with the measurements of Donelan et al. [1985] and consis-
tent with weak turbulence theory [Zakharov and Pushkarev,
1999]. The angular widths for source functions 2 and 3
are shown in Figure 10 along with the equivalent angular
widths from Donelan et al. [1985] and from the Caudal
and Hauser [1996] spectrum, which is equivalent to the
JONSWAP spectrum [Hasselmann et al., 1980] for frequen-
cies below about 4 rad/s but shows a narrowing at higher
frequencies as inferred from radar backscatter measurements.
Although the quantitative agreement with these model func-
tions is not particularly good, the qualitative changes in
spectral width predicted by both versions of the source
function are consistent with the model functions shown.
[21] Next, the full wave action equation was integrated

using the same three versions of the source function, for a
surface current field representative of a moderately strong
solitary internal wave. The surface currents were calculated
using the model of Choi and Camassa [1999] with an upper
layer thickness of 10 m, a lower layer thickness of 100 m, a
density difference Dr/r = 0.004 and a wave amplitude of

10 m. These parameters were chosen to roughly mimic the
largest internal waves observed by Gasparovic et al. [1988]
in the New York Bight. The propagation speed of this
internal wave is calculated to be 0.80 m/s, and the surface
current in a coordinate system moving with the internal wave
is shown in Figure 11 (the propagation direction is to the
right in this figure). The wind speed was again chosen to be
5 m/s (as in Figure 8) and the wind direction was chosen to be
from 45° relative to the internal wave propagation direction,
similar to conditions during the New York Bight experiment.
Calculations were done for a time interval of 600 s, starting
with the equilibrium spectra shown in Figure 8.
[22] Figure 12 shows the spectral density at t = 600 s

plotted versus x and k for � = 0° (i.e., for waves propagating
in the same direction as the internal wave) and for � = 180°
(waves propagating in the opposite direction). The spectral
densities are generally larger at � = 180° since this is closer
to the wind direction. The peak spectral densities in this
direction increase by about 20% from source function 1 to
source function 3, and an increase in spectral densities at
high wave numbers is apparent in Figure 12 (both center
right and bottom right cases), but more dramatically in the
latter.
[23] Even more striking differences occur in the spectra at

� = 0°. It may be surprising that any energy at all occurs at
this angle, since it is more than 90° from the wind direction.
For source function 1 the initial spectral density is nominally
zero at this angle, and there is no mechanism for energy to be
transferred to this direction. However, an arbitrary initial
spectral density of Bmin = 1 × 10−10 was applied at all wave
numbers, in order to allow the wind growth term in (4) to
take effect (the source function would remain zero for all
time if B were initially zero). Waves having an effectiveFigure 13. Radar backscatter modulations observed for

internal wave packet H during the SAR Internal Wave
Experiment [from Gasparovic et al., 1988]. Dashed curves
indicate model predictions by Thompson et al. [1988].

Figure 14. Radar backscatter computed for three versions
of the source function, for conditions similar to those in
Figure 13.
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group velocity (cgx + u) equal to the internal wave phase
velocity, the so‐called “resonant waves,” experience a con-
tinual input of energy from the internal wave and grow
exponentially until limited by dissipation or nonlinear energy
transfer. Thus, even very small initial spectral densities at
these wave numbers grow and become appreciable or pos-
sibly even dominant in some cases. For source functions 2
and 3, energy is transferred into these wave numbers by
nonlinear interactions, so this effect occurs regardless of the
value of Bmin and appears much earlier than for source
function 1. Furthermore, the energy pumped into the reso-
nant waves from the internal wave is rapidly transferred to
higher wave numbers where it can influence the microwave
radar backscatter directly (via increased Bragg scattering) as
well as indirectly by surface tilting effects. The spectra at
� = 0° may in fact continue to grow beyond t = 600 s, but
the differences are already apparent at this time.
[24] To evaluate the implications of these changes for

remote sensing, the radar backscatter was calculated at each
grid point using a two‐scale scattering model [Lyzenga,
2004] along with the spectral perturbations discussed above.
Calculations were made for microwave frequencies of 1.24
and 9.35 GHz, and at incidence angles of 30° in order to
compare with the L band and X band observations reported
by Gasparovic et al. [1988] for wave packet H. These
observations are shown as the solid curves in Figure 13.
Figure 13 also shows a set of predictions by Thompson et al.
[1988], using a model that did not include nonlinear inter-
actions. This model is similar to that discussed in this paper
using source function 1. The calculated radar cross sections
using all three source functions are plotted versus position in
Figure 14. The differences among the results using these
source functions are most pronounced at X band, and the
predictions using source function 3 seem to be fairly con-
sistent with the observations in Figure 13. These results
appear to resolve a long‐standing problem that has been
reported in the literature, namely the discrepancy between
model predictions and observations at X band, and these
results also seem to bear out conjectures by Gasparovic et al.
[1988] and Lyzenga and Bennett [1988], among others, that
these underpredictions were due to the neglect of nonlinear
hydrodynamic effects in previous models.

6. Conclusions

[25] Nonlinear energy transfer has been incorporated into
the wave action equation using the diffusion approximation
of Jenkins and Phillips [2001] as well as a modified version
of their formulation which includes nonlocal spectral effects.
The evolution of an initial spectrum due to only this energy
transfer is computed and compared with direct numerical
simulations by Tanaka [2007] and Yokoyama [2004]. The
wave action equation including traditional wind input and
energy dissipation terms as well as the new energy transfer
terms is solved as an initial value problem using a second‐
order Runge‐Kutta method, and properties of the solution
are examined for one example case. The results illustrate the
diffusion of energy in both angle and wave number, and an
increase in both the mean spectral density and modulations
of the spectral density at high wave numbers. The effects on
radar backscatter modulations are calculated using a two‐

scale scattering model and compared with observations of
internal waves in the New York Bight. The results appear to
resolve a long‐standing discrepancy between model pre-
dictions and observations at X band and also seem to bear
out conjectures by various authors that these discrepancies
were due to the neglect of nonlinear hydrodynamic effects in
previous models.
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