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ABSTRACT

Development of Joint Estimating Equation Approaches to Merging Clustered or
Longitudinal Datasets from Multiple Biomedical Studies

by

Fei Wang

Co-Chairs: Peter X.-K. Song and Lu Wang

Jointly analyzing multiple datasets arising from similar studies has drawn increasing

attention in recent years. In this dissertation, we investigate three primary problems

pertinent to merging clustered or longitudinal datasets from multiple biomedical stud-

ies.

The first project concerns the development of a rigorous hypothesis testing proce-

dure to assess the validity of data merging and a joint estimation approach to obtain-

ing regression coefficient estimates when merging data is permitted. The proposed

methods account for different within-subject correlations and follow-up schedules in

different longitudinal studies. We establish large sample properties for the proposed

test statistics and estimation. It is shown through simulations that our proposed test

statistics are desirable in controlling test size even if within-subject correlation struc-

tures are misspecified. It is also shown that our joint estimation method improves

estimation efficiency on all regression coefficients with merged data. For illustration,

we apply the proposed methods to analyze data from a randomized interventional

trial of asthma care.
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The second project aims to generalize the work developed in the first project by

allowing study-specific missing covariates. In particular, the presence of study-specific

missing covariates (e.g. covariates observed in some studies but completely missing

in other studies) gives rise to a great challenge in data merging and analysis. We pro-

pose a joint estimating function approach to addressing this key challenge, in which a

novel nonparametric estimating function constructed via splines-based sieve approxi-

mation is utilized to bridge estimating equations from studies with missing covariates

to those with fully observed covariates. Under mild regularity conditions, we show

that the proposed estimator is consistent and asymptotically normal. We evaluate

finite sample performances of the proposed method through simulation studies. In

comparison to the conventional multiple imputation approach, our method exhibits

smaller estimation bias. We provide an illustrative data analysis using longitudinal

cohorts collected in Mexico City to assess the effect of lead exposure on children’s

somatic growth.

The third project is devoted to the development of a screening procedure for pa-

rameter homogeneity, which is the key feature to reduce model complexity in the

process of data merging. We consider the longitudinal marginal model for merged

studies, in which the classical hypothesis testing approach to evaluating all possi-

ble subsets of common regression parameters can be combinatorially complex and

computationally prohibitive. We develop a regularization method that can overcome

this difficulty by applying the idea of adaptive fused lasso in that restrictions are

imposed on differences of pairs of parameters between studies. The selection proce-

dure will automatically detect common parameters across all or subsets of studies.

Through simulation studies we show that the proposed method performs well to con-

sistently identify common parameters. We illustrate our method through merging

HIV surveillance cohorts collected in China to assess if common effects are present

over five geographic regions when these cohorts are monitored.

xii



CHAPTER I

Introduction

1.1 Motivating Data Sets

This dissertation is motivated by three data, Physician Asthma Care Education

(PACE), Lead exposures in cohorts of mother-infant pairs living in Mexico City, and

HIV/AIDS surveillance data for drug users. They are described in detail in the next

three sections.

1.1.1 Physician Asthma Care Education (PACE)

PACE data is collected from a community-based clinical trial aiming to evaluate

the effectiveness of a continuing medical education program, Physician Asthma Care

Education (PACE) (Cabana et al., 2006), in the hope to improve pediatricians’ asthma

therapeutic and communication skills.

The randomized intervention trial was conducted in 10 locations in U.S.A, in-

cluding Corpus Christi, TX; Fresno/Bakersfield, CA; Nashville, TN; Jacksonville,

FL; Omaha, NE; St Paul, MN; Kent County, MI; New Castle County, DE; Colum-

bus, OH; and Indianapolis, IN. To recruit physicians, using yellow-page listings and

membership lists from local professional societies and asthma coalitions, the study

investigators found 1219 primary care providers who agreed to participate into the

research. All those selected providers had complete lists of their asthma patients.

1



To evaluate the effectiveness of continuous medical training on physicians’ medical

and communication skills, PACE study first matched 10 sites into 5 pairs according to

population, asthma prevalence, percentage of the population that is Hispanic and/or

black, climate, and other important factors. Each matched pair contained two similar

sites and one was randomly selected as the control and the other as the intervention.

Only physicians in the intervention sites accepted continuous medical training. Given

that asthma symptoms are environmentally sensitive, such as meteorological condi-

tions, it is natural to separate these 5 pairs of regions into two regions, “south” and

“north”, to control potential confounding factors specific to the regions. Study sites

in each region are listed in Table 1.1. Due to potential regional differences in asthma

prevalences, it is of interest to examine if the two regional datasets share common

effects in some covariates.

Table 1.1: Study sites in “south” and “north” regions.
south north
Fresno/Bakersfield (CA) St. Paul (MN)
Corpus Christi (TX) Omaha (NE)
Jacksonville (FL) Columbus (OH)
Nashville (TN) Indianapolis (IN)

Castle County (DE)
Kent County (MI)

Patient samples in PACE data were chosen from patient lists provided by selected

physicians according to the following criteria: a diagnosis of asthma; between 2 and

12 years of age; a patient of a study physician; and no other diseases associated with

pulmonary complications. Each patient was interviewed at baseline , year 1 and year

2 follow-ups. In total, there were 870 asthma patients interviewed at baseline, and

at year 1 and year 2 follow-ups. The number of pediatricians associated with patient

samples was 101, including 48 controls and 53 interventions.

One of primary outcomes is the number of nights with trouble sleeping, along

with other demographic variables and some risk factors, such as time, self-evaluated

asthma severity on patient’s night-time asthma symptoms, symptom frequency, base-

2



line outcome, age and gender. This study had average age of 2.7 years, 69% male

patients, and 40.4% patients in the intervention group. Figure 1.1 shows longitudinal

plots of the number of trouble-sleeping nights for asthma patients within “south” and

”north“ regions. Analyzing the datasets, we aim to examine if they may be combined

before the entire data is used for the analysis.

t
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e
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50

100

1.0 1.2 1.4 1.6 1.8 2.0

south

1.0 1.2 1.4 1.6 1.8 2.0

north

Figure 1.1: Longitudinal plot of outcomes for asthma patients over 2 years

1.1.2 Lead Exposure of Mother-infant Pairs in Mexico City

To evaluate the effect of children’s lead exposures on their somatic growth, inves-

tigators established two birth cohorts from two hospitals in Mexico City. The two

cohorts are termed as cohort B and cohort C in the thesis, which contain 88 and 427

mother-infant pairs, respectively. Children participated in the study were followed

within 5 years, and the investigators collected the information about mother’s blood

lead exposure (PBL) and child’s cord blood lead exposure (CBL). Exposure PBL was

observed completely in both cohorts but exposure CBL was only fully observed in

cohort C and was significantly missing for 54% children in cohort B. The number of

3



repeated measurements of children in the study varies from 2 to 11 with its distribu-

tion presented in Figure 1.2. Children’s weight trajectories are displayed in Figure

1.3.

The number of repeated measurements

F
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0
50

10
0

15
0

20
0

Figure 1.2: Histogram of the number of repeated measurements of lead exposure data
in Mexico City.

The study objective is to evaluate the association between exposure CBL and

children’s weight growth, adjusting for other observed covariates in both cohorts. A

key challenge in the analysis arises from the missingness of CBL in cohort B. But the

fact that CBL and PBL were both observed in cohort C makes it possible for us to

borrow information from cohort C to recover missing measurements of CBL in cohort

B.

1.1.3 HIV/AIDS Surveillance Data for Drug Users

In recent years, HIV/AIDS has become an urgent public health issue in China.

It is paramount to identify risk factors on HIV infection among injection drug users

so that the government can monitor and control HIV/ADIS pandemics. For this

purpose, annual surveys were conducted by Chinese CDC in 2006, 2007, 2008 and

4
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Figure 1.3: Trajectories of children’s weights vs children’s ages over two cohorts.

2009 in a southwestern province of China, aiming to identify and evaluate drug users’

risk behaviors related to HIV infection. Some of risk factors related to drug users’

behavioral characteristics are injection drug use, needle sharing, and unsafe sex.

The annual survey is based on a multiple stage stratified sampling with coun-

ties/cities as sampling units in the first stage and surveillance centers of countries/cities,

such as centers of disease control, hospitals, or drug rehabilitation, as primary sam-

pling units (PSU) in the second stage. Within each selected surveillance center, blood

samples of all drug users were gathered and tested for HIV positive. The stratified

sampling units are illustrated in Figure 1.4.

The number of selected surveillance centers in the 2006 to 2009 survey were 20, 12,

4 and 37, respectively. The selected surveillance centers are sampled from 5 regions

termed as A, B, C, D, and E, which are different in terms their population sizes and

socioeconomic status. Cluster sizes, namely, the number of injection drug users in

a surveillance center, varies unevenly, ranging from 11 to 440. Figure 1.5 shows the

distribution of cluster sizes.

The primary outcome measured in the study is HIV infection defined by a binary

5



Figure 1.4: Diagram of sampling design

variable with 1 for being infected and 0 otherwise. To investigate drug users’ risk

behaviors, the survey collected information about injection drug use, unsafe sex,

needle sharing as well as drug users’ demographic variables including gender and

marital status. As shown in Table 1.2, the majority of the drug users were adult male

and almost at least 40% of drug users were not in marriage.

Our objective of the data analysis is to assess the common effects of behavioral

activities across the five regions on HIV infection. The approach of hypothesis testing

for such purpose is infeasible due to the large number of tests when either the number

of covariates or the number of studies is large. But the idea of regularized estimation

can provide an alternative fast screening procedure to solve the problem.

6
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Figure 1.5: Histogram of cluster sizes for 2006 to 2009 HIV/AIDS surveillance data.

Table 1.2: Summary statistics for the outcome and demographic variables.
Variables 2006 2007 2008 2009
The number of clusters 20 12 4 37
Male (%) 85.8 82.3 88.1 79.9
Single (%) 51.1 47.6 47.5 40.3
Positive HIV test (%) 14.4 13.7 22.1 6.7

1.2 Meta Analysis

Meta analysis has long been known as one of the most important statistical ap-

proaches in biomedical and public health studies. The key of such study is to combine

datasets from several similar studies, which allows investigators to achieve study ob-

jectives that, otherwise, cannot be achieved using any single study. For example Davis

et al. (2010) proposed a model-based approach that combines information from two

surveys. There are many other published work of similar types, which clearly indicates

the popularity of meta analysis in practice.

One primary motivation of meta analysis is to increase sample size, which will

hopefully result in more powerful analysis, such as smaller p-values. However, this

7



idea of combining data sets is not a free lunch and often controversial. According

to a case study in Mendenhall et al. (2008) , Edmonton company CT Technologies

conducted two randomized clinical trials to test whether their proprietary ginseng

extract would reduce the incidence of respiratory illnesses. Combining the two trials,

they concluded that their results indicted a 89% reduction in laboratory-confirmed

respiratory illness. But two professors from University of British Columbia criticized

their claim and accused the article’s authors of doing a form of data-mining by taking

two studies that don’t show a benefit and then adding them together to get a positive

result. An important lesson we learned from this example is that there is a clear

need of validation procedure that can either approve or disapprove the data merging

before the combined data can be used to draw scientific conclusions.

1.3 Specific Objectives

The need of validation procedures as a pre-meta analysis “door-keeper” has been

advocated by some thoughtful statisticians. One classical example is the well-known

Brewslow and Day’s test (Breslow and Day , 1980) for a common odds ratio across

different strata in contingency table analysis. This test is performed to validate the

existence of a common association before data from different strata can be combined

to estimate such common association. In the current literature, there are very few

results available to address statistical issues related to merging clustered or longi-

tudinal data, in particular statistical tools for validation. As a matter of fact, in

practice many studies have applied the strategy of data merging without considering

the validity of this operation.

In this dissertation, we aim to develop methodologies for the following analytic

objectives:

(i) To establish a data-driven validation procedure verifying data merging. In par-

8



ticular, we will develop a tool of hypothesis test to approve or disapprove com-

mon effects of covariates in longitudinal regression models;

(ii) To obtain estimates of regression coefficients when data merging is approved;

(iii) To jointly analyze multiple studies when study-specific missing covariates exist;

(iv) To propose a fast screening procedure for analyzing multiple longitudinal studies

when the hypothesis testing approach is challenged by a huge number of tests.

When multiple studies are combined, it is important to account for between-study

heterogeneity. This is a difficult task because such heterogeneity is attributed to

multiple factors that would confound each other and can not be easily disentangled.

In the case of clustered or longitudinal data, such heterogeneity may arise from, for

example, different within-subject correlations, different study follow-up schedules, or

study-specific missing covariates (covariates is completely missing in one study but

fully observed in other studies). Thus, most of the existing meta analysis methods

developed for cross-sectional data are no longer applicable for clustered or longitudinal

data. We will develop several novel strategies to validate clustered or longitudinal

data merging, and then to establish estimating function approaches to analyzing

combined data after the validity of data merging is granted.

1.4 Organization of the Dissertation

In Chapter 2, we consider a standard longitudinal framework in that all variables

are collected from different studies under a common study protocol without miss-

ing covariates. We first develop a rigorous quadratic inference function (Qu et al.,

2000) strategy to validate longitudinal data merging by testing for the unbiasedness

of the generalised estimating functions under a common set of regression coefficients

but with possibly different covariance structures. We establish large sample prop-
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erties for the proposed test and estimation procedure. Using simulation studies, we

compare our method with several popular methods, including meta analysis and gen-

eralized estimating equations. It is shown that our test gives a robust control of type

I error against the misspecification of working correlation structures. In addition,

our joint estimation procedure leads to an improvement in estimation efficiency on

the all regression coefficients after data merging is validated. We illustrate the pro-

posed methods through a randomized interventional trial of asthma care introduced

in Section 1.1.1.

In Chapter 3, we relax the setting considered in Chapter 2 by allowing study-

specific missing covariates (e.g. covariates observed in some studies but completely

missing in other studies). We propose a joint estimating function approach to analyz-

ing merged studies with study-specific missing covariates, in which we first construct

a nonparametric estimating function via splines-based sieve approximation, and then

utilize it to bridge estimating equations from studies with missing covariates to those

with fully observed covariates. Under some mild regularity conditions, we establish

consistency and asymptotic normality for the proposed estimator. We use simulation

studies to evaluate finite sample performances of the proposed method. We also com-

pare our method to the conventional multiple imputation approach, and our method

exhibits smaller estimation bias. We analyze the lead exposure data introduced in

Section 1.1.2 to evaluate the effect of cord blood lead exposure on children’s somatic

growth.

Chapter 4 focuses on the challenge that the classical hypothesis testing approach

becomes computationally prohibitive when it is used to evaluate all possible subsets

of common regression parameters across different studies. We address this challenge

by applying the method of adaptive fused lasso in which penalties are imposed on

paired differences of parameters between studies. The regularization procedure will

automatically detect common parameters across all or subsets of studies and pro-

10



vide estimates of distinctive parameters. Through simulation studies we show that

the proposed method performs well to consistently identify common and distinctive

parameters. We illustrate our method through HIV surveillance cohorts collected

in China to examine the presence of common covariate effects over five geographic

regions where these cohorts are sampled.

The thesis concludes with the perspective of future work. Appendices are included

to provide the detailed technical proofs.
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CHAPTER II

Quadratic Inference Function Approach to

Merging Longitudinal Studies: Validation Test and

Joint Estimation

2.1 Introduction

Merging data from clinical trials or longitudinal cohort studies with identical or

similar protocols can offer a powerful way to better understand effects of treatment

and exposure on patient outcomes (e.g. Localio et al., 2001; Xie and Ahn, 2010). Ap-

propriate data merging achieves a desired statistical power. A well-known approach

for this practice is meta analysis (e.g. Becker , 2007; Hartung et al., 2008). But meta

analysis often utilises summary statistics from individual analysis with no or little

justification provided on the validity of data merging. When the original datasets are

fully available, a statistical model incorporating interaction terms between studies

and covariates of interest may be used to characterise different effect sizes of co-

variates across studies. However, in such analysis most existing approaches use a

common correlation structure and a common dispersion parameter for different stud-

ies. According to Crowder (1995), misspecification of working correlation structures,

particularly for multiple longitudinal studies, may inflate type I errors and distort

power.
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Another widely used approach is to model cross-study heterogeneity of regression

coefficients through a mixed-effects model (e.g. Laird and Ware, 1982; Zhang et al.,

2009). This requires a relatively large number of studies and correct distribution

assumptions in order to adequately estimate the cross-study variability (Follmann

and Proschan, 1999). In addition, the general theory regarding tests for nonzero

variance components is difficult to apply (Stram and Lee, 1994; Crainiceanu and

Ruppert , 2004), especially for non-normal data (Zhang and Lin, 2008).

Breslow and Day ’s (1980) test for homogeneity of conditional odds ratios is a

classical example of validation prior to the calculation of the common odds ratio

for multiple strata. In this chapter, we consider longitudinal studies that collect

the same types of variables under similar protocols. We develop a novel quadratic

inference function (Qu et al., 2000) strategy to validate longitudinal data merging by

testing for the unbiasedness of the generalised estimating functions under a common

set of regression coefficients but with possibly different covariance structures. The

unbiasedness implies that study-specific estimating functions are compatible with a

shared regression mean model, so that the resulting analysis of merged data would

lead to consistent estimators of regression coefficients and robust control of type I

error against covariance misspecification.

We organize the chapter as follows. After presenting the formulation in Section

2.2, in Section 2.3 we propose two testing statistics and establish their asymptotic

distributions under the null hypothesis of homogeneity of regression parameter. In

Section 2.4, we provide theoretical justifications for the efficiency improvement in

estimation of both common and study-specific regression coefficients using merged

data. Section 2.5 concerns simulation studies, in which the proposed methodologies

are compared with several current popular methods. A data analysis is illustrated in

Section 2.6, and a few concluding remarks are presented in Section 2.7. All technical

details are listed in the Appendix.
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2.2 Formulation

We consider K ≥ 2 longitudinal studies that collect a common set of variables

under similar study protocols. Let Yk,ij be the outcome for jth observation of subject

i in study k, and let Xk,ij be the corresponding covariate vector for i = 1, . . . , nk,

j = 1, . . . ,mk and k = 1, . . . , K, where nk and mk are the numbers of subjects and

the numbers of observations on each subject in study k, respectively. We assume

a marginal model for outcome Yk,ij, consisting of conditional mean model E(Yk,ij |

Xk,ij) = µk,ij = h(XT
k,ijβk) and conditional variance var(Yk,ij | Xk,ij) = φkv(µk,ij),

where h(·) is a known link function, βk is a p-dimensional regression parameter, v(·) is

a known unit variance function, and φk is a dispersion parameter. The within-subject

correlation is accommodated via a working correlation matrix Rk(αk), as suggested

by Zeger et al. (1988), where αk is the correlation parameter of study k.

For study k, k = 1, · · · , K, an estimator of βk from generalised estimating equa-

tions solves

n−1
k

nk
∑

i=1

DT
k,iA

−1/2
k,i R−1

k (αk)A
−1/2
k,i (Y k,i − µk,i) = 0, (2.1)

where Y k,i = (Yk,i1, . . . , Yk,imk
)T , µk,i = (µk,i1, . . . , µk,imk

)T , Dk,i = ∂µk,i/∂β
T
k and

Ak,i = diag{v(µk,i1), . . . , v(µk,imk
)}. To deal with merged data, we propose to utilise

the quadratic inference function method (Qu et al., 2000) to join the above study-

specific estimating functions. A quadratic inference function is derived via approx-

imating the inverse working correlation matrix by R−1
k (αk) ≈ ∑sk

s=1 ak,sM k,s for

k = 1, . . . , K, where ak,1, . . . , ak,sk are constants possibly dependent on the correla-

tion parameter αk and M k,1, . . . ,M k,sk are known basis matrices with elements 0 and

1, which are determined by a given correlation matrix Rk(αk). Qu et al. (2000) give

more details on the forms of basis matrices in some widely used correlation matrices.
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Plugging the expansion of R−1
k (αk) into (2.1) leads to

nk
−1

nk
∑

i=1

sk
∑

j=1

ak,jD
T
k,iA

−1/2
k,i M k,jA

−1/2
k,i (Y k,i − µk,i) = 0 (k = 1, . . . , K),

which may be regarded as a combination of elements of the extended score vector

ḡk(βk) = nk
−1

nk
∑

i=1

gk,i(βk) = nk
−1

nk
∑

i=1













DT
k,iA

−1/2
k,i M k,1A

−1/2
k,i (Y k,i − µk,i)

...

DT
k,iA

−1/2
k,i M k,skA

−1/2
k,i (Y k,i − µk,i)













.

(2.2)

Unlike generalised estimating equations, a quadratic inference function does not need

to estimate nuisance coefficients ak,1, . . . , ak,sk in order to estimate parameters β =

(βT
1 , . . . ,β

T
K)

T of interest.

Define study indicator δi(k), with 1 indicating that subject i belongs to study

k and 0 otherwise. For the merged longitudinal data, β can be estimated by β̂ =

argmin
β

Q(β) where

Q(β) = nḡ(β)TC−(β)ḡ(β), (2.3)

with n =
∑K

k=1 nk, and

ḡ(β) = n−1

n
∑

i=1

( δi(1)g1,i(β1)
T , . . . , δi(K)gK,i(βK)

T )T = n−1

n
∑

i=1

gi(β),

C(β) = n−1

n
∑

i=1

diag{δi(1)g1,i(β1)g1,i(β1)
T , . . . , δi(K)gK,i(βK)gK,i(βK)

T}.

Here C(β) is a block-diagonal matrix under the assumption of mutually independent

study cohorts, which however may be relaxed in the case of related cohorts. We

adopt the unique Moore Penrose generalised inverse in equation (2.3) to enhance

numerical stability, as matrix C(β) may become singular in some practical cases (Hu

and Song , 2012). See Lemma 9.2.6 in (Harville, 2008) for the construction of such
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inverse operation.

2.3 Homogeneity Test

We develop methods of hypothesis test for global and partial homogeneity of re-

gression parameters across multiple studies. By homogeneity, we mean the equality of

regression parameters across all studies, including global homogeneity β1 = · · · = βK

or equality on a subset of coefficients for partial homogeneity. To derive asymptotic

distributions of the proposed test statistics, we assume the study-specific mean mod-

els are correctly specified, so βk can be consistently estimated in the corresponding

individual study k.

Let M ⊂ {1, . . . , p} denote an index set, and then |M| denotes the number of

elements inM, or the cardinality ofM. Accordingly, βk(M) and βk(Mc) are subsets

of parameters indexed by M and its complementary set Mc, respectively. Clearly,

set M = {1, . . . , p} corresponds to a global homogeneity, while a partial homogeneity

is given by M being a certain subset of {1, . . . , p}.

To test hypotheses H0 : β1(M) = · · · = βK(M) versus Ha : βi(M) 6= βj(M)

for some i 6= j and i, j ∈ {1, . . . , K}, let Ω0(M) = {(βT
1 , . . . ,β

T
K)

T : β1(M) =

· · · = βK(M),βk ∈ Rp, k = 1, . . . , K} be the null parameter space under H0, and let

Ω be the whole parameter space. Estimators of β under Ω0(M) and under Ω are,

respectively

β̂Ω0(M) = argmin
β∈Ω0(M)

Q(β), and β̂Ω = argmin
β∈Ω

Q(β), (2.4)

where Q(β) is given by (2.3) with the corresponding parametrisation. Under H0, the

following Theorem II.1 establishes the asymptotic distribution of Q(β̂Ω0(M)) provided

any root-n consistent estimator β̂Ω0(M).

Theorem II.1. Let β̂Ω0(M) be a root-n consistent estimator of true parameter β0
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under H0. Suppose the following regularity conditions hold: (a) β0 ∈ interior of B ⊂

RKp−(K−1)|M|, and B is compact; (b) gi(β) is continuously differentiable in a neigh-

borhood N of true β0; (c) E{gi(β)} = 0 if and only if β = β0 and E{||gi(β0)||2}

is finite; (d) E{supβ∈N ||∂gi(β)/∂β
T ||} < ∞; (e) n1/2ḡ(β0) converges to N(0,Σ)

in distribution, where Σ is a block-diagonal matrix, Σ = diag(ρ−1
1 Σ1, . . . , ρ

−1
K ΣK),

with Σk = cov{gk,i(β0)} and ρk = limn→∞ nk/n for k = 1, . . . , K; (f) GTΣ−G is

nonsingular, where G = E{∂gi(β0)/∂β
T}; and (g) ΣΣ−G = G. Then, Q(β̂Ω0(M))

converges in distribution to χ2
rank(Σ)−Kp+(K−1)|M|.

Here || · || denotes the Euclidean norm. The proof of Theorem II.1 is given in

the appendix. Since the matrix Σ may not be of full rank, the degrees of freedom

of Q(β̂Ω0(M)) take the form of rank(Σ) −Kp + (K − 1)|M|, where rank(Σ) can be

estimated from orthogonal triangularisation of an estimated Σ.

When all study-specific mean models are correctly specified, β̂Ω is a root-n con-

sistent estimator of β0. Under the null hypothesis, ḡ(β) is an unbiased estimating

function for β ∈ Ω0(M), so we can obtain another root-n consistent estimator β̂Ω0(M)

of β0. Therefore, we propose two test statistics. The first is Q(β̂Ω0(M)), mimicking the

score type test statistic, denoted as Q̂S. Its asymptotic chi-square distribution under

H0 is shown in Theorem II.1. The second is Q(β̂Ω0(M)) − Q(β̂Ω), which resembles

the likelihood ratio type test statistic, denoted as Q̂LR. The asymptotic distribution

of Q̂LR is given as follows.

Corollary II.2. Under the regularity conditions in Theorem II.1, test statistic Q̂LR

converges in distribution to χ2
(K−1)|M|.

2.4 Joint Estimation with Merged Data

When either global or partial homogeneity is established, the merged data will

lead to efficiency improvement in estimation for both common and study-specific
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regression coefficients. To elucidate, without loss of generality, we consider a case

of partial homogeneity. Let ζ denote a vector of common coefficients for covariates

Xk,ij shared by the studies and let γk denote study-specific parameters associated

with covariates Zk,ij. Then β = (ζT ,γT
1 , . . . ,γ

T
K)

T represents all the parameters and

βk = (ζT ,γT
k )

T contains parameters in study k only. Accordingly, the mean model

is rewritten as E(Yk,ij | Xk,ij,Zk,ij) = µk,ij = h(XT
k,ijζ + ZT

k,ijγk) (k = 1, . . . , K).

Consequently, we obtain a consistent estimate β̂ by minimising function in (2.3)

with the merged data. Under Assumptions (a)-(f) of Theorem II.1, as shown in the

appendix, n1/2(β̂−β0) converges in distribution to N{0, (GTΣ−G)
−1} with Σ defined

in Theorem II.1 and

G = E

{

∂gi(β0)

∂βT

}

=













G1

...

GK













=



















E{∂g1,i(β0)

∂ζT } E{∂g1,i(β0)

∂γT
1

} . . . . . . 0

E{∂g2,i(β0)

∂ζT } 0 E{∂g2,i(β0)

∂γT
2

} . . . 0

...
...

...
. . .

...

E{∂gK,i(β0)

∂ζT } 0 . . . . . . E{∂gK,i(β0)

∂γT
K

}



















.

To explicate the efficiency gain in the merged data analysis, we focus on parameter

βk. Let β̃k be an estimator obtained by minimising function in (2.3) only using the kth

study data and β̂k be the subvector of β̂, obtained with the merged data. The root-n

asymptotic variance for β̃k is {ρk(GT
kΣ

−
k Gk)[βk,βk]}−1, where Gk is the kth block-row

of matrix G above, Σk is defined in Theorem II.1, and B[βk,βk] denotes the sub-

block matrix of B with rows and columns selected by those elements corresponding

to βk. The asymptotic variance for β̂k is {(GTΣ−G)−1}[βk,βk]. Theorem II.3 below

establishes the efficiency improvement achieved through the joint estimation with

merged data.
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Theorem II.3. Suppose for study k = 1, . . . , K, (GT
kΣ

−
k Gk)[βk,βk] is positive definite.

Then the asymptotic variances of β̂k and β̃k satisfy

{(GTΣ−G)
−1}[βk,βk] �

1

ρk
{(GT

kΣ
−
k Gk)[βk,βk]}−1 (k = 1, . . . , K),

where � is in the sense of Löwner’s partial ordering in the space of non-negative

definite matrices.

The proof of Theorem II.3 is given in the appendix. Theorem II.3 implies that

the asymptotic variance of β̂k is smaller than that of β̃k. This suggests that the

estimation with the merged data is not only flexible to accommodate different study-

specific correlations and follow-up schedules but also leads to estimation efficiency

gain on the regression coefficients. This efficiency benefit is not easily achieved by

meta analysis, in which the effective sample size is not really increased from combining

individual analyses. Moreover, when additional nuisance parameters are introduced

into the joint estimation procedure in generalised estimating equations to account

for study-specific covariance parameters, the efficiency gain is not guaranteed for the

estimation of parameters of interest. This is because even though the merged data

have more samples, the number of nuisance parameters gets increased too, which can

offset the benefit from increased sample sizes.

2.5 Simulation Study

Two simulation studies were conducted to investigate the finite sample perfor-

mance of our proposed tests and to compare with Wald-type tests using the method

of generalised estimating equations. We consider several versions of Wald-type test

statistics, denoted by Wzla, Wp, Wmd and Wwl. They are computed by utilising differ-

ent sandwich variance estimators proposed by Zeger et al. (1988), Pan (2001), Mancl

and DeRouen (2001) and Wang and Long (2011), respectively. Wald-type tests are
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applied to test for no interactions between study dummy covariates and covariates

of interest under a common correlation structure for multiple studies. Technically

speaking, these approaches may be modified to accommodate study-specific covari-

ance matrices, but the resulting methods require iteratively updating regression pa-

rameters and study-specific covariance nuisance parameters, so their performances

will be affected by the estimation of nuisance parameters. In this chapter we do

not implement such extended estimating equation approaches but focus on using ro-

bust sandwich variance estimators to account for the covariance heterogeneity across

multiple studies.

For meta analysis, we adopt the Cochran’s test for partial homogeneity. According

to Hartung et al. (2008), the Cochran’s test is approximately distributed as χ2
K−1

under the null hypothesis of homogeneous coefficients across all K studies. Similarly

as for the Wald-type tests, we use Tzla, Tp, Tmd and Twl to denote the Cochran’s test

with the corresponding robust sandwich variance estimators.

Besides meta analysis and Wald-type tests, we also consider homogeneity test us-

ing mixed-effects models by testing zero variance components of random slopes. In the

linear mixed-effects model, the asymptotic distribution of a likelihood ratio test for

one zero variance component is 0.5χ2
0+0.5χ2

1 (Stram and Lee, 1994), while in a gener-

alised linear mixed model with nonidentity link functions, such mixtures of chi-squares

for likelihood ratio tests are hard to obtain (Fitzmaurice et al., 2007; Sinha, 2009). In

our simulation studies, because data are generated by the population-average model

with some pre-fixed correlation structures, tests for zero variance components cannot

control type I error at all. Thus, we do not include results from the mixed-effects

models in the comparison.

The first simulation study is generated by a population-average linear model

Yk,ij = βk,0 + βk,1Xk,ij + βk,2Zk,ij + εk,ij for j = 1, . . . ,mk, i = 1, . . . , nk with

mk = 8, nk = 100 and k = 1, . . . , K. Covariate vector Zk,i = (Zk,i1, . . . , Zk,imk
)T
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is a time dependent variable simulated from multivariate normal distribution with

mean vector (1, . . . ,mk)
T and the identity covariance matrix Imk

. Covariate vec-

tor Xk,i = (Xk,i1, . . . , Xk,imk
)T is a time independent (baseline) covariate gener-

ated from exponential distribution with rate parameter 4. The error terms εk,i =

(εk,i1, . . . , εk,imk
)T follow N{0, φkRk(αk)} with correlation matrix Rk(αk). Denote

all correlation parameters and dispersion parameters by α = (α1, . . . , αK)
T and

φ = (φ1, . . . , φK)
T , respectively. And denote the order-1 autoregressive and com-

pound symmetric correlations by Rar and Rcs respectively. We consider three cases

with varying number of studies and covariances: (i) K = 4, φ = (50, 10, 4, 1)T ,

α = (0.7, 0.4, 0.2, 0.1)T , and {R1(·),R2(·),R3(·),R4(·)} = {Rar, Rcs, Rcs, Rar}; (ii)

K = 3, φ = (10, 4, 1)T , α = (0.7, 0.2, 0.1)T , {R1(·),R2(·),R3(·)} = {Rar, Rcs, Rar};

(iii) K = 2, φ = (10, 1)T , α = (0.7, 0.2)T , and {R1(·),R2(·)} = {Rar, Rcs}.

Let βk = (βk,0, βk,1, βk,2)
T for k = 1, . . . , K. We are interested in a global test

H0 : β1 = · · · = βK and a partial test concerning only the coefficients of Xk,ij,

H0 : β1,1 = · · · = βK,1. Type I errors are computed with βk = (−1,−2, 3)T

for k = 1, . . . , K, while power is calculated under β1 = β3 = (−1,−2, 3)T and

β2 = (−1,−1.85, 3)T . In the use of Wald-type tests for zero interaction effects be-

tween covariates and study indicators, only coefficients of interaction terms will be

involved in the test.

Table 2.1 summarises type I errors and power of all test statistics at a significance

level of 0.05 over 4000 replications. For a fair comparison, we compute Wald-type

tests, meta analyses and our proposed tests under a common correlation structure

of Rar or Rcs. The results clearly shows that no matter which working correlation

structure is used, our proposed tests, Q̂LR and Q̂S, can properly control type I error

rates. In contrast, Wald-type tests and meta analyses cannot, particularly for global

homogeneity tests and for K > 2. Wald-type tests have inflated type I error rates,

mostly because the modified robust variance estimators still underestimate variances
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Table 2.1: Average type I error rates and power of test statistics of the proposed (Q’s),
Wald-type (W ’s) and meta-based (T ’s) versions over 4000 replications for
continuous outcomes from K studies. Upper and lower panels correspond
to the global and partial homogeneity tests respectively. Two correlations
are used: order-1 autoregression, Rar, and compound symmetry, Rcs.

K = 4 K = 3 K = 2
Size % Power % Size % Power % Size % Power %

Test Rar Rcs Rar Rcs Rar Rcs Rar Rcs Rar Rcs Rar Rcs

Q̂S 4.1 4.1 27.0 38.7 4.8 4.6 85.4 95.2 4.5 4.0 50.5 65.7

Q̂LR 4.0 4.2 42.4 43.4 4.4 4.1 95.9 96.6 4.0 4.3 73.6 72.3
Wzla 9.6 9.6 79.0 80.2 8.8 8.3 99.9 100 7.1 7.4 91.3 90.1
Wp 11.4 12.1 42.5 40.0 8.5 9.2 95.2 94.8 5.8 5.9 90.8 89.4
Wmd 6.7 7.0 71.2 73.3 6.6 6.6 99.8 99.9 5.7 6.0 88.0 87.0
Wwl 10.2 11.0 39.4 36.8 7.5 8.2 94.6 94.0 5.4 5.2 89.4 88.8

Q̂LR 4.7 4.6 71.1 72.2 5.0 4.7 98.8 98.8 5.3 5.3 87.4 87.0
Wzla 8.4 8.2 88.8 90.0 7.4 7.3 100 100 7.2 7.1 96.5 95.5
Wp 9.0 8.8 62.1 60.4 7.2 7.6 99.4 99.5 6.1 6.0 96.4 95.6
Wmd 6.2 6.4 85.0 86.6 5.4 5.6 100 100 5.5 5.8 95.0 94.1
Wwl 8.5 8.4 60.5 58.7 6.9 7.2 99.3 99.5 5.5 5.4 96.1 95.4
Tzla 9.5 9.8 65.0 65.7 8.2 8.2 99.2 99.1 7.6 7.6 78.7 76.9
Tp 5.7 5.4 60.2 60.6 5.7 5.8 99.2 99.2 5.4 5.3 77.0 74.9
Tmd 6.2 6.5 56.4 57.0 5.6 6.0 98.6 98.6 5.7 5.8 72.7 71.8
Twl 4.9 4.8 57.9 58.6 5.1 5.0 99.0 99.0 4.8 4.7 75.2 73.5

of regression coefficients and cannot fully account for differences among covariance

structures across studies. Meta analyses appear to have less inflated type I errors

than Wald-type tests, but since meta analyses cannot sufficiently utilise all data

information, they tend to have lower power.

The second simulation study concerns binary outcome Yk,ij, which is generated

from a population-average logistic model logit{E(Yk,ij | Zk,ij)} = βk,0 + βk,1Zk,ij for

j = 1, . . . , 8, i = 1, . . . , 100 and k = 1, . . . , K. Zk,ij is generated from Unif(0, 1) dis-

tribution. We consider the same global and partial homogeneity hypotheses as those

in the first simulation study. Within-subject correlations have three cases: (i) K = 4,

α = (0.7, 0.4, 0.2, 0.1)T , and {R1(·),R2(·),R3(·),R4(·)} = {Rar, Rcs, Rcs, Rar}; (ii)

K = 3, α = (0.7, 0.2, 0.1)T , and {R1(·),R2(·),R3(·)} = {Rar, Rcs, Rar}; (iii) K = 2,

α = (0.7, 0.2)T , and {R1(·),R2(·)} = {Rar, Rcs}. Type I errors are computed
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with βk = (−0.2, 1.5)T for all k = 1, . . . , K, while the power is calculated under

β2 = (−0.2, 2.5)T and βk = (−0.2, 1.5)T for k 6= 2.

Table 2.2 presents results summarised over 4000 replications at significance level

0.05. Similar conclusions are drawn to those obtained in the case of continuous out-

comes. Wald-type tests and meta analyses both produce inflated type I errors. For

instance, type I error of Wp appears above 7% when 4 studies are considered re-

gardless of working correlation structure used. Among all Wald-type tests, the one,

Wmd, based on Mancl & DeRouen’s (2001) sandwich variance estimator seems to

have a reasonable control of type I error. To deal with the violation of a common

correlation structure, their method strives to reduce the bias in estimation of the

covariance matrix of data while the other methods focus on improving correlation

matrix estimation. To compare power of Mancl & DeRouen’s test to our test, a ratio,

(Power of Wmd)/(Power of Q̂LR), decreases as the number of studies increases, drop-

ping from 98.6% in the case of two studies to 88.8% in the case of four studies for the

global homogeneity test under Rar working correlation. This implies that although

Mancl & DeRouen’s method can correct for the bias in the covariance estimation, it

is inferior to our Q̂LR test in terms of power. Since meta analysis does not utilise data

from all individual studies efficiently, it has lower power than our methods even when

its type I error is properly controlled. Finally, since the degrees of freedom of a chi-

square test statistic increase when the number of studies increases, our test statistics

may lose power in the setting of many studies. In this scenario, we recommend using

mixed-effects models to handle merged data if distribution assumptions for multiple

studies can be properly pre-specified.

2.6 Application

We illustrate the proposed methodology by a community-based clinical trial that

aims to evaluate the effectiveness of a continuing medical education program, Physi-
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Table 2.2: Average type I error rates and power of test statistics of the proposed (Q’s),
Wald-type (W ’s) and meta-based (T ’s) versions over 4000 replications for
binary outcomes from K studies. Upper and lower panels correspond to
the global and partial homogeneity tests respectively. Two correlations are
used: order-1 autoregression, Rar, and compound symmetry, Rcs.

K = 4 K = 3 K = 2
Size % Power % Size % Power % Size % Power %

Test Rar Rcs Rar Rcs Rar Rcs Rar Rcs Rar Rcs Rar Rcs

Q̂S 4.8 4.9 65.2 66.9 5.0 4.9 79.8 79.6 5.1 5.4 57.0 51.0

Q̂LR 5.2 5.1 86.0 82.6 4.8 4.9 92.0 91.3 5.1 5.5 78.7 71.0
Wzla 5.2 5.5 73.6 76.6 5.5 4.9 89.3 90.5 6.0 5.9 78.6 76.5
Wp 7.8 8.1 81.6 81.6 7.6 6.1 90.1 89.4 6.3 6.6 79.5 77.5
Wmd 4.5 4.8 71.6 75.2 5.0 4.6 88.6 89.7 5.5 5.4 77.6 75.7
Wwl 7.4 7.8 80.5 80.7 7.1 5.9 89.5 88.9 6.0 6.3 79.1 77.0

Q̂LR 5.3 5.0 88.2 89.4 5.2 5.3 95.6 95.4 5.0 4.9 86.0 80.8
Wzla 5.1 4.9 82.5 85.9 5.4 5.2 94.4 95.2 5.5 4.8 85.2 83.4
Wp 6.4 6.8 87.9 89.6 6.6 6.6 94.6 95.2 5.6 5.8 85.9 84.3
Wmd 4.7 4.6 81.5 85.0 5.2 4.9 94.1 94.8 5.2 4.3 84.8 82.5
Wwl 6.1 6.7 87.5 89.2 6.2 6.4 94.4 95.1 5.4 5.5 85.7 84.0
Tzla 5.1 5.4 58.8 65.4 5.4 5.4 70.8 69.3 5.0 5.0 63.2 52.2
Tp 10.4 10.2 58.7 64.6 5.7 4.8 70.4 69.2 4.8 4.7 63.2 52.0
Tmd 4.8 4.8 56.8 63.8 4.9 5.0 69.5 68.3 4.6 4.7 62.4 51.1
Twl 10.3 10.0 58.2 64.4 5.5 4.7 70.1 68.8 4.7 4.6 62.9 51.8

cian Asthma Care Education (PACE) (Cabana et al., 2006), in improving pedia-

tricians’ asthma therapeutic and communication skills. This randomized trial was

conducted in 10 sites in U.S.A. Four of them are from “southern” states (Texas, Cali-

fornia, Tennessee and Florida), while the others are from “northern” states (Nebraska,

Minnesota, Michigan, Delaware, Ohio and Indiana). A total of 101 pediatricians and

a random sample of 870 asthma patients with age 2 to 12 years old participated

in the study. Every patient is observed at baseline, and at one year and two year

follow-up periods. The number of nights with trouble sleeping was the primary out-

come of interest. The primary scientific objective is to evaluate the effectiveness of

intervention, as well as the effects of time, self-evaluated asthma severity on patient’s

night-time asthma symptoms, and frequency, adjusting for age, gender and baseline

asthma symptoms. Self-evaluation of asthma severity contains three categories in-

24



cluding 1 (mild), 2 (moderate) and 3 (severe). Covariate frequency is measured as

how often in the past 12 months asthma symptoms occur, where symptoms include

coughing, wheezing, chest tightness, or shortness of breath interfaced with children’s

sleep. It is coded in 6 categories (1,2,3,4,5 and 6) in a decreasing order of symptom

frequency.

Chronic asthma is known to be affected by multiple environmental and cultural

factors. Therefore, patients from different regions may experience different effects

of the intervention. To illustrate, we fit the following regression model, separately,

using data from the southern states only, data from the northern states only, and the

merged data from both southern and northern states,

yit = β0 + β1x
A
it + β2x

G
it + β3t+ β4x

I
it + β5x

S
it + β6x

F
it + β7x

B
i + ǫit t = 1, 2,

where covariates are age(xA
it), gender(xG

it , 1 for male, 0 for female), time(t=1,2),

intervention(xI
it, 1 for receiving PACE, 0 for not receiving PACE), severity(xS

it),

frequency(xF
it) and baseline(xB

i ). Table 2.3 reports the estimated effect of intervention

as well as those of other covariates across the two regions.

Table 2.3: Regression coefficients estimated by QIF based on data from the southern,
northern, combined two regions, as well as meta analysis.

South North Combined Meta
Est. Pvalue Est. Pvalue Est. Pvalue Est. Pvalue

Intercept 59.86 0.00 74.30 0.00 67.12 0.00 69.10 0.00
Age -0.12 0.57 -0.15 0.43 -0.14 0.31 -0.14 0.34
Gender -0.43 0.77 -0.25 0.85 -0.17 0.86 -0.34 0.74
Time -3.32 0.09 -1.96 0.13 -2.54 0.02 -2.37 0.03
Intervention -0.61 0.67 1.26 0.29 0.62 0.50 0.48 0.60
Severity 1.07 0.47 -2.26 0.06 -0.74 0.42 -1.02 0.27
Frequency -9.57 0.00 -11.98 0.00 -10.80 0.00 -11.26 0.00
Baseline 0.22 0.00 0.19 0.00 0.20 0.00 0.21 0.00

As expected, the estimation results in Table 2.3 do not appear to be consistent

between southern and northern states. To evaluate if the data merging is proper, we

begin by applying our partial homogeneity test proposed in Section 2.3 to identify if

25



there exists a subset of covariates that appear to have the same effects. This proceeds

in two steps: (i) to test homogeneity on each regression coefficient across two regions;

and (ii) to choose a subset of homogeneous coefficients identified in the first step and

then to test whether the chosen set of coefficients is homogeneous across two regions.

At significance level 0.1, two covariates, severity (xS
it) and frequency (xF

it), are

chosen as potentially having different effects across the two regions, because their p-

values are 0.08 and 0.09(below 0.1), respectively, in the individual homogeneity test.

In a test for the homogeneity of severity and frequency jointly, a smaller p-value (0.06)

is given by our test. This indicates a marginally accepted homogeneity for severity

and frequency between northern and southern states. In contrast, a much larger p-

value (0.53) is given when jointly testing the homogeneity of the other covariates:

age, gender, time, intervention and baseline. Therefore, in the joint estimation we

specify common region coefficients of age, gender, time and intervention, but leave

coefficients for intercept, severity and frequency to be different. Table 2.4 lists the

results obtained by the proposed joint estimation method.

We compare the region-specific analyses to the naive “combined” analysis, in

which all coefficients are naively assumed to be the same, and to the meta analysis.

The effect of time is worth noting. Given the increased sample size for this common

time effect, time covariate becomes significant in the merged data analysis. This

means that the longer in time the intervention of education program is in use, the lower

the expected number of nights with trouble sleeping, adjusted by age, gender, and

baseline symptom. It is also interesting to notice the differences in the estimation for

the effect of self-evaluation of asthma severity. As shown in Table 2.4, self-evaluation

of asthma severity is not significantly associated with the number of nights with

trouble sleeping for children in the southern region, but significantly for children

in the northern region. In the naive “combined” data analysis, as well as the meta

analysis reported in Table 2.3, such a significant effect in the northern region has been
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masked (p-value 0.42 and 0.27, respectively). This means that it is not always valid

to perform combined data analysis without recognizing a certain important feature

present in a subcohort of subjects. In the north region-specific analysis, this effect

is marginally significant (p-value 0.06). Using our proposed joint estimation, with

the utility of data from both regions, we are able to establish evidence for significant

effect (p-value 0.04) of asthma severity in the northern region.

2.7 Concluding Remarks

Practitioners often combine multiple similar small datasets to hopefully achieve a

more powerful statistical analysis. This data merging practice should be cautiously

considered because some influential heterogeneous features of individual studies can

cause misleading results in a combined data analysis. We developed a data-driven ap-

proach to addressing this validation issue in data merging, which is useful in practical

studies. By comparing to other popular methods based on meta analysis, generalised

estimating equations and mixed-effects model, our methods have shown to control

type I error satisfactorily and achieve larger power for the homogeneity test. In ad-

dition, our joint estimation procedure provides more efficient estimation of regression

coefficients with merged data. When the number of studies becomes large, our meth-

ods may be affected with reduced power. In a separate publication, we will provide

some procedural guidelines on how to conduct the homogeneity test with multiple

covariates.
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Table 2.4: Estimated regression coefficients by the joint estimation method using the
merged data.

Covariates Est. Pvalue

common in
both regions

Age -0.09 0.47
Gender -0.53 0.58
Time -2.23 0.02
Intervention 0.47 0.56
Baseline 0.20 0.00

only in south
Intercept 57.71 0.00
Severity 1.45 0.24
Frequency -9.67 0.00

only in north
Intercept 74.07 0.00
Severity -2.25 0.04
Frequency -11.88 0.00
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CHAPTER III

Merging Multiple Longitudinal Studies with

Study-Specific Missing Covariates: A Joint

Estimating Function Approach

3.1 Introduction

Analyzing combined datasets collected from multiple similar studies has been pop-

ular in practice in order to achieve greater power in statistical analysis. The increased

power is obtained when parameters across multiple study populations are common

and therefore can be estimated using more observations with the combined datasets

than using each dataset separately. The larger sample size, if properly utilized, will

lead to improved performances in both statistical estimation and inference. In addi-

tion, combined data potentially provide richer information to answer some questions

that otherwise may not be answered using data from each individual study.

Such potential power gain from combined data is subject to additional complex-

ities in study design, data collection as well as data structures, and it is not a free

benefit in data analysis. For example, misaligned missing covariates across different

studies (e.g. covariates observed in some studies but completely missing in other

studies) are difficult to handle. This chapter is motivated by a health study involving

multiple longitudinal cohorts gathered in Mexico City, whose aim is to evaluate the
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effect of children’s lead exposures on their somatic growth. This study consists of

two birth cohorts established by the same study team from two hospitals in Mexico

City, termed as cohort B and cohort C throughout the chapter, respectively. Two

lead exposure measures recorded in the study include mother’s blood lead exposure

(PBL) and child’s cord blood lead exposure (CBL), where the former is fully recorded

in both cohorts but the latter is only fully measured in cohort C. One of the primary

objectives was to assess the association between CBL and child’s weight growth, ad-

justing for other covariates available in both cohorts. Apparently, a key challenge

in the analysis of merged data from cohorts B and C pertains to the fact that CBL

measurements in cohort B are very heavily missing.

There are several other challenges that also need to be handled properly in the

analysis of merged data. Inter-study heterogeneity often gives rise to some complicat-

ing factors that may impair the popular working correlation strategy for the modeling

covariances of longitudinal data. For instance, data collected from hospitals located

in urban areas might be more volatile than those collected from hospitals located

in rural areas because hospitals in cities tend to have more diversified patient pop-

ulation. Also, in the above motivating example, children in cohort B were followed

repeatedly at months of 0,3,6, 12, 18, 24, 30, 36 and 60 after birth, while children in

cohort C were seen according to different times of visits at 0, 1, 4, 7, 12, 18, 24, 30,

36, 42 and 48 months after birth. Ignoring such heterogeneities and using a common

covariance structure could lead to inappropriate results (Wang et al., 2012) in the

analysis of combined data. Similarly, multi-center clinical trials, even administrated

by a common protocol, may still vary in actual operations for data collection, due, for

example, to study coordinator’s personal effort on retaining patient’s follow-up visits.

Joint modeling of mean and covariance has been discussed in the literature to account

for covariance heterogeneity. For instance, Pourahmadi (1999) and Leng et al. (2010)

proposed models to address covariate-adjusted covariances. However, when these ap-
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proaches are applied to merged data from multiple studies, both model building and

computation may become demanding, where the number of parameters in covariance

models can escalate along the increased number of studies. In addition, diagnostic

tools for covariance models have been little considered in the literature and misspeci-

fied covariance models can lead to incorrect statistical inference and misleading data

analysis. All of these, as a result, may offset the benefit of estimation efficiency from

merged data.

Meta analysis (e.g. Hedges and Olkin, 1985) is one of the oldest topics in statistics

and may be the most widely used method to deal with integrated data from multiple

studies. In Bayesian meta analysis, a hierarchical model is postulated to derive com-

bined effects through a weighted average under certain prior distributions (e.g. Lopes

et al., 2003, Müller et al., 2004, Inoue et al., 2004, among others). For longitudinal

data analysis, Ishak et al. (2007) and Ishak et al. (2008) investigated meta analysis

using mixed-effects models. Most existing meta analysis techniques are developed to

either combine summary statistics of individual studies or to use original datasets

under strong distributional assumptions.

Wang et al. (2012) proposed an estimating equation approach to assessing the

validity of data merging and to analyzing the merged longitudinal dataset. It is

shown that their approach is flexible to handle covariance heterogeneity (e.g. different

within-subject correlations across studies) and provides proper control of type I error

in hypothesis testing. However, their method is limited only to the case of fully

observed data and is not applicable to the aforementioned study of lead exposures on

weight growth where measurements of covariate CBL in cohort B are substantially

missing. Although the popular imputation technique may be a simple and direct

solution to the problem, as shown in our simulation studies in Section 3.7, such a

strategy may fail to work properly when longitudinal studies are highly heterogeneous.

The current literature of missing data has provided many approaches to handling
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missing covariates in a single study. For example, Reilly and Pepe (1995) proposed a

mean score method to impute the score function with missing covariates. Robins et al.

(1994b) and Robins and Rotnitzky (1995), among others, developed various versions

of inverse probability weighted (IPW) estimating equation approaches to analyzing

incomplete longitudinal data with an assumption on full distributions. Scharfstein

et al. (1999) extended IPWmethods to data with non-ignorable dropouts. To improve

robustness against model misspecification and estimation efficiency of IPW methods,

several authors (e.g. Robins et al., 1994a; Davidian et al., 2005) proposed augmented

IPW (AIPW) estimators, which are sometimes also called doubly robust estimators.

An alternative strategy to the idea of IPW is multiple imputation, which has been

extensively studied under parametric models (e.g. Rubin, 1987, 1996) or under non-

parametric models (e.g. Lipsitz et al., 1998; Kim and Fuller , 2004). So far, IPW,

AIPW and multiple imputation approaches have been mainly developed for a single

study with missing data. Applying them to the setting of combined studies requires

nontrivial analytic work, especially when the merged dataset involves misaligned or

study-specific missing covariates. Although Qu et al.’s (2010) aggregated unbiased

estimating function approach does not require estimating the probability of missing-

ness or imputing the missing response, it is still developed for one study and only for

missing responses.

In this article we propose a new estimating function approach to analyzing merged

data from multiple studies with study-specific missing covariates. The novelty of our

method lies in the idea of joining study-specific estimating functions, instead of di-

rectly joining multiple datasets. In this way, we allow great flexibility to accommodate

different covariance structures and other properties across studies. Given that it is

not feasible to evaluate estimating functions of studies with missing covariates, in-

tegrating these estimating functions with respect to missing covariates is inevitable.

The resulting estimating functions are then evaluated nonparametrically without as-
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suming any specific distributions. We show that if the full-data mean models are

correctly specified in all individual studies under a valid missing data mechanism,

our proposed joint estimating functions are asymptotically unbiased, leading to valid

estimation and inference.

We organize the rest of the chapter as follows. Section 3.2 introduces notation

and models of interest in the chapter. Section 3.3 presents our estimating procedures

and Section 3.4 derives relevant asymptotic properties of the proposed estimator. We

then discuss issues concerning implementation of our method in Section 3.5. Some

important extensions are given in Section 3.6. After presenting simulation results in

Section 3.7, we illustrate our method by analyzing the motivating data to assess the

effect of lead exposures on child’s weight growth in Section 3.8. All technical details,

including proofs and assumptions, are included in the Appendix.

3.2 Model

We consider subjects collected from K ≥ 2 longitudinal studies with nk number of

subjects in study k, k = 1, . . . , K, and the total number of subjects is n =
∑K

k=1 nk.

Let Di ∈ {1, . . . , K} be the study indicator of subject i, and Yij be the outcome

measured for subject i at visit time j, j = 1, . . . ,mDi
, and mDi

denotes the number

of visits in study Di for subject i = 1, . . . , n. For the ease of exposition we assume

that subjects in the same study have the same number of repeated measurements

in the rest of the chapter. Let X ij denote a p-dimensional vector of covariates fully

observed in all K studies and let Zij denote a q-dimensional vector of covariates

completely observed only in study k ∈ So ⊂ {1, . . . , K} and missing in study k ∈

Sm ⊂ {1, . . . , K}, where Sm∪So = {1, . . . , K}. Correspondingly we let no =
∑

l∈So
nl

denote the number of subjects in studies belonging to So.

To facilitate our discussion, here we consider two groups of covariates, denoted by

Z1 and Z2, and list all scenarios of their missing covariate patterns. Without loss of

33



�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

(i) (iii) (iv)(ii)

Z2

Z1

Figure 3.1: Illustration of four scenarios of missing covariate patterns. The shadowed
bar indicates a subset of studies with overlapped missing covariates and
the blank bar represents a subset of studies with non-overlapped missing
covariates.

generality, we write covariates as [X ij, (Z
1
ij,Z

2
ij)], whereX ij is fully observed in allK

studies but Z1
ij and Z2

ij are two subvectors of Zij missing in a set of studies indexed

by Sm
1 and another set of studies indexed by Sm

2, respectively, with Sm = Sm
1∪Sm

2

and Sm
1,Sm

2 ⊂ {1, . . . , K}. As shown in Figure 3.1, there are four possible scenarios:

(i) Aligned missingness. Z1
ij and Z2

ij are missing in the common set of studies,

i.e. Sm
1 = Sm

2. In this case, there is no need to distinguish those two covariate

subvectors, and conveniently we denote Z1
ij and Z2

ij as Zij. (ii) Nested missingness.

A set of studies with missing Z1
ij contains the subset of studies with missing Z2

ij ,

Sm
1 ⊂ Sm

2 or vice versa Sm
2 ⊂ Sm

1. (iii) Completely misaligned missingness. There

are no common covariates missing in a common set of studies, i.e. Sm
1 ∩ Sm

2 = ∅.

(iv) Partially misaligned missingness. There exists a subset of studies in which a

subvector of missing covariates are aligned.

We begin with the simplest scenario of aligned missingness, namely case (i) in

Figure 3.1, in which both model and estimation procedure will be discussed in detail.

The other three scenarios will be discussed in Section 3.6 as extensions from the case

of aligned missingness.

Suppose that the mean of Yij, given all covariates X ij and Zij in study k, satisfies

µk,ij = E(Yij | X ij ,Zij , Di = k) = h(XT
ijβ0,k +ZT

ijλ0,k), k = 1, . . . , K, (3.1)
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where h(·) is a known link function and θ0,k = (βT
0,k,λ

T
0,k)

T are the true regression

parameters defined in a compact set B ⊆ Rp+q. Here we assume that the true

parameters are fully or partially shared across studies. The conditional variance of

Yij takes the form: var(Yij | X ij,Zij, Di = k) = φkv(µk,ij), where v(·) is a known

variance function and φk is the dispersion parameter.

Note that parameter θ0,k, k ∈ Sm, cannot be estimated only using data from

study k. But it is possible to estimate the parameter by borrowing information

from other studies with fully or partially observed data. In matrix notation, let

Y i = (Yi1, . . . , YimDi
)T , X i = (X i1, . . . ,X imDi

)T and similarly Zi, i = 1, . . . , n. Our

approach relies on the following assumption of missing data mechanism: the study

indicator Di is independent of missing covariates Zi given X i, denoted by

Di ⊥ Zi | X i, for all i. (3.2)

This assumption is slightly stronger than the typical missing at random (MAR) as-

sumption, in which missing data mechanism may also depend on observed outcomes.

The reason is that if (3.2) were allowed to depend on outcome Y i, it would contradict

to the conditions assumed in model (3.1), where the regression parameters are allowed

to be (partially) different across studies. Assumption (3.2) implies that

P (Y i | X i, Di = k ∈ Sm) = E{P (Y i | X i,Zi, Di = k ∈ Sm) | X i, Di = k ∈ Sm}

= E{P (Y i | X i,Zi, Di = k ∈ Sm) | X i, Di ∈ So},

where the expectation is taken with respect to the conditional distribution of Zi given

X i and Di. The above expressions clearly indicate that under assumption (3.2) the

missingness of Zi in study k ∈ Sm can be overcome via data from studies with fully

observed data, and hence parameter θ0,k in study k ∈ Sm becomes estimable.
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3.3 Estimation

In this section, we propose an estimating function approach to estimating all

unknown regression parameters θ0 = (θT
0,1, . . . ,θ

T
0,K)

T . Before presenting the detail,

we like to comment that although our approach is discussed for the scenario of Zi

being fully missing in study k ∈ Sm, it is also applicable when Zi is partially missing

(i.e. Zi observed on some subjects) in study k ∈ Sm as long as assumption (3.2)

holds.

3.3.1 Conditional Moments

Firstly note that θ0,k in study k ∈ So can be routinely estimated by generalized

estimating equations (GEE) method. On the other hand, for θ0,k in study k ∈ Sm,

we need to integrate the full data model (3.1) with respect to missing covariates

Zi. Precisely, let ηk(X ij,θk) denote the conditional expectation of h(Xk,Zij,θk) =

h(XT
ijβk +ZT

ijλk) in (3.1) with respect to Zij conditioning on X ij in study k ∈ Sm,

and assume that the resulting marginal estimating function ηk(X ij,θk) is a smooth

function satisfying ηk(X i,θ0,k) = E(Yij | X ij, Di = k) uniquely at θ0,k under the

conditional distribution of Y ij given X ij and Di = k. In this case assumption (3.2)

implies that

ηk(X ij,θ0,k) = E{h(Xk,Zij ,θ0,k) | X ij, Di = k ∈ Sm}

= E{h(Xk,Zij ,θ0,k) | X ij, Di ∈ So}.

This suggests that estimating function ηk(·,θ0,k) can be estimated by using data from

studies in So. Similarly, the variance of Yij conditioning on X ij in study k ∈ Sm,
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denoted by νk(X ij,θ0,k), is given by

νk(X ij,θ0,k) =Var(Yij | X ij, Di = k ∈ Sm)

=φkE[v{h(Xk,Zij,θ0,k)} | X ij, Di = k ∈ Sm]

+ E{h(Xk,Zij ,θ0,k)
2 | X ij, Di ∈ So} − {ηk(X ij ,θ0,k)}2.

In particular, when Yij follows a normal distribution, νk(X ij ,θ0,k) is equal to φk +

V ar(Zij | X ij, Di ∈ So)λ
2
0,k. When Yij is a binary response, νk(X ij,θ0,k) becomes

ηk(X ij,θ0,k){1 − ηk(X ij,θ0,k)}. In both cases, which are frequently encountered in

practice, this conditional variance νk(X ij,θ0,k) can be estimated using data from

studies in So.

3.3.2 Estimation with Missing Covariates

We consider nonparametric estimation for ηk(x,θk) based on the following ar-

gument of feasibility. According to Newey (1994), we can show that our proposed

estimators of the regression coefficients in this section are consistent and asymptoti-

cally normal, as long as the plug-in estimator of ηk(x,θk) satisfies a convergence rate

faster than n−1/4. This rate is achievable when ηk(x,θk) is assumed to be sufficiently

smooth with respect to x.

In this chapter, we adopt the sieve least square method (e.g. Newey , 1997; Shen,

1997; Shen and Wong , 1994) to estimate ηk(x,θk) using basis functions {bl(x)}jnk

l=1

that enable us to approximate a square-integrable smooth function on a compact

support. The number of basis functions, jnk
, increases along the increase of sample

size n. Sieve estimation is regarded as being of both analytical and computational

convenience due to the fact that a sieve estimator has explicit analytic expressions,

which simplifies the proposed estimation procedure.

For the ease of exposition, we suppress covariates in the following short-handed
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notation. In study k, we denote ηk,ij(θk) = ηk(X ij,θk), hk,ij(θk) = h(Xk,Zij,θk)

and νk,ij(θk) = νk(X ij,θk) and so forth. The corresponding vectors for subject i

are denoted by ηk,i(θk), hk,i(θk), and νk,i(θk), respectively. A sieve estimator of

ηk,ij(θk), k ∈ Sm, takes the following form:

η̂k,ij(θk) =

jnk
∑

l=1

ak,l(θk)bl(xij) = b(xij)
Tak(θk),

where ak(θk) = (ak,1(θk), . . . , ak,jnk
(θk))

T is the vector of unknown coefficients to

be estimated, and b(xij) = (b1(xij), . . . , bjnk
(xij))

T is the vector of basis functions.

Estimation of ak(θk) is carried out by minimizing the following objective function

using all studies from So:

âk(θk) = argmin
ak(θk)

n
∑

i=1

mi
∑

j=1

I[Di ∈ So]
{

hk,ij(θk)− b(X ij)
Tak(θk)

}2
, k ∈ Sm,

where I[A] is the indicator function of set A. For subject i in study Di = l, we define

notation: anml×jnk
matrixW i = (b(X i1), . . . , b(X iml

))T , a jnk
×∑

l∈So
nlml matrix

UT = (W T
i )Di=l∈So

, and (
∑

l∈So
nlml)-dimensional vectorHk(θk) = (hk,i(θk)

T )TDi=l∈So
.

It is easy to see that

âk(θk) = (UTU )−1UTHk(θk),

and hence η̂k,i(θk) = W iâk(θk). Correspondingly the estimated ∂η̂k,i(θk)/∂θk is

∇θk
η̂k,i(θk) = W i∇θk

âk(θk),

where ∇af(a) denotes a gradient vector of function f with respect to a. In Section

3.5.2 we will discuss the selection of the number of basis functions to balance between

the goodness-of-fit and model parsimony.

With the availability of estimated ηk,i(θk), we are now ready to derive the es-
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timating function for the regression parameter θk of interest. Following Qu et al.

(2000), we propose to join the estimating functions from individual studies using the

method of quadratic inference function (QIF). Pointed out by Wang et al. (2012),

the QIF approach provides great flexibility to account for inter-study heterogeneities.

Briefly, QIF begins with an expansion on the inverse of a working correlation matrix

for study k of the form: R−1
k (αk) ≈

∑sk
s=1 ρk,sM k,s, where ρk,1, . . . , ρk,sk are constants

possibly dependent on nuisance correlation parameter αk, and M k,1, . . . ,M k,sk are

known basis matrices with elements 0 and 1 determined by the given working corre-

lation matrix Rk(αk). Refer to Qu et al. (2000) for more details concerning the forms

of basis matrices corresponding to different working correlation structures such as

exchangeable and AR-1. See also Song (2007, Chapter 5) for the selection of working

correlation matrix in the application of QIF.

First let us focus on the estimation of regression coefficients in a regression model

for study k ∈ Sm, in which we need to borrow data from all studies in So in order

to estimate coefficients of the missing covariates. Denote the estimating function for

subject i in study k ∈ Sm by gk,i(θk, η̂k,i), which is expressed with an explicit involve-

ment of η̂k,i. The same treatment is given to other notation whenever applicable. The

extended score vector ḡk(θk, η̂k) takes the form:

ḡk(θk, η̂k) =
1

nk

nk
∑

i=1

gk,i(θk, η̂k,i)
def.
=

1

nk

nk
∑

i=1













gk,i,1(θk, η̂k,i)

...

gk,i,sk
(θk, η̂k,i)













, (3.3)

where for s = 1, . . . , sk,

gk,i,s(θk, η̂k,i) = ∇θk
η̂k,i(θk)

TV k,i,s(θk){Y i − η̂k,i(θk)},

with V k,i,s(θk) = Ak,i
−1/2M k,sAk,i

−1/2 and Ak,i = diag{νk,i1(θk), . . . , νk,imk
(θk)}.
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Minimizing a quadratic function

Qk(θk, η̂k) = nkḡk(θk, η̂k)
TC−

k (θk, η̂k)ḡk(θk, η̂k) (3.4)

gives an estimator of θk, that is,

θ̂k = argmin
θk

Qk(θk, η̂k), (3.5)

where Ck(θk, η̂k) is given by Ck(θk, η̂k) =
1
nk

∑nk

i=1 gk,i(θk, η̂k,i)gk,i(θk, η̂k,i)
T . Note

that as discussed above we do not need to consider another nonparametric estimate

for νk,ij(θk) in (3.5) separately in the linear model or in the logistic model. Even if

νk,ij(θk) has to be estimated separately, for instance in the log-linear model, the large

sample properties of the consistency and asymptotic normality given in Section 3.4

for θ̂k still hold under certain regularity conditions, as long as νk,ij(θk) is replaced by

a root-n consistent estimator. This plug-in exercise has been well studied by many

authors in the literature of semiparametric models and estimation (e.g. Powell , 1986;

Ichimura and Lee, 2010; Andrews , 1994).

3.3.3 Joint Estimation with Complete and Incomplete Datasets

An advantage of performing joint analysis of merged data is to improve estima-

tion efficiency on the regression coefficients across studies (Wang et al., 2012). This

property is expected to prevail even when some covariates are not observed in some

studies, a situation considered in this chapter. Let Ml ⊂ {1, . . . , K}, l = 1, . . . , p+ q,

be the subset of studies within which the lth covariate has a common effect size.

The parameter space constrained by all Ml, l = 1, . . . , p + q, is denoted by Ω with

Ω = {(θT
1 , . . . ,θ

T
K)

T : θkl = θk′l for ∀ k 6= k′ ∈ Ml, l = 1, . . . , p + q} represent-

ing the subspace of parameters restricted under all conditions of common regression

coefficients.
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In study k ∈ So, similar to equation (3.3), the extended score vector ḡk(θk,hk) is

given by

ḡk(θk,hk) =
1

nk

nk
∑

i=1

gk,i(θk,hk,i)
def.
=

1

nk

nk
∑

i=1













∇θk
hk,i(θk)

TV k,i,1(θk){Y i − hk,i(θk)}
...

∇θk
hk,i(θk)

TV k,i,sk(θk){Y i − hk,i(θk)}













,

where hk,i(θk) is defined in (3.1) and∇θk
hk,i(θk) = ∂hk,i(θk)/∂θ

T
k . Now we are ready

to form a joint quadratic inference function to simultaneously estimate all regression

coefficients using all K studies. This objective function is Q(θ, η̂) defined as

Q(θ, η̂) = nḡ(θ, η̂)TC−(θ, η̂)ḡ(θ, η̂),

where

ḡ(θ, η̂) =
1

n

n
∑

i=1

gi(θ, η̂i)
def.
=

1

n

n
∑

i=1

(

I[Di = 1]gT
1,i, . . . , I[Di = K]gT

K,i

)T

, (3.6)

with gk,i = I[Di = k ∈ So]gk,i(θk,hk,i)+I[Di = k ∈ Sm]gk,i(θk, η̂k,i) for k = 1, . . . , K,

and C(θ, η̂) is a block-diagonal matrix, C(θ, η̂) = 1
n

∑n
i=1 diag{g1,ig

T
1,i, . . . , gK,ig

T
K,i}.

Parameter vector θ = (θT
1 , . . . ,θ

T
K)

T is then estimated by minimizing Q(θ, η̂) over Ω,

that is

θ̂ = argmin
θ∈Ω

Q(θ, η̂). (3.7)

When there are no missing covariates, Wang et al. (2012) showed that the above

QIF estimator of θ based on the merged data is more efficient than that based on

each individual study. In this chapter we show that such efficiency gain remains in

the presence of study-specific missing covariates, where unknown ηk,i(θk) for k ∈ Sm

is replaced by a sieve nonparametric estimate η̂k,i(θk). The detail is presented in

Section 3.4.
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3.4 Asymptotic Properties

This section concerns asymptotic properties of both estimator θ̂k obtained in

individual study k ∈ Sm according to (3.5), and the joint estimator θ̂ given in (3.7).

For convenience, the study-specific expectation under the distribution generating data

of study k is denoted by Ek(·) = E(· | Di = k), k = 1, . . . , K. Denote the Euclidean

norm of a vector b by ‖b‖, the induced norm of a matrix A by ‖A‖ = sup
‖b‖=1

‖Ab‖, the

sup-norm of a function f(x) by ‖f‖∞ = supx ‖f(x)‖, and the L2 norm of a random

vector X by ‖X‖2. For any p-dimensional vector a = (a1, . . . , ap)
T of nonnegative

integers, write |a| = ∑p
i=1 ai. The |a|-th order derivative of an analytic function f(x),

f(x) : Rp → R, with respect to x, is represented by ∇af(x) = ∂|a|

∂x
a1
1

...∂x
ap
p
f(x). For

some γ > 0, let [γ] be the largest integer smaller than γ. We also let Λγ(X ) denote the

space of functions f : X → R that have up to [γ]-th order continuous derivatives and

the highest [γ]-th order derivative is Hölder continuous with the exponent γ − [γ] ∈

(0, 1] (see Chen et al. (2003) for the detail).

To establish large-sample properties for the two proposed estimators, we impose

some regularity conditions with the details listed in the Appendix. It is worth noting

that among those conditions, Assumption B.1.1 is a smoothness condition for ηk,i(θk)

regularizing the order of an approximation error in the sieve expansion with respect

to a set of basis functions. According to Theorem 12.8 of Schumaker (1981), the

uniform approximation error to ηk,i(θk) is O(j
|γ|/p
nk ) for any θk. Thus, to achieve

Stone’s (1982) optimal convergence rate, it requires |γ| > p/2 for a p-dimensional

covariate X i. Other conditions in Assumption B.1 pertain to behaviors of estimating

functions for the regression parameters to ensure that the estimating functions are

asymptotically unbiased when a nonparametric estimator of ηk,i(θk) is plugged in.

Theorem III.1. Let no =
∑

l∈So
nl. Suppose that (i) the mean model (3.1) is cor-

rectly specified, and that (ii) missing mechanism assumption (3.2) holds. Under As-
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sumption B.1 and jnk
= o(no), estimator θ̂k for k ∈ Sm given in (3.5) is consistent,

namely, θ̂k
p→ θ0,k as no → ∞.

To prove Theorem III.1, we need to first establish the consistency for the non-

parametric estimator ‖η̂k − ηk‖∞ = op(1), which is the focus of Lemma B.3 in

the Appendix, by applying similar arguments to those given in Chen et al. (2005).

Consequently, we are able to obtain the uniform consistency of the score functions,

supθk∈B
‖ḡk(θk, η̂k) − ḡk(θk,ηk)‖ = op(1). Moreover, we achieve the consistency for

θ̂k according to Glivenko-Cantelli Theorem and Lemma 5.2 of Newey (1994).

Theorem III.2. Consider θ̂k given by (3.5) for k ∈ Sm. Then under Assumptions

B.1 and B.2 stated in the Appendix as well as jnk
= o(no), the estimated score function

ḡk(θ0,k, η̂k) can be represented by

n
1/2
k ḡk(θ0,k, η̂k) = n

−1/2
k

∑

Di=k

gk,i(θ0,k,ηk,i) + τ
1/2
k n−1/2

o

∑

Di∈So

qk,i(θ0,k,hk,i) + op(1),

where nk

no
→ τk as nk → ∞, no → ∞ and

qk,i(θ0,k,hk,i) =
(

qk,i,1(θ0,k,hk,i)
T , . . . , qk,i,sk

(θ0,k,hk,i)
T
)T

consists of elements qk,i,s(θ0,k,hk,i), which is defined as for s = 1, · · · , sk

qk,i,s(θ0,k,hk,i) =
f(X i | Di = k)

f(X i | Di ∈ So)
∇ηk,i(θ0,k)

TV k,i,s{ηk,i(θ0,k)− hk,i(θ0,k)}.

Moreover, the asymptotic distribution of θ̂k is given by

√
nk(θ̂k − θ0,k)

d→ N{0, (GT
kΣ

−1
k Gk)

−1},

43



where Gk = Ek{∇gk,i(θ0,k,ηk,i)}, and Σk = Σk,1 + τkΣk,2 with

Σk,1 = Ek{gk,i(θ0,k,ηk,i)gk,i(θ0,k,ηk,i)
T},

and

Σk,2 = Eo{qk,i(θ0,k,hk,i)qk,i(θ0,k,hk,i)
T}.

From Theorem III.2, we see that the representation of n
1/2
k ḡk(θ0,k, η̂k,i) constitutes

two components:

n
−1/2
k

∑

Di=k

gk,i(θ0,k,ηk,i) and τ
1/2
k n−1/2

o

∑

Di∈So

qk,i(θ0,k,hk,i).

It is interesting to note that the second component τ
1/2
k n

−1/2
o

∑

Di∈So
qk,i(θ0,k,hk,i) is

related to the weighted likelihood (e.g. Hu and Zidek , 2002; Wang and Zidek , 2005).

Since covariate Zi is not recorded in study k ∈ Sm, τ
1/2
k n

−1/2
o

∑

Di∈So
qk,i(θ0,k,hk,i)

presents an inference function using the observed data on Zi from other studies

in So weighted by the measure of relevance defined by f(X i | Di = k)/f(X i |

Di ∈ So). Thus, it becomes natural to yield the asymptotic variance of θ̂k that

consists of two pieces, Σk,1 and Σk,2, where Σk,1 gives the asymptotic variance of θ̂k

when ηk,i were known, while Σk,2 characterizes the additional variance incurred by

the nonparametric sieve estimation of ηk,i. The extra contribution by Σk,2 towards

the total variance of Σk is weighted according to a rate of τk; when no exceeds nk

in the sense of nk

no
→ 0, the contribution from studies in Sm will vanish and may

be ignored. To evaluate (GT
kΣ

−1
k Gk)

−1, we need to replace Gk and Σk by their

consistent estimates respectively. This step involves estimating an unknown density

ratio between f(X i | Di = k) and f(X i | Di ∈ So). Note that we may rewrite this

ratio as f(Di=k|Xi)f(Di∈So)
f(Di∈So|Xi)f(Di=k)

, in a spirit similar to the strategy of inverse probability

weighting, where f(Di=k|Xi)
f(Di∈So|Xi)

may be estimated by a multinomial logistic model and
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f(Di∈So)
f(Di=k)

by no

nk
. Obviously this approach needs some additional model assumptions

which may not be easily checked in practice. An alternative way is to perform a

bootstrap variance estimation, which avoids making extra model assumptions in the

above ratio estimation, and hence is recommended and implemented in Section 3.5.

Now we turn to the estimator θ̂ given in (3.7). Using similar arguments, we obtain

the following representations for the extended scores n1/2ḡ(θ0, η̂): for k ∈ So

n−1/2
∑

Di=k

gk,i(θ0,k,hk,i) =
( τk
1 + τSm

)1/2

n
−1/2
k

∑

Di=k

gk,i(θ0,k,hk,i) + op(1),

and for k ∈ Sm

n−1/2
∑

Di=k

gk,i(θ0,k, η̂k,i)

=
( τk
1 + τSm

)1/2{

n
−1/2
k

∑

Di=k

gk,i(θ0,k,ηk,i) + τ
1/2
k n−1/2

o

∑

Di∈So

qk,i(θ0,k,hk,i)
}

+ op(1),

where τSm
=

∑

k∈Sm
τk. Thus, the asymptotic variance of n1/2ḡ(θ0, η̂), Σ, is a block-

diagonal matrix whose k-th element is given as follows:

τk
1 + τSm

ΣkI[k ∈ So] +
τk

1 + τSm

Σk,1I[k ∈ Sm] +
τ 2k

1 + τSm

Σk,2I[k ∈ Sm], (3.8)

where Σk = Ek{gk,i(θ0,k,hk,i)gk,i(θ0,k,hk,i)
T}, and the other two covariances, Σk,1

and Σk,2, are given in Theorem III.2. The block-diagonal structure for Σ is due to the

fact that gk,i(θ0,k,hk,i) and ql,i(θ0,l,hl,i) for study k and l, k 6= l, are uncorrelated.

When there exist shared parameters, namely dim(Ω) < (p+q)K, the joint estimation

given in (3.7) can improve efficiency for all regression coefficients by using similar

arguments in Wang et al. (2012). We summarize the above discussion concerning

asymptotic properties of θ̂ into the following Theorem.

Theorem III.3. Under Assumptions B.1 and B.2 given in the Appendix, the joint
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estimator θ̂ given in (3.7) is asymptotically normally distributed with mean 0 and

asymptotic variance (GTΣ−1G)−1, namely

√
n(θ̂ − θ0)

d→ N{0, (GTΣ−1G)−1}, as n → ∞

where Σ is given in (3.8) and G = (GT
1 , . . . ,G

T
k )

T with the k-th matrix Gk given by

Gk =











Ek{∇θk
gk,i(θ0,k,hk,i)}, k ∈ So;

Ek{∇θk
gk,i(θ0,k,ηk,i)}, k ∈ Sm.

When there exist shared parameters, θ̂ has a smaller asymptotic variance than any

θ̂k, k = 1, . . . , K, obtained by (3.5) using data from individual studies.

3.5 Implementation

This section focuses on two key elements in the implementation of our method:

(i) bootstrap variance estimation and (ii) selection of the number of basis functions

in the nonparametric estimation of η(x,θk).

3.5.1 Bootstrap Variance Estimation

As noted above, directly estimating the asymptotic variance of θ̂k in study k ∈ Sm

is challenging because it involves an unknown measure of relevance, f(X i | Di = k ∈

Sm)/f(X i | Di ∈ So). Thus we consider estimating the asymptotic variance by

using bootstrap resampling techniques. We follow Chen et al. (2003) and Hall and

Horowitz (1996) to establish our bootstrap procedure. Let {Y ∗
i ,X

∗
i ,Z

∗
i , D

∗
i }ni=1 be

a bootstrap sample, which is generated by the scheme of stratified sampling with

individual studies as strata, so that the resulting bootstrap sample constitutes the

same proportions of subjects from K studies and preserves the same within-subject

correlation as that of the original sample. According to Hall and Horowitz (1996), a
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bootstrap version of extended score ḡ∗
k(θk, η̂k,i) needs to be centered, given by

ḡc
k(θk, η̂

∗
k) = ḡ∗

k(θk, η̂
∗
k)− ḡk(θ̂k, η̂k),

where θ̂k and η̂k are estimated from the original sample and η̂∗
k is estimated from the

bootstrap sample. The reason for the need of centering is that the QIF estimator is ob-

tained as a minimizer of an objective function, and the resulting estimated moments

of the extended scores are not necessarily equal to 0. It is imperative to subtract

ḡk(θ̂k, η̂k) from ḡ∗
k(θk, η̂

∗
k) to obtain asymptotically unbiased estimating functions,

which is critical to ensure consistent estimation. Consequently the bootstrap esti-

mator θ̂
∗

k is defined as the minimizer of Qk(θk, η̂
∗
k) given in (3.5) where ḡk(θk, η̂k) is

replaced by its bootstrap version ḡc
k(θk, η̂

∗
k).

Repeating the bootstrap procedure a certain number of times, we yield a set of

bootstrap estimates of θk, which are then used to calculate the bootstrap variances.

The same procedure can be established for the joint estimation of θ.

3.5.2 Selection of the Number of Basis Functions

Another critical issue in the implementation of the proposed method is to deter-

mine the number of basis functions for the estimation of ηk,i(θk). Since a nonpara-

metric regression is used to estimate the conditional mean model instead of estimating

regression coefficients, selecting the number of basis functions is more relevant to esti-

mation of ηk,i(θk) than estimation of θk. There are several criteria potentially useful

to serve for such a selection purpose, including Schwarz ’s (1978) Bayesian information

criterion (BIC) and Craven and Wahba’s (1979) generalized cross validation (GCV).

In the context of longitudinal data, Wang and Qu (2009) proposed QIF-based BIC,

termed as BIQIF, to perform model selection in parametric regression. Note that

BIQIF cannot be directly applied in our semiparametric model setting because the
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penalty term 1
2
log(n)(p+k) appears always to dominate BIQIF when the mean model

structure in (3.1) is correctly specified. As a result, the BIQIF tends to select under-

fitting models. As a remedy, we follow the work of He et al. (2002) and propose a

new BIC-type model selection criterion:

BIC(jnk
) = Q(θ̂

(jnk
)

k , η̂k) +
log n

2n
(p+ jnk

), k = 1, · · · , K,

where p is the number of regression parameters, jnk
is the number of basis functions

and θ̂
(jnk

)

k is the estimate of θk when jnk
basis functions are used. The number jnk

is

chosen by searching jnk
within a sufficiently wide range of candidate values and the

best jnk
is the one with the smallest BIC(jnk

). Performance of BIC(jnk
) is examined

through simulation studies in Section 3.7.3.

3.6 Missing Covariates in Other Scenarios

Now let us extend the above development in the first case of aligned missing co-

variates to the other three scenarios. The nested missingness (i.e. scenario (ii) in

Figure 3.1) might be handled using the same framework under the same assumption

(3.2) of missing data mechanism. This is because if we naively treat observed covari-

ates contained in Z2 in Figure 3.1 for case (ii) as “missing” covariates, we may simply

turn nested missingness into aligned missingness. But this approach is not desirable

and can be improved by explicitly using the nested missing pattern. Without loss

of generality, we assume Sm
1 ⊂ Sm

2. To handle scenario (ii), we make the following

assumptions regarding mechanisms of missing covariates:

Di ⊥ Z1
i | X i, and Di ⊥ Z2

i | X i, Z1
i , for all i. (3.9)
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This implies that for study k ∈ Sm
1 when both Z1

ij and Z2
ij are missing,

ηk(X ij,θ0,k) = E{h(X ij,Z
1
ij,Z

2
ij,θ0,k) | X ij, Di = k ∈ Sm

1}

= E{h(X ij,Z
1
ij,Z

2
ij,θ0,k) | X ij, Di ∈ So

2},

where the expectation is under the distribution of Z1
ij and Z2

ij given X ij and Di. On

the other hand for study k ∈ Sm
2\Sm

1, when only Z2
ij is missing

ηk(X ij,Z
1
ij,θ0,k) = E{h(X ij,Z

1
ij,Z

2
ij,θ0,k) | X ij,Z

1
ij, Di = k ∈ Sm

2\Sm
1}

= E{h(X ij,Z
1
ij,Z

2
ij,θ0,k) | X ij,Z

1
ij, Di ∈ So

2},

where the expectation is under the distribution of Z2
ij given X ij and Z1

ij and Di.

Following similar procedures developed above for aligned missing covariates, we can

estimate study-specific parameters in Sm
1 and in Sm

2\Sm
1 by incorporating the cor-

responding mean models induced from the above nested missing patterns with the

respective ηk(·) functions.

The situation of misaligned missingness (i.e. scenario (iii) in Figure 3.1) may

also occur in practice. This is a very challenging situation, because different studies

collect exclusive sources of covariates on subjects and no studies collect complete data.

Using the same notation in the nested missingness above, we now have Sm
1∩Sm

2 = ∅.

Model (3.1) is now rewritten as follows:

µk,ij = E(Yij | X ij,Z
1
ij,Z

2
ij, Di = k) = h(XT

ijβ0,k+Z1
ij

T
λ1

0,k+Z2
ij

T
λ2

0,k), k = 1, . . . , K.

Assumption (3.2) implies that in study k ∈ Sm
1, Di ⊥ Z1

i | X i,Z
2
i , while in study

k ∈ Sm
2, Di ⊥ Z2

i | X i,Z
1
i . This assumption is no longer sufficient to deal with

the case when Z1
i and Z2

i are completely misaligned. To overcome, we postulate the
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following extra assumption to facilitate the estimation procedure:

Z1
i ⊥ Z2

i | X i. (3.10)

Under the assumptions of (3.2), (3.9) and (3.10), we know Di ⊥ Z2
i | X i. Taking a

conditional expectation on h(X ij,Z
1
ij,Z

2
ij,θ0,k) with respect to Z1

ij in study k ∈ Sm
1,

we obtain

ηk(X ij,Z
2
ij,θ0,k) = E{h(X ij,Z

1
ij,Z

2
ij,θ0,k) | X ij,Z

2
ij, Di = k ∈ Sm

1}

= E{h(X ij,Z
1
ij,Z

2
ij,θ0,k) | X ij,Z

2
ij, Di ∈ Sm

2}

= E{h(X ij,Z
1
ij,Z

2
ij,θ0,k) | X ij, Di ∈ Sm

2}.

Similar derivations hold for study k ∈ Sm
2. It is interesting to note that when

Yij follows linear or log-linear model, ηk(X ij,Z
2
ij,θ0,k) can be estimated by similar

procedures discussed in Section 3.3. For instance, in the linear model, we have

ηk(X ij,Z
2
ij,θ0,k) = E(X ijβ0,k +Z1

ij

T
λ1

0,k +Z2
ij

T
λ2

0,k | X ij ,Z
2
ij , Di = k ∈ Sm

1)

= X ijβ0,k +Z2
ij

T
λ2

0,k + E(Z1
ij | X ij, Di ∈ Sm

2)Tλ1
0,k,

in which E(Z1
ij | X ij, Di ∈ Sm

2) may be estimated parametrically by a linear model

or nonparametrically through the spline-based sieve method. In the log-linear model,

similar derivations can be carried out because factorization leads to a separable struc-

ture multiplicatively so that ηk(X ij,Z
2
ij,θ0,k) can be directly estimated. When Yij

follows a logistic model, this separation property no longer holds, and thus it is nec-

essary to include some studies with both fully observed Z1
ij and Z2

ij in order to apply

the proposed method in this chapter.

The situation of partially misaligned missingness (i.e. scenario (iv) in Figure 3.1)

can be handled using similar strategies to those proposed for the case of misaligned

missingness and nested missingness. Studies in Sm
1\Sm

2 and Sm
2\Sm

1 are exactly
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the case of misaligned missingness, while to deal with studies in Sm
1 ∩ Sm

2 we need

studies with fully observed Z1 and Z2, assuming the complementary set (Sm
1∪Sm

2)c

containing the other studies is not empty.

3.7 Simulation Studies

We conduct several simulation studies to evaluate performances of the proposed

methods.

3.7.1 Simulation Study I: Comparison to Existing Methods

We run a simulation study to compare our proposed method with two existing

methods, GEE and QIF, using complete data, imputed data by either parametric

multiple imputation or nonparametric hot-deck multiple imputation (Little and Ru-

bin, 1987). Summary statistics are drawn based on 4000 datasets generated from the

following model:

Yij =











β0,1 + β1,1Xij + λ1,1Zij + ǫ1ij, Di = 1

β0,2 + β1,2Xij + λ1,2Zij + ǫ2ij, Di = 2
, j = 1, . . . ,m, i = 1, . . . , n,

where the intercepts are set for the same, β0,1 = β0,2 = 1, simply denoted by β0, and

the true regression coefficients are θ0 = (β0, β1,1, λ1,1, β1,2, λ1,2)
T = (1, 1,−0.5, 2, 0.5)T .

Also, we set n = 200 subjects and m = 4 repeated measurements. Covariate Xij is

generated from Unif(0, 1), and covariates Zij is generated from a conditional model

givenXij of the form: Zij = sin(4πXij)+ζij, where ζij
iid∼ N(0, 0.5). Here Zij is treated

as a study-specific missing covariate whose state of missingness, Di, is determined by

a logistic model on Xi1, logit{P (Di = 2 | X i)} = 0.5 + 0.4Xi1. As a result, 39% of

subjects are sampled from study 2 and treated as missing subjects. The above specifi-

cation implies that E(Yij | Xij , Di = 2) = β0 + β1,2Xij +λ1,2sin(4πXij). Error terms,
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ǫki = (ǫki1, . . . , ǫ
k
im)

T , k = 1, 2, are independently generated from Nm(0, φkRk(αk)),

k = 1, 2, where the covariance matrix φkRk(αk) is specified in the following two

cases:

Case I. correlation matrices R1(·) and R2(·) in two studies are both AR-1 corre-

lation with (α1, α2) = (0.4, 0.4), and variance parameters are (φ1, φ2) =

(1, 1);

Case II. correlation matrix R1(·) in study 1 is AR-1 with α1 = 0.7 while correlation

matrix R2(·) in study 2 is compound symmetry with α2 = 0.2; variance

parameters are different, (φ1, φ2) = (10, 1).

The imputed datasets for study 2 are created according to the true conditional

distribution ofZi givenX i to avoid potential uncertainty in the estimation of this con-

ditional distribution. Here we use f(Zi | X i) for imputation instead of f(Zi | X i,Y i)

because two studies are governed by two different regression models, and therefore

f(Zi | X i,Y i) in study 2 is not estimable using observed data in study 1 (see a de-

tailed explanation provided in a paragraph below). Likewise, in the implementation

of hot-deck imputation we select a set of observed data that are similar to the missing

Zi in terms of small Euclidean distances in their X i values, in which we randomly

generate 10 imputed datasets.

The conditional mean function, E(Yij | Xij , Di = 2) = β0+β1,2Xij+λ1,2sin(4πXij),

is estimated using the B-spline regression with 6 basis functions. We postpone our

discussion about the basis function selection to Section 3.7.3, and now focus on the

comparison of our method with the imputation methods. Simulation results for the

true model of case I and II above are reported in Tables 3.1, 3.2, 3.3 and 3.4 under

two different working correlation structures. In the ideal case where the complete

data are used, both QIF and GEE have shown little biases and reached desirable

95% nominal coverage for both working correlation scenarios. When covariate Zi is
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missing in study 2, both parametric and hot-deck multiple imputation methods pro-

duce noticeable estimation biases in GEE and QIF, particularly for those parameters

exclusively belonging to study 2, where severe undercoverage is evident for for β1,2

and λ1,2 (substantially lower than 95% nominal level). Similar results are drawn from

Tables 3.3 and 3.4.

The failure of both parametric multiple imputation and hot-deck imputation may

be attributed to the validity of the imputation methods, which have been justified

only under the selection model. Note that in a selection model regression parameters

are present in the distribution f(Y i | X i,Zi, θ), which however is not the case in this

simulation model where regression parameters are different across two studies. Thus

the imputation is in general not applicable to multiple studies that are governed by

models with different parameters.

In effect f(Zi | Y i,X i, Di = 2) cannot be estimated using the observed data

from study 1. Even if here the true conditional distribution f(Zi | X i) is used

in the imputation, imputed values for missing Zi may still violate unbiasedness of

E{Yij−h(β0+β1,2Xij+λ1,2Zij) | Xij , Zij , Di = 2} = 0. Therefore, both GEE and QIF

with the imputed data are impaired and yield significant estimation biases. Molen-

berghs and Kenward (2007, Chap. 2) examine the performance of GEE with multiple

imputation for missing responses. By comparing IPW GEE with imputation-based

GEE under the selection model, they show that imputation-based GEE produces

significantly larger bias as well as mean squared error (MSE) than IPW GEE in var-

ious longitudinal data settings. Our findings from the above simulation study are in

agreement with theirs.

In contrast to the imputation methods, our proposed method demonstrates sat-

isfactory performances in terms of bias and coverage. For example, the coverage of

λ1,2 is close to the nominal 95% level in various settings. This is because our method

uses asymptotically unbiased estimating functions derived by plugging in a consistent
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nonparametric estimation of E(Y i | X i, Di = 2). As shown in Tables 3.1 and 3.2

for case I, and Tables 3.3 and 3.4 for case II, the price paid to gain the benefit of

desirable coverage is larger standard deviations than the ideal QIF and GEE using

the complete data. This is not surprising because E(Y i | X i, Di = 2) is estimated

nonparametrically in our method. This further confirms the theoretical results given

in Theorem III.2 and Theorem III.3 regarding the asymptotic covariances, in which,

as explained already, the uncertainty from the nonparametric estimation is to be

accounted for.

3.7.2 Simulation Study II: Comparison under Different Missing Percent-

ages

We now explore the performance of our proposed methods with various missing

data percentages, namely different proportions of subjects between the two study

cohorts. We consider three missing data percentages, 31%, 50% and 62%, which are

yielded by varying coefficients in the model logit{P (Di = 2 | Xij)} = ϑ0 + ϑ1Xi1.

The corresponding parameter estimates and coverage probabilities are listed in Table

3.5 under AR-1 working correlation. When the missing data percentage increases,

the amount of estimation bias increases, which is resulted from the reduction of

fully observed data in study 1. Consequently, the mean square errors increase for

all parameters β0, β1,1 and λ1,1 in study 1, whereas the mean square errors drop

for parameters β1,2 and λ1,2 in study 2 due to the increased size of observed data in

study 2. It is noticeable that the estimated coverage rates of the regression parameters

remain close to 95% nominal level in all these settings.

3.7.3 Simulation Study III: Basis Function Selection

We also examine how the proposed BIC criterion behaves in the selection of basis

functions. Under the same settings of the first simulation study, we increase the
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number of basis functions from 4 to 12 in the estimation of E(Yij | X ij, Di = 2),

and summarize the results in Figure 3.2. This figure indicates that BIC criterion is

minimized at 6, after which the MSE cannot be improved significantly with more

basis functions being used. This evidence implies that our criterion tends to chose a

parsimonious nonparametric model with small MSE.
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Figure 3.2: BIC and MSE profile curves for knot selection.

3.7.4 Simulation Study IV: Comparison of Joint Analysis and Individual

analysis

To illustrate the efficiency gain in the joint analysis, we run a simulation study to

compare the standard errors obtained from the joint analysis and those obtained from

the individual analysis. This is to confirm the theoretical result given in Theorem

III.3. The data is generated in the same way as in case I of the first simulation in

Section 3.7.1. The joint analysis utilizes the fact that two studies have a common
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intercept parameter, while the individual analysis ignores this fact and includes dif-

ferent intercepts in the respective models. The standard errors are calculated by the

bootstrap method discussed in Section 3.5. Summarized results over 100 replications

in Table 3.6 clearly show that the joint analysis has given smaller standard errors for

all regression coefficients. This efficiency improvement appears very substantial for

study 2 where missing covariates are present. The individual analysis only uses 61%

of the sample size to obtain parameter estimation. In conclusion, it is clearly benefi-

cial to borrow data information from study 1 to improve inference for the parameters

in study 2.

3.8 Application

We apply our method to analyze the lead exposure data collected from two longi-

tudinal cohorts of infants in Mexico City. Between 1994 and 2005 the study recruited

89 mother-infant pairs in cohort B and 492 mother-infant pairs in cohort C at two ma-

ternity hospitals serving low-to-moderate income populations (Afeiche et al., 2011).

We are interested in studying the effect of cord blood lead exposure on child’s weight

growth.

Child’s weight was measured repeatedly at every 0, 3, 6, 12, 18, 24, 30, 36, 48

and 60 months after birth in cohort B, while at 0, 1, 4, 7, 12, 18, 24, 30, 36, 42

and 48 months in cohort C. Two lead exposure measures, mother’s blood lead (PBL)

and child’s cord blood lead (CBL), are recorded at baseline. PBL was measured

for all mothers in both cohorts while CBL was collected for all infants in cohort C

and approximately 46% of infants in cohort B due to children’s or maternal refusal,

inability to give blood or because a blood lead measure was not scheduled.

Figure 3.3 displays trajectories of child’s weights vs child’s ages across two cohorts,

and Figure 3.4 includes two scatter-plots of child’s weights vs child’s CBL in log scale.

Adjusting child’s gender and age, we estimate the effect of CBL on weight growth via
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the following model:

E{Yk,ij | Xk,ij, Zk,ij} = β0,k + β1,kXk,ij + β2,kGk,i + β3,kB1(tk,ij) + β4,kB2(tk,ij)

+ β5,kB3(tk,ij) + λ1,kB1(Zk,ij) + λ2,kB2(Zk,ij), k = 1, 2,

(3.11)

where cohorts C and B correspond to k = 1 and k = 2, respectively. For subject i at

jth visit, variable Yk,ij, tk,ij, Xk,ij , Gk,i and Zk,ij are log(weight), child’s ages (year),

log(PBL), child’s gender (1 for male and 0 for female), and log(CBL), respectively.

We apply log-transformation on weight, PBL and CBL to reduce skewness. Effects on

time tk,ij and Zk,ij are captured by linear splines with three basis functions, B1(tk,ij),

B2(tk,ij) and B3(tk,ij), for covariate time tk,ij at knots 0.5 and 2, and two basis func-

tions, B1(Zk,ij) and B2(Zk,ij), for Zk,ij at knot 2.3 in log scale. The piecewise linear

trend of child’s weight versus child’s age can be observed in Figure 3.3. Given that
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Figure 3.3: Trajectories of children’s weights vs children’s ages over two cohorts.

46% of CBL measurements are missing in cohort B, we estimate the effect of covariate

CBL by merging the two cohorts. Through a routine model screening process using
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Figure 3.4: Scatterplots of log-transformed children’s weights vs log-transformed chil-
dren’s cord blood lead exposure across two cohorts.

interactions between covariates and cohort dummy variates, we finally reach a model

with common coefficients for Xk,ij , Gk,i, B1(tk,ij) and B2(tk,ij) across two cohorts.

Results in Table 3.7 indicate that gender and age both are strongly associated with

weight growth of children. For children age 2 or younger in two cohorts, they have

similar weight growth on average. Children older than 2 years in cohort B grow faster

than their peers in cohort C. As for the effect of lead exposure in child’s cord blood

the effect of log(CBL) on weight growth in cohort C appears to be nearly significant

when log(CBL) is greater than 2.3, or equivalently CBL concentration larger than

10µg/L.

3.9 Concluding Remarks

We have developed a novel estimating function approach to assessing covariate

effects through merging datasets from multiple longitudinal studies. The proposed

method accounts for various aspects of heterogeneity across studies so the resulting

estimation and inference are not only synthenized with integrated data and but also
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adaptive to individual study features. The innovation of our method lies in the strate-

gies of handling multiple datasets with study-specific missing covariates, which often

occur in data merging. In this setting, different missing patterns cannot be handled

properly by traditional imputation approach which requires different datasets to be

generated under the same distribution. When datasets of multiple studies are col-

lected respectively from different subpopulations, it is problematic to use studies with

fully observed data either to impute study-specific missing covariates or to adjust the

chance of missingness by the method of inverse probability weighting. Our approach

features a sieve nonparametric estimation of a marginalized mean model which is

resulted from integrating the set of missing covariates out the original full-data mean

model. Under appropriate missing mechanism assumptions, the marginalized mean

model can be estimated properly by using studies with fully observed covariates and

hence the resulting estimation for regression coefficients is consistent and asymptoti-

cally normal.

In addition, we evaluate bootstrap variance estimation and BIC criterion for the

selection of basis functions in nonparametric estimation. More importantly the im-

plementation of our method is numerically straightforward. Both theoretical and

numerical evidence is provided to show the large-sample properties and finite-sample

performances of the proposed methods. In conclusion, our method works well to han-

dle study-specific missing covariates as long as the full-data mean model and missing

data mechanisms are both appropriately specified. Since our method relies on the

nonparametric estimation of the marginalized estimating functions, it could be chal-

lenged when the number of observed covariates is large. Also when the number of

studies is large, it would be computationally demanding to use traditional hypothesis

testing method to determine shared parameters across studies in the joint analysis.

Providing a flexible and efficient way to detect common parameters in multiple studies

in the presence of missing covariates is worth future exploration.
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Table 3.1: Summary of regression parameter estimates for data generated in Case
I under AR-1 working correlation. Complete, Par-MI and Hot-deck
represent complete data, data imputed by parametric multiple impu-
tation and data imputed by hot-deck multiple imputation, respectively.
E.S.E. is the empirical standard error computed from 4000 simulated
datasets. A.S.E. is the asymptotic standard error. For our method,
A.S.E. is the bootstrap standard error computed using 400 bootstrap
samples. The coverage probability, C.P. is computed by using the
asymptotic standard error.

Data Methods θ θ̂ Bias E.S.E A.S.E. MSE C.P.

Complete

QIF

β0 1.000 0.000 0.075 0.075 0.006 0.952
β1,1 1.001 0.001 0.124 0.126 0.015 0.948
λ1,1 -0.501 -0.001 0.040 0.040 0.002 0.946
β1,2 2.006 0.006 0.158 0.160 0.025 0.956
λ1,2 0.499 -0.001 0.060 0.058 0.004 0.941

GEE

β0 1.000 0.000 0.072 0.072 0.005 0.945
β1,1 1.002 0.002 0.122 0.122 0.015 0.948
λ1,1 -0.501 -0.001 0.040 0.039 0.002 0.939
β1,2 2.003 0.003 0.151 0.152 0.023 0.949
λ1,2 0.499 -0.001 0.057 0.055 0.003 0.951

Par-MI

QIF

β0 1.035 0.035 0.077 0.079 0.007 0.927
β1,1 0.961 -0.039 0.126 0.129 0.017 0.939
λ1,1 -0.504 -0.004 0.040 0.040 0.002 0.944
β1,2 1.865 -0.135 0.169 0.180 0.047 0.894
λ1,2 0.241 -0.259 0.049 0.083 0.069 0.040

GEE

β0 1.042 0.042 0.074 0.076 0.007 0.917
β1,1 0.951 -0.049 0.123 0.125 0.018 0.923
λ1,1 -0.505 -0.005 0.040 0.039 0.002 0.939
β1,2 1.851 -0.149 0.162 0.169 0.049 0.879
λ1,2 0.239 -0.261 0.047 0.078 0.070 0.017

Hot-deck

QIF

β0 1.034 0.034 0.076 0.079 0.007 0.931
β1,1 0.961 -0.039 0.126 0.129 0.017 0.937
λ1,1 -0.504 -0.004 0.040 0.040 0.002 0.944
β1,2 1.866 -0.134 0.170 0.181 0.047 0.893
λ1,2 0.237 -0.263 0.049 0.083 0.072 0.039

GEE

β0 1.041 0.041 0.073 0.076 0.007 0.923
β1,1 0.952 -0.048 0.123 0.125 0.018 0.924
λ1,1 -0.504 -0.004 0.040 0.039 0.002 0.937
β1,2 1.852 -0.148 0.162 0.170 0.048 0.879
λ1,2 0.235 -0.265 0.047 0.078 0.073 0.015

Our method

β0 1.002 0.002 0.080 0.081 0.006 0.944
β1,1 1.000 0.000 0.129 0.130 0.017 0.943
λ1,1 -0.501 -0.001 0.040 0.040 0.002 0.949
β1,2 1.992 -0.008 0.206 0.207 0.042 0.948
λ1,2 0.483 -0.017 0.211 0.210 0.045 0.936
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Table 3.2: Summary of regression parameter estimates for data generated in Case
I under compound symmetry working correlation. Complete, Par-MI
and Hot-deck represent complete data, data imputed by parametric
multiple imputation and data imputed by hot-deck multiple imputa-
tion, respectively. E.S.E. is the empirical standard error computed
from 4000 simulated datasets. A.S.E. is the asymptotic standard error.
For our method, A.S.E. is the bootstrap standard error computed using
400 bootstrap samples. The coverage probability, C.P. is computed by
using the asymptotic standard error.

Data Methods θ θ̂ Bias E.S.E A.S.E. MSE C.P.

Complete

QIF

β0 1.001 0.001 0.078 0.077 0.006 0.946
β1,1 1.000 0.000 0.131 0.131 0.017 0.951
λ1,1 -0.501 -0.001 0.043 0.042 0.002 0.944
β1,2 2.002 0.002 0.165 0.164 0.027 0.952
λ1,2 0.498 -0.002 0.062 0.060 0.004 0.946

GEE

β0 1.001 0.001 0.076 0.075 0.006 0.947
β1,1 1.000 0.000 0.130 0.128 0.017 0.948
λ1,1 -0.501 -0.001 0.042 0.041 0.002 0.940
β1,2 2.002 0.002 0.160 0.158 0.026 0.952
λ1,2 0.498 -0.002 0.060 0.058 0.004 0.940

Par-MI

QIF

β0 1.036 0.036 0.079 0.081 0.008 0.931
β1,1 0.958 -0.042 0.133 0.134 0.019 0.929
λ1,1 -0.504 -0.004 0.043 0.042 0.002 0.942
β1,2 1.863 -0.137 0.172 0.183 0.048 0.894
λ1,2 0.240 -0.260 0.050 0.084 0.070 0.047

GEE

β0 1.042 0.042 0.077 0.078 0.008 0.914
β1,1 0.949 -0.051 0.130 0.131 0.020 0.926
λ1,1 -0.505 -0.005 0.042 0.041 0.002 0.934
β1,2 1.853 -0.147 0.169 0.174 0.050 0.872
λ1,2 0.239 -0.261 0.049 0.080 0.071 0.031

Hot-deck

QIF

β0 1.035 0.035 0.079 0.081 0.007 0.935
β1,1 0.959 -0.041 0.132 0.134 0.019 0.933
λ1,1 -0.504 -0.004 0.043 0.042 0.002 0.944
β1,2 1.864 -0.136 0.173 0.183 0.048 0.893
λ1,2 0.236 -0.264 0.050 0.084 0.072 0.038

GEE

β0 1.042 0.042 0.076 0.078 0.008 0.917
β1,1 0.949 -0.051 0.130 0.131 0.019 0.927
λ1,1 -0.505 -0.005 0.042 0.041 0.002 0.936
β1,2 1.855 -0.145 0.169 0.174 0.050 0.871
λ1,2 0.235 -0.265 0.049 0.080 0.073 0.022

Our Method

β0 1.002 0.002 0.083 0.084 0.007 0.942
β1,1 0.999 -0.001 0.136 0.136 0.018 0.943
λ1,1 -0.501 -0.001 0.043 0.042 0.002 0.940
β1,2 1.992 -0.008 0.210 0.211 0.044 0.960
λ1,2 0.483 -0.017 0.210 0.214 0.044 0.943
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Table 3.3: Summary of regression parameter estimates for data generated in Case
II under AR-1 working correlation. Complete, Par-MI and Hot-deck
represent complete data, data imputed by parametric multiple imputa-
tion and data imputed by hot-deck multiple imputation, respectively.
E.S.E. is the empirical standard error computed from 4000 simulated
datasets. A.S.E. is the asymptotic standard error. For our method,
A.S.E. is the bootstrap standard error computed using 400 bootstrap
samples. The coverage probability, C.P. is computed by using the
asymptotic standard error.

Data Methods θ θ̂ Bias E.S.E A.S.E. MSE C.P.

Complete

QIF

β0 1.002 0.002 0.132 0.124 0.017 0.917
β1,1 0.992 -0.008 0.287 0.282 0.082 0.938
λ1,1 -0.497 0.003 0.093 0.096 0.009 0.952
β1,2 2.002 0.002 0.219 0.210 0.048 0.936
λ1,2 0.503 0.003 0.063 0.064 0.004 0.947

GEE

β0 1.009 0.009 0.201 0.186 0.041 0.923
β1,1 0.984 -0.016 0.290 0.283 0.084 0.944
λ1,1 -0.498 0.002 0.089 0.090 0.008 0.957
β1,2 1.995 -0.005 0.243 0.229 0.059 0.929
λ1,2 0.502 0.002 0.069 0.069 0.005 0.943

Par-MI

QIF

β0 1.102 0.102 0.140 0.136 0.030 0.884
β1,1 0.921 -0.079 0.289 0.285 0.090 0.928
λ1,1 -0.502 -0.002 0.093 0.096 0.009 0.954
β1,2 1.783 -0.217 0.231 0.237 0.100 0.866
λ1,2 0.235 -0.265 0.049 0.089 0.073 0.049

GEE

β0 1.052 0.052 0.203 0.188 0.044 0.916
β1,1 0.952 -0.048 0.290 0.283 0.086 0.941
λ1,1 -0.501 -0.001 0.089 0.090 0.008 0.957
β1,2 1.800 -0.200 0.251 0.251 0.103 0.882
λ1,2 0.237 -0.263 0.055 0.096 0.072 0.093

Hot-deck

QIF

β0 1.101 0.101 0.141 0.137 0.030 0.886
β1,1 0.922 -0.078 0.289 0.285 0.090 0.935
λ1,1 -0.502 -0.002 0.093 0.096 0.009 0.952
β1,2 1.786 -0.214 0.232 0.238 0.099 0.856
λ1,2 0.232 -0.268 0.050 0.089 0.074 0.056

GEE

β0 1.052 0.052 0.203 0.188 0.044 0.916
β1,1 0.952 -0.048 0.290 0.283 0.086 0.942
λ1,1 -0.500 0.000 0.090 0.090 0.008 0.957
β1,2 1.801 -0.199 0.251 0.252 0.102 0.881
λ1,2 0.233 -0.267 0.057 0.096 0.074 0.101

Our method

β0 1.007 0.007 0.179 0.163 0.032 0.931
β1,1 0.989 -0.011 0.298 0.288 0.089 0.937
λ1,1 -0.497 0.003 0.093 0.095 0.009 0.953
β1,2 1.990 -0.010 0.326 0.309 0.106 0.941
λ1,2 0.487 -0.013 0.259 0.255 0.067 0.956
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Table 3.4: Summary of regression parameter estimates for data generated in Case
II under compound symmetry working correlation. Complete, Par-MI
and Hot-deck represent complete data, data imputed by parametric
multiple imputation and data imputed by hot-deck multiple imputa-
tion, respectively. E.S.E. is the empirical standard error computed from
4000 simulated datasets. A.S.E. is the asymptotic standard error. For
our method, A.S.E. is the bootstrap standard error computed using
400 bootstrap samples. The coverage probability, C.P. is computed by
using asymptotic standard error.

Data Method θ θ̂ Bias E.S.E A.S.E. MSE C.P.

Complete

QIF

β0 1.001 0.001 0.129 0.123 0.017 0.929
β1,1 0.988 -0.012 0.306 0.301 0.094 0.947
λ1,1 -0.497 0.003 0.104 0.105 0.011 0.958
β1,2 2.004 0.004 0.212 0.205 0.045 0.940
λ1,2 0.503 0.003 0.061 0.062 0.004 0.941

GEE

β0 1.011 0.011 0.211 0.197 0.045 0.935
β1,1 0.979 -0.021 0.330 0.319 0.109 0.934
λ1,1 -0.498 0.002 0.105 0.104 0.011 0.952
β1,2 1.998 -0.002 0.241 0.228 0.058 0.928
λ1,2 0.502 0.002 0.062 0.063 0.004 0.947

Par-MI

QIF

β0 1.105 0.105 0.137 0.135 0.030 0.881
β1,1 0.906 -0.094 0.308 0.305 0.103 0.935
λ1,1 -0.504 -0.004 0.104 0.105 0.011 0.954
β1,2 1.779 -0.221 0.222 0.232 0.098 0.866
λ1,2 0.234 -0.266 0.048 0.086 0.073 0.034

GEE

β0 1.054 0.054 0.212 0.198 0.048 0.918
β1,1 0.943 -0.057 0.330 0.319 0.112 0.935
λ1,1 -0.501 -0.001 0.105 0.104 0.011 0.952
β1,2 1.810 -0.190 0.246 0.246 0.097 0.892
λ1,2 0.236 -0.264 0.049 0.087 0.072 0.036

Hot-deck

QIF

β0 1.104 0.104 0.137 0.136 0.030 0.882
β1,1 0.908 -0.092 0.308 0.305 0.103 0.941
λ1,1 -0.504 -0.004 0.104 0.105 0.011 0.952
β1,2 1.782 -0.218 0.223 0.233 0.098 0.864
λ1,2 0.231 -0.269 0.049 0.087 0.075 0.044

GEE

β0 1.054 0.054 0.212 0.198 0.048 0.920
β1,1 0.944 -0.056 0.330 0.319 0.112 0.936
λ1,1 -0.500 0.000 0.105 0.104 0.011 0.953
β1,2 1.811 -0.189 0.247 0.247 0.096 0.891
λ1,2 0.232 -0.268 0.052 0.087 0.074 0.045

Our method

β0 1.008 0.008 0.176 0.164 0.031 0.929
β1,1 0.982 -0.018 0.319 0.311 0.102 0.944
λ1,1 -0.498 0.002 0.104 0.104 0.011 0.955
β1,2 1.988 -0.012 0.316 0.309 0.100 0.952
λ1,2 0.485 -0.015 0.246 0.252 0.061 0.956
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Table 3.5: Summary of regression parameter estimates by the pro-
posed method in Case I and II under AR-1 working cor-
relation and different missing percentages. M.P. is the
missing percentage. E.S.E. is the empirical standard er-
ror computed from 4000 simulated datasets. A.S.E. is the
asymptotic standard error. For our method, A.S.E. is the
bootstrap standard error computed using 400 bootstrap
samples. The coverage probability, C.P., is computed by
using the asymptotic standard error.

Case M.P. θ θ̂ Bias E.S.E A.S.E. MSE C.P.

I

31%

β0 0.999 -0.001 0.084 0.081 0.007 0.933
β1,1 0.997 -0.003 0.136 0.129 0.018 0.937
λ1,1 -0.501 -0.001 0.039 0.039 0.002 0.944
β1,2 2.001 0.001 0.220 0.210 0.049 0.941
λ1,2 0.489 -0.011 0.222 0.217 0.050 0.947

50%

β0 1.004 0.004 0.091 0.088 0.008 0.939
β1,1 1.002 0.002 0.148 0.145 0.022 0.943
λ1,1 -0.501 -0.001 0.046 0.046 0.002 0.947
β1,2 1.992 -0.008 0.194 0.192 0.038 0.950
λ1,2 0.483 -0.017 0.190 0.186 0.037 0.934

62%

β0 1.011 0.011 0.093 0.096 0.009 0.950
β1,1 0.985 -0.015 0.169 0.164 0.029 0.938
λ1,1 -0.497 0.003 0.055 0.054 0.003 0.946
β1,2 1.973 -0.027 0.192 0.195 0.037 0.944
λ1,2 0.475 -0.025 0.185 0.178 0.035 0.929

II

31%

β0 1.013 0.013 0.159 0.165 0.025 0.956
β1,1 0.992 -0.008 0.285 0.286 0.081 0.949
λ1,1 -0.503 -0.003 0.091 0.093 0.008 0.960
β1,2 1.978 -0.022 0.309 0.315 0.096 0.950
λ1,2 0.485 -0.015 0.249 0.260 0.062 0.954

50%

β0 1.004 0.004 0.153 0.151 0.023 0.942
β1,1 0.994 -0.006 0.334 0.325 0.111 0.940
λ1,1 -0.501 -0.001 0.113 0.109 0.013 0.934
β1,2 1.993 -0.007 0.280 0.280 0.078 0.956
λ1,2 0.479 -0.021 0.231 0.224 0.054 0.943

62%

β0 1.023 0.023 0.145 0.145 0.022 0.954
β1,1 0.988 -0.012 0.374 0.370 0.140 0.945
λ1,1 -0.492 0.008 0.125 0.127 0.016 0.945
β1,2 1.959 -0.041 0.265 0.266 0.072 0.945
λ1,2 0.460 -0.040 0.204 0.213 0.043 0.939
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Table 3.6: Comparison of standard errors from joint es-
timation and individual estimation in Case
I under AR-1 and CS working correlations.
For our method, standard error is the boot-
strap standard error computed using 200
bootstrap samples.

Standard Error
AR-1 CS

Study β̂ Joint Individual Joint Individual

I
β0 0.076 0.089 0.079 0.092
β1,1 0.125 0.136 0.131 0.142
λ1,1 0.039 0.040 0.041 0.042

II
β0 0.076 0.258 0.079 0.255
β1,2 0.174 0.448 0.178 0.442
λ1,2 0.097 0.228 0.100 0.225

Table 3.7: Estimates of regression parameters and p-values
for the analysis of children’s growth on lead expo-
sures. Intercept, log(PBL), Gender, B1(age) and
B2(age) have common coefficients across two co-
horts, while B3(age) and log(CBL) have different
effect sizes.

Cohort C Cohort B
Covariates Estimate P-values Estimate P-values
Intercept 1.156 <0.001 1.156 <0.001
log(PBL) 0.006 0.730 0.006 0.730
Gender 0.036 <0.001 0.036 <0.001
B1(age) 0.910 <0.001 0.910 <0.001
B2(age) 1.303 <0.001 1.303 <0.001
B3(age) 1.561 <0.001 1.726 <0.001
B1(log(CBL)) 0.035 0.330 1.561 0.980
B2(log(CBL)) -0.111 0.052 -0.017 0.993
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CHAPTER IV

Adaptive Fused Lasso in Meta Longitudinal

Studies

4.1 Introduction

In biomedical research, when the sample size is not large enough to achieve ade-

quate statistical power, it is a common practice to merge data from multiple studies

(Zhang et al., 2007; Thase et al., 2009). For instance, in a quantitative trait loci

(QTL) analysis of exploring risk factors of a certain disease, a single QTL study

dataset often has been limited with a small sample size. To overcome, geneticists at-

tempt to routinely combine datasets from multiple similar studies in order to improve

statistical power (Aschard et al., 2011).

The increased sample size from the merged data may not always lead to an im-

provement in estimation efficiency or higher testing power if datasets are collected

from inhomogeneous subpopulations, such as study populations subject to major

population-specific confounders. In this case, merging data can bring in much noise

and additional complications in data distributions, which may offset the power gain

from the increased sample size. Thus, the fundamental task in the use of data in-

tegration strategy is to check homogeneity across multiple studies. In a regression

model, which is the setting considered in this chapter, finding a set of homogeneous
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(or common) regression coefficients across multiple studies enables us to better un-

derstand certain common mean structures, which will then be utilized to improve

statistical power. In contrast, it is hard to interpret estimated common effects of

covariates when it is blindly assumed that data from different subpopulations share

common parameters without a prior data evidence. Unfortunately this is the current

practice widely accepted in the meta analysis. It is hoped that the work described

in this chapter can provide some useful guidelines to practitioners in the aspect of

checking parameter homogeneity using available data.

Hypothesis testing would naturally be the first choice of method to examine certain

underlying homogeneity of parameters by setting the null hypothesis to be the equal-

ity of parameters of interest. In general, a desirable test statistic used in the situation

of merged data should be the one that is robust against heterogeneous characteris-

tics among longitudinal studies, such as discrepancies of within-subject correlation,

dispersion and follow-up schedule. Various versions of modified sandwich covariance

estimators have been proposed to provide robust within-subject covariance estima-

tors, see for example Zeger et al. (1988), Wang and Long (2011), Mancl and DeRouen

(2001), Pan (2001). As pointed out by Wang et al. (2012), Wald testing statistics

constructed using the modified sandwich covariance estimators may suffer severely

from inflated type I errors when multiple longitudinal datasets are inhomogeneous.

Recently,Wang et al. (2012) proposed two new test statistics that have been shown

robust and therefore can perform valid test for homogeneity of regression coefficients.

However, their approach is challenged by a large number of hypotheses needed to

be tested in order to reach a full understanding of coefficient homogeneity. Wang

et al.’s (2012) method is not computationally feasible to deal with many tests, and

hence a fast screening technique is indeed needed rather than performing all possible

individual hypothesis tests. As a matter of fact, the number of tests required in the

case of p covariates in K studies is of order
(

K
2

)p
. When either K, or p, or both are
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large, the number of required tests will easily exceed available computational power of

modern computers, which hinders the application of hypothesis test based approach.

In our proposed fast screening procedure, we pay much attention to the idea of

regularized estimation, which has become a popular technique for variable selection in

the recent literature. Among many existing regularization procedures, fused lasso is

of most relevance to our need. Fused lasso was developed by Tibshirani et al. (2005)

for ordered parameters that penalizes differences between coefficients of adjacent con-

tinuous covariates. For categorical covariates, Bondell and Reich (2008a) proposed

a form of penalty for unordered categorical covariates. Yuan et al. (2006) and Zou

and Yuan (2008), among others, have proposed methods to regularize a group of co-

variates. Bondell and Reich (2008b) considered an approach to regularizing selected

variables while clustering selected variables into predictive groups.

As an application of adaptive fused lasso (Zou, 2006; Tibshirani et al., 2005), our

efficient screening procedure developed in this chapter can uncover sets of common

coefficients across studies. We consider regularization on differences for pairs of pa-

rameters, and when a difference is zero the two corresponding coefficients will be

fused into a common one. As a result, the number of distinctive parameters will be

greatly reduced. Furthermore, improved statistical power may be achieved from the

increased sample size as a result of the reduced number of distinctive parameters.

More importantly, the resulting statistical interpretations are more appealing and

meaningful. The chapter is organized as follows. Section 4.2 introduces notation,

models and the penalized objective function in this chapter. Section 4.3 discusses the

algorithm for the optimization of the proposed method. After evaluating our method

using two simulation studies in Section 4.4, we apply our method in Section 4.5 to

an analysis of HIV monitoring cohort data to assess effects of needle sharing on HIV

positive among injection drug users in China.
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4.2 Formulation

We considerK longitudinal studies with outcome Yk,ij and p-dimensional covariate

vectorXk,ij, where i = 1, . . . , nk, j = 1, . . . ,m and k = 1, . . . , K. For the ease of expo-

sition, we assume all studies have the same numbers of repeated measurementsm. We

consider the longitudinal marginal model in this chapter (Song , 2007, Chapter 5). For

study k the conditional mean of Yk,ij satisfies E(Yk,ij | Xk,ij) = µk,ij = h(XT
k,ijβk),

and the conditional variance of Yk,ij satisfies var(Yk,ij | Xk,ij) = φkv(µk,ij), where φk

is the dispersion parameter, h(·) and v(·) are respectively known link and variance

functions, and βk = (βk,1, . . . , βk,p)
T is the vector of regression coefficients associ-

ated with Xk,ij. We denote Y k,i = (Yk,i1, . . . , Yk,im)
T , µk,i = (µk,i1, . . . , µk,im)

T , and

β = (βT
1 , · · · ,βT

K)
T .

To describe the underlying parameter configuration, an index set of studies, Al ⊆

{1, · · · , K}, is defined for the l-th covariate, over which their corresponding regression

coefficients are the same, namely with respect to Xk,ijl, l = 1, · · · , p, such that

βk,l = βk′,l
def
= βAl,l, ∀ k 6= k′ ∈ Al.

Note that the setAl is unknown. Our objective in this chapter is twofold: to determine

the set Al and to estimate the homogeneous coefficients βAl,l with respect to Al, l =

1, . . . , p. These two tasks can be achieved simultaneously by using the regularization

technique described in this section.

For each longitudinal study, an estimating function may be formed to estimate βk,

and then according to Wang et al. (2012) all such individual study-specific estimating

functions may be combined by the means of quadratic inference function (QIF) (Qu

et al., 2000). To apply QIF, we need to first approximate the inverse of working

correlation matrix by R−1
k (αk) ≈

∑sk
s=1 ρsM k,s, where ρ1, . . . , ρsk are constants and

possibly dependent on αk and M k,1, . . . ,M k,sk are known basis matrices with ele-
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ments 0 and 1 completely determined by a given working correlation matrix Rk(αk).

Refer to Qu et al. (2000) for more details concerning basis matrices corresponding to

different working correlation structures such as exchangeable and AR-1. Using this

expansion of R−1
k , following Wang et al. (2012), we can form a quadratic objective

function as follows:

Q(β) = nḡ(β)TC−(β)ḡ(β), (4.1)

with n =
∑K

k=1 nk, and

ḡ(β) = n−1

n
∑

i=1

( δi(1)g1,i(β1)
T , . . . , δi(K)gK,i(βK)

T )T = n−1

n
∑

i=1

gi(β),

C(β) = n−1

n
∑

i=1

diag{δi(1)g1,i(β1)g1,i(β1)
T , . . . , δi(K)gK,i(βK)gK,i(βK)

T},

ḡk(βk) = nk
−1

nk
∑

i=1

gk,i(βk) = nk
−1

nk
∑

i=1













µ̇T
k,iA

−1/2
k,i M k,1A

−1/2
k,i (Y k,i − µk,i)

...

µ̇T
k,iA

−1/2
k,i M k,skA

−1/2
k,i (Y k,i − µk,i)













,

where δi(k) is the study indicator, with 1 indicating that subject i belongs to study

k and 0 otherwise, µ̇k,i = ∂µk,i/∂β
T
k and Ak,i = diag{v(µk,i1), . . . , v(µk,im)}.

To identify elements in the set Al for l = 1, . . . , p, we regularize the objective

function Q(β) in (4.1) with a penalty function that is constructed in a way similar

to the adaptive fused lasso (Zou, 2006; Tibshirani et al., 2005). Our adaptive fused

penalty function takes the following form:

P (β) =

p
∑

l=1

K
∑

k=1

K
∑

k′>j

wkk′,l|βk,l − βk′,l|, (4.2)

where weight wkk′,l ≥ 0 is specified by wkk′,l = 1/|β∗
k,l−β∗

k′,l|γ using a positive constant

γ, γ > 0, and initial consistent estimates β∗
k,l and β∗

k′,l for βk,l and βk′,l, respectively,

obtained from individual study based analysis. Ueki (2009) and Ueki and Kawasaki
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(2011) consider the similar variable grouping problem for a single cross-sectional study

where L2 norm is used. Equivalently, (4.2) can be expressed in the matrix notation:

P (β) = ‖Dβ‖1,

where D is a
(

K
2

)

p′ ×Kp matrix defining
(

K
2

)

p′ restrictions for p′, p′ ≤ p, covariates.

Entries of D corresponding to βk,l and βk′,l are wkk′,l and −wkk′,l, respectively.

The regularized estimation for parameters in all K studies is carried out by min-

imizing the following penalized objective function PQ(β, λ), namely,

β̂λ = argmin
β

PQ(β, λ), (4.3)

where PQ(β, λ) = Q(β) + λ‖Dβ‖1 and λ > 0 is a tuning parameter that controls

the size of the set Al.

When D is an identity matrix, ‖Dβ‖1 becomes the popular lasso penalty, and in

this case minimizing PQ(β, λ) can be carried out by several algorithms; for instance,

Friedman et al.’s (2010) coordinate descent algorithm, Efron et al.’s (2004) least

angle regression, and Fan and Li ’s (2001) algorithm that approximates the L1 norm

penalty by a quadratic function around initial parameter estimates. However our

penalty function in (4.2) is more complex, which requires a different strategy to carry

out the optimization of PQ(β, λ). The related details are given in Section 4.3.

4.3 Dual Optimization

We convert the optimization problem in (4.3) into a problem with simpler re-

strictions to facilitate numerical calculation. We first consider a dual optimization

problem for (4.3). This is established by the second order Taylor approximation of

the Q(β) function at an initial estimate β(0). The initial estimates of regression co-
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efficients may be obtained by running GEE analysis in individual studies, where the

estimation consistency holds when their mean models are correctly specified. The

second order approximation to the objective function PQ(β, λ) around β0 is given

by

PQ(β, λ) ≈ Q0 + Q̇
T

0 (β − β0) +
1

2
(β − β0)T Q̈0(β − β0) + λ‖Dβ‖1, (4.4)

where Q0, Q̇0 and Q̈0 are Q(β), the first and second derivatives of Q(β) evaluated

at β0, respectively. Following the argument of Kim et al. (2009), we let z = Dβ and

rewrite the minimization of (4.4) as follows:

min
β,z

Q0 + Q̇
T

0 (β − β0) +
1

2
(β − β0)T Q̈0(β − β0) + λ‖z‖1,

subject to Dβ = z.

Then, the Lagrangian takes the form

L(β, z, τ ) = Q0 + Q̇
T

0 (β−β(0)) +
1

2
(β−β(0))T Q̈0(β−β(0)) + λ‖z‖1 + τT (Dβ− z),

where τ ∈ Rm
+ is the Lagrangian multiplier. Being a function of β, the objective

function L(β, z, τ ) is actually minimized at β = β(0) − Q̈
−1

0 (Q̇0 + DTτ λ) with the

minimum given by, up to a constant,

min
β∈RKp

L(β, z, τ λ) = τ T
λDβ(0) − 1

2
(Q̇0 +DTτ λ)

T Q̈
−1

0 (Q̇0 +DTτ λ).

On the other hand, being a function of z, the objective function L(β, z, τ λ) is mini-

mized with the minimum

min
z

L(β, z, τ λ) =











0, if ‖τ‖∞ < λ,

−∞, otherwise,
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where ‖ · ‖∞ is the supremum norm for a vector. Therefore the dual optimization

with regard to τ is

min
τ∈Rm

+

− τ TDβ(0) +
1

2
(Q̇0 +DTτ )T Q̈

−1

0 (Q̇0 +DTτ ),

subject to ‖τ λ‖∞ < λ.

(4.5)

Given the solution τ̂ λ of (4.5), we can update β via

β̂λ = β(0) − Q̈
−1

0 (Q̇0 +DT τ̂ λ).

In effect, the optimization required in (4.5) is a quadratic programming problem with

boundedness restrictions, ‖τ λ‖∞ < λ, which can be solved by applying standard

convex optimization algorithms, e.g. the interior-point methods.

4.4 Numerical Examples

4.4.1 Simulation Study I

The first simulation study is to illustrate the performance of our method to deter-

mine the underlying homogeneity of parameters for continuous outcomes. There are

8 longitudinal studies with 4 repeated measurements considered under the following

true linear models:

Yk,ij = βk,0 + βk,1Xk,ij + βk,2Zk,ij + ǫk,ij k = 1, . . . , 8, i = 1, . . . , nk, j = 1, . . . , 4,

where βk = (βk,0, βk,1, βk,2)
T is the vector of true regression parameters and the er-

ror term ǫk = (ǫk,1, . . . , ǫk,4)
T follows N{0, φkRk(αk)} for k = 1, . . . , 8. Covariate

Xk,ij is a baseline covariate generated from standard normal distribution. Covariate

Zk,i = (Zk,i1, · · · , Zk,i8) is dependent on time and simulated from standard multi-
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variate normal distribution. Inhomogeneous covariance structures are specified to

mimic the reality that the ten studies are sampled from different subpopulations. In

particular, we set Rk(·) for k = 1, 4, 6, 7, 8 as AR-1, and Rk(·) for k = 2, 3, 5 as

compound symmetry, respectively. The dispersion parameters φ = (φ1, . . . , φ8)
T =

(1, 2, 2, 1, 2, 1, 1, 1)T , and the correlation parameters α1 = · · · = α8 = 0.5. We con-

sider the following two scenarios of the underlying homogeneity for the regression

parameters:

Case I. β1 = β2 = (−1, 2, 0)T , β3 = · · · = β6 = (−1, 3, 0)T , and β7 = β8 =

(−1, 3.5, 0)T ;

Case II. β1 = β2 = (−1, 2, 2)T , β3 = · · · = β6 = (−1, 3, 2)T , and β7 = β8 =

(−1, 3.5, 3)T .

The regularization matrix D in equation (4.2), which contains all needed pairwise

restrictions on covariate βk,1 and βk,2. In case I, the regression model contains 16

parameters in all 8 studies and matrix D is a
(

8
2

)

× 16 matrix, while in case II matrix

D takes the following form:

D =







D1

D2






, (4.6)

where D1 and D2 are two
(

8
2

)

× 24 matrices which are constructed in the same way

as the following two matrices given in the case of three studies illustrated as follows:

D1 =













0 w12,1 0 0 −w12,1 0 0 0 0

0 w13,1 0 0 0 0 0 −w13,1 0

0 0 0 0 w23,1 0 0 −w23,1 0













,

D2 =













0 0 w12,2 0 0 −w12,2 0 0 0

0 0 w13,2 0 0 0 0 0 −w13,2

0 0 0 0 0 w23,2 0 0 −w23,2













.
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For convenience, we arrange the parameter order in the columns of D as the same

order of all parameters arranged in β.

Tunning parameter λ is chosen according to the smallest BIC criterion given as

follows:

BIC(λ) = Q(β̂λ) + df(β̂λ)log(n),

where β̂λ is the resulting parameter estimate at a given value of λ and df(β̂λ) is the

total number of distinctive parameter estimates. Figure 4.1 shows two BIC curves

computed from a simulated dataset, and their shapes are representative in our simu-

lation study.

Sensitivity, specificity and model size are reported in Table 4.1 for Case I and Case

II under AR-1 and compound symmetry working correlations based on 200 replica-

tions. Sensitivity is estimated as the proportion of equal coefficient pairs that are

correctly identified, while specificity is estimated in the same way for unequal coeffi-

cients pairs over 200 rounds of simulations. Model size is the number of distinctive

parameters estimated by the proposed method for covariates Xk,ij and Zk,ij. The true

number of distinctive parameters are 3 for case I and 5 for case II, respectively. The

parameter γ in the construction of the penalty function in (4.2) is fixed at 2.8 in this

simulation study.

As show in Table 4.1 our method can identify the shared parameters across stud-

ies in all designed cases. The performance in terms of sensitivities and specificities

is increasing along the increase of sample sizes in each study, indicating that the

proposed method can consistently identify the underlying parameter structures. We

notice that specificities under different scenarios are all in a moderate or high level

no matter which case is considered. Besides the model performance assessed by sen-

sitivities, specificities and model sizes, we learn that the choice of working correlation

structures does not have a significant impact on our method’s performance.

75



Table 4.1: Simulation Results for the Linear Model
AR-1 CS

Case nk Sensitivity Specificity Model Size (Std) Sensitivity Specificity Model Size (Std)

I
100 0.245 0.290 3.505 (1.037) 0.230 0.290 3.505 (0.951)
400 0.555 0.795 3.415 (0.718) 0.555 0.795 3.410 (0.666)
800 0.755 0.960 3.405 (0.875) 0.750 0.960 3.420 (0.887)

II
100 0.200 0.355 6.595 (2.490) 0.205 0.340 6.155 (2.217)
400 0.320 0.840 6.655 (2.563) 0.345 0.840 6.470 (2.460)
800 0.450 0.985 7.005 (3.176) 0.445 0.980 6.595 (2.786)
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4.4.2 Simulation Study II

The second simulation study is designed for binary outcomes with five longitudinal

studies generated under the following logistic models:

logit{E(Yk,ij | Xk,ij , Zk,ij)} = βk,0 + βk,1Xk,ij + βk,2Zk,ij

k = 1, . . . , 5, i = 1, . . . , nk, j = 1, . . . , 4,

where baseline covariate Xk,i = (Xk,i1, . . . , Xk,i8) is generated from Binomial(0.5)

and time-dependent covariate Zk,i = (Zk,i1, . . . , Zk,i8) is simulated from Unif(0, 1).

The five studies are different in terms of their study-specific covariance and correlation

parameters. We set Rk(·) for k = 1, 4 as AR-1, and Rk(·) for k = 2, 3, 5 as compound

symmetry, respectively. The correlation parameters α1 = · · · = α5 = 0.5. We consider

the following two cases of underlying homogeneity for the regression coefficients:

1) β1 = β2 = β3 = (−1,−1, 0) and β4 = β5 = (−1, 1, 0)T .

2) β1 = β2 = (−1,−2, 3), β3 = (−1,−2, 4), and β4 = β5 = (−1, 2, 4).

Matrix D is constructed in the same way as the first numerical example. Based

on 200 rounds of simulation, we summarize results in table 4.2. It shows that our

method’s performance increases along the increase of the sample size. For example

the sensitivity computed under AR-1 working correlation for case 2 increases from

0.560 to 0.81 when the sample size increases from 100 to 800. At the same time,

the model size approaches to the true model sizes, 5 for case I and 4 for case II,

respectively. The parameter γ is 3 in this simulation study.

4.5 Application

We now apply the proposed method to analyze clustered datasets collected by

national HIV surveillance project on injection drug users (IDU) in a southwestern
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Table 4.2: Simulation Results for the Logistic Model
AR-1 CS

Case nk Sensitivity Specificity Model Size (Std) Sensitivity Specificity Model Size (Std)

I
100 0.760 0.990 2.260 (0.504) 0.750 0.980 2.28 (0.541)
400 0.925 1.000 2.080 (0.290) 0.880 1.000 2.14 (0.376)
800 0.975 1.000 2.025 (0.157) 0.940 1.000 2.07 (0.256)

II
100 0.560 0.170 3.885 (1.216) 0.52 0.175 4.085 (1.374)
400 0.620 0.665 4.100 (0.657) 0.59 0.640 4.175 (0.805)
800 0.810 0.950 4.160 (0.464) 0.75 0.935 4.285 (0.613)
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province of China. By the end of 2006, China has established 393 national and

370 provincial monitoring sites reporting HIV incidences to the national centre for

AIDS/sexually transmitted disease control and prevention (Sun et al., 2007). Provin-

cial HIV sentinel surveillance program involved community health center, hospitals

and drug addiction treatment centres conducting surveys among high risk groups such

as IDUs.

The HIV surveillance cohort data were collected between 2006 and 2009 using

stratified sampling from 67 hospitals, community health center, and drug addiction

treatment centers as primary sample units (PSU) to monitor incidences of HIV in-

fection among IDUs in the study area. All IDUs sampled in the survey were tested

for HIV positive and interviewed for their behavioral characteristics related to drug

usage, such as if they inhale drugs, if they share needles with other IDUs, and if they

are infected by syphilis virus and so on. Cluster sizes of PSUs varied greatly from 11

to 440 IDUs. To reduce within the PSU heterogeneity, we further divide IDUs within

a PSU into 3 classes according to their martial status (single, marriage, divorce). As

a result we create 194 smaller but more homogeneous clusters.

The study contained five regions termed as A, B, C, D, and E, which are very

different in many aspects, such as the population size and socioeconomic status. For

example, region A is the largest metropolitan city in the province, whereas region E

is primarily dominated by minorities living in mountain villages. Thus, it is expected

that such highly diversified backgrounds of IDUs across these regions could possibly

lead to different trends and covariate effects on HIV positive.

In our application, we are particularly interested in assessing the effects of behav-

ioral activities on HIV positive, among which needle sharing is the central variable

that has been proved as a critical factor for the infection of HIV. Here we focus on in-

vestigating the common effects of behavioral activities among the five regions on HIV

positive. Based on such clustered data, we fit a marginal logistic regression model of
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the following form:

logit{E(Yk,ij | Xk,i1, Xk,i2, Xk,i3, Xk,i4)} = β0 + β1Xk,i1 + β2Xk,i2 + β3Xk,i3 + β4Xk,i4,

(4.7)

where response Yij is a binary outcome of HIV positive for the jth subject in the ith

cluster, and covariates Xk,i1 to Xk,i4 are gender (1 for male, 0 for female), time (0 to 4

years), needle-sharing (1 for needle-sharing, 0 otherwise) and syphilis (1 for syphilis,

0 otherwise), respectively.

First the clustered surveillance cohort data from the five regions are analyzed

separately by the QIF (Qu et al., 2000) using the compound symmetric correlation

matrix. All covariates are standardized and estimated coefficients associated with

covariates are reported in Table 4.3. It seems that the effect sizes of needle sharing

in the five regions fall in approximately two groups: the first group contains A, B

and C with effect sizes between 0.8 and 0.6, while the second group includes D and E

with much smaller effect sizes. Effects of syphilis in the five regions are not as large

as needle sharing and probably no patterns appear.

We apply the proposed approach to finding common parameters of needle sharing

and syphilis shared by the five regions. The BIC curves and solution paths of needle

sharing and syphilis are showed in Figure 4.2. Regression coefficient estimates sum-

marized in Table 4.4 are chosen according the minimum of BIC at which λ = 2.375

when γ is fixed at 1.

Needle sharing’s solution path displayed in the middle panel of Figure 4.2 indicates

region A, B, and C share a common effect of needle sharing on HIV positive, which

is significantly higher than the needle sharing’s effect in region D and E. It shows

that IDUs sharing needles with other IDUs in region A, B and C tend to have larger

chance to be infected with HIV than IDUs in region D and E. On the other hand,

our method shrinks all parameters associated with syphilis to 0.158, indicating there
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is no regional discrepancy in the effect of syphilis on HIV positive.

4.6 Concluding Remarks

In this chapter, we apply the adaptive fused lasso approach to merging multiple

longitudinal studies when the underlying homogeneous parameter configuration is

complex. If either the number of studies or the number of parameters is large, the

conventional approach of hypothesis testing is computationally prohibited due to the

considerably large number of possible parameter configurations across studies. Our

approach based on the adaptive fused lasso can overcome this difficulty and efficiently

detect the pattern of homogeneous parameters shared by studies and estimate dis-

tinctive parameters at the same time. However, our method may be affected with the

increased complexity concerning the underlying pattern of homogeneous parameters.

We conjecture that this limitation may be caused by the inflexibility of using one tun-

ing parameter in the regularization procedure. When the configuration of common

parameters is complex, one tuning parameter may not work flexibly and properly for

grouped restrictions on regression parameters. For example, if β1 = β2 and β2 = β3

then β1 = β3 must happen. In our current version of penalty function, this type of

nested conditions are not accounted for. Another issue of our method is the selection

of the parameter γ, which is still an open problem. For the future research, we plan to

extend the proposed approach to make it more flexible and adaptive to more complex

parameter configurations, and provide more informative guidelines for the selection

of γ in the construction of penalty functions.
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Figure 4.1: BIC curves under two different working correlations.

Table 4.3: Estimates of regression coefficients obtained from individual analyses using
data from the five areas. All covariates are standardized with mean 0 and
variance 1.

A B C D E
Intercept -3.102 -3.531 -2.312 -1.864 -0.810
Gender 0.145 -0.106 -0.037 0.507 0.411
Time -0.214 0.320 0.601 -0.611 -0.218
Needle sharing 0.828 0.808 0.604 0.012 0.360
Syphilis 0.180 -0.096 0.056 -0.433 0.147

Table 4.4: Parameter estimates obtained from penalized QIF using data from five
areas. All covariates are standardized with mean 0 and variance 1.

A B C D E
Intercept -2.985 -3.487 -2.423 -1.915 -0.796
Gender 0.229 -0.140 -0.050 1.005 0.432
Time -0.336 0.091 0.658 -0.427 -0.254
Needle sharing 0.579 0.579 0.579 0.006 0.434
Syphilis 0.158 0.158 0.158 0.158 0.158
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Figure 4.2: BIC and solution paths for needle sharing and syphilis.
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CHAPTER V

Future Work

Most methods in meta analysis and my first two topics in analyzing multiple

longitudinal or clustered studies are all in the track of testing whether data can be

merged or be analyzed jointly by proposed testing statistics. But considering the

nature of meta analysis, quantitatively integrating several empirical research studies

related to a common topic, we can achieve the aim by the method of regularization

as well.

Compared to the approach of testing hypotheses, the method of regularization has

several benefits: (i) testing statistics and their null distributions have to be derived

under the correct model specifications. Thus very often it is not easy to unify hy-

pothesis testing and model selection into a single procedure. In contrast, the method

of regularization may achieve this purpose by estimating parameters of unimpor-

tant variables exactly 0 while detecting common distinctive parameters; (ii) datasets

may be collected from different protocols in different experiments, so that types of

outcomes may not be the same. The method of regularization can join estimation

procedures for different types of outcomes as long as a common objective function

can be derived. In contrast, it is not that flexible to develop tests for different types

of outcomes; (iii) it is common that several covariates of interest may exhibit different

types of common features, such as a common effect size and a common effect sign.
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Using appropriate penalty functions, the method of regularization may help us to

solve such complex problems.

Along this direction, there are several potential problems, including data merging

with different types of outcomes and with high dimensional covariates. I plan to

extend the work in Chapter IV to make it more flexible and adaptive to address those

challenges mentioned above. Also, it seems very useful to develop a method for the

validation of common effect signs. For example it maybe meaningfulless to prove the

same gene measured in different experiments to have the same effect size, but it is

meaningful to examine if the same gene could have the same sign of effect in multiple

experiments. Another future topic pertains to jointly analyzing two different types

of outcomes such as longitudinal outcomes and survival outcomes, or longitudinal

outcomes and brain image measurements. For the joint analysis of longitudinal and

survival data, if longitudinal data is of primary interest, using the event time data

will improve parameter estimates of longitudinal models by allowing adjustment for

informative censoring of repeated measures by the disease process. I will explore how

to jointly analyze the two types of outcomes in the framework of generalized method

of moments.
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APPENDIX A

Appendices for Chapter II

Proof of Theorem II.1. Let β̂ be a root-n consistent estimator for β0. A Taylor ex-

pansion of ḡ(β̂) about β0 gives ḡ(β̂) = ḡ(β0) + Ĝ(β∗)(β̂−β0), where β
∗ is between

β̂ and β0 and Ĝ(β∗) = ∂ḡ(β∗)/∂βT . Substituting this expression for g(β̂) in Q(β̂),

we represent Q(β̂) as

Q(β̂) =
∥

∥

∥n1/2{C−(β̂)}1/2
{

ḡ(β0) + Ĝ(β∗)(β̂ − β0)
}∥

∥

∥

2

, (A.1)

where ‖ · ‖ is the Euclidean norm. Another Taylor expansion of ḡ(β̂) about β0 in the

first order condition of β̂, ∂Q(β̂)/∂βT = 0 , gives

Ĝ(β̂)TC−(β̂)
{

ḡ(β0) + Ĝ(β∗∗)(β̂ − β0)
}

+ op(1) = 0

, where β∗∗ is between β0 and β̂. Provided that Ĝ(β̂)TC−(β̂)Ĝ(β∗∗) is nonsingular,

(β̂ − β0) = −
{

Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)
}−1

an(β̂)ḡ(β0), (A.2)
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where an(β̂) = Ĝ(β̂)TC−(β̂). Substituting (A.2) for β̂ − β0 into (A.1) yields

Q(β̂) =
∥

∥

∥
n1/2{C−(β̂)}1/2

{

ḡ(β0) + Ĝ(β∗)(β̂ − β0)
}∥

∥

∥

2

=

∥

∥

∥

∥

n1/2{C−(β̂)}1/2
[

I − Ĝ(β∗)
{

Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)
}−1

an(β̂)

]

ḡ(β0)

∥

∥

∥

∥

2

.

By assumptions (b) and (d) stated in Theorem II.1 and Davidson (2001, Theorem

21.6), we obtain

∂ḡ(β̂)

∂βT
= G+ op(1),

∂ḡ(β∗)

∂βT
= G+ op(1),

∂ḡ(β∗∗)

∂βT
= G+ op(1),

and C−(β̂) = Σ− + op(1).

Assumptions (c) and (e) give n1/2ḡ(β0) → Y ∼ N(0,Σ) in distribution, where

Σ could be singular. The extended definition for multivariate normal distribution

with singular covariance matrix is given by Definition 2.4.1 (Anderson, 2003). Then

Slutsky’s Theorem implies

n1/2{C−(β̂)}1/2
[

I − Ĝ(β∗∗)
{

Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)
}−1

an(β̂)

]

ḡ(β0)

→ (Σ−)1/2(I − P )Y

in distribution, where P = G(GTΣ−G)−1GTΣ− and Y follows a N(0,Σ). Let

S = (Σ−)1/2(I − P )Σ(I − P )T (Σ−)1/2. Since P is idempotent, so is S. Thus Q(β̂)

converges in distribution to

Y T (I − P )TΣ−(I − P )Y ∼ χ2
rank(S),
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where rank(S) = trace(S) = rank(Σ)−Kp+ (K − 1)|M|.

Proof of Theorem II.3. Note that GT = (GT
1 ,G

T
2 , . . . ,G

T
K) and

Σ− = diag{ρ1Σ−
1 , . . . , ρKΣ

−
K}

where Gk (k = 1, . . . , K) and Σ are defined in Theorem II.1. We have

GTΣ−G = ρ1G
T
1Σ

−
1 G1 + · · ·+ ρKG

T
KΣ

−
KGK .

Denote B = GTΣ−G and Bk = ρkG
T
kΣ

−
k Gk for k = 1, . . . , K. B can be partitioned

as

B =







B[β1,β1] B[β1,−β1]

B[−β1,β1] B[−β1,−β1]






=







∑K
k=1Bk [β1,β1]

∑K
k=1 Bk [β1,−β1]

∑K
k=1Bk [−β1,β1]

∑K
k=1Bk [−β1,−β1]






,

where −β1 means not corresponding to β1, block-diagonal matrix

K
∑

k=1

Bk [−β1,−β1]
= diag{B2[γ2,γ2]

, . . . ,BK [γK ,γK ]},

K
∑

k=1

Bk [β1,−β1]
= {B2[β1,γ2]

, . . . ,BK [β1,γK ]},

and
K
∑

k=1

(Bk [−β1,β1]
)T = {(B2[γ2,β1]

)T , . . . , (BK [γK ,β1]
)T}.

Following Horn and Johnson (1990, page 18), one can easily derive the inverse of

partitioned matrix B and

(B−1)[β1,β1] =

{

K
∑

k=1

Bk[β1,β1]
−

K
∑

k=2

Bk [β1,γk]
(Bk [γk,γk]

)−1Bk [γk,β1]

}−1

.
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Since Bk[βk,βk]
is positive definite, so is Bk [ζ,ζ]−Bk [ζ,γk]

(Bk [γk,γk]
)−1Bk [γk,ζ]

. By the

fact that Bk [β1,β1]
− Bk [β1,γk]

(Bk [γk,γk]
)−1Bk[γk,β1]

is a block-diagonal matrix with

diagonal components Bk [ζ,ζ] − Bk [ζ,γk]
(Bk [γk,γk]

)−1Bk [γk,ζ]
and a zero matrix, we

show that
∑K

k=2Bk [β1,β1]
− ∑K

k=2 Bk [β1,γk]
(Bk[γk,γk]

)−1Bk [γk,β1]
is nonnegative defi-

nite. Applying Horn and Johnson (1990, Theorem 7.7.4), we obtain

(B−1)[β1,β1] � (B1[β1,β1]
)−1,

where (B−1)[β1,β1] and (B1[β1,β1]
)−1 are root-n asymptotic variances for β̂1 and β̃1,

respectively. Rearranging the order of γ1, . . . ,γK in parameter β, we can prove

(B−1)[βk,βk] � (Bk [βk,βk]
)−1 for all k = 1, . . . , K.
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APPENDIX B

Appendices for Chapter III

We first introduce notation used in the following proofs. For a function f of a

random variable U with expectation Ef(U), we define two empirical measures Pn and

Gn:

Pnf =
1

n

n
∑

i=1

f(Ui), Gnf = n−1/2

n
∑

i=1

{f(Ui)− Ef(Ui)}.

We suppress the argument in ηk,i(θk) for notational convenience: for instance we let

(θk,X i,ηk,i) denote (θk,X i,ηk,i(θk)). When no ambiguity exists, the index i of ηk,i

can be dropped further, for example ηk for ηk,i. Similarly we use a simplier notation

∇ηk,i(θk) to denote ∇θk
ηk,i(θk) throughout this appendix. In our proofs ηk,i always

denotes the true function and η′
k,i denotes a function different from ηk,i. We also

define the following residuals for study k ∈ Sm and s = 1, . . . , sk:

qk,i,s(θk,hk,i) =
f(X i | Di = k)

f(X i | Di ∈ So)
∇ηk,i(θk)

TV k,i,s{ηk,i(θk)− hk,i(θk)}

gk,i,s(θk, η̂k,i) = ∇η̂k,i(θk)
TV k,i,s{Y i − η̂k,i(θk)},

rk,i,s(θk) =
f(X i | Di = k)

f(X i | Di ∈ So)
∇ηk,i(θk)

TV k,i,s,

where sk is the number of basis matrices used to approximate R−1
k (αk). For f(x) :
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Rp → R, we let f̃(x) be the orthogonal projection of f onto the linear span of jnk

basis functions under the norm ‖ · ‖2.

Assumption B.1.

(B.1.1) For all k ∈ Sm and θk ∈ B, and X ij in a compact subset X ⊂ Rp, ηk,ij(θk)

belongs to the set Λγ(X ) for some γ > p/2. ηk,ij(θk) is second order contin-

uously differentiable with respect to θk.

(B.1.2) ‖Ek[{Y i − ηk,i(θ0,k)}{Y i − ηk,i(θ0,k)}T | X i]‖ < ∞.

(B.1.3) There exists c > 0 such that inf
i,j

v(µk,ij) ≥ c. Also both v(·) and h(·) have

bounded second order derivatives.

(B.1.4) There exists a function Πnηk,ij(θk) in sieve space defined by

Gn = {Πnηk,ij(θk) = b(xk,ij)
Ta(θk)}

such that ‖ηk,ij(θk)− Πnηk,ij(θk)‖∞ = op(1).

(B.1.5) Ek

{

sup
‖θk−θ0,k‖<δ

‖∇2ηk,i(θk)‖2
}

< ∞ for some small δ > 0.

(B.1.6) Ck(θ̂k, η̂k)
− = Σ−

k + op(1) where Σ−
k is a positive definite.

(B.1.7) As nk → ∞ and no → ∞, nk

no
→ τk ∈ (0,∞) for k ∈ Sm.

Assumptions below are required to establish asymptotic distribution of the esti-

mator in (3.5).

Assumption B.2. (B.2.1) Let Gk = Ek{∇gk,i(θ0,k,ηk,i)}, GT
kΣ

−1
k Gk is positive

definite.

(B.2.2) jnk
= O(n

p

2γ+p
o ).

(B.2.3) 0 < c < P (Di = k | X i) < ∞ for some c.
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(B.2.4) n
−γ/(2γ+p)
o ‖rk,i,s(θ0,k)− r̃k,i,s(θ0,k)‖2 = o(n

−1/2
o ) for s = 1, · · · , sk.

Lemma B.3. For k ∈ Sm, under Assumptions B.1.1, B.1.4 and jnk
= o(no), no →

∞, we have,

‖η̂k,i − ηk,i‖∞ = op(1),

and for all θk ∈ B,

‖η̂k,i(θk)− ηk,i(θk)‖2 = Op

(
√

jnk

no

+ (jnk
)−γ/p

)

.

The Lemma can be proved by closely following the techniques given in the proof

of Proposition B.1 in Chen et al. (2007). Thus, we omit the details.

Next for k ∈ Sm and s = 1, . . . , sk, we let Γk,s(θk,ηk)[η
′
k−ηk] denote the functional

derivative of Ek

[

∇η′
k,i(θk)

TV k,i,s{Y i−η′
k,i(θk)}

]

at ηk,i in the direction of [η′
k,i−ηk,i],

namely

Γk,s(θk,ηk)[η
′
k − ηk] =− Ek

[

∇ηT
k,i(θk)V k,i,s{η′

k,i(θk)− ηk,i(θk)}
]

+ Ek

[

{∇η′
k,i(θk)−∇ηk,i(θk)}TV k,i,s{ηk,i(θ0,k)− ηk,i(θk)}

]

.

Lemma B.4. Let δn > 0 and s = 1, . . . , sk. Under Assumptions B.1.1-B.1.5, as

δn → 0, for all ‖θk − θ0,k‖ < δn and ‖η′
k,i − ηk,i‖∞ < δn, we have

(i) L2 continuity of ∇η′
k,i(θk)

TV k,i,s{Y i − η′
k,i(θk)} at (θ0,k,ηk,i), i.e.,

Ek

[

sup
‖θ0,k−θk‖<δn,‖η′

k,i
−ηk,i‖∞<δn

‖∇ηk,i(θ0,k)
TV k,i,s{Y i − ηk,i(θ0,k)}

− ∇η′
k,i(θk)

TV k,i,s{Y i − η′
k,i(θk)}‖2

]

≤ constδ2n.
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(ii)

‖Γk,s(θk,ηk)(η
′
k−ηk)−Γk,s(θ0,k,ηk)(η

′
k−ηk)‖ ≤ an‖θk−θ0,k‖, with an = o(1).

(iii)

∥

∥

∥
Ek

[

∇η′
k,i(θk)V k,i,s{ηk,i(θ0,k)− η′

k,i(θk)}

− ∇ηk,i(θk)V k,i,s{ηk,i(θ0,k)− ηk,i(θk)}
]

− Γs(θk,ηk)(η
′
k,i − ηk,i)

∥

∥

∥

≤ const‖η′
k,i − ηk,i‖2‖∇η′

k,i −∇ηk,i‖2 = o(n−1/2
o ).

Proof of Lemma B.4. (i) To establish (i), we consider some neighborhood around

(θ0,k,ηk,i). Then for all (θk,η
′
k,i) with ‖θk − θ0,k‖ < δn and ‖η′

k,i − ηk,i‖∞ < δn.

∇η′
k,i(θk)

TV k,i,s{Y i − η′
k,i(θk)} − ∇ηk,i(θ0,k)

TV k,i,s{Y i − ηk,i(θ0,k)}

={∇η′
k,i(θk)−∇ηk,i(θ0,k)}TV k,i,s{Y i − ηk,i(θ0,k)}

+ {∇η′
k,i(θk)−∇ηk,i(θ0,k)}TV k,i,s{ηk,i(θ0,k)− η′

k,i(θk)}

+∇ηk,i(θ0,k)
TV k,i,s{ηk,i(θ0,k)− η′

k,i(θk)}

=I1 + I2 + I3.

94



For any a with aTa = 1, by Assumptions B.1.2, B.1.3, and B.1.5

Ek(a
T I1I

T
1 a)

≤C‖Vk,i,s‖2Ek{aT{∇η′
k,i(θk)−∇ηk,i(θ0,k)}T{∇η′

k,i(θk)−∇ηk,i(θ0,k)}a}

≤C‖Vk,i,s‖2Ek{‖∇η′
k,i −∇ηk,i‖∞ + ‖∇2ηk,i(θ∗)‖‖θk − θ0,k‖}2

≤C‖Vk,i,s‖2Ek{‖θk − θ0,k‖2‖∇2ηk,i(θ∗)‖2 + ‖∇η′
k,i −∇ηk,i‖2∞+

2‖∇2ηk,i(θ∗)‖‖θk − θ0,k‖‖∇η′
k,i −∇ηk,i‖∞}

≤constδ2n,

where θ∗ is between θ0,k and θk, ‖∇2ηk,i(θ∗)‖2 ≤ ∞ by Assumption B.1.5, and

‖V k,i,s‖ ≤ ∞ by Assumption B.1.3 and special structure of basis matrix M k,s. For

I3, we can show that

E‖I3‖2 ≤‖V k,i,s‖2Ek{‖ηk,i(θ0,k)− η′
k,i(θk)‖2‖∇ηk,i(θ0,k)‖2}

≤‖V k,i,s‖2Ek

[

{‖∇ηk,i(θ∗∗)‖‖θ0,k − θk‖+ ‖ηk,i − η′
k,i‖∞}2‖∇ηk,i(θ0,k)‖2

]

≤‖V k,i,s‖2Ek(A
4‖θ0,k − θk‖2 + 2A3‖ηk,i − η′

k,i‖∞‖θ0,k − θk‖

+ A2‖ηk,i − η′
k,i‖2∞}

≤constδ2n

where A = sup
‖θ0,k−θk‖<δn

‖∇ηk,i(θk)‖. Similarly we can show Ek‖I2‖2 ≤ constδ2n. Comb-

ing the results for I1, I2 and I3 we can show (i) hold.

Second, we can prove the result (ii) in a similar way to that used to establish (i).

The third result (iii) can be shown by applying Lemma B.3 and Assumpton B.2.2.
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Lemma B.5. Under Assumptions B.1 and B.2, for s = 1, . . . , sk

Γk,s(θ0,k, η̂k)[η̂k − ηk] =
1

no

∑

Di∈So

rk,i,s(θk){ηk,i(θ0,k)− hk,i(θ0,k)}+ op(n
−1/2
o ).

Proof of Lemma B.5. First note that

Γk,s(θ0,k, η̂k)[η̂k − ηk] = −Ek

[

∇ηT
k,i(θ0,k)V k,i,s{η̂k,i(θ0,k)− ηk,i(θ0,k)}

]

,

suggesting that the estimation of ∇ηk,i(θ0,k) affects θ̂k not by bringing an additional

component into the asymptotic variance of θ̂k but also by the accuracy in the esti-

mation of ∇ηk,i(θ0,k).

The dimension of Γk,s(θ0,k, η̂k)[η̂k − ηk] is p+ q. Thus we show the lemma holds

for each component of Γk,s(θ0,k, η̂k)[η̂k−ηk]. Let ζl be the l-th column of ∇ηk,i(θ0,k)

for l = 1, . . . , p+ q. According to Riesz representation theorem, the Riesz representer

of functional Ek

[

ζT
l V k,i,s{η̂k,i(θ0,k) − ηk,i(θ0,k)}

]

is rl
k,i,s(θk), which is the l-th row

of rk,i,s(θk). Let r̃l
k,i,s(θ0,k) denote the orthogonal projection of rl

k,i,s(θ0,k) onto the

linear span of jnk
basis functions in ‖ · ‖2. For simplicity, we suppress the index s

of rl
k,i,s(θ0,k) and r̃l

k,i,s(θ0,k) in the following derivations. Suppose tn is a sequence

of positive numbers satisfying tn = o(n
−1/2
o ). By the definition of least square sieve

estimator, η̂k,i minimizes Pno
{‖ηk −hk‖2} in the sieve space using data from studies
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in So, which leads to

0 ≤ √
no

[

Pno
{‖η̂k + tnr̃k − hk‖2} − Pno

{‖η̂k − hk‖2}
]

≤ √
no

[

2Pno
{(η̂k − hk)

T r̃k} − 2Eo{(η̂k,i − hk,i)
T r̃k,i}+ 2Eo{(η̂k,i − hk,i)

T r̃k,i}

+ tnPno
{‖r̃k‖2}

]

= 2Gno
{(η̂k − ηk)

T r̃k}+ 2Gno
{(ηk − hk)

T r̃k}+ 2
√
noEo{(η̂k,i − ηk,i)

T r̃k,i}

+ tn
√
noPno

{‖r̃k‖2}

= 2Gno
{(η̂k − ηk)

T r̃k}+ 2Gno
{(ηk − hk)

T (r̃k − rk)}+ 2Gno
{(ηk − hk)

Trk}

+ 2
√
noEo{(η̂k,i − ηk,i)

T (r̃k,i − rk,i)}+ 2
√
noEo{(η̂k,i − ηk,i)

Trk,i}

+
√
notnPno

{‖r̃k‖2}.

Applying similar arguments in Chen et al. (2007), we establish the following results:

Gno
{(ηk − h)T (r̃k − rk)} = op(1), (B.1)

√
noEo{(η̂k,i − ηk,i)

T (r̃k,i − rk,i)} = op(1), (B.2)

Gno
{(η̂k − ηk)

T r̃k} = op(1), (B.3)

tn
√
noPno

r̃2
k = o(1)Op(1) = op(1). (B.4)

In the following, we briefly outline the key steps needed to prove (B.1)-(B.4). To

show (B.1), by assumptions B.2.4 and B.2.2, we obtain

P (Pno
(r̃k − rk)

T (ηk − h) >
ǫ

n
1/2
o

) ≤ E{(r̃k − rk)
T (ηk,i − hi)}n1/2

o

ǫ

≤ ‖ηk,i − hi‖2‖r̃k − rk‖2n1/2
o

ǫ
= o(1),

which implies (B.1). (B.2) can be verified by the Cauchy-Schwartz inequality and

assumption B.2.4. (B.4) can be proved similarly under assumption B.2.4.

To show (B.3), we first define Fn = {r̃T
k ηk(θ0,k) : ηk(θ0,k) ∈ Λγ(X )}, and then
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check logN[]{δ,Fn, ‖ · ‖2} ≤ const.( c
δ
)d/γ for any δ > 0. Using results of (B.1)-(B.4),

we obtain

0 ≤ −Gno
{rT

k (hk − ηk)}+
√
noEo{rT

k,i(η̂k,i − ηk,i)}+ op(1),

where Eo(·) = E(· | Di ∈ So) denotes the expectation for all studies with fully

observed data, and similarly with tn replaced by −tn,

0 ≤ Gno
{rT

k (hk − ηk)} −
√
noEo{rT

k,i(η̂k,i − ηk,i)}+ op(1).

Therefore

√
noEk

[

ζT
l V k,i,s{η̂k,i(θ0,k)− ηk,i(θ0,k)}

]

=
√
noEo{rT

k,i(η̂k,i − ηk,i)}

= Gno
{rT

k (ηk − hk)}+ op(1).

Combining results for l = 1, . . . , p+ q, we prove the lemma.

Proof of Theorem III.2. We prove the theorem by verifying conditions of Theorem

III.2 of Chen et al. (2003). Conditions 2.1 and 2.2 (Chen et al., 2003) are satisfied by

the construction of θ̂k and Assumption B.2.1. Conditions 2.3 and 2.4 of Chen et al.

(2003) are proved in Lemmas B.3 and B.4. According to Lemma B.5, conditions 2.5

of Chen et al. (2003) holds as well. Thus

n
1/2
k ḡk(θ0,k, η̂k) = n

1/2
k ḡk(θ0,k,ηk) + τ

1/2
k n1/2

o q̄k(θ0,k,hk) + op(1),

and n
1/2
k ḡk(θ0,k, η̂k) converges to a normal distribution with variance

Σk = V ar{gk,i(θ0,k,ηk,i) + τ
1/2
k qk,i(θ0,k,hk,i)} = Σk,1 + τkΣk,2,
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where Σk,1 and Σk,2 are given in Theorem III.2. Next we can establish the following

approximation:

sup
‖η̂k,i−ηk,i‖∞=o(1)

∥

∥

∥

1

nk

∑

Di=k

∇gk,i(θ0,k, η̂k,i)−Gk

∥

∥

∥ = op(1).

Finally standard arguments for GMM estimator will lead to

√
nk(θ̂k − θ0,k)

d→ N{0, (GkΣ
−1
k Gk)

−1}.
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