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Preface

To the non-mathematician: Chapter 1 is intended to be readable by anyone,

without any background whatsoever. By the end of Chapter 1, we state the main

result of this thesis. For the reader not accustomed to reading mathematics, we give

some advice at the end of this preface.

The majority of this thesis is self-contained given a familiarity with standard

classical complex analysis, on the level of [Ahl78] or [Rud87]. The only significant

exceptions are some parts of the introduction to circle packing, which lean on the

fundamentals of hyperbolic geometry and Riemann surface theory. For an introduc-

tion to hyperbolic geometry, see [BP92], and for a reference text see [Rat06]. For a

text on the theory of Riemann surfaces, see [For91]. Stephenson gives brief primers

on both of these areas in his introductory book on circle packing, [Ste05].

This thesis is structured as follows:

• Chapter 1 is an introduction to the thesis intended for non-mathematicians. It

also serves as a gentle introduction for mathematicians unfamiliar with circle

packing. We make two remarks: (1) for ease of exposition, the definition of

thin given in Chapter 1 is slightly stronger than the precise technical definition

given later, so the statement of the main result given in this chapter is slightly

weaker than what we actually prove, and (2) the order in which the material

is presented is slightly different between Chapters 1 and 2, also for ease of

exposition.

• Chapter 2 introduces circle packing. We state some major theorems from the

area and discuss applications. We then introduce disk configurations, which

generalize the notion of circle packings, and state our main results and conjec-

tures. We end with some expository sections and a list of further references.

• Chapter 3 introduces our main tool, fixed-point index. We state and prove some

fundamental lemmas on fixed-point index. At the end, we state our main tech-

nical result, which we call the Index Theorem, and a conjectured generalization.
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• In Chapter 4, we first sketch the proof of the Index Theorem. We then discuss

some key geometric lemmas and propositions. Finally, we give the proof of our

main results using the machinery just developed.

• Chapters 5 and 6 are spent proving the Index Theorem. In particular, Chap-

ter 5 consists of elementary topological and geometric arguments. In Chapter

6, we develop a tool for working with fixed-point index, the so-called torus

parametrization, and then apply this tool to work out the remaining details.

This thesis is typeset in LATEX, using many AMS-LATEX macros, among oth-

ers. Most of the figures were drawn in LATEXDraw, available at http://latexdraw.

sourceforge.net/, and are rendered using pstricks, often after some code tweak-

ing. Some figures were hand-written in pstricks code. Incidentally, I highly recom-

mend LATEXDraw for generating figures. The two schematics on p. 41 were typeset

using the commutative diagram package XY-pic.

The frontispiece is a cycle of tangent disks with a dual circle. The idea to study

dualizable circle packings ultimately led to the results of this thesis.

Advice on reading mathematics: Chapter 1 is intended to be readable without

any background. However, reading math is different from reading most other kinds of

writing, and can be difficult and frustrating, so here are some tips to make it easier:

• Whenever a concept is introduced for the first time, draw some examples for

yourself. This will make it easier to internalize the concept.

• If something is stated as a “fact,” then either we have argued in support of it in

the text, or it should be possible to convince yourself that it is true by drawing

a few examples. If something is stated as a “theorem,” then it is true, but it is

difficult to see why it is true, and difficult to prove it.

• Go slowly. A page in a novel will rarely take more than a minute or two to

read, but reading a single page of unfamiliar math can take much longer.

• Do the exercises. They will help you to follow along. Actually doing the ex-

ercises organizes the new ideas in your mind, and will make reading on much

easier and ultimately faster than if you didn’t do the exercises at all.
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domains E and Ẽ meeting at six points . . . . . . . . . . . . . . . . . . 111

5.17 A topological configuration of {E, Ẽ, u, ũ, v, ṽ} which guarantees that
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Abstract

The main result of this thesis is a rigidity theorem for configurations of closed disks in

the plane. More precisely, fix two collections C and C̃ of closed disks, sharing a contact

graph which (mostly-)triangulates the complex plane, so that for all corresponding

pairs of intersecting disks Di, Dj ∈ C and D̃i, D̃j ∈ C̃ we have that ](Di, Dj) =

](D̃i, D̃j). We require the extra condition that the collections are thin, meaning that

no pair of disks of C meet in the interior of a third, and similarly for C̃. Then C and

C̃ differ by a Euclidean similarity.

Our proof is elementary, using essentially only plane topology arguments and

manipulations by Möbius transformations. In particular, we generalize an argument

which was previously used by Schramm to prove the rigidity of configurations of

pairwise interiorwise disjoint closed disks having contact graphs triangulating the

complex plane. It was previously thought that his proofs depended too crucially on

the pairwise interiorwise disjointness of the disks for there to be a hope for generalizing

them to the setting of configurations of overlapping disks.

Analogous versions of our rigidity theorem have easier proofs via a discrete ver-

sion of the Maximum Modulus Principle in the case where C and C̃ share a contact

graph which (mostly-)triangulates the hyperbolic plane, or the Riemann sphere. We

describe these proofs as well. These are relatively straightforward generalizations of

the corresponding proofs in the case of configurations of pairwise interiorwise disjoint

disks. Then by a simple argument via covering space theory and the Uniformization

Theorem, we get an analogous rigidity statement for thin disk configurations having

contact graphs triangulating an arbitrary Riemann surface.

We include a brief and gentle introduction intended for non-mathematicians. Then

we give a survey of the field of circle packing, which is the area that our result fits

into. We also state some open problems and conjectures from this area, including

conjectured generalizations both of our main result and of our main technical theorem.
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Chapter 1

Introduction for non-mathematicians

Roughly speaking, this thesis studies the patterns that circles can make with one

another. This area of study is known as circle packing. For the first half of this

introduction, we explore some natural, classical questions about circle packing.

In this thesis we consider configurations of disks more general than classical circle

packings. In particular, we allow our disks to overlap, whereas the disks of a circle

packing are required not to overlap. We can ask questions about our disk configu-

rations analogous to those we asked about circle packings. The answers to some of

these questions make up the main results of this thesis. We describe these questions

and answers for the second half of this introduction.

1.1 What is a circle packing?

Suppose we arrange some coins flat on a table. We get a picture that looks something

like this:

Figure 1.1: Our first example of a circle packing.

The coins may be of different sizes. Also, the coins may touch, but for now we insist

that they do not overlap. Configurations such as these are traditionally known as

circle packings :

Definition. A circle packing is a collection of disks which don’t overlap.

Roughly speaking, we will be exploring the patterns that can be formed by the

disks in a circle packing. For example, we say that somehow, intuitively, the following

two circle packings have “the same pattern”:

1



(a) (b)

Figure 1.2: Two circle packings which have “the same pattern,” in some
sense.

We wish to make the notion of the “pattern” of the disks of a circle packing more

precise. In order to do so, we first introduce the related notion of a graph:

Definition. A graph is a collection of vertices , which we usually draw as dots, and

edges , which are connections between the dots.

The easiest way to represent a graph is via a drawing. However, we stress that a

graph is an abstract object which is independent of any drawn representation of it.

v1

v2

v3

v4

v5v6

v7

(a)

v1

v2

v3
v4

v5v6
v7

(b)

Figure 1.3: Two different representations of the same graph. The graph we
have drawn here has 7 vertices. Here the vertices have been labeled v1, v2, . . . , v7.
Then there is an edge between vi and vj in (a) whenever there is an edge between
vi and vj in (b) and vice versa. Note also that for example, we do not consider that
there is an edge between v3 and v5 in this graph, because we cannot get from v3 to
v5 without passing through other vertices.

Graphs are all around us. For example, the handshake graph is the graph having

a vertex for every person, and having an edge between two people if they have ever

shaken hands. You may be more used to hearing graphs referred to as networks. For

example, the Facebook friend graph is the graph having a vertex for every Facebook

account, and having an edge whenever the two accounts are friended on Facebook.

Of course, the graphs in these two examples both have huge numbers of vertices, and

it would be very hard to draw representations of them. We suggest an easier exercise:

Exercise 1. Draw a representation of the following graph:
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• The vertices are the English words for the whole numbers from one to six.

• Two vertices have an edge connecting them whenever the two corresponding

words share a letter.

The concept of a graph helps us formalize what we mean when we discuss the

“pattern” formed by the disks of a circle packing. In particular, we may use a graph

to capture and isolate the information of “how the disks of the packing meet”:

Definition. Suppose we have a circle packing P consisting of the disksD1, D2, D3, . . ..

Then the contact graph of the packing P is the graph described as follows:

• The vertices are the disks D1, D2, D3, . . . of the packing.

• Two vertices have an edge connecting them if and only if the corresponding

disks touch.

We explore two examples:

Figure 1.4: A circle packing and its contact graph. The edges of the graph
are drawn as dashed lines. This is the easiest way to visualize the contact graph of
a circle packing, and usually the easiest way to draw a representation of it.

(a) (b)

Figure 1.5: Another circle packing and its contact graph. Here we have drawn
the contact graph separately from the packing, to again emphasize that the graph
is an abstract object distinct from any drawn representation of it.

3



Exercise 2. Draw the contact graph of the following circle packing:

Experience leads us to conclude:

Observation. If we start with a circle packing, it is not so hard to draw its contact

graph.

In other words, it is easy to “go from” a circle packing to its contact graph. Then we

might ask, when can we go “in the other direction?” This is our segue into the next

section.

1.2 Existence of circle packings

To build intuition, we start this section with an exercise:

Exercise 3. Draw circle packings having the following contact graphs:

This leads us to consider the following natural question:

Existence Question. If we start with a graph G, is there always a circle packing

having G as its contact graph?

For simplicity, in our study of the existence question, we will consider only finite

graphs, meaning graphs which have finitely many vertices and edges. We first observe

that circle packings’ contact graphs never have loops, nor repeated edges :
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v1

v2

v3
v4

Figure 1.6: A graph which does have loops and repeated edges. The vertices
v2 and v3 have two edges connecting them, an example of what is meant by a repeated
edge. The vertex v1 has two loops on it: a loop is an edge from a vertex to itself.

A graph without loops and repeated edges is called simple. Thus we have our first

necessary condition for a graph to appear as the contact graph of a circle packing:

Existence Condition 1. If G is the contact graph of a circle packing, then G is

simple.

There is another, more subtle observation we need to make to answer our existence

question for circle packings:

Fact. Not every graph can be drawn without its edges crossing each other.

The idea of edges crossing is illustrated in the following example:

(a) (b)

Figure 1.7: Two representations of the same graph, one planar and one not.
The graph represented here has four vertices, and the vertices are drawn bigger than
usual for emphasis. In (a), two edges of the graph cross. This does not happen in
(b). The drawing in (b) is called a planar representation for this graph.

A graph is called planar if it has a planar representation, meaning that it can be

drawn (in the plane) without edge crossings. The source of the word planar is that

the space we are working in, where geometry is usually done, is called the Euclidean

plane, or just the plane. To internalize the idea of planarity and the fact that not all

graphs are planar, we give our next exercise:
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Exercise 4. Try to draw a representation of the following graph, so that the edges

don’t cross each other:

• It has five vertices, and

• every pair of vertices has an edge connecting them.

In other words, draw five dots on a piece of paper, and try to draw a connection

between every pair of the dots so that these connections don’t cross. (It is impossible,

but try to convince yourself of this, rather than taking it on faith.)

On the other hand, suppose that the graph G is the contact graph of some circle

packing. Then we may draw a representation of G as we did in Figure 1.4, by putting

the vertex corresponding to a disk D at the center of D, and connecting the vertices

of touching disks by straight line segments. This representation of G will be planar

because the disks of our packing do not overlap. Thus we have found our second

necessary condition for a graph to appear as the contact graph of a circle packing:

Existence Condition 2. If G is the contact graph of a circle packing, then G is

planar.

Thus for example, it is impossible to find a circle packing whose graph is the one

described in Exercise 4.

We summarize our findings so far:

Fact. If G is the contact graph of a circle packing, then G is simple, meaning that

it has no loops nor repeated edges, and planar, meaning that it can be drawn (in the

plane) without edge crossings.

This is just the combination of conditions 1 and 2. The amazing thing is that these

conditions are the only ones we need for a positive answer to our existence question:

Existence Theorem. If G is a simple planar graph, then there is some circle packing

having G as its contact graph.

The Existence Question for circle packings was first asked by Paul Koebe, and he

answered it himself in 1936, by proving the Existence Theorem we just stated. The

proof uses complex analysis, the theory of calculus on the complex numbers C =

{a + bi}. It turns out that the field of circle packing is a kind of discrete analog of

complex analysis. This is a major motivating factor for the study of circle packings.
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1.3 Rigidity of circle packings

We have seen that different circle packings can share a common contact graph. For

example, the packings in Figure 1.2 on p. 2 have the same contact graph. In this

section, we explore the question of whether there is a contact graph so that only one

circle packing has that contact graph.

Of course, if we start with a circle packing, pick the whole packing up as a single

unit, move it around, and then set it back down, we will get a new circle packing

having the same contact graph. Thus it will never really be the case that there is

only one circle packing having some given contact graph. If we are to hope for a

uniqueness statement, we need a way around this problem. This leads us to explore

the notion of similar packings.

Recall from elementary school geometry that two triangles are called similar if

one is a copy of the first, but scaled up or down and moved around:

Figure 1.8: Two similar triangles.

We can define two packings to be similar in an analogous way:

Definition. Two circle packings are called similar if it is possible to get from one

to the other by combining the following four operations:

• sliding,

• rotating,

• reflecting, and

• scaling.

We stress that it is essential that the operations are applied to the whole packing at

once, not to the disks one at a time. If we were allowed to apply the operations to

one disk at a time, then it would be possible to get from a packing to any other one

having the same number of disks via these operations, which is not what we want.

If two packings are similar, then we consider them to be “essentially the same”:
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Figure 1.9: Two circle packings which are “essentially the same.”

The reason for this is that similar packings always have the same contact graph. On

the other hand, there may be some circle packing P so that every packing which has

the same contact graph as P turns out to be similar to P . Thus we ask the following

question:

Uniqueness Question. When is there an essentially unique circle packing corre-

sponding to a given graph?

For every circle packing we have seen so far, it is possible to find an essentially different

packing, meaning a packing which is not similar to the original one, which has the

same contact graph. In fact, it is not too hard to believe the following:

Fact. If a circle packing P has finitely many disks, then there are circle packings

having the same contact graph as P, but which are not similar to P.

Thus, we need to turn our attention to infinite packings, circle packings having an

infinite number of disks:

(a) (b)

Figure 1.10: Pieces of infinite circle packings. Of course, it is impossible to
draw the entirety of a packing that goes on forever. However, sometimes, it is still
possible to completely describe the packing. For example, the packing shown in (a)
is the infinite packing by disks which all have the same size, so that each disk has
exactly 6 neighbors. This is known as the “penny packing.” We leave what happens
in (b) to the imagination.
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We might be tempted to believe that if a packing “goes on forever in all directions,”

then it is essentially the only packing having its contact graph. Unfortunately, this

does not turn out to be true. For example:

(a) (b)

Figure 1.11: Two infinite packings which are not similar, but which have
the same contact graph.

Exercise 5. Describe the contact graph of the packings in Figure 1.11. Can you find

a third packing which has the same contact graph, but which is not similar to either

of (a) and (b)?

In Figure 1.11, we “perturbed” some disks of the packing, leaving others where

they were, to get a new, fundamentally different packing having the same contact

graph. On the other hand, it does not seem so easy to perturb in a similar way the

disks of either packing in Figure 1.10. This is because of a special property of the

contact graph:

Definition. Suppose that P is an infinite circle packing. Represent its contact graph

G by putting a vertex at every circle’s center, and connecting vertices of touching

circles by straight segments. Suppose that then the graph G “cuts the plane into

triangles.” In that case we say that the packing P is triangulated .

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

Figure 1.12: The contact graph of the penny packing. The key point is that
every point of the plane lies inside one of the triangles formed by the contact graph.
Thus the penny packing is triangulated.
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Exercise 6. Draw the contact graph on the packing in Figure 1.10b, as we did in

Figure 1.12 for the packing in Figure 1.10a. Verify that the packing in Figure 1.10b

appears to be triangulated. (Of course, we don’t really know what happens outside

of the rectangular region we have shown.)

The following amazing fact turns out to be true:

Uniqueness Theorem. If two circle packings have the same contact graph and are

are both triangulated, then they are similar. In other words, if a packing P is trian-

gulated and has contact graph G, then P is essentially the only circle packing having

contact graph G.

A alternative way to phrase this theorem is to say that triangulated circle packings

are rigid, meaning we cannot modify a triangulated circle packing without changing

its contact graph, except by applying rotations, scaling, etc. Compare this to the sit-

uation in Figure 1.11, where it is actually possible to modify the packings significantly

while keeping the contact graph the same.

Furthermore, considering the example given in Figure 1.11, the following is not

hard to believe:

Fact. Suppose a circle packing P is not triangulated. Then there are circle packings

having the same contact graph as P, but which are not similar to P.

Thus the condition that P is triangulated is necessary for P to be rigid. The Unique-

ness Theorem says that this condition is also sufficient. Thus the uniqueness guar-

anteed by the Uniqueness Theorem is the best that we could possibly hope for.

As we mentioned earlier, Koebe initiated the study of circle packings in 1936,

and proved the Existence Theorem for circle packings. He also managed to prove

a different kind of uniqueness theorem for circle packings: instead of considering

packings in the plane, as we are, he considered packings on the surface of a sphere.

The truth or falsehood of the Uniqueness Theorem we have stated here was unknown

for a long time after Koebe. A proof was finally found in 1991 by Oded Schramm.

1.4 Overlapping disks

The results of this thesis stem from the following simple, open-ended question:

Question. What if we allow the disks to overlap?

To give some answers to this question, we will study so-called disk configurations :
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Definition. A disk configuration is any collection of disks so that no disk in the

collection is completely contained inside of another.

As usual, we start with an example:

Figure 1.13: Our first example of a disk configuration (which is not also a
circle packing)

When discussing disk configurations, it will be helpful to have a notion of overlap

angle:

θ
θ

θ

Figure 1.14: The overlap angles between several pairs of disks. In each case,
we have chosen a point where the boundary circles meet, and drawn the tangent
rays to the circles pointing out of the disks. Then the overlap angle θ is the angle
between these rays. We note two facts: (1) the overlap angle gets bigger as the
disks “move closer together,” or gets smaller as the disks “move apart,” and (2) the
overlap angle is the same at both points of intersection of the boundary circles.

The contact graph of a disk configuration is defined the same way as the contact

graph of a circle packing: it is the graph with a vertex for every disk, so that two

vertices are connected by an edge whenever the corresponding disks meet. In the

case of disk configurations, however, we label each edge of the contact graph with the

overlap angle between those two disks. For example:
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90◦

90◦
90◦

0◦

30◦

0◦

150◦

Figure 1.15: The contact graph and overlap angles of this disk configura-
tion.

To internalize these concepts, we suggest our next exercise:

Exercise 7. Draw a disk configuration having the following contact graph and (ap-

proximate) overlap angles:

160◦ 0◦
10◦

10◦

10◦

More generally, we ask ourselves the following natural question:

Question. Given a graph G, so that its edges are labeled with prescribed overlap

angles, does there exist a disk configuration having G as its contact graph with the

required overlap angles?

The answer to this question turns out to be very messy compared to the answer to our

Existence Question for circle packings. For our first example, consider the following:

(a) (b) (c)

Figure 1.16: Four disks in a closed chain. Suppose four disks have the contact
graph shown in (a). An example of four such disks is shown in (b). If we zoom in on
the hole formed by the four disks, we see the picture in (c). The sum of the angles
inside the dashed quadrilateral we have drawn is clearly bigger than the sum of the
overlap angles of the four disks. On the other hand, the sum of the angles inside of
a quadrilateral is always exactly 360◦. So if four disks have the contact graph shown
in (a), then the sum of their overlap angles must be less than 360◦.
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Thus for instance there is no disk configuration having the following contact graph

and overlap angles:

100◦

100◦

100◦

100◦

Figure 1.17: An impossible contact graph given the indicated overlap
angles, impossible because the sum of the indicated overlap angles is greater than
360◦.

This might lead us to conclude that no disk configuration has a contact graph contain-

ing, as a sub-graph, the graph pictured in Figure 1.17 including edge labels. However,

this conclusion does not turn out to be true. Consider the following example:

100◦

100◦

100◦

100◦

(a)

130◦

100◦
100◦

100◦
100◦

(b)

Figure 1.18: Another disk configuration, and its contact graph with overlap
angles labeled.

At this point, we give up on the question of existence and summarize our findings

thus far in the following observation:

Observation. Given a graph G with edges labeled with prescribed overlap angles, it

is not so easy to determine whether or not there is a disk configuration which has G

as its contact graph, and has the required overlap angles.

We reassure the reader that more satisfying answers are known, and have been since

the 1970s, but they are rather technical to state here. Instead, we move on to the

new result proved in this thesis:

1.5 Rigidity of thin disk configurations

The following is the disk configuration analog of the Existence Question we asked

about circle packings:
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Question. Suppose we start with a disk configuration. Can we give conditions that

guarantee that there is essentially no other disk configuration having the same contact

graph and overlap angles?

As before, the following is not too hard to believe:

Fact. Suppose that the disk configuration C consists of only finitely many disks. Then

there are disk configurations having the same contact graph and overlap angles as C,

but which are not similar to C.

We consider two disk configurations to be significantly different if they are not similar.

What it means for two disk configurations to be similar is the same as what it meant

for two circle packings to be similar.

Exercise 8. Draw a disk configuration which has the same contact graph and overlap

angles as the configuration depicted in Figure 1.15, but which is not similar to it.

Also, as with circle packings, there are infinite disk configurations which have the

same contact graph and overlap angles, but which are not similar:

(a) (b)

Figure 1.19: Two infinite disk configurations which are not similar, but
which have the same contact graph and overlap angles.

Similarly to before, it will help to consider triangulated disk configurations: a disk

configuration is triangulated if its contact graph “cuts the plane into triangles.” The

main result of this thesis is the following:

Main Theorem. If two thin triangulated disk configurations have the same contact

graph and overlap angles, then the two disk configurations are similar.

We still need to define the extra adjective thin in the statement of the Main Theorem:

Definition. A disk configuration is thin if no three of its disks meet at any point.
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(a) (b)

Figure 1.20: A disk configuration which is thin and one which is not. The
configuration in (b) is not thin, because there are points which are in all three of
the disks at once. This does not happen in (a), so the configuration in (a) is thin.

We give two examples of disk configurations to which our Main Theorem applies:

(a) (b)

Figure 1.21: Pieces of thin triangulated disk configurations.

We also give an example of a disk configuration which is not covered by our theorem:

Figure 1.22: A triangulated, but non-thin, disk configuration.

Another way of stating our Main Theorem is to say that thin triangulated disk

configurations are rigid, meaning that we cannot modify them while keeping the

same contact graph and overlap angles, except by applying rotations, scaling, etc.

Mathematicians refer to theorems of this type as rigidity theorems.

As before, consideration of Figure 1.19 makes the following believable:
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Fact. Suppose that C is a thin disk configuration which is not triangulated. Then

there are disk configurations having the same contact graph and overlap angles as C,

but which are not similar to C.

Thus the uniqueness guaranteed by our Main Theorem is the best uniqueness we

could hope for for thin disk configurations.

We use the thinness condition in our proof of the Main Theorem, but suspect that

it is unnecessary, and make the following conjecture:

Conjecture. Our Main Theorem is still true if we completely get rid of the thinness

requirement from the statement.

A conjecture is a mathematical statement that we believe to be true, but cannot

prove. In 1999 Z.-X. He proved the following:

Theorem. Our Main Theorem is still true if we get rid of the thinness requirement

from the statement, provided that none of the overlap angles is bigger than 90◦.

However, the restriction that overlap angles stay below 90◦ is a strong one, and

he never published a version of this theorem where he managed to eliminate this

restriction.

1.6 Why study this stuff?

An often-asked question upon learning the content of this thesis is, what real-world

applications does it have? For insight into our motivations, we contemplate the

following stanza by Keats:

When old age shall this generation waste,

Thou shalt remain, in midst of other woe

Than ours, a friend to man, to whom thou sayst,

“Beauty is truth, truth beauty,” – that is all

Ye know on earth, and all ye need to know.

Beyond this, ostensibly some people are trying to use circle packings to map regions

of the brain, c.f. [Ste05, Section 23.4].
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Chapter 2

Introduction to circle packing

2.1 Origins of circle packing

Traditionally, a circle packing is defined to be a finite collection of pairwise interiorwise

disjoint metric closed disks in the Riemann sphere Ĉ = C ∪ {∞} equipped with the

constant curvature +1 metric as usual. There are no conditions on the radii of the

disks. Nowadays some authors use the phrase “circle packing” more loosely to refer

to collections of disks which may overlap, but for clarity we do not do so in this thesis.

b

b

b

b b

b

b

b

b

Figure 2.1: A circle packing and its contact graph. Although the circle
packing gives us a natural geodesic embedding of its contact graph, we draw the
graph separately here to emphasize that it is a purely combinatorial object.

We say that two closed disks are tangent if their boundary circles are tangent. Let

P be a circle packing on the Riemann sphere. The contact graph of P is the graph

G whose vertex set is in bijection with the disks of P , so that 〈vi, vj〉 is an edge in G

if and only if Di and Dj are tangent. We adopt the convention that Di ∈ P is the

disk corresponding to vi ∈ V where (V,E) is the contact graph of P . We will also

sometimes use the notation that Dv ∈ P is the disk corresponding to v ∈ V , when it

is clear what is meant. The following is a natural question:

Question 2.1. Given a graph G, does it occur as the contact graph of some circle

packing?

A circle packing gives us a natural embedding of its contact graph, so if G is the

contact graph of a circle packing on the Riemann sphere then G must be planar. It
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turns out that this is essentially the only requirement on G for a positive answer to

Question 2.1:

Circle Packing Theorem 2.2. Every simple planar graph G occurs as the contact

graph of some circle packing.

Recall that a graph is called simple if it is undirected, does not have loops, and has

no repeated edges. A loop is an edge from a vertex to itself. A graph is called planar

if it can be drawn in the plane with no edge crossings.

We will sketch a proof of the CPT 2.2 in the case where G is finite. The construc-

tion we give is due to Koebe, and appears in [Koe36]. It relies on a special case of

the so-called Koebe Conjecture, posed in [Koe08, p. 358]:

Koebe Conjecture 2.3. Every domain Ω ⊂ Ĉ is biholomorphically equivalent to

some circle domain }. Furthermore both } and the biholomorphism ϕ : Ω → } are

uniquely determined by Ω, up to post-composition of ϕ by Möbius transformations.

A domain in Ĉ is a connected open subset of Ĉ, and a circle domain is a domain so

that every boundary component is a metric circle or a point. Thus the KC 2.3 is a

conjectured generalization of the classical Riemann Mapping Theorem (see [Ahl78,

Chapter 6, Theorem 1; Rud87, Theorem 14.8]):

Riemann Mapping Theorem 2.4. Any simply connected domain Ω ( C is biholo-

morphically equivalent to the open unit disk D, and the biholomorphism is uniquely

determined by Ω, up to post-composition by Möbius transformations D→ D.

Koebe himself stated the following, c.f. [Koe08]:

Koebe’s Theorem 2.5. The Koebe Conjecture 2.3 holds for domains having finitely

many boundary components.

His construction of the uniformizing map is via an iterative algorithm, and goes as

follows. Let Ω = Ω1 denote our domain, and number its boundary components

1, . . . , n. Let Ωi+1 be obtained from Ωi by applying a biholomorphism sending the

(i mod n)th boundary component γ to a metric circle. We may do this by applying

the Riemann Mapping Theorem 2.4 to the domain in the Riemann sphere which is

bounded by γ and which contains Ωi. Of course, after the next iteration of this

algorithm, probably that boundary component will have been distorted into a Jordan

curve which is not a circle, but this new distortion is “not too bad.” Anyway, one

shows that under the appropriate normalizations, the Ωi converge to the desired circle

domain.
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Remarks 2.6. It was later proved that the Koebe Conjecture 2.3 holds for countably

connected domains, that is, domains having countably many boundary components,

see [HS93, Theorem 0.1]. Incidentally, the proof uses our main tool, the fixed-point

index, in particular the Circle Index Lemma 3.1. Proofs of many other special cases

of the KC 2.3 are known, and the same article [HS93] contains a list of references.

There are counterexamples to the uniqueness part of the statement of the KC

2.3 for uncountably connected domains. A brief discussion of this appears in the

paragraph following the statement of Theorem 0.1 in the same article. The existence

part in this case is still open.

The Circle Packing Theorem 2.2 is then proved as follows. Fix an embedding of

G in the plane. For every vertex v pick a domain Ωv bounded by a Jordan curve γv

so that v is contained in the domain Ωv, but no other vertex is, and so that the Ωv

are disjoint. Let Ω be the domain obtained by removing the closures of the Ωv from

Ĉ. Then by Koebe’s Theorem 2.5, the domain Ω is biholomorphically equivalent to

a circle domain, call it }1. Repeat this process, ensuring at each successive iteration

that if 〈u, v〉 is an edge in G, then the boundaries of Ωu and Ωv have moved closer

together. In this way we obtain a sequence of circle domains }i. One then shows

that under the appropriate normalizations, the complements of the }i converge to

the desired circle packing.

Thurston has an elementary constructive existence proof, which involves adjust-

ing the radii of the circles iteratively. He writes, “A change of any single radius

affects most strongly the curvature at that vertex, so this process converges reason-

ably well,” see [Thu80, Section 13.7]. Thurston’s method is implemented in Stephen-

son’s program circlepack, available online at http://www.math.utk.edu/~kens/

CirclePack/, to draw circle packings having prescribed contact graphs.

2.2 Rigidity

Given the Circle Packing Theorem 2.2, we have as a natural follow-up question:

Question 2.7. To what extent is the circle packing realizing a given graph unique?

We say that P realizes G if G is the contact graph of the circle packing P . Of course,

Möbius and anti-Möbius transformations send circle packings to circle packings while

preserving the contact graph, so the best we can hope for is uniqueness up to action

by these maps. It is easy to construct examples of circle packings which have the

same contact graph, but which are not Möbius equivalent. However, the following

holds:
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Koebe–Andreev–Thurston Theorem 2.8. Let X be a triangulation of the 2-

sphere S2. Then the circle packing realizing X is unique, up to action by Möbius and

anti-Möbius transformations.

A triangulation of a surface S is a collection of topological triangles with edge iden-

tifications so that the resulting object is homeomorphic to S. Thus in particular any

triangulation of a surface without boundary is locally finite, and any triangulation of

a compact surface without boundary is globally finite. To avoid pathological cases

we require that

• two distinct faces of a triangulation X may only meet along a single edge, or at

a single vertex, or not at all, and that

• there are no edge nor vertex identifications along the boundary of any one face

of X.

We consider triangulations only up to their combinatorics. When we say that a

circle packing realizes a triangulation of the 2-sphere X = (V,E, F ), we mean that it

realizes the graph (V,E) which is the 1-skeleton of the triangulation.

We remark at this point that if G is a finite simple planar graph which is not

the 1-skeleton of a triangulation of the 2-sphere, then there exist circle packings in Ĉ
realizing G which are not Möbius equivalent. Thus the uniqueness statement given

in the KATT 2.8 is the best possible.

There is an easy proof of the KATT 2.8 based on a discrete version of the Discrete

Complex Maximum Modulus Principle 2.9. We give this proof now to build intuition,

and because we will refer back to the ideas of the proof in the future. This proof can be

found in [Roh11, Section 2.4.3], where it is attributed to Oded Schramm. The earliest

published version of this argument that we are aware of appears in [He99, Section 2].

We first state and prove the DCMMP 2.9. If D is a metric closed disk in C then

let RC(D) denote its Euclidean radius.

Discrete Maximum Modulus Principle 2.9. Let D,Di, be pairwise interior-

wise disjoint metric closed disks in C, with i ∈ Z/nZ and n ≥ 3. Suppose that

the Di form a tangent cycle around D. More precisely, suppose that D and Di are

tangent for all i, and that Di and Di+1 are tangent for all i. Let D̃, D̃i also be pair-

wise interiorwise disjoint metric closed disks in C satisfying the analogous conditions.

Then, unless RC(D)/RC(D̃) = RC(Di)/RC(D̃i) for all i, there exists some i so that

RC(D)/RC(D̃) < RC(Di)/RC(D̃i).
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Proof. This is a consequence the following simple observation:

Observation 2.10. Let z and zi denote the Euclidean centers of D and Di, respec-

tively. Then the acute angle ]zizzi+1 is monotone increasing in both RC(Di) and

RC(Di+1), and is monotone decreasing in RC(D).

Then suppose for contradiction that RC(D)/RC(D̃) > RC(Di)/RC(D̃i) for some i,

and simultaneously that there is no i so that RC(D)/RC(D̃) < RC(Di)/RC(D̃i). Scale

the collection of disks D̃, D̃i so that RC(D) = RC(D̃). Then for every i we have that

RC(Di) ≤ RC(D̃i), with strict inequality for some i. Let z̃ and z̃i denote the Euclidean

centers of D̃ and D̃i, respectively. Then by Observation 2.10:∑
i∈Z/nZ

]zizzi+1 <
∑

i∈Z/nZ

]z̃iz̃z̃i+1

However, because the Di form a tangent cycle around D, similarly the D̃i around D̃,

both of these sums must be 2π, so we obtain our contradiction.

Proof of the Koebe–Andreev–Thurston Theorem 2.8. Let P = {Dv} and P̃ = {D̃v}
be two circle packings in Ĉ realizing the same triangulation X = (V,E, F ) of the

2-sphere S2. The following is well-known, and not hard to check:

Fact 2.11. Suppose that z1, z2, z3 are distinct points on the Riemann sphere Ĉ. Then

there is a unique triple of metric closed disks in Ĉ having pairwise disjoint interiors,

so that the three disks are pairwise tangent at the points zi.

Pick a triangle 〈v1, v2, v3〉 ∈ F . Then we may assume without loss of generality

by applying a Möbius transformation and possibly a reflection that Di = D̃i for

i = 1, 2, 3. Normalize further so that the Di are metric closed disks in the plane, and

so that all other disks of the two packings P and P̃ are contained in the bounded

region formed by the Di = D̃i for i = 1, 2, 3. We will be done once we show that Dv

and D̃v have the same radii for every vertex v ∈ V of X.

Let v be a vertex of X where RC(Dv)/RC(D̃v) is maximized. Such a v exists

because X has finitely many vertices. If this ratio equals 1 for every v ∈ V then we

are done, so suppose for contradiction, after interchanging the roles of P and P̃ if

necessary, that this ratio exceeds 1 for some v ∈ V . This implies v 6= v1, v2, v3 because

RC(Di)/RC(D̃i) = 1 for i = 1, 2, 3.

Then by the DCMMP 2.9 if w is any neighbor of v in the 1-skeleton of X, then

RC(Dw)/RC(D̃w) = RC(Dv)/RC(D̃v), so in particular the ratio we are considering is
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maximized at w also. So, by stepping from vertex to vertex we get RC(Dw)/RC(D̃w) =

RC(Dv)/RC(D̃v) > 1 for every w ∈ V , contradicting D1 = D̃1.

Koebe gave a statement equivalent to the KATT 2.8 in [Koe36], which we discuss

later in Section 2.11. The CPT 2.2 and the KATT 2.8 were rediscovered by Thurston

in the late 1970s. He first brought these theorems to the attention of the mathematics

community at large in his talk at the International Congress of Mathematicians,

Helsinki, 1978, according to [Sac94, p. 135]. There he discussed his methods of proof

based essentially on results of Andreev concerning finite-volume hyperbolic polyhedra,

see [And70]. Andreev’s results are too technical to state here, although we discuss a

powerful generalization of his results due to Rivin in Section 2.10. The best source we

are aware of for Thurston’s work on this topic is his widely circulated lecture notes,

[Thu80, Chapter 13]. There he notes that his methods can be generalized without

too much trouble to give stronger results, discussed in Section 2.10. He also observes

that the rigidity of the KATT 2.8 can alternatively be obtained as a consequence of

the finite-volume Mostow–Prasad Rigidity Theorem 2.58; we describe how in Section

2.11. Today many proofs exist of existence and uniqueness of packings having contact

graphs triangulating the sphere. For example, some proofs using variational principles

appear in [CdV91,Brä92,Riv94].

2.3 Discrete Riemann mapping

This section is not directly related to the new mathematical results of this thesis,

but is here for reasons of exposition and motivation. A central theme is that many

notions from classical complex analysis have as their “discrete analogs” statements

about circle packings. We saw an example of this already, in the proof of the KATT

2.8 via an application of a “discrete maximum principle.” Perhaps the most important

example of this general theme is that the KATT 2.8 can be interpreted as the “discrete

analog of the classical Riemann Mapping Theorem 2.4.” We first state a corollary to

the CPT 2.2 and KATT 2.8:

Corollary 2.12. Let X = (V,E, F ) be a triangulation of a topological closed disk.

Then there exists a circle packing P = {Dv} realizing X in the closed unit disk D̄ ⊂ C
by Euclidean metric disks Dv, so that v is a boundary vertex of X if and only if Dv is

internally tangent to ∂D. Furthermore P is uniquely determined by X, up to action

by Möbius and anti-Möbius transformations fixing D set-wise.

For ε > 0 let P6,ε denote the “hexagonal packing,” also known as the “penny

packing,” the infinite constant-degree-6 packing of the plane by disks of constant
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radius, in this case ε. See Figure 1.10a on p. 8. Here the degree of a disk is how many

neighbors it has in the packing.

Pick Ω ( C to be a simply connected open set. For ε > 0 consider the set Dε of

disks in P6,ε which are completely contained in Ω. For ε sufficiently small the contact

graph of Dε is a triangulation Xε of a topological closed disk. Then let Pε be a circle

packing in D̄ realizing Xε, as per Corollary 2.12. We have a natural bijection between

the disks of Dε, lying in Ω, and those of Pε, lying in D. Define a function ϕε : Ω→ D
“roughly” according to this bijection, in the natural way. Then:

Rodin–Sullivan Theorem 2.13. Suitably normalized, the ϕε converge to the Rie-

mann mapping Ω→ D as ε→ 0.

This theorem was originally posed as a conjecture by Thurston, in his address at

the International Symposium in Celebration of the Proof of the Bieberbach Conjec-

ture, Purdue University, March 1985, according to [HS93, p. 371]. His conjecture is

often credited with opening up the field of circle packing. The conjecture was proved

by Rodin and Sullivan in [RS87]. The second half of Stephenson’s book [Ste05] is

devoted to the study of the connections between circle packing and classical complex

analysis. In particular, he proves the Rodin–Sullivan Theorem 2.13 in Chapter 19.

The Rodin–Sullivan Theorem 2.13 has been generalized considerably. For further

details and references, see [Ste05, Chapter 20].

In a similar vein, the Measurable Riemann Mapping Theorem on existence and

uniqueness of quasi-conformal maps has been proved via circle packing in [He90], and

independently in [Wil06].

2.4 Discrete uniformization

The next natural question to ask is:

Question 2.14. Can we find some existence and uniqueness theorems for circle pack-

ings in the complex plane, or in the hyperbolic plane?

This question, too, has a complete answer:

Discrete Uniformization Theorem 2.15. Let X be a triangulation of a topological

open disk. Then there exists a locally finite circle packing P in G realizing X, where G
is one of C and H2. Furthermore G is uniquely determined by X. Also P is uniquely

determined by X up to action by conformal and anti-conformal automorphisms of G,

that is, by Euclidean similarities if G = C and by hyperbolic isometries if G = H2.
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This is the circle packing analog of the classical Uniformization Theorem, c.f. [For91,

Theorem 27.9]:

Uniformization Theorem 2.16. Let M be a simply connected one-dimensional

differentiable complex manifold. Then M is conformally isomorphic to exactly one of

the Riemann sphere Ĉ, the complex plane C, and the hyperbolic plane H2.

Traditionally, to parallel the UT 2.16 more closely, the DUT 2.15 is stated for X a

triangulation of a simply connected topological surface, in which case the statement

is exactly the combination of the CPT 2.2 and the KATT 2.8 with the statement of

the DUT 2.15 we have given. We discuss the history of the DUT 2.15 at the end of

this section.

Throughout we will consider the Poincaré unit disk model of the hyperbolic plane

H2. We will implicitly refer to the following fact frequently:

Fact 2.17. If D ⊂ H2 is a hyperbolic metric disk, then the image of D in C under

the Poincaré unit disk embedding H2 ↪→→ D ↪→ C is a Euclidean metric disk in C. Of

course, the image of the hyperbolic center of D ⊂ H2 is not the Euclidean center of

D ⊂ C, unless both happen to be the origin 0 ∈ C.

We now work out an example in detail. The degree or valence of a vertex in a graph,

or in a triangulation, is the number of edges incident to it.

Example 2.18. Let X6 be the 6-valent triangulation of the plane, meaning the

triangulation so that every vertex has degree 6. It is easy to see that there is only

one, considered up to its combinatorics. Then the circle packing realizing X6 is the

“penny packing” P6 in C. In particular, the DUT 2.15 implies that there is no packing

realizing X6 in the hyperbolic plane.

Next, let X7 be the 7-valent triangulation of an open disk. Again, there is only

one. Then, there is a locally finite circle packing P7 by constant-radius hyperbolic

disks realizing X7 in the hyperbolic plane. To see why, we construct such a packing.

It suffices to show that there exists r ∈ R so that hyperbolic disks of hyperbolic

radius r may be arranged to perfectly surround another hyperbolic disk of radius

r. We show that for r too small, the seven satellite disks wrap too far around the

central disk, and for r too big, it is impossible for seven satellite disks to wrap all the

way around the central disk. Then by continuity there is an intermediate r which

works. Hyperbolic geometry “looks Euclidean” on a small scale, in the sense that

small nearby disks of the same hyperbolic radius have similar Euclidean radii under

the unit disk embedding H2 ↪→→ D. Thus it is clear that if r is sufficiently small,

24



then our seven satellite disks will wrap too far around the central disk, because six

Euclidean disks of constant radius wrap perfectly around a central disk having the

same Euclidean radius. Next, suppose we take our central disk D to be centered at

the origin 0 ∈ D. If r is sufficiently big, then no seven Euclidean disks tangent to D,

but contained in the unit disk D, can wrap around D.

Note that P7 is also a circle packing in C via the Poincaré embedding H2 ↪→→ D,

but P7 is not locally finite in C. It turns out that the converse situation does not

occur: if P is a locally finite circle packing in C realizing the triangulation X of an

open disk, then there is no circle packing in H2 realizing X, locally finite or not.

We now sketch the proof of the existence part of the DUT 2.15. This construction

is standard, and its details can be found in [Ste05, Chapter 8] or in [HS95, Theorem

7.1]. We will use Corollary 2.12. Fix X as in the statement of the DUT 2.15.

Pick a vertex v0 of X, and let X1, X2, . . . be an exhaustion of X by triangulations

of a topological closed disk, all containing v0, so that ∪∞i=1Xi = X. For each Xi

let Pi = {Di
v} be a circle packing coming from Corollary 2.12, normalized so that

Di
v0
∈ Pi is centered at the origin 0 ∈ D ∼= H2 for all i. One shows first that the

hyperbolic radii of the disks of the packings Pi is monotone decreasing under this

procedure. This follows from the following lemma, which is the circle packing analog

of the classical Schwarz–Pick Lemma:

Discrete Schwarz–Pick Lemma 2.19. Let Y be a triangulation of a topological

closed disk, and let Q be the packing realizing Y as in Corollary 2.12. Let Q̃ be

another circle packing realizing Y , so that every disk of Q̃ is contained in the unit

disk D̄. Then the (possibly infinite) hyperbolic radius of the disk Ev ∈ Q for the vertex

v is at least the hyperbolic radius of Ẽv ∈ Q̃. Furthermore, equality of these radii at

even a single interior vertex, or equality at every boundary vertex, implies equality at

every vertex.

This was originally proved by a Perron method in [BS91b]. However, it can be proved

easily by an application of the Discrete Complex Maximum Modulus Principle 2.9,

as a corollary of the following observations:

Observation 2.20. Let D0 be a metric closed disk contained in D ∼= H2 centered at

the origin, and let D be a metric closed disk with variable radius which is tangent to

D0. Then RH2(D), if finite, is monotone increasing in RC(D). Furthermore for real

δ > 1, we have that RH2(δD)/RH2(D) > RC(δD)/RC(D) = δ.

Here δD is dilation of D about the origin, so δD = {δz : z ∈ D}. This argument is

adapted from [He99, Lemma 2.2].
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Thus by our normalization one of two cases occurs:

1. The Euclidean radius of Di
v0

converges to some positive real number.

2. The Euclidean radius of Di
v0

converges to 0.

In fact, we find that either case (1) occurs for all v ∈ V , or case (2) occurs for all

v ∈ V . This follows from the following lemma, c.f. [RS87, p. 352; Ste05, Lemma 8.2]:

Discrete Ring Lemma 2.21 (Rodin, Sullivan). Suppose that n ≥ 3 interiorwise

disjoint closed disks Di, encircle the unit disk D, so that all are externally tangent

to D. Then there is a constant depending only on n that lower bounds the Euclidean

radii of the encircling disks Di.

Attempting to draw a counterexample is generally enough to convince oneself of this

lemma.

So, suppose that all of the Euclidean radii of the Di
v converge to positive real

numbers. Then the subsequential limiting object of the Pi is a circle packing P in the

unit disk D ∼= H2 =: G realizing X. Next, suppose that the Euclidean radii of the Di
v

converge to 0. In this case one applies an additional normalization to all of the Pi,
scaling each so that the Euclidean radius of Di

v0
is equal to 1. Then the subsequential

limiting object of the Pi is a circle packing P in C =: G realizing X.

In either case, as the final step in establishing existence, one needs to show that

P is locally finite in G. This turns out to be non-trivial. This last part of the

proof is worked out using totally different methods in our two main references. In

[Ste05, Section 8.2], Stephenson uses a topological argument via our main tool, fixed-

point index, and the Discrete Schwarz–Pick Lemma 2.19 for circle packings. We give

further discussion on the Discrete Schwarz–Pick Lemma 2.19 shortly. His proof is

inspired by similar arguments carried out in a much more general setting by He and

Schramm in [HS93, Corollary 0.5], where a proof of the full statement of the DUT 2.15

is given via arguments related to the Koebe Conjecture 2.3. Stephenson attributes to

this paper the main ideas of the proof he gives. On the other hand, in [HS95, Theorem

7.1], Z.-X. He and Schramm complete this existence proof by vertex extremal length

arguments. Their existence statement is more general, in that it allows packing in

arbitrary simply connected planar domains, not necessarily D or C.

We next discuss the rigidity portion of the DUT 2.15. Rigidity of locally finite

circle packings in C in the bounded-valence case is easily proved by a slight modi-

fication of an argument by Rodin and Sullivan in [RS87, Appendix 1]. Their proof
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uses quasi-conformal mapping theory, and has no hope of being generalized to the

unbounded-valence case. Schramm gave the first proof of the rigidity part of the DUT

2.15 in the unbounded valence case in [Sch91, Rigidity Theorems 1.1, 5.1]. His proofs

are elementary, employing essentially only plane topology arguments and manipula-

tions with the Möbius group. A different proof is given with a similar main idea in

the article already mentioned [HS93] by He and Schramm. Similar rigidity theorems

in more general settings have been proved using vertex extremal length, as in [He99].

We will discuss this more in Section 2.10.

We give a proof similar to Schramm’s of the rigidity part of the DUT 2.15 when

G = G̃ = C, using fixed-point index in Section 3.5. The proof we present comes from

[Ste05, Section 8.3.3], and is adapted from arguments coming from [HS93]. In the

same section, we adapt this proof to show that there cannot be two circle packings,

one in C and the other in H2, both locally finite in their respective spaces, realizing

the same triangulation of a topological open disk.

Before moving on, we outline the proof of rigidity portion of the DUT 2.15 when

G = G̃ = H2. This proof is adapted from the proof of [He99, Rigidity Theorem

1.2], and can also be found in [Ste05, Section 8.3.2]. First, if D is a disk which meets

D ∼= H2 but is not contained in D, then we formally write RH2(D) =∞, and adopt the

convention that r <∞ for any real number r. We need the following straightforward

generalization of the Discrete Schwarz–Pick Lemma 2.19, which is also proved via the

Discrete Maximum Modulus Principle 2.9:

Lemma 2.22. Let Y be a triangulation of a topological closed disk, and let Q = {Ev}
and Q̃ = {Ẽv} be circle packings realizing Y . Suppose that all of the disks of Q meet

D, and all of the disks of Q̃ are contained in D. Then, if the inequality RH2(Ẽv) ≤
RH2(Ev) holds for all boundary vertices v, then it holds for all interior vertices v.

For the details of the proof of Lemma 2.22, see [He99, Section 2].

Now, let P and P̃ be circle packings realizing a shared triangulation X of a

topological open disk, so that both P and P̃ are locally finite in H2 ∼= D. Suppose

for contradiction that there is a pair of disks Dw ∈ P and D̃w ∈ P̃ with unequal

hyperbolic radii. Normalize so that both are centered at the origin 0 ∈ D ⊂ C,

and suppose without loss of generality that RH2(Dw) < RH2(D̃w). Because both are

centered at the origin this is equivalent to RC(Dw) < RC(D̃w). Then let δ > 1 so that

δRC(Dw) < RC(D̃w). Let P0 be the set of disks of δP = {δD : D ∈ P} which meet

D̄. Then because P is locally finite in D, the packing P0 is finite. Furthermore, by

adding finitely many disks of δP if necessary, we may suppose also that the contact
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graph of P0 is the 1-skeleton of a triangulation X0 of a topological closed disk. Write

D0
v to distinguish the disk for v in P0 from that in P . Let P̃0 be the set of disks of

P̃ whose vertices belong to X0. Then if v is a boundary vertex of X0, we have that

RH2(D0
v) is infinite. On the other hand, because the disks of P̃0 lie inside of D we

have that RH2(D̃v) is finite. Thus by Lemma 2.22 we have that RH2(D̃v) < RH2(D0
v)

for all v ∈ X0, thus RC(D̃w) < RC(D0
w) = δRC(Dw), a contradiction.

2.5 Generalizing to other surfaces

Question 2.23. Suppose that we start with a triangulation X of a topological surface

S other than the sphere and the open disk. Is there then a circle packing, appropriately

defined, realizing X, and is it unique in some nice sense?

At this point there is ambiguity surrounding the phrase circle packing. In particular,

we would like to have a metric structure on S so that we can talk about metric

closed disks, as Question 2.23 is trivial if we consider packings by topological disks.

Fortunately, and somewhat surprisingly, the combinatorics of X determine our metric

structure for us, as per the following theorem:

Theorem 2.24. Given a triangulation X of an oriented topological surface S, there

is a complete constant curvature Riemannian metric d on S and a locally finite circle

packing P in (S, d) so that P realizes X. Furthermore d is uniquely determined by X

up to conformal and anti-conformal isomorphisms, and P is then uniquely determined

by X and d up to conformal and anti-conformal automorphisms of (S, d).

We discuss the history of this theorem at the end of the section. By topological surface

we mean a connected Hausdorff 2-dimensional real manifold. Thus S may be open or

closed. We do not consider S with boundary. As usual, a metric is complete if every

Cauchy sequence converges.

By the Uniformization Theorem 2.16, the special case where S is simply connected

is exactly the DUT 2.15. Next, recall the following corollary to the Uniformization

Theorem:

Theorem 2.25. Let R be a Riemann surface homeomorphic to S. Then S admits a

complete constant curvature Riemannian metric d, uniquely determined by R up to

conformal isomorphisms of (S, d), so that (S, d) is conformally isomorphic to R.

Recall that a Riemann surface is a connected Hausdorff 1-dimensional differentiable

complex manifold. Thus Theorem 2.24 is a corollary of the DUT 2.15, by the following
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argument: let X be a triangulation of the non-simply-connected surface S. Then X

lifts to a periodic triangulation XU of SU the universal cover of S. We then obtain a

circle packing PU realizing XU in (SU, dU). It is not hard to show that PU is periodic

because XU is, so we may obtain our desired circle packing P realizing X in the

quotient space (X, d). The uniqueness part follows from uniqueness in the simply

connected case. We remark that the case of unoriented S may be taken care of using

a similar argument, by taking the oriented double cover of S.

The first half of Stephenson’s book [Ste05] consists of a complete and self-contained

proof of Theorem 2.24, from the CPT 2.2 and KATT 2.8 to the DUT 2.15. At many

crucial points he relies on the methods of Schramm and He. In [BS90] a statement

and self-contained proof is given of Theorem 2.24 with the significant additional

hypothesis that the vertex degree of X is uniformly bounded above; they use this

hypothesis strongly in their proof of the (bounded-valence) DUT 2.15, where their

argument appeals to the theory of quasi-conformal mapping. Another statement

similar to the DUT 2.15 is given and proved in [HS93, Corollary 0.5].

2.6 What is a thin disk configuration?

The new results contained in this thesis stem from the following question:

Question 2.26. If we consider collections of disks in which we allow overlaps, to

what extent can we recover our existence and uniqueness statements?

We are not the first to study collections of disks with overlaps. A discussion of related

results is given in Section 2.10.

More precisely, we use the term disk configuration to mean a collection of closed

disks, none of which is contained in any other, but with no other conditions. In this

thesis we focus on a particular class of disk configurations, namely the thin ones:

Definition 2.27. A disk configuration is called thin if no two of its disks meet in the

interior of a third.

For two examples of thin disk configurations see Figure 1.10 on p. 8.

2.6.1 Recognizing thin disk configurations

Let C = {Dv}v∈V be a disk configuration, and let G = (V,E) be its contact graph,

defined as before. Let Θ : E → [0, π) be a function. Then we say that C realizes

(G,Θ) if for every edge 〈u, v〉 of G, equivalently for every pair Du, Dv ∈ C which meet,
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we have that ](Du, Dv) = Θ(〈u, v〉), c.f. Figure 2.2. We use the term incidence data

to refer to such a pair (G,Θ), consisting of the graph G = (V,E) and the function

Θ : E → [0, π).

A

B

∡(A,B)

Figure 2.2: The definition of ](A,B) the external intersection angle or overlap
angle between two closed disks A and B.

Our first observation is that it is easy to check whether a disk configuration is

thin given only its incidence information:

Proposition 2.28. Let C be a disk configuration in Ĉ realizing the incidence data

(G,Θ). Then C is thin if and only if the following condition holds:

• Suppose that three edges e1, e2, e3 of G form a 3-cycle in G. Then we require

that Θ(e1) + Θ(e2) + Θ(e3) ≤ π.

The main idea of this proposition is essentially contained in Figure 2.3. We leave

checking the details to the reader. As a consequence, if two disk configurations C and

C̃ in Ĉ realize the same incidence data (G,Θ), then C is thin if and only C̃ is.

Figure 2.3: A triple of disks meeting thinly, and the sum of their overlap
angles. If we zoom in on the “hole” bounded by the three disks, we see that the
sum of their overlap angles is at most the sum of the angles in the dashed triangle.

The condition of thinness limits the combinatorial situations we need to consider,

and we use it strongly in our main technical result, the Index Theorem 4. Our

main focus in this thesis is to prove via elementary means a rigidity statement for

configurations of disks where we allow overlaps. For completeness, we include a

discussion on the question of existence in Section 2.9.

Before stating our main results in Section 2.7, we require a discussion on the types

of contacts that can occur in a thin disk configuration, contained in Section 2.6.2.
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2.6.2 Mostly-triangulations

We have seen that a circle packing on a surface S gives a natural embedding of its

contact graph into S. However, the contact graphs of arbitrary disk configurations

are not characterized so easily. For example, it is easy to see that there are disk

configurations in the plane C whose contact graphs are not planar. In particular,

consider the configuration having at least 5 disks all of which meet the origin, none

of which is contained in any other. In this section, we ask:

Question 2.29. If C is a thin disk configuration, what combinatorial conditions char-

acterize its contact graph?

This question turns out to have a relatively simple answer. We first note:

Observation 2.30. If C is a thin disk configuration, then at most four disks of C
can meet at any one point, and the only way that four disks can meet at a point is as

shown in Figure 2.4.

Figure 2.4: Four closed disks meeting at a point, and the associated contact
graph.

We remark at this point that this control over the simultaneous intersection of disks

of our configurations guaranteed by the thinness condition is an essential ingredient

in our rigidity proofs. Anyway, with Observation 2.30 in mind, we make the following

definition:

Definition 2.31. Let G = (V,E) be a graph. Suppose that there is a collection K
of subgraphs K4

i of G so that:

• each K4
i is a complete graph on 4 vertices, meaning that every two vertices in

K4
i have an edge between them,

• no pair K4
i and K4

j with i 6= j share more than 2 vertices, and

• if for each i, we delete from G an edge of K4
i which does not belong to any other

K4
j , then the resulting graph G0 is embeddable in the topological surface S.
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In that case we say that G is mostly-embeddable in S. We refer to the graph G0

obtained after our edge deletions as an S-reduction of G. Finally, we say that ψ :

G→ S is a mostly-embedding of G in S if there is an S-reduction G0 of G so that:

• the restriction of ψ to G0 is an embedding in S, and

• for e1, e2 ∈ E, the embedded edges ψ(e1) and ψ(e2) cross if and only if one of

e1 and e2 was deleted from G to obtain the S-reduction G0.

Then we say that ψ : G→ S is a mostly-embedding for this S-reduction G0.

Before moving on, we make two remarks on this highly technical definition. First,

every graph G that is embeddable in S is mostly-embeddable in S. Second, there

may in general be many distinct S-reductions of G, which admit different mostly-

embeddings.

By Observation 2.30, we get:

Observation 2.32. If C is a thin disk configuration living in (S, d), where S is a

surface and d is a Riemannian metric on S, then the contact graph G of C is mostly-

embeddable in S.

In fact, if we place a vertex for every disk Dv of C at the metric center of Dv, and

connect neighboring disks Du and Dv by the geodesic passing through their overlap

region Du ∩Dv, then the resulting representation of G is a mostly-embedding. Thus

mostly-embeddability of G in some surface S is a necessary condition for G to appear

as the contact graph of a thin disk configuration. Conversely:

Fact 2.33. If G is mostly-embeddable in S then there exists some thin disk configu-

ration C having contact graph G in (S, d) for some Riemannian metric d, although a

priori we are not allowed to specify the overlap angles of the disks of C.

This is not obvious, but nevertheless serves as good motivation for Definition 2.31.

It follows from Theorem 2.55.

Next:

Observation 2.34. Suppose that G0 is the 1-skeleton of a triangulation of a topo-

logical surface S. Then it is not hard to see that G0 admits precisely one embedding

in S, up to action by homeomorphisms S → S.

Let S be a surface, and suppose that G is a graph which admits an S-reduction G0.

Let ψ : G→ S be a mostly-embedding for G0. Suppose that for any S-reduction G′0

of G with associated mostly-embedding ψ′, the following hold:
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• We have that ψ restricts on G′0 to an embedding, similarly ψ′ on G0, and

furthermore that

• the restrictions of ψ and of ψ′ to G0 ∩ G′0 differ by post-composition by a

homeomorphism S → S.

Then we say that G admits an essentially unique mostly-embedding ψ : G → S. In

that case, if e1, e2 ∈ E are so that ψ(e1) and ψ(e2) cross, then one of e1 and e2 is

deleted in any S-reduction of G. Then the following definition is well-stated as a

consequence of Observation 2.34:

Definition 2.35. Suppose that the graph G admits an S-reduction G0 which is the

1-skeleton of a triangulation of S. Then any other S-reduction of G is also the 1-

skeleton of a triangulation of S, and G admits an essentially unique mostly-embedding

ψ : G→ S. In this case we say that G is a mostly-triangluation of S.

2.7 Statements of the main results

Our main results are the following three theorems:

Main Rigidity Theorem 1. Let C be a thin disk configuration in Ĉ realizing in-

cidence data (G,Θ). Suppose that G mostly-triangulates the 2-sphere. Suppose C̃ is

another disk configuration in Ĉ realizing (G,Θ). Then C and C̃ differ by a Möbius or

anti-Möbius transformation.

Main Rigidity Theorem 2. Let C be a locally finite thin disk configuration in C
realizing incidence data (G,Θ). Suppose that G mostly-triangulates a topological open

disk. Suppose C̃ is another locally finite disk configuration in C realizing (G,Θ). Then

C and C̃ differ by a Euclidean similarity.

Main Uniformization Theorem 3. There do not exist two thin disk configurations

C locally finite in C and C̃ locally finite in H2 realizing the same incidence data.

Theorems 1, 2, and 3 are proved roughly the same way, using our technical result the

Main Index Theorem 4. The proofs are in Section 4.3.

We remark that our Main Rigidity Theorem 1 may be obtained from Rivin’s

Theorem 2.45 via a construction described in Section 2.9.3, but our other two main

theorems cannot. In general, the Riemann sphere Ĉ is the setting in which rigidity

statements of this type are easiest to prove, and the complex plane is the setting

where doing so is most difficult.

We also state the following analogous rigidity result in the hyperbolic plane:
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Theorem 2.36. Let C be a locally finite thin disk configuration in H2 realizing inci-

dence data (G,Θ). Suppose that G mostly-triangulates a topological open disk. Sup-

pose C̃ is another locally finite disk configuration in H2 realizing (G,Θ). Then C and

C̃ differ by a hyperbolic isometry.

This can be proved by a modification of the proof in Section 2.4, where we proved

rigidity of circle packings locally finite in H2 having contact graphs triangulating a

topological open disk. In particular we would require a generalization of the Discrete

Schwarz–Pick Lemma 2.19. It is straightforward to adapt the proof of the general-

ization of the same lemma given in [He99, Lemma 2.2] to our setting. We omit the

details.

In a way, the main contribution of this thesis is that our proof via our Index

Theorem 4 confirms that the elementary arguments for rigidity of circle packings

in the plane given in [Sch91], and implicitly in [HS93], can be generalized to case

where we allow some overlaps among our disks. It was previously thought that those

arguments depended too crucially on pairwise interiorwise disjointness of the disks for

there to be a hope of generalizing them in this direction, see comments in [He99, p.

3].

Our Main Theorems 1, 2, 3, together with Theorem 2.36, imply a uniqueness state-

ment for thin disk configurations on other surfaces along the lines of the uniqueness

portion of the Discrete Uniformization Theorem 2.15, and via an identical proof.

2.8 Conjectured generalizations of our main results

Most simply, we make the following conjecture:

Conjecture 2.37. Our Main Theorems 1, 2, and 3 and Theorem 2.36 continue to

hold with the thinness condition omitted.

Our Main Index Theorem 4 has thinness as a hypothesis, and we will conjecture that

we may eliminate the thinness condition there as well. It seems that then our proofs

should generalize to establish the first three theorems listed in Conjecture 2.37. Then

it seems implausible that the generalized version of Theorem 2.36 could fail if the

generalizations of Theorems 1, 2, and 3 hold.

Even more strongly, we make two conjectures which together would subsume all

other currently known rigidity and uniformization statements on disk configurations.

First:
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Conjecture 2.38. Suppose that C and C̃ are disk configurations, locally finite in G
and G̃ respectively, where each of G and G̃ is equal to one of C and H2, with the a

priori possibility that G 6= G̃. Suppose that C and C̃ share a contact graph G = (V,E).

Suppose further that there is a planar subgraph of G which is a polytopal decomposition

of a topological open disk. Then G = G̃.

A polytopal decomposition of a topological surface is a decomposition of the surface

into cells, each of which has finitely many sides, so that each vertex is incident to

finitely many edges, but with no a priori uniform bounds on the degrees of either

the faces or the vertices. We insist on the same regularity conditions as those we

imposed on triangulations, c.f. p. 20. We remark that a polytopal decomposition of

the 2-sphere S2 is exactly a combinatorial polyhedron. A natural approach to try

to prove Conjecture 2.38 is via vertex extremal length arguments, along the lines of

[He99, Uniformization Theorem 1.3] and [HS95]. Second:

Conjecture 2.39. Suppose that C and C̃ are disk configurations, both locally finite

in G, where G is equal to one of C and H2. Suppose that C and C̃ realize the same

incidence data (G,Θ). Suppose further that some maximal planar subgraph of G is

the 1-skeleton of a triangulation of a topological open disk. Then P and P̃ differ by

a Euclidean similarity if G = C or by a hyperbolic isometry if G = H2.

Conjectures 2.38 and 2.39 could follow from suitable generalizations of our technical

theorems. We also make the natural conjecture analogous to Conjecture 2.39 for disk

configurations on the Riemann sphere.

Finally, we conjecture that Conjecture 2.39 is the best possible uniqueness state-

ment of its type, in the following precise sense:

Conjecture 2.40. Let C be a disk configuration which is locally finite in G, where G
is one of Ĉ, C, or H2. Suppose that C realizes incidence data (G,Θ). Suppose that

no maximal planar subgraph of G is the 1-skeleton of a triangulation of a topological

open disk. Then there are disk configurations in G realizing (G,Θ) which are not

images of C under any conformal or anti-conformal automorphism of G.

2.9 The existence question for disk configurations

The following is a natural question, given our previous discussion:

Question 2.41. Let G be a graph, and let Θ : E → [0, π). Can we give necessary

and sufficient conditions on G and Θ under which there exists a disk configuration

realizing the incidence data (G,Θ)?
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No complete answer to this question is currently known. Considering disk configura-

tions on multiply-connected surfaces complicates matters, so for the sake of simplicity,

for the remainder of our discussion of Question 2.41 we restrict our attention to disk

configurations in Ĉ. We will see an example of how things change on multiply con-

nected surfaces in Remark 2.42.

It is easy to see that certain conditions are necessary for a positive answer to

Question 2.41. For example:

(]1) Suppose that vi, i ∈ Z/nZ are vertices forming an n-cycle in G, with n ≥ 4, so

that vi and vi+1 share an edge in G, but vi and vj do not for i 6= j ± 1. Then,

we require that
∑n

i=1 Θ(〈vi, vi+1〉) is strictly less than (n − 2)π the sum of the

interior angles of a Euclidean n-gon.

To see why this condition is necessary, see for example Figures 1.16 and 1.17 on p.

12. The essential point is that certain contacts and overlap angles demanded by G

and Θ can force additional contacts. So, for a positive answer to Question 2.41,

these forced additional contacts, and perhaps some special angle conditions on them,

should be reflected in (G,Θ). It seems that in general, finding clean statements of

these conditions that force extra contacts, along the lines of (]1), is not easy. Our

setting of thin disk configurations is somewhat more tractable, and is discussed next

in Section 2.9.1.

Remark 2.42. A disk configuration on a multiply-connected surface S may realize

a pair (G,Θ) which fails to satisfy condition (]1). In this case it turns out that

we need to consider, in condition (]1), only those n-cycles whose edges’ images,

under the natural geodesic embedding, form a contractible closed loop in S. Similar

technical modifications of the conditions described in Section 2.9.1 would be necessary

if we wished to accommodate disk configurations in multiply-connected surfaces. For

simplicity we do not mention this issue from now on.

2.9.1 Existence of thin disk configurations

Our main result is a rigidity theorem, and it would be nice to have a characterization,

or at least an existence statement, for the collection of objects for which we are proving

rigidity. Thin disk configurations are easy to draw directly, so clearly the collection of

objects we are considering is non-trivial, and in fact quite large. We ask the following

question, which we will see is a special case of Question 2.41:

36



Question 2.43. Let G be a graph, and let Θ : E → [0, π). Can we give necessary and

sufficient conditions on G and Θ under which there exists a thin disk configuration

realizing (G,Θ)?

We remind the reader that for the remainder of the section, we consider only disk

configurations in Ĉ. We first remark that a complete answer to the more general

Question 2.41 would give a complete answer to Question 2.43 as well, via Proposition

2.28, which guarantees that a disk configuration realizing the incidence data (G,Θ)

is thin if and only if the following condition on (G,Θ) holds:

(]2) Suppose that three edges e1, e2, e3 of G form a 3-cycle in G. Then we require

that Θ(e1) + Θ(e2) + Θ(e3) ≤ π.

We do not have a complete answer for Question 2.43. We describe several nec-

essary conditions on (G,Θ), for a positive answer to the question in Section 2.9.2.

Afterward, we state Theorem 2.44, which gives sufficient conditions for a positive

answer to the same question. It is easily seen that these sufficient conditions are

not necessary for a positive answer. Finally, we give a heuristic argument for why a

complete answer to Question 2.43 may be hard to present, via a worked example in

Section 2.9.6.

2.9.2 Some necessary conditions on (G,Θ) and an existence
statement

The following conditions are easily seen to be necessary for the existence of a thin

disk configuration in Ĉ realizing (G,Θ):

(]3) Suppose that G has an essentially unique mostly-embedding ψ : G → S2, and

that the edges e1, e2, e3 of G form a 3-cycle in (V,E) that separates the graph

(V,E), meaning that the graph obtained from G by removing the closed edges

e1, e2, e3 is disconnected. Then we require that
∑3

i=1 Θ(ei) < π.

This can be thought of as the analog of (]2) for n = 3. To see why, see Figure 2.5.

Next:

(]4) Suppose that the edges e1, e2, e3, e4 of G = (V,E) form a 4-cycle in G in that

order, and that
∑4

i=1 Θ(ei) = 2π. Then we require that the vertices which

are the endpoints of the ei form a complete subgraph in G. In particular, this

together with the thinness condition on (G,Θ) implies two things: (1) for e

equal to either of the two other edges of this subgraph besides e1, e2, e3, e4, we

get that Θ(e) = 0, and (2) we get Θ(e1) = Θ(e3) = π −Θ(e2) = π −Θ(e4).
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Figure 2.5: Justification for angle condition (]3). Consider the graph G =
(V,E) as shown. It has an essentially unique embedding in Ŝ2. Suppose we label the
solid edges e1, e2, e3 as shown. Define Θ : E → [0, π) so that Θ(e1)+Θ(e2)+Θ(e3) =
π, but Θ(e) = 0 for all other edges e of G. The black disks are meant to represent
the endpoints of the edges e1, e2, e3: they will meet as shown. Then to realize (G,Θ),
we need to add two disjoint disks, each of which is tangent to every solid disk. We
cannot do so, because there is no “hole” in the middle of the solid disks, as there
would be if we had instead Θ(e1) + Θ(e2) + Θ(e3) < π.

(]5) Suppose that G = (V,E) has an essentially unique mostly-embedding ψ : G→
S2. Let e1 = 〈u1, v1〉 , e2 = 〈u2, v2〉 ∈ E so that ψ(e1) and ψ(e2) cross. Then

u1, u2, v1, v2 form a complete subgraph of G. Let Θ : E → [0, π). Then we

require that Θ(e1) = Θ(e2) = 0, and that
∑

e6=e1,e2 Θ(e) = 2π, with the sum

taken over all other edges e 6= e1, e2 in the subgraph formed by u1, u2, v1, v2.

Conditions (]4) and (]5) can be thought of as the converses of one another. Condi-

tion (]4) is necessary because if a 4-cycle in G formed by edges e1, e2, e3, e4 satisfies∑4
i=1 Θ(ei) = 2π, then by a picture similar to that given in Figure 2.5 there is no

“hole” between the disks corresponding to the endpoints of the ei, and furthermore

by thinness the disks must in fact meet as in Figure 2.4. Similarly, condition (]5) is

necessary for existence of a thin disk configuration by Observation 2.30.

Unfortunately, these conditions on (G,Θ) are not sufficient for existence of a thin

disk configuration realizing (G,Θ), as we shall see in Section 2.9.6. However, we will

prove the following:

Theorem 2.44 (Sufficient conditions for existence of a thin disk configuration). Let

G = (V,E) be a mostly-triangulation of the 2-sphere S2, and let Θ : E → [0, π) so

that conditions (]1), (]2), (]3), (]4), (]5) all hold. Suppose also that the following

condition holds:

• For every pair of successive edges e1 = 〈v1, v2〉 , e2 = 〈v2, v3〉 in E, with v1 6= v3,

we have that Θ(e1) + Θ(e2) ≤ π.
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Then there exists a disk configuration C on the Riemann sphere Ĉ realizing (G,Θ),

and it is thin. Furthermore C is uniquely determined by (G,Θ), up to action by

Möbius and anti-Möbius transformations.

We prove this theorem in Section 2.9.5. The example in Section 2.9.6 will show that

the extra hypothesis on (G,Θ) given in Theorem 2.44 is not necessary for the existence

of a thin disk configuration realizing (G,Θ).

2.9.3 Hyperbolic polyhedra and Rivin’s Theorem 2.45

We digress briefly to recall some ideas from hyperbolic geometry. A theorem in this

area will be used to give us an existence statement in our setting. We will describe

the connection between this setting and ours in Section 2.9.4.

We work in hyperbolic 3-space H3. A hyperbolic half-space of H3 is a subset of

H3 the boundary of which is a hyperbolic plane. Then a hyperbolic polyhedron is

the intersection of finitely many closed hyperbolic half-spaces, so that the resulting

object has finite hyperbolic volume and non-empty interior. Such an object may

alternatively be described as the closure of H3 \∪ni=1Hi, where each Hi is a hyperbolic

half-space, again insisting that what remains has finite hyperbolic volume and non-

empty interior.

Identify Ĉ with the unit sphere in R3, and identify hyperbolic 3-space H3 with the

open unit ball in R3 via the Poincaré ball model. In this model a hyperbolic plane

is precisely the intersection of H3 with a Euclidean sphere or plane in R3 that meets

Ĉ = ∂H3 orthogonally. Thus for example cutting out a hyperbolic half-space Hf from

H3 may be visualized as taking an “ice cream scoop” out of H3.

Recall also that a combinatorial polyhedron X is a polytopal decomposition of the

2-sphere S2. The boundary of a hyperbolic polyhedron P decomposes naturally into

vertices, edges, and faces, giving us a combinatorial polyhedron X which we say is

realized by P . We adopt the convention that we will use the same symbol to refer to

a vertex, edge, or face of P and the respective one of X, and trust that context will

always make our meaning clear.

Recall that under the Poincaré ball model, the Riemann sphere Ĉ can be thought

of as ∂H3, or the “infinity” of H3. Then isometries of H3 are identified in the natural

way with Möbius and anti-Möbius transformations of Ĉ.

An ideal hyperbolic polyhedron is a hyperbolic polyhedron all of whose vertices

lie on Ĉ. The following theorem is a complete characterization of ideal hyperbolic

polyhedra:
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Rivin’s Theorem 2.45. Let X = (V,E, F ) be a combinatorial polyhedron, and let

Θ : E → (0, π) be a function. Then there exists an ideal hyperbolic polyhedron P in

H3 combinatorially equivalent to X, so that the exterior dihedral angle at every edge

e is given by Θ(e), if and only if the following two conditions hold:

• If v is a vertex of X then we have
∑

e3v Θ(e) = 2π.

• Let E0 ⊂ E be a non-trivial cut-set of edges of X, that is, a set of edges of X so

that ∪e∈E0 interior(e) separates the graph (V,E), but so that there is no vertex

v belonging to every edge of E0. Then
∑

e∈E0
Θ(e) > 2π.

Furthermore P , if it exists, is uniquely determined by X and Θ up to action by

hyperbolic isometries.

We define the exterior dihedral angle between two faces of P meeting along an edge

to be π minus the angle made between the faces inside of P . This theorem is due to

Rivin. He obtains existence in [Riv96, Theorem 0.1], uniqueness in [Riv94, Theorem

14.1] and unifies and generalizes these results in [Riv03].

2.9.4 The relationship between hyperbolic polyhedra and disk
configurations

Disk configurations on Ĉ are closely related to polyhedra in hyperbolic 3-space H3.

This relationship comes from the observation that a hyperbolic polyhedron having

faces indexed by the set F may be described as the closure of H3 \ ∪f∈FHf , where

every Hf is a hyperbolic half-space. Then under our identification of H3 with the unit

ball in R3 via the Poincaré ball model, the boundaries of the Hf at infinity Ĉ = ∂H3

are metric closed disks in Ĉ. Denote by Df the closed disk corresponding to Hf in

this way. Then:

Observation 2.46. If two faces of P , which meet along an edge, lie in ∂Hf1 and

∂Hf2 respectively, then their exterior dihedral angle is equal to π − ](Df1 , Df2).

Let X be a combinatorial polyhedron. Then the Poincaré dual, or just dual, of

X, which we denote X∗, is obtained by placing a dual vertex inside of each face of X,

and connecting dual vertices by an edge in X∗ if and only if the corresponding faces

meet along an edge in X.

Suppose P is a hyperbolic polyhedron, having the combinatorics of the combina-

torial polyhedron X. Then there is a disk configuration C naturally associated to P
as described two paragraphs ago. Let G denote the contact graph of C. We have the
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following bijective associations:

faces of X oo //
OO

��

faces of P oo // disks of COO

��
vertices of X∗ oo // vertices of G

Furthermore, two vertices in X∗ share an edge if and only if the associated faces of

X share an edge, in which case the associated disks in C overlap, and so then there

is also an edge between the associated vertices in G. Thus the 1-skeleton of X∗ is a

sub-graph of G:

edges of the 1-skeleton of X∗ �
� // edges of G

Unfortunately, it does not turn out to be true that G and the 1-skeleton of X∗ are

equal: there may be extra contacts in C which are not reflected in the combinatorial

polyhedra X and X∗. We shall see an example of this in Section 2.9.6. Nevertheless,

theorems on hyperbolic polyhedra can be used to recover theorems on disk configu-

rations. In particular, in Section 2.9.5, we will apply Rivin’s Theorem 2.45 to give a

proof of Theorem 2.44, which gives a partial answer to Question 2.43.

2.9.5 Proof of Theorem 2.44

The following may be proved from Rivin’s Theorem 2.45:

Proposition 2.47. Let G = (V,E) be a mostly-triangulation of the 2-sphere S2, and

let Θ : E → [0, π) so that conditions (]1), (]2), (]3), (]4), (]5) all hold. Then

there exists a disk configuration C on the Riemann sphere Ĉ so that the following hold:

• There is a disk in C for every vertex of G.

• The contact graph of C may not equal G, but has G as a sub-graph.

• If e = 〈u, v〉 is an edge of G then ](Du, Dv) = Θ(e).

Furthermore C is uniquely determined by (G,Θ), up to action by Möbius and anti-

Möbius transformations. Also:

• Every extraneous contact between two disks in C occurs inside of a third. That

is, if Du, Dv ∈ C meet, but 〈u, v〉 is not an edge of G, then Du∩Dv is contained

in some other disk of C.
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• The configuration C may not be thin, but the only places where the thinness

condition fails are at these extraneous contacts if such exist.

We sketch the construction required, as it is not completely trivial. An example is

worked out in more detail in Section 2.9.6.

Proof sketch. Let ψ : G → S2 be a mostly-embedding of G. We construct a combi-

natorial polyhedron from our mostly-embedding of G in the following way:

• Let e1 = 〈v2, v3〉 , e2 = 〈v1, v3〉 , e3 = 〈v1, v2〉 be three edges of G, so that their

images ψ(ei) bound a triangle, call it f , in S2, so that the interior of f does

not contain any of the embedded vertices of G. If
∑3

i=1 Θ(ei) = π, then do

nothing. However, if
∑3

i=1 Θ(ei) < π, then add a vertex v̂ inside of f , and

embed new edges êi = 〈v̂, vi〉, i = 1, 2, 3 inside of f . This procedure subdivides

f into three smaller triangles. Denote by f̂1 the sub-triangle of f bounded by

e1, ê2, ê3, similarly f̂2, f̂3. Add the edges êi to our embedded drawing of G. It

is not hard to check that there is a unique way to extend Θ to be defined on

these new edges êi so that
∑

e⊂f̂i Θ(e) = π for i = 1, 2, 3. This procedure may

be thought of as adding a vertex which will correspond to a “dual disk.”

• For any edge e ∈ E so that Θ(e) = 0, delete e from our embedded drawing.

One may check, and we note, that no edge ê added in the first step will have

Θ(ê) = 0. Note also that if e1 = 〈u1, v1〉 , e2 = 〈u2, v2〉 ∈ E are edges of

G having images ψ(e1) and ψ(e2) which cross under the mostly-embedding ψ,

then necessarily Θ(e1) = Θ(e2) = 0, so we delete these e1, e2 from our drawing.

What remains after these two steps is an embedding in S2 of some planar graph, call

it GX∗ , which divides S2 into triangles and quadrilaterals. Let X∗ be the resulting

combinatorial polyhedron. Then in particular GX∗ is the 1-skeleton of X∗. Let X be

the combinatorial polyhedron obtained as the Poincaré dual of X∗.

Let ΘGX∗ be defined on the edges of GX∗ either by restriction of Θ or as described

in the construction of X, as necessary. Let ΘX be defined on the edges of X in the

following way: using the same symbol e to refer to an edge of X and its associated

edge in GX∗ , set ΘX(e) = π−ΘGX∗ (e). We do this because, as per Observation 2.46,

the exterior dihedral angle between two faces of a hyperbolic polyhedron is π minus

the exterior intersection angle of the associated closed disks in Ĉ.

It is straightforward to check that the pair (X,ΘX) satisfies the hypotheses of

Rivin’s Theorem 2.45. Thus, let P be the ideal hyperbolic polyhedron for (X,ΘX)

obtained from Rivin’s Theorem 2.45. Let C0 be the associated disk configuration.
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Finally, obtain C from C0 by deleting those disks corresponding to the vertices which

were added to X during its construction.

Using this construction, it is mostly routine to check the statement of Proposition

2.47. The following lemma helps:

Lemma 2.48. Let P be an ideal hyperbolic polyhedron combinatorially equivalent

to the combinatorial polyhedron X = (V,E, F ). Write P as the closure of H3 \
∪f∈FHf , where every Hf is a hyperbolic half-space, so that Hf contains in its boundary

hyperplane the face corresponding to f in P . For f ∈ F write Df ⊂ Ĉ = ∂H3 to

denote the boundary disk at infinity of Hf . Suppose that g, h ∈ F are faces of X so

that the associated disks Dg and Dh meet, but so that g and h do not share an edge

in X.

Then there is a finite sequence of faces g = f1, f2, . . . , fn = h so that for all

1 ≤ i < n,

• the faces fi and fi+1 share an edge in X, and

• the intersection Dg ∩Dh is contained in Dfi ∩Dfi+1
.

Furthermore, for 1 ≤ i < n− 1, we have ](Di, Di+1) + ](Di+1, Di+2) > π.

We omit the proof of Lemma 2.48. Theorem 2.44 follows from Proposition 2.47 and

Lemma 2.48.

We remark that the rigidity portion of Proposition 2.47 follows from the rigidity

in Rivin’s Theorem 2.45. Our own rigidity proofs do not apply, because as we say in

the statement, the disk configurations resulting from Proposition 2.47 are not thin.

Our Main Rigidity Theorem 1 does imply the rigidity portion of Theorem 2.44, but

this is already guaranteed by the rigidity of Rivin’s Theorem 2.45.

2.9.6 Examples of combinatorial mismatching between hyper-
bolic polyhedra and their associated disk configurations

In this section, we construct examples illustrating the following phenomena:

• There exist two ideal hyperbolic polyhedra P and P̃ , which realize the same

combinatorial polyhedron, but so that the following holds: if we denote by C
and C̃ the disk configurations corresponding to P and P̃ respectively, then the

contact graphs of C and C̃ do not agree. This is Example 2.49.
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• There exists a graph G = (V,E) and Θ : E → [0, π), so that (G,Θ) satisfies

conditions (]1), (]2), (]3), (]4), (]5) non-vacuously, and so that the following

holds: if C ′ is any disk configuration whose incidence data has (G,Θ) as sub-

incidence-data, then there is at least one extra edge connecting two of the

vertices of the canonically embedded image of G in the contact graph of C ′.
This is Example 2.52. Finally:

• There are examples of incidence data in which “extraneous contacts” may be

forced by “non-local” conditions in the data. In particular, let v1, v2 be two

vertices having an “extra contact,” in our previous example. It turns out that

this extra contact, between disks D1 and D2, is contained inside of a third disk

D3 ∈ C. Let v3 be the vertex corresponding to this disk D3. Then, in our

example, we may modify the values taken by Θ at edges which are “away”

from v1, v2, v3, that is, edges none of which have any of v1, v2, v3 as an endpoint,

so that the following holds: denote by (G̃, Θ̃) the incidence data we are left

with after our modification. Then there is a disk configuration having precisely

(G̃, Θ̃) as its incidence data. This is Example 2.54.

Example 2.49. Combinatorially equivalent ideal hyperbolic polyhedra hav-

ing combinatorially unequivalent associated disk configurations

We explicitly construct two ideal hyperbolic polyhedra P and P̃ realizing the same

combinatorial polyhedron, in the following way:

• We begin with two explicitly chosen disk configurations C and C̃, having unequal

contact graphs. These are pictured in Figure 2.6.

• We add “dual disks” to the configurations to obtain configurations, which we

denote CP and C̃P̃ , each of which completely covers Ĉ. These are the configura-

tions whose disks will cut out our ideal hyperbolic polyhedra.

• We define P as the closure of H3 \ ∪D∈CPHD, where HD is the hyperbolic half-

space corresponding to the closed disk D ⊂ Ĉ = ∂H3, defining P̃ similarly.

We then argue that the ideal hyperbolic polyhedra P and P̃ constructed in this way

from our explicitly chosen C and C̃ realize the same combinatorial polyhedron X.

As the punchline of this example, we will observe that the configurations CP and C̃P
have unequal contact graphs, as do C and C̃. Our starting configurations C and C̃ are

shown in Figure 2.6.
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D∞

D1
D2

C

D̃∞

D̃1
D̃2

C̃

Figure 2.6: Two disk configurations having unequal contact graphs. The
contact graphs are unequal because of the “extra” contact between D1 and D2 in C.
Here the disks labeled D∞ and D̃∞ are centered at ∞ ∈ Ĉ, and all other disks are
contained in Ĉ \ {∞}. The shaded regions are Ĉ \ ∪D∈CD and Ĉ \ ∪D̃∈C̃D̃.

We now add our “dual disks.” First, note that Ĉ \ ∪D∈CD consists of four curvi-

linear triangles. Let CP be obtained from C in the following way: for each of these

curvilinear triangle, add a closed disk covering this triangle, passing through its three

corners. Construct C̃P̃ in the analogous way. The resulting configurations are shown

in Figure 2.7. Note that there is one and only one way to carry out this portion of

the construction from our starting configurations.

b
b

b

b
bb b

b

CP

b

b

b
b

C̃
P̃

b b
b

b
b b

b b
b

b

bb

Figure 2.7: The disk configurations of Figure 2.6, after adding “dual
disks.” We have drawn the dual disks dashed. The marked vertices will turn
out to be the vertices of the ideal hyperbolic polyhedra we eventually construct.

We define P to be the closure of H3 \ ∪D∈CPHD, where HD is the hyperbolic

half-space whose limit set at infinity Ĉ = ∂H3 is the closed disk D. Intuitively, we
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“scoop out” hyperbolic half-spaces for all of the disks of CP . The disk D∞ should

be considered as a special case: it is centered at ∞ ∈ Ĉ, so “scooping out” around

D∞ really looks like keeping only the “scoop” corresponding to the closed disk in C
bounded by ∂D∞. We define P̃ analogously, from C̃P̃ . Our goal is to argue that P

and P̃ are ideal hyperbolic polyhedra, and furthermore that they realize the same

combinatorial polyhedron. In order to do so, we digress briefly to recall some facts

from hyperbolic geometry.

For a moment, consider the upper half-space model of H3, identifying an isomet-

rically embedded copy of the complex plane C ⊂ R3 with ∂H3 minus a point. Then

hyperbolic hyperplanes are obtained precisely by taking intersections of H3 with Eu-

clidean spheres and planes meeting our embedded copy of C ⊂ R3 orthogonally.

Now, the intersection of two hyperplanes in H3 is a hyperbolic geodesic, and hyper-

bolic geodesics in this model are obtained precisely by taking intersections of H3 with

Euclidean lines and circles which pass through C = ∂H3 \ {∞} orthogonally. Thus

the orthogonal projection of a hyperbolic geodesic to C in this model is a straight line

segment or a single point. This discussion makes the following an easy observation:

Observation 2.50. Suppose A,B,C are metric closed disks in C, and let HA, HB, HC

respectively be the associated hyperbolic half-spaces. Suppose that A ∩ B ⊂ C. Then

HA ∩HB ⊂ HC.

Thus, under the hypotheses of Observation 2.50, if we “scoop out” HA and HB, we

initially form an edge e between their boundary hyperplanes, but after “scooping

out” HC as well, this edge e will disappear, other than potentially one or both of its

endpoints at infinity Ĉ = ∂H3.

We return to our setting, again considering C and C̃. A priori, any two overlapping

disks of C may contribute an edge to P , and any point which is an intersection

point of several boundary circles of C may contribute a vertex to P . However, with

Observation 2.50 in mind, one can show that the pairs Di, Dj ∈ C of overlapping

disks which contribute an edge to P are precisely those pairs whose intersection

Di ∩ Dj is not contained in any other disk of C. Thus we may go through the

drawings in Figure 2.7 and explicitly describe which overlaps will contribute edges to

our polyhedra. Furthermore a vertex of an ideal hyperbolic polyhedron is exactly a

common endpoint of several of its edges. Then it is easy to check that the vertices of

P and P̃ are precisely the points labeled in Figure 2.7. Finally, it is routine to show

that P and P̃ have finite hyperbolic volume via standard integral computations.
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Then it is not hard to write down explicitly the combinatorial polyhedron realized

by P , and that realized by P̃ , and to see that they are the same. We show the

combinatorial polyhedron X which P and P̃ both realize, as well as its dual X∗, in

Figure 2.8.
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bc

bcbc bc
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Figure 2.8: The combinatorial polyhedron X realized by P , and its dual
X∗. We have drawn X with solid vertices and edges, and X∗ with open vertices and
dashed edges.

Let X = (V,E, F ) be the combinatorial polyhedron realized by P and P̃ , and

let ΘP : E → (0, π) and ΘP̃ : E → (0, π) be obtained from the exterior dihedral

angles of the respective edges of P and of P̃ . Of course, in light of the uniqueness

portion of Rivin’s Theorem 2.45, we must have that ΘP and ΘP̃ are not equal: if

they were equal, then P and P̃ would differ by a hyperbolic isometry, which would

give a Möbius or anti-Möbius transformation sending C to C̃, but there can be no

such transformation because such a transformation on disk configurations must be

contact-graph-preserving. The following is a natural question:

Question 2.51. Suppose that X = (V,E, F ) is a combinatorial polyhedron, and

Θ : E → (0, π), so that the pair (X,Θ) satisfy the hypotheses of Rivin’s Theorem

2.45. Let P be an ideal hyperbolic polyhedron realizing (X,Θ). Write P as the closure

of H3 \f∈F Hf , where each Hf is a hyperbolic half-space, whose boundary hyperplane

contains the face f of P , and so that Hf limits to the disk Df at infinity Ĉ = ∂H3.

Suppose that f1, f2 are distinct faces of P sharing neither a vertex nor an edge. How

can we read off, from the combinatorial information of (X,Θ), whether the associated

disks Df1 , Df2 intersect?
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Certainly it is true that if f1, f2 are faces of X sharing a vertex but no edge, then the

associated disks D1, D2 meet. A complete answer to Question 2.51 would give some

partial answers to Question 2.41.

Example 2.52. Incidence data forcing additional contacts

We now describe incidence data (G,Θ) satisfying conditions (]1), (]2), (]3),

(]4), (]5) non-vacuously, so that the following holds: if C ′ is any disk configuration

whose incidence data has (G,Θ) as sub-incidence-data, then there are extra edges

among the vertices of the canonically embedded image of G in the contact graph of

C ′.
Consider again the disk configuration C on Ĉ shown in Figure 2.6. Let (GC =

(VC, EC),ΘC) be the incidence data which C realizes. Let G = (V,E) be obtained

from GC by deleting the open edge 〈v1, v2〉 representing the contact between D1 and

D2. Let Θ : E → [0, π) be obtained by restricting ΘC to E. For reference, we draw

the graphs GC and G, in Figure 2.9. Note that (G,Θ) satisfies each of our conditions

(]1), (]2), (]3), (]4), (]5) non-vacuously, in particular that G has a essentially

unique embedding in S2. Note also that C is not thin.
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b
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b

b

b
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b

v∞

v2v1

G

Figure 2.9: The contact graph of C, and the graph G obtained by removing
an edge. The vertices v1, v2, v∞ correspond to the disks D1, D2, D∞, respectively.
The dashed edge in GC represents the contact between D1 and D2.

We will see that if C ′ is a disk configuration realizing incidence data (G′,Θ′), so

that (G,Θ) is sub-incidence-data of (G′,Θ′), then there is an “extraneous contact”

between the disks corresponding to the vertices v1 and v2 in C ′. First, throw out

any disks of C ′ which do not correspond to vertices of G′ hit by the injection of

the incidence data (G,Θ), and re-compute (G′,Θ′) to reflect this modification of C ′.
Suppose for contradiction that (G′,Θ′) = (G,Θ). If this were the case, then C ′ would

be a disk configuration realizing (G,Θ) with no “extraneous contacts” among any of

its disks, an event we hope to show is impossible.
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Our strategy is to show that we may run the same construction on C ′ that we ran on

C, obtaining an ideal hyperbolic polyhedron P ′ combinatorially equivalent to P , and

with the same exterior dihedral angle function. Then P and P ′ are hyperbolically

isometric by Rivin’s Theorem 2.45. The hyperbolic isometry sending P to P ′ is

associated to a Möbius transformation that must send the overlapping disks D1, D2 ∈
C to the supposedly disjoint disks D′1, D

′
2 ∈ C ′, giving us our contradiction.

First, note that under our contradiction hypotheses we have that C ′ is thin. It

follows without much trouble that if we draw every edge e = 〈u, v〉 of the contact

graph G′ of C ′ by connecting the spherical centers of the disks Du, Dv corresponding

to the endpoints of e with the spherical geodesic arc passing through Du∩Dv, we get

an embedding ψ′ of G′ in S2. Note that because G′ is the 1-skeleton of a triangulation

of S2, it has an essentially unique geodesic embedding.

We next wish to establish that Ĉ \ ∪D′∈C′D′ consists of four curvilinear triangles,

which at their corners have the same angles as the associated curvilinear triangles in

Ĉ\∪D∈CD. Let T ′ = (V ′, E ′, F ′) be the triangulation of S2 induced by the embedding

ψ′ of G′ = (V ′, E ′) described in the previous paragraph. This triangulation consists

of 8 triangular faces, each of which may a priori contain at most one component of

Ĉ \ ∪D′∈C′D′. However, observe the following:

Observation 2.53. Suppose that f ′ ∈ F ′ is a face of T ′, bounded by the edges

e′1, e
′
2, e
′
2, so that

∑3
i=1 Θ′(e′i) = π. Then the embedded image of f ′ under ψ′ is com-

pletely covered by D′1 ∪D′2 ∪D′3. Conversely, if
∑3

i=1 Θ′(e′i) < π, then the embedded

image of f ′ under ψ′ contains a curvilinear triangle U ′ ⊂ Ĉ, bounded by circular arcs,

so that the interior angles at the corners of U ′ are Θ(e′i).

This observation gives us exactly what we want: keeping in mind that the incidence

data of C restricts to that of C ′, inspection of C yields that there are precisely four faces

f ′ of T ′ which satisfy
∑

e′i⊂f ′
Θ′(e′i) = π, and four which satisfy

∑
e′i⊂f ′

Θ′(e′i) < π.

At this point it is clear how to proceed: every component U ′ of Ĉ \ ∪D′∈C′D′

corresponds to a component U of Ĉ \ ∪D∈CD, and furthermore it is not hard to show

that U and U ′ are Möbius equivalent. Thus we may add “dual disks” to C ′ as we did to

C, and obtain an ideal hyperbolic polyhedron P ′ via the construction analogous to our

construction of P . It is not hard to verify that P and P ′ are combinatorially equivalent

and that their exterior dihedral angle functions agree using our observations up to

this point. We leave these last details to the reader.

Example 2.54. Eliminating extraneous contacts “non-locally”
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In this last of our series of examples exploring the existence question for disk

configurations, we see that we may

• take incidence data (G,Θ), the realization of which forces “extra contacts,” say

between the disks corresponding to vertices v1, v2 of G,

• modify Θ “far away” from v1 and v2, that is, modify the values taken by Θ only

at edges which are not incident to one of v1 and v2, and

• thereby obtain incidence data that is realizable without “extra contacts.”

This shows that a complete answer to Question 2.41 may be quite difficult, as extra-

neous contacts may be forced by incidence data which is in some sense localized “far

away” from where these contacts happen.

We again consider the configurations C and C̃ from Figure 2.6. Let (GC,ΘC)

and (GC̃,ΘC̃) be the incidence data realized by C and C̃ respectively. Let (G,Θ) be

obtained from the incidence data (GC,ΘC) by deleting the edge 〈v1, v2〉 as before.

Note that then G and GC̃ are equal. Identify their edges in the natural way. It

is not hard to see that it is possible to construct C and C̃ explicitly, keeping our

discussion and figures up to this point qualitatively the same, so that Θ and ΘC̃ agree

on every edge having v1 or v2 as an endpoint. However, we have already shown that

there can be no realization of (G,Θ), and C̃ is an explicit realization of (GC̃,ΘC̃),

completing our example.

2.9.7 Closing remarks on the existence question

Absent the thinness condition, if we hoped to get existence statements in Ĉ similar to

Theorem 2.44 from the setting of hyperbolic polyhedra, we would require existence

statements on non-ideal polyhedra in H3, that is, hyperbolic polyhedra some of whose

vertices may lie in the interior of H3. Results along these lines have been obtained

by Rivin and others, see for example [HR93, Theorem 1.1]. The idea to study circle

packings and disk configurations via hyperbolic polyhedra dates back to Thurston.

We discuss this further in Section 2.10.

Given an existence theorem for thin disk configurations on Ĉ, it seems likely that

existence theorems for configurations in C and D ∼= H2 would follow, via a con-

struction analogous to the one used to prove the existence portion of the Discrete

Uniformization Theorem 2.15, using the Circle Packing Theorem 2.2 and the Koebe–

Andreev–Thurston Theorem 2.8, as outlined in Section 2.4. We would require gen-
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eralizations of the Discrete Ring Lemma 2.21 and the Discrete Schwarz–Pick Lemma

2.19 for the construction portion of the proof. Fortunately, statements along those

lines are proved in [He99, Lemmas 2.2, 7.1]. Next, we would need to generalize the

proof of local finiteness of the limiting object in our construction. The steps of the

topological argument given by Stephenson in [Ste05, Section 8.2] seem to generalize

cleanly, except that at one point he appeals to a fixed-point index argument to prove a

theorem on “discrete harmonic measure.” Our main technical result, the Index The-

orem 4, would exactly give the required statement on fixed-point index to generalize

this last remaining portion of the argument. Approaches to the existence question

via vertex extremal length arguments may be possible as well, and have been carried

out in similar settings by Z.-X. He. We will discuss this further in Section 2.10.

Thanks to Lars Louder for fruitful discussions related to the issues arising Figure

2.6. Thanks to my advisor Jeff Lagarias for fruitful discussions on the existence

question for disk configurations.

2.10 Related results

We are not the first to consider configurations of overlapping disks. In fact, consider-

ation of such configurations dates back to Thurston. We state the result most similar

to ours currently present in the literature, and then discuss the timeline of the proofs

of its various parts and special cases.

Theorem 2.55. Let G = (V,E) be a graph which mostly-triangulates an oriented

topological surface S, with mostly-embedding ψ : G → S. Let Θ : E → [0, π/2] be so

that the following conditions hold:

(2.55a) Let e1 = 〈u1, v1〉 , e2 = 〈u2, v2〉 ∈ E be edges of G so that ψ(e1) and ψ(e2)

cross. Then Θ(e1) = Θ(e2) = 0, and for any other edge e whose endpoints

are two of u1, u2, v1, v2, we have Θ(e) = π/2.

(2.55b) If the edges e1, e2, e3, e4 form a 4-cycle in (V,E) with Θ(ei) = π/2 for all i,

then there is at least one more edge connecting the vertices of the ei.

(2.55c) If the edges e1, e2, e3 form a 3-cycle in (V,E) that separates the graph (V,E),

then Θ(e1) + Θ(e2) + Θ(e3) < π.

Then there is a complete constant curvature Riemannian metric d on S and a disk

configuration C locally finite in (S, d) realizing (G,Θ). Furthermore d is uniquely de-

termined by (G,Θ) up to conformal isomorphisms, and C is then uniquely determined

by (G,Θ) and d up to conformal and anti-conformal automorphisms of (S, d).
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We first discuss the relationship between the disk configurations considered in Theo-

rem 2.55 and our thin disk configurations. The key point is that under the constraint

Θ ≤ π/2, we again get that the only way that four disks may meet at any point is

the way shown in Figure 2.4 on p. 31. Furthermore in this case, if four disks meet at

a point in that way, then the non-zero overlap angles among the four disks must be

exactly π/2, hence Condition (2.55a). Thus apparently proofs in the setting of over-

lapping disks become tractable once we have control over the way that four or more

disks of a configuration may intersect. In this thesis, we control these intersections

via the thinness condition, while it seems that the historical approach has been to

control these intersections via the condition that Θ ≤ π/2.

Next, we compare the conditions on (G,Θ) given in the statement of Theorem

2.55 to our conditions (]1), (]2), (]3), (]4), (]5), found on p. 36. First note

that (2.55a) is equivalent to (]5) in the case when Θ ≤ π/2. Similarly, in the case

where Θ ≤ π/2, condition (2.55b) follows from condition (]4). Next, we have that

(2.55c) is exactly (]3). Finally, observe that (]1) is satisfied automatically in the

case n > 4 if Θ ≤ π/2, and follows vacuously from (2.55b) for n = 4, again supposing

Θ ≤ π/2. Thus Theorem 2.55 as a special case establishes existence and uniqueness

of thin disk configurations whose incidence information (G,Θ) satisfies our conditions

(]1), (]2), (]3), (]4), (]5), provided Θ ≤ π/2. It also establishes Conjecture 2.37

in this special case. We remark also that as a corollary of this discussion, we see

that conditions (2.55a), (2.55b), (2.55c) are not only sufficient for existence in the

statement of Theorem 2.55, but necessary.

We now move on to our discussion of the timeline of the development of Theorem

2.55. Thurston was aware of both the existence and the uniqueness parts in the case of

the 2-sphere S = S2 in the 1980s, see comments in [Thu80, Section 13.6, p. 333]. His

approach was via his interpretation of Andreev’s Theorem, see [And70], in the style of

our proof of Proposition 2.47. Andreev’s Theorem gives a complete characterization

of ideal hyperbolic polyhedra analogous to that given by Rivin’s Theorem 2.45 in

the special case when Θ ≤ π/2. Rivin remarks that in the setting of polyhedra,

the restriction Θ ≤ π/2 is a very strong one, see comments in [Riv96, p. 52]. In

particular, in the setting of his and Andreev’s theorems, it implies that the valence

of every vertex of the resulting ideal polyhedron is either 3 or 4.

Thurston also proved Theorem 2.55 directly for closed surfaces of positive genus,

see [Thu80, Theorem 13.7.1]. The idea of the proof is to run an infinite constructive

iterative algorithm, adjusting the radii of the disks one at a time, obtaining the desired

disk configuration in the limit.
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Next, Z.-X. He proved Theorem 2.55 in the case where S is a topological open disk

in [He99]. His method of proof is analytical, employing vertex extremal length and

the theory of electrical networks on graphs. In the same paper, he wrote that he was

preparing a paper which would handle the case where Θ may exceed π/2, but he never

published such a paper, and has since retired from academic mathematics. As usual,

Theorem 2.55 in the case where S is simply connected implies the full statement via

our argument using covering space theory.

Bobenko and Springborn have proved a theorem similar to Theorem 2.55 where

they allow Θ to exceed π/2, considering only compact surfaces, in [BS04, Theorem

4]. In particular, they do not handle disk configurations which live naturally in C or

H2. The style of their theorem most closely resembles Rivin’s Theorem 2.45, and they

call it the higher-genus analog of Rivin’s Theorem 2.45. Their proof uses variational

principles.

2.11 Dualizable packings

The work that eventually led to the results of this thesis began with the following

question:

Question 2.56. Suppose that we start with a polytopal decomposition of the sphere,

instead of a triangulation. Can we recover a uniqueness statement in the style of the

Koebe–Andreev–Thurston Theorem 2.8?

Of course, the CPT 2.2 still applies, so there exist circle packings realizing the contact

graph of any polytopal decomposition, but it is easy to construct packings realizing

the same polytopal decomposition which are not Möbius equivalent.

The “right” way to answer Question 2.56 is to consider so-called dualizable circle

packings. An interstice of a circle packing is a topological open disk U formed by

the boundaries of some disks of the packing, which is minimal in the sense that no

other disks of the packing meet U . An interstice has as its “corners” the points of

tangency of the disks along its boundary. Then the circle packing P = {Dv}v∈V is

called dualizable if

• for every interstice U of P there is a disk D∗U whose boundary circle passes

through all of the “corners” of U , so that in addition,

• for every disk Dv along the boundary of the interstice U , the disks D∗U and Dv

meet orthogonally, meaning that their boundary circles have orthogonal tangent

vectors at the two points where these circles meet.
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For example, every circle packing realizing a triangulation is automatically dualizable.

We will call D∗U the interstitial disk for U . Then we get the following:

Dualizable Circle Packing Theorem 2.57. Let X be a polytopal decomposition of

the sphere. Then there exists a dualizable circle packing realizing X, and it is uniquely

determined by X up to Möbius and anti-Möbius transformations.

Note that if P is any circle packing realizing the polytopal decomposition X =

(V,E, F ), then the interstices of P are in bijection with the faces F of the decom-

position. Then suppose that P is dualizable, and that f is the face corresponding

to the interstice U of P . Denote D∗f = DU . Then P∗ = {D∗f}f∈F is a dualizable

circle packing realizing X∗ the dual polytopal decomposition to X. The packing P∗

is called the dual packing to P .

The DCPT 2.57 has an unclear history. Vague comments in [Thu80] suggest

that Thurston may have been aware of it as early as 1980, although it cannot be

attributed to him, as he never gave the statement in print. Certainly Thurston’s

proof of the KATT 2.8 via the Mostow–Prasad Rigidity Theorem 2.58 indicates that

he was at least aware of the notion of dual circle packings. We sketch this proof now,

in part because it is a nice example of a deep connection between circle packing and

three-dimensional geometry and topology. First, recall:

Mostow–Prasad Rigidity Theorem 2.58. Let Γ and Γ̃ be discrete subgroups of

the isometry group of hyperbolic 3-space H3. Suppose that both quotients H3/Γ and

H3/Γ̃ have finite volume, and suppose that Γ and Γ̃ are isomorphic as discrete groups.

Then Γ and Γ̃ are conjugate.

For a reference see [Thu80, Theorem 5.7.1]. Actually the MPRT 2.58 holds for di-

mension n ≥ 3, but we need only the dimension 3 version. Then Thurston’s proof

proceeds as follows. Identify H3 with the open unit ball in R3 via the Poincaré ball

model, so that ∂H3 is identified with the Riemann sphere Ĉ. Then isometries of H3

are identified with Möbius and anti-Möbius transformations of Ĉ. Suppose that two

circle packings P and P̃ realize the same triangulation of the sphere. We wish to

show that the two are equivalent via Möbius or anti-Möbius transformations. Let Γ

be the group generated by reflections in the boundary circles of the disks of P and

those of the dual packing P∗, similarly Γ̃ for P̃ and P̃∗. Because P and P̃ have the

same combinatorics, the discrete groups Γ and Γ̃ are isomorphic. Also, it is not hard

to check that H3/Γ and H3/Γ̃ have finite volume. Then P and P̃ are equivalent un-

der the Möbius transformation which conjugates Γ to Γ̃. Of course, this same proof

establishes the rigidity portion of the DCPT 2.57.
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The first published proof of the DCPT 2.57 is generally attributed to Brightwell

and Scheinerman. They give a proof in [BS93]. Although other papers containing the

statement or generalizations thereof predate theirs, these other papers directly refer-

ence their preprint. There, the proof is via an interpretation of Thurston’s methods.

The interpretation is attributed by the authors to Lovász. As an application, they

answer the following question, posed in [Tut63, §13]:

Question 2.59 (Tutte). Given a finite planar graph G = (V,E), is there a simulta-

neous straight-line embedding of it and its planar dual G∗ = (V ∗, E∗), so that every

edge e ∈ E crosses its partner e∗ ∈ E∗ at a right angle?

The DCPT 2.57 gives the best such embedding possible. The DCPT 2.57 is also

stated and discussed in [Sac94, Theorem 2], a survey article by Sachs. There he also

gives further references to early papers addressing it.

The following can be proved a corollary of Theorem 2.55:

Dualizable Discrete Uniformization Theorem 2.60. Let X = (V,E, F ) be a

polytopal decomposition of an oriented topological surface S. Then there is a complete

constant curvature Riemannian metric d on S and a locally finite dualizable circle

packing P in (S, d) which realizes X. Furthermore d is uniquely determined by X

up to conformal isomorphisms, and P is then uniquely determined by X and d up to

conformal and anti-conformal automorphisms of (S, d).

The idea of the proof of the DDUT 2.60 from Theorem 2.55 is as follows. Start with

a polytopal decomposition X. Inside every face f , add a new vertex, and join it with

an edge to every vertex on ∂f . Set Θ equal to π/2 for every new edge added this

way, and set Θ equal to 0 for every original edge of X. Then apply Theorem 2.55.

This is slightly technically imprecise, but it is clear how to proceed. Alternatively, our

rigidity theorems accommodate this argument, so rigidity of dualizable circle packings

is also a consequence of our main rigidity results.

Mohar proved Theorem 2.60 in the case where S is a closed surface in [Moh93],

via an adaptation of Thurston’s iterative algorithm for constructing circle packings.

He includes a run-time analysis of his algorithm. Other than this, we are not aware

of Theorem 2.60 or any special cases of it appearing in print.

Thanks to my advisor Jeff Lagarias for pointing me to the area of dualizable circle

packings.

The sections that follow are not directly related to the main results of this thesis,

but are here for reasons of exposition and motivation.
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2.12 Euclidean polyhedra

Circle packings and Euclidean polyhedra are intimately related. The following is

equivalent to the Dualizable Circle Packing Theorem 2.57:

Theorem 2.61. Let X = (V,E, F ) be a polytopal decomposition of the 2-sphere S2.

Then there exists a Euclidean polyhedron P in R3 which is combinatorially equivalent

to X, so that every edge of P is tangent to the unit sphere. Furthermore P is uniquely

determined by X, up to action by linear transformations of R3 fixing the unit sphere

set-wise.

To see how, let X∗ be the polytopal decomposition of S2 dual to X. Let P∗ be the

dualizable circle packing on Ĉ realizing X∗. Identify Ĉ isometrically with the unit

sphere in R. Then for every disk D∗f of P∗, with f ∈ F , let Hf be the half-space in

R3 whose boundary plane contains ∂D∗f , so that the interior of the disk D∗f ⊂ Ĉ lies

outside of Hf . Then P = ∩f∈FHf . Note that the group of linear transformations of

R3 fixing the unit sphere set-wise is isomorphic to the group generated by Möbius

and anti-Möbius transformations, giving us the rigidity portion of Theorem 2.61.

Theorem 2.61 contrasts sharply with the fact that there are convex polyhedra P ⊂
R3 so that there is no combinatorially equivalent polyhedron all of whose vertices lie

on the unit sphere, c.f. [Ste28]. Theorem 2.61 strongly generalizes Steinitz’s Theorem,

which asserts only the existence of a convex polytope in R3 combinatorially equivalent

to a given polytopal decomposition of the 2-sphere. For further discussion on this

topic see [Sch87; Zie95, Chapter 4].

Like the DCPT 2.57, Theorem 2.61 has an uncertain history. For details, we refer

the reader to the survey [Sac94] by Sachs, where he states both Theorem 2.61 and

the DCPT 2.57, and notes their equivalence. There he writes that Theorem 2.61 was

conjectured independently many times from the late 1970s through the early 1990s,

giving specific references. He also speculates that Koebe himself anticipated Theorem

2.61, citing comments made in [Koe36, p. 162].

Many articles, including [BS93,Moh93,Sac94], attribute the first proof of Theorem

2.61 in its given form to Pulleyblank and Rote, and cite a manuscript in preparation.

However, this manuscript seems never to have appeared in print. The special case

of Theorem 2.61 where X is a triangulation of the 2-sphere is given in Thurston’s

lecture notes, c.f. [Thu80, Corollary 13.6.3].

Confusingly, in [Sch92], Schramm writes that Koebe proves the special case of

Theorem 2.61 where X triangulates the sphere in [Koe36]. He then attributes the

proof of the general case of Theorem 2.61 to Thurston, citing only the lecture notes
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[Thu80], which do not contain a statement of the general case as far as we can tell.

For interest’s sake, we give the following amazing generalization of Theorem 2.61,

c.f. [Sch92, Theorem 1.1], proved by Schramm in his article titled, How to cage an

egg :

Theorem 2.62. Let X be a polytopal decomposition of the sphere, and let E ⊂ R3

be a smooth strictly convex body. Then there exists a convex polyhedron P ⊂ R3

combinatorially equivalent to X so that every edge of P is tangent to ∂E.

His proof is not constructive. He also proves rigidity conditions on the space of such

polyhedra given a fixed X, analogous to the uniqueness portion of Theorem 2.61.

2.13 Circle-packable Riemann surfaces

The Discrete Uniformization Theorem 2.15 fixes a conformal structure for a triangu-

lation of a topological surface in a canonical way. A natural question arises in light

of this observation:

Question 2.63. Given a triangulation X of a topological surface, how can we deter-

mine which conformal structure the Discrete Uniformization Theorem 2.15 gives to

X?

Of course, there is only one conformal structure on a sphere, so Question 2.63 is trivial

in this case. Let us next consider the case whenX triangulates a topological open disk.

In this case He and Schramm answer Question 2.63 in terms of some discrete-analytic

information about the 1-skeleton of X, specifically a discretized version of conformal

modulus or extremal length, see [HS95]. They also relate the circle-packing type of X

to whether the random walk on the 1-skeleton of X is recurrent or transient. Beardon

and Stephenson in [BS91a] show that the locally finite circle packing realizing X lies

in C if every vertex has degree at most 6, and lies in H2 if every vertex had degree at

least 7. These results are improved on in [HS95].

Remark 2.64. One may ask the analogous question to Question 2.63 in our setting,

that is, for disk configurations realizing pairs (G,Θ) with Θ : E → [0, π). When

G triangulates an open disk, an answer in a similar vein is given by He in [He99,

Uniformization Theorem 1.3].

Not much is known about the answer to Question 2.63 in the case where X is

multiply connected.

Another natural question is:
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Question 2.65. Given a complete constant curvature Riemannian metric on an ori-

ented topological surface S, is it possible to find a a triangulation X of S so that the

Discrete Uniformization Theorem 2.15 gives X that conformal structure?

In other words, given a pair (S, d) as in Question 2.65, we ask, is (S, d) circle packable?

This question has been widely known since at least the mid-1980s, and remains open

in the important case of compact S with positive genus. We now survey the relevant

results on the subject.

There is essentially only one complete constant curvature metric d on the sphere,

and it certainly gives a packable structure to the sphere. In Example 2.18 we saw that

both the complex and the hyperbolic planes are packable. Thus we have answered

Question 2.65 for simply connected S. In [Wil03], Williams shows that if S is open,

then every pair (S, d) is packable. The idea of the proof is that the cusps of (S, d)

have enough area that we may build our packing by adding disks successively, and

“shuffling around” disks using the open area whenever necessary in order to fit new

disks, obtaining the desired packing filling (S, d) in the limit.

The situation for compact S having positive genus is not so well understood. For

a compact S, there are uncountably many d so that (S, d) have distinct conformal

structures. On the other hand, there are only countably many d that give a packable

pair (S, d). To see why, in light of the uniqueness part of the DUT 2.15, we need only

to show that there are countably many triangulations of a compact S. This is because

there are finitely many triangulations having any fixed number of faces, since there

are only finitely many combinatorially distinct ways to identify the edges of those

faces. In [Bro86], Brooks proves that for compact S the set of packable (S, d) is dense

in the moduli space of conformal structures on S. His proof appeals to the theory of

quasi-conformal deformation of Kleinian groups. The case where S is a torus is not

so bad to approach with our bare hands, so we work it out as an example.

Example 2.66. If S is a torus, it is not too hard to see by elementary means that

the set of circle packable (S, d) is dense in the moduli space of conformal tori. First,

recall that every (S, d) is conformally equivalent to C/ 〈1, τ〉, where 〈1, τ〉 is the lattice

generated by 1 and some τ in the upper half-plane. Furthermore, if τ1 and τ2 are close

as complex numbers, then C/ 〈1, τ1〉 and C/ 〈1, τ2〉 are close in the moduli space of

conformal tori, and conversely. Suppose that we wish to approximate the conformal

torus C/ 〈1, τ〉. Recall that P6,ε is the penny-packing of the complex plane by disks

of radius ε. Restrict our attention to those ε which are of the form 1/n for positive

integer n. Then we may normalize P6,ε so that there are disks centered both at the
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origin and at 1. Then by picking ε sufficiently small, we may ensure that there is a

disk D of P6,ε centered as close to τ as desired. Then the torus C/ 〈1, center(D)〉 is

packable, in particular by the image packing of P6,ε.

The study of circle-packable Riemann surfaces leads to connections from circle

packing to the fields of model theory and real algebraic geometry. Specifically, we

can apply the following theorem to the study of circle packing:

Tarski’s Theorem 2.67. Suppose that S is a first-order sentence in the theory of

real-closed fields. If S is true in one real-closed field, then it is true in every real-closed

field.

A real-closed field is a field which is not algebraically closed, but which becomes

algebraically closed if we adjoin a square root of −1. The only two examples we

care about here are the real numbers R and the real algebraic numbers. A first-

order sentence in the theory of real-closed fields is, roughly speaking, a finite logical

statement, in which we may use the usual logical connectives and quantifiers (⇒,

⇔, ¬, ∨, ∧, ∀, ∃), as well as the symbols from the theory of real-closed fields (1,

0, ×, +, =, >), so that all variables in the statement are appropriately quantified.

The inequality symbol > is allowed because it is a theorem that every real-closed

field admits a total order compatible with its field structure in the usual sense. Swan

provides an expository article on Tarski’s Theorem 2.67, including a proof, in [Swa05],

and cites the book [KK67] of Kreisel and Krivine as his source.

We use Tarski’s Theorem 2.67 to sketch an original proof of the following theorem:

Theorem 2.68. Suppose that C/ 〈1, τ〉 is a circle-packable torus. Then τ is an alge-

braic number.

The idea of the proof is to show that the existence of a doubly-periodic packing filling

the complex plane, having appropriate specified combinatorics, can be expressed as

an first-order sentence in the theory of real-closed fields. Given a triangulation of

the plane X = (V,E, F ) the existence of a packing realizing X is equivalent to a

statement of the following form, where the unrestricted existential quantifier ranges

over R:

∀vi ∈ V, ∃xi, yi, ri,
[
∀ 〈vj, vk〉 ∈ E, (xj − xk)2 + (yj − yk)2 = (rj + rk)

2
]

∧
[
∀vj ∈ V : rj > 0

]
∧
[
∀vj, vk ∈ V, (vj 6= vk ∧ 〈vj, vk〉 6∈ E)

⇒ (xj − xk)2 + (yj − yk)2 > (rj + rk)
2
]
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Suppose that C/ 〈1, τ〉 is packable by P , and let X be the triangulation obtained by

lifting to the plane the triangulation that P realizes. Then one essentially uses the

periodicity of X to eliminate all but finitely many of the variables from the above

logical system, arriving at a first-order sentence, call it s, in the theory of real-closed

fields, which is still equivalent to the existence of the desired doubly-periodic packing.

Then by the DUT 2.15 one obtains the truth of s over R, and furthermore that there

is, after a suitable normalization, a unique set of values for the xi, yi, ri in R that

satisfy s. But by Tarski’s Theorem 2.67, the sentence s is also true if we allow the

unrestricted existential quantifier to range only over the real algebraic numbers, so

by their essential uniqueness the xi, yi, ri must all be algebraic, and the claim follows.

Another proof of Theorem 2.68, which is along similar lines but uses real algebraic

geometry rather than model theory, appears in [McC96, Chapter 8]. A common guess

upon hearing this result is that perhaps the circle packable C/ 〈1, τ〉 are those for

which τ is constructible, meaning that τ lies in a tower of degree 2 field extensions of

Q. However, explicit examples of non-constructible τ are not hard to find by hand,

and some are given in [McC96, Chapter 8].

We remark that Tarski’s Theorem 2.67 can be applied along similar lines to prove

other statements about algebraicity in circle packing. We state the following theorem

as an example:

Theorem 2.69. Every dualizable circle packing on the Riemann sphere is equivalent

via a Möbius transformation to one all of whose radii, tangency points, dual radii,

centers, etc., are algebraic.

Theorem 2.69 has been proved independently by Louder and Souto, using the ideas

of Thurston’s rigidity proof via the MPRT 2.58 together with an algebraicity result

[Thu80, Proposition 6.7.4] in hyperbolic three-manifolds, also due to Thurston. At

the time of writing their proof has not appeared in print.

More recently, Kojima, Mizushima, Tan, and others have studied the closely re-

lated question of which projective structures on surfaces are packable. An excellent

recent survey of results and open problems in this area is [KMT06].

Finally, thanks to Chris Hall for referring us to Tarski’s Theorem 2.67. Thanks

to Sergiy Merenkov for referring us to [McC96]. Also thanks to Andreas Blass, Dan

Hathaway, and Scott Schneider for helpful references and discussion on the model

theory content of this section.
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2.14 Further references

Circle packing is a broad field, and there is no hope for an introduction such as this

one to be comprehensive.

• The article [Sac94] is a short survey covering parts of the area which nowadays

are classical, all of which we address here to some extent. It also gives a rough

outline of the history of circle packing through 1994.

• The first half of [Roh11] is an excellent survey by Rohde focused on the con-

tributions of Oded Schramm. In particular, Schramm proved many general

theorems about packing shapes other than closed disks, and Rohde provides

references to the papers containing these theorems. He also gives a long list of

successful applications of circle packing to other areas of math in his Section

2.2.

• Stephenson’s book [Ste05] provides a more detailed, elementary, and mostly

self-contained introduction to the area and could serve as a kind of “first course

in circle packing.”

Beyond this, whenever possible, we have given references to other more narrowly

focused surveys in the text, as well as references to seminal papers on sub-fields of

circle packing which were not discussed at length here.
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Chapter 3

Introduction to fixed-point index

A Jordan curve is a homeomorphic image of a topological circle S1 in the complex

plane C. A Jordan domain is a bounded open set in C with Jordan curve boundary.

We use the term closed Jordan domain or compact Jordan domain to refer to the

closure of a Jordan domain.

Suppose that K and K̃ are closed Jordan domains in the plane. We define the

positive orientation on a Jordan curve as usual. That is, as we traverse ∂K in what we

call the positive direction, the interior of K stays to the left. From now on whenever

we refer to the boundary of a Jordan domain we will suppose that it has been oriented

positively.

Let K and K̃ be closed Jordan domains. Let f : ∂K → ∂K̃ be a homeomorphism

of Jordan curves which is fixed-point-free and orientation-preserving. We call such a

homeomorphism indexable. Then {f(z)− z}z∈∂K is a closed curve in the plane which

misses the origin. It has a natural orientation induced by traversing ∂K positively.

We define the fixed-point index of f , denoted η(f), to be the winding number of

{f(z)− z}z∈∂K around the origin. Two examples are shown in Figures 3.1 and 3.2.

K
f(z)

z

f(z)− z
b

b K̃

Figure 3.1: Two closed Jordan domains K and K̃ so that any indexable
homeomorphism f : ∂K → ∂K̃ satisfies η(f) = 0. The arrows on ∂K and ∂K̃
indicate the positive orientations on these Jordan curves. In this case f is indexable
so long as it is orientation-preserving; the fixed-point-free condition is automatic
because ∂K and ∂K̃ do not meet. The dashed arrow represents a vector of the
form f(z) − z. The vector f(z) − z must always point “to the right,” so the curve
{f(z)− z}z∈∂K has winding number 0 around the origin, thus η(f) = 0.
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K̃

K

f(z)− z

Figure 3.2: An indexable homeomorphism f : ∂K → ∂K̃ so that η(f) = −1.
Suppose we insist that f identifies the respective corners as shown. Then tracing
the path of the dashed vectors f(z) − z as z traverses ∂K positively, we see that
f(z)− z winds once clockwise around the origin, thus η(f) = −1.

We remark that the fixed-point index depends crucially on the choice of homeo-

morphism, and also on the way that the sets K and K̃ sit on top of each other. It is

a worthwhile exercise to construct an indexable homeomorphism ∂K → ∂K̃, for K

and K̃ as in Figure 3.2, having fixed-point index unequal to −1.

Fixed-point index is our main technical tool. In this chapter, we prove several

fundamental lemmas on fixed-point index. We then prove rigidity of circle packings

which are locally finite in C, having graphs triangulating a topological open disk, as

an application. Finally, we state our main technical result, the Index Theorem 4.

3.1 The Circle Index Lemma

The following lemma can be found in [HS93, Lemma 2.2]. There it is indicated that

a version of the lemma appears in [Str51]. It also appears in [Ste05, Lemma 8.13].

The moral of this lemma, and the form in which it is best remembered, is that “the

fixed-point index between two circles is always non-negative.”

Circle Index Lemma 3.1. Let K and K̃ be closed Jordan domains in C, with

boundaries oriented positively, and let f : ∂K → ∂K̃ be an indexable homeomorphism.

Then the following hold.

1. We have η(f) = η(f−1).

2. If K ⊆ K̃ or K̃ ⊆ K, then η(f) = 1.

3. If K and K̃ have disjoint interiors, then η(f) = 0.
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4. If ∂K and ∂K̃ intersect in exactly two points, then η(f) ≥ 0.

As a consequence of the above, if K and K̃ are closed disks in the plane, then η(f) ≥ 0.

For now we give only intuitive arguments in support of Lemma 3.1, based on the

proof given by He and Schramm in [HS93]. We will give a quick and easy, but totally

unintuitive proof later using some machinery, c.f. Section 6.2.

“Proof.” (1) By definition η(f−1) is the winding number of {f−1(z̃)− z̃}z̃∈∂K̃ around

the origin, which is equal to the winding number of {z− f(z)}z∈∂K around the origin

under the coordinate change f(z) = z̃. But it is easy to see that the winding number

around the origin of the curve {γ(t)}t∈S1 is the same as the winding number around

the origin of {−γ(t)}t∈S1 .
Part (2) is believable if we imagine K to be “very small,” and contained in K̃.

Then the endpoint z of the vector f(z) − z does not move very much as z traverses

∂K, while the endpoint f(z) of the same vector “winds once positively around K.”

For part (3) we refer to the example given in Figure 3.1.

K

K̃

bb f(z)z

Figure 3.3: Closed Jordan domains whose boundaries cross at exactly two
points. If f(z)− z ∈ R+ as shown, then because of the orientations on ∂K and ∂K̃
the endpoint z is locally moving down, and the endpoint f(z) is locally moving up,
so f(z)− z is locally turning counter-clockwise.

For part (4) we may assume by parts (2) and (3) that K and K̃ are the square and

circle depicted in Figure 3.3, c.f. Lemma 5.2. We consider when it is possible that the

vector f(z)− z points in the positive real direction, as in Figure 3.3. If z ∈ ∂K does

not lie in the interior of K̃, the vector f(z)− z has either an imaginary component,

or a negative real component. Similarly if f(z) ∈ ∂K̃ does not lie inside of K, then

f(z)− z has a negative real component. We conclude that the only way that f(z)− z
can be real and positive is if z lies along ∂K in the interior of K̃ and f(z) lies along

∂K̃ inside of K. But in this case because of the orientations on ∂K and ∂K̃, the
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vector f(z)− z is locally turning in the positive direction. Thus whenever the curve

{f(z)− z}z∈∂K crosses the positive real axis it is turning in the positive direction, so

this curve’s total winding number around the origin cannot be negative.

3.2 Fixed-point index additivity

The moral of this lemma is that fixed-point indices “add nicely.”

Index Additivity Lemma 3.2. Suppose that K and L are interiorwise disjoint

closed Jordan domains which meet along a single positive-length Jordan arc ∂K ∩∂L,

similarly for K̃ and L̃. Then K ∪ L and K̃ ∪ L̃ are closed Jordan domains.

Let f : ∂K → ∂K̃ and g : ∂L→ ∂L̃ be indexable homeomorphisms. Suppose that

f and g agree on ∂K ∩∂L. Let h : ∂(K ∪L)→ ∂(K̃ ∪ L̃) be induced via restriction to

f or g as necessary. Then h is an indexable homeomorphism and η(h) = η(f) +η(g).

b

b

v

u

K

L

Figure 3.4: An illustration of fixed-point index additivity.

Proof. The situation is as depicted in Figure 3.4. We may consider η(f) to be 1/2π

times the change in argument of the vector f(z) − z, as z traverses ∂K once in the

positive direction. Then as z varies positively in ∂K and in ∂K̃ the contributions to

the sum η(f) + η(g) along ∂K ∩ ∂L cancel.

D1 D2

D̃2

D̃1

Figure 3.5: A computational example applying the Circle Index Lemma 3.1
and fixed-point index additivity. Suppose f1 : ∂D1 → ∂D̃1 and f2 : ∂D2 → ∂D̃2

are indexable homeomorphisms that agree on ∂D1 ∩ ∂D2. Then f1 and f2 induce
indexable homeomorphisms g : ∂(D2 \ D1) → ∂(D̃2 \ D̃1) and h : ∂(D1 ∪ D2) →
∂(D̃1 ∪ D̃2). Part (2) of the Circle Index Lemma 3.1 gives that η(h) = η(f1) = 1, so
by index additivity η(g) = 0.
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3.3 Stability of fixed-point index under small perturbations

The following lemma says essentially that given f : ∂K → ∂K̃ an indexable homeo-

morphism, we may move K around a “little bit,” leaving K̃ fixed, without affecting

the fixed-point index η(f). This lemma appears in [Ste05, Lemma 8.11].

Index Stability Lemma 3.3. Let K and K̃ be closed Jordan domains and let f :

∂K → ∂K̃ be an indexable homeomorphism. Then there is an ε > 0 so that the

following holds. Let φ : ∂K → C be an orientation-preserving homeomorphism onto

its image. Suppose further that φ satisfies |φ(z) − z| < ε for all z ∈ ∂K. Then

f ∗ : φ(∂K)
φ−1

→ ∂K
f→ ∂K̃ is an indexable homeomorphism, and η(f) = η(f ∗).

Proof. Let ε = infz∈∂K |f(z) − z|. Then ε > 0 because ∂K is compact and the

function |f(z) − z| is continuous and non-zero for z ∈ ∂K. For z ∈ ∂K, let φt(z) =

tz + (1 − t)φ(z), so that φ1 is the identity on ∂K and φ0 = φ. Let γt be the closed

curve {f(z)−φt(z)}z∈∂K . Now |f(z)−φt(z)| ≥ |f(z)− z|− |z−φt(z)| by the triangle

inequality, but |f(z)− z| ≥ ε > |z − φ(z)| ≥ |z − φt(z)|, so |f(z)− φt(z)| > 0 for all

z ∈ ∂K and t ∈ [0, 1]. Thus every curve γt misses the origin. Furthermore the curves

γt vary continuously in t, so all of them have the same winding number around the

origin. But the winding number of γ0 around the origin is η(f ∗), and the winding

number of γ1 around the origin is η(f).

Let K and K̃ be closed Jordan domains. We say that K and K̃ are in general

position if ∂K and ∂K̃ “cross” wherever they meet. More precisely, we say that K

and K̃ are in general position for any z ∈ ∂K ∩ ∂K̃, locally near z the curves ∂K

and ∂K̃ are topologically as in Figure 3.6a. That is, there is an open neighborhood

U of z and a homeomorphism φ : U → D sending ∂K ∩ U to R ∩ D and sending

∂K̃ ∩ U to iR ∩ D. For example, the general position hypothesis on K and ∂K

precludes intersection points ∂K ∩ ∂K̃ which locally look like Figures 3.6b and 3.6c.

We remark that in general, Jordan curves may meet in other local configurations than

the three given in Figure 3.6.

(a)

b

(b) (c)

Figure 3.6: Various ways that two Jordan curves ∂K and ∂K̃ can meet.
The solid arcs represent pieces of ∂K and the dashed ones pieces of ∂K̃.
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Remark 3.4. Actually, in general, Jordan curves are poorly behaved, and a “ran-

dom” pair of Jordan curves, if they meet, will probably not be in what we call general

position. However, all examples of Jordan curves that we ever consider are piecewise

smooth, and a “random” pair of piecewise smooth Jordan curves probably will be in

general position, so our terminology makes sense in this context. Thanks to Steffen

Rohde for pointing out this issue.

3.4 Moving three points

The following lemma says essentially that we may almost always prescribe the images

of three points on ∂K in ∂K̃, and obtain an indexable homeomorphism ∂K → ∂K̃

with non-negative index, which respects this prescription.

Three Point Prescription Lemma 3.5. Let K and K̃ be compact Jordan domains

in general position. Let z1, z2, z3 ∈ ∂K \ ∂K̃ appear in counterclockwise order, simi-

larly z̃1, z̃2, z̃3 ∈ ∂K̃ \ ∂K. Then there is an indexable homeomorphism f : ∂K → ∂K̃

sending zi 7→ z̃i for i = 1, 2, 3, so that η(f) ≥ 0.

A version of this lemma is stated in [Ste05, Lemma 8.14], but the proof given there is

incomplete. However, that proof works in “almost all” cases, and anyway is a quick

heuristic for the truth of the TPPL 3.5, so we sketch it here. It depends on the

following well-known theorem (see [Car13] for the original paper):

Carathéodory’s Theorem 3.6. If Ω and Ω̃ are open Jordan domains in the plane,

then any biholomorphism ϕ : Ω → Ω̃ extends uniquely to a homeomorphism ϕ̄ :

closure(Ω) → closure(Ω̃). Furthermore if z1, z2, z3 ∈ ∂Ω are distinct, and z̃1, z̃2, z̃3 ∈
∂Ω̃ are distinct, and both triples occur in the same order around their boundaries,

then ϕ may be chosen uniquely so that ϕ̄ sends z1, z2, z3 to z̃1, z̃2, z̃3 respectively.

Then let ϕ be the Riemann mapping from the interior of K to the interior of K̃,

c.f. the Riemann Mapping Theorem 2.4. Then by Carathéodory’s Theorem 3.6 the

map ϕ limits uniquely to a boundary homeomorphism f : ∂K → ∂K̃. Choose ϕ so

that f sends z1, z2, z3 to z̃1, z̃2, z̃3 respectively.

Suppose that f does not have any fixed points. Suppose also for simplicity that

∂K and ∂K̃ are smooth. Then, using the complex analysis definition of winding
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number (see [Ahl78, Section 2.1; Rud87, p. 204]), we have that:

η(f) =

∮
{f(z)−z}z∈∂K

dw

w

=

∮
∂K

ϕ′(w)− 1

ϕ(w)− w
dw

Then by the Argument Principle (see [Ahl78, Theorem 5.18]) the second integral

counts the number of zeros minus the number of poles of f(z) − z in the interior of

K, but f(z)− z is holomorphic in the interior of K, so this integral is non-negative.

Actually ϕ′ is undefined on ∂K, because ϕ is not holomorphic in a neighborhood

of K as technically required by the Argument Principle, so the second integral does

not quite make sense. It is possible to get around this problem using homotopies and

the Index Stability Lemma 3.3. However, there is a more serious issue, namely that

a priori f may have many fixed points, and it is not clear how to get rid of them,

especially if we do not wish to move K and K̃. This is the gap in the proof given in

[Ste05]. In particular, moving K and K̃ would require adjusting the given statement

of the TPPL 3.5.

We give an original elementary inductive proof of Lemma 3.5, using only plane

topology arguments, in Section 6.5.

3.5 Proof of rigidity and uniformization of circle packings

In this section we prove the following theorem, which is a special case of our Main

Rigidity Theorem 1:

Theorem 3.7. Suppose that P and P̃ are circle packings in Ĉ, sharing a contact

graph that triangulates the 2-sphere S2. Then P and P̃ differ by a Möbius or anti-

Möbius transformation.

We include the proof as an example of the surprising power of the fixed-point index,

and because it is an excellent warm-up to the proof of our main result. We then easily

adapt the proof of Theorem 3.7 to obtain the following two theorems:

Theorem 3.8. Suppose that P and P̃ are circle packings locally finite in C, sharing

a contact graph that triangulates a topological open disk. Then P and P̃ differ by a

Euclidean similarity.

Theorem 3.9. There cannot be two circle packings P and P̃ sharing a contact graph

triangulating a topological open disk, so that one is locally finite in C and the other

is locally finite in H2.
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3.5.1 Proof of Theorem 3.7

The argument is by contradiction. The main idea is to superimpose the packings P
and P̃ on the Riemann sphere in a convenient way. In particular, we will isolate two

topological quadrilaterals Q and Q̃ so that any indexable homeomorphism ∂Q→ ∂Q̃

identifying corresponding corners has a negative fixed-point index. Then, using the

Circle Index Lemma 3.1, the Index Additivity Lemma 3.2, and the Three Point

Prescription Lemma 3.5, we construct an indexable homeomorphism ∂Q→ ∂Q̃ which

identifies corresponding corners, but which has a non-negative fixed-point index by

construction. This gives us our desired contradiction.

Let X = (V,E, F ) be the triangulation of S2 which P and P̃ realize. Suppose

for contradiction that P and P̃ are not equivalent under any Möbius or anti-Möbius

transformation.

For the first part of the proof, we apply a sequence of normalizations to P and

to P̃ . Let f0 = 〈v1, v2, v3〉 ∈ F be a face of X. We first normalize via a Möbius

transformation so that Di = D̃i for i = 1, 2, 3. Here Di ∈ P is the disk corresponding

to vi ∈ V as usual, similarly D̃i ∈ P̃ .

Our next normalization is in our initial choice of f0 and our labeling of the vi, as

per the following observation:

Observation 3.10. Let v4 denote the vertex of X other than v1 so that 〈v2, v3, v4〉 is

a face of X. Then there is some choice of f0 = 〈v1, v2, v3〉 so that the disks D4 and

D̃4 are not equal after our normalization identifying Di = D̃i for i = 1, 2, 3.

If there were no such choice of f0 then in fact every pair of corresponding disks Di

and D̃i would coincide after our first normalization, and so P and P̃ coincide.

Next, we insist that ∞ lies in the interstice formed by D1 = D̃1, D2 = D̃2, D3 =

D̃3. Finally, we insist that D1 = D̃1, D2 = D̃2, D3 = D̃3 all have Euclidean radius 1,

and that D2 and D3 are tangent at a point lying on the horizontal axis, so that D1

lies to their left. The situation for P is depicted in Figure 3.7.

From now on we work in the plane C, in the sense that ∞ ∈ Ĉ will not move

again for the remainder of the proof. Note that every face f of F corresponds to

some interstices Uf ⊂ C and Ũf ⊂ C of P and P̃ respectively, except for f0, for

which the interstices Uf0 = Ũf0 contain ∞. Let Q be the topological quadrilateral

shown in Figure 3.7b. More precisely, let VQ = V \ {v1, v2, v3}, and let FQ = F \
{f0 = 〈v1, v2, v3〉 , 〈v2, v3, v4〉}. Then we define Q =

⋃
v∈VQ Dv ∪

⋃
f∈FQ Uf . Define the

analogous objects for P̃ in the obvious way.
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D1

D2

D3

D4

(a)

D4D1

D2

D3

Q

(b)

Figure 3.7: The packing P after some normalizations. The disks of P all
lie between D1, D2, D3. Note that the interstice formed by D1, D2, D3 on Ĉ is the
outside region in these figures. The disk D4 is “the first disk of P \ {D1, D2, D3} we
get to if we start scanning from the right.” In (b) the topological quadrilateral Q is
outlined in bold.

We now apply one final transformation to P . First, suppose without loss of

generality that the Euclidean radius of D4 is larger than that of D̃4. Then translate

every disk of P to the right by a small amount ε > 0, leaving the disks of P̃ unchanged.

Denote this transformation by Tε. We will discuss more precise requirements on ε

later. The situation is depicted in Figure 3.8. The essential point is that there is an

open interval of values that ε > 0 may take so that after all of our transformations,

the topological quadrilaterals Q and Q̃ are arranged qualitatively as in Figure 3.8b.

In particular, in this case we get that any indexable homeomorphism ∂Q → ∂Q̃

identifying corresponding corners has a negative fixed-point index.

We now move on to the second part of the proof. We hope to obtain an indexable

homeomorphism ϕQ : ∂Q → ∂Q̃ which identifies corresponding corners, constructed

in such a way that we can prove that η(ϕQ) ≥ 0. First, for any f = 〈u1, u2, u3〉 ∈ FQ,

a homeomorphism ϕf : ∂Uf → ∂Ũf is called faithful if it identifies corresponding

corners, equivalently if it restricts to homeomorphisms ∂Uf ∩ ∂Dui → ∂Ũf ∩ ∂D̃ui for

i = 1, 2, 3. Go back and ensure that we chose ε so that every pair of corresponding

interstices is in general position. We may do so because there are only countably

many choices of ε for which this fails, and there were uncountably many acceptable

choices for ε until this point, so there continue to be uncountably many acceptable

choices after we impose this extra condition. Then for all f ∈ F \ {〈f0 = v1, v2, v3〉},
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D̃4

D4

D1 = D̃1

D2 = D̃2

D3 = D̃3

(a)

Q

Q̃

(b)

Figure 3.8: The interaction between P and P̃ before and after applying
Tε. In (a) we see the superimposition of the Di with the D̃i before applying Tε to
P. The disks Di are drawn solid, and the disks D̃i are drawn dashed. In (b) we see
the relative positions of Q and Q̃ after applying Tε to P.

fix a faithful indexable homeomorphism ϕf : ∂Uf → ∂Ũf so that η(ϕf ) ≥ 0, via the

Three Point Prescription Lemma 3.5. Then:

Observation 3.11. For every v ∈ V \ {v1, v2, v3} the homeomorphisms ϕf induce

an indexable homeomorphism ϕv : Dv → D̃v. The ϕf also induce an indexable

homeomorphism ϕQ : ∂Q→ ∂Q̃, which identifies corresponding corners.

But then by the Index Additivity Lemma 3.2, we get:

η(ϕQ) =
∑
v∈VQ

η(ϕv) +
∑
f∈FQ

η(ϕf )

We have already observed that the left side of the sum is negative. The right side of

the sum is positive, because η(ϕv) ≥ 0 for all v by the Circle Index Lemma 3.1, so

we obtain our desired contradiction.

3.5.2 Proof of Theorem 3.8

The proof of Theorem 3.8 proceeds along the same lines, except that after our first

round of normalizations identifying Di and D̃i for i = 1, 2, 3, and sending a point

of their interstice to ∞, the remaining disks of P accumulate around a point z∞, as

do those of P̃ around a point z̃∞. The points z∞ and z̃∞ may coincide or may be

different. We define and apply Tε as before, this time making sure that z∞ and z̃∞
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are different after applying Tε.

Next, pick disjoint neighborhoods W and W̃ of z∞ and z̃∞ respectively, and con-

tained in Q and Q̃ respectively. Then, let VL be the set of v ∈ V so that both Dv ⊂ W

and D̃v ⊂ W̃ . Similarly let FL be the set of f ∈ F so that both Uf ⊂ W and Ũf ⊂ W̃ .

Let L (which stands for leftovers) be the union
⋃
v∈VL Dv ∪

⋃
f∈FL Uf ∪ z∞, and define

L̃ similarly. Then the ϕf and ϕv induce an indexable homeomorphism ϕL : ∂L→ ∂L̃,

and η(ϕL) = 0 because L and L̃ are disjoint. Then by the Index Additivity Lemma

3.2, we get:

−1 = η(ϕQ) = η(ϕL) +
∑

v∈VQ\VL

η(ϕv) +
∑

f∈FQ\FL

η(ϕf ) ≥ 0

Thus we have our desired contradiction.

3.5.3 Proof of Theorem 3.9

The adaptation here is along similar lines as the adaptation to prove Theorem 3.8.

Let P and P̃ be as in the statement of the theorem. Suppose for contradiction that

P is locally finite in C, and P̃ is locally finite in H2 ∼= D. This time, after our

normalizations, the disks of P accumulate around a single point z∞, and the disks

of P̃ accumulate around some circle C contained in the bounded region in the plane

formed between D1 = D̃1, D2 = D̃1, D3 = D̃3. This time, ensure that we chose ε

so that z∞ does not lie on the circle C. For δ > 0 let Wδ be the neighborhood of

radius δ around z∞, and let W̃δ be the set consisting of all points within distance

δ of a point on the circle C. Choose δ small enough that Wδ and W̃δ are disjoint.

Let VL and FL be defined as before. Let D be the closed disk in C bounded by

C. By deleting finitely many vertices from VL and finitely many faces from FL if

necessary, we may suppose that L, defined as before, is a closed Jordan domain, as

is L̃ :=
⋃
v∈VL D̃v ∪

⋃
f∈FL Ũf ∪ D. Also ∂L and ∂L̃ are disjoint, so η(ϕL) ≥ 0 for

any indexable ϕL : ∂L → ∂L̃ by the Circle Index Lemma 3.1. The proof finishes as

before.

Remark 3.12. At first glance, it may seem like a similar adaptation can be used

to prove rigidity of packings which are locally finite in H2 and have contact graphs

triangulating a topological open disk. However, the situation is subtle. The idea

would be to use the Circle Index Lemma 3.1 on the circles which are the images under

normalization of the boundaries of the hyperbolic spaces where the two packings live.

However, it is not clear (although it is true) that the two circle packings induce a
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homeomorphism of the boundaries of their supporting hyperbolic spaces in the natural

way. It is also unclear how one would get rid of any fixed points which may arise in

the construction of ϕL in such a proof.

3.6 The Incompatibility Theorem

The essential topological idea of the proofs of this part of the thesis originates with the

so-called Incompatibility Theorem of Oded Schramm. It says roughly the following.

We will pack topological rectangles with shapes in such a way that every region left

over is a curvilinear triangle. Two examples of such packings are given in Figure

3.9. Suppose, as in the figure, that we pack two topological rectangles R and R̃ this

way, so that the contact graphs of the shapes are the same, and so that given two

corresponding corners z of R and z̃ of R̃, the shape Kz in R nearest z and the shape

K̃z̃ in R̃ nearest z̃ correspond to one another in the identification of the contact graphs

of the packings. In other words, the packings agree about their contacts and about

which shape is in which corner. Suppose that we overlay the rectangles R and R̃ so

that they cut each other. Then there is a pair of corresponding shapes which cut each

other. Two examples are shown in Figure 3.10. Here we say that two sets A and B

cut each other if A \B or B \ A is disconnected.

R

R̃

z

z̃

Kz

K̃z̃

b

b

Figure 3.9: Two topological rectangles packed with shapes so that every
remaining region is a curvilinear triangle.

Theorems 3.7, 3.8, and 3.9 can be proved via the Incompatibility Theorem by

applying the same normalizations and transformations as in our proof, and then ob-

serving that two circles can never cut each other, giving us the desired contradiction.

The end of our proof of Theorem 3.7 suggests a strategy for proving the Incompati-

bility Theorem, and indeed a careful proof can be carried out along those lines using

the fixed-point index tools we have in hand so far. The difficulties that manifest
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Figure 3.10: Shapes cutting each other. We have drawn R and R̃ on top of
each other in two different ways, so that R and R̃ cut each other, and in both cases
some pair of corresponding shapes of our packings cut each other.

themselves when we try to generalize this method of proof to disk configurations with

overlaps will become clearer in Section 3.9, where we discuss obstructions to possible

generalizations of our main technical result.

The original proof by Schramm of the Incompatibility Theorem is via different

methods, is elementary, and is somewhat messier. The precise technical statement

of the Incompatibility Theorem originally given by Schramm is also rather technical,

which is why we do not state it here, giving instead a picture of the main idea. The

original statement and proof can be found in [Sch91, Theorem 3.1], where it is used

to give the first proof of Theorem 3.8.

3.7 A more general definition of fixed-point index

In this section we give the sufficiently general definition of fixed-point index required

to accommodate the statement of our Main Index Theorem 4. See Figure 3.11 for a

motivating example.

Definition 3.13. Suppose that K is a compact set in C that can be written K =

∪ni=1Ki \ ∪mj=1Uj, where

• the sets Ki are pairwise interiorwise disjoint closed Jordan domains, so that the

boundaries of any two of the Ki meet at at most finitely many points, and

• the sets Uj are pairwise disjoint open Jordan domains, so that every Uj is

contained in some Ki.

Suppose that the compact set K̃ = ∪ni=1K̃i \∪mj=1Ũj is such that K̃i and Ũj satisfy the

same conditions. A homeomorphism f : ∂K → ∂K̃ is called indexable if it is fixed-

74



K̃

Ũ

K

U

Figure 3.11: Generalizing the definition of fixed-point index. Denote K =
K0\U whereK0 is a closed Jordan domain and U is an open Jordan domain, similarly
K̃ = K̃0 \ Ũ . We have shown the positive orientation on ∂K, that is, the orientation
so that the interior of K stays to the left as ∂K is traversed positively. This restricts
to the negative orientation on ∂U , similarly for for K̃ and Ũ . Thus if f : ∂K → ∂K̃
is a fixed-point-free orientation-preserving homeomorphism mapping ∂K0 → ∂K̃0

and ∂U → ∂Ũ , it is natural to define η(f) = η(∂K0
f→ ∂K̃0)− η(∂U

f→ ∂Ũ).

point-free, orientation-preserving, and restricts to homeomorphisms Ki∩∂K → K̃i∩
∂K̃ and Uj ∩ ∂K → Ũj ∩ ∂K̃ for all i, j. Then f induces indexable homeomorphisms

∂Ki → ∂K̃i and ∂Uj → ∂Ũj for all i, j. We define the fixed-point index of f to be

η(f) =
∑n

i=1 η(∂Ki
f→ ∂K̃i)−

∑m
j=1 η(∂Uj

f→ ∂Ũj).

U

K1 K2

Figure 3.12: A compact set that breaks up in two different ways, both of
which are accommodated by Definition 3.13. The shaded set can be written
either as the union of two interiorwise disjoint closed Jordan domains K1 and K2,
with no open Jordan domains removed, or as a single closed Jordan domain with an
open Jordan domain U removed.

Definition 3.13 is general enough to accommodate any situation that could arise in

the statement of Theorem 4. Then Theorem 4 holds using this definition of fixed-

point index. We remark that a given compact set K may decompose in more than

one way that satisfies the requirements of this definition, c.f. Figure 3.12. We leave

it to the reader to check that the same value for the fixed-point index is obtained

regardless of which decomposition is chosen. We can now also discuss fixed-point

index additivity in more complicated situations, c.f. Figure 3.13. In general, fixed-
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point index additivity continues to hold using Definition 3.13. We leave the details

of working this out to the reader.

U

K L

Figure 3.13: An example of fixed-point index additivity where K ∪ L is
not a closed Jordan domain. Let f : ∂K → ∂K̃ and g : ∂L→ ∂L̃ be indexable
homeomorphisms which agree on ∂K ∩ ∂L. Then the contributions from η(f) and
η(g) along ∂K ∩ ∂L cancel in the sum η(f) + η(g), as in the proof of Lemma 3.2.
Furthermore we see that the positive orientations on ∂K and ∂L induce the negative

orientation on ∂U , so the contribution to η(f) + η(g) along ∂U is −η(∂U
f,g→ ∂Ũ) as

desired, where ∂U
f,g→ ∂Ũ denotes the homeomorphism induced by restriction to f or

g as necessary.

3.8 Statement of the main technical result

Let K = {K1, . . . , Kn} and K̃ = {K̃1, . . . , K̃n} be collections of closed Jordan do-

mains. We denote ∂K = ∂ ∪ni=1 Ki, similarly ∂K̃ = ∪ni=1K̃i. A homeomorphism

f : ∂K → ∂K̃ is called faithful if whenever we restrict f to Kj ∩ ∂K we get a home-

omorphism Kj ∩ ∂K → K̃j ∩ ∂K̃. The particular choice of indices of Ki and K̃i is

important in determining whether a given homeomorphism is faithful, so we consider

the labeling to be part of the information of the collections. Note that in general ∂K
and ∂K̃ need not be homeomorphic, and even if they are homeomorphic there may

still be no faithful homeomorphism between them.

We now give a weak form of our main technical result which is much easier to

state, because it gives us a sense of where we are going, indicating roughly how we

are generalizing the Circle Index Lemma 3.1.

Main Index Theorem (weak form). Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n}
be thin disk configurations in the plane C sharing a contact graph G = (V,E). Sup-

pose that Θ : E → [0, π), and that both D and D̃ realize (G,Θ). Let f : ∂D → ∂D̃ be

a faithful indexable homeomorphism. Then η(f) ≥ 0.
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This follows from the full statement of the Main Index Theorem 4 and Lemma 3.3.

It can be thought of as a “first approximation” to the Index Theorem 4, in the same

way that the statement that η(f) ≥ 0 for indexable f : ∂D → ∂D̃ where D and D̃

are closed disks is a “first approximation” to the Circle Index Lemma 3.1.

Moving on, we say that D and D̃ are in general position if for all i, j we have

• that ∂Di ∩ ∂Dj is disjoint from ∪nk=1∂D̃k,

• that ∂D̃i ∩ ∂D̃j is disjoint from ∪nk=1∂Dk, and

• that ∂Di and ∂D̃j are not tangent.

Next, a subset I ⊂ {1, . . . , n} is called subsumptive if

• either Di ⊂ D̃i for every i ∈ I, or D̃i ⊂ Di for every i ∈ I, and

• the set ∪i∈IDi is connected, equivalently the set ∪i∈ID̃i is connected.

The subsumptive set I is called isolated if there is no i ∈ I and j ∈ {1, . . . , n} \ I so

that one of Di ∩Dj = Eij and D̃i ∩ D̃j = Ẽij contains the other. The main technical

result of this thesis is the following theorem.

Main Index Theorem 4. Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n} be thin disk

configurations in the plane C in general position, sharing a contact graph G = (V,E).

Suppose that Θ : E → [0, π), and that both D and D̃ realize (G,Θ). Let f : ∂D → ∂D̃
be a faithful indexable homeomorphism. Then η(f) is at least the number of maximal

isolated subsumptive subsets of {1, . . . , n}. In particular η(f) ≥ 0.

For an example, look ahead to Figure 4.5 on p. 88. There we know that η(f) ≥ 1 for

f satisfying the hypotheses of Theorem 4.

3.9 Possible generalizations of the Index Theorem 4

First, one may hope to weaken the condition that the Di and D̃i are closed metric

disks in C. However, Figure 3.2 shows that Theorem 4 already fails for n = 1 if we

allow shapes whose boundaries meet at more than two points. For another example,

if we allow the Di and D̃i to be ellipses and insist on the extra condition that ∂Di and

∂D̃i may meet at at most two points, then Figure 3.14 provides a counterexample for

n = 2.

Next, one may hope to eliminate the thinness condition. We use this hypothesis

rather strongly in our proof of Theorem 4, but are unaware of any counterexamples
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D1 D2

D̃1
D̃2

b

b

b

b

b

b

b

b

Figure 3.14: A counterexample to Theorem 4 if we allow the D̃i to be
ellipses. We may achieve such a configuration even if we insist that ](D̃1, D̃2) =
](D1, D2). Then any indexable f : ∂(D1 ∪ D2) → ∂(D̃1 ∪ D̃2) making the shown
identifications gives η(f) = −1.

if it is omitted and suspect that at least the weak form of the Index Theorem 4 holds

with the thinness requirement removed.

Finally, one may hope to eliminate the angle compatibility condition, but Figure

3.15 provides a counterexample. On the other hand, we do not use angle compatibility

in our proof of Proposition 6.7, so Theorem 4 holds if we weaken the definition of

compatibility of collections of disks to insist on angle compatibility ](Di, Dj) =

](D̃i, D̃j) if and only if one of Di∩Dj and D̃i∩D̃j contains the other. Still, if we hope

to remove the thinness condition, then it seems very likely that angle compatibility

will be essential.

D1
D2

D̃1
D̃2

b b

b b

b b
bb

Figure 3.15: A counterexample to Theorem 4 if we allow ](D1, D2) 6=
](D̃1, D̃2). Any indexable f : ∂(D1 ∪D2)→ ∂(D̃1 ∪ D̃2) making the shown identi-
fications gives η(f) = −1.

We state a precise conjecture to end the chapter. Suppose that K = {K1, . . . , Kn}
and K̃ = {K̃1, . . . , K̃n} are collections of convex closed Jordan domains having smooth

boundaries, so that there are no i 6= j so that one of Ki and Kj contains the other,

or that one of K̃i and K̃j contains the other. We say that K and K̃ are compatible if

the following conditions hold.
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• For every i we have that Ki and K̃i are positive homothetic images of one

another, that is, there exists a positive real number a and a b ∈ C so that K̃ is

the image of K under z 7→ az + b.

• The sets Ki and Kj meet if and only if the sets K̃i and K̃j meet. Then the sets

in one pair have tangent boundaries if and only if the sets in the other pair do.

• Suppose that Ki and Kj overlap, and orient their boundaries as usual. Let

ui→j be the point of ∂Ki ∩ ∂Kj where ∂Ki enters Kj. Define ũi→j similarly.

Then we insist that the angle between Ki and Kj at ui→j is the same as the

angle between K̃i and K̃j at ũi→j, where the angle between Ki and Kj is defined

analogously to ](A,B) the angle between two disks.

Then we make the following conjecture.

Conjecture 3.14. Let K = {K1, . . . , Kn} and K̃ = {K̃1, . . . , K̃n} be compatible

collections of convex closed Jordan domains in the plane having smooth boundaries.

Let f : ∂K → ∂K̃ be a faithful indexable homeomorphism. Then η(f) ≥ 0.

It seems that there is no reasonable way to get rid of the convexity condition, as

there are examples of non-convex closed Jordan domains K and K̃ with smooth

boundaries that are homothetic images of one another, so that ∂K and ∂K̃ meet four

times, allowing us to generate counter-examples in the spirit of Figure 3.2.
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Chapter 4

Proofs of the main results

In Section 4.1, we prove the Index Theorem 4, modulo four propositions. We give the

complete statements of these propositions in our outline, and number them according

to where they are found with proofs in the text.

4.1 Proof outline for the Index Theorem 4

For the remainder of this chapter, fix D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n}, and

a faithful indexable homeomorphism f : ∂D → ∂D̃, as in the statement of Theorem

4. Our proof is by induction. The base case is exactly the Circle Index Lemma 3.1,

so we suppose from now on that n ≥ 2.

4.1.1 Extending f to enable induction

We say that two closed disks overlap if their interiors meet. Suppose that Di 6= Dj

overlap. Then the eye between them is defined to be Eij = Eji = Di ∩ Dj. When

we quantify over the eyes Eij in D, we keep in mind that Eij = Eji and treat this

as a single case. Eyes in D̃ are defined analogously. A homeomorphism eij : ∂Eij →
∂Ẽij is called faithful if it restricts to homeomorphisms Di ∩ ∂Eij → D̃i ∩ ∂Ẽij and

Dj ∩ ∂Eij → D̃j ∩ ∂Ẽij.

Observation 4.1. For every eye Eij there exists a faithful indexable homeomorphism

eij : ∂Eij → ∂Ẽij. Furthermore, however they are chosen, the homeomorphisms

eij agree on pairwise intersections of their domains, and every eij agrees with f on

∂Eij ∩ ∂D.

The only way that there could fail to exist any faithful fixed-point-free homeomor-

phisms ∂Eij → ∂Ẽij is if a pair of corresponding points in ∂Di ∩ ∂Dj and ∂D̃i ∩ ∂D̃j

coincide. This cannot happen by the general position hypothesis on D and D̃. That

the eij agree with f follows from the faithfulness conditions on f and on the eij.
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The eij agree with one another by faithfulness and because if three distinct disks

Di, Dj, Dk meet at some point z, then z ∈ ∂Di ∩ ∂Dj ∩ ∂Dk.

For every Eij fix a faithful indexable eij. For i ∈ {1, . . . , n} let gi : ∂Di → ∂D̃i be

the function induced by restricting to f or to the eij, as necessary. It is routine to check

that gi defined this way is an indexable homeomorphism. The following observation

serves as a good intuition builder, and will be appealed to in the induction step of

our proof.

Observation 4.2. η(f) =
n∑
i=1

η(gi)−
∑
Eij

η(eij)

This follows from the Index Additivity Lemma 3.2: notice that η(eij) is exactly

double-counted in the sum η(gi) + η(gj).

If I ⊂ {1, . . . , n} then let DI = {Di : i ∈ I}, similarly D̃I . We denote by

fI : ∂DI → ∂D̃I the function obtained by restriction to f or to the eij, as necessary.

Then fI is a faithful indexable homeomorphism. We make another observation.

Observation 4.3. Let I, J ⊂ {1, . . . , n} be disjoint and non-empty, satisfying ItJ =

{1, . . . , n}. Then by fixed-point index additivity we get

η(f) = η(fI) + η(fJ)−
∑

η(eij)

where the sum is taken over all Eij so that i ∈ I, j ∈ J .

4.1.2 The induction step

We first make a simplifying observation that gives us access to our main propositions:

Observation 4.4. Suppose that Dj \ ∪i 6=jDi and D̃j \ ∪i 6=jD̃i are disjoint for some

j. Then we are done by induction.

Proof. If neither of Dj and D̃j contains the other, then j does not belong to any

subsumptive subset of {1, . . . , n}, so we are done by applying induction. Thus suppose

without loss of generality that D̃j ⊂ Dj. Then there must be an i 6= j so that D̃j ⊂ Di.

Let J be the maximal subsumptive subset of {1, . . . , n} containing j. If D̃i 6⊂ Di,

then i 6∈ J , but Ẽij ⊂ Eij, so J is not isolated. Furthermore, one can show that in

this case J = {j}, and we are done by induction. Thus suppose that D̃i ⊂ Di, so

i ∈ J . Then because D̃j ⊂ Di one can show that J is isolated in {1, . . . , n} if and

only if J \ {j} is isolated in {1, . . . , n} \ {j}, and we are done by induction.
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Thus we may assume without loss of generality for the remainder of the chapter that

Dj \Di and D̃j \ D̃i meet, for all i, j.

The following proposition will be key in our induction step:

Proposition 6.7. Let {A,B} and {Ã, B̃} be pairs of overlapping closed disks in the

plane C in general position. Suppose that neither of E = A ∩ B and Ẽ = Ã ∩ B̃
contains the other. Suppose further that A \ B and Ã \ B̃ meet, and that B \ A and

B̃\Ã meet. Then there is a faithful indexable homeomorphism e : ∂E → ∂Ẽ satisfying

η(e) = 0.

Thus for example if for no i, j is it the case that one of Eij and Ẽij contains the

other, then we are done by induction. Alternatively, if there exist disjoint non-empty

I, J ⊂ {1, . . . , n} so that ItJ = {1, . . . , n}, and so that for every i ∈ I, j ∈ J we have

that neither of Eij and Ẽij contains the other, then again we are done by induction.

For the remainder of the section, suppose we have fixed faithful indexable eij so that

η(eij) = 0 whenever neither of Eij and Ẽij contains the other, and so that η(eij) = 1

otherwise. Next:

Proposition 4.10. Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n} be as in the state-

ment of Theorem 4. Let I be a maximal non-empty subsumptive subset of {1, . . . , n}.
Then there is at most one pair i ∈ I, j ∈ {1, . . . , n} \ I so that one of Eij = Di ∩Dj

and Ẽij = D̃i ∩ D̃j contains the other.

Note that a priori, even if I ⊂ {1, . . . , n} is subsumptive, then it may still be that

η(fI) 6= 1, for example see Figure 4.4 on p. 86. Fortunately, the following holds:

Proposition 4.9. Let n ≥ 3 be an integer. Let {Di : i ∈ Z/nZ} and {D̃i : i ∈ Z/nZ}
be collections of closed disks in the plane C in general position so that the following

conditions hold.

• We have that D̃i is contained in the interior of Di for all i.

• The disk Di overlaps with Di±1, and the disk D̃i overlaps with D̃i±1, for all i.

• The disks Di−1 and Di+1 do not meet in the interior of Di for any i, similarly

for D̃i−1, D̃i+1, D̃i.

Then
∑

i∈Z/nZ](D̃i, D̃i+1) <
∑

i∈Z/nZ](Di, Di+1). In particular it cannot be that

](Di, Dj) = ](D̃i, D̃j) for all i, j.
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Thus if I ⊂ {1, . . . , n} is subsumptive then ∪i∈IDi and ∪i∈ID̃i are compact Jordan

domains. It follows by the Circle Index Lemma 3.1 that η(fI) = 1. In this case we

are done by induction and Observation 4.3. Thus we may suppose for the remainder

of the proof, without loss of generality, that there is no i so that one of Di and D̃i

contains the other.

We now state our final technical proposition:

Proposition 6.11. Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n} be as in the state-

ment of Theorem 4, and so that for all i, j the sets Di \Dj and D̃i \D̃j meet. Suppose

that there is no i so that one of Di and D̃i contains the other. Suppose that for every

pair of disjoint non-empty subsets I, J ⊂ {1, . . . , n} so that I t J = {1, . . . , n}, there

exists an eye Eij with i ∈ I and j ∈ J so that one of Eij and Ẽij contains the other.

Then for every i we have that any faithful indexable homeomorphism gi : ∂Di → ∂D̃i

satisfies η(gi) ≥ 1. Furthermore there is a k so that Di and Dk overlap for all i, and

so that one of Eij and Ẽij contains the other if and only if either i = k or j = k.

Unless one of our earlier propositions has finished off the proof for us by induction,

the hypotheses of Proposition 6.11 hold, and we are done by Observation 4.2. Thus

Theorem 4 will be proved once we establish Propositions 4.9, 4.10, 6.7, and 6.11.

We establish Propositions 4.9 and 4.10 in Section 4.2. This is because their proofs

are quick and elementary, and some ingredients of their proofs are needed for our

proof of our main rigidity theorems. We then prove our main rigidity theorems in

Section 4.3. Afterward, we outline the rest of the paper in Section 4.4.

4.2 Subsumptive collections

In this section we prove Propositions 4.9 and 4.10 having to do with subsumptive

subsets of the index set of our collections of disks. Before doing so, we first establish

some key geometric facts in Section 4.2.1.

4.2.1 Key geometric lemmas

We first make the following observation:

Observation 4.5. Suppose that A1, A2, A3, A4 are four closed disks so that C\∪4
i=1Ai

has a bounded component U whose boundary is a curvilinear quadrilateral, with every

Ai contributing a side. Suppose the Ai are labeled so that as we traverse ∂U we arrive

at the Ai in cyclic order. Then
∑4

i=1 ](Ai, Ai+1), denoting A5 = A1, is strictly less

than 2π. See Figure 4.1.
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Figure 4.1: A complementary component of the union of four closed disks
having a curvilinear quadrilateral as its boundary. The sum of the angles
inside of the dashed honest quadrilateral is exactly 2π. This sum is greater than the
sum of the shown external intersection angles of the disks.

We use Observation 4.5 to prove the following key lemma:

m

m

∞

D

D̃

d−1
d+1

θ−1

θ+1θ̃−1

θ̃+1

z b

π − θ−1 π − θ+1

θ̃−1
θ̃+1

Figure 4.2: A Möbius transformation chosen to prove Lemma 4.6. On the
right side of the figure note that the angles inside of the small curvilinear quadri-
lateral in the middle of the four disks are exactly the external intersection angles of
the disks.

Lemma 4.6. Let d−1, d+1, D, D̃ be closed disks in C, so that D̃ is contained in the

interior of D, so that both of D and D̃ meet both of d−1 and d+1, and so that the

interiors of d−1, d+1, and D do not meet. Suppose that neither of d−1 and d+1 is

contained in D. We will denote θ−1 = ](D, d−1), similarly θ+1, θ̃−1, θ̃+1. Then

θ̃−1 + θ̃+1 < θ−1 + θ+1.

Proof. Suppose that d−1 and d+1 are disjoint, as in Figure 4.2. Let z be a point in

the interior of D \ (D̃ ∪ d−1 ∪ d+1), and let m be a Möbius transformation sending

z to ∞. Then m inverts the disk D but none of the disks D̃, d−1, d+1. Because m

preserves angles we get (π − θ−1) + (π − θ+1) + θ̃−1 + θ̃+1 < 2π by Observation 4.5,

and the desired inequality follows. We leave the case where d−1 and d+1 meet to the

reader. The same proof works. The key ingredient is that D \ (D̃ ∪ d−1 ∪ d+1) has

several connected components, one of which is a curvilinear quadrilateral with the
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appropriate interior angles. Then we choose the point z to lie in one of the other

components.

The following is easy to prove as a corollary to Lemma 4.6, by applying a suitable

Möbius transformation:

Lemma 4.7. Let A,B be a pair of closed disks in the plane C which overlap, similarly

Ã, B̃, so that ](A,B) = ](Ã, B̃). Suppose that Ã is contained in the interior of A

and that B̃ is contained in the interior of B. Suppose also that neither Ã ⊂ B nor

B̃ ⊂ A. Then 2](A,B) = 2](Ã, B̃) < ](Ã, B) + ](A, B̃).

For the next lemma, see Figure 4.3:

Lemma 4.8. Let A, B, C be closed disks, none of which is contained in any other.

Suppose that A and C overlap, and C ∩ A ⊂ B. Then ](A,C) < ](A,B).

b

A B

C

z

C ′

A

B

C

∞

Figure 4.3: A Möbius transformation chosen to prove Lemma 4.8.

Proof. Let z ∈ ∂A \ B. Because of the hypothesis that A ∩ C ⊂ B, we have that

z 6∈ C. Apply a Möbius transformation sending z 7→ ∞ so that A becomes the left

half-plane. Because z 6∈ B,C we have that B and C remain closed disks after this

transformation. Let C ′ be the closed disk so that ](A,C ′) = ](A,B), and so that C

and C ′ have the same Euclidean radius and the same vertical Euclidean coordinate.

Then C is obtained from C ′ by a translation to the right or to the left. In fact it must

be a translation to the right, because the points ∂B ∩∂C must lie in the complement

of A, which is the right-half plane. But it is easy to see that ](A,C ′) is monotone

decreasing as C ′ slides to the right.

4.2.2 There cannot be a subsumptive loop of disks

For our next proposition, see Figure 4.4 for an example.
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Proposition 4.9. Let n ≥ 3 be an integer. Let {Di : i ∈ Z/nZ} and {D̃i : i ∈ Z/nZ}
be collections of closed disks in the plane C in general position so that the following

conditions hold.

• We have that D̃i is contained in the interior of Di for all i.

• The disk Di overlaps with Di±1, and the disk D̃i overlaps with D̃i±1, for all i.

• The disks Di−1 and Di+1 do not meet in the interior of Di for any i, similarly

for D̃i−1, D̃i+1, D̃i.

Then
∑

i∈Z/nZ](D̃i, D̃i+1) <
∑

i∈Z/nZ](Di, Di+1). In particular it cannot be that

](Di, Dj) = ](D̃i, D̃j) for all i, j.

Di

D̃i

Figure 4.4: Two closed chains of disks with D̃i ( Di for all i. The solid
disks are the Di and the dashed disks are the D̃i. Proposition 4.9 implies that
](D̃i, D̃i+1) 6= ](Di, Di+1) for some i.

Proof. Note first that for ](Di, Di+1) to be well-defined, we need to show that neither

Di ⊂ Di+1 nor Di+1 ⊂ Di. The same is true for ](D̃i, D̃i+1). Suppose for contra-

diction that Di ⊂ Di+1. Then Di−1 and Di overlap inside of Di+1, contradicting

our hypotheses. By symmetry we get that Di+1 6⊂ Di, and the two disks overlap by

hypothesis. The proof that ](D̃i, D̃i+1) is well-defined is identical.

To finish off the proof, we apply Lemma 4.6 twice. In both cases we will let

D = Di and D̃ = D̃i. First let d−1 = Di−1 and d+1 = Di+1. This gives:

](Di−1, D̃i) + ](Di+1, D̃i) < ](Di−1, Di) + ](Di+1, Di) (4.1)
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Next let d−1 = D̃i−1 and d+1 = D̃i+1. This gives:

](D̃i−1, D̃i) + ](D̃i+1, D̃i) < ](Di, D̃i−1) + ](Di, D̃i+1) (4.2)

Now note that if we let i range over Z/nZ, the sum of the terms on the left side of

equation 4.1 is equal to the sum of the terms on the right side of equation 4.2. The

desired inequality follows.

4.2.3 Mostly-isolation of subsumptive collections

Proposition 4.10. Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n} be as in the state-

ment of Theorem 4, thin and in general position. Suppose there is some Di so that

D̃i ⊂ Di. Let I be a maximal subsumptive subset of {1, . . . , n}. Then there is at most

one pair i ∈ I, j ∈ {1, . . . , n} \ I so that Di and Dj overlap and one of Eij = Di∩Dj

and Ẽij = D̃i ∩ D̃j contains the other.

Recall that I ⊂ {1, . . . , n} is subsumptive if ∪i∈IDi is connected and either D̃i ⊂ Di

for all i ∈ I or Di ⊂ D̃i for all i ∈ I. The rest of the section is spent proving

Proposition 4.10. Fix I as in the statement of Proposition 4.10, and suppose without

loss of generality that D̃i ⊂ Di for all i ∈ I.

First, let Gu be the undirected simple graph defined as follows: the vertex set is

I, and there is an edge between i and j if and only if Di and Dj overlap. Observe:

Observation 4.11. The graph Gu is connected and is a tree.

This follows from Proposition 4.9 and the general position hypothesis.

Next, let G be the directed graph so that 〈i→ j〉 is an edge of G if and only if:

• we have that 〈i, j〉 is an edge of Gu, and

• either ](D̃i, Dj) > ](Di, Dj) or D̃i ⊂ Dj.

If 〈i→ j〉 is an edge of G then we call 〈i→ j〉 an edge pointing away from i in G.

The idea is that if 〈i→ j〉 is an edge in G then the disk D̃i ⊂ Di is “shifted towards

Dj in Di.” See Figure 4.5 for an example. We make a series of observations about G.

We advise the reader to “verify” each by an examination of Figure 4.5, or by trying

to draw a counter-example, for the purpose of building intuition.
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b

b

b

b

b

Figure 4.5: The directed graph G associated to a maximal subsumptive I.
The solid disks are the Di and the dashed disks are the D̃i. The graph Gu can be
obtained by undirecting every edge.

Observation 4.12. If 〈i, j〉 is an edge in Gu then at least one of 〈i→ j〉 and 〈j → i〉
is an edge in G, and possibly both are.

This follows from Lemma 4.7.

Observation 4.13. If i ∈ I then there is at most one edge 〈i→ j〉 in G pointing

away from i.

This follows from Lemma 4.6, with D = Di, D̃ = D̃i, d−1 = Dj, d+1 = Dk, for j, k ∈ I
so that Di overlaps with both Dj and Dk.

Observation 4.14. Let 〈i1, i2, . . . , im〉 be a simple path in Gu, meaning that 〈i`, i`+1〉
is an edge in Gu for all 1 ≤ ` < m and that i` and i`′ are distinct for ` 6= `′. Suppose

that 〈im−1 → im〉 is an edge in G. Then 〈i` → i`+1〉 is an edge in G for 1 ≤ ` < m.

This follows from Observations 4.12 and 4.13, and induction.

Observation 4.15. There is at most one i ∈ I so that there is no edge pointing away

from i in G.

This follows from Observations 4.12, 4.13, and 4.14. If there is an i as in the statement

of Observation 4.15, then we call this i the sink of the directed tree G.

Having established all we need to about G, we are ready to make two final obser-

vations which will complete the proof of Proposition 4.10. First:

Observation 4.16. Let i ∈ I. Then there is at most one 1 ≤ j ≤ n different from i

so that Di and Dj overlap and either D̃i ⊂ Dj or ](Di, Dj) < ](D̃i, Dj).

This follows from Lemma 4.6 in the same way as does Observation 4.13. Next:
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Observation 4.17. Suppose that i and j are as in the statement of Proposition 4.10.

That is, we have that i ∈ I and j 6= I so that Di and Dj overlap and Ẽij ⊂ Eij.

Suppose D̃i ⊂ Di. Then ](Di, Dj) = ](D̃i, D̃j) < ](D̃i, Dj).

This follows by an application of Lemma 4.8 with D̃i = A, Dj = B, and D̃j = C.

Thus if i and j are as in the statement of Proposition 4.10, then i is the unique sink of

G. Furthermore by Observations 4.16 and 4.17 there is no k ∈ {1, . . . , n} \ I different

from j so that Di and Dk overlap and so that one of Eik and Ẽik contains the other.

Proposition 4.10 follows.

4.3 Proof of our main rigidity theorems

The main idea of the proofs here is very similar to that of the proof of Theorem 3.7

given in Section 3.5, but with extra issues to deal with. Therefore we recommend

for the reader to review that section now. We will prove only Rigidity Theorem 1.

Adapting the argument to prove Rigidity Theorem 2 and Uniformization Theorem

3 is straightforward, proceeding identically to the way that we adapted our proof of

Theorem 3.7 to prove Theorems 3.8 and 3.9.

Let C and C̃ be as in the statement of Rigidity Theorem 1. That is, both are thin

disk configurations realizing (G,Θ), where G = (V,E) is a mostly-triangulation of

the 2-sphere S2 and Θ : E → [0, π). We wish to show that C and C̃ differ by a Möbius

transformation. As in the proof of Theorem 3.8, our goal here is to superimpose the

configurations C and C̃ on the Riemann sphere in a convenient way. In particular,

we wish to find two superimposed topological quadrilaterals Q and Q̃ so that any

indexable homeomorphism ∂Q→ ∂Q̃ identifying corresponding corners has a negative

fixed-point index, as in Figure 3.8b. There are more cases to handle than in the proof

of Theorem 3.8, and the discussion of how to superimpose C and C̃ makes up the first

half of the proof, contained in Section 4.3.1. After this is done, we as before construct

an indexable homeomorphism ∂Q → ∂Q̃ identifying corresponding corners having a

non-negative fixed-point index, obtaining a contradiction. This is where Theorem 4

comes in. The construction is more involved here than in the proof of Theorem 3.8,

and makes up the second half of the proof, contained in Section 4.3.2.

4.3.1 Finding the quadrilaterals Q and Q̃

We work on the Riemann sphere Ĉ. Let ψ : G → S2 be a mostly-embedding of G,

and let F be the faces of the cell decomposition of S2 obtained by deleting every

pair of edges e1, e2 so that ψ(e1) and ψ(e2) cross. Then F consists of triangles and
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quadrilaterals.

Pick a face f0 ∈ F . First suppose that f0 = 〈v1, v2, v3〉 is a triangular face. If

the disks D1, D2, D3, equivalently D̃1, D̃2, D̃3, form an interstice, then normalize both

configurations C and C̃ so that ∞ ∈ Ĉ lies in the interstices. Otherwise, for both

triples the three constituent disks meet at a single point. In that case, normalize

both configurations so that this point is ∞. Next, suppose that f0 = 〈v0, v1, v2, v3〉
is a quadrilateral face. Then the disks D1, D2, D3, D4 meet at a single point. In this

case, normalize both configurations so that this point is ∞. We will apply further

normalizations later. For now, the possibilities for C are shown in Figure 4.6.

D1

D2

D3

b

(a)

D1

D2

D3

b

(b)

D0

D1

D3

D2 b

(c)

D2

D3

D1

D0b

(d)

Figure 4.6: The possibilities for C after an initial normalization. We get (a)
if and only if D1, D2, D3 form an interstice. Otherwise we get one of (b), (c), (d).

Next, regardless of whether f0 is triangular or quadrilateral, normalize so that Di

and D̃i coincide for i = 1, 2, 3. We are supposing for contradiction that C and C̃ are

not Möbius equivalent. The following is along the lines of Observation 3.10:

Observation 4.18. We may suppose without loss of generality that there is a pair of
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disks D4 and D̃4 having different spherical radii on Ĉ, so that either v4 belongs to a

face sharing an edge with f0, or f0 is a quadrilateral and v4 = v0.

We now enumerate the possibilities, and in each case describe how we obtain Q and

Q̃ in terms of one positive real parameter ε. From now on we work in the plane, in the

sense that all further normalizations and transformations are Euclidean similarities

of the plane. There are four cases:

Case 1. The face f0 = 〈v1, v2, v3〉 is triangular, and the disks D1, D2, D3, equivalently

the disks D̃1, D̃2, D̃3, form an interstice.

Here Figure 4.6a occurs. This case is very similar to the situation in the proof of

Theorem 3.8. We may suppose without loss of generality that v4 belongs to a face f1,

which may be quadrilateral or triangular, sharing the edge 〈v2, v3〉 with f0. Then let

VQ = V \ {v1, v2, v3, v4} and FQ = F \ {f0, f1}. As before let Uf denote the interstice

corresponding to the face f ∈ F , if it exists. Then define:

Q =
⋃
v∈VQ

Dv ∪
⋃
f∈FQ

Uf \
⋃

Eij

where the last union is taken over Eij so that vi ∈ VQ and vj ∈ V \ VQ. Define Q̃

analogously.

Rotate and translate so that both intersection points ∂D2 ∩ ∂D3 lie on the hori-

zontal axis, or so that D2 and D3 are both tangent to the horizontal axis if they are

tangent to each other. Rotate again if necessary to ensure that D1 lies to the left of

∂D2 ∩ ∂D3. Apply the same motions to C̃ so that Di and D̃i continue to coincide

for i = 1, 2, 3. We may suppose without loss of generality that D4 is bigger than D̃4.

Then a translation to the right by a small amount ε will position our Q and Q̃ where

we want them, very similarly to the way shown in Figure 3.8. Let Tε denote this

translation.

It is not as easy to see, but this works even if D4 and D̃4 are both tangent to one

of D2 = D̃2 and D3 = D̃3. This case is shown in Figure 4.7. The key point is that

after applying Tε to C, the disk D̃4 is contained in the interior of D4.

Case 2. The face f0 = 〈v1, v2, v3〉 is triangular, and the disks D1, D2, D3, equivalently

the disks D̃1, D̃2, D̃3, meet at a single point which is not a tangency point of any two

of them.

Here Figure 4.6b occurs. This case is essentially the same as case 1, except that three

of the boundary segments of Q are straight rather than circular, similarly for Q̃. Thus

we do not show the figures for this case.
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D1 = D̃1

D2 = D̃2

D3 = D̃3

D4

D̃4

(a)

Q̃

Q

(b)

Figure 4.7: The interactions between C and C̃ before and after applying Tε
to C, when Figure 4.6a occurs.

Case 3. The face f0 = 〈v0, v1, v2, v3〉 is a quadrilateral.

Here Figure 4.6d occurs. Note that after our normalizations, because D0 is tangent

to D2, the spherical radius of D0 corresponds to the distance in the plane between the

half-planes D2 and D0. The same holds for the disks D̃0 and D̃2. Thus the half-planes

D0 and D̃0 coincide if and only if the spherical radii of the disks D0 and D̃0 coincide.

We get two natural sub-cases:

Sub-case 3.1. The disks D0 and D̃0 have different spherical radii.

Thus we may as well set v4 = v0. Let VQ = V \ {v1, v2, v3, v4} and FQ = F \ {f0}.
Then define Q in terms of FQ and VQ as before, and define Q̃ analogously.

Then Q and Q̃ are parallelograms. In this case we do not apply a translation to

C, but rather a dilation. As before we may suppose without loss of generality that

D4 = D0 has a larger spherical radius than does D̃4 = D̃0, which implies that the

half-plane D̃4 is contained in the half-plane D4. Then transform C by a dilation by a

factor of 1 + ε about a point contained in the interior of D2 \
⋃
i 6=2(Di ∪ D̃i). Let Tε

denote this transformation. The situation is shown in Figure 4.8.

Sub-case 3.2. The disks D0 and D̃0 have the same spherical radii.

In this case we may suppose without loss of generality that v4 belongs to a face f1,

which may be quadrilateral or triangular, which shares the edge 〈v2, v3〉 with f . Then

set VQ = V \ {v0, v1, v2, v3, v4}, FQ = F \ {f0, f1}, and define Q and Q̃ as usual.

Normalize C by a rotation and translation sending the intersection point of ∂D2

and ∂D3 to the origin, and sending an arbitrarily chosen point in the interior of
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D̃4

D4

D1 = D̃1

D2 = D̃2

D3 = D̃3

(a)

Q

Q̃

(b)

Figure 4.8: The interactions between C and C̃ before and after applying Tε
to C, when the first sub-case of Figure 4.6c occurs.

D2 ∩ D3 to the positive real axis. Apply the same transformations to C̃ to preserve

Di = D̃i for i = 0, 1, 2, 3. We may suppose without loss of generality that D4 is larger

than D̃4. Then a translation to the right by ε will position Q and Q̃ as we wish. Let

Tε denote this translation. The situation is depicted in Figure 4.9.

D0 = D̃0

D1 = D̃1
D2 = D̃2

D3 = D̃3

D̃4

D4

(a)

Q̃

Q

(b)

Figure 4.9: The interactions between C and C̃ before and after applying Tε
to C, when the second sub-case of Figure 4.6c occurs.

Case 4. The face f0 = 〈v1, v2, v3〉 is triangular, and the disks D1, D2, D3, equivalently

the disks D̃1, D̃2, D̃3, meet at a single point which is a tangency point of two of them.

Here Figure 4.6c occurs. We may suppose without loss of generality that D2 and

D3 are tangent. Note that because D2 and D3 are tangent, the edge 〈v2, v3〉 cannot

belong to a quadrilateral. Thus let v0 be the vertex other than v1 which makes a

face 〈v2, v3, v0〉 with the edge 〈v2, v3〉. Once we have fixed the Euclidean half-planes

D1, D2, D3 via our normalizations, the Euclidean radius of D0 is determined by the
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angle D0 makes with D2 and D3. Thus D0 and D̃0 have the same Euclidean radii,

because D2 = D̃2 and D3 = D̃3, and D̃0 makes the same angles with D̃2 and D̃3 as

does D0 with D2 and D3 respectively. Instead, the radius of D0 on Ĉ corresponds to

the distance of the disk D0 from the half-plane D1. We conclude that D0 and D̃0 will

coincide in the plane if and only if they have the same spherical radii. So, this case

is essentially the same as Case 3, and we omit the figures for it.

4.3.2 Obtaining the contradiction via Theorem 4

No matter which case occurred, as before we have that any homeomorphism ϕQ :

∂Q → ∂Q̃ identifying corresponding corners has η(ϕQ) = −1. We wish to construct

such a homeomorphism with η(ϕQ) ≥ 0 to obtain a contradiction.

Choose ε so that the configurations C and C̃ are in general position. For every

f ∈ F \ {f0} define ϕf : ∂Uf → ∂Ũf as before via the Three Point Prescription

Lemma 3.5, to have η(ϕf ) ≥ 0 and to identify corresponding corners. There may be

f ∈ F so that the corresponding interstices Uf and Ũf are empty. We discard and

ignore such f .

Suppose that vi ∈ VQ and vj ∈ V \VQ so that Di and Dj overlap. Denote as usual

Eij = Di ∩ Dj, similarly Ẽij. Let η(eij) be a faithful indexable homeomorphism so

that η(eij) = 0, unless one of Eij and Ẽij contains the other, in which case η(eij) = 1.

We may do this by a slight generalization of Proposition 6.7. Let D be the set of

disks Dv of C whose vertices v lie in VQ, similarly D̃. Then the ϕf and eij induce a

faithful indexable ϕD : ∂D → ∂D̃. We get:

η(ϕQ) = η(ϕD) +
∑
f∈FQ

η(ϕf )−
∑

η(eij)

where the last sum is taken over Eij with vi ∈ VQ and vj ∈ V \ VQ. We need only to

show the following:

Claim 4.19. If we chose ε small enough, then for every Eij and Ẽij, with vi ∈ VQ
and vj ∈ V \ VQ, so that one of Eij and Ẽij contains the other, we have that one of

Di and D̃i contains the other. Furthermore, the maximal subsumptive subset I of VQ

which contains vi is isolated, and these subsumptive subsets are distinct.

This will establish η(ϕD)−
∑
η(eij) ≥ 0 by Theorem 4, giving η(ϕQ) ≥ 0, our desired

contradiction.

Proof of Claim 4.19. We break the proof into two cases, the first one relatively easy

and the second one slightly more challenging. Suppose without loss of generality that
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Ẽij ⊂ Eij. In both cases we will first show that under a sufficiently small choice of

ε we must have that D̃i ⊂ Di, establishing the existence of a subsumptive subset

I ⊂ VD. We then show that, again under a sufficiently small choice of ε, for every

vk ∈ VD so that Dk meets D̃i, we have that ](D̃i, Dk) < ](Di, Dk). This establishes

that I is isolated in VD, and furthermore that vi is its sink, so these I are distinct.

Case 1. vj 6= v4

We first consider the picture before applying Tε to C. Then we have that Dj = D̃j, so

](D̃i, Dj) = ](D̃i, D̃j) = ](Di, Dj). In this case it is easy to see that Ẽij ⊂ Eij if and

only if D̃i ⊂ Di, and that we may ensure that this continues to hold after applying

Tε by picking ε sufficiently small. Furthermore before applying Tε, if vk ∈ VQ so that

Dk meets D̃i, then we have that ](D̃i, Dk) < ](Di, Dk), by a slight generalization

of Lemma 4.6. Furthermore if ε is sufficiently small then this inequality will persist

after we apply Tε to C.

Case 2. vj = v4

As in the first case, we consider the picture before applying Tε to C, and establish

our inequalities in this setting, noting that they will persist after applying Tε if we

choose ε sufficiently small. As an example of what can occur, we discuss the case

appearing in Figure 4.9. The other cases are handled in essentially the same way.

Note first that D̃j = D̃4 is not contained in Dj = D4. It is also clear that if Ẽij ⊂ Eij

then Di must meet D̃j, and furthermore we must have Di ∩ D̃j ⊂ Dj. On the other

hand, for no pair of disks of Di, Dj, D̃j can it be the case that one contains the other.

Then by Lemma 4.8 we get that ](Di, D̃j) is strictly smaller than both ](Di, Dj)

and ](Dj, D̃j). It is also clear that if Ẽij ⊂ Eij then in particular Ẽij ⊂ Di. Then

D̃i ⊂ Di, because otherwise we would contradict ](Di, D̃j) < ](Di, Dj) = ](D̃i, D̃j)

after applying Lemma 4.8 to A = D̃i, B = D̃j, C = Di.

Finally, if D̃i ⊂ Dj then I is isolated and we are done. Otherwise we will be

done by an application of Lemma 4.6 once we show that ](D̃i, Dj) > ](Di, Dj) =

](D̃i, D̃j). But this follows immediately from an application of Lemma 4.8 to A =

D̃i, B = Dj, C = D̃i, assuming D̃i 6⊂ Dj, because D̃i ∩ D̃j ⊂ Dj. This completes the

proof of Claim 4.19, and thus of Rigidity Theorem 1.

4.4 Structure of the rest of the thesis

Two chapters remain, Chapters 5 and 6. In Chapter 5 we establish many topo-

logical propositions and lemmas that we will use to fill in the details of the proof
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of Theorem 4. First, we establish that when considering the fixed-point index of a

homeomorphism f : ∂K → ∂K̃, we need only to consider the sets K and K̃ up to

“simultaneous homeomorphism.” Section 5.4 enumerates the relevant “simultaneous

homeomorphism” classes of two pairs of overlapping disks {A,B} and {Ã, B̃}, essen-

tially reducing the proofs of all remaining propositions to finitely many cases. Section

5.5 proves some technical and unintuitive lemmas that handle special cases not taken

care of by our general techniques.

In Chapter 6 we develop a tool, called torus parametrization, that allows us to

quickly and easily write down many homeomorphisms ∂K → ∂K̃ having a desired

fixed-point index. We then apply torus parametrization to prove Propositions 6.7 and

6.11, completing the proof of Theorem 4 and thus Theorem 1.
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Chapter 5

Topological configurations

Suppose that X1, . . . , Xn and X ′1, . . . , X
′
n are all subsets of C. Then we say that the

collections {X1, . . . , Xn} and {X ′1, . . . , X ′n} are in the same topological configuration

if there is an orientation-preserving homeomorphism ϕ : C → C so that ϕ(Xi) = X ′i

for all 1 ≤ i ≤ n. In practice the collections of objects under consideration will not

be labeled Xi and X ′i, but there will be some natural bijection between them. Then

our requirement is that ϕ respects this natural bijection. See Figures 5.1 and 5.2 for

some examples.

K(a)

K̃(a)
K(b)

K̃(b)

K(c)

K̃(c)

Figure 5.1: Example topological configurations of pairs of closed Jordan
domains. The pair {K(a), K̃(a)} is in the same topological configuration as is the

pair {K(b), K̃(b)}. Here we use the natural associations K(a) ↔ K(b) and K̃(a) ↔
K̃(b). However, both pairs {K(a), K̃(a)} and {K(b), K̃(b)} are in different topological

configurations from the pair {K(c), K̃(c)}.

We will say that certain conditions on some objects uniquely determine their topo-

logical configuration if any two collections of objects satisfying the given conditions

are in the same topological configuration.

Example 5.1. Suppose C ⊂ C is a circle, and z ∈ C is a point. Then the topological

configuration of {C, z} is uniquely determined by whether z lies in the open disk

bounded by C, along ∂C, or in the complement of the closed disk bounded by C.
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b

uA
B

Ã

u′

A′ B′

Ã′

b

Figure 5.2: More examples of topological configurations of sets in the
plane. The sets A,B, Ã, A′, B′, Ã′ are closed Jordan domains. We have that
{A,B, Ã} and {A′, B′, Ã′} are in the same topological configuration, but {A,B, Ã, u}
and {A′, B′, Ã′, u′} are not. This is because u ∈ A, so any orientation-preserving
homeomorphism ϕ : C → C sending A to A′ must send u to a point inside of A′,
but u′ 6∈ A′.

5.1 Invariance of fixed-point index under topological equiva-
lence

The following lemma says that when working with fixed-point index, we need to

consider our Jordan domains only “up to topological configuration.”

Lemma 5.2. Suppose K and K̃ are closed Jordan domains. Let f : ∂K → ∂K̃

be an indexable homeomorphism. Suppose that K ′ and K̃ ′ are also closed Jordan

domains, so that {K, K̃} and {K ′, K̃ ′} are in the same topological configuration, via

the homeomorphism ϕ. Let f ′ : ∂K ′ → ∂K̃ ′ be induced in the natural way, explicitly

as f ′ = ϕ|∂K̃ ◦ f ◦ ϕ−1|∂K′. Then f ′ is indexable with respect to the usual orientation

on ∂K ′ and ∂K̃ ′, and η(f) = η(f ′).

Proof. The following is well-known. For a reference, see Chapters 1 and 2 of [FM12].

Fact 5.3. Every orientation-preserving homeomorphism C→ C is homotopic to the

identity map via homeomorphisms.

Thus let Ht : C × [0, 1] → C be such a homotopy from the identity to ϕ. Explicitly,

for fixed t we have that Ht is an orientation-preserving homeomorphism C→ C, with

H0 equal to the identity on C and H1 = ϕ.

Let Kt = Ht(K) and K̃t = Ht(K̃). Then Kt and K̃t are closed Jordan domains,

because Ht is a homeomorphism. Let ft : ∂Kt → ∂K̃t be induced in the natural way,

explicitly as Ht|∂K̃ ◦ f ◦H
−1
t |∂Kt . Let γt = {ft(z)− z}z∈∂Kt . Then tautologically η(f)

is the winding number of γ0 around the origin, and η(f ′) is the winding number of γ1

around the origin.
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Every γt is a closed curve because ∂Kt is a closed curve and ft is continuous. Once

we establish that no γt passes through the origin Lemma 5.2 will be proved because

we have an induced homotopy from γ0 to γ1, and two curves homotopic in C \ {0}
have the same winding number around the origin. Suppose for contradiction that

0 ∈ γt. Then there is a z ∈ ∂Kt so that ft(z) = z. Thus Ht ◦ f ◦H−1
t (z) = z, and so

f(H−1
t (z)) = H−1

t (z), contradicting the fixed-point-free condition on f .

5.2 General position for closed Jordan domains

Lemma 5.4. Suppose K and K̃ are closed Jordan domains in general position. Then

∂K and ∂K̃ meet a finite number of times. Suppose that z ∈ ∂K∩∂K̃. Orient ∂K and

∂K̃ positively as usual. Then one of the following two mutually exclusive possibilities

holds at the point z.

1. The curve ∂K̃ is entering K, and the curve ∂K is exiting K̃.

2. The curve ∂K is entering K̃, and the curve ∂K̃ is exiting K.

Thus as we traverse ∂K, we alternate arriving at points of ∂K∩∂K̃ where (1) occurs

and those where (2) occurs, and the same holds as we traverse ∂K̃. In particular,

this implies that ∂K and ∂K̃ meet an even number of times.

Proof. The curves ∂K and ∂K̃ meet finitely often by compactness and the general po-

sition hypothesis. Let z ∈ ∂K∩∂K̃. We may assume, by applying a homeomorphism,

that locally near z the picture looks like Figure 5.3, with ∂K oriented down-to-up as

shown. Then K lies to the left of ∂K. Now, certainly ∂K̃ is either entering or exiting

K at z. Suppose ∂K̃ is entering K at z. Then ∂K̃ is oriented right-to-left, and so K̃

is below ∂K̃. Thus ∂K is exiting K̃, and case (1) occurs. Similarly, if ∂K̃ is exiting

K at z then ∂K is entering K̃ at z, so case (2) occurs.

∂K

∂K̃
b
z

Figure 5.3: A meeting point between two Jordan curves in general posi-
tion. The orientation shown on ∂K implies that K lies to the left. Depending on
the orientation chosen for ∂K̃ we will get that K̃ lies above ∂K or below it.
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5.3 Topological configurations of convex closed Jordan do-
mains

Lemma 5.5. Let K and K̃ be convex closed Jordan domains in general position, so

that ∂K and ∂K̃ meet 2M > 0 times. Suppose that K ′ and K̃ ′ are also convex closed

Jordan domains in general position so that ∂K and ∂K̃ meet 2M > 0 times. Then

{K, K̃} and {K ′, K̃ ′} are in the same topological configuration.

Remark 5.6. Figure 5.1 shows that Lemma 5.5 is not true if we omit the condition

that the closed Jordan domains are convex. The clean construction we use in our

proof is due to Nic Ford and Jordan Watkins. Refer to Figure 5.4 for an example for

the construction.

b

P1

P2

P3

P̃1

P̃2

P̃3

Rθ

K

K̃

θ

w

b
b zθz̃θ

Figure 5.4: Two convex closed Jordan domains K and K̃ in general posi-
tion, with boundaries meeting at six points. As θ varies positively, the ray
Rθ scans around the boundaries of both K and K̃ positively.

Proof. Let w be a common interior point of K and K̃. Let Rθ be the ray emanating

from the point w at an angle of θ from the positive real direction. Then for any θ

we have that each of Rθ ∩ ∂K and Rθ ∩ ∂K̃ consists of a single point. This is a

consequence of the following fact, which is routine to prove.

Fact 5.7. Suppose that the set X ⊂ C is convex. Suppose that S is a closed straight

line segment contained in X. If exactly one endpoint of S lies in ∂X, then no other

point of S lies in ∂X.

Thus denote {zθ} = Rθ ∩ ∂K and {z̃θ} = Rθ ∩ ∂K̃. Then as θ varies from 0 to 2π, we

have that zθ traverses ∂K in the positive direction and that z̃θ traverses ∂K̃ in the

positive direction.
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Observation 5.8. We have that zθ ∈ ∂K ∩ ∂K̃ if and only if z̃θ ∈ ∂K ∩ ∂K̃ if and

only if zθ = z̃θ.

Recall Lemma 5.4 and our hypothesis that ∂K and ∂K̃ meet at 2M > 0 points.

We denote by P1, . . . , PM ∈ ∂K ∩ ∂K̃ the points where ∂K is entering K̃, and by

P̃1, . . . , P̃M ∈ ∂K∩∂K̃ the points where ∂K̃ is enteringK. See Figure 5.4 for examples

of points Pi and P̃i. We abuse notation and consider the indices of the Pi and P̃i only

modulo M . For example, we write PM+2 = P2. Then as θ varies positively the points

zθ and z̃θ arrive at the Pi and the P̃i in the same cyclic order by Observation 5.8.

Label so that as θ varies positively, we arrive at the Pi and the P̃i in the following

cyclic order:

P1, P̃1, P2, P̃2, . . . , PM , P̃M , P1, P̃1, . . .

Suppose K ′ and K̃ ′ are as in the statement of Lemma 5.5. We wish to construct

an orientation-preserving homeomorphism C→ C sending K to K ′ and K̃ to K̃ ′. For

every object under consideration defined for K and K̃, define the analogous object

for K ′ and K̃ ′ the same way, and denote it with a prime. For example w′ is a common

interior point of K ′ and K̃ ′.

Let S1 denote [0, 2π] with the endpoints identified. Let ψ : S1 → S1 be a homeo-

morphism so that zθ = z̃θ = Pi if and only if z′ψ(θ) = z̃′ψ(θ) = P ′i and zθ = z̃θ = P̃i if

and only if z′ψ(θ) = z̃′ψ(θ) = P̃ ′i . We will use a prime to denote the image of θ under

this homeomorphism, so ψ(θ) = θ′.

Observation 5.9. For every θ there is a piecewise linear homeomorphism ϕθ : Rθ →
R′θ′ sending w to w′, zθ to z′θ′, and z̃θ to z̃′θ′. We insist that ϕθ is an isometry on the

unbounded component of Rθ \ {zθ, z̃θ}.

This is routine to check from our definitions. Then the ϕθ glue together to a homeo-

morphism C→ C sending K to K ′ and K̃ to K̃ ′. This homeomorphism is orientation-

preserving because it preserves the orientations ∂K → ∂K ′ and ∂K̃ → ∂K̃ ′ by con-

struction.

Remark 5.10. Which a priori topological configurations can occur for two Jordan

curves in general position is a poorly understood question, and is known as the study

of meanders. We are fortunate that our setting is nice enough that a statement like

that of Lemma 5.5 is possible. Thanks to Thomas Lam for informing us of the topic

of meander theory.
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5.4 Eliminating irrelevant topological configurations

This chapter is devoted to the following proposition.

Proposition 5.11. Suppose that {A,B} and {Ã, B̃} are pairs of overlapping closed

disks in the plane C in general position. Suppose that A \ B meets Ã \ B̃, that

A ∩ B meets Ã ∩ B̃, and that B \ A meets B̃ \ Ã. Then given any three of the disks

A,B, Ã, B̃, the topological configuration of those three disks is one of those depicted

in the appropriate one of figures ♦, ♥, ♠, ♣.

A

BÃ

(a)

A

BÃ

(b)

A B
Ã

(c)

A B
Ã

(d)

A B

Ã

(e)

Ã

BA

(f)

A B

Ã

(g)

A
BÃ

(h)

♦

B

AB̃

(a)

B

AB̃

(b)

B A
B̃

(c)

B A
B̃

(d)

B A

B̃

(e)

B̃

AB

(f)

B A

B̃

(g)

B
AB̃

(h)

♥

Figures ♦, ♥: The possible topological configurations of {A,B, Ã} and
{A,B, B̃} respectively, under the hypotheses of Proposition 5.11.

We will often make reference to the configurations depicted in figures ♦, ♥, ♠, ♣,

so for convenience we have placed another copy of them in an appendix, starting

on p. 142. If the appropriate three-disk subset of {A,B, Ã, B̃} is in a topological

configuration depicted in the respective one of figures ♦, ♥, ♠, ♣, we will indicate

this simply by saying that the corresponding configuration occurs, for example that

♦a occurs.
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Ã

B̃A

(a)

Ã

B̃A

(b)

Ã B̃
A

(c)

Ã B̃
A

(d)

Ã B̃

A

(e)

A

B̃Ã

(f)

Ã B̃

A

(g)

Ã
B̃A

(h)

♠

B̃

ÃB

(a)

B̃

ÃB

(b)

B̃ Ã
B

(c)

B̃ Ã
B

(d)

B̃ Ã

B

(e)

B

ÃB̃

(f)

B̃ Ã

B

(g)

B̃
ÃB

(h)

♣

Figures ♠, ♣: The possible topological configurations of {A, Ã, B̃} and
{B, Ã, B̃} respectively, under the hypotheses of Proposition 5.11.

5.4.1 The topological configuration of an ellipse relative to the
four quadrants

Lemma 5.12. Suppose that S and S ′ are ellipses in C so that

• neither S nor S ′ passes through the origin,

• neither S nor S ′ is tangent to either of the real and imaginary axes, and

• each of S and S ′ passes through the same subset of the four quadrants.

Then there is an orientation-preserving homeomorphism C → C sending S to S ′,

fixing each of the four quadrants set-wise.

Proof. The proof breaks into two cases, one where both S and S ′ pass through all

four quadrants, and the other where they do not.

Case 1. Suppose that S and S ′ pass through all four quadrants.

In this case, the domains bounded by S and S ′ both contain the origin as an interior

point. Let Rθ be the ray emanating from the origin at an angle of θ from the positive
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real axis. Denote {zθ} = Rθ ∩ S and {z′θ} = Rθ ∩ S ′. Let ϕθ : Rθ → Rθ be defined

piecewise as the natural linear identification [0→ zθ]Rθ → [0→ z′θ]Rθ and the natural

isometry [zθ →∞)Rθ → [z′θ →∞)Rθ . Then the ϕθ glue to a homeomorphism C→ C
that does what we want.

Case 2. Suppose that S and S ′ miss at least one quadrant.

Let Rθ be defined as before and let S1 denote [0, 2π] with the endpoints identified.

There are two values of θ for which Rθ is tangent to S. Denote them θ1 and θ2, labeled

so that as θ varies positively from θ1 to θ2, the region swept out by Rθ contains S.

Define θ′1 and θ′2 analogously.

Let ψ : S1 → S1 be an orientation-preserving homeomorphism satisfying

• that ψ(θ) = θ if θ = 0, π/4, π/2, 3π/4, and

• that ψ(θ1) = θ′1 and ψ(θ2) = θ′2.

Such a ψ exists because S and S ′ meet the same subset of the four quadrants by

hypothesis, so Rθ1 and Rθ′1
lie in the same quadrant, and Rθ2 and Rθ′2

lie in the same

quadrant. There is a simple special case to consider, where Rθ1 , Rθ2 , Rθ′1
, Rθ′2

all lie

in the same quadrant, the details of which are left to the reader.

Let {p1} = S ∩Rθ1 and {p2} = S ∩Rθ2 . Let K be a convex closed Jordan domain

containing the origin as an interior point, satisfying S ∩ ∂K = {p1, p2}. Let K ′ be

chosen analogously. For every θ let ψθ : Rθ → Rψ(θ) be a homeomorphism which is

piecewise linear in the natural way from the components of Rθ \ (S ∪ ∂K) to those

of Rψ(θ) \ (S ′ ∪ ∂K ′), so that ψθ is an isometry on the unbounded component of

Rθ \ (S ∪ ∂K). Then the ψθ glue to a homeomorphism C → C that does what we

want.

5.4.2 Reducing the proof of Proposition 5.11 to finitely many
cases

Orient ∂A and ∂B positively as usual. Let {u, v} = ∂A ∩ ∂B. Label u and v so that

u is the point of ∂A ∩ ∂B where ∂A enters B, and v is the point of ∂A ∩ ∂B where

∂B enters A. See Figure 5.11 for an example.

Lemma 5.13. Suppose that C \ (A ∪ B ∪ Ã) is connected. Then the topological

configuration of A, B, and Ã is uniquely determined by which of the four components

of C \ (∂A ∪ ∂B) the circle ∂Ã passes through and whether v ∈ Ã.
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b

b
A B

E

u

v

Figure 5.11: The definitions of u and v in terms of the orientations on ∂A
and ∂B.

A B

Ã

A B

Ã

Figure 5.12: Two different topological configurations of three disks
{A,B, Ã}, where ∂Ã passes through the same components of C \ (∂A∪ ∂B)
in both cases. We see that Ã and A∩B do not meet in either case, so this example
should not worry us too much in light of the hypotheses of Proposition 5.11.

Remark 5.14. Figure 5.12 provides a counterexample to Lemma 5.13 if we remove

the hypothesis that C \ (A ∪B ∪ Ã) is connected.

Proof. We construct the homeomorphism that does what we want by composition.

First apply a Möbius transformation m sending v to ∞ and u to the origin. Then

m(∂A) and m(∂B) are lines meeting transversely at the origin. By the general posi-

tion hypothesis we have that m(∂Ã) is a circle. Identifying C with R2, let L : R2 → R2

be an orientation-preserving linear map sending m(∂A) to the imaginary axis, and

m(∂B) to the real axis. Denote ϕ = L ◦m. It follows from the definition of u that

then the right half-plane is ϕ(A) and the lower half-plane is ϕ(B). Thus the four

open quadrants are the images under ϕ of the components of Ĉ \ (∂A ∪ ∂B), and

ϕ(∂Ã) =: E is an ellipse.

Let A′, B′, and Ã′ be closed disks in C, satisfying hypotheses analogous to those

on A, B, and Ã. For every object under consideration defined for A, B, and Ã, define

the respective object for A′, B′, and Ã′ the same way, and denote it with a prime.

Suppose

• that C \ (A′ ∪B′ ∪ Ã′) is connected,

• that ∂Ã passes through a given component of C \ (∂A ∪ ∂B) if and only if ∂Ã′

passes through the respective component of C \ (∂A′ ∪ ∂B′), and

• that v ∈ Ã if and only if v′ ∈ Ã′.
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Then E ′ = ϕ′(∂Ã′) is an ellipse which passes through the same quadrants as does E.

Let ψ : C→ C be an orientation-preserving homeomorphism sending E to E ′, fixing

every quadrant set-wise.

Now ψ ◦ ϕ(Ĉ \ (A ∪ B ∪ Ã)) = ϕ′(Ĉ \ (A′ ∪ B′ ∪ Ã′)) =: U because v ∈ Ã if and

only if v′ ∈ Ã′. Furthermore U is a connected open set.

Fact 5.15. Suppose V ⊂ C is a connected open set, and let z1, z2 ∈ V . Then there is

a homeomorphism V → V sending z1 to z2 which limits to the identity on ∂V .

Thus let ϑ : C → C be a homeomorphism which is the identity outside of U , and

which sends ψ ◦ ϕ(∞) to ϕ′(∞). Then (ϕ′)−1 ◦ ϑ ◦ ψ ◦ ϕ is an orientation-preserving

homeomorphism C→ C sending A to A′, B to B′, and Ã to Ã′, completing the proof

of Lemma 5.13.

The following lemma allows us to actually apply Lemma 5.13 in our proof of Propo-

sition 5.11.

Lemma 5.16. Suppose the hypotheses of Proposition 5.11 hold. Then the set Ĉ \
(A ∪B ∪ Ã) is a topological open disk.

Proof. Let ϕ be as in the proof of Lemma 5.13. Suppose that v ∈ Ã. Then ϕ(Ĉ \ Ã)

is the open domain bounded by the ellipse E = ϕ(∂Ã). This open domain is convex,

and the open second quadrant, which is equal to ϕ(Ĉ \ (A ∪ B)), is also convex.

Therefore their intersection, which is equal to ϕ(Ĉ \ (A ∪ B ∪ Ã)), is a non-empty

convex open set in C, thus a topological open disk, so Ĉ\ (A∪B∪ Ã) is a topological

open disk.

Next, suppose that v 6∈ Ã. Then ϕ(Ã) is the closed Jordan domain bounded by

the ellipse ϕ(∂Ã). The hypotheses of Proposition 5.11 imply that ϕ(Ã) must meet

the third quadrant ϕ(A ∩ B). The second quadrant is equal to ϕ(C \ (A ∪ B)), so

if Ĉ \ (A ∪ B ∪ Ã) is not a topological open disk, then ϕ(Ã) must meet the second

quadrant. But an ellipse meeting the second and fourth quadrants must meet all four

quadrants, so ϕ(Ã) is the closed Jordan domain bounded by an ellipse around the

origin. It follows that the open second quadrant minus ϕ(Ã) is a topological open

disk, so ϕ(C \ (A ∪B ∪ Ã)) is a topological open disk.

5.4.3 Proof of Proposition 5.11

We prove that the disks {A,B, Ã} are in one of the topological configurations depicted

in figure ♦, and the rest of Proposition 5.11 follows by symmetry. Lemma 5.13 allows
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us to enumerate the possible topological configurations of the three disks {A,B, Ã}
under the hypothesis that Ĉ \ (A∪B ∪ Ã) is connected. By Lemma 5.16 if A, B, and

Ã satisfy the hypotheses of Proposition 5.11 then their topological configuration will

be represented on this list. Note that by the general position hypothesis, the circle

∂Ã passes through a given component U of C \ (∂A ∪ ∂B) if and only if it passes

through the closure of U , or through the union of U and some subset of ∂U . Thus we

enumerate the components of C \ (∂A∪ ∂B) as A \B, A∩B, B \A, and C \ (A∪B).

The following observation will be our source of contradictions to the hypotheses of

Proposition 5.11.

Observation 5.17. Suppose that the hypotheses of Proposition 5.11 hold. Then we

have

• that Ã meets both A \B and A ∩B, and

• that B \ A is not contained in Ã.

Example 5.18. Suppose that A, B, and Ã satisfy the following requirements:

• that Ĉ \ (A ∪B ∪ Ã) is connected,

• that ∂Ã meets A \B and A ∩B,

• that ∂Ã does not meet B \ A nor C \ (A ∪B), and

• that v ∈ Ã.

The disks depicted in Figure 5.13a satisfy these requirements, so we conclude by

Lemma 5.13 that the topological configuration of {A,B, Ã} is the one shown in Figure

5.13a. From the figure we see that Ã contains B \ A, so by Observation 5.17, the

hypotheses of Proposition 5.11 will be violated. We conclude that there are no disks

A, B, and Ã simultaneously satisfying the requirements given in this example and

the hypotheses of Proposition 5.11.

The following lemma restricts the remaining cases to check.

Lemma 5.19. Suppose the hypotheses of Proposition 5.11 hold. Then the following

hold.

1. The circle ∂Ã passes through at least two components of C \ (∂A ∪ ∂B).
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2. We call two of the four components of C \ (∂A ∪ ∂B) adjacent if their closures

share a side, that is, if they meet along a positive-length arc. If ∂Ã passes

through two non-adjacent components, then it passes through at least one of the

other two components, and possibly through both other components.

3. Suppose ∂Ã does not meet C \ (A ∪B). Then Ã does not contain v.

4. Suppose that ∂Ã passes through A \B, B \A, and C \ (A∪B), but not A∩B.

Then v ∈ Ã.

Proof. Throughout the proof let ϕ be as in the proof of Lemma 5.13. We will make

implicit reference to the following fact throughout the rest of the paper.

Fact 5.20. Suppose that K1 and K2 are closed Jordan domains. If ∂K1 ⊂ K2, then

K1 ⊂ K2. If ∂K1 and ∂K2 do not meet, then either K1 and K2 are disjoint, or one

contains the other.

(1) Suppose for contradiction that ∂Ã meets only one of the four components. In

each case we will deduce a contradiction to the hypotheses of Proposition 5.11 via

Observation 5.17. If ∂Ã is contained in A \ B, then so is Ã, so Ã does not meet

A ∩B. Similarly if ∂Ã is contained in A ∩B then Ã does not meet A \B, and if ∂Ã

is contained in B \ A then Ã does not meet A \ B. Finally suppose ∂Ã is contained

in C \ (A ∪B). Then either Ã is contained in C \ (A ∪B), in which case Ã does not

meet A ∩B, or A ∪B is contained in Ã, in which case B \ A is contained in Ã.

(2) If ∂Ã passes through two non-adjacent components but neither of the other

two, then the ellipse ϕ(∂Ã) passes through two opposite quadrants, but neither of

the two remaining quadrants.

(3) Suppose that ∂Ã is contained in the bounded set A ∪ B. Then Ã ⊂ A ∪ B,

and by the general position hypothesis Ã is contained in the interior of A ∪ B. But

v ∈ ∂(A ∪B), so v 6∈ Ã.

(4) Suppose for contradiction that v 6∈ Ã. Then ϕ(Ã) is the closed Jordan domain

bounded by the ellipse ϕ(∂Ã) = E. The ellipse E meets the first, second, and third

quadrants, but not the fourth quadrant. Thus ϕ(Ã) is itself contained in the first,

second, and third quadrants. This implies that Ã does not meet A ∩ B, because

A ∩B is sent to the fourth quadrant by ϕ. This is a contradiction to the hypotheses

of Proposition 5.11 by Observation 5.17.

Figure 5.14 lists the remaining cases, completing the proof of Proposition 5.11.
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Ã

B

A

(a)

Ã

B

A

(b)

B

ÃA

(c)

Ã

BA

(d)

ÃBA

(e)

Ã BA

(f)

Figure 5.13: Topological configurations for {A,B, Ã} which guarantee a
violation of the hypotheses of Proposition 5.11. These are the remaining
topological configurations that arise during our exhaustive proof of Proposition 5.11
via Figure 5.14.

If ∂Ã meets and does Proposition 5.11 hold?

A \B, A ∩B, B \ A, C \ (A ∪B) v ∈ Ã If not, what fails? (c.f. figure)

X X X X ♦b

X X X (B \ A) ⊂ Ã 5.13c
X X X ♦f

X X (A \B) ∩ Ã = ∅ 5.13d

X X (A \B) ∩ Ã = ∅ 5.13e

X X (A ∩B) ∩ Ã = ∅ 5.13f
X X X X X ♦a

X X X X X ♦c

X X X X B \ A ⊂ Ã 5.13a
X X X X ♦g

X X X (A \B) ∩ Ã = ∅ 5.13b
X X X X ♦h
X X X X X X ♦d
X X X X X ♦e

Figure 5.14: The remaining cases to check for Proposition 5.11, after
applying Lemma 5.19.

5.5 Assorted lemmas on two pairs of disks

We take a moment to introduce some notation we use throughout the rest of the paper.

Let γ be an oriented homeomorphic image of S1, for example a positively oriented

Jordan curve. Let a, b ∈ γ be distinct. Then [a → b]γ is the oriented closed sub-arc

of γ starting at a and ending at b. Then for example [a→ b]γ ∩ [b→ a]γ = {a, b} and

[a→ b]γ ∪ [b→ a]γ = γ.

Throughout this chapter let {A,B} and {Ã, B̃} be pairs of closed disks in general

position, with boundaries oriented positively as usual. As before let {u, v} = ∂A∩∂B,
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where we label u and v so that ∂A enters B at u and ∂B enters A at v. See Figure

5.11 for an example. We define and label ũ and ṽ analogously. We denote E = A∩B
and Ẽ = Ã ∩ B̃.

This chapter is devoted to lemmas that we will need to handle some special cases

later. The proofs are almost entirely self-contained. The reader is advised to skip

this chapter for now, and refer back to the lemmas contained herein as they come up

in later chapters.

Lemma 5.21. The Jordan curves ∂E and ∂Ẽ meet exactly 0, 2, 4, or 6 times.

Proof. That they meet an even number of times is a consequence of the general

position hypothesis. There is an immediate upper bound of 8 meeting points because

each of ∂E and ∂Ẽ is the union of two circular arcs. Suppose for contradiction that

∂E and ∂Ẽ meet 8 times. Thus every meeting point of one of the circles ∂A and ∂B

with one of ∂Ã and ∂B̃ lies in ∂E∩∂Ẽ. It follows from the general position hypothesis

that ∂(A ∪B) does not meet ∂Ã nor ∂B̃. But then one of three cases occurs: either

A∪B is contained in one of the three bounded components of C \ (∂Ã∪ ∂B̃), or the

sets A∪B and Ã∪ B̃, are disjoint, or the set Ã∪ B̃ is contained in A∪B. If either of

the first two of these cases occurs then it is impossible that ∂E and ∂Ẽ meet at all,

so we conclude that Ã ∪ B̃ ⊂ A ∪B. Then by symmetry we have A ∪B ⊂ Ã ∪ B̃, so

A ∪B = Ã ∪ B̃, which forces a contradiction to the general position hypothesis.

Ẽ

b

v
b

ũ

E

b̃
v

b
u

(a)

Ẽ

b

v
b

ṽ

E

b̃
u

b
u

(b)

Figure 5.15: The possible topological configurations for two eyes whose
boundaries meet at six points. Actually there are two remaining possibilities
obtained by simultaneously swapping u with v and ũ with ṽ, but these are irrelevant
for our applications because η(f) = η(f−1) for indexable homeomorphisms f . (It
might be nice to draw these with actual disks.)

Lemma 5.22. Suppose that ∂E and ∂Ẽ meet 6 times, that A\B and Ã\B̃ meet, and

that B \ A and B̃ \ Ã meet. Then {E, u, v, Ẽ, ũ, ṽ} are in one of the two topological
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configurations represented in Figure 5.15, up to possibly simultaneously swapping u

with v and ũ with ṽ.

Proof. By Lemma 5.5, if ∂E and ∂Ẽ meet 6 times then they are in the topological

configuration shown in Figure 5.16. We denote by εi the connected components of

∂E \ ∂Ẽ, and by ε̃i the connected components of ∂Ẽ \ ∂E. Label the εi and ε̃i as

shown in Figure 5.16. We consider the indices of the εi and ε̃i only modulo 6. For

example, we write ε2+5 = ε1.

ǫ̃2

ǫ3 ǫ̃4

ǫ5

ǫ̃6ǫ1

ǫ2 ǫ̃5

ǫ6ǫ̃1

ǫ4ǫ̃3

Figure 5.16: The components of ∂E \∂Ẽ and ∂Ẽ \∂E for two convex closed
Jordan domains E and Ẽ meeting at six points. The solid curve represents
∂E, and the dashed curve represents ∂Ẽ.

Proposition 5.11 allows us to make the following observation:

Observation 5.23. Neither ũ nor ṽ may lie in E, and neither u nor v may lie in Ẽ.

To see why, note that if ∂E and ∂Ẽ meet six times, then at least one of ∂A and ∂B

must meet ∂Ẽ at least three times. Thus at least one of ♠g and ♣g must occur. Thus

ũ and ṽ lie outside of at least one of A and B, but E = A ∩ B, thus neither ũ nor ṽ

lies in E. The other part follows identically.

Thus we may assume that u ∈ ε1. Then v lies along ε3 or ε5. By relabeling the

εi and switching the roles of u and v as necessary, we may assume that v ∈ ε3. Our

proof will be done once we show that neither ũ nor ṽ may lie along ε̃2. Suppose for

contradiction that ũ lies along ε̃2. Then ṽ lies along either ε̃4 or ε̃6. If ṽ ∈ ε̃4, then the

circular arc [v → u]∂E meets the circular arc [ṽ → ũ]∂Ẽ three times, a contradiction.

Similarly, if ṽ ∈ ε̃6, then the circular arc [v → u]∂E meets the circular arc [ũ → ṽ]∂Ẽ
three times, also a contradiction. Thus ũ 6∈ ε̃2. The argument is the same if we had

initially let ṽ ∈ ε̃2.

Lemma 5.24. The following four statements hold.

1. If [ũ→ ṽ]∂Ẽ is contained in A and [ṽ → ũ]∂Ẽ meets ∂A, then B \A and B̃ \ Ã
are disjoint.
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2. If [ṽ → ũ]∂Ẽ is contained in B and [ũ→ ṽ]∂Ẽ meets ∂B, then A \B and Ã \ B̃
are disjoint.

3. If [u→ v]∂E is contained in Ã and [v → u]∂E meets ∂Ã, then B̃ \ Ã and B \A
are disjoint.

4. If [v → u]∂E is contained in B̃ and [u→ v]∂E meets ∂B̃, then Ã \ B̃ and A \B
are disjoint.

Proof. We prove only (1), as (2), (3), (4) are symmetric restatements of it. Suppose

the hypotheses of (1) hold. Then both ũ and ṽ lie in A. Thus the circular arc

[ṽ → ũ]∂Ẽ meets ∂A either exactly twice or not at all, in fact exactly twice because

of the hypotheses. But [ṽ → ũ]∂Ẽ = [ṽ → ũ]∂B̃. Thus [ũ → ṽ]∂B̃ does not meet ∂A,

and has its endpoints lying in A, so [ũ→ ṽ]∂B̃ ⊂ A.

From our definitions of ũ and ṽ, it is easy to check that ∂(B̃ \ Ã) is the union of

the arcs [ũ → ṽ]∂B̃ and [ũ → ṽ]∂Ẽ. It follows that ∂(B̃ \ Ã) is contained in A. Thus

B̃ \ Ã is contained in A, and so is disjoint from B \ A.

b bb b

Ẽ
E

u vṽ ũ

Figure 5.17: A topological configuration of two eyes which guarantees that
A \B and Ã \ B̃ do not meet, and that B \A and B̃ \ Ã do not meet.

Lemma 5.25. Suppose E, u, v, Ẽ, ũ, ṽ are in the topological configuration depicted in

Figure 5.17. Then A \B and Ã \ B̃ do not meet, and B \A and B̃ \ Ã do not meet.

Proof. The curves ∂Ã \ ∂Ẽ and ∂B̃ \ ∂Ẽ both have ũ and ṽ as their endpoints and

otherwise avoid Ẽ. Thus each must cross ∂E twice. These four crossings together

with the points ∂E ∩ ∂Ẽ accounts for all eight possible intersection points between

∂A ∪ ∂B and ∂Ã ∪ ∂B̃. Thus the arc [ṽ → ũ]∂Ẽ does not meet ∂B. Because this arc

meets B ⊃ E, we conclude that [ṽ → ũ]∂Ẽ is contained in B. Note that [ũ → ṽ]∂Ẽ
meets ∂B. Thus by part (1) of Lemma 5.25 we get that A \B and Ã \ B̃ are disjoint.

That B \ A and B̃ \ Ã are disjoint follows by symmetry.

Lemma 5.26. Suppose u ∈ Ẽ and ũ ∈ E. Then A \ B and Ã \ B̃ do not meet, or

B \ A and B̃ \ Ã do not meet.
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Proof. Suppose for contradiction that u ∈ Ẽ and ũ ∈ E, but that A \ B and Ã \ B̃
meet, and that B \ A and B̃ \ Ã meet.

Observation 5.27. Neither of B \ A and B̃ \ Ã contains the other.

To see why this is true, note that u is an interior point of Ẽ by the general position

hypothesis, and that u ∈ ∂(B \A). Thus B \A meets the exterior of B̃ \ Ã. A similar

argument gives that B̃ \ Ã meets the exterior of B \ A.

We are supposing for contradiction that B\A and B̃\Ã meet, and by Observation

5.27 neither of them contains the other. Thus if we can show that ∂(B\A) and ∂(B̃\Ã)

do not meet we will have derived a contradiction, as desired.

Note that Proposition 5.11 applies. This allows us to make the following observa-

tion.

Observation 5.28. Either ♦a or ♦e occurs, either ♥a or ♥d occurs, either ♠a or

♠e occurs, and either ♣a or ♣d occurs.

We prove that either ♦a or ♦e occurs, and the other parts of the observation follow

similarly. Because Ẽ ⊂ Ã, we may eliminate any candidate topological configurations

where u 6∈ Ã. This eliminates ♦d, ♦f, ♦g, and ♦h. Next, because ũ ∈ ∂Ã, we may

eliminate any candidate topological configurations where ∂Ã does not meet E, as

this would preclude ũ ∈ E. This eliminates ♦b and ♦c, leaving us with only the two

claimed possibilities. Thus the remainder of our proof breaks into cases as follows.

Case 1. Suppose that both ♦a and ♥a occur.

Then ∂(A \ B) is contained in Ã, and ∂(B \ A) is contained in B̃. Thus ∂(A \ B) ∪
∂(B \ A) is contained in Ã ∪ B̃. But ∂(A ∪ B) is contained in ∂(A \ B) ∪ ∂(B \ A),

thus in Ã∪ B̃. We conclude that A∪B ⊂ Ã∪ B̃. Now ũ ∈ ∂(Ã∪ B̃) and E ⊂ A∪B,

so by the general position hypothesis we get a contradiction to ũ ∈ E.

Case 2. Suppose that both ♦a and ♥d occur.

Then u ∈ Ẽ and v ∈ Ã \ B̃. One of the following two sub-cases occurs.

Sub-case 2.1. Suppose that ♠a occurs.

Then ∂A does not meet Ã \ B̃. But v lies on ∂A, contradicting v ∈ Ã \ B̃.

Sub-case 2.2. Suppose that ♠e occurs. Then one of ♣a and ♣d occurs.

From ♠e and that u ∈ Ẽ and v ∈ Ã\B̃, it follows that ∂(B\A)∩∂A = [u→ v]∂E does

not meet ∂(B̃ \ Ã). If ♣a occurs, then ∂B ⊃ ∂(B \A)∩ ∂B does not meet ∂(B̃ \ Ã).

If ♣d occurs, then via u ∈ Ẽ and v ∈ Ã \ B̃ we get that ∂(B \ A) ∩ ∂B = [u→ v]∂B
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does not meet ∂(B̃ \ Ã). In either case ∂(B \A) and ∂(B̃ \ Ã) do not meet, giving us

a contradiction.

Cases (1) and (2) together rule out ♥a, ♠a, and ♣a by symmetry, so the only re-

maining case is the following.

Case 3. Suppose that ♦e, ♥d, ♠e, and ♣d occur.

By ♦e and ♥d we have that u ∈ Ẽ and v ∈ C \ (Ã ∪ B̃). Then from ♠e and ♣d we

get that neither ∂(B \ A) ∩ ∂A = [u → v]∂A nor ∂(B \ A) ∩ ∂B = [u → v]∂B meets

∂(B̃ \ Ã), again giving us the desired contradiction.
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Chapter 6

Torus parametrization

Let K and K̃ be closed Jordan domains in general position, so that ∂K and ∂K̃

meet at 2M ≥ 0 points, with boundaries oriented as usual. Let ∂K ∩ ∂K̃ =

{P1, . . . , PM , P̃1, . . . , P̃M}, where Pi and P̃i are labeled so that at every Pi we have

that ∂K is entering K̃, and at every P̃i we have that ∂K̃ is entering K. Imbue S1

with an orientation and let κ : ∂K → S1 and κ̃ : ∂K̃ → S1 be orientation-preserving

homeomorphisms. We refer to this as fixing a torus parametrization for K and K̃.

We consider a point (x, y) on the 2-torus T = S1 × S1 to be parametrizing simul-

taneously a point κ−1(x) ∈ ∂K and a point κ̃−1(y) ∈ ∂K̃. We denote by pi ∈ T be

the unique point (x, y) ∈ T satisfying κ−1(x) = κ̃−1(y) = Pi, similarly p̃i ∈ T. Note

that by the general position hypothesis no pair of points in {p1, . . . , pM , p̃1, . . . , p̃M}
share a first coordinate, nor a second coordinate.

Suppose we pick (x0, y0) ∈ S1 × S1. Then we may draw an image of T = S1 × S1

by letting {x0} × S1 be the vertical axis and letting S1 × {y0} be the horizontal axis.

Then we call (x0, y0) a base point for the drawing. See Figure 6.1 for an example.

Suppose that f : ∂K → ∂K̃ is an orientation-preserving homeomorphism. Then f

determines an oriented curve γ in T for us, namely its graph γ = {(κ(z), κ̃(f(z))}z∈∂K ,

with orientation obtained by traversing ∂K positively. Note that f is fixed-point-free

if and only if its associated curve γ misses all of the pi and p̃i. Pick u ∈ ∂K and

denote ũ = f(u). Then if we draw the torus parametrization for K and K̃ using the

base point (κ(u), κ̃(ũ)), the curve γ associated to f “looks like the graph of a strictly

increasing function.” The converse is also true: given any such γ, it determines for

us an orientation-preserving homeomorphism ∂K → ∂K̃ sending u to ũ, which is

fixed-point-free if and only if γ misses all of the pi and p̃i.

Before moving on to proofs, we would like to thank Jordan Watkins for fruitful

discussions in on the content in this part of the thesis.
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K

u K̃

ũ

P1

P2

P̃1

P̃2

b

b

p1

p2

p̃1

p̃2

b

b

b

b

b

(κ(u), κ̃(ũ))

Figure 6.1: A pair of closed Jordan domains K and K̃ and a torus
parametrization for them, drawn with base point (κ(u), κ̃(ũ)). The key
points to check are that as we vary the first coordinate of T positively starting at
u, we arrive at κ(P1), κ(P̃1), κ(P2), and κ(P̃2) in that order, and as we vary the
second coordinate of T positively starting at κ̃(ũ), we arrive at κ̃(P1), κ̃(P̃2), κ̃(P2),
and κ̃(P1) in that order.

6.1 Computing fixed-point index using a torus parametriza-
tion

Suppose that f(u) = ũ, equivalently that (κ(u), κ̃(ũ)) ∈ γ. The curve γ and the

horizontal and vertical axes {κ̃(ũ)} × S1 and S1 × {κ(u)} divide T into two simply

connected open sets ∆↑(u, γ) and ∆↓(u, γ) as shown in Figure 6.2. We suppress the

dependence on ũ in the notation because ũ = f(u). If neither u ∈ ∂K̃ nor ũ ∈ ∂K
then every pi and every p̃i lies in either ∆↓(u, γ) or ∆↑(u, γ). In this case we write

#p↓(u, γ) to denote |{p1, . . . , pM} ∩ ∆↓(u, γ)| the number of points pi which lie in

∆↓(u, γ), and we define #p↑(u, γ), #p̃↓(u, γ), and #p̃↑(u, γ) in the analogous way.

Denote by ω(α, z) the winding number of the closed curve α ⊂ C around the point

z 6∈ α.

Lemma 6.1. Let K and K̃ be closed Jordan domains. Fix a torus parametrization of

K and K̃ via κ and κ̃. Let f : ∂K → ∂K̃ be an orientation-preserving fixed-point-free

homeomorphism, with graph γ in T. Suppose that f(u) = ũ, where u 6∈ ∂K̃ and

ũ 6∈ ∂K. Then:

η(f) = w(γ) = ω(∂K, ũ) + ω(∂K̃, u)−#p↓(u, γ) + #p̃↓(u, γ) (6.1)

= ω(∂K, ũ) + ω(∂K̃, u) + #p↑(u, γ)−#p̃↑(u, γ) (6.2)

The remainder of the section is spent proving Lemma 6.1.

Suppose γ0 is any oriented closed curve in T \ {p1, . . . , pM , p̃1, . . . , p̃M}. Then the

closed curve {κ̃−1(y)−κ−1(x)}(x,y)∈γ0 misses the origin, and has a natural orientation
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obtained by traversing γ0 positively. We denote by w(γ0) the winding number around

the origin of {κ̃−1(y)− κ−1(x)}(x,y)∈γ0 .

Observation 6.2. If γ1 and γ2 are homotopic in T \ {p1, . . . , pM , p̃1, . . . , p̃M} then

w(γ1) = w(γ2).

This is because the homotopy between γ1 and γ2 in T \ {p2, . . . , pM , p̃1, . . . , p̃M} in-

duces a homotopy between the closed curves {κ̃−1(y)− κ−1(x)}(x,y)∈γ1 and {κ̃−1(y)−
κ−1(x)}(x,y)∈γ2 in the punctured plane C \ {0}.

Suppose that f : ∂K → ∂K̃ is a fixed-point-free orientation-preserving homeo-

morphism. Let γ be its graph in T. If γ has orientation induced by traversing ∂K

and ∂K̃ positively, then the following is a tautology.

Observation 6.3. η(f) = w(γ)

b

(κ(u), κ̃(ũ))

∆↑(u, γ)

∆↓(u, γ)

γ

b

b

b

b

S
1 × {κ̃(ũ)}

{κ(u)} × S
1

p1

p̃1

p2

p̃2

Figure 6.2: A homotopy from ∂∆↓(u, γ) to Γ. Here the orientation shown on γ
is the opposite of the orientation induced by traversing ∂K positively.

Orient ∂∆↓(u, γ) as shown in Figure 6.2. Then ∂∆↓(u, γ) is the concatenation of

the curve γ traversed backwards with S1 × {κ̃(ũ)} and {κ(u)} × S1, where the two

latter curves are oriented according to the positive orientation on S1.

Observation 6.4. If S1×{κ̃(ũ)} and {κ(u)}×S1 are oriented according to the positive

orientation on S1, then w(S1 × {κ̃(ũ)}) = ω(∂K, ũ) and w({κ(u)} × S1) = ω(∂K̃, u).

It is also easy to see that if we concatenate two closed curves γ1 and γ2 that meet

at a point, we get w(γ1 ◦ γ2) = w(γ1) + w(γ2). Thus in light of the orientations on
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∂∆↓(u, γ) and all other curves concerned we get:

w(∂∆↓(u, γ)) = w(S1 × {κ̃(ũ)}) + w({κ(u)} × S1)− w(γ)

= ω(∂K, ũ) + ω(∂K̃, u)− η(f)

For every i let ζ(pi) and ζ(p̃i) be small squares around pi and p̃i respectively in

T, oriented as shown in Figure 6.2. By square we mean a simple closed curve which

decomposes into four “sides,” so that on a given side one of the two coordinates of

S1 × S1 = T is constant. Pick the rectangles small enough so that the closed boxes

they bound are pairwise disjoint and do not meet ∂∆↓(u, γ).

Let Γ be the closed curve in ∆↓(u, γ) obtained in the following way. First, start

with every loop ζ(pi) and ζ(p̃i) for those pi and p̃i lying in ∆↓(u, γ). Let δ0 be an

arc contained in the interior of ∆↓(u, γ) which meets each ζ(pi) and ζ(p̃i) contained

in ∆↓(u, γ) at exactly one point. It is easy to prove inductively that such an arc

exists. Let δ be the closed curve obtained by traversing δ0 first in one direction, then

in the other. Then let Γ be obtained by concatenating δ with every ζ(pi) and ζ(p̃i)

contained in ∆↓(u, γ).

Observation 6.5. The curves Γ and ∂∆↓(u, γ) are homotopic in T \ {p1, . . . , pM ,

p̃1, . . . , p̃M}. Also w(δ) = 0. It follows that:

w(∂∆↓(u, γ)) = w(Γ) =
∑

pi∈∆↓(u,γ)

w(ζ(pi)) +
∑

p̃i∈∆↓(u,γ)

w(ζ(p̃i))

See Figure 6.2 for an example. On the other hand, the following holds.

Observation 6.6. w(ζ(pi)) = 1, w(ζ(p̃i)) = −1

To see why, suppose that ζ(pi) = ∂([x0 → x1]S1×[y0 → y1]S1). Then up to orientation-

preserving homeomorphism the picture near Pi is as in Figure 6.3. We let (x, y)

traverse ζ(pi) positively starting at (x0, y0), keeping track of the vector κ̃−1(y)−κ̃−1(x)

as we do so. The vector κ̃−1(y0) − κ̃−1(x0) points to the right. As x varies from x0

to x1, the vector κ̃−1(y) − κ̃−1(x) rotates in the positive direction, that is, counter-

clockwise, until it arrives at κ̃−1(y0) − κ−1(x1), which points upward. Continuing in

this fashion, we see that κ̃−1(y) − κ̃−1(x) makes one full counter-clockwise rotation

as we traverse ζ(pi). The proof that w(ζ(p̃i)) = −1 is similar. Combining all of our

observations establishes equation 6.1. The proof that equation 6.2 holds is similar.
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K

K̃

bPi

b

b

b

bκ−1(x0)

κ−1(x1)

κ̃−1(y0)

κ̃−1(y1)

Figure 6.3: The local picture near Pi. This allows us to compute the “local
fixed-point index” w(ζ(pi)) of f near Pi.

6.2 Proof of the Circle Index Lemma 3.1

We prove the Circle Index Lemma 3.1 as our first application of Lemma 6.1. We

restate the claim of each part of the Circle Index Lemma 3.1 just before we prove

it for the reader’s convenience. The original statement is on p. 63. Let K and K̃

be closed Jordan domains, and let f : ∂K → ∂K̃ be an indexable homeomorphism.

We suppose for simplicity that ∂K and ∂K̃ are in general position, as we may as-

sume this hypothesis for all of our applications. We remark that even when ∂K and

∂K̃ fail to be in general position, we may often suppose that they are anyway with-

out loss of generality by applying Lemma 3.3. Suppose that we have fixed a torus

parametrization for K and K̃ via κ and κ̃, and let γ be the graph of f as usual.

(1) We wish to show that η(f) = η(f−1). Considering f−1 rather than f amounts

to interchanging the roles of K and K̃, thus of κ and κ̃, etc. In particular this reverses

the roles of ∆↓ and ∆↑, and makes every pi into a p̃i and vice versa. It follows that

η(f) = η(f−1).

(2) We wish to show that if one of K and K̃ contains the other, then η(f) = 1.

By part (1) we may suppose without loss of generality that K̃ ⊂ K. Then there are

no pi and no p̃i, and however u and ũ are chosen we have that ω(∂K, ũ) = 1 and

ω(∂K̃, u) = 0.

(3) We wish to show that if K and K̃ are disjoint, then η(f) = 0. Then there are

no pi and no p̃i, as in the proof of part (2). This time though, however u and ũ are

chosen, both ω(∂K, ũ) and ω(∂K̃, u) are 0.
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(4) We wish to show that if ∂K and ∂K̃ meet at exactly two points, then η(f) ≥ 0.

We may pick u in the interior of K̃ so that ũ = f(u) 6∈ ∂K. Then ω(∂K̃, u) = 1. Also

there is exactly one pi and exactly one p̃i, so #p↓(u, γ)−#p̃↓(u, γ) ≥ −1. It follows

that η(f) ≥ 0.

6.3 The situation if no eye is contained in its partner

Proposition 6.7. Let {A,B} and {Ã, B̃} be pairs of overlapping closed disks in the

plane C in general position. Suppose that neither of E = A ∩ B and Ẽ = Ã ∩ B̃
contains the other. Suppose further that A \ B and Ã \ B̃ meet, and that B \ A and

B̃\Ã meet. Then there is a faithful indexable homeomorphism e : ∂E → ∂Ẽ satisfying

η(e) = 0.

The rest of this chapter is spent proving Proposition 6.7. If ∂E and ∂Ẽ do not meet,

we get that E and Ẽ are disjoint. Then any indexable homeomorphism e : ∂E → ∂Ẽ

satisfies η(e) = 0. Thus suppose that ∂E and ∂Ẽ meet. Fix a torus parametrization

for E and Ẽ via κ : ∂E → S1 and κ̃ : ∂Ẽ → S1. As before denote by pi the points

of ∂E ∩ ∂Ẽ where ∂E is entering Ẽ, and by p̃i those where ∂Ẽ is entering E. Note

that ∂E and ∂Ẽ meet at exactly 2, 4, or 6 points by Lemma 5.21. The proof breaks

into these three cases.

b

p1

b

p̃1

bs̃1

bs̃2

s1
b

s2
b

(a)

b

p1

b

p̃1

b

(κ(u), κ̃(ũ))

b b b

b b b

b b bbt̃1

bt̃2

bt̃3

t1
b

t2
b

t3
b

(b) (κ(u), κ̃(u)) = (s1, s̃2)

Figure 6.4: Two drawings of a torus parametrization for two eyes whose
boundaries meet exactly twice. There is some choice of base point giving the
drawing on the left. The drawing on the right is the same torus parametrization
drawn using the base point (κ(u), κ̃(u)) = (s1, s̃2).

Case 1. Suppose that ∂E and ∂Ẽ meet at exactly two points.
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Then with an appropriate choice of base point, the torus parametrization for E and

Ẽ is as shown in Figure 6.4a. The points s1, s2 ∈ S1 in Figure 6.4a are exactly the

topologically distinct places where κ(u) may be, similarly s̃1, s̃2 ∈ S1 for κ̃(ũ). A

choice of (sj, s̃j̃) = (κ(u), κ̃(ũ)) completely determines the topological configuration

of {E, Ẽ, u, ũ}, and conversely every possible topological configuration of those sets

is achieved via this procedure. By Lemma 5.26 we may suppose without loss of

generality that u 6∈ Ẽ, thus that κ(u) = s1.

Suppose first that κ̃(ũ) = s̃2. In Figure 6.4b we redraw the torus parametrization

for E and Ẽ using the base point (s1, s̃2) = (κ(u), κ̃(ũ)). Then the points t1, t2, t3 ∈ S1

are exactly the topologically distinct places where κ(v) may be, similarly t̃1, t̃2, t̃3 ∈ S1

for κ̃(ṽ).

Observation 6.8. A choice of (sj, s̃j̃) = (κ(u), κ̃(ũ)) and a subsequent choice of

(tk, t̃k̃) = (κ(v), κ̃(ṽ)) together completely determine the topological configuration of

{E, Ẽ, u, ũ, v, ṽ}. Conversely every possible topological configuration of {E, Ẽ, u, ũ, v,
ṽ} is achieved by some choice of (sj, s̃j̃), and then a subsequent choice of (tk, t̃k̃), for

(κ(u), κ̃(ũ)) and (κ(v), κ̃(ṽ)) respectively.

We are currently working under the assumption that (κ(u), κ̃(ũ)) = (s1, s̃2). For every

choice of (tk, t̃k̃) = (κ(v), κ̃(ṽ)) we hope to find a faithful indexable homeomorphism

e : ∂E → ∂Ẽ so that η(e) = 0.

Observation 6.9. Suppose we have drawn the parametrization for E and Ẽ using

(sj, s̃j̃) = (κ(u), κ̃(ũ)) as the base point. Then finding a faithful indexable homeomor-

phism e : ∂E → ∂Ẽ amounts to finding a curve γ in T\{p1, . . . , p̃M , p̃1, . . . , p̃M} which

“looks like the graph of a strictly increasing function,” from the lower-left-hand cor-

ner (κ(u), κ̃(u)) to the upper-right-hand corner, passing through (κ(v), κ̃(ṽ)) = (tk, t̃k̃).

Having fixed such a curve γ, we may compute η(e), where e is the homeomorphism

associated to γ, using Lemma 6.1.

In our current situation κ(u) = s1 implies that u 6∈ K̃, and κ̃(ũ) = s̃2 implies that

ũ 6∈ K. Thus by Lemma 6.1 we wish to find curves γ so that both p1 and p̃1 lie in

the upper diagonal ∆↑(u, γ), or both lie in the lower diagonal ∆↓(u, γ). Figure 6.5b

depicts such a γ for every (tk, t̃k̃) except for (t2, t̃2). Suppose (t2, t̃2) = (κ(v), κ̃(ṽ)).

Then v ∈ K̃ and ṽ ∈ K, so we get a contradiction by Lemma 5.26. From now on

points (tk, t̃k̃) which are handled via Lemma 5.26 will be labeled with an asterisk, as

in Figure 6.5b.

Next suppose that (κ(u), κ̃(ũ)) = (s1, s̃1). The situation is depicted in Figure 6.5a.

Then u 6∈ K̃ and ũ ∈ K, so to achieve η(e) = 0 we wish to find curves γ so that
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p1 ∈ ∆↓(u, γ) and p̃1 ∈ ∆↑(u, γ). This time there are four (tk, t̃k̃) for which this is

not possible. For (κ(v), κ̃(ṽ) = (t2, t̃1), (t2, t̃3) we again get contradictions via Lemma

5.26. The following observation will be helpful for (κ(v), κ̃(ṽ) = (t1, t̃3), (t3, t̃1).

Observation 6.10. Choose (sj, s̃j̃) = (κ(u), κ̃(ũ)) and draw our torus parametriza-

tion for E and Ẽ using (κ(u), κ̃(ũ)) as the base point. Then a choice of (tk, t̃k̃) =

(κ(v), κ̃(ṽ)) defines for us four “quadrants,” namely [κ(u)→ κ(v)]S1×[κ̃(ũ)→ κ̃(ṽ)]S1

the points “below and to the left of” (tk, t̃k̃), etc. Then which of the two arcs ∂A∩∂E
and ∂B ∩ ∂E, and which of ∂Ã ∩ ∂Ẽ and ∂B̃ ∩ ∂Ẽ, a point Pi or P̃i lies on is

determined by which quadrant pi or p̃i lies in.

For example, suppose (κ(v), κ̃(ṽ) = (t1, t̃3). Then p1 and p̃1 lie in the lower-right-hand

quadrant [κ(v)→ κ(u)]S1× [κ̃(ũ)→ κ̃(ṽ)]S1 , so both P1 and P̃1 lie on ∂E∩∂B = [v →
u]∂E and on ∂Ẽ ∩ ∂Ã = [ũ→ ṽ]∂Ẽ. Also [ṽ → ũ]∂E is contained in E, because both ṽ

and ũ are, and no pi nor any p̃i lies the two upper quadrants [ṽ → ũ]S1×S1. Then we

get a contradiction via Lemma 5.24. A similar argument gives us a contradiction via

Lemma 5.24 for (κ(v), κ̃(ṽ) = (t3, t̃1). From now on points (tk, t̃k̃) which are handled

via Lemma 5.24 in this way will be labeled with a diamond, as in Figure 6.5a. This

completes the proof of Proposition 6.7 when ∂E and ∂Ẽ meet at exactly two points.

(κ(u), κ̃(ũ)) t1 t2 t3

t̃1

t̃2

t̃3
b

b

b

b b b b

b

b

l * b

b b b

b * l

p1

p̃1

(a) (κ(u), κ̃(ũ)) = (s1, s̃1)

(κ(u), κ̃(ũ)) t1 t2 t3

t̃1

t̃2

t̃3
b

b

b

b b b b

b

b

b b b

b * b

b b b

p1

p̃1

(b) (κ(u), κ̃(ũ)) = (s1, s̃2)

Figure 6.5: Graphs of homeomorphisms e giving η(e) = 0 for a pair of eyes
whose boundaries meet twice. The torus parametrizations are drawn using the
indicated choice of base point.

Case 2. Suppose that ∂E and ∂Ẽ meet at exactly four points.
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(b) (κ(u), κ̃(ũ)) = (s1, s̃1)
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(c) (κ(u), κ̃(ũ)) = (s1, s̃2)

p1
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p̃2
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t̃2

t̃3
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t̃5
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l
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bcbclbcbc

b

b

b

b

(d) (κ(u), κ̃(ũ)) = (s1, s̃3)

Figure 6.6: The situation if two eyes’ boundaries meet four times. Figure
(a) shows the torus parametrization for E and Ẽ with some suitable choice of base
point. Figures (b)–(d) give graphs of homeomorphisms e giving η(e) = 0, with torus
parametrizations drawn using base point (κ(u), κ̃(ũ)) = (sj , s̃j̃) as indicated.

Lemma 5.5 guarantees that with a correct choice of base point, the torus parametriza-

tion for E and Ẽ is as in Figure 6.6a. As before, we may suppose without loss of

generality that u 6∈ K̃, thus κ(u) = s1, by Lemma 5.26 and relabeling the si if nec-

essary. Thus we have the possibilities κ̃(ũ) = s̃1, s̃2, s̃3, s̃4 to consider. The cases

(κ(u), κ̃(ũ)) = (s1, s̃2) and (κ(u), κ̃(ũ)) = (s1, s̃4) are symmetric by Figure 6.7. Fig-

ures 6.6b–6.6d give the solutions for κ̃(u) = s̃1, s̃2, s̃3, modulo some remaining special

cases.
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b

b

u = κ−1(s1)

ũ = κ̃−1(s̃2)

b

b

u = κ−1(s1)

ũ = κ̃−1(s̃4)

Figure 6.7: The topological configurations of {E, u, ũ} leading to the cases
(κ(u), κ̃(u)) = (s1, s̃2), (s1, s̃4). We see that these are equivalent via a rotation,
because η(e) = η(e−1).

Points (tk, t̃k̃) labeled with an asterisk or a diamond are handled via Lemma 5.26 or

5.24 respectively as before. Suppose (κ(u), κ̃(ũ)) = (s1, s̃1), and (κ(v), κ̃(ṽ)) = (t1, t̃1)

in Figure 6.6b. Then the upper-right-hand quadrant defined for us by (t1, t̃1) contains

all four points p1, p2, p̃1, p̃2, thus the circular arcs [v → u]∂E and [ṽ → ũ]∂Ẽ meet four

times, a contradiction. All points that are handled in this way are labeled with a

small circle. Finally, if (κ(u), κ̃(ũ)) = (s1, s̃3) and (κ(v), κ̃(ṽ)) = (t3, t̃3) in Figure

6.6d, we get a contradiction via Lemma 5.25.

Case 3. Suppose that ∂E and ∂Ẽ meet at exactly six points.

Then Lemma 5.22 restricts us to two cases to consider. These are handled in Figure

6.8. This completes the proof of Proposition 6.7.

(κ(u), κ̃(ũ))

b

b

b

b

b

b

b

b

p1

p2

p3

p̃1

p̃2

p̃3
(v, ṽ)

(a)

(κ(u), κ̃(ũ))

b

b

b

b

b

b

b

b

p1

p2

p3

p̃1

p̃2

p̃3

(v, ṽ)

(b)

Figure 6.8: Torus parametrizations for the eyes depicted in Figure 5.15.
Both are drawn with base point (κ(u), κ̃(ũ)). Each of the two curves is the graph of
a faithful indexable homeomorphism e : ∂E → ∂Ẽ satisfying η(e) = 0.
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6.4 The situation if no disk is contained in its partner

Proposition 6.11. Let D = {D1, . . . , Dn} and D̃ = {D̃1, . . . , D̃n} be as in the state-

ment of Theorem 3.8. That is, they are thin disk configurations in the plane C in

general position, realizing the same pair (G,Θ) where G = (V,E) is a graph and

Θ : E → [0, π). In addition, suppose that for all i, j the sets Di \ Dj and D̃i \ D̃j

meet. Suppose that there is no i so that one of Di and D̃i contains the other. Suppose

that for every disjoint non-empty I, J ⊂ {1, . . . , n} so that I t J = {1, . . . , n}, there

exists an eye Eij with i ∈ I and j ∈ J so that one of Eij and Ẽij contains the other.

Then for every i we have that any faithful indexable homeomorphism gi : ∂Di → ∂D̃i

satisfies η(gi) ≥ 1. Furthermore there is a k so that Di and Dk overlap for all i, and

so that one of Eij and Ẽij contains the other if and only if either i = k or j = k.

Recalling notation from before, if Di and Dj overlap then Eij = Di ∩ Dj, similarly

Ẽij, and a homeomorphism gi : ∂Di → ∂D̃i is called faithful if it restricts to homeo-

morphisms Dj ∩ ∂Di → D̃j ∩ ∂Di for all j. The rest of this chapter is spent proving

Proposition 6.11.

π − ∡(d−1, D) π − ∡(d+1, D)

∡(d−1, d+1)

m(d−1) m(d+1)

m(D)

Figure 6.9: The image of the Möbius transformation described in the proof
of Lemma 6.12.

Lemma 6.12. Suppose that D, d−1, d+1 are closed disks in the plane C in the topo-

logical configuration depicted in Figure 6.11a. Then π + ](d−1, d+1) < ](d−1, D) +

](d+1, D).

Proof. Let m be a Möbius transformation sending a point on the bottom arc of

∂D \ d−1 ∪ d+1 to ∞, so that m(D) is the lower half plane. Then the images of the

disks under m are as depicted in Figure 6.9. We see that (π − ](d−1, D)) + (π −
](d+1, D)) + ](d−1, d+1) < π and the desired inequality follows.
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Lemma 6.13. Suppose that D, d−1, d+1 are closed disks in the plane C in the topo-

logical configuration depicted in Figure 6.10. Then ](d−1, D) + ](d+1, D) < π +

](d−1, d+1).

Proof. This is proved similarly to Lemma 6.12, see Figure 6.10.

π − ∡(d−1, D)π − ∡(d+1, D)

∡(d−1, d+1)

m(d−1) m(d+1)

m(D)

d−1 d+1

D

m

b

∞
m

Figure 6.10: A Möbius transformation chosen to prove Lemma 6.13. Here
∂m(D) = R, and m(D) is the lower half-plane.

d−1 d+1

D

(a)

d−1 d+1

D

(b)

Figure 6.11: The topological configurations for which we prove Lemma
6.14.

Lemma 6.14. Suppose that D, d−1, d+1 are closed disks in the plane C in one of the

two topological configurations depicted in Figure 6.11. In either case, we get that both

](d−1, D) and ](d+1, D) are strictly greater than ](d−1, d+1).

Proof. Suppose that the disks are in the configuration depicted in Figure 6.11a. Let

m be a Möbius transformation sending a point on ∂d+1 \D to ∞. We may suppose

without loss of generality that m(d+1) is the lower half-plane. Then the image of our

disks under m is as in Figure 6.12, where θ1 = ](d+1, D) and θ2 = ](d−1, d+1). It

is then an easy exercise to show that θ2 < θ1 because the two circles ∂m(d−1) and

∂m(D) meet in the upper half-plane. The other inequality follows by symmetry. The

case where the disks are in the configuration depicted in Figure 6.11b follows from
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the first case after applying a Möbius transformation sending a point in the interior

of D ∩ d−1 ∩ d+1 to ∞.

Claim 6.15. Let i, j be so that Ẽij ⊂ Eij. Denote A = Di, B = Dj, Ã = D̃i,

B̃ = D̃j. Then both ♠c and ♣c occur. Also one of ♦d, ♦e, ♦g occurs, and one of

♥d, ♥e, ♥g occurs. Furthermore at least one of ♦g and ♥g occurs.

Proof. Both ♠c and ♣c occur, because these are the only candidates in Figure ♠, ♣
where Ã ∩ B̃ is contained in the respective one of A and B. Note the following by

Lemmas 6.14

](A,B) = ](Ã, B̃) < ](Ã, B) (6.3)

and the following by Lemma 6.12.

π + ](Ã, B̃) < ](A, Ã) + ](B̃, A), π + ](Ã, B̃) < ](Ã, B) + ](B̃, B) (6.4)

Next, because Ã ∩ B̃ contains part of ∂Ã and part of ∂B̃, both of these circles

must pass through A∩B. Noting that ♦f cannot occur because Ã 6⊂ A, we conclude

that one of ♦a, ♦d, ♦e, ♦g, and ♦h occurs. If either of ♦a and ♦h occurs, then

Lemma 6.14 implies that ](Ã, B) < ](A,B), contradicting 6.3. This leaves us with

only the claimed possibilities ♦d, ♦e, and ♦g. By symmetry we also get that one of

♥d, ♥e, and ♥g occurs.

Finally, note by Lemma 6.13 that if ♦d or ♦e occurs then we get ](Ã, A) +

](Ã, B) < π + ](A,B), and if ♦d or ♦e occurs then we get ](B̃, A) + ](B̃, B) <

π+](A,B). We get that if neither of ♦g and ♥g occurs, then we may combine these

two inequalities with 6.4 to arrive at a contradiction.

θ1 θ2 m(d+1)

m(d−1)m(D)

Figure 6.12: The image of the Möbius transformation described in the
proof of Lemma 6.14.

Pick 1 ≤ i ≤ n. By the hypotheses of Proposition 6.11 there is a j so that

one of Eij and Ẽij contains the other, without loss of generality so that Ẽij ⊂ Eij.

Let gi : ∂Di → ∂D̃i be a faithful indexable homeomorphism. Continuing with the

notation of Lemma 6.15, regardless of which of ♦d, ♦e, and ♦g occurs, there is

a point z ∈ ∂A ∩ ∂E so that z lies in the interior of Ã. Furthermore note that
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gi(z) ∈ ∂Ẽ by the faithfulness condition, and that Ẽ ⊂ A by our hypotheses, so gi(z)

lies in the interior of A. Thus if we draw a torus parametrization for A and Ã using

(κ(z), κ̃(gi(z))) as the base point, Lemma 6.1 implies that η(gi) ≥ 1, because ∂A and

∂Ã meet exactly twice. This establishes the first part of Proposition 6.11.

Next, let Gu be the undirected simple graph having {1, . . . , n} as its vertex set,

so that 〈i, j〉 is an edge in Gu if and only if Di and Dj overlap and one of Eij and Ẽij

contains the other. Note that Gu is connected, otherwise we could pick I to be the

vertex set of one connected component of Gu and J to be {1, . . . , n} \ I to contradict

the hypotheses of Proposition 6.11.

Let G be the directed graph obtained from Gu in the following way. Suppose 〈i, j〉
is an edge in Gu. Denote A = Di, B = Dj, Ã = D̃i, B̃ = D̃j. Then 〈i→ j〉 is an

edge in G if and only if one of ♦g and ♠g occurs. In particular Lemma 6.15 implies

that if 〈i, j〉 is an edge in Gu then at least one of 〈i→ j〉 and 〈j → i〉 is an edge in

G, and possibly both are.

Claim 6.16. Suppose that 〈i→ j〉 is an edge in G. Then 〈i, j〉 is the only edge in

Gu having i as a vertex.

Proof. Note that if ♦d or ♦e occurs then one intersection point ∂A ∩ ∂Ã lie in the

interior of B, and if ♦g occurs then both do. Suppose without loss of generality that

D̃i ∩ D̃j ⊂ Di ∩Dj. Then both intersection points ∂Di ∩ ∂D̃i lie in the interior of Dj.

For contradiction let k 6= j so that 〈i, k〉 is an edge in Gu. There are two cases.

Case 1. Suppose that D̃i ∩ D̃k ⊂ Di ∩Dk.

Then one or both points ∂Di ∩ ∂D̃i lie in the interior of Dk. Then there is a point in

the interior of Di which lies in the interiors of both Dj and Dk, a contradiction.

Case 2. Suppose that Di ∩Dk ⊂ D̃i ∩ D̃k.

Then by a symmetric restatement of Lemma 6.15 we get that both points ∂Di ∩ ∂Dk

lie in D̃i. On the other hand D̃i ∩ ∂Di is contained in the interior of Dj by ♦a. Thus

there are points interior to all of Di, Dj, Dk, a contradiction.

Thus G is either the graph on two vertices {i, j} having one or both of 〈i→ j〉 and

〈j → i〉 as edges, or is a graph having {k, i1, . . . , in−1} as vertices and exactly the

edges 〈i` → k〉 for 1 ≤ ` < n. The last part of Proposition 6.11 follows.
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6.5 Proof of the Three Point Prescription Lemma 3.5

We restate the lemma for convenience. Let K and K̃ be compact Jordan domains in

general position. Let z1, z2, z3 ∈ ∂K \ ∂K̃ appear in counterclockwise order, similarly

z̃1, z̃2, z̃3 ∈ ∂K̃ \ ∂K. An indexable homeomorphism f : ∂K → ∂K̃ is called faithful

if it sends zi 7→ z̃i for i = 1, 2, 3. We wish to find a faithful f with η(f) ≥ 0. We refer

to the zi and the z̃i as our constraint points.

We proceed by induction on the number of intersection points ∂K ∩ ∂K̃, noting

that this number is always even. The Circle Index Lemma takes care of the cases

where ∂K and ∂K̃ meet 0 or 2 times. Thus suppose that ∂K and ∂K̃ meet at least

4 times.

K

K̃

K ′

K̃ ′

Figure 6.13: “Pulling apart” two sub-curves of ∂K and ∂K̃ “crossing mini-
mally.” Note that a priori the orientations on ∂K and ∂K̃ may be arbitrary, so the
open Jordan domain formed between the two curves on the left may be contained
in both K and K̃, in just one of them, or in neither.

The main idea of the proof is to find sub-arcs of ∂K and ∂K̃ which “cross mini-

mally,” and “pull them apart,” see Figure 6.13. When “pulling these sub-arcs apart,”

we leave the rest of ∂K and ∂K̃ fixed, as in Figure 6.14. We then apply the induction

hypothesis to the resulting Jordan domains K ′ and K̃ ′, obtaining some indexable

homeomorphism f ′ : ∂K ′ → ∂K̃ ′ with η(f ′) ≥ 0. Finally, we use f ′ to construct

f , arguing that the fixed-point index is preserved or increased in this last construc-

tion. The details of the proof will be worked out in a torus parametrization. This

is because the torus parametrization allows us to work systematically and somewhat

combinatorially through many cases.

6.5.1 Initial set-up

More precisely, two intersection points p0, p̃0 ∈ ∂K ∩ ∂K̃ are called adjacent in ∂K

if one of the two arcs [p0 → p̃0]∂K and [p̃0 → p0]∂K does not contain any other

intersection points ∂K ∩ ∂K̃. Note that two intersection points of ∂K ∩ ∂K̃ may be

adjacent only if ∂K enters K̃ at one and leaves K̃ at the other, so our notation is in

keeping with convention. In particular we will suppose that ∂K enters K̃ at p0 and

exits K̃ at p̃0. We define adjacency in ∂K̃ similarly.
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KK̃

K ′

K̃ ′

Figure 6.14: The compact Jordan domains under consideration, before
and after “pulling the sub-arcs apart.” Note that in this case, we had three
choices of which arcs to pull apart, and each choice results in a different pair K ′, K̃ ′.

Two intersection points p0, p̃0 ∈ ∂K ∩ ∂K̃ are called doubly adjacent if they are

adjacent both in ∂K and in ∂K̃. Then the notion of sub-arcs of ∂K and ∂K̃ “crossing

minimally” which we informally described before is exactly captured by the property

of double adjacency. The following is easy to see by induction on the number of

intersection points ∂K ∩ ∂K̃:

Observation 6.17. If ∂K ∩ ∂K̃ meet, then there are doubly adjacent pairs of points

in ∂K ∩ ∂K̃.

From now on, we fix a torus parametrization of ∂K and ∂K̃ in T = S1 × S1 via

κ : ∂K → S1 and κ̃ : ∂K̃ → S1. Let p0, p̃0 be doubly adjacent. Then we denote

P0 = (κ(p0), κ̃(p0)) and P̃0 = (κ(p̃0), κ̃(p̃0)) as usual, so P0 ∈ T parametrizes the

point p0 ∈ ∂K ∩ ∂K̃, similarly P̃0 for p̃0. We can now see how we plan to apply

induction:

Observation 6.18. Let the torus parametrization T′ be obtained from T by deleting

P0 and P̃0. Then T′ parametrizes a pair ∂K ′ and ∂K̃ ′, where K ′ and K̃ ′ are compact

Jordan domains in general position, meeting two times fewer than do K and K̃.

Thus our strategy will be as follows: first, apply the induction hypothesis to T′, to

get a faithful indexable γ′ so that w(γ′) = η(f ′) ≥ 0; then, “reinsert” the points P0

and P̃0, in such a way that the fixed-point index is preserved or increased.

6.5.2 Partitioning T
We will refer to the collection of the sets S1 × {κ̃(z̃i)} and {κ(zi)} × S1 for i =

1, 2, 3 as our grid lines, and to their pairwise intersection points as our lattice points.

Furthermore we refer to the points (κ(zi), κ̃(z̃i)), for i = 1, 2, 3, as our constraint

lattice points. If we draw our torus parametrization with a lattice point chosen to be
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the base point, then the grid lines actually divide the drawing into a grid, with nine

disjoint rectangular cells in total. We will refer to these as our lattice cells. Within

each lattice cell there are well-defined left, right, up, and down directions, in the same

way as for the adjacency box A.

From now on, whenever we draw the torus parametrization, we will always pick

one of the lattice points for the base point. Suppose for the rest of this paragraph that

we have fixed such a drawing. Then we may refer to the lattice cells according to their

position in this drawing in the natural way, for example we may refer to the bottom-

left lattice cell. We denote the lattice cells by C↑, C↗, C→, . . . , C←, C↖ in the natural

way, and write C• to denote the central lattice cell. Then the union of the closed

upper-left, middle-left, and lower-left lattice cells is called the left lattice column. We

define the central and right lattice columns analogously, as well as the bottom, central,

and top lattice rows. We again emphasize that these descriptors depend crucially on

the choice of base point for the drawing of the torus parametrization.

As usual, we denote Pi = (κ(pi), κ̃(pi)) and P̃i = (κ(p̃i), κ̃(p̃i)), where {pi, p̃i} =

∂K ∩ ∂K̃, with the same notational conventions as usual. We will apply Lemma 6.1

frequently. Before moving on to the next part of the proof, we make an observation

that will simplify things later. This also serves as a good warm-up to and refresher

on Lemma 6.1 and the torus parametrization.

Observation 6.19. Suppose that all of the Pi and P̃i lie in a single lattice row, or

in a single lattice column. Then Lemma 3.5 holds.

γ

R0

b

b

b

b

Figure 6.15: The situation if all Pi and P̃i lie in a single lattice row. Here
we have supposed that they lie in the bottom lattice row, in which case they in fact
lie in some open rectangle R0 contained in the bottom lattice row.

To see why, we walk through Figure 6.15. We suppose that all of the Pi and P̃i

lie in a single lattice row, call it R. The same argument will work if they all lie

in a single lattice column. Without loss of generality, we have drawn the torus

parametrization so that R is the bottom lattice row, and so that the base point
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is a constraint lattice point. Then the other two constraint lattice points are the

ones along the diagonal, drawn in the figure as dots. As usual, a faithful indexable

homeomorphism f : ∂K → ∂K̃ can be parametrized by a “strictly increasing” curve

• from the bottom-left corner of the bottom-left cell,

• to the top-right corner of the top-right cell,

• passing through the two other constraint lattice points, and

• missing all of the Pi and P̃i.

Thus the γ we have drawn in Figure 6.15 parametrizes such a homeomorphism. Fur-

thermore, because there are finitely many Pi and P̃i, and all of them lie in the bottom

lattice row R, in fact they lie in an open rectangle R0 as depicted in Figure 6.15.

Thus η(f) ≥ 0 by Lemma 6.1.

6.5.3 The adjacency box

Let p0 and p̃0 be adjacent in ∂K, and let a0 denote the arc connecting p0 and p̃0 along

∂K which contains no other intersection points ∂K ∩ ∂K̃. Thus a0 is equal to one of

[p0 → p̃0]∂K and [p̃0 → p0]∂K . There is a unique such a0 so long as ∂K and ∂K̃ meet

at least four times, as is our running assumption. We call this a0 the short adjacency

arc of p0, p̃0 in ∂K, and define the short adjacency arc ã0 of p0, p̃0 in ∂K̃ similarly.

Continuing with the notation of the last paragraph, let a be obtained from a0 by

extending it slightly on both ends, so that a ⊂ ∂K is a closed Jordan arc containing

p0 and p̃0, but no other points of ∂K ∩ ∂K̃, and no constraint point zi which was not

already contained in a0. There is a topologically unique such a. Then we say that a

is the adjacency arc of p0, p̃0 in ∂K of p0, p̃0. We define the adjacency arc ã of p0, p̃0

in ∂K̃ similarly.

Again continuing with the notation of before, let A = κ(a)× κ̃(ã) ⊂ T = S1 × S1

be the closed rectangle so that (x, x̃) ∈ A if and only if κ−1(x) ∈ a and κ̃−1(x̃) ∈ ã.

There is a topologically unique such A. Then A is called the adjacency box of p0, p̃0.

6.5.4 Enumerating the possible locations of the adjacency box

Pick doubly adjacent p0, p̃0, having adjacency arcs a0, ã0 and let A = κ(a0)×κ̃(ã0) ⊂ T
be their adjacency box. Let b0 = ∂K\a0 and b̃0 = ∂K̃\b0, and set B = κ(b0)×κ̃(b̃0) ⊂
T. Then b0 and b̃0 are called the blotchy arcs of p0, p̃0 in ∂K and ∂K̃, respectively,

and B is called the blotchy box of p0, p̃0. This is because of the following observation:
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Observation 6.20. The parametrization in T of every point in ∂K ∩ ∂K̃ \ {p0, p̃0}
lies in the blotchy box B of p0, p̃0. However, we have basically no a priori information

about how these points are arranged in B.

Fix doubly adjacent p0, p̃0, having adjacency arcs a0, ã0, adjacency box A, blotchy

arcs b0, b̃0, and blotchy box B.

Observation 6.21. Suppose that z1, z2, z3 ∈ a0. Then b0 × S1 ⊃ B is contained in

a lattice column, regardless of which lattice point is chosen for the base point of our

drawing of the torus parametrization. Thus Lemma 3.5 holds by Observation 6.19.

Thus we may assume without loss of generality that z1 6∈ a0. Similarly, one of the z̃i

lies outside of ã0, but we cannot say which after having fixed the labeling of the zi

and z̃i by insisting that z1 6∈ a0. Next:

Observation 6.22. We may suppose without loss of generality that A meets the left

lattice column.

To see why, recall that we have insisted that the z1, z2, z3 appear in that order as we

traverse ∂K positively. Thus traverse ∂K starting from z1 positively, until arriving

at an endpoint of a0. Let zi be the last one of z1, z2, z3 crossed during this traversal.

Then we may draw the torus parametrization using (κ(zi), κ̃(z̃i)) as the base point.

After relabeling, we may suppose that our torus parametrization is drawn with

(κ(z1), κ̃(z̃1)) as our base point. Then:

Observation 6.23. Under our running assumptions, the topological location of A in

the torus parametrization is completely determined by two pieces of information:

• which of the cells of the left lattice column contains the lower-left corner A↙ of

A, and

• which of the nine lattice cells contains the upper-right corner A↗ of A.

We will denote the cases for the topological location of A in the following way: let

r equal one of ↙,←,↖, and let s equal one of ↑,↗,→, . . . ,←,↖, •. Then we say

that case (r, s) occurs if and only if A↙ lies in lattice cell Cr, and A↗ lies in lattice

cell Cs. A priori this gives us 3× 9 = 27 possibilities for A. Fortunately we will see

that many of the cases are handled in more or less the same way. For reference we

have depicted the 27 cases in Figure 6.16.

For future reference, we isolate and note an observation limiting the possibilities

for A which we need to consider:
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(a) (b)

Figure 6.16: The 27 possible topologically distinct locations for the adja-
cency box A. Both torus parametrizations are drawn with (κ(z1), κ̃(z̃1)) as the
base point. In (a) we have cases (r, s) where t 6=↗,→,↘. The adjacency box A is
shown with a solid boundary for the cases s =↖,←,↙, and with a dashed bound-
ary for the cases r =↑, •, ↓, except for the case (↙, ↑), which is shown with a solid
boundary. In (b), we have cases (r, s) where s =↗,→,↘. Here the adjacency box
A is drawn with a solid boundary, except for the case (↙,↗), which is shown with
a dashed boundary.

Observation 6.24. We suppose without loss of generality that the adjacency box A

does not meet the left/right grid line {κ(z1)} × S1.

6.5.5 First application of induction, when γ misses A

For the remainder of the proof, let γ be obtained inductively as described in Obser-

vation 6.18. We wish to compare w(γ) with w(γ′). The germane issue is the effect of

the presence of P0, P̃0 in T on w(γ) compared to their absence from T′ when comput-

ing w(γ′). In light of Lemma 6.1, there are precisely two ways that reinserting these

points can change the fixed-point index of γ = γ′:

• First, they may affect the winding numbers ω(∂K, z̃1) and ω(∂K̃, z1) as com-

pared to ω(∂K, z̃1) and ω(∂K̃, z1), and

• second, they may affect the sum −#p↓(z1, γ)+#p̃↓(z1, γ), equivalently the sum

#p↑(z1, γ)−#p̃↑(z1, γ), as compared to the respective sums in T′.

We have the following nice observation:

Observation 6.25. The winding numbers ω(∂K, z̃1) and ω(∂K ′, z̃′1) are equal.
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This follows from Observation 6.24. In particular, it follows because ω(∂K, z̃1) is

determined completely by whether we arrive first at a κ(pi) or a κ(p̃i) as we traverse

the first coordinate S1 of T positively starting at κ(z1), and this is invariant under

reinserting P0, P̃0 by Observation 6.24.

Next:

Claim 6.26. Suppose that γ = γ′ does not meet A. Then w(γ) = w(γ′) ≥ 0.

Proof. There are two cases, handled differently:

Case 1. The box A does not meet the bottom/top grid line S1 × {κ̃(z̃1)}.

In this case, similarly to Observation 6.25, we get that ω(∂K̃, z1) = ω(∂K̃ ′, z′1). Also,

because γ = γ′ does not meet A, we have that P0 and P̃0 either both lie above γ in

T, or both lie below it. Thus −#p↓(z1, γ) + #p̃↓(z1, γ) = −#p↓(z1, γ
′) + #p̃↓(z1, γ

′),

completing the proof of the claim in this case.

Case 2. The box A crosses the bottom/top grid line S1 × {κ̃(z̃1)}.

In this case, the bottom/top grid line S1×{κ̃(z̃1)} cuts A into two connected compo-

nents A↓ and A↑, one of which contains P0 and the other of which contains P̃0. The

“upper half” of A, which we have denoted A↑, actually lies in the bottom lattice row

of T, and furthermore lies beneath γ because γ does not meet A. Similarly A↓ lies in

the upper lattice row of T and above γ. There are two sub-cases:

Sub-case 2.1. P0 ∈ A↓, P̃0 ∈ A↑

In this case ω(∂K̃, z1) = 1 and ω(∂K̃ ′, z′1) = 0. On the other hand −#p↓(z1, γ) +

#p̃↓(z1, γ) is 1 less than −#p↓(z1, γ
′) + #p̃↓(z1, γ

′). Thus w(γ) = w(γ′) by Lemma

6.1.

Sub-case 2.2. P0 ∈ A↑, P̃0 ∈ A↓

This sub-case is handled in the same way as Sub-case 2.1, except this time ω(∂K̃, z1)+

1 = ω(∂K̃ ′, z′1) and−#p↓(z1, γ) = −#p↓(z1, γ
′)+1. This completes the proof of Claim

6.26.

Much of the rest of the proof of Lemma 3.5 will be spent trying to reduce to the

situation handled by Claim 6.26.
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6.5.6 Moving P0, P̃0, or adjusting A

We continue with the notation from before. Because A is a topological rectangle in the

natural way, it has well-defined left, right, up, and down directions. More precisely, we

suppose that the positive orientation on the first coordinate of T = S1× S1 goes left-

to-right, and on the second coordinate goes down-to-up. A priori there are exactly

four topologically distinct ways that P0 and P̃0 may be arranged in the adjacency box

A of p0, p̃0, as depicted in Figure 6.17.

b

b

P0

P̃0

A

(a)

b

b

P0

P̃0

A

(b)

b

b

P̃0

P0

A

(c)

b

b

P̃0

P0

A

(d)

Figure 6.17: The a priori possible arrangements of P0, P̃0 in the adjacency
box B.

The following observation will be helpful later:

Observation 6.27. We may move P0 and P̃0 as we please within A, without chang-

ing the topological configuration of K, K̃, and the constraint points, so long as the

following two requirements are satisfied:

• Each of P0 and P̃0 must remain in the same respective connected component of

A \ ∪{grid lines}.

• We must not change which of the cases of Figure 6.17 occurs.

During the eventual induction step, it will often be desirable to move the points P0

and P̃0. By Observation 6.27 we may do so, within limits, without affecting any

germane aspects of the situation. It will also be useful to note the following:

Observation 6.28. The points P0 and P̃0 lie in different connected components of

A \ ∪{grid lines}, unless A = A \ ∪{grid lines}.

This is by our construction of A.

Next, recall that we had latitude in choosing the adjacency box A of p0, p̃0. With

this in mind, we make the following observation:

Observation 6.29. We may replace A by any topological rectangle contained in A,

having sides “parallel to” those of A in the natural sense, so long as the interior of
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this new rectangle continues to contain P0 and P̃0. This replacement preserves the

germane features of A in that every argument we make continues to work under this

replacement.

We now apply these observations to describe how to complete the proof in a crucial

case:

Claim 6.30. Suppose that γ meets only a single connected component of the set

A\∪{grid lines}, and furthermore that this component contains a corner of A. Then

we may reduce to Claim 6.26, completing the proof of Lemma 3.5.

Proof. First note that γ ∩ A has only a single connected component, because γ is

“strictly increasing” in T. This also implies that if the component of A\∪{grid lines}
which meets γ contains a corner of A, then it must contain either the upper-left corner,

or the lower-right corner, or both. Suppose it contains the upper-left corner. The

argument will be the same if it contains the lower-right corner. A potential drawing

of the situation is depicted in Figure 6.18.

A
(x1, x̃1)

(x2, x̃2)

A∗
γ

Figure 6.18: Moving P0 and P̃0 to find a replacement for A not meeting γ.

Then it is clear that within the constraints described in Observation 6.27 it is

possible to move P0 and P̃0 if necessary so that both lie to the right of (x2, x̃2) and

below (x1, x̃1), and then it is clear how to choose A∗ our replacement rectangle for A.

This completes the proof of Claim 6.30.

6.5.7 Restricting the possibilities further

Let p0, p̃0 be doubly adjacent, with short adjacency arcs a0 and ã0. The unoriented

union a0 ∪ ã0 is an unoriented Jordan curve. The orientations on a0 and ã0 may or

may not agree, and may or may not induce the positive orientation on a0 ∪ ã0. Let

U be the open Jordan domain bounded by a0 ∪ ã0. Then U is called the adjacency

domain of p0, p̃0. We make the following observation:
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Observation 6.31. There exist at least two distinct pairs of doubly adjacent points

in ∂K ∩ ∂K̃ whose adjacency domains are contained in K̃.

This is easy to show by induction, similarly to Observation 6.17. Then we get the

following as a corollary:

Observation 6.32. There exist at least two distinct pairs of doubly adjacent points

in ∂K ∩ ∂K̃, so that if p0, p̃0 is such a pair, then their short adjacency arc in ∂K is

a0 = [p0 → p̃0]∂K.

We may restate Observation 6.32 in the following way:

Observation 6.33. There exist at least two distinct pairs of doubly adjacent points

in ∂K ∩ ∂K̃, so that if P0, P̃0 ∈ T parametrize one of these pairs, then P0 lies to the

left of P̃0 in their adjacency box A.

Thus without loss of generality, for the remainder of the proof, we restrict our atten-

tion to the arrangements in Figures 6.17a, 6.17b.

6.5.8 Completing the proof if a constraint lattice point lies in
the adjacency box A

Claim 6.34. Suppose that A contains a constraint lattice point. Then we may move

P0 and P̃0 around in such a way that we get w(γ) ≥ 0, completing the proof of Lemma

3.5.

Proof. The following will be useful to keep in mind:

Observation 6.35. The curve γ cannot cross grid lines, except at constraint lattice

points.

We prove Claim 6.34 in four cases:

Case 1. The arrangement in Figure 6.17a occurs, and A does not meet the bot-

tom/top grid line of T.

It is not hard to see that then P0 and P̃0 are on different sides of γ in our drawing of T,

and furthermore that P0 lies above γ and P̃0 below it. Then, arguing straightforwardly

as in the proof of Claim 6.26, Case 1, we get w(γ) = w(γ′) + 1.

For the remaining cases, the following will be the key observation:
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Observation 6.36. Suppose that P0 lies in a connected component of A\∪{grid lines}
through which γ passes. Then we may decide whether P0 lies above or below γ in our

drawing of T, in the sense that we may move P0 within the constraints given in

Observation 6.27 to arrange either situation. The same is true for P̃0.

Case 2. The arrangement in Figure 6.17a occurs, and A crosses the bottom/top grid

line of T.

We argue similarly to the proof of Claim 6.26, Case 2. In this case it can always

be arranged that P0 lies below γ and that P̃0 lies above it. There are three cases to

check, and in each it is clear how to proceed. The cases are shown in Figure 6.19.

Again we get w(γ) = w(γ′) + 1.

A

γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

b

b

(↖, •, (a)

A
γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

b

b

(↖,→, (a)

A
γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

bb

(←,↘, (a))

Figure 6.19: The three possibilities for A when A contains a constraint
lattice point and meets the bottom/top grid line, and Figure 6.17a occurs.

Case 3. The arrangement in Figure 6.17b occurs, and A does not meet the bot-

tom/top grid line of T.

As per our usual arguments, we have ω(∂K̃, z1) = ω(∂K̃ ′, z′1) and ω(∂K, z̃1) =

ω(∂K ′, z̃′1). Thus we will be done if we can argue that we may arrange so that

P0 and P̃0 lie on the same side of γ in our drawing of T. There are five cases to check,

and in each it is clear how to proceed. Figure 6.20 shows each case.

Case 4. The arrangement in Figure 6.17b occurs, and A crosses the bottom/top grid

line of T.

In this case we have that ω(∂K, z̃1) = ω(∂K ′, z̃′1) as per Observation 6.25, but unfor-

tunately ω(∂K̃, z1) = ω(∂K̃ ′, z′1) − 1. Thus we will be done if we can argue that we

may arrange so that P0 lies above γ, and P̃0 below it, in our drawing of T. There are

only three cases to check. Figure 6.21 shows each. This completes the proof of Claim

6.34.
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b

A

γ

P0

P̃0

(κ(z2), κ̃(z̃2))

b

b

(↙, •, (b))

b

A

γ

P0

P̃0

(κ(z2), κ̃(z̃2))

b

b

(κ(z2), κ̃(z̃3))

b

(↙, ↑, (b))

b

A

γ
P0

P̃0

(κ(z2), κ̃(z̃2))

b

b

(κ(z3), κ̃(z̃3))

b

(↙,↗, (b))

b

A

γ

P0

P̃0

(κ(z1), κ̃(z̃1))

b

b

(κ(z2), κ̃(z̃1))

b

(↙,→, (b))

b

A

γP0

P̃0

(κ(z2), κ̃(z̃3))

b

b

(κ(z3), κ̃(z̃3))

b

(←,↗, (b))

Figure 6.20: The five possibilities for A when A contains a constraint
lattice point and does not meet the bottom/top grid line, and Figure
6.17b occurs.

A

γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

b

b

(↖, •, (b))

A

γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

b

b

(↖,→, (b))

A
γ

P0

P̃0

(κ(z2), κ̃(z̃3))

b

b

b

(←,↘, (b))

Figure 6.21: The three possibilities for A when A contains a constraint
lattice point and does not meet the bottom/top grid line, and Figure
6.17b occurs.

6.5.9 Completing the proof of Lemma 3.5

We summarize the situation so far. There are 3× 9 = 27 possibilities for the location

of A in T. Most of the cases fall into one of the following three categories. For a given

type (s, t) of A, it is quick and easy to check the conditions that define membership

in the categories. We also refer the reader back to Figure 6.16, where each of the 27

cases is drawn.
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Category 1. The intersection A ∩ (C↙ ∪ C• ∪ C↗) is empty.

Then we are done by Claim 6.26, because γ is restricted to lie in C↙∪C•∪C↗. Next:

Category 2. The set A \ ∪{grid lines} has exactly one connected component lying

in C↙ ∪ C• ∪ C↗, and this connected component contains a corner of A.

Then we are done by Claim 6.30, again because γ is restricted to lie in C↙∪C•∪C↗.

Finally:

Category 3. The adjacency box A contains a constraint lattice point.

This is exactly handled by Claim 6.34.

In Figure 6.22 we list the 27 possible locations of A, and for each falling into one

of these three categories, we indicate which.

r s Category

↖ ↑ 1
↖ ↗ 3
↖ → 2
↖ ↘ 3
↖ ↓ 3
↖ ↙ 3
↖ ←
↖ ↖ 1
↖ • 2

r s Category

← ↑ 3
← ↗ 2
← →
← ↘ 2
← ↓
← ↙ 3
← ← 1
← ↖ 1
← • 3

r s Category

↙ ↑ 2
↙ ↗ 2
↙ → 2
↙ ↘ 3
↙ ↓ 3
↙ ↙ 3
↙ ← 3
↙ ↖ 3
↙ • 2

Figure 6.22: The cases to check for Lemma 3.5.

Case (←, ↓) is easily handled in a manner similar to the proof of Claim 6.30. If

case (←,→) occurs, then our running assumption that P0 lies to the left of P̃0 in A

implies that w(γ) = w(γ′) + 1 by Lemma 6.1 as usual.

We have no way to deal with case (↖,←) directly. However, recall from Obser-

vation 6.33 that we had two choices for P0, P̃0 for which every step of the proof until

this point go through. Because the adjacency arc ã0 contains two constraint points z̃i

if case (↖,←) occurs, it can occur for only one of these two choices of P0, P̃0, so we

do not need to handle this case directly. This completes the proof of Lemma 3.5.
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Appendix: The relevant topological configurations

of three-disk subsets of {A,B, Ã, B̃}

A

BÃ

(a)

A

BÃ

(b)

A B
Ã

(c)

A B
Ã

(d)

A B

Ã

(e)

Ã

BA

(f)

A B

Ã

(g)

A
BÃ

(h)

♦

B

AB̃

(a)

B

AB̃

(b)

B A
B̃

(c)

B A
B̃

(d)

B A

B̃

(e)

B̃

AB

(f)

B A

B̃

(g)

B
AB̃

(h)

♥

Figures ♦, ♥: The possible topological configurations of {A,B, Ã} and
{A,B, B̃} respectively, under the hypotheses of Proposition 5.11.
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Ã B̃
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(d)
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(e)

A

B̃Ã

(f)

Ã B̃

A

(g)

Ã
B̃A

(h)

♠

B̃

ÃB

(a)

B̃

ÃB

(b)

B̃ Ã
B

(c)

B̃ Ã
B

(d)

B̃ Ã

B

(e)

B

ÃB̃

(f)

B̃ Ã

B

(g)

B̃
ÃB

(h)

♣

Figures ♠, ♣: The possible topological configurations of {A, Ã, B̃} and
{B, Ã, B̃} respectively, under the hypotheses of Proposition 5.11.
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