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ABSTRACT

RETROACTIVITY TO THE OUTPUT OF TRANSCRIPTION DEVICES: QUANTIFICATION
AND INSULATION

by
Shridhar Jayanthi

Co-chairs: James Freudenberg and Domitilla Del Vecchio

Traditional engineering often relies on hierarchical design techniques to build com-

plex systems from simpler subsystems. This technique requires modularity, a prop-

erty that states that the input/output characteristics of a system are not affected by

interconnections. In this work we investigate retroactivity, an impedance-like effect

in biomolecular systems that makes the behavior of a system change upon intercon-

nection. We show, through analysis and experiments, that retroactivity in synthetic

biology circuits is responsible for substantial changes in a system dynamic response.

In order to construct circuits modularly, we propose the design of insulation de-

vices, which, similar to insulating amplifiers in electronics, attenuate retroactivity

effects and recover modular behavior. Our technique is based on a novel disturbance

attenuation approach based on singular perturbation theory.

xiii



CHAPTER I

Introduction

Hierarchical design is a technique used in the design of complex systems in several

engineered systems. In this technique, one designs a complex system as a compo-

sition of several subsystems which, in its turn, can be composed of even simpler

subsystems. The subsystems with simplest specifications are then designed directly.

Besides simplifying the design process, this method has the additional advantage

that these atomic components may be reused in different contexts [1].

This methodology is based on the principle of breaking a complex design problem

into several simpler problems. However, the integration of the sub-solutions into

an integrated design may not be trivial if the sub-solutions are context sensitive.

An example of challenges in this integration appears in dynamic programming al-

gorithms, in which the impact of an optimal sub-solution on the optimality of the

partial solution must be assessed in every iteration [2]. In engineering, integration

becomes trivial when each part is modular, i.e., if the part obeys its specifications in

a context-independent fashion. In software engineering, for example, modularity of

components is achieved through the object-oriented paradigm [3]. In analog electri-

cal circuits, modularity is achieved through careful design of low impedance output

stages [4] while in digital electronics, suppliers state operating fan-out limitations for

1
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modular behavior of parts [5].

Synthetic Biology is a field whose goal is to build biological machines employ-

ing engineering tools [6]. In this field, organisms are programmed using biological

circuits, networks of genes, proteins, regulatory DNA elements and other signalling

elements arranged to perform a specific task. The complexity of design of most ele-

mentary components in this domain is high and the hierarchical approach has been

popular in the design of biological parts [7, 8, 9]. As such it is important to under-

stand how modular are these biological parts and what are their limits [10]. It has

been suggested that lack of modularity is responsible for differences in the behavior

between in vivo and in vitro systems, which ultimately cause failures in biological

design [11]. This lack of modularity can be caused by several reasons such as toxicity

of recombinant proteins, non specific crosstalk between circuit and native elements

or interference in the global metabolism.

In this work, we focus on the lack of modularity stemming from the nature of

signalling elements responsible for carrying information. These elements, usually

transcription factors or signalling proteins, suffer from the presence of loads in the

form of DNA binding sites, other signalling proteins or substrates. These loads affect

the signal carrier via binding interactions. This effect, which in biomolecular circuits

is called retroactivity [12, 13], is illustrated in Figure 1.1a. When an upstream system

is connected to a downstream system, perturbations on the upstream system may

occur due to how the connection takes place. This retroactivity perturbation can

be modelled as an additional signal from the downstream system to the upstream

system. Retroactivity is unlike feedback because it is tied to the flow of information

and therefore cannot be disconnected.

This type of effect from downstream systems to upstream is not unique to molec-
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Figure 1.1: Parasitic effect of retroactivity and strategies to mitigate its effect. Assume
there exists in a complex design two connected subsystems: an upstream system required to give
an output signal y whenever input is u and and a client system that expecting input y. (A) Due
to retroactivity, designing the upstream system assuming a non-existing modularity may lead to
unexpected results as retroactivity may alter the output of the upstream system from y to y′.
(B) One strategy to prevent this problem is by designing an insulation device, a device sitting
in the interconnection. The insulation device relays the signal without generating retroactivity
to the upstream system and mitigating retroactivity from the client. In this case, the design of
the upstream is independent of any potential retroactivity from a downstream load. (C) Another
solution to this problem is to design the upstream system in a manner that “pre-compensates” for
retroactivity. In this case, retroactivity from a load becomes a part of the design of the upstream
system. In this case, the re-usability of the upstream system becomes compromised since it is
susceptible to retroactivity, and therefore, not modular.
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ular biology systems. In electrical circuits, for example, flux of information is tied

to current flows. Current demands of a downstream system can greatly impact the

upstream, an effect that is is captured by the output impedance of a system. A

version of retroactivity in fluid mechanics and in engine design also appears in the

form of back pressure.

There are two mechanisms of handling problems from retroactivity-type phe-

nomenon in engineering. The first method is the design of insulation devices, buffer-

ing elements that sit between the upstream and the downstream system and ensures

signal propagation with mitigated retroactivity, as shown in Figure 1.1b. Examples

of this approach include amplifier-based output stages [4] and buffer tanks in HVAC

systems [14]. A second approach, illustrated in Figure 1.1c, is to carefully design the

system to operate under the presence of the disturbance. Examples of this approach

include impedance matching in high frequency electrical circuits [15] and exhaust

design to prevent back pressure in engines [16]. This approach may not be as robust

as the one employing insulation devices and does not provide modularity. However,

design constraints, such as high energy flow or efficiency may require this second

approach.

In this work we show how to adequately model retroactivity caused by connections

between synthetic biology devices employing transcription factors as an output. We

begin by analysing the effects of retroactivity in a simple “toy model” for a tran-

scription system. Employing principles from this analysis, we show how to design

a biomolecular circuit taking retroactivity into account by analysing a theoretical

model for an activator-repressor oscillator. Then a framework for insulation devices

is introduced. Finally, experimental results validating the predicted analytical results

presented in this dissertation are presented.
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The last section contains a summary of the technical results presented in this

thesis.

1.1 Literature Review

Th models for retroactivity in biomolecular systems used in this work follows the

definition provided in [12]. There, retroactivity is defined as a failure of modularity

that occurs when the connection between two functional modules is not unidirec-

tional. This concept was structured in the framework of systems theory in [13]. In

this work, retroactivity is defined as a signal that flows in a direction opposite to

the natural flow of information, as illustrated in Figure 1.1a. This paper also sug-

gests circuits that are robust to retroactivity to the output and, therefore, can act

as insulation devices. The insulation devices suggested in [13] are inspired in low

output-impedance buffers used in electrical circuits, and are able to reject distur-

bances to the output by implementing large input amplification and strong negative

feedback on the output. The large gains from such systems are exploited analytically

by employing Tikhonov’s singular perturbation theorem biomolecular systems [17].

Another technique for model reduction in biomolecular circuits that employs a

singular perturbation arguments is given in [18]. Here, instead of using Lyapunov

stability arguments to show convergence to the slow manifold, contraction theory

tools are employed. While stronger assumptions may be needed for the application

of these results, it is possible to obtain explicit bounds on the convergence rate

between full and approximate systems.

The idea of applying concepts from electrical circuit design to study retroactivity

in synthetic biology are illustrated in the two following works. The first one is inspired

by the analog electrical circuits theorems of Thevenin and Norton [19]. This result
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offers a mathematical model that provides the retroactivity to the output to any

nodes in devices with composed of a complex networks. Another approach, based

on limitations of digital circuits, a specification for synthetic biology parts analog to

fan-out [20].

Another view for retroactivity in biomolecular circuits comes from the perspective

of Systems Biology. For example, [21] studies retroactivity in the context of long

signalling cascades based on post-translational modifications, and show that long

signalling cascades such as the MAPK are able to attenuate retroactivity. Another

study analysing retroactivity in MAPK signalling networks shows that downstream

sites may even induce oscillations [22] in natural systems.

Recent work experimentally validated several of predicted effects of retroactivity.

A study shows that substrate modulates upstream systems in the MAPK path-

way because modified signalling molecules are protected by the substrate from de-

phosphorylation, affecting development of D. melanogaster embryos [23]. Studies

employing reconstituted in vitro systems have shown the impact of retroactivity in

post-transcriptional signal networks. Reduction of the sensitivity on the steady state

characteristics as well as a reduction in the bandwidth of the system was observed

due to presence of the load [24, 25]. These also show that large amplification and

feedback gains are capable of mitigating retroactivity. Another in vitro study, dealing

with RNA circuits, show that retroactivity may impact the functionality of oscillators

and show that an insulation device is capable of protecting the upstream oscillator

from retroactivity [26].

Since the biochemical mechanism by which retroactivity impacts the system is

the binding between signal carriers and load, it is important to mention protein

sequestration studies, a research program that has a different aim but has several
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points of convergence nevertheless. It has been shown [27, 28] that protein titration

can impact drastically the sensitivity of a system, with several follow-up studies

confirming these results. Of note, [29] shows that DNA binding sites can generate

this same response and [30] suggests that, in principle, this effect depends how much

protection the DNA binding sites give to the sequestered protein. These studies

focus on steady state responses and noise characteristics of the stationary random

processes at its dynamic equilibrium.

In this study we illustrate how retroactivity may affect the behavior of an oscillator

based on an activator repressor motif. This clock is comprised by an activator module

that activates itself and a repressor module, which in its turn represses the activator.

Interesting theoretical discussion on this biological topology can be found in [31, 32,

33, 34, 35, 36, 37]. In particular, it was shown that the key parameters for such

systems to provide oscillations are the appropriate sensitivity [31, 33, 37] and the

difference between activator and repressor timescales [?, 31, 32].

This design, was first shown to be a viable biomolecular synthetic oscillator in

vivo in [38]. An implementation of this clock in mammalian cells was shown in

[39] and is considered one of the most complex synthetic circuits in mamalian cells.

Another implementation in prokaryotes, that allows for tuning and synchronization

was published in [40, 41, 42]. This pattern has also been shown to be present in several

natural systems [43, 35], including in the human circadian clocks [44]. Another

result of note presented in [45] show DNA binding sites changing the behavior of an

activator repressor clock.
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1.2 Thesis Organization

Chapter II gives an description of the mechanisms by which a transcription com-

ponent becomes susceptible to retroactivity. We show the impact of retroactivity to

the dynamic and the steady state behavior. We also show that the effect depends on

changes on the stability of the transcription factor when bound to the DNA. A final

section in this same chapter illustrates how retroactivity can generate a qualitative

change in the periodic behavior of a biological oscillator. Analytical tools employed in

this section include singular perturbation arguments to reduce the order of a system

and bifurcation studies with a Hopf parameter related to retroactivity that changes

the stability of the fixed point.

Chapter III provides a strategy to design insulation devices based on timescale

separation. This chapter also provides tools to verify the stability of the slow man-

ifolds reached by the fast dynamics. We also comment on the potential tradeoffs

between insulation capacity and noise.Analytical tools employed in this section in-

clude nested application of singular perturbation to a generalized structure of for

insulation devices and stochastic models for the systems such as the Master Equa-

tion, and Langevin and Fokker-Planck approximations.

Chapter IV describes experimental results that the support some of the results

presented in Chapter II. We describe a realization of a system susceptible to retroac-

tivity to the output and give results of in vivo experiments. A mechanistic model of

this system is also given.

Finally, Chapter V gives a summary of the results, a discussion commenting how

the results presented here compare with current literature and offer suggestions of

future work.



CHAPTER II

Retroactivity to a Transcription Component

In order to study the effect of retroactivity to the output due to employing a

transcription factor in the output stage, we will analyse the transcription compo-

nent, illustrated in Figure 2.1. This device relays information from the input to the

z

U

p

Z

u output

input

degradation

Figure 2.1: Diagram of the transcriptional component. An input species U regulates expres-
sion of the gene z by interacting with the promoter u. Protein Z, expressed from gene z, interacts
with promoter p regulating expression downstream to its promoter. Additionally, protein Z suffers
from degradation either through protease mediated degradation or due to dilution resulting from
cell growth.

output through transcriptional regulation. Input to this systems occurs when species

U interacts with the input promoter u to regulate the expression of the gene z. Ex-

pression of this gene in its turn leads to transcription of protein Z which, regulates

the expression from promoter p. This mechanism for regulation depends on the bind-

ing of protein Z to the promoter p which increases or decreases the RNA polymerase

activity depending on whether Z is an activator or repressor, respectively. A client

system can then be connected to the output Z of the transcription device through

9
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an input gene inserted downstream to p. Note however that the presence of p, at

the same time that enables the connection to between the transcription and client

modules to relay information, may potentially act as a load to the output protein Z

due to the interaction via binding.

In this chapter, we study how the the connection of the transcriptional device

to clients impacts the its performance. Our goal is to compare the behavior of the

system when the promoter p is not present (isolated) with the behavior when it is

present (connected). Since it was found that the stability of transcription factors

when bound to the complex affects qualitatively the effect of retroactivity, we also

investigate the sensitivity of the observed changes to a complex stability parameter.

In the Section 2.1 we introduce the ODE model for this device and exploit the

presence of a singular parameter in the system that can be used to obtain a reduced

order model. In Section 2.2 we analyse the impact of retroactivity on the dynamic

response of this system. Section 2.2.2 shows how retroactivity on a transcription

factor can affect a biomolecular oscillator and how proper modelling may be employed

to take retroactivity effects into account.

2.1 Transcriptional Component Model

Consider a transcription component, that takes as input a transcription factor

or inducer u and gives Z as the output transcription factor. When this system is

connected to a downstream transcription component, Z binds to promoter sites q in

the downstream system to either repress or activate the promoter. Let Z·q denote

the complex of Z with downstream promoter sites q and let p denote the promoters

that express Z. This system can be modelled through chemical reactions:

p
k(u)−−→ Z + p, Z

δ−→ ∅, , q + Z
kon−−⇀↽−−
koff

Z · q, Z · q ρδ−→ q,
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in which k(u) is a standard Hill function [46] with normalized input activator u,

k(u) = α
un

(1 + un)
,

kon and koff are, respectively, the association and dissociation rates between Z and p,

and δ models the protein decay due to natural dilution or degradation. We assume

protein Z is also subject to decay when bound to the DNA. However, since it is

possible for that the degradation rate when bound to the promoter to be smaller

due to a protection effect [30] we introduce a “degradation efficiency” parameter

0 ≤ ρ ≤ 1. This leads to a degradation of the complex Z·q at rate ρδ.

Let Z denote the concentration of free protein Z, and C denote the concentration

of the complex Z·q. Let qT := q + C be a constant denoting the total concentration

of promoters to which Z binds in the downstream system and let pT denote the total

concentration of promoters expressing Z. The ordinary differential equation ODE

model, in the state space for this system is given by

dZ

dt
= pTk(u)− δZ − konZ(qT − C) + koffC

dC

dt
= konZ(qT − C)− koffC − ρδC.

(2.1)

Here, s = −konZ(qT − C) + koffC models the effect of retroactivity to the output.

The isolated system configuration that does not present retroactivity to the output

(s = 0) is trivially given by

Ż = pTk(u)− δZ.

To study the effect of s on the response of Z to u, it is useful to normalize the

concentrations by the amount of promoter pT and the time t in terms of the decay rate

δ. Consider the state-space normalization (z, c) := (Z,C)/pT and the nondimensional

time τ := δt. Consider additionally, the nondimensional parameters λ := qT
pT

, κ(u) :=
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k(u)/δ, κon := pTkon/δ and κoff = koff/δ. The resulting differential equation system

is given by

dz

dτ
= κ(u)− z − κonz(λ− c) + κoffc

dc

dτ
= κonz(λ− c)− κoffc− ρc.

(2.2)

In this system, 0 < ρ < 1 describes the amount of protection against degradation

provided to the transcription factor by the DNA, with ρ = 0 modelling perfect

protection and ρ = 1 providing no protection. Parameter λ models the amount of

downstream system promoters relative to that of the upstream system and thus is

responsible for controlling the amount of retroactivity to the output. The isolated

system can be modelled by setting λ = 0 to obtain

dz

dτ
= κ(u)− z. (2.3)

In general, association reactions are very fast when compared to production and

decay [46]. In the nondimensionalized model, this can be modelled by assuming

κon � 1. In what follows, the dot notation will be used to denote derivation with

respect to the nondimensional time τ .

2.1.1 Effect of retroactivity on the steady state.

By identifying the equilibrium z∗ reached by system (2.2) under a constant input

κ∗ := κ(u∗), one can identify the impact retroactivity will have as a function of

parameter λ. Let kd := κoff/κon denote the dissociation constant of Z. Define km =

kd+ρ/κon as a shorthand. The steady state value of z for a constant input z∗ = κ(u∗)

is given by

z∗ =
κ∗ − km − ρλ+

√
(κ∗ − km − ρλ)2 + 4κ∗km

2
. (2.4)
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This equation shows that the effect of retroactivity on the steady state charac-

teristic is observed when the DNA does not confer protection to the protein. When

ρ 6= 0, a connected system (λ > 0) reaches a lower steady state concentration of free

protein z∗ than the isolated system (λ = 0).Note additionally that when there is full

protection to the complex (ρ = 0), there is no change in the steady state value of

free output due to retroactivity.

2.2 Dynamic Impact of Retroactivity

2.2.1 Model Reduction.

In order to compare the one dimensional dynamics of the isolated system with

the two dimensional dynamics of the connected system, we reduce the order of the

connected system employing a singular perturbation argument based on a natural

timescale separation in the system. The association rate is usually a very fast reaction

compared to the other processes in the system. This can be modelled by making

the nondimensional rate κon � 1. In this section we assume the case in which

κoff = O(κon) as well. A treatment of the high affinity case, in which letting κoff � κon

will be treated later as a special case. Let ε := κ−1
on be a small parameter and,

kd = κoff/κon as defined previously. Considering the change of coordinates y := z+ c

be a slow variable, (2.2) can be rewritten in the standard singular perturbation form

as

ẏ = κ(u)− y + (1− ρ)c

εċ = (y − c)(λ− c)−Kdc− ερc
(2.5)

The slow manifold obtained by setting ε = 0 is given by

c̄ = φ(y) =
y + λ+ kd −

√
(y + λ+ kd)2 − 4yλ

2
. (2.6)
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We can verify the stability of this manifold by verifying that

∂

∂c
{(y − c)(λ− c)− kdc− ερc}

∣∣∣∣
c=φ(y)

= −λ− y − kd − ερ+ 2φ(y) < 0. (2.7)

Define z̄ = y − φ(y) and the inverse mapping y := µ(z̄). Let

ψ(z̄) := φ(α(z̄)) =
z̄

z̄ + kd
λ.

The dynamics for z̄ obeys the ODE

dz̄

dτ
=

(
1 +

∂ψ(z̄)

∂z̄

)−1
dy

dt
=

1

1 + kdλ(kd + z̄)−2

(
κ(u)− z̄ − ρ z̄λ

z̄ + kd

)
. (2.8)

Since from the singular perturbation theorem [47], z(τ) − z̄(τ) = O(ε) ∀τ ∈ [τ0, τf ]

for some τ0 > 0 arbitrarily small, one can measure the effect of retroactivity to the

order of ε by comparing the one dimensional systems (2.8) and (2.3).

2.2.2 Step Inputs

To quantify the impact of retroactivity in the response to step inputs, we employ

the following Lemma which compares two unidimensional systems with identical

initial conditions and asymptotic behavior by comparing their vector field.

Lemma 1 (Response to Step Input). Let ẋ = f(x) and ẏ = g(y), x ∈ R, y ∈ R,

f and g Lipschitz continuous, define two scalar initial value problems with x(0) =

y(0) = a, and let the unique solutions be x(τ) and y(τ). Additionally, assume ∃b 6=

a such that f(b) = g(b) = 0. Define the set L := {a} ∪ {x ∈ R|min{a, b} <

x < max{a, b}} and assume that ∀c ∈ L, f(c)/(b − a) > g(c)/(b − a) > 0. Then,

x(τ) : R+ → L and y(τ) : R+ → L are invertible functions and that for all c ∈ L

x−1(c) < y−1(c).

Proof. In order to show x(τ) is invertible, consider the auxiliary variable ξ = (x −

a)/(b− a). From this definition, the initial value problem becomes ξ̇ = f(x)/(b− a)
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with ξ(0) = 0. From the fact f(x) is Lipschitz continuous, ∃M > 0 such that for any

x ∈ (a, b), |f(x)| ≤ M |x − b|. This implies that f(x)/(b − a) ≤ M(b − x)/(b − a).

Since

ξ(t) =

∫ τ

0

f(x(s))/(b− a)ds ≤
∫ τ

0

M(1− ξ(s))ds

from the Gronwall-Bellman Lemma, ξ(t) ≤ 1−e−Mτ < 1. Due to the fact ∀ξ ∈ [0, 1),

ξ̇(τ) > 0, ξ(τ) is a strictly monotonically increasing function of τ . But since ξ(τ) < 1,

limτ→∞ ξ(τ) = 1. We can therefore conclude that the function ξ : R+ → [0, 1) is

bijective and therefore invertible. This implies that x : R+ → L is invertible as well,

since x → ξ is an affine transformation. Let the inverse function be θx := x−1 with

domain L and image R+. These results are trivially extended for the function y(t);

let θy := y−1 be the inverse mapping. From the inverse function theorem, we know

that
dθx(z)

dz
=

1

f(z)
and

dθy(z)

dz
=

1

g(z)
and therefore for any x ∈ L,

θx(c)− θy(c) =

∫ c

a

g(z)− f(z)

g(z)f(z)
dz =

∫ max{a,c}

min{a,c}

|b− a|
g(z)f(z)

g(z)− f(z)

b− a dz < 0,

which proves the last statement in the lemma.

This lemma provides a method to compare two scalar systems with same ini-

tial conditions and asymptotic behavior by comparing their vector fields. We show

next how this can be applied to study the difference in the response of isolated and

connected systems to step inputs.

Consider first the induction problem with saturating input, modelled by a positive

step in which for τ < 0, κ(τ) = 0 (u(τ) = 0) and for τ ≥ 0, κ = κ∗ = α/δ

(u(τ) → ∞). Recall from (2.4) that the isolated and connected systems may reach

different equilibrium values. Thus, in order to apply Lemma 1 we normalize system

(2.8) by setting w = z/z∗, in which z∗ is a function of λ and κ∗ as defined in (2.4).
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The resulting initial value problem is given by

dw

dt
=

1

1 + kdλ(kd + z∗w)−2

[
κ∗

z∗
− w − ρ λw

z∗w + kd

]
, (2.9)

for the connected system and

dw

dt
= 1− w, (2.10)

for the isolated system. It is easy to show that (2.9) and (2.10) satisfy the conditions

of Lemma 1 with w(0) = 0 and limτ→∞w(τ) = 1 in both systems. Let wi(t) and

wc(t) be the solutions to the isolated and to the connected initial value problem,

respectively. Define

f(w, λ) =
1

1 + λkd(kd + z∗w)−2

[
κ∗

z∗
− w − ρ λw

z∗w + kd

]
,

and g(w) = 1 − w. it is easy to check that g(w), f(w, λ) > 0 for all values of

0 ≤ w < 1. From (2.4), one can obtain the value of κ∗ in terms of z∗ as

κ∗ = z∗
z∗ + kd + ρλ

z∗ + kd
(2.11)

Substituting (2.11) and comparing the vector fields, we obtain

g(w)−f(w, λ) =
λ(1− w)kd[(1− ρw)z∗ + kd(1− ρ)]

[(kd + z∗w)2 + kdλ](z∗ + kd)
> 0,

for all λ > 0 and as a result these initial value problems satisfy the conditions from

Lemma 1. Thus, for all w∗ ∈ (0, 1), w−1
i (w∗) < w−1

c (w∗) which shows that the load

decreases the speed of the response to positive step inputs.

We will consider now a de-induction experiment from saturating conditions. To

model this, let the input be the step function such that for τ < 0, κ(τ) = κ∗ = α/δ

(u(τ) → ∞) and for τ > 0, κ(τ) = 0 (u(τ) = 0), and let the initial conditions be

z(0) = z∗, where z∗ is the steady state for saturating input k∗ defined in (2.4). In
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both cases, the connected and the isolated systems go to the equilibrium z = 0,

but the initial conditions are different. In order to apply Lemma 1, we employ an

approach similar to the one above by defining w = z/z∗. The resulting initial value

problem becomes

dw

dτ
=

−1

1 + kdλ(kd + z∗w)−2

[
w + ρ

λw

z∗w + kd

]
,

for the connected system and dw/dτ = −w for the isolated one. These two systems

satisfy conditions of Lemma 1, since w(0) = 1 and limτ→∞w(τ) = 0. Let

f(w, λ) =
−1

1 + kdλ(kd + z∗w)−2

[
w + ρ

λw

z∗w + kd

]
and let g(w) = −w, it is easy to check that g(w), f(w, λ) < 0 for all values of

0 < w ≤ 1. The comparison of the vector fields in this case gives

g(w)− f(w, λ) =
λw[−kd + ρ(kd + wz∗)]

[(kd + z∗)2 + kdλ]
. (2.12)

In a negative step input for this system, the impact of the response will depend on

the protection efficiency ρ. If there the DNA provides no protection (ρ = 1 the

connected system responds faster. On the other hand, if the DNA provides full

protection (ρ = 0) the connected system becomes slower than the isolated one. In

particular, since w < 1, a slower response is guaranteed if

ρ <
kd

kd + z∗ . (2.13)

Figure 2.2 validates the results shown above. Retroactivity to a transcription

component slows the response to induction when compared to the isolated system

in both situations. In contrast, in a de-induction experiment the response depends

on the protection level. When the DNA provides protection to the DNA (ρ = 0),

the response is slower than in the isolated system. In contrast, when there is no

protection (ρ = 1), the response becomes faster.
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Figure 2.2: Retroactivity effect on step responses. The plot shows a simulation of isolated
system (2.3) and connected system (2.2) to step inputs under levels or protein protection. When
there is no protection, the system is slower to both inputs. In contrast, when there is protection,
the response is slower to induction but faster to de-induction. In this simulation, an induction
(κ(u) = κ∗) at time τ = 5 is followed by a de-induction (κ(u) = 0) at time τ = 20. The simulations
was normalized by the maximum amount of protein. Values used in this simulation were κ∗ = 20,
κon = 100 and κoff = 10. For the isolated system, λ = 0. For the connected system with protection,
λ = 30 and ρ = 0. For the connected system with no protection, λ = 10 and ρ = 1.

2.2.3 Frequency Response

Another characteristic of interest in studying signalling system is its frequency

response. This information gives the limits of the system in terms of the bandwidth

of the signals it is capable of transmitting. In order to analyse this, proceed by

setting an input κ(τ) = κ0 + κ̃(τ) in which κ̃(τ) is a signal with small amplitude.

Define z0 to be the equilibrium reached for a constant input κ0 obtained by setting

κ∗ = κ0 in expression (2.4). The Jacobian of system (2.8) with input κ = κ0 is given

by

J(z0) = −1 + ρλkd(kd + z0)−2

1 + λkd(kd + z0)−2
. (2.14)

Define z̃ = z − z0 and κ̃ = κ− κ0. If the amplitude of signal κ̃(τ) is small, (2.8) can

be well approximated by

dz̃

dτ
=

1

1 + λkd(kd + z0)−2
κ̃− 1 + ρλkd(kd + z0)−2

1 + λkd(kd + z0)−2
z̃. (2.15)
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The resulting transfer function from input to output is

G(s) =
Z(s)

K(s)
=

R

s+QR
, (2.16)

in which

R =
1

1 + λkd(kd + z0)−2
and Q = 1 + ρλkd(kd + z0)−2.

The resulting system is a first order system with DC gain G(0) = Q−1 and cut-off

frequency −QR.

Note that for frequency inputs, ρ behaves as a tradeoff parameter between ampli-

tude loss and bandwidth. For example, in the system with no protection (ρ = 1), the

bandwidth is not affected by retroactivity, but the amplitude decreases. However,

when the DNA offers perfect protection (ρ = 0), the value of the cut-off frequency

decreases with an increase in λ, but the DC gain is not affected by retroactivity.

This results is illustrated in Figure 2.3. In these plots, we adjust the input κ0 in each

system so that the bias output level z0 is constant.

2.2.4 Transcription factors with high affinity

There are several situations in which the affinity between the promoter and the

transcription factor is so strong that the dissociation rate is of the same order of

magnitude or slower than the decay rate. Since this is a special case of the general

system, the above results apply. However, these systems merit special treatment due

to their high incidence. These high affinity cases can be modelled by setting κoff � 1

in our models.

The impact of retroactivity on the steady state in this situation can be obtained

by noticing that km becomes insignificant in (2.4) when compared to any meaningful

non-null input κ∗. In this situation, the steady state of the connected system is well
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Figure 2.3: Protein protection as a tradeoff parameter in the frequency response of
transcription components. The top figure shows the Bode plot of the linearized system shown
in (2.15). The system in which DNA binding sites confer protection to the protein leads to change
in the cutoff frequency. On the other hand, in a system in which no protection is provided, there are
no changes on the cutoff frequency and, consequently, no phase changes between the isolated and
the connected. However, there is a loss of amplitude over all frequencies. The bottom two figures
shows simulations of the output of systems (2.2) and (2.3) to sinusoidal input k̃appa(τ) = 0.5 cosωτ ,
with the middle plot having input ω = 1 rad/s and the bottom plot having ω = .2 rad/s. Note
that, as predicted by the crossover found in the amplitude graph of the bode plot of the linearized
system, for slower inputs, the system with protection has a lower attenuation whereas at faster
outputs, the system with no protection has lower attenuation.
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approximated by

z∗ =

 0 if 0 ≤ y < λ

κ∗ − ρλ, if y ≥ λ.

(2.17)

Note that, due to the high affinity, if the amount of free proteins is z∗ = 0 unless the

total amount of proteins is large enough (y > ρλ). From the above solution, we can

determine u50, the value of input that results in an output equivalent to half of the

maximum. The maximal value of z∗max = α/δ − ρλ, so that

u50 =

(
α/δ + ρλ

α/δ − ρλ

)1/n

, (2.18)

in which for λ = 0 we obtain u50 = 1 for the isolated system and, as λ increases,

the value of u50 increases. To obtain the reduced model employed in the dynamic

analysis, one can assume kd = O(ε) in (2.5), and as a result the slow manifold

obtained setting ε = 0 becomes

c̄ = φd(y) =

 y if 0 ≤ y < λ

λ if y ≥ λ.

It is easy to verify that the non-smooth manifold is the limit case of the smooth

manifold φ(y) from (2.6), since limkd→0 φ(y) = φd(y) and that this manifold is also

stable. However the φd : R+ → [0, λ] map is not injective. As a consequence, z̄ :=

y − φd(y) is non-invertible map, and therefore the approximation (2.8) is not valid.

The approximate dynamics can still be obtained in terms of y. Let z̄ := y−φd(y) as

dz̄

dτ
=

(
1− ∂φd(y)

∂y

)
dy

dτ
=

 0 if 0 ≤ y < λ

κ(u)− z̄ − ρλ if y ≥ λ.

(2.19)

in which y is the solution of

dy

dτ
=

 κ(u)− ρy if 0 ≤ y < λ

κ(u) + λ(1− ρ)− y if y ≥ λ.

(2.20)
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This system has an intuitive interpretation. When the affinity between the transcrip-

tion factor and DNA is very strong, there will be no free protein available (z̄ = 0)

until the total amount of protein y becomes larger than the number of binding sites

λ.

In the induction experiment, assuming an input u such that κ > ρλ, since y0 = 0,

y(t) = κ(1− e−ρτ ). Therefore, system (2.19) can be written as the non-homogeneous

system

dz

dτ
=

 0 if 0 ≤ τ < τd

κ(u)− z − ρλ if τ ≥ τd,

(2.21)

in which

τd =
1

ρ
ln

κ

κ− ρλ
for ρ 6= 0 and τd = λ/κ for ρ = 0. This shows the delay in the response, since soon

after the induction and until τ = τd, ż = 0. This effect is a result of the fact that

every generated transcription factor binds to the sites q. Additionally, ρλ reduces the

right hand side of the ODE slowing down the response to induction as per Lemma

1.

To model the de-induction (wash) experiment, one can set κ = 0 in (2.19) to

obtain the non-homogeneous system

dz

dτ
=

 −z − ρλ if z > 0

0 if z = 0.

(2.22)

which, for z(0) > 0 has solution is thus given by

z(τ) = z(0)e−τ − ρλ(1− e−τ ).

If both isolated and connected systems have same initial amount of free protein,

it is clear from Lemma 1 that the connected system will respond faster to the de-

induction. That is also the case if we instead assume that prior to the experiment,
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(a) Activator-Repressor Motif (c) Activator-Repressor with Repressor Binding Sites

(b) Activator-Repressor with Activator Binding Sites (d) Activator-Repressor with Both Binding Sites

Figure 2.4: Illustration of the systems analysed in this section. Diagram (a) illustrates the
activator-repressor motif. Diagram (b) and (c) illustrate the systems after the addition of DNA
binding sites with affinity to the activator and the repressor, respectively. Diagram (d) illustrates
the case in which both types of DNA binding sites are present.

both isolated and connected systems have the same amount of inducer u∗. This can

be seen by evaluating the time of depletion τe := z−1(0) as the time in which the

amount of free protein becomes zero. By letting κ∗ = κ(u∗), the initial conditions

are given by z(0) = κ∗ − ρλ and as a result z(τ) = ke−τ . For the connected system,

depletion occurs at finite time, since τe = ln
κ+ ρλ

κ− ρλ , while in the isolated system,

τe →∞. When there is perfect protection of the complex (ρ = 0), there is no effect

of retroactivity in the response in the high affinity case.

2.3 Employing Retroactivity to Tune Clocks

In this Section we give an example of a system design that inserts retroactivity

effects in the model of the system.

Consider a model for a two-component clock incorporating both positive and neg-

ative feedback loops based on the activator-repressor configuration of [48] and illus-

trated in Figure 2.4a. Oscillations for activator-repressor clocks often arise from Hopf

bifurcation, wherein a stable equilibrium point bifurcates into an unstable equilib-

rium and a stable periodic orbit when a key parameter is changed [49, 36, 31, 50, 39].

In the models surveyed in the literature, the fundamental mechanism responsible for
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this oscillatory behavior is well captured by a reduced two-dimensional model that

describes the rate of change of the activator and repressor concentrations. This

model is obtained by taking into account that the period of oscillations occurs in

a timescale slower than the dynamics of multimerization, binding and dissociation

interactions, so that quasi-steady state approximations can be made. Additionally,

it has been shown that transcription and translation can be lumped into a one-step

expression model with no impact to the dynamics of interest. Based on these prior

work, we focus on a reduced two-dimensional model.

In the system of Figure 2.4a, activator protein A promotes its own expression as

well as the expression of repressor protein R. Protein R, in turn, represses expression

of protein A. In what follows we introduce a nondimensional model for the activator

repressor clock. A detailed derivation of this system is given in the Appendix.

Let Km1 be the apparent dissociation constant between the activator protein

and its DNA binding site and Km2 be the apparent dissociation constant between

repressor protein and its DNA binding site [51]. Consider the concentration of A

and R given in units of their respective dissociation constants a := A/Km1 and

r := R/Km2. Considering a one-step model for protein expression, the dynamics for

this system can be represented by

ȧ = −δAa+ f1(a, r)

ṙ = −δRr + f2(a),

(2.23)

in which δA and δR model protein decay (due to either dilution or degradation) and

functions f1 and f2 model expression rates and take the form of the standard Hill

functions [46]

f1(a, r) =
β1a

m + β2

1 + am + rn
and f2(a) =

β3a
m + β4

1 + am
, (2.24)
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in which β1 and β3 are the maximal expression rates, β2 and β4 represent the basal

expression, and m and n are the Hill coefficients of the affinity between the proteins

A and R and their respective binding sites. The mathematical derivation of this

reduced nondimensional model is given in the Appendix. In the sequel, we refer to

system (2.23) as the isolated system.

We assume that the values of the parameters are such that system (2.23) has

a unique equilibrium point. We give conditions for which this assumption holds

when either m = 1 or m = 2 in the Appendix. In particular, it is shown that when

m = 1, the system always presents a unique and stable equilibrium and, therefore, no

oscillatory behavior can be observed. When m = 2 the uniqueness of the equilibrium

is guaranteed under the following conditions: (i) the value of β2 must be sufficiently

smaller than the maximal expression rate of the activator, which is proportional

to β1; (ii) β2 must be non-zero; (iii) the maximal expression rate of the repressor

must be larger than the maximal expression rate of the activator; (iv) the smaller

β2 becomes, the smaller β4 must be. In the general case (m > 2), results related

to existence and uniqueness of equilibria require a case by case analysis, which is

out of the scope of this work. The results in this section, do not explicitly impose

conditions on the Hill coefficients m and n and only assume the uniqueness of the

equilibrium (a∗, r∗) for system (2.23).

Since system (2.23) is a two-dimensional system, Poincaré-Bendixson theorem [52]

can be employed to obtain conditions for the existence of a periodic orbit. Specifically,

one must show that the trajectories of the system are bounded in a compact set and

that the equilibrium point is unstable and not locally a saddle.

The following proposition shows that the trajectories of system (2.23) are bounded

in a compact set.
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Proposition 1. There exists a constant D ∈ R+ such that the set K = {(a, r) ∈

R2
+|a2 +r2 ≤ D2} is a positively invariant set under the vector field defined by system

(2.23) and its equilibrium (a∗, r∗) ∈ K.

Proof. Note that f1(a, r) and f2(a) are positive bounded functions in the domain

R2
+. Let M1 = sup(a,r)∈R2

+
{f1(a, r)} and M2 = supa∈R+

{f2(a)}. First, notice that

for a = 0, ȧ > 0 according to (2.23). Similarly, for r = 0, ṙ > 0. The quadrant

R2
+ is, therefore, a positively invariant set. Define δ∗ := min{δA, δR} and M :=

max{M1,M2}. Consider the positive definite function v(a, r) = a2/2 + r2/2. Using

the chain rule, we obtain

dv(a, r)

dt
= −δAa2 − δRr2 + af1(a, r) + rf2(a)

≤ −δ∗a2 − δr2 + aM + rM

= −δ∗
(
a− M

2δ∗

)2

− δ∗
(
r − M

2δ∗

)2

+
M2

2(δ∗)2
.

From the above, it is clear that v̇(a, r) < 0 on the exterior of a circle with center

(M/2δ∗,M/2δ∗) and radius
√

2M/2δ∗. Thus, for any D > max{
√

2M/δ∗, a∗, r∗},

v̇(a, r) < 0 along the arc defined by the boundary of K. Hence, K is a positively

invariant set that contains the equilibrium (a∗, r∗).

To show that the equilibrium point is unstable and not locally a saddle, consider

the Jacobian matrix of system (2.23) calculated at the equilibrium:

J0 =

 −δA +
∂f1(a∗, r∗)

∂a

∂f1(a∗, r∗)

∂r
∂f2(a∗)

∂a
−δR

 , (2.25)

and denote by tr(J0) and det(J0) the trace and the determinant of J0, respectively.

The eigenvalues of the Jacobian are given by

λ1,2 =
tr(J0)±

√
tr(J0)2 − 4 det(J0)

2
,
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hence the equilibrium point is unstable and not locally a saddle if tr(J0) > 0 and

det(J0) > 0. Given the specific expression of the Jacobian in (2.25), the equilibrium

(a∗, r∗) of system (2.23) is unstable and not locally a saddle if the following conditions

are fulfilled:

(i) δR

(
δA −

∂f1(a∗, r∗)

∂a

)
− ∂f1(a∗, r∗)

∂r

∂f2(a∗)

∂a
> 0 (det(J0) > 0);

(ii)
∂f1(a∗, r∗)

∂a
− δA − δR > 0 (tr(J0) > 0).

System (2.23) satisfying conditions (i) and (ii) presents periodic orbits and will

be referred to as Functional Clock.
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Figure 2.5: Effect of the trace of the Jacobian on the stability of the equilibrium. The
above plots illustrate the trajectories of system (2.23) for both Functional and Non-Functional
Clocks. The parameters in the simulation were β1 = β3 = 100, β2 = .04, β4 = .004 and δA = 1.
In the Functional Clock, δR = 0.5 whereas in the Non-Functional Clock, δR = 1.5. Parameters
β1 and β3 were chosen to give about 500-2000 copies of protein per cell for activated promoters.
Parameters β2 and β4 were chosen to give about 1-10 copies per cell for non-activated promoters.

Condition (ii) highlights a crucial design principle for the activator-repressor clock.

In fact, assume that
∂f1(a∗, r∗)

∂a
− δA > 0, which is satisfied if the self activation

is sufficiently strong. Then, condition (ii) can be satisfied if
∂f1(a∗, r∗)

∂a
− δA is

sufficiently larger than δR. This, in turn, implies that the timescale of the activator

dynamics are sufficiently faster than that of the repressor dynamics. Hence, a central

mechanism for the appearance of a limit cycle is a fast activator dynamics compared

to the repressor dynamics. Retroactivity on a species due to downstream binding
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sites has been shown to slow down the species dynamics [13, 24]. It follows that

downstream binding sites can be employed to vary the relative speeds between the

activator and the repressor dynamics. Hence, we will also consider the non-oscillating

version of system (2.23) that does not satisfy condition (ii), referred to as Non-

Functional Clock. The non-functional clock is given by system (2.23) in which, in

addition to condition (i), the following condition is satisfied:

(ii)’ 0 <
∂f1(a∗, r∗)

∂a
− δA < δR.

Figure 2.5 illustrates how conditions (ii) and (ii)’ generate a Functional and a Non-

Functional Clock, respectively, by changing the value of parameter δR.

2.3.1 Switching the clock off by loading the activator

In this section, we show the effect of additional DNA binding sites for the activator

in a Functional Clock. Specifically, consider system (2.23) satisfying conditions (i)

and (ii). The addition of DNA binding sites qA with affinity to the activator A,

which binds as homomers, illustrated in Figure 2.4b, is modelled by the following

chemical reaction

mA+ qA
ka1−−⇀↽−−
kb1

D1, (2.26)

in which D1 represents the complex formed by A and q. In order to model the

addition of DNA binding sites that are identical copies of the ones in the operator,

we assume that the affinity between the DNA site q and the activator protein A

is given by the apparent dissociation constant Km1 = m
√
kb1/ka1, identical to the

affinity of A to the promoters in the isolated clock. The impact in the dynamics from

retroactivity can be obtained by employing binding sites with different affinities as

long as the quantity of binding sites is adjusted accordingly [13] . Additionally, we

assume the total concentration of binding sites q̄A = (qA +D1)/Km1 to be constant.
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Let the complex concentration D1 be given in units of Km1 using the nondimensional

variable d1 = D1/Km1. The dynamics of the system after nondimensionalization are

given by

ȧ = −δAa+ f1(a, r) +mG1δAd1 −mG1δAa
m(q̄A − d1)

ṙ = −δRr + f2(a)

ḋ1 = −G1δAd1 +G1δAa
m(q̄A − d1),

(2.27)

in which G1 = kb1/δA models the timescale separation between the dissociation rate

and the protein degradation. Details of this derivation are presented found in the

Appendix. Since binding and unbinding reactions can occur in the order of millisec-

onds, they are in a timescale significantly faster than expression and degradation of

proteins, which occur in the order of minutes [46]. As a result, parameter G1 is very

large. This fact allows to employ a singular perturbation argument [47, 17] to facili-

tate the analysis of this system. To this end, define the small parameter ε := 1/G1

and re-write system (2.27) as

ȧ = −δAa+ f1(a, r) +
m

ε
(δAd1 − δAam(q̄A − d1))

ṙ = −δRr + f2(a)

ḋ1 =
1

ε
(−δAd1 + δAa

m(q̄A − d1)) .

(2.28)

In order to reduce this system to standard singular perturbation form, we perform

the change of variables y = md1 + a, so that system (2.28) becomes

ẏ = −δA(y −md1) + f1(y −md1, r) (2.29)

ṙ = −δRr + f2(y −md1) (2.30)

εḋ1 = −δAd1 + δA(y −md1)m(q̄A − d1), (2.31)

which is in standard singular perturbation form. Setting ε = 0 one obtains from

(2.31) the solution d1 = q̄Aa
m

am+1
:= φ1(a). This equation defines the slow manifold,
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which can be shown to be locally exponentially stable (see Appendix). Hence, system

(2.29) is well approximated by the reduced system obtained by replacing d1 by its

expression on the slow manifold φ1(a). Specifically, we have that

−δAa+ f1(a, r) = ẏ = mḋ1 + ȧ = m
dφ1(a)

da
ȧ+ ȧ,

from which we obtain that

ȧ =
1

1 +mdφ1(a)
da

(−δAa+ f1(a, r)).

Denoting

SA(a, q̄A) :=
1

1 + dφ1(a)
da

=
1

1 +mq̄Aam−1(1 + am)−2
,

the reduced system in the original coordinates is given by

ȧ = SA(a, q̄A) (−δAa+ f1(a, r))

ṙ = −δRr + f2(a).

(2.32)

Since SA(a, q̄A) 6= 0, the equilibria of (2.32) are the same as the ones of (2.23).

Therefore, if (2.23) has a unique equilibrium (a∗, r∗), this will also be a unique

equilibrium of (2.32). Also, we have that 0 < SA(a, q̄A) ≤ 1 and that SA(a, q̄A) is

a strictly monotonically decreasing function of the amounts of DNA binding sites

q̄A. Hence, in system (2.32), the dynamics of the activator have been slowed down

compared to the original isolated system (2.23). That is, the effective kinetic rate

of the activator dynamics is now decreased by a factor equal to SA(a, q̄A). Note

additionally that

lim
q̄A→∞

SA(a, q̄A) = 0 and SA(a, 0) = 1. (2.33)

The Jacobian of system (2.32) calculated at the equilibrium is given by

JA(q̄A) =

 S∗A(q̄A)

(
−δA +

∂f1(a∗, r∗)

∂a

)
S∗A(q̄A)

∂f1(a∗, r∗)

∂r
∂f2(a∗)

∂a
−δR

 , (2.34)
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in which we use the shorthand notation S∗A(q̄A) := SA(q̄A, a
∗). We have det(JA(q̄A)) =

S∗A(q̄A) det(J0) > 0 from condition (i) and that

tr(JA(q̄A)) = S∗A(q̄A)

(
−δA +

∂f1(a∗, r∗)

∂a

)
− δR.

Hence, while the addition of load does not change the sign of the determinant of

the Jacobian, it can change the sign of the trace. For large enough load, because of

(2.33), the trace becomes negative and the equilibrium point becomes stable. Hence,

the periodic orbit disappears as shown in the following lemma.

Proposition 2. Consider system (2.32) satisfying conditions (i) and (ii). There

exists q∗ > 0 such that the equilibrium (a∗, r∗) is asymptotically stable if and only if

q̄A > q∗.

Proof. We first show that det(JA(q̄A)) > 0 for all q̄A. This follows from the fact that

det(JA(q̄A)) = S∗A(q̄A) det(J0) > 0, from condition (i). We now focus on

tr(JA(q̄A)) = S∗A(q̄A)

[
−δa +

∂f1(a∗, r∗)

∂a

]
− δR.

From (2.33) and condition (ii), when q̄A = 0 tr(JA(0)) > 0. Additionally, as q̄A →∞,

tr(JA(q̄A))→ −δR < 0. Since the trace is a monotonic smooth function of q̄A, one can

apply the intermediate value theorem to show that there is an unique 0 < q∗ < ∞

such that tr(JA(q∗)) = 0. Since det(JA(q∗)) > 0, the eigenvalues of JA(q∗) are

imaginary. From the monotonicity of the trace with respect to q̄A, it follows that

the real parts of the eigenvalues of JA(q̄A) are positive for all 0 ≤ q̄A < q∗ and

negative for all q̄A > q∗. It follows that the system goes through a Hopf bifurcation

at q̄A = q∗, and thus presents a periodic solution for 0 ≤ qA < q∗ while it converges

to the equilibrium for q̄A > q∗.

Figure 2.6 a shows the effect of load on system (2.27).
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Figure 2.6: (a) Load to the Activator can stop a Functional Clock. The plots illustrate the
trajectories of system (2.27) with two different amounts of load. The parameters in the simulation
were β1 = β3 = 100, β2 = .04, β4 = .004, δA = 1, δR = 0.5, G1 = 100, m = 2 and n = 4. The
amount of DNA binding sites in the system with no load is q̄A = 0 whereas in the system with
activator load is q̄A = 20. (b) Bifurcation diagram with load as parameter. A continuation
of the equilibrium as a function of the load parameter q̄A shows that, for this set of parameters, the
amount of load to the activator required to stop the clock is on the order of the affinity coefficient
Km1, with the bifurcation occurring at q̄A = 2.17. The analysis was made on the full system (2.27)
with the same parameters as before. The solid lines indicate a stable trajectory (the limit cycle to
the left side of the Hopf bifurcation point and the equilibrium point to the right side of the Hopf
bifurcation point). The dotted line indicates an unstable equilibrium point.

For the value of q̄A for which tr(JA(q̄A)) = 0, the eigenvalues of the Jacobian are

imaginary, hence the system goes through a Hopf bifurcation. A continuation study

shows that the Hopf bifurcation is present also in the full three-state system (2.27).

In particular, the amounts of load needed to switch the clock off is about four times

the amplitude of the activator oscillations. For the specific choice of parameters in

this example, the amount of load required to stop this clock is of the same order of

the dissociation constant Km1, which usually amounts to a low concentration. For

example, for the NRI activator used in the oscillator in [38], Km1 ≈ 10pM [53] which

amounts to approximately 10 copies of the binding site per cell in E. coli.
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2.3.2 Switching the clock on by loading the repressor

We now consider a Non-Functional Clock and show how it can be turned into

a Functional Clock by adding load to the repressor. Specifically, consider system

(2.23) satisfying conditions (i) and (ii)’. Following the idea in the previous system,

we model here the addition of DNA binding sites qR with affinity to the repressor R,

identical to the binding sites found in the original clock. This interaction, illustrated

in Figure 2.4c, is modelled by the following chemical reaction

nR + qR
ka2−−⇀↽−−
kb2

D2, (2.35)

in which D2 represents the complex formed by the R and qR. Let the affinity be-

tween the repressor and the binding sites is given by the apparent dissociation con-

stant Km2 = n
√
kb2/ka2. Let d2 := D2/Km2 be the nondimensional concentration of

complexes and q̄R = (qR + D2)/Km2 be the total nondimensional concentration of

binding sites. The nondimensionalized dynamics of the system are given by

ȧ = −δAa+ f1(a, r)

ṙ = −δRr + f2(a) + nδRG2d2 − nδRG2r
n(q̄R − d2)

ḋ2 = −δRG2d2 + δRG2r
n(q̄R − d2),

(2.36)

in which G2 := kb2/δR models timescale separation between the dissociation rate of

the complex D2 and the repressor decay rate. It is possible to reduce the order of

system (2.36) by a similar technique employed in the previous section. To this end,

define ε := G−1
2 . Define also the variable y := r+nd2, system (2.36) can be taken to

the standard singular perturbation form

ȧ = −δAa+ f1(a, y − nd2)

ẏ = −δR(y − nd2) + f2(a)

εḋ2 = −δRd2 + δR(y − nd2)n(q̄R − d2).

(2.37)
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By setting ε = 0, one obtains the reduced system in the original coordinates, which,

since the slow manifold is locally exponentially stable (as shown in the Appendix),

is a good approximation of system (2.36). This reduced system is given by

ȧ = −δAa+ f1(a, r)

ṙ = SR(r, q̄R)(−δRr + f2(a))

(2.38)

in which

SR(r, q̄R) =
1

1 + nq̄Rrn−1(1 + rn)−2
.

Since SR(r, q̄R) 6= 0, the equilibrium points of (2.38) are the same as the ones of

the isolated system (2.23). Therefore the unique equilibrium point (a∗, r∗) of (2.23)

is also the unique equilibrium point of (2.38). We employ the shorthand notation

S∗R(q̄R) := SR(r, q̄R). It is easy to verify that 0 < S∗R(q̄R) ≤ 1 and that S∗R(q̄R) is a

strictly monotonically decreasing function of q̄R. Furthermore, we have that

lim
q̄R→∞

S∗R(q̄R) = 0 and S∗R(0) = 1. (2.39)

Hence, the addition of the load to the repressor makes the dynamics of the repressor

slower compared to that of the isolated system (2.23). That is, the repressor effective

kinetic rates are now smaller by a factor equal to S∗R(q̄R), which can be arbitrarily

decreased by increasing the amounts of sites q̄R. The Jacobian of system (2.38)

calculated at the equilibrium (a∗, r∗) is given by

JR(q̄R) =

 −δA +
∂f1(a∗, r∗)

∂a

∂f1(a∗, r∗)

∂r

S∗R(q̄R)
∂f2(a∗)

∂a
−S∗R(q̄R)δR

 . (2.40)

Thus, the addition of load to the repressor does not change the sign of the determi-

nant of the Jacobian as det(JR(q̄R)) = S∗R(q̄R) det(J0) > 0. However, it can change

the sign of the trace

tr(JR(q̄R)) = −δA +
∂f1(a∗, r∗)

∂a
− S∗R(q̄R)δR
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from negative to positive as condition (ii)’ is satisfied and condition (2.39) holds.

Hence, the equilibrium point can become unstable with sufficient addition of the

load and the system begins oscillating. The following Lemma shows this result.

Proposition 3. Consider system (2.38) satisfying conditions (i) and (ii)’. There

exists a q∗ > 0 such that the equilibrium (a∗, r∗) is asymptotically stable if and only

if q̄R < q∗.

Proof. We first show that the det(JR(q̄R)) > 0 for all qR. This follows from the fact

that det(JR(q̄R)) = S∗R(q̄R) det(J0) > 0 from condition (i). We now proceed to show

that the trace can change its sign. Note that

tr(JR(q̄R)) = −δA +
∂f1(a∗, r∗)

∂a
− S∗R(q̄R)δR.

From (2.39) and condition (ii)’, when q̄R = 0, tr(JR(q̄R)) < 0. Additionally, as

limq̄R→∞ tr(JR(q̄R)) = −δA +
∂f1(a∗, r∗)

∂a
< 0 from condition (ii)’. Since the trace is

a monotonic smooth function of q̄R, one can apply the intermediate value theorem to

show that there is an unique 0 < q∗ <∞ such that tr JR(q∗) = 0. Since det(JR(q∗)) >

0, the eigenvalues of JR(q∗) are imaginary. From the monotonicity of the trace with

respect to q̄R, it follows that the real parts of the eigenvalues of JR(q̄R) are negative

for all 0 ≤ q̄R < q∗ and positive for all qR > q∗. It follows thus that the system

goes through a Hopf bifurcation at q̄R = q∗ and thus presents a periodic solution for

q̄R > q∗ while it converges to the equilibrium for q̄R < q∗.

Figure 2.7a shows the effect of load on system (2.36). Note that the parameters

were chosen so that the system satisfies conditions (i) and (ii)’.

When tr(JR(q̄R)) = 0, a Hopf bifurcation occurs since both eigenvalues are imag-

inary. A continuation analysis can be used to show that this Hopf bifurcation is also

present in the full system (2.36). Figure 2.7b illustrates that the amount of load
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Figure 2.7: (a) Load to the Repressor triggers a Non-functional Clock. The plots illus-
trate the trajectories of system (2.36) with two different amounts of load. The parameters in the
simulation were β1 = β3 = 100, β2 = .04, β4 = .004, δA = 1, δR = 1.5, G2 = 100, m = 2 and
n = 4. The amount of DNA binding sites in the system with no load is q̄R = 0 whereas in the
system with repressor load is q̄R = 20. (b) Hopf Bifurcation with q̄R as a parameter. A
continuation of the equilibrium as a function of the load parameter q̄R shows that, for this set of
parameters, the amount of load required to activate the clock is in the same order of magnitude
as that of the the affinity coefficient Km2, with bifurcation occurring at q̄R = 1.32. This plot was
obtained via continuation of system (2.36) with the same parameters as before. Solid lines indicate
a stable trajectory (limit cycle to the right of the Hopf bifurcation and the equilibrium to its right).
The dotted line indicates an unstable equilibrium point. (c) Period increases as a function of the
repressor load q̄R.

required for the Hopf bifurcation is given by q̄R = 1.32 in units of Km2. Hence, the

amounts of load needed to switch the clock on is on the same order of the amounts

of repressor at the equilibrium. For the LacI repressor employed in [38], Km2 ≈ 1pM

[54], which amounts to few copies per cell of the load.

Figure 2.7c shows that the addition of load increases the period of oscillation.

This suggests the possibility that the load can be employed not only for switching

an oscillator “on” and “off” but for also tuning the period. However, the increase

in period is accompanied by an increase in the amplitude of the oscillation (Figure

2.7b), which may be undesired. We discuss how the period can be changed while
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maintaining the amplitude through simultaneous addition of activator and repressor

loads in Section “Tuning the Clock period”.

2.3.3 Stochastic simulations of the switching behavior

In order to understand how robust the switching behavior is to intrinsic noise,

we employ stochastic simulations of the system. An implementation of the Gillespie

algorithm [55] was employed to produce realizations of trajectories of an activator

repressor clock in which both activator and repressor bind to DNA as dimers (m =

n = 2).

In these simulations, we assumed the presence of 5 copies of each activator and

repressor gene to emulate the situation in which the circuit is present in a low copy

number plasmid. Expression rates and degradation rates were chosen based on the

values used in the deterministic models to obtain a functional and a non-functional

oscillator. The association and dissociation rates between proteins and dimers were

chosen so that the apparent dissociation constants Km1 = Km2 = 1, which consider

a bacterial transcription factor with apparent dissociation constant on the order of

picomolars. A detailed description of this model is given in the Appendix.

Figure 2.8a shows that addition of binding sites with affinity to the activator can

eliminate oscillations from a functional clock. Figure 2.8b shows how the addition of

binding sites with affinity to the repressor can generate sustained more robust oscil-

lations in a non-functional clock. In both situations, the amount of loads employed

to switch the clock is on the order of 102− 103 copies of binding sites per cell, which

can be achieved by inserting small arrays in high copy number plasmids.
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Figure 2.8: Effect of the load on clock holds under intrinsic noise. The plots above are
stochastic realizations of an activator-repressor clock with m = n = 2 and containing 5 copies of
activator and repressor genes. (a) Functional clock stops with load to the activator. We show that,
with the chosen parameters, it is possible to stop the clock with an amount of load that is roughly
100 times higher than the copy number of the circuit. (b) Load to the repressor leads to robust
oscillation. We show that, the it is possible to generate robust oscillation with roughly 400 times
the number of circuit genes with the choice of parameters above.

2.3.4 Tuning the clock period

As noticed in Figure 2.7c, addition of binding sites to the repressor increases

the period of the limit cycles of the system. However, this may cause an increase

in the amplitude of the cycle (Figure 2.7b), which may be undesirable. In this

section, we illustrate how the simultaneous addition of load to both the activator

and repressor can be employed to vary the period as desired with little impact on

the cycle amplitude.

Consider the nondimensional model for the system with DNA binding sites for

both the activator and the repressor as shown in Figure 2.4d:

Ȧ = −δAA+ g1(A,R) + ku1D1 − kb1Am(qA,T −D1)

Ṙ = −δRR + g2(A) + ku2D2 − kb2Rn(qR,T −D2)

Ḋ1 = −k′u1D1 + k′b1A
m(qA,T −D1)

Ḋ2 = −k′u2D2 + k′b2R
n(qR,T −D2).

(2.41)
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Here, kb1, ku1 model the association and dissociation rates between the activator

protein and its corresponding DNA binding site qA, kb2, ku2 model the association and

dissociation rates between the repressor protein and its corresponding DNA binding

site qR, g1(A,R), g2(A) represent the dimensional version of the Hill functions (see

Appendix), and qA,T , qR,T represent the total concentration of activator and repressor

DNA sites.

This system can be nondimensionalized, by setting the nondimensional states a =

A/Km1, r = R/Km2, d1 = D1/Km1 and k2 = D2/Km2, as shown in the Appendix,

to obtain system

ȧ = −δAa+ f1(A,R) +mG1δAd1 −mG1δAa
m(q̄A − d1)

ṙ = −δRr + f2(A) + nG2δRd2 − nG2δRr
n(q̄R − d2)

ḋ1 = −G1δAd1 +G1δAa
m(q̄A − d1)

ḋ2 = −G2δRd2 +G2δRr
n(q̄R − d2),

(2.42)

in which f1(A,R) and f2(A) are the nondimensional Hill functions as given in ex-

pressions (2.24), q̄A = qA,T/Km1 and q̄R = qR,T/Km2, and G1 and G2 are as defined

before. In order to employ a singular perturbation argument similar to what was

done in the previous sections, define ε = 1/G1, ν = G2/G1 to model the explicit

timescale separation present in this system. Define also the following change of vari-

ables y1 := a + md1 and y2 = r + nd2. Substituting these in (2.42), one obtains the

system in standard singular perturbation form:

ẏ1 = −δA(y1 −md1) + f1(y1 −md1, y2 − nd2)

ẏ2 = −δR(y2 − nd2) + f2(y1 −md1)

εḋ1 = −δAd1 + δA(y1 −md1)m(q̄A − d1)

εḋ2 = −νδRd2 + νδR(y2 − nd2)n(q̄R − d2).

(2.43)
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By setting ε = 0, one obtains the slow manifold

(d1, d2) =

(
q̄A

am

am + 1
, q̄R

rn

rn + 1

)
:= (φ1(a), φ2(r)) .

Since the slow manifold is locally exponentially stable (see Appendix), the reduced

system is a good approximation of system (2.43). Since ẏ1 = ȧ + mdφ1(a)
da

ȧ and

ẏ2 = ṙ + ndφ2(r)
dr

ṙ, this reduced system, in the original variables, takes the form

ȧ = SA(a, q̄A) (−δAa+ f1(a, r))

ṙ = SR(r, q̄R) (−δRr + f2(a)) ,

(2.44)

in which

SA(a, q̄A) =
1

1 +m
dφ1(a)

da

=
1

1 + q̄Am2am−1(1 + am)−2

and

SR(r, q̄R) :=
1

1 + n
dφ2(r)

dr

=
1

1 + q̄Rn2rn−1(1 + an)−2
.

Let the activator and repressor loads be added at a fixed ratio ρ = q̄A/q̄R and define

F (a, r, q̄R) :=
SR(r, q̄A/ρ)

SA(a, q̄A)
. System (2.44) can be re-written as

ȧ = (−δAa+ f1(a, r))SA(a, q̄A)

ṙ = (−δRr + f2(a))SA(a, q̄A)F (a, r, q̄A).

(2.45)

Since SA(a, q̄A) > 0, this system is orbitally equivalent [49] to the system

ȧ = (−δAa+ f1(a, r))

ṙ = (−δRr + f2(a))F (a, r, q̄A).

(2.46)

Hence, if system (2.45) has a periodic orbit, system (2.46) will have a corresponding

periodic orbit with identical trajectories. The corresponding periodic signals, how-

ever, will have different periods whose values depend on function SA(a, q̄A). Thus, if

the value of F (a, r, q̄A) does not appreciably change when q̄A changes, the addition
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of the load will affect the period of oscillations without impacting their amplitudes.

Since

∂F (a, r, q̄A)

∂q̄A
=

(
m2am−1

(1 + am)2
− ρ n2rn−1

(1 + rn)2

)
(1 + rn)4

((1 + rn)2 + ρq̄An2rn−1)2 , (2.47)

we have that for large values of q̄A, ∂F (a,r,q̄A)
∂q̄A

≈ 0. Under these conditions, since the

function SA(a, q̄A) is a monotonically decreasing function of q̄A, the periodic orbits

of system (2.45) will display decreasing periods as q̄A increases, while maintaining

the same amplitude, due to orbital equivalence between system (2.46) and system

(2.45). A proof of this results is given in the Appendix.

Figure 2.9a illustrates this result. The addition of repressor load to a functioning

clock increases the period but also leads to a higher amplitude. This effect in the

amplitude is not observed when both activator and repressor loads are added. Figure

2.9b shows this behavior for increasing amount of load. When only repressor load is

added, there is an increase in the period of the limit cycles along with an increase

in the amplitude, as it was seen in the previous section (Figure 2.7(b) and (c)).

However, if a sufficient amount of activator load is simultaneously added along with

the repressor load, the increase of the period occurs with very little impact on the

amplitude of oscillations.
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Figure 2.9: Tuning the period without affecting the amplitude. (a) When compared to the
isolated system, the amplitude of oscillations in system (2.42) increases when we add exclusively
DNA binding sites with affinity to the repressor (q̄A = 0, q̄R = 10). However, if we simultaneously
add DNA binding sites with affinity to the activator, the amplitude is not affected as much (q̄A =
q̄R = 10). (b) The period of system (2.42) can be changed with no effect on the amplitude when
DNA binding sites with affinity to both the repressor and the activator are added simultaneously.
The upper plot shows that a similar increase of period observed via the addition of repressor load
can be obtained via the simultaneous addition of activator and repressor load. This second method
has the advantage of not generating an increase in the amplitude, as shown in the lower plot. In
this simulation we assumed the ratio ρ = q̄A/q̄R = 1. Parameters of the activator repressor system
used in the simulation were β1 = β3 = 100, β2 = .04, β3 = .004, δA = 1, δR = 0.5, G1 = 100,
G2 = 100 and m = 2, n = 4. In the traces showing only repressor load ρ = 0, while the traces
showing simultaneous repressor and activator load, ρ = 1.



CHAPTER III

Insulation Devices

As discussed in Chapter II, bio-molecular systems may be susceptible to retroac-

tivity. In this chapter, we study insulation devices, components capable of mitigating

the retroactivity to the output of a system. Such a device can be placed between

an upstream and a downstream system preventing the retroactivity from the down-

stream interconnection to propagate upstream as shown in Figure 1.1B.

A design principle for insulation devices presented in [13] shows that a system

with a large amplification and large negative feedback has the insulation property.

In Section 3.1 we generalize the design principle by showing that, given the appropri-

ate stability and structural conditions, timescale separation is a sufficient property

for insulation devices. Section 3.2 gives two candidate implementations of insula-

tion devices based on this design principle. Finally Section 3.3 gives an analysis of

tradeoffs between retroactivity attenuation and noise amplification.

3.1 Insulation Devices based on Separation of Timescale

Consider the block diagram model for a system depicted in Figure 3.1. This

diagram depicts an insulation device Σ connected to an upstream system and a

downstream system. In addition to the usual input signal u and output signal x, we

add two additional signals travelling from downstream to upstream: a retroactivity

43
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to the output s and a retroactivity to the input r. Retroactivity to the output s

is a signal (which may depend on x and on the internal variables v of the down-

stream system) that appears in the dynamics of Σ whenever Σ is connected to the

downstream system. Retroactivity to the input r (which may depend on u and on

x) is a signal that system Σ applies to its upstream system as an input whenever Σ

connects to the upstream system to receive the information u. For example, in the

transcriptional component modelled in (2.1), s = −konZ(qT − C) + koffC represents

the retroactivity to the output generated by the addition of promoters p with affinity

to protein Z. System Σ is said isolated when it is not connected to the downstream

system. In such a case, s = 0. From an engineering point of view, signals s and r

do not necessarily carry information but their presence are tied to signals x and u,

respectively.

Figure 3.1: Structure of an insulation device. A system Σ with input and output signals,
along with the interconnection structure with its upstream and its downstream systems. The
retroactivity to the output s accounts for the change in the system Σ dynamics when it is connected
to downstream systems. The retroactivity to the input r accounts for changes that Σ causes on
upstream systems when it connects to receive the information u.

Let u ∈ Du ⊂ Rq
+, x ∈ Dx ⊂ Rn

+, and v ∈ Dv ⊂ Rp
+ be vectors whose components

denote concentrations of chemical species, such as proteins, enzymes, DNA sites, etc.

Let r(x, u) ∈ Rr and s(x, v) ∈ Rs be reaction rate vectors modelling the interaction

of species in the vector u with species in the vector x and of species in the vector x

with species in the vector v, respectively. Let A ∈ Rr×q, B ∈ Rr×n, C ∈ Rs×n, and

D ∈ Rs×p be constant matrices. Let f(x, u) ∈ Rn, l(v) ∈ Rp, and h(v, t) ∈ Rp be

vector fields and G1, G2 be positive constants. The model that we consider for Σ in
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the interconnection of Figure 3.1 is the following:

u̇ = g(u, t) +G1Ar(x, u)

ẋ = G1Br(x, u) +G1f(x, u) +G2Cs(x, v)

v̇ = G2Ds(x, v) +G2l(v) + h(v, t),

(3.1)

with initial conditions u(t0), x(t0), v(t0). When Σ is isolated from the downstream

system (s(x, v) = 0), the model becomes

u̇is = g(uis, t) +G1Ar(uis, xis)

ẋis = G1Br(uis, xis) +G1f(xis, uis),

(3.2)

with initial conditions uis(t0) = u(t0), xis(t0) = x(t0).

System (3.1) is a general model for a bio-molecular system. Interconnections

always occur through reactions, whose rates (r and s, in this case) appear in both

the upstream and the downstream systems with different coefficients (captured by

matrices A, B, C, and D). Constants G1 and G2 explicitly model the fact that some

of the reactions may be several orders of magnitude faster than others. Constant

G1 models the timescale of system Σ while constant G2 models the timescale of the

interconnection mechanism between Σ and its downstream system.

We claim that if G1 is large enough, Σ can be considered an insulation device.

To identify the conditions that allow Σ to attenuate the retroactivity to the output

and in quantifying the retroactivity to the input we define the retroactivity to the

output attenuation property of system Σ in the interconnection structure of Figure

3.1 as follows:

Let u(t, 1/G1, 1/G2), x(t, 1/G1, 1/G2), v(t, 1/G1, 1/G2) be the unique solution

to system (3.1) and uis(t, 1/G1) xis(t, 1/G1) be the unique solution for (3.2) for

t ∈ [t0, t̄f ] with t̄f > t0. System Σ has the retroactivity to the output attenuation
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property provided there are constants tb ∈ (t0, t̄f ], G
∗
1 > 0, G∗2 > 0, and a compact

set Ω ⊂ Dx × Du × Dv such that the following properties hold for G1 > G∗1 and

(x(t0), u(t0), v(t0)) ∈ Ω:

(i) x(t, 1/G1, 1/G2)−xis(t, 1/G1) = O
(

1
G1

)
∀t ∈ [tb, t̄f ] when (G2/G1)→ {O(1), 0}

as G1 →∞;

(ii) x(t, 1/G1, 1/G2) − xis(t, 1/G1) = O
(
G1

G2

)
∀t ∈ [tb, t̄f ] when (G2/G1) → ∞ as

G1 →∞ and G2 > G∗2.

If a system Σ enjoys the retroactivity to the output attenuation property, as

G1 grows, its dynamics becomes less affected by the retroactivity to the output

independent of the value of G2. The importance of this result comes from the fact

that it is possible for a general bio-molecular circuit to be in the same range as, much

faster than, or much slower than its downstream system [56, 57, 58, 59].

3.1.1 Retroactivity in an Insulation Device

System (3.1) displays multiple timescales. Specifically, since G1 � 1, there are at

least two timescales and when G2 � G1 there are three timescales. There is there-

fore the opportunity to employ singular perturbation to approximate the dynamics

of Σ to a lower order model which can facilitate the analysis. We must therefore

make the separation of timescales explicitly by bringing (3.1) to the standard sin-

gular perturbation form [47]. Fortunately, due to the nature of the interconnection

in bio-molecular systems, it is often possible to separate the slow variables of a sys-

tem through a linear combination of the states of the upstream and downstream

systems [60, 61, 62]. This motivates an approach that employs a linear coordinate

transformation to take the original system to standard singular perturbation form.

In what follows, we first determine conditions for the existence of a linear coor-
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dinate transformation independent of G1 and G2 that transforms systems (3.1) and

(3.2) to standard singular perturbation form. To this end, we restrict the class of

systems (3.1) to those with the two following central properties:

P1 There is an invertible matrix T ∈ Rq×q and a matrix M ∈ Rn×q such that

(i) TA+MB = 0;

(ii) Mf(x, u) = 0 for all (x, u); and

(iii) MC = 0.

P2 There is an invertible matrix Q ∈ Rn×n, and a matrix P ∈ Rp×n such that

(i) QC + PD = 0;

(ii) Pl(v) = 0 for all v.

Define the vector fields

h̄(y, v) := D s(Q−1(y − Pv), v) + l(v) (3.3)

f̄(z, y, v) := Q
[
Br
(
Q−1(y − Pv), T−1

(
z −MQ−1(y − Pv)

))
+ f

(
(Q−1(y − Pv), T−1(z −MQ−1(y − Pv))

) ] (3.4)

f̃(z, x) := Br(x, T−1(z −Mx)) + f(x, T−1(z −Mx)), (3.5)

and let ε1 := 1/G1, ε2 := 1/G2. Then, the following proposition shows that a

separation of the timescales is possible.

Proposition 4. Under properties P1 and P2, the linear change of coordinates

z = Tu+Mx, y = Qx+ Pv (3.6)
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takes systems (3.1) and (3.2) respectively to the standard singular perturbation forms

ż = Tg
(
T−1(z −MQ−1(y − Pv)), t

)
ε1ẏ = f̄(z, y, v) + ε1Ph(v, t)

ε2v̇ = h̄(y, v) + ε2h(v, t)

(3.7)

and

żis = Tg
(
T−1(zis −Mxis), t

)
ε1ẋis = f̃(zis, xis).

(3.8)

Proof. From the linear coordinate transformation (3.6), we have that ż = T u̇+Mẋ

and ẏ = Qẋ + P v̇. By substituting in these relations the expressions of u̇, ẋ, and v̇

from system (3.1) (from system (3.2)), writing u = T−1(z −Mx), and x = Q−1(y −

Pv), one obtains system (3.7) (system (3.8)).

Conditions TA+MB = 0 and Mf(x, u) = 0 from property P1 and the conditions

from property P2 ensure the existence of a linear coordinate transformation that takes

the system to standard singular perturbation form. Additionally, condition MC = 0

from property P1 is necessary to ensure that once ε1 = ε2 = 0, the dynamics of u

do not depend on v, and thus that the retroactivity to the output does not directly

propagate to the input.

For (u, x, v) ∈ Du ×Dx ×Dv, define the domains Dz and Dy to be the images of

Du, Dx, Dv through transformations (3.6). We also define the map F : Du ×Dx →

Dz ×Dx for all (u, x) ∈ Du ×Dx as F(u, x) := (Tu+Mx, x). Note that this map is

continuous and invertible. Similarly, define the map G : Du×Dx×Dv → Dz×Dy×Dv

for all (u, x, v) ∈ Du ×Dx ×Dv as G(u, x, v) := (Tu + Mx,Qx + Pv, v). Note that

this map is also continuous and invertible.
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3.1.2 Conditions for an Insulation Device

A nested application of Tikhonov singular perturbation theorem, as found in

standard references, is employed in systems (3.7) and (3.8). To assure validity of

the theorems, we impose technical assumptions which are considered valid on the

domains Du, Dx, Dv, Dz, and Dy. In what follows, we say that a square matrix A(x)

depending on x ∈ D ⊂ Rn is Hurwitz uniformly for x ∈ D if there is a real c > 0

such that <{λ(A(x))} < −c for all x ∈ D.

A1 The functions g, f, h, r, s are smooth;

A2 The functions g, f, h, r are Lipschitz continuous for all t ∈ R+;

A3 The function v = φ1(y) is the unique solution of h̄(y, v) = 0, it is Lipschitz

continuous and smooth;

A4 The function y = φ2(z) is the unique solution of f̄(z, y, φ1(y)) = 0 and it is

Lipschitz continuous;

A5 The function x = φx(z) is the unique solution of f̃(z, x) = 0 and it is Lipschitz

continuous;

A6 We have that ∂
∂v
h̄(y, v)

∣∣
v=φ1(y)

is Hurwitz uniformly for y ∈ Dy;

A7 We have that ∂
∂y
f̄(z, y, φ1(y))

∣∣∣
y=φ2(z)

is Hurwitz uniformly for z ∈ Dz;

A8 We have that ∂
∂(y,v)

 f̄(z, y, v)

h̄(y, v)


∣∣∣∣∣∣∣
y=φ2(z),v=φ1◦φ2(z)

is Hurwitz uniformly for z ∈

Dz;

A9 We have that ∂
∂x
f̃(z, x)

∣∣∣
x=φx(z)

is Hurwitz uniformly for z ∈ Dz.

Assumptions A1 and A2 guarantee existence and uniqueness of the solutions of sys-

tems (3.1) and (3.2). As a consequence, assumptions A1 and A2 also guarantee the

existence and uniqueness of the solutions of systems (3.7) and (3.8). Assumptions



50

A3, A4, A6 and A7 guarantee the stability of the boundary layer systems obtained

when employing a nested application of Tikhonov theorem to system (3.7) for the

case in which G1 � G2. Along with assumption A8, assumptions A3 and A4 are also

employed to guarantee the stability of the boundary layer system in the application

of Tikhonov theorem to system (3.7) for the case in which G1 and G2 are of the

same order of magnitude. Assumptions A5 and A9 guarantee the stability of the

boundary layer system when employing Tikhonov theorem to system (3.8) and to

system (3.7) when G1 � G2. The following proposition shows the uniqueness of the

solutions given in A3 and A4 is preserved under coordinate transformations.

Proposition 5. Let (y, v) = (ϕy(z), ϕv(z)) be a solution to (f̄(z, y, v), h̄(y, v)) = 0.

Then, such a solution is unique. Furthermore ϕy(z) = φ2(z) and ϕv(z) = φ1 ◦ φ2(z).

Proof. Since (y, v) = (ϕy(z), ϕv(z)) is a solution to equation (f̄(z, y, v), h̄(y, v)) = 0,

we have that h̄(ϕy(z), ϕv(z)) = 0. By A3, this implies that ϕv(z) = φ1 ◦ ϕy(z).

This along with f̄(z, ϕy(z), ϕv(z)) = 0 imply that f̄(z, ϕy(z), φ1 ◦ ϕy(z)) = 0. This

along with A4 imply that ϕy(z) = φ2(z). As a consequence, we have that ϕv(z) =

φ1 ◦ ϕy(z) = φ1 ◦ φ2(z).

3.1.3 Insulation from Timescale Separation

The main result of this section is based on the two following lemmas, which employ

Tikhonov singular perturbation theorem in the form presented in [47]. Specifically,

Lemmas 2 and 3 provide approximations of the isolated and connected system trajec-

tories, respectively, when we consider as small parameters ε1 := 1/G1 and ε2 := 1/G2.

These approximations are then compared with each other to obtain the retroactivity

to the output attenuation property, which is the main result of the paper.

Before giving the first lemma, we define the two following sets. For any α > 0,
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define the set Ru,x(α) ⊂ Du ×Dx by

Ru,x(α) := {(u, x) ∈ Du ×Dx | ‖x− φx(Tu+Mx)‖ < α} (3.9)

and let Ωu,x(α) be any compact subset of Ru,x(α). For α > 0, define the set

Ru,x,v(α) ⊂ Du ×Dx ×Dv by

Ru,x,v(α) :=

{
(u, x, v) ∈ Du ×Dx ×Dv

∣∣∣∣∣
∥∥∥∥∥∥∥

v − φ1(Qx+ Pv)

Qx+ Pv − φ2(Tu+Mx)

∥∥∥∥∥∥∥ < α

}
,

(3.10)

and let Ωu,x,v(α) be any compact subset of Ru,x,v(α). The next proposition shows

the relationship between the sets Ru,x and Ru,x,v.

Proposition 6. Consider the sets defined in equations (3.9) and (3.10). Then, for

all α > 0 there is β > 0 such that (u, x, v) ∈ Ru,x,v(β) implies that (u, x) ∈ Ru,x(α).

Proof. Since x = φx(z) is the unique solution of f̃(z, x) = 0 and f̄(z, φ2(z), φ1 ◦

φ2(z)) = 0, it follows from the definition of f̄ (equation (3.4)) that Q−1(φ2(z) −

Pφ1 ◦ φ2(z)) = φx(z). Since Q is invertible, for all α > 0 there is β2 > 0 such that

‖Qx− φ2(Tu+Mx) + Pφ1 ◦ φ2(Tu+Mx)‖ < β2 implies ‖x− φx(Tu+Mx)‖ < α.

By applying the triangular inequality, one can show that for all β2 > 0 there is

β1 > 0 such that ‖v− φ1 ◦ φ2(Tu+Mx)‖ < β1 and ‖Qx+Pv− φ2(Tu+Mx)‖ < β1

imply ‖Qx − φ2(Tu + Mx) + Pφ1 ◦ φ2(Tu + Mx)‖ < β2. Finally, the continuity of

φ1 along with the triangular inequality imply that for all β1 > 0 there is β0 > 0

such that ‖v − φ1(Qx + Pv)‖ < β0 and ‖Qx + Pv − φ2(Tu + Mx)‖ < β0 imply

‖v − φ1 ◦ φ2(Tu+Mx)‖ < β1. Let β := min(β0, β1).

As a consequence of this proposition, if Ω ⊂ Ru,x,v(β) is compact, then the set

{(u, x) | (u, x, v) ∈ Ω} is a compact subset of Ru,x(α).
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Under properties P1-P2 and assumptions A1-A9, we give the two following lem-

mas.

Lemma 2. Let uis(t, 1/G1), xis(t, 1/G1) be the unique solution of system (3.2) for

t ∈ [t0, tf ] with initial condition uis(t0) ∈ Du and xis(t0) ∈ Dx. Let ū(t) be the unique

solution of system

u̇ =

(
T +M

dγx(ū)

dū

)−1

Tg(ū, t) (3.11)

for t ∈ [t0, t̄f ] with initial condition ū(t0) = T−1(zis(t0)− φx(zis(t0))) where zis(t0) =

Tuis(t0)+Mxis(t0) and x = γx(u) is the locally unique solution of Br(x, u)+f(x, u) =

0. Then, there is α > 0 such that for all tb ∈ (t0, t̄f ] there exists G∗1 > 0 such that

uis(t, 1/G1)− ū(t) = O

(
1

G1

)
and xis(t, 1/G1)− γx(ū(t)) = O

(
1

G1

)
hold uniformly for t ∈ [tb, t̄f ] provided G1 > G∗1 and (uis(t0), xis(t0)) ∈ Ωu,x(α).

Proof. For convenience, define ḡ(zis, xis) := Tg (T−1(zis −Mxis), t) and denote the

solution of system (3.8) by zis(t, ε1), xis(t, ε1) for t ∈ [t0, tf ] with zis(t0) = Tuis(t0) +

Mxis(t0). Let x = φx(z) be the unique solution of the algebraic equation f̃(z, x) = 0

and denote by z̄is(t) the unique solution of the reduced system

˙̄zis = ḡ(z̄is, φx(z̄is)) (3.12)

for t ∈ [t0, t̄f ] and z̄is(t0) = zis(t0) (the uniqueness of the solution follows from

the fact that ḡ is Lipschitz continuous on its domain by Assumptions A2 and A5).

Assumption A9 further guarantees that the boundary layer system is locally ex-

ponentially stable. The region of attraction thus contains the set of x such that

‖x − φx(z(t0))‖ < β for some β > 0 sufficiently small. Define the set Rz,x(β) =

{(z, x) | ‖x − φx(z)‖ < β}. Let Ωz,x(β) be any compact subset of Rz,x(β). By
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Tikhonov theorem, for all tb ∈ (t0, t̄f ], there exists ε∗1 > 0 such that

zis(t, ε1)− z̄is(t) = O(ε1) and xis(t, ε1)− φx(z̄is(t)) = O(ε1) uniformly for t ∈ [tb, t̄f ]

(3.13)

provided ε1 < ε∗1 and (xis(t0), zis(t0)) ∈ Ωz,x(β).

To obtain these approximations in the original coordinate system, define

ūis := T−1 (z̄is −Mφx(z̄is)) . (3.14)

We seek to show that ūis(t) satisfies the differential equation (3.11). Since x = φx(z)

is the locally unique solution of f̃(z, x) = 0, we must have that

f̃(z, φx(z)) = 0. (3.15)

Since f̃(z, x) = Br (x, T−1(z −Mx)) + f (x, T−1(z −Mx)), equation (3.15) implies

that

Br
(
φx(z̄is), T

−1 (z̄is −Mφx(z̄is))
)

+ f
(
φx(z̄is), T

−1 (z̄is −Mφx(z̄is))
)

= 0. (3.16)

From the assumptions of the lemma, we have that x = γx(u) is the locally unique

solution of Br(x, u) + f(x, u) = 0. This along with equation (3.16) imply that

φx(z̄is) = γx(T
−1 (z̄is −Mφx(z̄is))) = γx(ūis). As a consequence, we can re-write

equation (3.14) as z̄is = T ūis + Mγx(ūis). Taking the time derivative of both sides

of this expression, we obtain ˙̄zis = T ˙̄uis +M dγx(ūis)
dūis

˙̄uis. Employing equation (3.12) on

the left-hand side and re-arranging the terms, we obtain that

˙̄uis =

(
T +M

dγx(ūis)

dūis

)−1

ḡ(z̄is, φx(z̄is)),

in which (by equations (3.8)) we have that

ḡ(z̄is, φx(z̄is)) = Tg
(
T−1(z̄is −Mφx(z̄is)), t

)
= Tg(ūis, t)
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, leading to ūis(t) satisfying the differential equation (3.11) for t ∈ [t0, t̄f ] with

ūis(t0) = T−1(z̄is(t0)−Mφx(z̄is(t0))). Since

uis(t, ε1) = T−1[zis(t, ε1)−Mxis(t, ε1)]

and equations (3.13) hold, we have that

uis(t, ε1) = T−1[z̄is(t) +O(ε1)−M(φx(z̄is(t)) +O(ε1))]

, which, by employing equation (3.14) and the fact that

φx(z̄is) = γx(T
−1 (z̄is −Mφx(z̄is))) = γx(ūis)

, leads to

uis(t, ε1)− ūis(t) = O(ε1) and

xis(t, ε1)− γx(ūis(t)) = O(ε1) uniformly for t ∈ [tb, t̄f ]

(3.17)

provided that ε1 < ε∗1 and (zis(t0), uis(t0)) ∈ Ωz,x(β). Since Rz,x(β) is the image of

Ru,x(β) under the continuous map F , we have that for any compact set Ωz,x(β) ⊂

Rz,x(β), there is a compact subset Ωu,x(β) ⊂ Ru,x(β) such that Ωz,x(β) = F(Ωu,x(β)).

As a consequence, equations (3.17) hold provided ε1 < ε∗1 and (uis(t0), xis(t0)) ∈

Ωu,x(β) with Ωu,x(β) := F−1(Ωz,x(β)). Set α = β and G∗1 := 1/ε∗1.

Lemma 3. Let x(t, 1/G1, 1/G2), u(t, 1/G1, 1/G2), v(t, 1/G1, 1/G2) be the unique

solution of system (3.1) for t ∈ [t0, tf ] with initial conditions (x(t0), u(t0), v(t0)) ∈

Dx ×Du ×Dv. Let ū(t) be the unique solution of system

˙̄u =

(
T +M

dγx(ū)

dū

)−1

Tg(ū, t), (3.18)

for t ∈ [t0, t̄f ] with initial condition ū(t0) = T−1(z(t0) − φx(z(t0))) with z(t0) =

Tu(t0) +Mx(t0) and x = γx(u) the locally unique solution of f(x, u) +Br(x, u) = 0.

Then, there is α > 0 such that for all tb ∈ (t0, t̄f ] there are G∗1 > 0 and G∗2 > 0 such

that the following properties hold for (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(α) and G1 > G∗1:
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(i) x(t, 1/G1, 1/G2) − γx(ū(t)) = O
(

1
G1

)
and u(t, 1/G1, 1/G2) − ū(t) = O

(
1
G1

)
uniformly for t ∈ [tb, t̄f ] when G2/G1 → {O(1), 0} as G1 →∞;

(ii) x(t, 1/G1, 1/G2) − γx(ū(t)) = O
(
G1

G2

)
and u(t, 1/G1, 1/G2) − ū(t) = O

(
G1

G2

)
uniformly for t ∈ [tb, t̄f ] when G2/G1 →∞ as G1 →∞ and G2 > G∗2.

Proof. Define for convenience the function ḡ(z, y, v, t) := Tg
(
T−1(z − MQ−1(y −

Pv)), t
)
. Let z(t, ε1, ε2), y(t, ε1, ε2), v(t, ε1, ε2) be the unique solution of system (3.7)

for t ∈ [t0, tf ] with initial conditions z(t0) = Tu(t0)+Mx(t0), y(t0) = Qx(t0)+Pv(t0),

and v(t0). There are three cases: ε2/ε1 → 0 as ε1 → 0, ε2/ε2 → O(1) as ε1 → 0, and

ε2/ε1 →∞ as ε1 → 0.

Case 1: ε2/ε1 → 0 as ε1 → 0. We perform a nested application of Tikhonov

singular perturbation theorem. Define the new small parameters µ1 := ε1 and µ2 :=

ε2/ε1 and re-write system (3.7) as

ż = ḡ(z, y, v, t)

µ1ẏ = f̄(z, y, v) + µ1Ph(v, t)

µ2µ1v̇ = h̄(y, v) + µ2µ1h(v, t).

(3.19)

Set µ2 = 0 and let v = φ1(y) be the locally unique solution of h̄(y, v) = 0. Let

also z̄(t, ε1) and ȳ(t, ε1) be the unique solution of the reduced system obtained once

µ2 = 0

ż = ḡ(z, y, φ1(y), t)

µ1ẏ = f̄(z, y, φ1(y)) + µ1Ph(φ1(y), t)

(3.20)

for t ∈ [t0, Ta], z̄(t0) = z(t0), and ȳ(t0) = y(t0) (uniqueness of the solution follows

from Assumptions A2 and A3). Assumption A6 further guarantees that the boundary

layer system is locally exponentially stable. For some β > 0 sufficiently small, the

region of attraction contains the set of v such that ‖v − φ1(y(t0))‖ is sufficiently
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small. Define the set Ry,v(β) := {(y, v) ∈ Dy × Dv | ‖v − φ1(y)‖ < β} and let

Ωy,v(β) ⊂ Ry,v(β) be compact. Then, by Tikhonov theorem, for all tb > 0 there is

µ∗2 > 0 such that

z(t, µ1, µ1µ2)− z̄(t, µ1) = O(µ2) and

y(t, µ1, µ1µ2)− ȳ(t, µ1) = O(µ2) uniformly for t ∈ [t0, Ta]

v(t, µ1, µ1µ2)− φ1(ȳ(t, µ1)) = O(µ2) uniformly for t ∈ [tb, Ta]

(3.21)

hold provided µ2 < µ∗2 and (ȳ(t0), v(t0)) ∈ Ωy,v(β).

System (3.20) is also in standard singular perturbation form with small parameter

µ1. Set µ1 = 0 and let y = φ2(z) be the locally unique solution of f̄(z, y, φ1(y)) = 0.

Let z̃(t) be the unique solution of the resulting reduced system when µ1 = 0

˙̃z = ḡ(z̃, φ2(z̃), φ1 ◦ φ2(z̃), t) (3.22)

for t ∈ [t0, t̄f ] with z̃(t0) = z̄(t0) (uniqueness of the solution follows from Assumptions

A2, A3, and A4). Furthermore, Assumption A7 guarantees that the boundary layer

system is locally exponentially stable. For some δ > 0 sufficiently small, the region

of attraction contains the set of y such that ‖y − φ2(z(t0))‖ < δ. Define the set

Rz,y(δ) := {(z, y) ∈ Dz × Dy | ‖y − φ2(z)‖ < δ} and let Ωz,y(δ) ⊂ Rz,y(δ) be

compact. Then, from Tikhonov theorem, for all tb > 0, there is µ∗1 > 0 such that

z̄(t, µ1)− z̃(t) = O(µ1) uniformly for t ∈ [t0, t̄f ]

ȳ(t, µ1)− φ2(z̃(t)) = O(µ1) uniformly for t ∈ [tb, t̄f ]

(3.23)

hold provided µ1 < µ∗1 and (z̃(t0), ȳ(t0)) ∈ Ωz,y(δ). As a consequence of relations

(3.23), for µ1 < µ∗1 the solution of system (3.20) is uniquely defined for t ∈ [t0, t̄f ].

We can thus let Ta = t̄f so that for µ2 < µ∗2, with µ∗2 sufficiently small, also the

solution of system (3.19) is uniquely defined for t ∈ [t0, t̄f ]. Let η := min(β, δ) and
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define

Rz,y,v(η) :=

(z, y, v) ∈ Dz ×Dy ×Dv |

∥∥∥∥∥∥∥
v − φ1(y)

y − φ2(z)

∥∥∥∥∥∥∥ < η

 .

Let Ωz,y,v(η) ⊂ Rz,y,v(η) be any compact set. Combining expression (3.21) with

Ta = t̄f and expression (3.23), the solution of system (3.1) satisfies

v(t, µ1, µ1µ2)− φ1 ◦ φ2(z̃(t)) = O(µ1) +O(µ2)y(t, µ1, µ1µ2)− φ2(z̃(t))

= O(µ1) +O(µ2)

z(t, µ1, µ1µ2)− z̃(t) = O(µ1) +O(µ2) uniformly for t ∈ [tb, t̄f ],

(3.24)

in which we have used that φ1(φ2(z)+O(µ1)) = φ1◦φ2(z)+O(µ1) since φ1 is smooth.

In order to return to the original coordinate system, define

ū = T−1
(
z̃ −MQ−1(φ2(z̃)− Pφ1 ◦ φ2(z̃))

)
. (3.25)

We seek to show that ū(t) satisfies equation (3.11). Since y = φ2(z) is the locally

unique solution of f̄(z, y, φ1(y)) = 0, by the definition of f̄ (equation (3.4)), we

have that Br(Q−1(φ2(z̃) − Pφ1 ◦ φ2(z̃)), ū) + f(Q−1(φ2(z̃) − Pφ1 ◦ φ2(z̃)), ū) = 0.

This equation along with the fact that x = γx(u) is the locally unique solution of

Br(x, u) + f(x, u) = 0 lead to

Q−1
(
φ2(z̃)− Pφ1 ◦ φ2(z̃)

)
= γx

(
T−1(z̃ −MQ−1(φ2(z̃)− Pφ1 ◦ φ2(z̃)))

)
= γx(ū).

(3.26)

Substituting this into equation (3.25) and re-arranging the terms, we obtain the

equation z̃ = T ū + Mγx(ū). Taking the time derivative both sides, we obtain that

˙̃z = T ˙̄u+M dγx(ū)
dū

˙̄u. Employing equation (3.22) on the left-hand side and re-arranging

the terms, we obtain ˙̄u =
(
T +M dγx(ū)

dū

)−1

ḡ(z̃, φ2(z̃), φ1 ◦φ2(z̃), t), in which we have

that

ḡ(z̃, φ2(z̃), φ1 ◦ φ2(z̃), t) = Tg
(
T−1(z̃ −MQ−1(φ2(z̃)− Pφ1 ◦ φ2(z̃))), t

)
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with T−1(z̃−MQ−1(φ2(z̃)−Pφ1 ◦φ2(z̃))) = ū from equation (3.25). Therefore, ū(t)

is the unique solution of (3.18) for t ∈ [t0, t̄f ] and

ū(t0) = T−1
(
z̃(t0)−MQ−1[φ2(z̃(t0))− Pφ1 ◦ φ2(z̃(t0))]

)
,

in which z̃(t0) = z(t0). Since x = φx(z) is the unique solution of f̃(z, x) = 0 and

f̄(z, φ2(z), φ1 ◦ φ2(z)) = 0, it follows from the definition of f̄ (equation (3.4)) that

Q−1[φ2(z)− Pφ1 ◦ φ2(z)] = φx(z). Thus, ū(t0) = T−1[z(t0)−Mφx(z(t0))].

From coordinate transformation (3.6), we have

x(t, µ1, µ1µ2) = Q−1(y(t, µ1, µ1µ2)− Pv(t, µ1, µ1µ2)).

Employing the relations for y and v from (3.24), we obtain

x(t, µ1, µ1µ2) = Q−1[φ2(z̃(t)) +O(µ1) +O(µ2)− P (φ1 ◦ φ2(z̃(t)) +O(µ1) +O(µ2))].

By employing equations (3.25) and (3.26), one obtains that x(t, µ1, µ1µ2) = γx(ū(t))+

O(µ1) +O(µ2). Similarly, from the change of variable

u(t, µ1, µ1µ2) = T−1
(
z(t, µ1, µ1µ2)−MQ−1

[
y(t, µ1, µ1µ2)− Pv(t, µ1, µ1µ2)

])
,

and expressions (3.24) and (3.25), we obtain that u(t, µ1, µ1µ2) = ū(t) + O(µ1) +

O(µ2). Hence, we have that

u(t, µ1, µ1µ2)− ū(t) = O(µ1) +O(µ2) and

x(t, µ1, µ1µ2)− γx(ū(t)) = O(µ1) +O(µ2)

(3.27)

uniformly for t ∈ [tb, t̄f ] provided µ1 < µ∗1, µ2 < µ∗2, and (z̃(t0), ȳ(t0), v(t0)) ∈

Ωz,y,v(η). Since Rz,y,v(η) is the image of Ru,x,v(η) under the continuous map G, we

have that for any compact set Ωz,x,v(η) ⊂ Rz,x,v(η), there is a compact set Ωu,x,v(η) ⊂

Ru,x,v(η) such that Ωz,x,v(η) = G(Ωu,x,v(η)). As a consequence, equations (3.27) hold
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provided µ1 < µ∗1, µ2 < µ∗2, and (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(η) with Ωu,x,v(η) =

G−1(Ωz,x,v(η)). Define εcase 1
1 := µ∗1 and αCase 1 := η.

Case 2: ε2/ε1 = O(1) as ε1 → 0. Letting a := ε1/ε2, system (3.7) becomes

ż = ḡ(z, y, v, t)

ε1ẏ = f̄(z, y, v) + ε1Ph(v, t)

ε1v̇ = ah̄(y, v) + ε1h(v, t).

(3.28)

Denote the solution of system (3.28) by z(t, ε1), y(t, ε1), and v(t, ε1) for t ∈ [t0, tf ].

By Proposition 5, (y, v) = (φ2(z), φ1 ◦ φ2(z)) is the locally unique solution of

(f̄(z, y, v), h̄(y, v)) = 0.

Define φ3(z) := φ1 ◦ φ2(z) to simplify notation. Let z̄(t) be the unique solution of

the reduced system

ż = ḡ(z, φ2(z), φ3(z), t) (3.29)

for t ∈ [t0, t̄f ] and z̄(t0) = z(t0) (uniqueness of the solution follows from Assumptions

A2, A3, and A4). Furthermore, Assumption A8 guarantees that the boundary layer

system is locally exponentially stable. For some β > 0 sufficiently small, the region of

attraction contains the set of all (y, v) such that ‖(y, v)− (φ2(z(t0)), φ3(z(t0)))‖ < β.

Define the set Rz,y,v(β) := {(z, y, v) ∈ Dz ×Dy ×Dv | ‖(y, v)− (φ2(z), φ3(z))‖ < β}

and let Ωz,y,v(β) ⊂ Rz,y,v(β) be compact. Then, by Tikhonov theorem, for all t ∈

(t0, t̄f ] there is εCase 2
1 > 0 such that

z(t, ε)− z̄(t) = O(ε1) uniformly for t ∈ [0, t̄f ]

y(t, ε)− φ2(z̄(t)) = O(ε1) and v(t, ε)− φ3(z̄(t)) = O(ε1) uniformly for t ∈ [tb, t̄f ],

(3.30)
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provided ε1 < εCase 2
1 and (z(t0), y(t0), v(t0)) ∈ Ωz,y,v(β).

Define

ū := T−1(z̄ −MQ−1(φ2(z̄)− Pφ3(z̄))). (3.31)

We seek to determine the differential equation that ū(t) obeys. Due to the fact that

f̄(z, φ2(z), φ3(z)) = 0, we have by the definition of f̄ (equation (3.4)) that

Br

(
Q−1(φ2(z)− Pφ3(z)), T−1(z −MQ−1(φ2(z)− Pφ3(z)))

)
+ f

(
Q−1(φ2(z)− Pφ3(z)), T−1(z −MQ−1(φ2(z)− Pφ3(z)))

)
= 0.

Given that by assumption x = γx(u) is the locally unique solution of Br(x, u) +

f(x, u) = 0, we must have that

Q−1(φ2(z̄)− Pφ3(z̄))) = γx
(
T−1[z̄ −MQ−1(φ2(z̄)− Pφ3(z̄))]

)
= γx(ū).

Substituting this in equation (3.31), we obtain that z̄ = T ū+Mγx(ū). Computing the

time derivative both sides of this equation, employing equation (3.29) and equation

(3.31), one obtains that ū(t) is the solution of (3.18) for t ∈ [t0, t̄f ] with

ū(t0) = T−1

(
z̄(t0)−MQ−1[φ2(z̄(t0))− Pφ3(z̄(t0))]

)
and z̄(t0) = z(t0). Since, as for Case 1, we have that Q−1[φ2(z̄(t0)) − Pφ3(z̄(t0))] =

φx(z̄(t0)), then ū(t0) = T−1[z̄(t0)−Mφx(z̄(t0))].

Finally, employing the change of coordinates (3.6) and approximations (3.30), we

obtain that

u(t, ε1)− ū(t) = O(ε1) and x(t, ε1)− γx(ū(t)) = O(ε1) (3.32)

hold uniformly for t ∈ [tb, t̄f ] provided (z(t0), y(t0), v(t0)) ∈ Ωz,y,v(β) and ε1 < εCase 2
1 .

Define the new region R̄z,y,v(η) := {(z, y, v) | ‖(y, v) − (φ2(z), φ1(y))‖ < η}. By the
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continuity of φ1 and the triangular inequality, it follows that for all β > 0 there is

η > 0 such that R̄z,y,v(η) ⊂ Rz,y,v(β). Since Ωz,y,v(β) is an arbitrary compact subset

of Rz,y,v(β), it can be chosen such that Ωz,y,v(β) = Ω̄z,y,v(η) for Ω̄z,y,v(η) a suitable

compact subset of R̄z,y,v(η). Since R̄z,y,v(η) = G(Ru,x,v(η)) and G is a continuous

mapping, we have that for all compact sets Ω̄z,y,v(η) ⊂ R̄z,y,v(η) there is a compact set

Ωu,x,v(η) ⊂ Ru,x,v(η) such that Ω̄z,y,v(η) = G(Ωu,x,v(η)). As a consequence, equations

(3.32) hold provided ε1 < εCase 2
1 and (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(η) with Ωu,x,v(η) =

G−1(Ω̄z,y,v(η)). Define αCase 2 := η.

Case 3: ε2/ε1 → ∞ as ε1 → 0. In this case, only the change of coordinates

z = Tu+Mx is applied to system (3.1), leading to the system in the new coordinates

ż = g(T−1(z −Mx), t),

ε1ẋ = f̃(z, x) +
ε1
ε2
Cs(x, v),

ε2v̇ = Ds(x, v) + l(v) + ε2h(v, t).

(3.33)

Let x = φx(z) be the locally unique solution to the equation f̃(z, x) = 0 (in which

we have that φx(z) = Q−1[φ2(z) − Pφ1 ◦ φ2(z)]) and let z̄(t), v̄(t, ε2) be the unique

solution of the reduced system

ż = g(T−1(z −Mφx(z)), t)

ε2v̇ = Ds(φx(z), v) + l(v) + ε2h(v, t)

(3.34)

for t ∈ [t0, t̄f ] with z̄(t0) = z(t0) and v̄(t0) = v(t0) (uniqueness of the solution

follows from Assumptions A2 and A5). Assumption A9 further guarantees that the

boundary layer system is locally exponentially stable. For some β > 0 sufficiently

small, the region of attraction contains the set of x such that ‖x − φx(z(t0))‖ < β.

Define the set Rz,x(β) := {(z, x) ∈ Dz ×Dx | ‖x− φx(z)‖ < β}. Let Ωz,x(β) be any

compact set contained in Rz,x(β). From Tikhonov theorem, there is β > 0 such that
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for all tb ∈ (0, t̄f ], there exist εCase 3
1 > 0 such that

z(t, ε1, ε2)− z̄(t) = O(ε1) and v(t, ε1, ε2)− v̄(t, ε2) = O(ε1) uniformly for t ∈ [0, t̄f ]

x(t, ε1, ε2)− φx(z̄(t)) = O(ε1) uniformly for t ∈ [tb, t̄f ]

(3.35)

provided ε1 < εCase 3
1 and (z(t0), x(t0)) ∈ Ωz,x(β). In order to obtain the approx-

imations in the original coordinate system, define ū = T−1(z̄ − Mφx(z̄)). Since

x = γx(u) is the locally unique solution of Br(x, u) + f(x, u) = 0 and x = φx(z) is

the locally unique solution of Br(x, T−1(z−Mx))+f(x, T−1(z−Mx)) = 0, we have

that φx(z̄) = γx(T
−1(z̄ −Mφx(z̄))) = γx(ū). Then, we can write z̄ = T ū + Mγx(ū)

and conclude that ū(t) is the unique solution to system (3.11) for t ∈ [t0, t̄f ] with

ū(t0) = T−1[z̄(t0)−Mφx(z̄(t0))]. By employing the coordinate change z = Tu+Mx

as performed in Case 1, we finally obtain that

u(t, ε1, ε2)− ū(t) = O(ε1) and x(t, ε1, ε2)− γx(ū(t)) = O(ε1), (3.36)

uniformly for t ∈ [tb, t̄f ] provided ε1 < εCase 3
1 and (z(t0), x(t0)) ∈ Ωz,x(β). Since

Rz,x(β) is the image of Ru,x(β) under the continuous map F , for any compact set

Ωz,x(β) ⊂ Rz,x(β), there is a compact set Ωu,x(β) ⊂ Ru,x(β) such that Ωz,x(β) =

F(Ωu,x(β)). As a consequence, equations (3.36) hold provided ε1 < εCase 3
1 and

(u(t0), x(t0)) ∈ Ωu,x(β). By Proposition 6, for all β > 0 there is η > 0 such

that (u, x, v) ∈ Ru,x,v(η) implies (u, x) ∈ Ru,x(β). Let Ωu,x,v(η) ⊂ Ru,x,v(η) be

any compact set. Then, (u, x, v) ∈ Ωu,x,v(η) implies (u, x) ∈ Ωu,x(β) for some

compact set Ωu,x(β) ⊂ Ru,x(β). As a consequence, equations (3.36) hold provided

(u(t0), x(t0), v(t0)) ∈ Ωu,x,v(η). Let αCase 3 := η.

By combining Case 1, Case 2, and Case 3, the result of the theorem follows with

α = min(αCase 1, αCase 2, αCase 3), G∗1 = 1/ε∗1 with ε∗1 = min(εCase 1
1 , εCase 2

1 , εCase 3
1 ), and
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G∗2 := 1/(ε∗1µ
∗
2).

By combining the results of the lemmas, we can obtain the main result of the

section.

Theorem 1. Under Properties P1-P2 and Assumptions A1-A9, system Σ has the

retroactivity to the output attenuation property.

Proof. By virtue of Lemma 2, we have that there is α1 > 0 such that for all tb ∈ (t0, t̄f ]

there exists Ga
1 > 0 such that xis(t, 1/G1) − γx(ū(t)) = O( 1

G1
) hold uniformly for

t ∈ [tb, t̄f ] whenever G1 > Ga
1 and (uis(t0), xis(t0)) ∈ Ωu,x(α1). Similarly, Lemma

3 shows that there is α2 > 0 such that for all tb ∈ (t0, t̄f ] there are Gb
1 > 0 and

G∗2 > 0 such that (i) and (ii) hold uniformly for in t ∈ [tb, t̄f ] whenever G1 > Gb
1 and

(u(t0), x(t0), v(t0)) ∈ Ωu,x,v(α2). By Proposition 6, for all α1 > 0 there is η > 0 such

that (u, x, v) ∈ Ru,x,v(η) implies (u, x) ∈ Ru,x(α1). Let Ωu,x,v(η) ⊂ Ru,x,v(η) be any

compact set. Then, (u, x, v) ∈ Ωu,x,v(η) implies (u, x) ∈ Ωu,x(α1) for some compact

set Ωu,x(α1) ⊂ Ru,x(α1). Letting G∗1 := max(Ga
1, G

b
1) and α := min(η, α2), we obtain

the desired result.

3.2 Proposed Realizations of an insulation device

In this section, we show how the interconnection structure of system (3.1) is

found in bio-molecular systems extracted from natural signal transduction pathways

and how it can be used to build insulation devices. In particular, we consider as

system Σ two post-translational modification systems which are recurrent motifs in

signal transduction: phosphorylation cycles and phosphotransfer systems. In both

examples, the system output is connected to the downstream system through the

binding of transcription factors to DNA. We show that the retroactivity to the output
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attenuation property holds when the downstream interconnection dynamics are of

the same order as, much faster or much slower than the dynamics of system Σ.

3.2.1 Example 1: Phosphorylation

Phosphorylation cycles are among the most common intracellular signal trans-

duction mechanisms. They have been observed in virtually every organism, carrying

signals that regulate processes such as cell motility, nutrition, interaction with envi-

ronment and cell death [63].

Figure 3.2: Phosphorylation-device based insulation device. System Σ is a phosphorylation
cycle. Its product X* activates transcription through the reversible binding of X* to downstream
DNA promoter sites p.

Consider system Σ modelling the phosphorylation cycle as shown in Figure 3.2.

This system takes as input a kinase Z that phosphorylates a protein X. The phospho-

rylated form of X, denoted X∗, is a transcription factor, which binds to downstream

DNA promoter binding sites p. The phosphorylated protein X∗ is converted to the

original dephosphorylated form by phosphatase Y. A standard two-step reaction

model for the phosphorylation and dephosphorylation reactions is given by

Z + X
β1−⇀↽−
β2

C1
k1−→ X∗ + Z and Y + X∗

α1−⇀↽−
α2

C2
k2−→ X + Y,

respectively, in which C1 and C2 are the complexes of protein Z with substrate X and
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of protein Y with protein X∗, respectively [64]. The binding reactions of transcription

factor X∗ with downstream binding sites p are given by X∗ + p
kon−−⇀↽−−
koff

C, in which C

is the complex of X∗ bound to site p. In this system, the total amounts of proteins

X and Y and the total amount of promoter p are conserved. Their total amounts

are denoted XT , YT , and pT , respectively, so that the conservation laws are given

by XT = X + X∗ + C1 + C2 + C, YT = Y + C2, and pT = X∗ + p. Assuming Z is

expressed at time-varying rate k(t) and decays at rate δ, the differential equations

for the concentrations of the various species of system Σ when connected to the

downstream system are given by

Ż = k(t)− δZ − β1Z(XT −X∗ − C1 − C2 − C) + (β2 + k1)C1

Ċ1 = β1Z(XT −X∗ − C1 − C2 − C)− (β2 + k1)C1

Ċ2 = −(k2 + α2)C2 + α1X
∗(YT − C2)

Ẋ∗ = k1C1 + α2C2 − α1X
∗(YT − C2) + koffC − konX∗(pT − C)

Ċ = −koffC + konX
∗(pT − C).

(3.37)

A common approach to take a system to the standard singular perturbation form

is to rewrite it in terms of non-dimensional variables [47, 65]. To this end, let

k̄ := maxt k(t)/δ and define the non-dimensional input k̃(t) := k(t)/(δk̄). Define also

the new variables u :=
Z

k̄
, x1 :=

C1

XT

, x2 :=
C2

XT

, x3 :=
X∗

XT

, v :=
C

pT
and τ = δt.

For a variable x, denote ẋ := dx/dτ. The system (3.37) in these new variables
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becomes

u̇ = k̃(t)− u− β1XT

δ
u

(
1− x1 − x2 − x3 −

pT
XT

v

)
+

(β2 + k1)XT

δk̄
x1

ẋ1 =
β1k̄

δ
u

(
1− x1 − x2 − x3 −

pT
XT

v

)
− β2 + k1

δ
x1

ẋ2 = −k2 + α2

δ
x2 +

α1YT
δ

x3

(
1− XT

YT
x2

)
ẋ3 =

k1

δ
x1 +

α2

δ
x2 −

α1YT
δ

x3

(
1− XT

YT
x2

)
+
pTkoff
XT δ

v − konpT
δ

x3(1− v)

v̇ = −koff
δ
v +

konXT

δ
x3(1− v).

(3.38)

In this example, we assume the parameter koff to be much larger than k1, k2, α1YT ,

α2, β1XT , β2, which are in turn much larger than δ [66, 46, 56, 59]. This timescale

differences can be made explicit by defining the large parameters G1 :=
k1

δ
and G2 :=

koff

δ
, in which G2 � G1 � 1. Define also the non-dimensional constants a1 :=

α1YT
k1

, a2 := α2

k1
, b1 :=

β1XT

k1

, b2 :=
β2

k1

, ρ :=
XT

YT
and c2 :=

k2

k1

. Define also the

dissociation constant kd := koff/kon. By employing these constants, system (3.38)

can be re-written as

u̇ = k̃(t)− u−G1b1u

(
1− x1 − x2 − x3 −

pT
XT

v

)
+G1

XT (b2 + 1)

k̄
x1

ẋ1 = G1
b1k̄

XT

u

(
1− x1 − x2 − x3 −

pT
XT

v

)
−G1(b2 + 1)x1

ẋ2 = −G1(c2 + a2)x2 +G1a1x3 (1− ρx2)

ẋ3 = G1x1 +G1a2x2 −G1a1x3 (1− ρx2) +G2
pT
XT

v −G2
pT
kd
x3(1− v)

v̇ = −G2v +G2
XT

kd
x3(1− v).

(3.39)

The domains for the variables of this system are given by Du := R+, Dx := [0, 1]×

[0, 1] × [0, 1], and Dv := [0, 1]. Compare system (3.39) with the structure of model

(3.1). The retroactivity to the input term r = −b1u (1− x1 − x2 − x3 − (pT/XT )v)+

(XT (b2 + 1)/k̄)x1 is a function of the downstream system state v. This implies

that the retroactivity to the output of impacts directly the retroactivity to the in-
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put. In order to remove this effect, and therefore, match the structure of system

(3.1), in which r does not depend on v, we require the ratio pT/XT to be small

enough so that the term (pT/XT )v becomes negligible with respect to one, since

v ∈ [0, 1]. This assumption gives a limit to the amount of load that can be added

to the system for any fixed value of XT . Under this assumption, the system fits the

structure (3.1) with g(u, t) = k̃(t)− u, r(x, u) = b1u (1− x1 − x2 − x3)− (b2+1)XT

k̄
x1,

[f(x, u) =


0

−(c2 + a2)x2 + a1x3 (1− ρx2)

x1 + a2x2 − a1x3 (1− ρx2)

 , s(x, v) = − pT
XT
v+ pT

kd
x3 (1− v) , l(v) =

0, h(v, t) = 0, A = −1, B =

[
k̄/XT 0 0

]T
, C =

[
0 0 −1

]T
and D = XT

pT
.

By inspection of the matrices A, B, C and D, we can choose matrices T = 1, M =

[XT

k̄
0 0], Q = I3 (3 by 3 identity matrix) and P =

[
0 0 pT

XT

]T
that satisfy prop-

erties P1 and P2. This can be verified by checking that indeed TA + MB = 0,

Mf(x, u) = 0, MC = 0, QC + PD = 0 and, trivially, Pl(v)=0. The linear coor-

dinate transformation that takes this system to the standard singular perturbation

form is, thus, given by z := Tu+Mx = u+ XT

k̄
x1 and y = (y1, y2, y3) := Qx+Pv =(

x1, x2, x3 + pT
XT
v
)
.

Figure 3.3 shows that, for low values of G1, the system does not attenuate the

retroactivity to the output s as the permanent behavior of the isolated and connected

systems are different. By contrast, and in accordance to the theory, large values of

G1 lead to retroactivity to the output attenuation. Note also that this property is

achieved even if the gain G2 multiplying the state-dependent disturbance s(x, v) is

much larger than G1.

In practice, while reactions rates k1, k2, α2 and β2 are often much larger than δ,

constants α1 and β1 may not achieve such high values [56]. It is, however, possible
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Figure 3.3: Response of an insulation device based on a phosphorylation cycle. Output
response to a sinusoidal signal k(t) = δ(1 + 0.5 sinωt) of the phosphorylation system Σ. The
parameter values are given by ω = 0.005, δ = 0.01, XT = 5000, YT = 5000, α1 = β1 = 2× 10−6G1,
and α2 = β2 = k1 = k2 = 0.01G1, in which G1 = 10 (left-side panel), and G1 = 1000 (right-side
panel). The downstream system parameters are kon = 100, koff = 100 and, thus, G2 = 10000.
Simulations for the connected system (s 6= 0) correspond to pTOT = 100 while simulations for the
isolated system (s = 0) correspond to pT = 0.

to compensate for this and obtain the desired timescale separation by having larger

amounts of XT and YT . Large values of XT and YT are also instrumental in removing

the direct effect of retroactivity to the output on the retroactivity to the input.

Finally, large values of XT and YT are also necessary to guarantee the stability of

the boundary layer system, as concluded when showing that property A7 holds.

In a synthetic bio-molecular system, expression level of proteins X and Y can be

tuned by having their respective genes under the control of inducible promoters.

It is therefore possible to tune this system so that the retroactivity to the output

attenuation property holds.

Since we are considering the case in which G1 � G2, it is necessary to show that

technical assumptions A1-A7 and A9 are satisfied. Properties A1 and A2 can be

verified by inspection of (3.39). Expression h̄(y, v) = 0 leads to pTv
2 − v(XTy3 +

pT + kd) +XTy3 = 0 which leads to the unique isolated solution

v = φ1(y) =
XTy3 + pT + kd −

√
(XTy3 + pT + kd)2 − 4pTXTy3

2pT
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in the domain Dv = [0, 1]. This function is Lipschitz continuous as the argument of

the square root is bounded away from zero and thus A3 is satisfied. To calculate the

function φ2(z), we first set f̄(z, y, φ1(y)) = 0 obtaining the system of equations

− (b2 + 1)C1 + (z − C1)

(
1− y3 − φ1(y)

XT

− C1

XT

− C2

XT

)
= 0

− (c+ a2)C2 + a1(y3 − φ1(y3))

(
1− C2

YT

)
= 0

C1 + a2C2 − a1(y3 − φ1(y3))

(
1− C2

YT

)
= 0.

Solving for y, one can find the identities C1 = cC2 and

C2 =

a1

a2 + c
(y3 − φ1(y3))

1 +
a1

YT (a2 + c)
(y − φ1(y3))

.

Since we want to obtain an insulation with zero gain, we expect that Xp ≈ Z � YT .

Also, by design, XT and ytot are of the same order of magnitude. Since y3 = X∗+C,

C � XT and X∗ � YT , then y − φ1(y)� YT . Also, recall that a1/(a2 + c) = O(1).

Then
a1

YT (a2 + c)
(y − φ1(y))� 1 and the above expression can be approximated by

C2 =
a1

a2 + c
(y − φ1(y)). Finally, we can then obtain from the expression

(z − C1) =
c(b2 + 1)C2

1−
(
a2+c
a1

+ c+ 1
) C2

XT

.

It was already established that C2 is of the same order of Xp and thus C2 � XT .

Also, since a2+c
a1

+ c+ 1 = O(1), the denominator of the above expression approaches

1 and thus, z = (b2 + 2)C1. With the above expressions, the isolated solution of

f̄(z, y, φ1(y)) = 0 is given by
C1

C2

y

 = φ2(z) =


z(b2 + 2)−1

z(cb2 + 2c)−1

φ1(y) + (a2+c)z
a1c(b2+2)

 . (3.40)
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Assumption A4 is therefore satisfied. Assumption A5 can be shown to be satisfied

in a similar way.

∂h̄(y, v)

∂v
= δ

∂

∂C

[
−kdC +

(
ypT − C(pT + y) + C2

)]
= δ(−kd − pT − y + 2C).

The Jacobian matrix
∂h̄(y, v)

∂v
evaluated at v = φ1(y) is given by

∂h̄(y, v)

∂v

∣∣∣∣
v=φ1(y)

= −
√

(XTy3 + pT + kd)2 − 4pTXTy3,

in which the argument of the square root is always bounded away from zero. There-

fore, A6 is satisfied. The Jacobian
∂f̄

∂y
gives

∂f̄

∂y
=


−Ã −B̃ −ηB̃

0 −C̃ D̃

1 −c2 + C̃ −D̃

 , in

which η = 1− pT
XT

dφ1(y)

dy3

,

Ã = b2 + 1 + (1− y1 − y2 − y3 + (pT/XT )φ1(y)) + (k̄/XT )z − y1,

B̃ = (k̄/XT )z − y1, C̃ = c2 + a2 + a1ρ(y3 − (pT/XT )φ1(y)), D̃ = a1η (1− ρy2) . We

show that this Jacobian matrix is Hurwitz by employing the Routh-Hurwitz criterion.

Note first that Ã, B̃, C̃ and D̃ are all positive terms. The characteristic equation of

the Jacobian is given by

∆(λ) = λ3 + λ2(Ã+ C̃ + D̃) + λ(ÃC̃ + ÃD̃ + cD̃ + ηB̃) + cÃD̃ + B̃(ηC̃ + D̃).

Employing Routh-Hurwitz method, the terms in the first column of the Routh-

Hurwitz table are given by µ0 = 1, µ1 = Ã + C̃ + D̃, µ2 = (Ã + C̃ + D̃)(ÃC̃ +

ÃD̃) + cD̃(C̃ + D̃) + ηB̃(Ã + D̃) − B̃D̃, and µ3 = (cÃD̃ + ηB̃C̃ + B̃D̃). Provided

that XT is large enough, all the coefficients are positive and, therefore, the real part

of all eigenvalues of
∂h̄(y, v)

∂v
is negative and property A7 is satisfied. Similarly, it is

possible to show that assumptions A4, A5 and A9 are satisfied.
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3.2.2 Example 2: Phosphotransfer

Phosphotransfer systems are also a common motif in cellular signal transduction

[67, 68]. These structures are composed of proteins that can phosphorylate each

other. By contrast to kinase-mediated phosphorylation, in which the phosphate

donor is usually ATP, in phosphotransfer the phosphate group comes from the donor

protein itself. Each protein carrying a phosphate group can donate it to the next

protein in the system through a reversible reaction. In this section, we describe

a module extracted from the phosphotransferase system [69]. In this example, we

consider all the three possible relationships between the timescale of the downstream

interconnection and that of the phosphotranfer device.

Figure 3.4: Insulation device based on a two-component system phosphotransfer system.
System Σ is a phosphotransfer system. The output X* activates transcription through the reversible
binding of X* to downstream DNA promoter sites p.

In this section, we model the phosphotransfer module shown in Figure 3.4. Let

X be a transcription factor in its inactive form and let X∗ be the same transcription

factor once it has been activated by the addition of a phosphate group. Let Z∗ be

a phosphate donor, that is, a protein that can transfer its phosphate group to the

acceptor X. The standard phosphotransfer reactions [57] can be modelled accord-

ing to the two-step reaction model Z∗ + X
k1−⇀↽−
k2

C1

k3−⇀↽−
k4

X∗ + Z, in which C1 is the

complex of Z bound to X bound to the phosphate group. Additionally, protein Z
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can be phosphorylated and protein X∗ dephosphorylated by other phosphotransfer

interactions. These reactions are modelled as one step reactions depending only on

the concentrations of Z and X∗, that is, Z
π1−→ Z∗, X∗

π2−→ X. Protein X is assumed

to be conserved in the system, that is, XTOT = X + C1 + X∗ + C. We assume

that protein Z is produced with time-varying production rate k(t) and decays with

rate δ. The active transcription factor X∗ binds to downstream DNA binding sites

p with total concentration pTOT to activate transcription through the reversible re-

action p + X∗
kon−−⇀↽−−
koff

C. Since the total amount of p is conserved, we also have that

C + p = pTOT . The ODE model corresponding to this system is thus given by the

equations

Ż = k(t)− δZ + k3C1 − k4X
∗Z − π1Z

Ċ1 = k1XT

(
1− X∗

XT

− C1

XT

− C

XT

)
Z∗ − k3C1 − k2C1 + k4X

∗Z

Ż∗ = π1Z + k2C1 − k1XT

(
1− X∗

XT

− C1

XT

− C

XT

)
Z∗

Ẋ∗ = k3C1 − k4X
∗Z − konX∗(pT − C) + koffC − π2X

∗

Ċ = konX
∗(pT − C)− koffC.

(3.41)

As performed in Example 1, we introduce non-dimensional variables for this sys-

tem. Let k̄ := maxt k(t)/δ and define the non-dimensional input k̃ := k(t)/(δk̄).

Define also the non-dimensional variables u := Z
k̄

, x1 = C1

XT
, x2 = Z∗

k̄
, x3 = X∗

XT
, v =

C
pT

and τ := δt. For a variable x, denote ẋ := dx/dτ. System (3.41) in these new
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variables becomes

u̇ = k̃(t)− u+
k3XT

δk̄
x1 −

k4XT

δ
x3u−

π1

δ
u

ẋ1 =
k1k̄

δ

(
1− x1 − x3 −

pT
XT

v

)
x2 −

k3

δ
x1 −

k2

δ
x1 +

k4k̄

δ
x3u

ẋ2 =
π1

δ
u+

k2XT

δk̄
x1 −

k1XT

δ

(
1− x1 − x3 −

pT
XT

v

)
x2

ẋ3 =
k3

δ
x1 −

k4k̄

δ
x3u−

konpT
δ

x3(1− v) +
koffpT
δXT

v − π2

δ
x3

v̇ =
XTkon
δ

x3(1− v)− koff
δ
v.

(3.42)

Phosphotranferase reactions are much faster than gene expression and protein decay

rates [57]. To make this timescale separation explicit, we define the large parameter

G1 := k2

δ
� 1 and define the non-dimensional constants k̄1 := k1XT

k2
, k̄3 := k3

k2
, k̄4 :=

k4XT

k2
, π̄1 := π1

k2
and π̄2 := π2

k2
. The fact that the process of protein binding and un-

binding to promoter sites is much faster than protein production and decay [66, 46]

is made explicit by the ratio G2 :=
koff
δ
� 1. In this example we do not make any as-

sumption on the relationship between G1 and G2. Let also the dissociation constant

be kd := koff/kon. By using these constants, system (3.42) can be written as

u̇ = k̃(t)− u+G1
k̄3XT

k̄
x1 −G1k̄4x3u−G1π̄1u

ẋ1 = G1
k̄1k̄

XT

(
1− x1 − x3 −

pT
XT

v

)
x2 −G1k̄3x1 −G1x1 +G1

k̄4k̄

XT

x3u

ẋ2 = G1π̄1u+G1
XT

k̄
x1 −G1k̄1

(
1− x1 − x3 −

pT
XT

v

)
x2

ẋ3 = G1k̄3x1 −G1
k̄4k̄

XT

x3u−G1π̄2x3 −G2
pT
kd
x3(1− v) +G2

pT
XT

v

v̇ = G2
XT

kd
x3(1− v)−G2v.

(3.43)

The domain for the states of this system are given byDz = R+, Dx = [0, 1]×R+×[0, 1]

and Dv = [0, 1]. Compare system (3.43) with system (3.1). In system (3.43), the
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internal dynamics term is given by f =


k̄1k̄
XT

(
1− x1 − x3 − pT

XT
v
)
x2 − x1

XT

k̄
x1 − k̄1

(
1− x1 − x3 − pT

XT
v
)
x2

k̄3x1 − k̄4k̄
XT
ux3 − π̄2x3

 and

it depends on output term v. Therefore, in order for system (3.43) to fit the structure

of system (3.1), we require that the ratio pT/XT to be small enough so that (pT/XT )v

becomes negligible with respect to 1 in the term (1−x1−x3−(pT/XT )v), as v ∈ [0, 1].

This assumption, in practice, limits the amount of load this insulation device can

accommodate for a given amount of XT . Under this assumption, system (3.43) fits

the structure of model (3.1) with g(u, t) = k̃(t) − u, r(x, u) =

 k̄3XT

k̄
x1 − k̄4x3u

−π̄1u

,

f(x, u)


k̄1k̄
XT

(1− x1 − x3)x2 − x1

XT

k̄
x1 − k̄1 (1− x1 − x3)x2

k̄3x1 − k̄4k̄
XT
ux3 − π̄2x3

, s(x, v) = −pT
kd
x3(1 − v) +

pT
XT

v, l(v) = 0,

h(v, t) = 0, A := [1 1], B =


− k̄
XT

0

0 −1

0 0

 , C =


0

0

1

, D = −XT

pT
. By inspecting

matrices A, B, C and D it is possible to choose matrices T = 1, M =
[
XT

k̄
1 0
]
,

Q = I3×3 and P =

[
0 0

pT
XT

]T
, which satisfy properties P1 and P2. This can be

verified by checking that indeed TA+MB = 0, Mf(x, u) = 0, MC = 0, QC+PD =

0 and, trivially, Pl(v) = 0. By applying the linear coordinate transformation given
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by z = Tu+Mx and y = Qx+ Pv, we obtain the system

ż = k(t)−
(
z − XT

k̄
y1 − y2

)
ε1ẏ1 =

k̄1k̄

XT

(
1− y1 − y3 +

pT
XT

v

)
y2 − k̄3y1 − y1

+
k̄4k̄

XT

(
y3 −

pT
XT

v

)(
z − XT

k̄
y1 − y2

)
ε1ẏ2 = π̄1

(
z − pT

XT

y1 − y2

)
+ y1 − k̄1

(
1− y1 − y3 +

pT
XT

v

)
y2

ε1ẏ3 = k̄3y1 −
k̄4k̄

XT

(
y3 −

pT
XT

v

)(
z − XT

k̄
y1 − y2

)
− π̄2

(
y3 −

pT
XT

v

)
ε2v̇ =

XT

kd

(
y3 −

pT
XT

v

)
(1− v)− v.

(3.44)

In this example, we do not claim any relationship between G1 and G2. In this the

situation it is necessary to show that all assumptions A1-A9 are satisfied to prove

that the retroactivity to the output property holds.

Assumptions A1 and A2 can be readily verified by inspection of (3.41). As in the

phosphorylation system, we have that h̄(y, v) = 1
kd

(XTy3 − pTv)− v. Therefore, A3

and A6 are satisfied as it was for the phosphorylation system.

Here, we verify the slow manifold is indeed stable. Since the function

φ1(y) =
y3 + pT + kd −

√
(y3 + pT + kd)2 − 4pTy3

2

is sufficiently smooth (the argument of the square root is bounded away from zero) we

define the diffeomorphism w := Ψ(y) =

[
y1 y2 y3 − φ1(y)

]T
. Define f̂(z, w) :=

f̄(z, y, φ1(y))
∣∣
y=Ψ−1(w)

. Since under a diffeomorphism the linearization of a non-linear

system is invariant [70], it is sufficient to show that ∂f̂(z,w)
∂w

∣∣
w=Ψ(φ2(z))

is Hurwitz. We

have that ∂f̂(z,w)
∂w

=


−Ẽ − ρF̃ ρB̃ − Ã D̃ − C̃

− π̄1

ρ
+ F̃ −π̄1 − B̃ C̃

ρ

Ẽ Ã −D̃ − π̄2

 , in which ρ = k̄
XT

, Ã =
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k̄4k̄w3, B̃ = XT (1 − w1 − w3), C̃ = k̄w2, D̃ = k̄4k̄(z − w1

ρ
− w2), Ẽ = k̄3 + Ã

ρ
and

F̃ = k̄2

ρ
+ C̃

ρ
. The characteristic equation of this Jacobian is given by

∆(λ) = λ3 + λ2(Ẽ + ρF̃ + π̄1 + π̄2 + B̃ + D̃)

+λ(π̄1π̄2 + Ãk̄2/ρ+ π̄1k̄3 + π̄1D̃ + π̄2B̃ + B̃D̃

+ ρπ̄1F̃ + B̃Ẽ + ρD̃F̃ + π̄1B̃ + ẼC̃ + π̄2Ẽ + ρπ̄2F̃ )

+π̄1π̄2k̄3 + π̄1C̃k̄3 + ρπ̄1π̄2F̃ + ρπ̄1D̃F̃ + π̄2B̃Ẽ + π̄1π̄2B̃ + π̄1B̃D̃ + π̄2ÃF̃ .

Write the characteristic equation as ∆(λ) = λ3 + α2λ
2 + α1λ + α0 where αi are

implicitly defined. The terms on the first column of the Routh-Hurwitz table are

given by 1, α2, (α1α2 − α0)/α2 and α0. Since all αi are positive, we are guaranteed

to have only positive terms on the first column of the Routh-Hurwitz table if α2α1−

α0 > 0. In particular, the term α2α1 − α0 can be reduced to α2α1 − α0 = µ +

π̄1k̄2k̄4k̄
(
z − w1

ρ
− w2

)
− π̄2k̄2k̄4w3

ρ
, in which the term µ > 0. It remains to show that

k̄2k̄4[π̄1(z−w1/ρ−w2)−π̄2w3/ρ] ≥ 0 on the manifold w = Ψ(φ2(z)). From the system

of equations f̄(x, y, φ1(y)) = 0, one can obtain the identity π̄2(y3 − pTφ1(y)/XT ) =

ρπ̄1(z − y1/ρ − y2). The function y = φ2(z) is obtained by solving the system of

equations f̄(z, y, φ1(y)) = 0.

k̄

(
1− y1 − y3 +

pT
XT

φ1(y)

)
y2 − k̄2y1 − k̄3y1

+ k̄4k̄

(
z − y1

ρ
− y2

)(
y3 −

XT

pT
φ1(y)

)
= 0

π̄1

(
z − y1

ρ
− y2

)
+
k̄2

ρ
y1 −XT

(
1− y1 − y3 +

pT
XT

φ1(y)

)
y2 = 0

k̄3y1 − k̄4k̄

(
z − y1

ρ
− y2

)(
y3 −

pT
XT

φ1(y)

)
− π̄2

(
y3 −

pT
XT

φ1(y)

)
= 0.

Multiplying the second equation by ρ and adding it with the first and the third

equations, this system leads to π̄2(y3−pTφ1(y)/XT ) = ρπ̄1(z−y1/ρ−y2). Substituting
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Figure 3.5: Response of an insulation device based on a phosphotransferase system.
Output response of the phosphotransfer system with a periodic signal k(t) = δ(1 + 0.5sinωt). The
parameters are given by δ = 0.01, XT = 5000, k1 = k2 = k3 = k4 = π1 = π2 = 0.01G1 in which
G1 = 1 (left-side panel), and G1 = 100 (right-side panel). The downstream system parameters are
given by kd = 1 and koff = 0.01G2, in which G2 assumes the values indicated on the legend. The
isolated system (s = 0) corresponds to pTOT = 0 while the connected system (s 6= 0) corresponds
to pTOT = 100.

y = Ψ−1(w) in this identity, we obtain that π̄2w3 − π̄1(z − w1/ρ − w2) = 0. As a

result, α2α1 − α0 = µ > 0 and thus, the Jacobian matrix
∂f̂(z, w)

∂w

∣∣
w=Ψ(φ2(z))

is

Hurwitz satisfying condition A7.

We illustrate the retroactivity to the output attenuation property of this system

using simulations for the cases in which G1 � G2, G1 = G2, and G1 � G2. Figure

3.5 shows that, for a periodic input k(t), the system with low value for G1 suffers

the impact of retroactivity to the output. However, for a large value of G1, the

permanent behavior of the connected system becomes similar to that of the isolated

system, whether G1 � G2, G1 = G2 or G1 � G2. Notice that, in the bottom panel

of Figure 3.5, when G1 � G2, the impact of the retroactivity to the output is not as

dramatic as it is when G1 = G2 or G1 � G2. This is due to the fact that s is scaled

by G2 and it is not related to the retroactivity to the output attenuation property.

This confirms the theoretical result that, independently of the order of magnitude of

G2, the system can arbitrarily attenuate retroactivity for large enough G1.
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3.3 Tradeoff between insulation property and noise

To understand how noise can be affected by the use of an insulation device, we

investigate how the large gains associated with the timescale separation affect a

stochastic model a simple model of an insulation device. To that end consider a

transcription component similar to the one shown in Chapter II, in which the DNA

confers full protection to the transcription factor.

The transcription rate of the gene z, which expresses the protein Z, is given by a

time varying function Gk(t) that depends on the transcription factor U. Parameter

G models the input amplification gain. The degradation rate of protein Z is also

assumed to be tunable and thus identified by Gδ. We first show that the variable

gain parameter G can be adjusted to improve the insulation properties, as shown in

[13].

The transcription factor Z is also an input to the downstream load through the

reversible binding of Z to promoter sites p. Neglecting the Z messenger RNA dy-

namics, which are typically much faster than transcription and decay dynamics, the

system can be modelled by the chemical equations

∅
Gk(t)−−−⇀↽−−−
Gδ

Z, Z + p
kon−−⇀↽−−
koff

C. (3.45)

We assume that k(t) and δ are of the same order and denote kd = koff/kon. We

also assume that the production and decay processes are slower than binding and

unbinding reactions, that is, koff � Gδ, kon � Gδ [46]. Let the total concentration

of promoter be pT . The deterministic ordinary differential equation model of system

(3.45) is given by

˙[Z] = Gk(t)−Gδ[Z] + koff[C]− kon(pT − [C])[Z]

˙[C] = −koff[C] + kon(pT − [C])Z,

(3.46)
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in which [Z] and [C] denote the concentrations of Z and C respectively. In this

section, the bracket notation is used to contrast concentrations from Z and C, the

random variables denoting the number of molecules. Figure 3.6 shows that adding

load to the system decreases the amplitude of the concentration signal [Z]. This

effect is due retroactivity to the output of the transcriptional component. The figure

shows also how the retroactivity effect can be compensated by increasing the gains

G.
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Figure 3.6: Retroactivity attenuation on an amplification/feedback insulation device.
Effect of retroactivity from the load on system (3.46). Here, ω = 0.005rad/s, δ = 0.01M−1s−1,
koff = 50M−2 and kd = 20Ms−1. The input signal is k(t) = δ(1 + 0.8 sin (ωt))s−1. The top plot
shows how adding the load impacts [Z]. The bottom plot shows how increasing G can reduce the
impact of the retroactivity from the load. For this plot we chose G = 1 +Rl (see text).

To identify by what amounts G should be increased to compensate the retroac-

tivity effect, we perform a linearized analysis of (3.46) about k(t) = k̄, and the

corresponding equilibrium ¯[Z] = k̄/δ and ¯[C] = ¯[Z]pT/( ¯[Z] + kd). The dynamics of

small perturbations about the equilibrium (k̄, ¯[Z], ¯[C]) are, with abuse of notation,
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given by

˙[Z] = Gk(t)− (Gδ + kon(pT − ¯[C]))[Z] + (koff + kon
¯[Z])[C]

˙[C] = kon(pT − ¯[C])[Z]− (koff + kon
¯[Z])[C].

(3.47)

Since kon � δ and koff = konkd, write

kon = δ/ε and koff = δkd/ε, (3.48)

in which ε � 1. Let y = [Z] + [C]. Substituting (3.48) into (3.47) and writing

the system in terms of y and [C], one obtains the system in the standard singular

perturbation form

ẏ = Gk(t)− (Gδ(y − [C]) (3.49)

ε ˙[C] = δ(pT − ¯[C])y − δ(pT − ¯[C] + kd + ¯[Z])[C] (3.50)

Setting ε = 0, one obtains the expression of the slow manifold as [C] = kdpT [Z]/( ¯[Z]+

kd)
2 = :γ([Z]). It can be shown that this manifold is exponentially stable. Defining

the constant

Rl =
kdpT

(k̄/δ + kd)2
, (3.51)

the expression of the slow manifold can be rewritten as γ([Z]) = Rl[Z]. Letting

[Z] = y − γ([Z]), we obtain that ˙[Z] = ẏ − Rl
˙[Z], in which ẏ = Gk(t)−Gδ[Z]. The

approximated dynamics of [Z] on the slow manifold then becomes

˙[Z] =
G

1 +Rl

(k(t)− δ[Z]). (3.52)

Thus, for small perturbations about the equilibrium, we should choose G ≈ 1 + Rl

to compensate for retroactivity from the load. In real systems, however, there are

practical limitations on how much the gain can be increased so that retroactivity

may not be completely rejected.
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3.3.1 Master Equation

Let P (Z,C, p; t|Z0, C0, p0; t0 = 0) denote the conditional probability that at time

t, the number of molecules of the species Z, C and p are Z, C and p respectively,

given that the number of molecules were Z0, C0 and p0 at the initial time t0 = 0.

Throughout this chapter we omit the dependency on initial conditions and write

P(Z,C, p; t) for convenience. Let Ω denote the volume of the system. Then the

relation between concentrations and number of molecules is given by Z = Ω[Z] and

C = Ω[C]. Define the step operator as EaXf(X) = f(X + a). The Master Equation

[71] for the system described in (3.45) is given by

Ṗ(Z,C, p; t) =
(
Gk(t)Ω(E−1

Z − 1) +Gδ(E+1
Z − 1)Z

+ konΩ−1(E+1
Z E+1

p E−1
C − 1)Zp+ koff(E−1

Z E−1
p E+1

C − 1)C
)
P(Z,C, p; t).

Since p+C = ΩpT with probability one, the equation can be reduced to the two-state

Master Equation

Ṗ(Z,C; t) =
(
Gk(t)Ω(E−1

Z − 1) +Gδ(E+1
Z − 1)Z

+ kon(Ω−1(E+1
Z E−1

C − 1)Z(ΩpT − C) +koff(E−1
Z E+1

C − 1)C
)

P(Z,C; t).

(3.53)

3.3.2 Linear Noise Approximation

Since the coefficients of P(Z,C; t) in equation (3.53) are not linear functions of

the states, we cannot obtain a closed set of exact equations for the moments [72]. To

proceed with the analysis, we thus employ the Ω-expansion [71].

Define the change of variables

Z = ΩφZ + Ω1/2ζ and C = ΩφC + Ω1/2ξ, (3.54)

in which ζ and ξ are random variables and φZ , φC are deterministic quantities. Let

also Π(ζ, ξ; t) := P(ΩφZ+Ω1/2ζ,ΩφC+Ω1/2ξ; t). Then, the left hand side of equation
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(3.53) becomes

Ṗ (Z,C; t) = ∂tΠ(ζ, ξ; t)− Ω1/2φ̇Z∂ζΠ(ζ, ξ; t)− Ω1/2φ̇C∂ξΠ(ζ, ξ; t), (3.55)

in which ∂x := ∂/∂x. By performing Taylor expansion of the step operator in the

new variables ζ and ξ, we obtain the identities

EaZ =
∞∑
k=0

(aΩ−1/2)k

k!
∂kζ , EaC =

∞∑
k=0

(aΩ−1/2)k

k!
∂kξ . (3.56)

Substituting (3.53) and (3.56) in equation (3.55), solving for ∂tΠ(ζ, ξ; t) and collecting

the terms in powers of Ω up to order Ω0, we obtain

∂tΠ(ζ, ξ; t) = Ω1/2

[(
φ̇Z −Gk(t) +GδφZ + konφZ(pT − φC)− koffφC

)
∂ζ

+
(
φ̇C − konφZ(pT − φC) + koffφC

)
∂ξ

]
Π(ζ, ξ; t)

+ Ω0

[
∂ζ
(
(Gδ + kon(pT − φC))ζ + (−konφZ − koff)ξ

)
+ ∂ξ

(
− kon(pT − φC)ζ + (konφZ + koff)ξ

)
+

1

2
∂2
ζ

(
Gk(t) +GδφZ + konφZ(pT − φC) + koffφC

)
+

1

2
∂2
ξ

(
konφZ(pT − φC) + koffφC

)
+ ∂ζ∂ξ

(
− konφZ(pT − φC)− koffφC

)]
Π(ζ, ξ; t) +O(Ω−1/2).

(3.57)

Setting the coefficient of Ω1/2 in equation (3.57) to zero, one obtains the macroscopic

laws for the deterministic variables φZ and φC :

φ̇Z = Gk(t)− δφZ − konφZ(pT − φC) + koffφC

φ̇C = konφZ(pT − φC)− koffφC .

(3.58)

By taking the volume to be large enough to make O(Ω−1/2) negligible in equation
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(3.57), we obtain the Fokker-Planck equation1

∂tΠ(ζ, ξ; t) =

[
∂ζ
(
(Gδ + kon(pT − φC))ζ + (−konφZ

− koff)ξ
)

+ ∂ξ
(
− kon(pT − φC)ζ + (konφZ + koff)ξ

)
+

1

2
∂2
ζ

(
Gk(t) +GδφZ + konφZ(pT − φC) + koffφC

)
+

1

2
∂2
ξ

(
konφZ(pT − φC) + koffφC

)
+ ∂ζ∂ξ

(
− konφZ(pT − φC)− koffφC

)]
Π(ζ, ξ; t).

(3.59)

The above procedure, often referred to as Linear Noise Approximation, takes the

jump Markov process defined by equation (3.53) and approximates it by the contin-

uous Markov process that solves equation (3.59) [73]. This approximation is valid

for large volumes and when the jumps on the original process are small compared

to the total number of molecules [73]. Since all reactions have stoichiometry 1, this

second condition is satisfied by guaranteeing ΩφZ(t) � 1 and ΩφC(t) � 1 for all

time. Since we already take Ω large to satisfy the first condition, we just need to

guarantee φC(t) > 0 and φZ(t) > 0.

Given a general Fokker-Planck equation of the form

∂Pt(x; t) = −
∑
i

∂iAi(x, t)P (x, t) +
1

2

∑
i

∑
j

∂i∂jBij(x, t)P (x, t), (3.60)

it is possible to derive differential equations for the expectancy of any polynomial

function f(x). Multiplying both sides of equation (3.60) by f(x) and integrating

both sides over the state space one obtains the differential equation [73]

˙〈f(x)〉 =
∑
i

〈Ai∂if(x)〉+
1

2

∑
i

∑
j

〈Bij∂i∂jf(x)〉 . (3.61)

Repeating this process with the Fokker-Planck equation (3.59), we obtain the differ-

1The function Π(ζ, ξ; t) was scaled so that it integrates to 1 [71].
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ential equations for the first order moments as

˙〈ζ〉 = −δ 〈ζ〉 − kon(pT − φC) 〈ζ〉+ konφZ 〈ξ〉+ koff 〈ξ〉

˙〈ξ〉 = kon(pT − φC) 〈ζ〉 − konφZ 〈ξ〉 − koff 〈ξ〉 .
(3.62)

Setting the initial conditions of the macroscopic equations (3.58) to correspond to

the initial values of the number of species, that is, setting φZ(0) = Ω−1Z0 and

φC(0) = Ω−1C0, then 〈ζ(0)〉 = 0 and 〈ξ(0)〉 = 0. In doing so, 〈ζ(t)〉 = 0 and

〈ξ(t)〉 = 0 for all time. Therefore, ζ(t) and ξ(t) are zero-mean random processes.

Similarly, the dynamics of the second order moments are given by

˙〈ζ2〉 = −2Gδ
〈
ζ2
〉
− 2kon(pT − φC)

〈
ζ2
〉

+ 2konφZ 〈ζξ〉

+ 2koff 〈ζξ〉+ konφZ(pT − φC) + koffφC +Gk(t) +GδφZ

˙〈ζξ〉 = −Gδ 〈ζξ〉+ konφZ
〈
ξ2
〉

+ koff

〈
ξ2
〉

+ kon(pT − φC)
〈
ζ2
〉

− konφZ 〈ζξ〉 − koffζξ − konφZ(pT − φC)− koffφC

˙〈ξ2〉 = 2kon(pT − φC) 〈ζξ〉 − 2konφZ
〈
ξ2
〉
− 2koff

〈
ξ2
〉

+ konφZ(pT − φC) + koffφC .

(3.63)

To validate the Fokker-Planck approximation (3.59), we compare the time depen-

dent mean and standard deviation of the concentrations predicted by numerical in-

tegrations of equations (3.58) and (3.63) with the mean and standard-deviation from

sample realizations given by a Stochastic Simulation Algorithm (SSA) implementa-

tion [55]. Let the means be denoted by µ[Z] = 〈[Z]〉 and µ[C] = 〈[C]〉 and the standard

deviations denoted by σ[Z] =

√〈
(Ω−1Z)2 − µ2

[Z]

〉
and σ[C] =

√〈
(Ω−1C)2 − µ2

[C]

〉
.

To obtain these quantities from the Fokker-Plank approximation, recall that ζ and ξ

are zero-mean random variables and that φZ and φC are deterministic. Then, from

the substitution of variables (3.54) the mean concentration of Z and C are given by

µ[Z] = φZ , µ[C] = φC . The standard deviation of [Z] is given by σ[Z] =
√

Ω−1 〈ζ2〉
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and σ[C] =
√

Ω−1 〈ξ2〉. To obtain these quantities from N realizations Zi and Ci of

the SSA we used the sample mean and the biased sample variance estimator, that

is, µ[Z] =
∑N

i Zi/(NΩ), µ[C] =
∑N

i Ci/(NΩ), σ2
[Z] =

∑N
i=1((Ω−1Zi)

2 − µ2
[Z])/N and

σ2
[C] =

∑N
i ((Ω−1Ci)

2 − µ2
[C])/N .

Figure 3.7 shows that the means and standard deviations of Z and C predicted by

the Fokker-Planck equation are very close to the values obtained from the samples

of the SSA. This comparison was made using different values of G, pT and kd, all

showing that the Fokker-Planck equation is a satisfactory approximation for the

Master Equation.

3.3.3 Signal to Noise Ratio Analysis

One of the traditional metrics used to assess noise in many electrical engineering

applications is the signal-to-noise ratio. This quantity is usually defined by taking

the ratio between the power of the signal and the power of the noise and gives a

measure of how much the noise corrupts the signal.

For this study, we consider periodic input signals and characterize the signal-to-

noise ratio as a function of the input frequency. Since concentrations are always

positive, we consider inputs of the form k(t) = k̄ + k̃(t), in which k̄ is a constant

bias and k̃(t) = A0sin(ωt) is a periodic signal with amplitude A0 < k̄ and frequency

ω. We assume that all the information transmitted is contained in the signal k̃(t).

Therefore, to obtain a signal-to-noise figure of merit, the power of a signal is taken

to be the square of its amplitude. The power of the noise is quantified by the

steady-state variance calculated when the input is constant equal to the bias, that

is, k(t) = k̄. Denoting A the amplitude of a signal and σ̄2 the steady-state variance,
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the figure of merit for the noise is given by

SNR :=
A2

σ̄2
. (3.64)

To calculate the values of σ̄2, set k(t) = k̄ in equations (3.58) and (3.63). The cor-

responding equilibrium values of the deterministic variables φZ and φC are obtained

from equations (3.58) as

φ̄Z =
k̄

δ
and φ̄C =

pT φ̄Z
1 + δkd/k̄

=
pT/kd

1 + φ̄Z/kd
. (3.65)

Substituting (3.65) in equations (3.63) and setting the time derivatives to zero, the

equilibrium values for the second-order moments become

¯〈ζ2〉 =
k̄

δ
, ¯〈ζξ〉 = 0 and ¯〈ξ2〉 =

φ̄ZpTkd
(k̄/δ + kd)2

= φ̄ZRl,

in which Rl is the same constant defined in expression (3.51).

From the change of variables (3.54), and since ζ and ξ are zero-mean, we have

that σ̄2
[Z] = Ω−1 ¯〈ζ2〉 and σ̄2

[C] = Ω−1 ¯〈ξ2〉 leading to expressions

σ̄2
[Z] =

φ̄Z
Ω

and σ̄2
[C] =

φ̄ZRl

Ω
. (3.66)

For small amplitudes of the signal k̃(t), σ̄2 approximates the time-average value of the

time-dependent variance σ(t) when the system is subject to the input k(t) = k̄+ k̃(t).

Due to the fact that ζ and ξ are zero-mean random variables, 〈Z〉 = ΩφZ and

〈C〉 = ΩφC . Therefore, the amplitude of the mean concentration signals [Z] and [C]

are equal to the amplitude of φZ and φC , respectively. To calculate this amplitude,

we proceed by linearizing equation (3.58) about the equilibrium corresponding to the

fixed input k(t) = k̄. With abuse of notation, the linear system becomes

φ̇Z = Gk̃(t)− (Gδ − kon(pT − φ̄C))φZ + (konφ̄Z + koff)φC ,

φ̇C = kon(pT − φ̄C)φZ − (konφ̄Z + koff)φC .

(3.67)
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In order to obtain the amplitude of the signals φZ and φC , we compute the transfer

functions from k̃ to φZ and φC . Let ΦZ(s), ΦC(s) and K̃(s) denote the Laplace

transform of φZ(t), φC(t) and k̃(t) respectively, from (3.67) we obtain

ΦZ(s) =
G(s+ konφ̄Z + koff)K̃(s)

(s+Gδ)(s+ konφ̄Z + koff) + skon(pT − φ̄C)

ΦC(s) =
kon(pT − φ̄C)ΦZ(s)

s+ konφ̄Z + koff

.

(3.68)

By using the substitution (3.48) and setting ε = 0, we obtain the simplified transfer

functions

G1(s) =
ΦZ(s)

K̃(s)
=

G

s(1 +Rl) +Gδ

G2(s) =
ΦC(s)

K̃(s)
=

GRl

s(1 +Rl) +Gδ
.

Therefore, for a input signal k̃(t) with frequency ω and amplitude A0, the amplitude

of the concentrations are

A[Z] = |G1(jω)|A0 =

√
G2

G2δ2 + ω2(1 +Rl)2
A0,

A[C] = |G2(jω)|A0 =

√
G2R2

l

G2δ2 + ω2(1 +Rl)2
A0.

(3.69)

Substituting expressions (3.66) and (3.69) in the definition (3.64), the signal-to-

noise ratios obtained for an input k̃(t) with amplitude A0 and frequency ω are

SNRZ(ω) =
Ω

kδ

G2

G2 + ω2

δ2 (1 +Rl)2
A2

0, (3.70)

SNRC(ω) =
Ω

kδ

G2Rl

G2 + ω2

δ2 (1 +Rl)2
A2

0. (3.71)

Recalling from (3.51) that Rl is monotonically increasing with pT , expression

(3.70) shows that for a signal with non-zero frequency addition of load pT leads to

a lower value of SNRZ . Notice that the higher the frequency, the more sensitive

SNRZ is to the load. Increasing the gain G improves the SNRZ and in the limit

when G→∞, SNRZ → ΩA2
0/(k̄δ) giving a theoretical upper bound on the SNRZ .
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Equation (3.71) shows that the effect of increasing G on SNRC is similar to the

effect on SNRZ : as the gain increases, the signal-to-noise ratio increases, and in the

limit when G→∞, SNRC → ΩRlA
2
0/k̄δ. The effect of increasing the load, however

is not trivial. If we are able to increase the gain to G ≈ 1 +Rl to compensate for the

retroactivity, then SNRC decreases with a higher load. If, instead, the value of G

cannot be large enough to reach 1 +Rl, then increasing pT will reduce SNRC . This

is a consequence of the fact that when G cannot compensate for the retroactivity the

amplitude A[Z] decreases and consequently so does A[C].

3.3.4 Frequency analysis of disturbances and the Langevin approach

In Section 3.3.3, we have shown that increasing the gain G is beneficial for both

rejecting retroactivity to the upstream component and decreasing the noise-to-signal

ratio. However, as shown in Figure 3.8, increasing the gain G impacts the frequency

content of the noise in a single realization. For low values of G, the error signal

between a realization and the mean is of lower frequency when compared to a higher

gain. This effect is not captured by the signal-to-noise metric because the averaging

process used to calculate the standard deviation smooths out the noise.

To study this problem, we employ the Langevin equation derived from the Master

Equation (3.53). As shown in [74], a Master Equation of the form

dP (X; t)

dt
=

M∑
j=1

(
N∏
i=1

Evijxi − 1)aj(X)P (X; t),

can be approximated by a Langevin system of equations of the form

dXi

dt
=

M∑
j=1

vijaj(X(t)) +
M∑
j=1

vija
1/2
j (X(t))Γj(t),

in which Γj(t) are independent Gaussian white noise processes. Applying the above

approximation to the Master Equation (3.53), one obtains the system of Langevin
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equations

Ż = Gk(t)−GδZ − kon(pT − C)Z + koffC +
√
Gk(t) Γ1(t)

−
√
GδZ Γ2(t)−

√
kon(pT − C)Z Γ3(t) +

√
koffC Γ4(t),

Ċ = kon(pT − C)Z − koffC +
√
kon(pT − C)Z Γ3(t)−

√
koffC Γ4(t).

(3.72)

The above system can be viewed as a non-linear system with five inputs, k(t)

and Γi(t) for i = 1, 2, 3, 4. Let k(t) = k̄, Γ1(t) = Γ2(t) = Γ3(t) = Γ4(t) = 0 be

constant inputs and let Z̄ and C̄ be the corresponding equilibrium points. Then for

small amplitude signals k̃(t) the linearization of the system (3.72) leads, with abuse

of notation, to

Ż = Gk̃(t)−GδZ − kon(pT − C̄)Z + konZ̄C + koffC

+
√
Gk̄ Γ1(t)−

√
δZ̄ Γ2(t)−

√
koffC̄ Γ3(t) +

√
kon(pT − C̄)Z̄ Γ4(t)

Ċ = kon(pT − C̄)Z − konZ̄C − koffC +
√
koffC̄ Γ3(t)−

√
kon(pT − C̄)Z̄ Γ4(t).

We can further simplify the above expressions by noting that δZ̄ = Gk̄ and kon(pT −

C̄)Z̄ = koffC̄. Also, since Γj are independent identical Gaussian white noises, we

can write Γ1(t)− Γ2(t) =
√

2N1(t) and Γ3(t)− Γ4(t) =
√

2N2(t), in which N1(t) and

N2(t) are independent Gaussian white noises identical to Γj(t). This simplification

leads to the system

Ż = Gk̃(t)−GδZ − kon(pT − C̄)Z + konZ̄C + koffC

+
√

2Gk̄N1(t)−
√

2koffC̄N2(t),

Ċ = kon(pT − C̄)Z − konZ̄C − koffC +
√

2koffC̄N2(t).

(3.73)

This is a system with three inputs: the deterministic input k̃(t) and two independent

white noise sources N1(t) and N2(t). One can interpret N1 as the source of the

fluctuations caused by the production and degradation reactions while N2 is the
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source of fluctuations caused by binding and unbinding reactions. Since the system

is linear, we can analyse the different contributions of each noise source separately

and independent from the signal k̃(t).

The transfer function from N1 to Z is

T1(s) =

√
Gk̄

(s+Gδ)(s+ konZ̄ + koff) + skon(pT − C̄)
.

Employing substitutions (3.48) and setting ε = 0, we simplify the transfer function

to

T1(s) =
Z(s)

N1(s)
=

√
2Gk̄

s(1 +Rl) +Gδ
. (3.74)

The DC gain of this transfer function is equal to T1(0) =
√

2k̄/
√
Gδ. Thus, as

G increases, the DC gain decreases. But for large enough frequencies ω, jω(1 +

Rl) + Gδ ≈ jω(1 + Rl), and the amplitude |T1(jω)| ≈
√

2k̄G/ω(1 +Rl) becomes a

monotone function of G. This effect is illustrated in the upper plot of Figure 3.9.

The frequency at which the amplitude of |T1(jω)| computed with G = 1 intersects

the amplitude |T2(jω)| computed with G > 1 is given by the expression

ωe =
δ
√
G

(1 +Rl)
.

Thus, when increasing the gain from 1 to G > 1, we reduce the noise at frequencies

lower than ωe but we increase it at frequencies larger than ωe.

The transfer function from the second white noise source N2 to Z is given by

T2(s) =

√
2koffC̄s

s2 + (Gδ + kon(pT − C̄) + konZ̄ + koff)s+Gδ(konZ̄ + koff)
.

Using substitutions (3.48) and multiplying numerator and denominator by ε, we

obtain the transfer function

T2(s) =

√
ε
√

2δC̄s

εs2 + (εGδ + δ(pT − C̄) + δZ̄ + δkd)s+Gδ(δZ̄ + δkd)
. (3.75)
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This transfer function has one zero at s = 0 and two poles at

s± =
δ

2ε

[
− εG− pT + C̄)− Z̄ + kd ±

√
(εG+ pT − C̄ + Z̄ + kd)2 − 4εG(Z̄ + kd)

]
.

When ε → 0, s− → −∞ and s+ → −Gδ/(1 +Rl). Thus, the contribution of N2(t)

to Z is relevant only on the high frequency range due to the high-pass nature of the

transfer function. Furthermore, increasing the gain G increases the cutoff frequency

given by the pole s+. It is also important to note that N2(s) is scaled by
√
ε, making

the noise on the low-frequency caused by N2(t) negligible when compared to that

caused by N1(t). The Bode plot of the transfer function T2(s) is shown in the lower

plot of Figure 3.9.
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Figure 3.7: The sample means and variances from SSA and from Fokker-Planck equation
are shown to be very close to each other. For these plots, δ = 0.01M−1s−1, kd = 20M,
koff = 50M−1s−1 with input signal k(t) = δ(1 + 0.8 sinωt)s−1 and volume Ω = 10M−1. To simulate
the time varying input in the SSA, we imposed a deterministic time-varying concentration of a Z
protein messenger with concentration k(t) = δ(1 + 0.8 sin(ωt)). Means from SSA were calculated
using 500 realizations.
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Figure 3.8: Increasing the value of G produces a disturbance signal of higher frequency.
Two realizations are shown with different values for G without load. The parameters used in the
simulations are δ = 0.01M−1s−1, kd = 20M, koff = 50M−1s−1, ω = 0.005rad/s and Ω = 10M−1.
The input signal used is k(t) = δ(1 + 0.8 sinωt)s−1. The mean of the signal is given as reference.
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Figure 3.9: Magnitude of the transfer functions T1(s) and T2(s). The parameters used in
this plot are δ = 0.01M−1s−1, kd = 1M, koff = 50M−1s−1, ω = 0.005rad/s, pT = 100M. When G
increases from 1 to 1 + Rl = 25, contribution from N1 decreases but it now spreads to a higher
range of the spectrum. Note that there was an increase on the noise at the frequency of interest
ω. Increasing G reduces the contribution from N2 in the low frequency range, leaving the high
frequency range unaffected. Note also that the amplitude of T2 is significantly smaller than that of
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CHAPTER IV

Measuring Retroactivity in vivo

+
s s1

s2

Transcription

component
Reporter

Downstream

clients

atc (u) LacI (y)

Figure 4.1: Layout of gene circuit employed to study retroactivity. (a) Genetic diagram.
The circuit plasmid contains both the transcription component and the reporter system. The down-
stream clients to which the transcription component connects are realized by a plasmid containing
one operator site with affinity to LacI. The connected system refers to cells co-transformed with
both the circuit plasmid and the plasmid with operator sites. The isolated system refers to cells
co-transformed with the circuit plasmid and a plasmid that does not contain the operator site but is
of the same type as the one with operator site. (b) Block diagram illustration of the different parts
of the gene circuit. The transcription component takes as input u anhydrotetracycline (atc) and
gives as output y the repressor LacI. This output is used as an input by both the reporter system
and the downstream clients. Upon interconnection with either the reporter or the downstream
clients, retroactivities s1 from the reporter and s2 from the downstream clients, respectively, arise.

Figure 4.1(a) shows the details of the gene circuit employed to characterize retroac-

tivity effects. The upstream transcription component takes as input atc (u) and

provides as an output LacI-LVA (y). LacI is in turn taken as an input by a reporter

system assembled on the same plasmid as the transcription component. The reporter

system produces GFP-LVA as an indirect measurement of LacI. Since LacI is a re-

pressor, we should expect that GFP decreases as atc increases. The downstream

clients contain LacI operators and are assembled on a different plasmid. Both the re-

porter and the downstream clients apply retroactivity to the upstream transcription

95



96

component (see Figure 4.1(b)). Here, we are interested in characterizing the effects

of retroactivity s2 from the downstream clients on the response of the transcription

component to atc. Hence, we consider as the isolated system the circuit of Figure

4.1(a), in which the operator sites in the downstream clients are absent, resulting

into s2 = 0. We consider as the connected system the circuit of Figure 4.1(a), in

which the operator sites in the downstream clients are present.

Experimentally, we realize the isolated system through cells in which we co-

transformed the pACYC184-based plasmid (with the transcription component and

reporter), which we refer to as circuit plasmid, with pUC18-based plasmid that do

not have LacI operator sites, which we refer to as blank plasmid. We realize the

connected system through cells in which we co-transformed the circuit plasmid with

pUC18-based plasmid including the operator site for LacI, which we refer to as client

plasmid. The difference between the responses of GFP to atc in the isolated and

connected system configurations characterize the effects of retroactivity s2 from the

downstream clients on the transcription component.

We modelled the circuit of Figure 4.1(a) by a set of ordinary differential equations

(ODE) describing the rate of change of LacI and GFP. Let pT be the concentration

of the circuit plasmid (proportional to the circuit plasmid copy number) and qT be

the concentration of the clients plasmid (proportional to the clients plasmid copy

number). Let λ = qT/pT , l = [LacI]/pT , g = [GFP ]/pT , let c1 denote the concen-

tration of LacI bound to downstream clients promoter sites divided by pT , and let c2

denote the concentration of LacI bound to the promoter of the reporter divided by
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pT . Then, we have the following ODE model for the connected system:

l̇ =α1
un

1 + un
− δl

s︷ ︸︸ ︷
−(pTk

′
on)l(1− c1) + k′offc1︸ ︷︷ ︸

s1

−(pTkon)l(λ− c2) + koffc2︸ ︷︷ ︸
s2

(4.1)

ċ1 =(pTk
′
on)l(1− c1)− k′offc1 − δc1 (4.2)

ċ2 =(pTkon)l(λ− c2)− koffc2 − δc2 (4.3)

ġ =α2(1− c1)− δg, (4.4)

in which u is the concentration of atc in units of its dissociation constant from TetR,

n is the cooperativity of atc binding TetR, kon, k
′
on, koff, k

′
off are the association and

dissociation rate constants, respectively, of LacI with the promoter and operator

sites, and δ is the decay rate constant (including dilution and degradation). Here,

α1 and α2 are the maximal expression rates per promoter. Since the complexes also

decay, we are assuming the non-asylum model according to which proteins are not

protected by decay when bound to DNA [30]. The reader is referred to the Appendix

for the detailed derivation of the model and for the parameter values.

Note that the retroactivity term s2 depends only on λ and not on the absolute

value of the downstream clients amount qT . This indicates that the effects of retroac-

tivity depend on the ratio between the circuit plasmid copy number and the clients

plasmid copy number, but not on the absolute value of the latter. We remark that

the binding/unbinding reactions are much faster than the production and decay of

LacI. Furthermore, the dissociation constant kd = koff/(pTkon) of LacI with the oper-

ator sites is very small, implying that once LacI binds, it unbinds very rarely. These

features are relevant for understanding the experimental results illustrated in the

following section.

The retroactivity to the output of the transcription component s appears as a rate

in the equation for LacI and has two components: s1 is the retroactivity due to the
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reporter and s2 is the retroactivity due to the downstream clients. Here, we study

the effect that s2 has on the response of LacI to atc, indirectly measured through

GFP. Hence, the isolated system is represented by the above equations, in which we

have set s2 = 0, but s1 6= 0. It follows that the isolated system configuration still

has an intrinsic retroactivity due to the reporter. Given that the expressions of s1

and s2 are similar, the qualitative effects that s1 has on the transcription component

are the same as those that s2 has. Therefore, to characterize the qualitative effect

of retroactivity s on the transcription component, it is enough to characterize the

effect of s2 on the response of GFP to atc.

4.1 Metrics to measure retroactivity on the response of the gene circuit

We characterize the effects of retroactivity on the dynamic response of GFP to

sudden changes of atc. For completeness, we also show the effects on the steady state

transfer curve from atc to GFP. For the dynamic response, we consider two exper-

iments: an induction experiment and a de-induction experiment. In the induction

experiment, LacI starts from zero (GFP starts from its maximal unrepressed value)

at time zero and a high constant non-zero value of atc is applied, so that LacI rises

and GFP decreases reaching zero. In the de-induction experiment, LacI starts from

a non-zero steady state reached through pre-induction with a non-zero high value of

atc (so that GFP starts from zero). Then, atc is suddenly removed (atc = 0) so that

LacI decreases toward zero and GFP rises toward its maximal unrepressed value. In

order to quantify the effect of retroactivity on dynamics, we measure the response

time of GFP, which mirrors the one of LacI. There are several standard metrics to

determine the response time of a system. In this chapter, we consider the t50 (t20),

which, in our experiments, is given by the time GFP takes to change by 50% (20%)
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of its maximal unrepressed value from when atc is applied or removed.

4.2 Mechanistic Model

In this section, we describe the mechanistic model employed when analyzing the

implemented circuit. The first subsection shows a simplification of the output stage

that maps the amounts of atc into the number of free operator sites with affinity

to TetR and regulate the expression of LacI. In the following section, we model

the remainder of the circuit along with a nondimensionalization that allows a clear

understanding of the qualitative impact of retroactivity. The reaction rates employed

in the simulation as well as constants employed in calculating the results in this

section can be found in Table 4.1.

4.2.1 Simplification of the model for the input

Since we are interested in modelling the retroactivity to the output of the tran-

scription component, we can simplify the input stage to an input/output static model

without compromising the analysis. This model maps the concentration of atc to

the amount of free tetO genes (O) in the cell, able to express LacI.

The set of reactions that model the input stage are given in Table 4.2. In order to

obtain these equations, the following assumptions are made. Due to a high affinity

rate, TetR is almost always in the form of a dimer [82]. This is modelled by assuming

that the amount of free monomer (M) is insignificant compared to that of the total

amount of dimer (D). Additionally, the TetR dimer has two atc binding sites that

bind independently due to the distance between the sites and the activity [83]. We

further assume the concentration of free inducer to be constant and not affected by

its binding to TetR. This comes from a “trapping” effect: while the free atc can

freely diffuse through the membrane, the atc bound to TetR cannot diffuse out,
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Table 4.1: Rates and constants employed in the simulations. The sources in parenthesis indicate
values calculated from other values from this table. Dilution rate (line 3) was calculated based on
the observed doubling time between 100-120 mins. LacI tetramer expression per gene (line 17) was
based on experimental data provided by the Registry of Biological Parts [75].

Description Value Source
Common Constants

(1) Cell Volume Vcell 10−15L [76]
(2) Concentration of 1 molecule per cell C0 1.8nM (1)
(3) Dilution rate δ` 10−4s−1 experimental
(4) LVA Degradation δg 3× 10−4s−1 [77, 78]
(5) Total Decay δ 4× 10−4s−1 (3) and (4)
(6) Circuit plasmids per cell pT 20 copies per cell Table 4.4

Constants related to Input
(7) TetR(B) and atc association rate ka1 106M−1s−1 [79]
(8) TetR(B) and atc dissociation rate kd1 5× 10−6s−1 [79]
(9) TetR and operator association rate ka2 2.7× 108M−1s−1 [80]
(10) TetR and operator dissociation rate kd2 1.5× 10−3s−1 [80]

Constants related to Circuit
(11) Dissociation constant between Kd3 1× 10−11M [81]

LacI tetramer and reporter operator
(12) Dissociation rate between koff 7.4× 10−3s−1 [80]

LacI tetramer and reporter operator
(13) Association rate between kon 7.4× 108M−1s−1 (11) and (12)

LacI tetramer and reporter operator
(14) Dissociation constant between Kd3 1.8× 10−12M [81]

LacI tetramer and client operator
(15) Dissociation rate between k′off 9× 10−4s−1 [81]

LacI tetramer and client operator
(16) Association rate between k′on 5× 108M−1s−1 (14) and (15)

LacI tetramer and client operator
Constants in simulation

(17) LacI tetramer expression per gene κt 20 [75]
(18) Association rate ratio between ζ3 0.67 (13) and (16)

client and reporter sites
(19) Dissociation rate ratio between η3 0.12 (12) and (15)

client and reporter sites
(20) Time-scale separation between Γ 18 (5) and (12)

decay and dissociation rates
(21) Non-dimensionalized κD3 7× 10−5 (2), (6) and (13)

dissociation constant
(22) Client to circuit plasmids ratio λ 2.5 clients per circuit Table 4.4
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and therefore the intracellular concentration of free atc quickly equilibrates with the

extracellular concentration of atc [84].

Table 4.2: Reactions for input model (Section 4.2.1).

Description Reaction

Expression of TetR monomer (M) ∅ k+−−→M

Dimerization of TetR monomers to obtain a dimer (D) 2 M
b1−⇀↽−
b2
D

TetR monomer degradation M
δ−→ ∅

Degradation of one monomer of TetR dimer D
2δ−→M

First atc (i) binding to TetR dimer (complex D1 formation) D + i
ka1−−→ D1

Degradation of one monomer of TetR dimer D1
2δ−→M

Second atc binding to TetR dimer (complex D2 formation) D1+i
ka1−−→D2

Degradation of one monomer of TetR dimer D2
2δ−→ M

Operator tetO (O) binding to first TetR dimer (complex C4 formation) O+D
ka2−−⇀↽−−
kd2

C4

Degradation of one monomer of TetR dimer C4
2δ−→O+M

Operator tetO binding to second TetR dimer (complex C5 formation) C4+D
ka2−−⇀↽−−
kd2

C5

Degradation of one monomer of TetR dimer C5
2δ−→ C4+M

We assume further that the total amount of operator sites is constant via the

conservation law OT := O+C4 +C5. From these, one can obtain the following ODE

system

Ṁ = k+ − δM − 2b1M
2 + 2b2D + 2δD + 2δD1 + 2δD2 + 2δ(C4 + C5) (4.5)

Ḋ = b1M
2 − b2D − 2δD − ka1Di− 2δ(C4 + C5) (4.6)

Ḋ1 = ka1Di− 2δD1 − ka1D1i (4.7)

Ḋ2 = ka1D1i− 2δD2 (4.8)

Ċ4 = ka2(OT − C4 − C5)D − kd2C4 − ka2C4D + kd2C5 − 2δC4 + 2δC5 (4.9)

Ċ5 = ka2C4D − kd2C5 − 2δC5. (4.10)

Define the concentration of total amount of monomers of TetR to be RT = M +
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2D + 2D1 + 2D2 + 2C4 + 2C5. Note that the dynamics of RT are given by ṘT =

Ṁ + 2Ḋ + 2Ḋ1 + 2Ḋ2 + 2Ċ4 + 2Ċ5 = k+ − δRT and therefore the total amount of

TetR repressor at the steady state is R∗T = k+/δ, independent of the total amount of

operator sites OT or the inducer concentration i. To obtain the steady state solution

for the variables in the system, we set the left hand side of the equations (4.7-4.8)

to zero, to find the following expressions:

D1 =
ka1i

2δ + ka1i
D (4.11)

D2 =
ka1i

2δ
D1 =

(ka1i)
2

2δ (2δ + ka1i)
D. (4.12)

By setting the left hand side of equations (4.5-4.6) to zero and adding them with

weights 1 and 2, respectively, we obtain the equation

k+ − δM − 2δD + 2δD1 + 2δD2 − 2δ(C4 + C5)− 2ka1Di = 0. (4.13)

Recall our assumption that M � D which leads to M + 2D ≈ 2D. Also, recall

that k+ = R∗T δ. Define β2 := ka1/(2δ). Substituting (4.11-4.12) along with these

substitutions in (4.13) and solving the expression for D, we obtain

D =
RT/2− (C4 + C5)

1 + β2i
≈ RT/2

1 + (β2δ)i
, (4.14)

assuming that the total amount of TetR is much higher than the number of operators

(C4 + C5 < OT � RT ).

Define β3 := (kd2 + 2δ)/ka2. By setting the left hand side of equations (4.9-4.10),

one obtains the identity

C4 + C5 =
1 + β3D

−1

1 + β3D−1 + β3D−2
OT ,

from which we can deduce that the total amount of free promoters ptet to be

O =
β2

3D
−2

1 + β3D−1 + β2
3D
−2
OT . (4.15)
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From Table 4.1, we can calculate the values for β−1
2 = 2δ/ka1 = 10−9M = 1nM

and β3 = (2δ + kd2)/ka2 = 9.2pM.

Define β1 :=
RT

2β3

. Combining both expressions (4.14) and (4.15), one obtains the

expression

O(i) =
(1 + β2i)

2

(1 + β2i)2 + (1 + β2i)β1 + β2
1

OT , (4.16)

which is a monotonically increasing function of i with limi→∞O(i) = OT and O(0) =

OT (1 + β1 + β2
1)−1 ≈ 0, since β1 � 1. It is possible to calculate the Hill constant

through the response coefficient, as shown in [85]. In order to obtain that, note that

i0.9 =
RT

0.1β2β3

and i0.1 =
RT

2.5β2β3

, which gives n = 1.36. With these in hand, we

obtain the input Hill function

O(i) ≈ (i/i1/2)n

1 + (i/i1/2)n
.

In the simulations, we let u = i/i1/2 and employ

O(u) =
un

1 + un
, with n = 1.36. (4.17)

4.2.2 Circuit Model

The remainder of the circuit can be modelled by the chemical equations presented

in Table 4.3. To derive this model, the following assumptions were made. Since the

LacI repressor in dimer form bind to the DNA slower than its tetramer form [86].

Further, since the affinity of the tetrameric form is strong enough so that LacI is found

in vivo essentially in its tetrameric form [87], we assume that only tetramers bind

to the DNA. Additionally, free LacI monomers are present in insignificant quantities

[88] and the affinity between LacI monomers to form dimers is very strong [86].

Based on these assumptions, we model the formation of LacI tetramers as a one step

expression system from the promoter.
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Table 4.3: Reactions for circuit model (Section 4.2.2).

Description Reaction

Expression of LacI (tetramer represented by L) O
α1−→O+L

LacI decay L
δ−→ ∅

LacI binding to client operator (p) to form complex C1 L+p
k′on−−⇀↽−−
k′off

C1

Decay of LacI bound to client operator C1
δ−→ p

LacI binding to reporter operator (p0) to form complex C2 L+p0

kon−−⇀↽−−
koff

C2

Decay of LacI bound to reporter operator C2
δ−→p

GFP expression p0
α2−→p0+GFP

GFP decay GFP
δ−→ ∅

Let pT denote the concentration of the total amount of reporter operator sites

and λ denote the ratio between the amount of client operator sites and the amount

of reporter operator sites. Assuming that the total concentration of these promoters

are constants, i.e., p0 + C2 = pT and p + C1 = λpT with pT and λ constants, the

resulting ODE model is given by

L̇ = α1O(u)− δL− k′onL(λpT − C1)− kon(pT − C2) + k′offC1 + koffC2 (4.18)

Ċ1 = k′onL(λpT − C1)− δC1 − k′offC1 (4.19)

Ċ2 = konL(pT − C2)− δC1 − koffC2 (4.20)

Ġ = α2(pT − C2)− δG. (4.21)

In this model, the isolated system is obtained by setting λ = 0 and O(u) is the

expression given in (4.17). Notice that due to the presence of the GFP reporters,

our circuit already suffers from a baseline retroactivity.

In order to extract qualitative data from this model, we nondimensionalize the

system using the transformations (`, c1, c2, g) = (L,C1, C2, G)/pT . We will also de-
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fine the nondimensional time variable by τ := δt. Let the dissociation constant be

Kd3 := koff/kon, and define the nondimensional constants Γ := koff/δ, κD3 := Kd3/pT ,

η3 := k′off/koff, ζ3 = k′on/kon and κt := α1/(δpT ). With these, one obtains the nondi-

mensional system

d`

dτ
= κt

un

1 + un
− `− Γζ3

κD3

`(λ− c1)− Γ

κD3

`(1− c2) + η3Γc1 + Γc2 (4.22)

dc1

dτ
= −c1 − η3Γc1 +

Γζ3

κD3

`(λ− c1) (4.23)

dc2

dτ
= −c2 − Γc2 +

Γ

κD3

`(1− c2) (4.24)

dg

dτ
= −g + α2(1− c2). (4.25)

Here, pT is the concentration of circuit plasmids in the cell while the parameter

λ gives the ratio between the concentrations of client and the circuit plasmids. Note

that at steady state, the total amount of tetramers is `∗T := `∗ + c∗1 + c∗2 = κt.

Table 4.1 contains the values employed in the simulations. With the exception of

the rate represented by η3Γ, the rates related to association/dissociation interactions

are at least one order of magnitude faster than the expression and decay reactions.

Therefore, the retroactivity effect from the reporter is well modelled by the reduced

model (2.8) while the retroactivity effect from the clients is well modelled by the

degenerate model (2.19).

4.3 Single container experiments

4.3.1 Growth Conditions and Sample Preparation

The media used in the experiment is the M9 media supplemented with 0.4%

glucose, 0.2% casamino acids, 40mg/l tryptophan, 100µg/ml ampicilin, and 34µg/ml

chloramphenicol. Cells were inoculated into fresh media from plate or freezer stocks,

and incubated at 30oC until mid-log phase (spectrophotometry reading of 0.15 at
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600nm with 1cm pathlength). At that point the cells were quickly washed by pelleting

and resuspension in fresh media, and diluted 7/8-fold. Care was taken to preserve the

cells in log phase. These diluted cultures were then placed in a plate reader/incubator

(Synergy MX) at 30oC and mild agitation in all experiments. Doubling time under

these conditions was of approximately 100min. In longer experiments, cells were kept

in mid-log phase via dilutions. No impact on the growth rate was observed due to

dilutions, addition or removal of anyhdrotetracycline (atc).

4.3.2 Dynamic effects of retroactivity: Induction.

To measure the effect of retroactiviy in an induction experiments, cells prepared as

per Section 4.3.1 were grown two generations in the plate reader, at which point cells

were induced. Figure 4.2(a)-(b) shows the response of GFP to sudden application

of atc for both the isolated and connected systems. The effect of retroactivity is

basically a time delay. This can be qualitatively explained by recalling that the

value of the dissociation constant kd for LacI binding to its operator sites is extremely

small and that the binding reactions are much faster that protein production and

decay (see the Appendix for the exact values). In fact, LacI is sequestered by the

operator sites as soon as it is produced. Only when the operator sites are filled, any

additional LacI produced is free to take part in other reactions, and, in particular,

in those of the reporter. Hence, before LacI can rise (GFP can decrease), there is a

time delay, which is the time it takes for LacI to fill the operator sites. This time

delay, monotonically increases with the relative amount λ of these sites. The reader

is referred to next section for a precise mathematical explanation.

Figure 4.2(c) shows the mean values of the response times and their standard

deviation for isolated and connected systems. The response time of the connected

system increases in average by 40% with respect to the one of the isolated system.
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Figure 4.2: Retroactivity delays the response to sudden input stimulation. (a) Simulations
from the model in equations (4.4). The units in this simulation are nondimensionalized. Parameters
used in this simulation are given in the Appendix. (b) Experimental results show good agreement
with the model. Retroactivity increases the response time to induction: upon the addition of
1.9µM atc, the average half-life of GFP (t50) post-induction goes from 85±2min to 122±14min
(43% change). (c) Response times are to 1.9 µM of atc. The slow response mainly occurs in the
early stages of induction and can be quantified by calculating the t20, the time it takes to remove
20% of the GFP. The t20 presents an average delay of 40min, slightly higher than the 37min delay
in the half-life value (t50). (d) Higher levels of atc can decrease the t50, but the delay caused by
retroactivity persists (see the Appendix for more data).

The minimal and maximal increases are of 24% and of 64%, respectively. Figure

4.2(d) shows that increasing the amount of atc, the response times for both isolated

and connected systems decrease. However, the delay caused by retroactivity per-

sists. This implies that the dynamic effect of retroactivity cannot be removed nor

attenuated by choosing higher input values, that is, it cannot be pre-compensated.

The desired speed of response of LacI (the one of the isolated system) cannot be
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Figure 4.3: Retroactivity speeds up the response to sudden removal of input stimulation.
(a) Simulation of the model in equation (4.4) illustrates the effect of retroactivity on the response
to removal of atc. The atc input is removed at time zero. (b) Experimental results validate the
model prediction. The connected system shows an anticipation, with respect to the isolated system,
of about 50min in the response to removal of inducer from cultures pre-induced with 3µM atc for
400min. Specifically, the t50 went down from 403±9min in the isolated system to 355±15min in
the connected system. The dotted lines show the maximal unrepressed steady state values of GFP
for connected and isolated systems. (c) The increase in the speed of response occurs mainly in the
early stages, indicating a time delay between the connected and isolated systems.

achieved by selecting different input values in the connected system. In order to

keep the speed of response of the output in the connected system close to the one of

the isolated system, feedback control is required. Through feedback control, one can

design circuits that are effectively insulated from retroactivity and behave the same

whether connected or isolated [13].
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4.3.3 Dynamic effects of retroactivity: De-induction.

To measure the response to wash, cells were induced with 3uM atc. After 4

generations (400 minutes), the inducer was removed by pelleting and resuspension

of the cells in fresh media. Figure 4.3 shows the response of GFP to sudden removal

of atc for both the isolated and connected systems.

Surprisingly, the connected system responds faster (by about 50min) than the

isolated system when atc is suddenly removed. This apparently counter-intuitive

result can be explained as follows. In the isolated system, the only mechanism by

which free LacI can be removed is through dilution and/or degradation. In the con-

nected system there is an additional mechanism by which free LacI can be removed.

Since the complex C2 of LacI bound to operator sites also dilutes but the operator

sites themselves do not dilute or degrade, free LacI can be removed by binding to

the operator sites. The continuous dilution of LacI in complexes C2 guarantees the

presence of free operator sites during the de-induction, which can in turn binds to

more free LacI. If the operator sites were protecting LacI from degradation and the

system had no dilution (no growth), we should have observed a slower response in

the connected system just like in the induction experiment.

Hence, because of retroactivity a sign-sensitive delay arises: when the input stim-

ulation is suddenly applied, the connected system presents a delay of about 40%.

By contrast, when the input stimulation is suddenly removed, the connected system

presents an anticipation of the response of about 50min.

4.3.4 Effects of retroactivity on the steady state transfer curve.

To obtain the steady state transfer curve, we performed a series of experiments in

which the steady state value of GFP was recorded in response to different constant
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Figure 4.4: Retroactivity increases the point of half maximal induction u50. (a) Normal-
ized simulation results obtained from the model in equations (4.4). The parameter values for the
simulations are given in the Appendix. (b) Experimental data showing an increase of 30% of the
u50. Experimental data was fitted using non-linear regression on a repression-type Hill function
model.

values of atc.

In each experiment, cells were kept in the plate reader for one generation at which

point different levels of atc were added to the individual wells. Cells reached steady

state after approximately one generation. The steady-state level was preserved for

at least another generation, at which point the cells moved into a late log phase.

Results are shown in Figure 4.4 (see the following section for the full time traces).

The shape of the transfer curve is well characterized by the point of half maximal

induction, called u50, and by the apparent Hill coefficient nH . The u50 corresponds

to the value of the input stimulation for which the output response is 50% of the

maximal. As seen in Figure 4.4, the experimental data showed an increase of about

30% in the u50, going from 1.08±0.02µM in the isolated system to 1.38±0.03µM in the

connected system. There was no significant change in the apparent Hill coefficient nH

(9.7±1.3 for the isolated system and 9.1 ± 1.5 for the connected system). When the

input stimulation atc increases, LacI is produced but it is immediately sequestered

by the high affinity operator sites, so that more atc must be applied in order to have
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enough LacI that is available for the reporter system.

Note that for values of atc exceeding 1.9 µM, the steady state value of the cir-

cuit is not appreciably changed by retroactivity while the temporal dynamics is

substantially impacted by retroactivity. This illustrates a concrete case in which

understanding the extent of modularity requires studying the temporal dynamics.

The increase of the u50 can lead to fairly unpredictable results when the module

is connected. In fact, based on the response of the module characterized in isolation

as seen from the black plot of Figure 4.4(b), one expects that the maximal change

of the output y is obtained by changing the input u about 1.08µM. Hence, one

would design the system upstream of the transcription module so that it outputs

u in a range about 1.08µM to lead to the maximal change in y. This process is

sometimes referred to as input/output matching. Unfortunately, once y connects

to downstream clients, a change in the input u about 1.08µM leads to almost no

response in y because the true transfer curve is the red one of Figure 4.4(b). This

problem can be overcome by accounting for the increase of u50 due to retroactivity

when one performs input/output matching. This is in net contrast with the dynamic

effects of retroactivity, which cannot be removed or attenuated by adjusting the input

stimulation in the connected system.

4.4 Supporting data

4.4.1 Strains and Plasmids

In all experiments, the strain employed was the strain KL-323 [89], obtained from

the Coli Genetic Stock Center at Yale University [90]. This strain was chosen due to

its mutation in the lacI and recA genes. The absence of endogenous LacI is desirable

to prevent cross talk with the LacI expressed by our circuit. The mutation in the

recA gene increases the stability of our circuit by preventing recombination between
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homologous regions on the gene and on the plasmids. Full genotype of this strain is

given by a K-12 with mutations F-, secA209(aziR), pro-48, lacZ118(Oc), lacI22, ,

trpA9605(Am), his-85(Am), gyrA19(NalR), recA1, rpsL171(strR), metE70, trpR55.

The circuit plasmid, labeled pRET5, was assembled by inserting 3 genes in a

pACYC184 plasmid. The genes inserted were the reporter gene Plac:gfp-lva, the out-

put gene Ptet:lacI-lva and Pconst:tetR-lva were built from parts obtained from either

the Registry of Biological Parts or amplified from the E. coli K-12 genome. Parts

were then sequentially inserted into the backbone in a manner that preserved the

chloramphenicol resistance but disrupted the tetracycline resistance gene. Sequen-

tial inclusion of genes allowed phenotypical screening of the construct. Expression of

tetR-lva is controlled by promoter J23114 (constitutive) and ribossome binding site

(RBS) B0034 [75]. Expression of lacI-lva is controlled by promoter R0040 (Ptet) and

RBS B0033. Expression of gfp-lva is controlled by promoter sequence that regulates

expression of LacZ in wild type cells.

The plasmid employed to emulate loads, labeld pUCblk, is a plasmid derived

from a pUC18 plasmid in which the entire lacZα gene was removed and a by a LacI

symmetric operator site (Osym) [81] was inserted. The control plasmid is a pUC18

plasmid in which the lacZα gene was simply removed. In both plasmids, the bla gene

which confers resistance to ampicilin was preserved. Both plasmids were obtained as

a courtesy from Prof. Alexander J. Ninfa Lab at University of Michigan, Ann Arbor.

4.4.2 Dataset from retroactivity experiments

In order to show the reproducibility of the results obtained in our dynamic ex-

periments, we illustrate in Figures 4.6 and 4.7 the variability measured in our data.

Figure 4.6(a) shows the variance in t50 values among different clones of the isolated

and connected systems. In order to obtain this data, four distinct colonies of each
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Figure 4.5: Diagram of the plasmids containing the circuit (pRET5) and load (pUCop).
Details of assembly are given in the text. Full DNA sequence is given in the Appendix.
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Figure 4.6: Variability of the results for the induction experiments. (a) This plot shows the
t50 for four clones of isolated and connected systems when induced with 2.0µM atc. (b-d) Each plot
shows point wise average of data coming from three different induction experiments with different
concentrations of atc. The error bars represents one standard deviation around the average.

system (isolated and connected) were picked and then induced with 2.0µM atc. Fig-

ures 4.6(b-d) illustrate the significance of the delay in response to induction due to

the presence of clients. In each plot, we show a point wise average along with error

bars representing one standard deviation around the average. Figure 4.7 illustrates

the significance of the anticipation of the response in wash experiments. In this

plot we show a point wise average along with error bars representing one standard

deviation around the average.

Figure 4.8 shows samples of time courses of experiments used to obtain the steady

state data. Note that the amount of atc required to obtain full induction of LacI

(and full removal of GFP) is higher in the connected system. In order to obtain the
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Figure 4.7: Variability of the results for the wash experiments. This plot shows point wise
average of data coming from six different de-induction (wash) experiments. The error bars represent
one standard deviation around the average.

statistics shown in the manuscript, this experiment was repeated three times.

4.4.3 Plasmid Copy Number Quantification

In order to obtain an estimation of the copy number of the circuit plasmids and of

the client and blank plasmids, we performed (1) a cell counting assay and (2) a den-

sitometry analysis with plasmid DNA extracted from samples. In both experiments,

samples were in the same conditions as the experimental ones.

To obtain the cell density in the samples, samples were serially diluted and plated

and the plates with isolated colonies were counted. Cell density was obtained by

employing linear regression over the data obtained from this procedure. The resulting

cell density obtained was of 3.59± 0.08× 107cells/ml in a culture presenting OD 0.1

at 600nm through a 1cm path length.

Since, as shown in [91], miniprep kits methods of DNA extraction are capable of

providing consistent yields over a wide range of vector length and total mass, plasmid

DNA was extracted employing a commercial kit (Qiagen Miniprep Kit). Samples

were concentrated by 40-fold into 250µl suspensions prior to lysis. This procedure
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Figure 4.8: Sample of time courses used to obtain data for steady state experiments.
These plots illustrate the evolution of the induction response for different levels of atc in the iso-
lated and connected systems. Cells were monitored until a steady state value was reached. This
experiment was reproduced three times in order to obtain the steady state data results shown in
the manuscript.

provided us with few hundred nanograms of mixture of the pACYC184-based circuit

and the pUC18-based client plasmids in circular form. Since both plasmids contain a

single EcoRI restriction site, the entire DNA was linearized by digestion with EcoRI-

HF (NEB) to prevent over/underestimation due to DNA trapping [92]. The two DNA

plasmids were then separated through electrophoresis in 1.2% agarose gel, along with

DNA standards of sizes comparable to the length of the linearized vectors. The mass

of DNA sample was then estimated through interpolation. Figure 4.9 shows data

related to the densitometric analysis and the linear regression curve for interpolation.

The mass obtained was then divided by the molecular weight of the DNA to

obtain the copy number of DNA. Additionally, the copy number was divided by the

number of cells from which the sample was extracted in order to obtain the number

of plasmids per cell. The results are given in Table 4.4.
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Figure 4.9: Densitometric fitting used to estimate DNA mass from samples. Blue points
show the standards, the dashed line gives the results of linear regression. (a) Mass estimation of
circuit plasmid. The red points are samples of circuit plasmid obtained from isolated and connected
systems, with the isolated system having higher mass. Since the vector length of the plasmid circuit
is 6.6kb, standards employed in the linear regression had length ranging around 6-8kb. (b) Mass
estimation of client plasmid. The red points are samples of blank plasmid from the isolated system
and client plasmid from the connected system, with the blank having higher mass. Since the vector
length of these plasmids is 1.7kb, the standards employed in the linear regression had length ranging
around 1-3kb.

Table 4.4: Results from plasmid quantitation. Second and third columns relate to amounts
found in 250µl of 40x concentrated sample. The ratio given is between the client plasmid and circuit
plasmid amounts, represented in the models by λ.

System DNA (ng) Plasmids OD 600 Copy number
(moles) (1cm) (plasmids/cell)

Isolated ratio: 2.4
circuit 162 2.7× 10−14 0.216 28.8
client (blank) 102 9.1× 10−14 0.216 70.58
Connected ratio: 2.9
circuit 102 2.3× 10−14 0.188 20.8
client 77 6.8× 10−14 0.188 61.2



CHAPTER V

Conclusion

5.1 Summary of Results

In this dissertation we have introduced analytical tools to evaluate the effect

of retroactivity on biomolecular systems that employ a transcription factor as an

output.

The results show that the impact of retroactivity to downstream load can alter

both the steady state behavior and the dynamic response. The impact depends

on whether or not the transcription factor is stabilized when bound to the DNA.

When the bound transcription factor is protected from decay, retroactivity slows its

dynamics and does not impact the steady state behavior. In contrast, if the decay

rate of bound protein is the same as of the unbound protein, retroactivity changes the

steady state response, and presents a sign-sensitive dynamic response: it responds

faster to de-induction and slower to induction experiments. We also discuss these

effects can be included in the design of a biomolecular oscillator.

We also provide a framework to design insulation devices based on a separation

of timescales. Through a nested application of Tikhonov’s theorem, we provide

structural and stability requirements that enable fast biomolecular systems to act as

an insulation devices. A short analysis of the impact of large timescale separations

118
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on the stochastic behavior is also provided. This analysis shows that while the use

of large gains does not change the signal-to-noise ratio, it may change the frequency

content of the noise.

We finally provide experimental validation of some of the analytical predictions

present in this paper. Changes in the steady state response and in the dynamic

behavior observed were consistent with the model provided for the case in which

transcription factors bound to DNA decays at the same rate as the unbound ones.

This can be explained by the fact that in growing E. coli cells, dilution is an important

factor in the decay rate.

5.2 Discussion

The core mechanism for the retroactivity effects studied here is the sequestration

of output signals by downstream loads. As such, the results found in this work

should be contrasted with other studies related to sequestration effects. Results

given in these studies focus on changes in the steady state with special attention

given to the effect of “inhibition ultrasensitivity” [28, 29]. As a result, these studies

employ large numbers of sequestering elements is large with a very strong affinity

to the signalling molecules. Given our application, we focus on how sequestration

presents itself in synthetic biology circuits. Therefore the number of sequestration

elements is not taken to be large. As a result changes on the steady state behavior

were, while significant, modest. No change significant change in sensitivity and a

30% change in the apparent dissociation constant was observed. Changes on the

dynamic behavior on the other hand were significant, even with amounts of load

consistent with regular synthetic biology usage.

This change in the dynamic behavior is important because it can disrupt the
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timing of biomolecular circuits and cause system malfunction. We exemplify this by

showing how the presence of load can alter periodic behavior of an activator repressor

clock. It has been shown before that DNA binding sites can tune the behavior of a

clock by changing its steady state behavior [45]. Here we present a method in which

the changes are made exclusively by tuning the timescale separation employing DNA

sites. This study also illustrates how to model retroactivity from transcription factors

in complex systems by employing singular perturbation to reduce the additional

dynamics from this effect. A method to measure the effect retroactivity to any

output in complex gene networks inspired in Norton/Thevenin’s theorem is given in

[19].

Insulation devices for biomolecular systems were first suggested in [13]. The

paradigm used, employing large amplification and feedback, was inspired in buffers

for electrical circuits based on operational amplifiers. We generalize these results by

studying conditions under which the separation of timescales is sufficient for insu-

lation. The stability requirements in this study were based on Tikhonov’s theorem.

An approach to an analysis of insulation devices based on non-linear contraction the-

ory can be found in [18]. While no insulation device in vivo several results showing

insulation in vitro has been presented [26, 24, 25].

5.3 Future Work

The analysis of stochastic behavior of the circuits presented here can be expanded.

Understanding how retroactivity affects the frequency content of the noise and study-

ing the noise propagation through realization of insulation devices are important next

steps. An experiment suggested by our results is tuning activator repressor clocks

employing DNA binding sites. Due to the effect of the growth rate in how retroac-
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tivity impacts the dynamics, we believe the appropriate system to test this approach

are clocks in slow growing cells such as [39].

Another extension is to chart the effects of retroactivity on transcription factors

used in synthetic biology. Transcription factors different from LacI may present dif-

ferent affinities and different decay properties. The resulting catalog would provide

an additional parameter to choose the adequate transcription factors as output sig-

nals, in a manner similar to how fan-out specifications are employed in the design of

digital circuits.
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APPENDIX A

Mathematical derivations

A.1 Linearization of systems with a retroactivity term

Consider the dynamic system in the following form

ẋ = S(x)[k + f(x)]. (A.1)

Consider the input to be a sum of a bias with a perturbation: k(t) = k̄ + k̃(t).

Consider also x̄ the steady state obtained when the input is k(t) = k (which is

assumed to exist), i.e., k̄ + f(x̄) = 0. Let y := x − x̄ be the output perturbation

of the system, the linearization goal is to find how it responds to input k̃. Let

Q(x) =
df(x)

dx
and consider the exact and the truncated Taylor expansion around x̄:

f(x) = f(x̄) + f ′(y) and f ′(y) = Q(x̄)y +
∞∑
i=2

1

i!

dif(x)

dxi

∣∣∣∣
x=x̄

yi (A.2)

Rewrite the ODE as follows:

ẏ = ẋ = S(x)[k(t) + f(x)] = S(x̄+ y)[k̄ + k̃(t) + f(x̄) + f ′(y)]

ẏ = S(x̄+ y)[k̃(t) + f ′(y)] = S(x̄+ y)k̃(t) + S(x̄+ y)f ′(y)

(A.3)

The linearization of this system around x̄ then becomes

ẏ = S(x̄)k̃(t) +

(
dS(x̄+ y)

dy

∣∣∣∣
y=0

f ′(0) + S(x̄)
df ′(y)

dy

∣∣∣∣
y=0

)
y

ẏ = S(x̄)k̃(t) + S(x̄)Q(x̄)y

(A.4)
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The dynamic for the output as a function of an input with bias k̄ and perturbation

k̃ will be then x(t) = y(t) + x̄. The transfer function G(s) of this system from k̃ to

y is therefore

G(s) =
S(x̄)

s− S(x̄)Q(x̄)
, (A.5)

which gives us a “DC gain” G(0) = −Q(x̄)−1 and a pole at p = S(x̄)Q(x̄).

A.2 Model of Hill functions

In this section we identify the Hill function approximations for the expression of

proteins controlled by (i) an activator protein and (ii) a repressor and an activator

protein. Consider first the expression of protein X whose expression rate is regulated

by an activator protein A via the promoter pR. These processes can be modelled by

the following chemical reactions

pR +mA
ka1−−⇀↽−−
kb1

C1

C1
κ2−→ C1 +X

pR
κ4−→ pR +X,

(A.6)

in which κ2 is the expression level of the promoter bound to A, κ4 is the basal

expression level of the promoter, ka1 and kb1 are the association and dissociation

rates of the promoter to A respectively and m models the cooperative binding of

the activator protein. Assuming that there is a conservation of the total amount

of promoter sites, modelled by the expression pR + C1 = pR,T , the expression level

from this promoter can be modelled by g2(A) = κ2C1(A) + κ4(pR,T − C1(A)). The

quasi-steady state value of C1 can be obtained by identifying the equilibrium of the

following ODE

Ċ1 = ka1(pR,T − C1)Am − kb1C1. (A.7)
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Defining Km1 = m
√
kb1/ka1, we obtain

g2(A) = κ2pR,T
Am

Am +Km
m1

+ κ4pR,T
Km
m1

Am +Km
m1

=
K2A

m +K4K
m
m1

Am +Km
m1

, (A.8)

in which K2 := κ2pR,T and K4 := κ4pR,T .

Consider now the expression of a protein X whose expression rate is regulated

by an activator protein A as well as by repressor protein R via the promoter pA.

We will assume that the binding is competitive. Expression can be modelled by the

following chemical reactions

pA +mA
ka1−−⇀↽−−
kb1

C1

pA + nR
ka2−−⇀↽−−
kb2

C2

C1
κ1−→ C1 +X

pA
κ3−→ pA +X,

(A.9)

in which κ1 is the expression level of the promoter bound to A, κ3 is the basal

expression level of the promoter, ka1 and kb1 are the association and dissociation rates

of the promoter to A, respectively, ka2 and kb2 are the association and dissociation

rates of the promoter to R, respectively, and m and n model the cooperative binding

of the activator and repressor proteins, respectively. We assume that the repressor

activity is perfect and therefore no expression can occur from the repressed promoter.

Assuming that there is a conservation of the total amount of promoter sites, modelled

by the expression pA+C1 +C2 = pA,T , the expression level from this promoter can be

modelled by g1(A,R) = κ1C1(A)+κ3(pA,T −C1(A)−C2(R)). The quasi-steady state

value of C1 and C2 can be obtained by identifying the equilibrium of the following

ODE

Ċ1 = ka1(pA,T − C1 − C2)Am − kb1C1

Ċ2 = ka2(pA,T − C1 − C2)Rn − kb2C2

(A.10)
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Defining Km1 = (kb1/ka1)1/m and Km2 = (kb2/ka2)1/n, we obtain the expression

g1(A,R) = pA,T
κ1K

n
m2A

m + κ3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n

(A.11)

=
K1K

n
m2A

m +K3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n
, (A.12)

in which K1 := κ1pA,T and K3 := κ3pA,T .

A.3 Nondimensionalization of the activator repressor clock

In this section, we identify a nondimensional model of the activator repressor clock

having loads to activator and repressor, given in Figure 2.4d. The association and

dissociation between transcription factor A and R and their respective additional

binding sites qA and qR are model by the following dynamics

qA +mA
k′a1−−⇀↽−−
k′b1

D1 (A.13)

qR + nR
k′a2−−⇀↽−−
k′b2

D2. (A.14)

The model for this system can be obtained by adding the binding dynamics to the

model given in [36] for the activator-repressor clock as

Ȧ = −δAA+ g1(A,R) +mk′b1D1 −mk′a1A
m(qA,T −D1)

Ṙ = −δRR + g2(A) + nk′b2D2 − nk′a2R
n(qR −D2)

Ḋ1 = −k′b1D1 + k′a1A
m(qA,T −D1)

Ḋ2 = −k′b2D2 + k′a2R
n(qR,T −D2),

(A.15)

in which qA,T := qA + D1 and qR,T := qR + D2 model the total amount of DNA

bindings sites in the system, δA and δR model protein decay (due to either dilution

or degradation) and functions f1 and f2 model expression rates and take the form of

the standard Hill functions derived on Section A.2.

g1(A,R) =
K1(A/Km1)m +K3

1 + (A/Km1)m + (R/Km2)n
and g2(A) =

K2(A/Km1)m +K4

1 + (A/Km1)m
, (A.16)
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in which K1 and K2 are the maximal expression rates, K3 and K4 represent the

basal expression, Km1 and Km2 is related to the affinity between the proteins and

their respective binding sites and m and n are the Hill coefficients related to the

multimerization of activator and repressor proteins, respectively. Define G1 := k′b1/δA

and G2 := k′b2/δR to be non-dimensional constants modelling the timescale difference

between complex dissociation and transcription factor degradations rates. Define

additionally K ′m1 := m
√
k′b1/k

′
a1 and K ′m2 = n

√
k′b2/k

′
a2 as the apparent dissociation

constant as defined in [51].

From this system, define the nondimensional variables a := A/Km1, r := R/Km2,

d = D1/K
′
m1 and d2 = D2/K

′
m2. Let σ1 = K ′m1/Km1 and let σ2 = K ′m2/Km2 describe

the difference in affinity of the transcription factor to the promoter in the circuit or

the additional DNA load. The differential equation is then reduced to

ȧ = −δAa+
β1a

m + β2

1 + am + rn
+mG1δAσ1d1 −mG1δAσ

(1−m)
1 am(q̄A − d1)

ṙ = −δRr +
β3a

m + β4

1 + am
+ nG2δRσ2d2 − nG2δRσ

(1−n)
2 rn(q̄R − d2)

ḋ1 = −G1δAd1 +G1δAσ
−m
1 am(q̄A − d1)

ḋ2 = −G2δRd2 +G2δRσ
−n
2 rn(q̄R − d2),

(A.17)

in which β1 := K1/Km1, β2 := KA/Km1, β3 := K2/Km2, β4 := KR/Km2, q̄A =

qA,T/K
′
m1 and q̄R = qR,T/K

′
m2.

From system (A.17), one can obtain non-dimensional models for the various sys-

tems described in Section 2.3. In particular, to obtain (2.23), q̄R = q̄A = 0; in (2.27)

q̄R = 0 and σ1 = 1; in (2.36) q̄A = 0 and σ2 = 1 and finally in (2.42) σ1 = σ2 = 1.
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A.4 Conditions for a unique and unstable equilibrium of an activator
repressor clock

We next establish parameter conditions for which we can guarantee that there is

a unique equilibrium of system (2.23).

Let β̄1 = β1/δA, β̄2 = β2/δA, β̄3 = β3/δR, β̄4 = β4/δR and let

f(a, r) := −δAa+ f1(a, r) and g(a, r) := −δRr + f2(a). (A.18)

Then, the nullclines are given by f(a, r) = 0 and g(a, r) = 0, which define r as a

function of a in the following way:

f(a, r) = 0 =⇒ r =

(
β̄1a

m + β̄2 − a(1 + am)

a

)1/n

(A.19)

g(a, r) = 0 =⇒ r =
β̄3a

m + β̄4

1 + am
. (A.20)

Proposition 7. If m = 1, system (2.23) admits a unique stable equilibrium point.

If m = 2, system (2.23) admits a unique unstable (not locally a saddle) equilibrium

point if the following parameter relations are verified

0 < β̄2 ≤
β̄3

1

27
, L ≤ β̄3A

2
L + β̄4

1 + A2
L

, l ≥ β̄3A
2
l + β̄4

1 + A2
l

, (A.21)

and

δR
∂f1/∂a

∣∣∣∣
(a∗,r∗)

− δA < 1, (A.22)

in which

Al =
β̄1

6

(
1− (cos(φ/3)−

√
3sin(φ/3))

)
(A.23)

AL =
β̄1

6
+
β̄1

3
cos(φ/3) (A.24)

φ = atan

(√
27β̄2(β̄3

1 − 27β̄2)
β̄3

1

2
− 27β̄2

)
, (A.25)
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l =
n

√
β̄1A2

l + β̄2 − Al(1 + A2
l )

Al
,

L =
n

√
β̄1A2

L + β̄2 − AL(1 + A2
L)

AL
.

Proof. The Jacobian at S∗ := (a∗, r∗) is given by the matrix

J(S∗) =

 ∂f
∂a

∂f
∂r

∂g
∂a

∂g
∂r
,

 ,

in which the partial derivatives are computed at the equilibrium point S∗. For an

unstable node or spiral to occur, it is sufficient that

(i) tr(J(S∗)) > 0 and (ii) det(J(S∗)) > 0.

Case 1: m = 1. The nullcline f(a, r) = 0 has always negative slope, and therefore

we always have only one equilibrium point. Furthermore, expression (A.19) with

m = 1 leads to

dr

da

∣∣∣∣
f(a,r)=0

= −r
−1+1/n

n

a2 + β̄2

a2
< 0.

Since dr/da|f(a,r)=0 = −(∂f/∂a)/(∂f/∂r) by the implicit function theorem and since

∂f/∂r < 0, it must be that ∂f/∂r < 0. As a consequence, tr(J(S∗)) < 0 because

∂g
∂r

= −δR < 0. To show that both eigenvalues of J(S∗) are negative, we are left to

show that det(J(S∗)) > 0. This is readily seen to be true as we have that

dr

da

∣∣∣∣
g(a,r)=0

= −∂g/∂a
∂g/∂r

>
dr

da

∣∣∣∣
f(a,r)=0

= −∂f/∂a
∂f/∂r

< 0,

thus implying that ∂f
∂a

∂g
∂r
− ∂f

∂r
∂g
∂a

= det(J(S∗)) > 0.

Case 2: m = 2. There is only possible configuration of the nullclines in which (a)

we have a unique equilibrium and (b) the nullclines are intersecting with the same

positive slope. The plots imply that

dr

da

∣∣
g(a,r)=0 = −∂g/∂a

∂g/∂r
>
dr

da

∣∣
f(a,r)=0 = −∂f/∂a

∂f/∂r
> 0,
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and thus that ∂f
∂a

∂g
∂r
− ∂f

∂r
∂g
∂a

= det(J(S∗)) > 0. By relations (A.18), we have that

∂g/∂a = ∂f2/∂a, ∂g/∂r = −δR, ∂f/∂a = (−δA + ∂f1/∂a), and ∂f/∂r = −|∂f1/∂r|.

If at the equilibrium point S∗ the nullcline f(a, r) = 0 has negative slope, S∗ is

stable, as we have shown for the case m = 1. Therefore, we examine what additional

conditions should be enforced to guarantee that the equilibrium point is unstable

when the nullclines intersect both with positive slopes. Since condition (ii) is verified

by the condition that the nullclines cross with positive slopes, we are left to provide

conditions for which (i) is also true. To have that tr(J(S∗)) > 0, we require that

(∂f1

∂a
− δA)− δR > 0, which is verified if condition (A.22) holds.

We finally determine sufficient conditions on the parameters for having one cross-

ing and such that the slopes of the two nullclines at the crossing are both positive

(and thus (ii) is verified). This is performed by simple geometric considerations.

The values Al and AL of the location of the minimum and maximum of f(a, r) = 0

can be computed by computing the derivative with respect to A of expression

rn =
β̄1a

2 + β̄2 − a(1 + a2)

a

obtained by (A.19) and equating it to zero, as the square root function is monotone.

This way, we find a third order polynomial that has two positive roots if 0 < β̄2 ≤ β̄3
1

27
,

otherwise it has one positive and two complex roots. These roots are given by

relations (A.25). Thus, by looking at the same figure, one deduces that if conditions

(A.21) are satisfied, we have on equilibrium point only, and (ii) is verified.

For having one equilibrium point only, we require the activator basal transcription

rate, proportional to β̄2, to be sufficiently smaller then the maximal expression rate

of the activator, which is proportional to β̄1. Also, β̄2 must be non-zero. Also,

in case β̄1 >> β̄2, one can verify that AL ≈ β̄1/2 and thus L ≈ n
√
β̄2

1/4. As a
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consequence, conditions (A.21) require also that if β̄1 increases then so must do β̄3.

This qualitatively implies that the maximal expression rate of the repressor must be

larger than the maximal expression rate of the activator, when expressed in units of

the affinity constant. Finally, Al ≈ 0 and l ≈ n
√
β̄2/Al. As a consequence, conditions

(A.21) also imply that the smaller β̄2 becomes, the smaller β̄3 must be.

A.5 Proofs on stability of the slow manifolds found in the activator re-
pressor clock

Proposition 8. The stability of the slow manifold d1 = ψ1(y) defined by setting

ε = 0 in system (2.29-2.31) is locally exponentially stable.

Proof. The manifold d1 = ψ1(y) is the unique solution of the algebraic equation

g(y, d1) := −δAd1 + δA(y −md1)m(qT − d1) = 0.

Note that, since 0 ≤ d1 ≤ qT , 0 ≤ ψ1(y) ≤ qT .

To prove this proposition, we need to show that
∂g(y, d1)

∂d1

∣∣∣∣
d1=ψ1(y)

< 0 [47].

∂g(y, d1)

∂d1

= −δA −mδA(y −md1)m−1(q̄A − d1)− δA(y −md1)m.

Since g(y, ψ1(y)) = 0, y −mψ1(y) = m

√
ψ1(y)

q̄A − ψ1(y)
and therefore

∂g(y, d1)

∂d1

∣∣∣∣
d1=ψ1(y)

= −δA −mδA
(

ψ1(y)

q̄A − ψ1(y)

)m−1
m

(q̄A − ψ1(y))− δA
ψ1(y)

q̄A − ψ1(y)
< 0,

since 0 ≤ ψ1(y) ≤ q̄A for all values of y as shown above.

Proposition 9. The stability of the manifold d2 = ψ2(y) defined by setting ε = 0 in

system (2.37) is locally exponentially stable.

Proof. The proof of this result is similar to the proof of the previous proposition.

Here we must show that
∂h(y, d2)

∂d2

∣∣∣∣
d2=ψ2(y)

< 0 where the manifold d2 = ψ2(y) is the
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unique solution of equation

h(y, d2) := −δRd2 + δR(y − nd2)n(q̄R − d2) = 0.

Since 0 ≤ d2 ≤ q̄R, 0 ≤ ψ2(y) ≤ q̄R. Additionally, from the definition of the

manifold, y − nψ2(y) = n

√
ψ2(y)

q +R− ψ2(y)
. Therefore

∂h(y, d2)

∂d2

∣∣∣∣
d2=ψ2(y)

= −δR − nδR(y − nψ2(y))n−1(q̄R − ψ2(y))− δR(y − nψ2(y))n

= −δR − nδR
(

ψ2(y)

q̄R − ψ2(y)

)n−1
n

(q̄R − ψ2(y))− δR
ψ2(y)

q̄R − ψ2(y)
< 0.

Proposition 10. The stability of the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) defined by

setting ε = 0 in system (2.43) is locally exponentially stable.

Proof. Define g(y1, d1) := −δAd1 + δA(y1 − md1)m(q̄A − d1) = 0 and h(y2, d2) :=

−δRd2+δR(y2−nd2)n(q̄R−d2) = 0. The manifold (d1, d2) = (ψ1(y1), ψ2(y2)) is defined

such that g(y1, ψ1(y1)) = 0 and h(y2, ψ2(y2)) = 0. To prove the local exponential

stability of the manifold, we need to show that the Jacobian

J =


∂g(y1, d1)

∂d1

∂g(y1, d1)

∂d2

∂h(y2, d2)

∂d1

∂h(y2, d2)

∂d2

 =


∂g(y1, d1)

∂d1

0

0
∂h(y2, d2)

∂d2

 .
calculated at the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) has negative eigenvalues. Since

this is a diagonal matrix, the problem is reduced to proving that the two following

inequalities hold:

∂g(y1, d1)

∂d1

∣∣∣∣
d1=ψ1(y1)

< 0

∂h(y2, d2)

∂d2

∣∣∣∣
d2=ψ2(y2)

< 0.

(A.26)
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From the definition of the manifold,

0 ≤ ψ1(y1) ≤ q̄A and 0 ≤ ψ2(y2) ≤ q̄R.

Additionally,

y1 − ψ1(y1) = m

√
ψ1(y1)

q̄A − ψ1(y1)
and y2 − ψ2(y2) = n

√
ψ2(y2)

q̄R − ψ2(y2)
.

Therefore

∂g(y1, d1)

∂d1

∣∣∣∣
d1=ψ1(y1)

= −δA − δA
(

ψ1(y1)

q̄A − ψ1(y1)

)m−1
m

(q̄A − ψ1(y1))

− δA
ψ1(y1)

q̄A − ψ1(y1)
< 0

∂h(y2, d2)

∂d2

∣∣∣∣
d2=ψ2(y2)

= −δR − δR
(

ψ2(y2)

q̄R − ψ2(y2)

)n−1
n

(q̄R − ψ2(y2))

− δR
ψ2(y2)

q̄R − ψ2(y2)
< 0.

(A.27)

A.6 Proofs on orbital equivalence

Proposition 11. Consider the following ordinary differential equations

ẋ = f(x) (A.28)

ẋ = g(x) = µ(x)f(x), (A.29)

in which x ∈ Rn, f : Rn → Rn is Lipschitz continuous and 0 < a ≤ µ(x) ≤ b < ∞

is a Lipschitz continuous scalar function. Then, there exists a function α : R → R,

monotonically increasing and bounded such that if φ(t), t ∈ Rn is a solution of (A.28)

with initial condition x = x0, then ψ(t) := φ(α(t)), is a solution of (A.29) with the

same initial conditions. Furthermore,
dα(t)

dt
= µ(φ(α(t))).
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Proof. Since φ(t) is a solution of (A.28), for all t > 0, we have that
dφ(t)

dt
= f(φ(t)).

Let α(t) be the solution of the ordinary differential equation

dα

dt
= µ(φ(α)) (A.30)

with initial condition α(0) = 0. Let also ψ(t) be defined as above. Since g(x) is

Lipschitz continuous, system (A.29) has an unique local solution at the point ψ(t)

whose tangent is given by g(ψ(t)). The vector tangent to ψ(t) is given by

dψ(t)

dt
=
dφ(α(t))

dt
=
dφ(α)

dα

dα(t)

dt
= f(ψ(t))µ(ψ(t)) = g(ψ(t)) (A.31)

for all t. Additionally, note that α(0) = 0 and therefore ψ(0) = φ(0) = x0. It follows

that ψ(t) is the solution for (A.29) with initial condition x = x0.

The following proposition is used to show that the addition of load will increase

the period.

Proposition 12. Consider the ordinary differential equations (A.28-A.29) under the

same conditions as in Proposition 11. Assume that (A.28) has a periodic solution

φ(t) with period T . If µ(x) < 1, then the solution of (A.29) is a periodic solution

with period T ′ > T .

Proof. From Proposition 11, we have that ψ(t) := φ(α(t)) is a solution for (A.29), in

which α(t) satisfies the differential equation

dα(t)

dt
= µ(φ(α(t))). (A.32)

Since the solution α(t) is monotonic and unbounded and since α(0) = 0, for all

T > 0, there is T ′ > 0 such that α(T ) = T ′. Since φ(T ) = φ(0), ψ(T ′) = ψ(0), and

hence ψ is periodic with period T ′. From (A.32) and the fact that µ(x) < 1,

T ′ = α(T ) =

∫ T

0

µ(φ(α(t)))dt <

∫ T

0

1dt = T. (A.33)
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A.7 Mechanistic Model for Stochastic Simulation

For the analysis employing the stochastic simulation algorithm [55], we considered

a mechanistic model that includes all the reactions in Table A.1. Table A.2 gives the

description the states.

This system is equivalent to the system 2.42 with m = n = 2. We consider a

one-step model for protein expression and assume the rate of expression is a function

of whether the promoter pA and pR are free, bound to an activator dimer and bound

to a repressor dimer in the case of pA. Additionally, we consider the dynamics of the

dimerization of both transcription factors.

The degradation rate δR was the parameter chosen to generate a model for a

functioning and a non-functioning clock. The total number of promoters in both

simulations was pA,T = pR,T = 5. Changes in the number of binding sites qA and qR

were used to generate retroactivity to the activator and repressor respectively.

A.8 DNA sequences

In this section, the DNA sequence of the plasmids used in this work are given.

The circuit plasmid is labeled pRET5. The client plasmid, used to emulate the

connected system is labeld pUCop. The control plasmid, used in the experiments

with the isolated system is labeled pUCblk.

>pRET5

GAATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGG

TCTTTAAAAAGGCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATGT

TCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGA

AAATCTCGATAACTCAAAAAATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGAT

CAACGTCTCATTTTCGCCAAAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACACCAGGATTTATTTATTCTGCGAAG

TGATCTTCCGTCACAGGTATTTATTCGGCGCAAAGTGCGTCGGGTGATGCTGCCAACTTACTGATTTAGTGTATGATGGT

GTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTATCAGCTGTCCCTCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGC

AAAAGCACCGCCGGACATCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGTG

CTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCTTCCTCGCTC

ACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGC

CAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCA

CGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGCGGCTCCC

TCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCT

GACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCT

TATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTT
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Table A.1: Reactions considered in the mechanistic model

Reaction Description Rate Value
2R→ R2 Repressor Dimerization kra 200
R2 → 2R Repressor Monomerization krb 200
2A→ A2 Activator Dimerization kaa 200
A2 → 2A Activator Monomerization kab 200

pR +A2 → C3 Activator Binding ka1 2000
C3 → pR +A2 Activator Dissociation kb1 2000
C3 → C3 +R Repressor Maximal Expression κ3 100
pR → pR +R Repressor Basal Expression κ4 .004
pA +A2 → C1 Activator Binding ka1 2000
C1 → pA +A2 Activator Dissociation kb1 2000
pA +R2 → C2 Repressor Binding ka2 2000
C2 → pA +R2 Repressor Dissociation kb2 2000
C1 → C1 +A Activator Maximal Expression κ1 100
pA → pA +A2 Activator Basal Expression κ2 .04

A→ ∅ Activator Monomer Degradation δA 1
R→ ∅ Repressor Monomer Degradation δR .2 / .4
A2 → ∅ Activator Dimer Degradation δA 1
R2 → ∅ Repressor Dimer Degradation δR .2 /.4

qA +A2 → D1 Activator-Load Binding ka1 2000
D1 → qA +A2 Activator-Load Dissociation kb1 2000
qR +R2 → D2 Repressor-Load Binding ka1 2000
D2 → qR +R2 Repressor-Load Dissociation kb1 2000

Table A.2: Species in mechanistic model

State Species
R Repressor Monomer
R2 Repressor Dimer
A Activator Monomer
A2 Activator Dimer
pR Promoter Regulating Repressor Expression
pA Promoter Regulating Activator Expression
C1 Promoter-Activator Complex, Activator Expression
C2 Promoter-Repressor Complex, Activator Expression
C3 Promoter-Activator Complex, Repressor Expression
qA Load with affinity to the activator
qR Load with affinity to the repressor
D1 Activator-Load Complex
D2 Repressor-Load Complex
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AGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCC

AGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAG

CAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAATCAGATAAAATATTTCTAGAGTCCCTATCA

GTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACTACTAGAGTCACACAGGACTACTAGATGGTGAATG

TGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCC

AGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACA

ACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCG

CGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGT

AAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCAT

TGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTT

TCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGC

CCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGC

GGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTG

CGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGAT

ATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCG

CCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCG

TCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATG

CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGGCTGCAAACGACGAAAACTACGCTTTAGTAGCTTAATAACT

CTGATAGTGCTAGTGTAGATCTCTACTAGAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCG

TTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA

TACTAGAGTTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCTACTAGAGAAAGAGGAGAAATACTAGATGTCCAGATT

AGATAAAAGTAAAGTGATTAACAGCGCATTAGAGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCG

CCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGGCTTTGCTCGACGCCTTAGCCATT

GAGATGTTAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGTAATAACGCTAA

AAGTTTTAGATGTGCTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTACAGAAAAACAGTATG

AAACTCTCGAAAATCAATTAGCCTTTTTATGCCAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGTG

GGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAGAAGAAAGGGAAACACCTACTACTGA

TAGTATGCCGCCATTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTG

AATTGATCATATGCGGATTAGAAAAACAACTTAAATGTGAAAGTGGGTCCGCTGCAAACGACGAAAACTACGCTTTAGTA

GCTTAATAACACTGATAGTGCTAGTGTAGATCACTACTAGAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGAC

TGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTT

CTGCGTTTATATACTAGTAGCGGCCGCTGCAGAAGCTTTAATGCGGTAGTTTATCACAGTTAAATTGCTAACGCAGTCAG

GCACCGTGTATGAAATCTAACAATGCGCTCATCGTCATCCTCGGCACCGTCACCCTGGATGCTGTAGGCATAGGCTTGGT

TATGCCGGTACTGCCGGGCCTCTTGCGGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGC

TATATGCGTTGATGCAATTTCTATGCGCACCCGTTCTCGGAGCACTGTCCGACCGCTTTGGCCGCCGCCCAGTCCTGCTC

GCTTCGCTACTTGGAGCCACTATCGACTACGCGATCATGGCGACCACACCCGTCCTGTGGATCCTCTACGCCGGACGCAT

CGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTC

GCCACTTCGGGCTCATGATATAAACGCAGAAAGGCCCACCCGAAGGTGAGCCAGTGTGACTCTAGTAGAGAGCGTTCACC

GACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCTGGTTATTAAGCTACT

AAAGCGTAGTTTTCGTCGTTTGCAGCAGGCCTTTTGTATAGTTCATCCATGCCATGTGTAATCCCAGCAGCTGTTACAAA

CTCAAGAAGGACCATGTGGTCTCTCTTTTCGTTGGGATCTTTCGAAAGGGCAGATTGTGTGGACAGGTAATGGTTGTCTG

GTAAAAGGACAGGGCCATCGCCAATTGGAGTATTTTGTTGATAATGGTCTGCTAGTTGAACGCTTCCATCTTCAATGTTG

TGTCTAATTTTGAAGTTAACTTTGATTCCATTCTTTTGTTTGTCTGCCATGATGTATACATTGTGTGAGTTATAGTTGTA

TTCCAATTTGTGTCCAAGAATGTTTCCATCTTCTTTAAAATCAATACCTTTTAACTCGATTCTATTAACAAGGGTATCAC

CTTCAAACTTGACTTCAGCACGTGTCTTGTAGTTCCCGTCATCTTTGAAAAATATAGTTCTTTCCTGTACATAACCTTCG

GGCATGGCACTCTTGAAAAAGTCATGCTGTTTCATATGATCTGGGTATCTCGCAAAGCATTGAACACCATAACCGAAAGT

AGTGACAAGTGTTGGCCATGGAACAGGTAGTTTTCCAGTAGTGCAAATAAATTTAAGGGTAAGTTTTCCGTATGTTGCAT

CACCTTCACCCTCTCCACTGACAGAAAATTTGTGCCCATTAACATCACCATCTAATTCAACAAGAATTGGGACAACTCCA

GTGAAAAGTTCTTCTCCTTTACGCATCTAGTATTTCTCCTCTTTCTCTAGTATGTGTGAAATTGTTATCCGCTCACAATT

CCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT

GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCG

GTTTGCGTATTGCTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAG

GCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACG

TCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCCCCTACGTG

CTGCTGAAGTTGCCCGCAACAGAGAGTGGAACCAACCGGTGATACCACGATACTATGACTGAGAGTCAACGCCATGAGCG

GCCTCATTTCTTATTCTGAGTTACAACAGTCCGCACCGCTGTCCGGTAGCTCCTTCCGGTGGGCGCGGGGCATGACTATC

GTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCCCAACAGTCCCCCGGCCAC

GGGGCCTGCCACCATACCCACGCCGAAACAAGCGCCCTGCACCATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGC

TACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTAACCGTTTTTATCAGGCTCTGGGAGGCAGAATAAATGATCA

TATCGTCAATTATTACCTCCACGGGGAGAGCCTGAGCAAACTGGCCTCAGGCATTTGAGAAGCACACGGTCACACTGCTT

CCGGTAGTCAATAAACCGGTAAACCAGCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTC

GAATTTGCTTTCGAATTTCTGCCATTCATCCGCTTATTATCACTTATTCAGGCGTAGCACCAGGCGTTTAAGGGCACCAA

TAACTGCCTTAAAAAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATG

GAAGCCATCACAGACGGCATGATGAACCTGAATCGCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCA

TGGTGAAAACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCT

GAGACGAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATA

TATGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAAAACGG

TGTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACG
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AAGCTTGTCGACAATTGTGAGCGCTCACAATTGGATCCGAATTCACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACC

GTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAG

AGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGAC

CCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATC

TCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCC

GGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG

AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTA

TCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGC

GGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGG

GTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCC

TTTTAAATTAAAAATGAAGGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGNCTGACAGTTACCAATGCTTAAT

CAGTGAGGCACCTATCTCAGNGGATTNNNNNTATTTTCGTCANCATANTGCCTGACTCCCNTCGTGTAGATACTACGATA

CGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCCACGCTCCCCGGCTCCAGATTATCAGCAAT

AAACCAGCCAGCCGGGAAGGGCCGAGCGCAGAAGTGGTCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCC

GGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC

TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAA

AGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCAC

TGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAA

TAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGT

GCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCA

CTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCC

GCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCA

GGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC

GAAAAGTGCCACCTGACGTC

>pUCblk sequenced map for pUCop

AAGCTTGTCGACGGATCCGAATTCACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTG

GCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGG

ACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC

TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTT

CGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTC

CAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTG

CTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCA

GTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAA

GCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACG

AAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGG

TTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGNCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAG

NGGATTNNNNNTATTTTCGTCANCATANTGCCTGACTCCCNTCGTGTAGATACTACGATACGGGAGGGCTTACCATCTGG

CCCCAGTGCTGCAATGATACCGCGAGACCCCACGCTCCCCGGCTCCAGATTATCAGCAATAAACCAGCCAGCCGGGAAGG

GCCGAGCGCAGAAGTGGTCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGT

TCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC

ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC

CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTC

ATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG

TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT

CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCT

TCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGC

GACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCG

GATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC
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