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Abstract 
 

 

Membranes have many engineering applications due to their light weight and low 

construction cost, as well as their flexibility. As a specific example, optimal design of 

seal and skirt system in Air Cushion Vehicles (ACVs) is essential to achieve higher speed 

and stability, and lower fuel consumption. Previously developed methods have 

considered elastic and hyperelastic membranes, as well as membranes with flexural 

rigidity. However, some membranes are inextensible, and have no or negligible bending 

stiffness. This dissertation proposes a number of methods to analyze structural behavior 

of membranes which can be effectively applied to membranes with complex geometries, 

those that are extensible or inextensible, as well as membranes with or without resistance 

to bending. 

 

In particular, this dissertation presents: 

 An analytical method to investigate the deformation and internal forces in 

circular semi-submerged inextensible massless membranes, 

 A numerical method to predict the hydrodynamic pressure applied to bow seal 

membranes based upon their mechanical properties and forces involved, 

 A Finite Element (FE) method to model both weightless and weighted 

inextensible curved membranes under a variety of forces, and 



xv 

 

 A numerical method based on Isogeometric Analysis capable of analyzing a 

wide range of membranes. 

 

The analytical method is a powerful, easy and precise method for a weightless membrane 

with specific geometry subjected to varying normal pressure. The first FE method 

considers weighted and weightless membranes under shear and normal pressure. 

Although there are some limitations in the range of applied forces this method can 

analyze, constant radius arc elements provide a good representation for curved 

membranes and very accurate results ideal for simple geometries by relatively faster 

analysis. The method based on the Isogeometric Analysis overcomes the limitations in 

the FE method; nonetheless it has potential for improvement in cases such as modeling 

low curvature membranes, by choosing higher degree Bezier curves or B-Spline base 

functions. This method, especially if improved, provides more accurate result for more 

complex geometries. The methods presented in this dissertation set the stage for Fluid 

Structure Interaction (FSI) problems that involve membranes. Large displacements are 

assumed in all analyses. 
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Chapter 1 

 

Introduction 

 

 

Membranes belong to a class of structures that ideally can carry tension but no 

compression or bending. A membrane structure can be air supported, frame supported, or 

tensile structures (supported only by the tension generated in them). Due to their light 

weight and low construction cost, as well as their flexibility which leads to their ability to 

offer a large variety of configurations and a wide range of free form aesthetic shapes, 

they are frequently considered as the ultimate solution for special applications such as 

large roof construction, and temporary, light weight, or mobile structures. Combined with 

supporting elements such as ropes, cables, and columns they can span large areas while 

satisfying aesthetic aspects of the design by offering a variety of complex shapes [1]. 

 

In air supported structures, as the name implies, internal gas is used to define the shape of 

the structure. To sustain the structural integrity, the internal pressure is needed to be 

maintained at a larger or equal level than external pressures applied to the structure. For 

very dynamic external pressures, the information from the sensors mounted on the 

structure is used to adjust the internal pressure accordingly. These structures need to be 
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anchored to the base. The air supported structures offer all the advantages of membrane 

structures, including low construction cost, easy and fast assembly, disassembly, and 

relocation, and the option of using translucent material which eliminates the need for 

interior lighting. In addition, by eliminating the need for a supporting structure, air 

supported membranes provide open interiors. On the other hand, due to their structural 

characteristics, they have shorter life span and lower load carrying capacity. Hence, it is 

necessary that the internal pressure as well as external applied loads be continuously 

monitored. Also, due to insulation issues, ventilation and air conditioning will not be as 

effective as in conventional structures. One of the first large-scale air-supported 

membrane structures is the United States pavilion at Expo 70, designed by David H. 

Geiger [2]. 

 

Frame supported membrane structures often can be assembled and disassembled very fast 

to accommodate temporary events or even be transported to another place. When not in 

service, they can be easily compacted and stored in small storage areas. Also, thanks to 

their flexible framing, they can be used to build temporary, semi-permanent, or even 

permanent structures [3]. Gridshells are one of the structures that are typically used as 

frame for membrane structures. They can easily be made to have a specific profile to span 

a large area. In addition, the fact that minimum material is used makes gridshells a 

lightweight option. One disadvantage of frame supported membrane structures in 

comparison with air supported structures is that the interior space is usually divided by 

columns or other support elements that transfer the structural loads. The optimal design 

that minimizes the cost of construction is very critical especially in case of large 
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structures. One of the latest examples of the frame supported membrane structures is the 

temporary basketball arena for the London 2012 Olympic Games which is supported by 

steel frames [4]. 

 

A tensile membrane, as the name implies, supports its structural integrity by means of its 

internal tension. This tension is created in the membrane through supporting elements 

such as masts or cables. Applying corrosion protection and paying special attention to 

load transfer mechanisms where the membrane material meets such supporting elements 

or is connected to another piece of membrane material, are two issues of critical 

importance. An example of large scale lightweight tensile membrane structures is the 

Munich Olympic stadium which is supported by steel cables [5]. 

 

 

1.1. Material Used in Membrane Structures 

 

Depending on the intended application, different types of synthetic fabrics may be used in 

construction of membranes. Polyester fabrics are used for their wrinkle and 

environmental resistance as well as their durability [6]. Another type of synthetic fabrics 

is Polyethylene-based which is lightweight and durable and hence, a suitable choice for 

membrane material [7]. Heat resistance, low moisture absorption, high strength, and 

dimensional stability are the advantages of fiberglass fabrics as suitable materials for 

membrane structures. These fabrics are coated with Polyvinyl Chloride (PVC) and Poly 

Tetra Fluoro Ethylene (PTFE) for additional flexibility, environmental, corrosion and 

wear resistance, and reduced friction [8]. Foils made of PVC and Ethylene Tetra Fluoro 
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Ethylene (EFTE) make an attractive option for a membrane structure material due to their 

high strength, corrosion, and weather durability. Beijing National Aquatics Center is the 

world largest structure made of ETFE film, benefiting from more penetrated light and 

heat [9]. Materials should be selected carefully for each type of membrane structure and 

specific characteristic of each design, as a material that might be ideal for one specific 

design may not be a good option for the others. 

 

Membrane structures are generally used when a small weight-to-applied load ratio is 

required. Large load carrying capacity is possible in flexible membranes due to their 

internal tension induced by methods such as pre-tensioning. To achieve this capacity, 

optimization methods are often employed to determine the optimal structural shape [10]. 

Consequently, the design process is very different from that of conventional structures, 

due to the specific characteristics of the membrane structures. The shape and form of a 

membrane, determined during an essential design step called form finding, play a big role 

in the strength and integrity of the structure of which the membrane is a part. As a result 

of high flexibility, the internal tension in membranes governs the shape and stability of 

the structure. Inevitably, load analysis is another major step in the design process during 

which, the necessity and importance of nonlinear analyses is significant considering the 

large deflection membrane structures are subjected to.  
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1.2. Applications in Naval and Marine Design 

 

In light of the characteristics described earlier, membranes are frequently used in special 

naval applications such as pontoon bridges, amphibious helicopters, and Air Cushion 

Vehicles (ACVs). Their light weight is ideal for high speed vehicles. In addition, a 

vehicle that has to move on a non-smooth surface needs a flexible contact area. 

Flexibility of membranes is another distinctive property that makes the design of a high 

speed transformable craft possible.  

 

An ACV is a major example of naval applications of membranes. An air cushion, 

contained by a convex profiled flexible skirt reduces the friction on the vehicle surface 

and allows ACVs to hover above any surface. The primary application of these vehicles 

is in amphibious operations and shallow waters. Considering their specific application, 

the environments ACVs operate in, and the wave impact, the tear strength of the 

membrane (i.e. skirt system) should be accordingly designed. 

 

Initial development of ACVs started in 1920s and the full scale models were built by the 

end of 1950s, but the developments of ACVs even continue to this date [11, 12]. 

Experimental studies have analyzed the mechanical properties of the material used to 

manufacture the skirt of ACVs [13]. Based on these experimental results, in the same 

study, Finite Element (FE) analysis was conducted, and despite an agreement between 

experimental and analytical results in many properties, some disagreement on ultimate 

bearing capacity was reported. The linear and non-linear dynamics of the ACVs have also 

been previously studied [14]. The results of the linear analysis with a simplified 
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geometric model and the assumption of air flow incompressibility were found to be in 

agreement with experimental analysis. Also, the bag-to-cushion pressure ratio was 

determined as the controlling factor of the vehicle stability [15]. Moreover, the depth of 

transverse stability skirt was found to be a determinant factor in coupled heave and pitch 

motion of air cushion vehicles, and the nature of motion was described to be nonlinear in 

response to sinusoidal waves due to skirt structure and material. Finally, large 

fluctuations of the membrane’s internal pressure were observed [16]. In a different study, 

air compressibility due to the accumulation of air in the vehicle compartments was 

determined to be a significant factor in increasing the coupled heave and pitch motion 

[17]. Other types of motion of the ACVs have been studied experimentally and 

numerically [18]. In a linear study based on a more complex realistic (bag and finger) 

skirt system and compressible air flow, the undesirable heave motion was found to be a 

function of skirt geometry and mass [19]. Although the possible changes in geometry did 

not significantly affect the heave motion, the results of this study suggested that the 

possible changes in skirt mass would lead to a more desirable heave response. In order to 

improve the shortcomings of the current skirt system and its undesirable effects on the 

vehicle’s heave motion, it is optimized by studying two-dimensional (2D) sections using 

Genetic Algorithms (GAs) that consider vehicle structure and weight [20]. Also, the 

influence of the platform shape, canal sides, and bottom and distribution of the pressure 

were studied in an effort to improve the skirt system design and methods to estimate the 

resistance and other important quantities with good accuracy were presented [21]. 
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The concept of ACVs has attracted many scientists and researchers through the years. 

Despite this, its development has suffered many disruptions and several of its 

applications were discontinued or replaced by other types of marine vehicles such as 

Surface Effect Ships (SES) and catamarans. Yet, none of these vehicles are comparable 

with ACVs in some specific aspects, the most important of which is amphibiousness. 

This is extremely important in cases when there is a need for a vehicle that can easily 

move between land, mud, water, and ice. Another characteristic that is specific to ACVs 

is their high speed. Considering their type, weight, and structure they can reach speeds as 

high as 80 knots (kn). Their light weight can contribute to the efficiency of the vehicle 

and its speed. These characteristics are extremely important in military and rescue 

mission applications.   

 

 

1.3. Research Objectives 

 

Efficient design of flexible ACV seals has been an inspiration for a major impact on 

Navy operations that use amphibious crafts with higher tonnage, stability, and speed, and 

can easily travel from a sea base to shore and vice versa while transporting cargo without 

the need to a port. Studies have shown that the design of the seal and skirt systems plays 

an important role in the performance of the ACVs as it controls the pressure distribution 

and therefore the motion of the vehicle in waves, as well as the weight, efficiency, and 

environmental and tear resistance. To this end, there is a need for a methodology to 

model and study the skirt system under different loading conditions and to calculate the 

deformed shape and resulting reaction forces. 
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Hence, the objective of this research was to develop new methods to analyze curved 

membranes that can be easily used to model complex shapes with applications in marine 

(e.g. ACV skirt system) as well as other engineering desciplines. The material used in 

manufacturing the skirt of ACVs, with a base of fabric and rubber like coatings, shows no 

or negligible extensibility. Yet, they have very small to none bending stiffness. 

Previously developed numerical methods that consider different ranges of elasticity do 

not account for such material. The existing commercial codes offer analysis based on 

elastic membranes. To impose inextensibility one should choose a very large modulus of 

elasticity. This in turn results in high bending stiffness which does not represent 

membranes that are very flexible to bending. Therefore, it is essential to develop a 

method to simultaneously consider both inextensibility and flexibility in bending as these 

two characteristics are intrinsic features of a group of membranes such as the seal system 

of ACVs. 

 

Another important issue concerns the degrees of freedom (DOFs) and boundary 

conditions, which are usually selected based upon the available information about the 

design problem. In many cases, the boundary conditions in the real system are in terms of 

displacement. Therefore, in this research, the developed methods were sought to be able 

to accommodate for displacement boundary conditions and DOFs. These methods were 

then validated by comparing the results with analytical methods. It should be noted that 

specific loading conditions may result in large deformations in membranes due to their 

extremely flexible nature. These deformations are highly nonlinear and require 

geometrically nonlinear analysis. In some cases, such analyses result in multiple 
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solutions, which require further analysis, physical interpretation, and selecting the most 

appropriate solution. 

 

The main question this dissertation aimed to address was how a curved membrane 

deforms in contact with fluids. This was achieved through careful consideration of 

several approaches. In particular, first, an ideal massless circular membrane was 

considered in an analytical solution. Then, an FE method was developed that allowed for 

the weight of the membrane to be also included in the calculations. The analysis indicated 

a few limitations in the application of this method. Consequently, an alternative method 

was designed and implemented to address these limitations for ideal as well as non-ideal 

membranes of general shape based on a relatively new and advanced method called 

Isogoemetric Analysis. 

 

The findings of this research are expected to set the stage for dynamic Fluid Structure 

Interaction (FSI) analysis of membranes. FSI occurs when a structure is deformed in 

contact with a fluid, as a result of its pressure and viscous forces [22]. This in turn can 

produce new boundary conditions for the fluid. Under these circumstances, the response 

of the structure is updated and this process continues recursively. These phenomena 

result in highly non-linear equations. A large body of problems in naval architecture and 

marine engineering involves the interaction of fluid with a structure. To alleviate this, 

inclusion of the Isogeometric Analysis in the developed numerical methods provides the 

opportunity for the analysis of complicated and computationally massive objects with a 

better precision. The methodology presented in this dissertation is based on Bezier 
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quadratic curve and is the first step towards the Isogeometric Analysis of dynamic fluid 

membrane interaction problems. 

 

 

1.4. Dissertation Outline 

 

Each Chapter in this dissertation serves as a stand-alone document that discusses the 

details of a new method to analyze curved membranes, describes the challenges involved 

and the assumptions considered in the established method, algorithms and methodologies, 

examples, and presents case studies to address a particular research objective. 

 

The presented work focuses on the structural aspect of the FSI problem. Others have 

conducted considerable amount of work on the fluid aspect (e.g. wave resistance, drag 

forces, powering, scaling models, friction resistance [23-26]) of this problem. There is 

also direct application of this work to inflatable cylindrical pontoons. Although the skirt 

and seal system of the ACVs has been a motivation for this research, the developed FE 

method and Isogeometric Analysis can be applied to any curved membrane. 

 

In Chapter 2, a specific case of a circular membrane being partially submerged is 

considered. The equilibrium equations are established based on a 2D model of a 

cylindrical membrane with ¾ of a circle profile. The membrane is pin connected at the 

top to a rigid plate, and is assumed to be inextensible, perfectly flexible, and with 

negligible weight. Fundamental to the analysis is that the density of the surrounding fluid 

is assumed to be larger than the fluid within the membrane. Also, the variation of the 
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pressure in the fluid-filled membrane and the tangential friction were both assumed to be 

negligible. Equilibrium equations defined the deformed geometry of the membrane as a 

function of its internal tension. The Newton-Raphson iterative method and displacement 

boundary condition at the point where the membrane is connected to the rigid plane are 

used to solve the equilibrium equations for tension and deformed geometry. 

 

In Chapter 3, a mathematical model has been established as a part of a study to model a 

2D SES vessel seal based on experimental results. Beam bending theory was used to 

derive the required pressure to achieve the geometry indicated by experiment. The results 

from this Chapter were compared with those of a Computational Fluid Dynamics (CFD) 

model developed by Zalek et al. [27]. 

 

Chapter 4 introduces a new FE method to model inextensible membranes with negligible 

flexural rigidity, which is the definition of an ideal membrane. To facilitate the modeling 

of curved membranes, each element was assumed to be an arc with two nodes (one at 

each end), two DOFs, displacements in x and y directions per node, and a radius defined 

as a function of the applied pressure. The stiffness influence coefficient method was used 

to determine the local stiffness of the elements, which was then transferred to a global 

coordinate system and assembled to form the global stiffness matrix of the model. The 

elements of the force vector were found by counteracting the imbalance of forces applied 

to nodes. Again, the Newton-Raphson iterative method was used to solve for the 

displacement. In addition to the normal pressure, the deflection of the membrane under 

shear pressure and its own weight was considered. After finding the deflected 
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configuration of the model, tension at each element was easily found using the radius of 

the element. The results from this method were then compared with the results from the 

analytical method presented in Chapter 1 and other methods developed by Yu and Karr 

[28]. 

 

Chapter 5 introduces a new numerical method, inspired by Isogeometric Analysis that 

takes advantage of the benefits of this method over the FE method, the most important of 

which is the ability to present conical profiles and complex shapes with a more exact 

geometric representation. The quadratic Bezier curve was selected as the basis function 

of each element and therefore, each element has three control points and two 

displacement DOFs at each node. The principle of virtual work is employed to formulate 

the problem. It should be noted that pressures applied to the membrane are non-

conservative forces and thus, the principle of minimum total potential energy cannot be 

applied. The elements of the force vector were found by expressing the total virtual work 

in terms of DOFs using the quadratic Bezier curve definition. In turn, the elements of 

stiffness matrix can be calculated by expressing the force vector elements in terms of 

DOFs. In this Chapter, the Newton-Raphson iterative method was employed to solve for 

displacements. Also, the case of a non-ideal membrane with axial and bending stiffness 

was considered. In addition, supporting examples and case studies were developed for 

validation. 

 

In the previously developed methods, the interaction of membranes with fluids has been 

studied mostly through analytical methods. Using these methods, all types of membranes, 



13 

 

with different material characteristics in multiple configurations have been studied.  

Despite these efforts, only a limited number of FE methods have been developed thus far 

to study membranes, although shells and plates have been comprehensively studied [29-

32]. Given the fact that the Isogeometric Analysis is a relatively new method, there are 

still many aspects of it (e.g. application of this method in membrane analysis) that have 

not been fully developed. 
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Chapter 2 

 

Analytical Approach of Two-Dimensional 

Inextensible Membranes 
 

 
In this Chapter, the structural behavior of partially submerged two-dimensional 

inextensible membranes is studied using an analytical method. In particular the 

deformation and tension of the membrane is sought under constant internal pressure and 

hydrostatic external pressure. The effect of friction forces is neglected. As an example, 

the membrane is considered to be ¾ of a circle before deformation, pinned at the top to a 

solid plate, and assumed to be weightless.  

 

 

2.1. Prior Work in Analytical Investigation of 

Membranes 

 

The defining equations of the deformed profile of inflated cylindrical membranes in 

floating and submerged conditions, pushed down by a flat plate on the top have been 

developed based on the equilibrium equations [1]. Bearing in mind that one of the usual 

applications of membranes is to store large masses of liquids, the profile of long 

cylindrical membranes to be used as large scale flexible floating containers has been 
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analyzed under static conditions [2]. Neglecting the weight of the container and friction, 

equilibrium equations were found for the shape of the container to be a function of 

circumferential stress, internal pressure, and the position of the container with respect to 

the waterline. Simpson’s rule was used to approximate the integral calculations and the 

equations are solved by a modified Newton-Raphson method procedure. The success of 

the procedure is a function of the initial choice values.  

 

Plaut and Suherman [3] established closed form and approximate solutions for the shape 

and tension in geosynthetic tubes when laid on a horizontal solid foundation and also 

presented a number of numerical examples. The analyses presented shape and tension as 

a function of top and bottom pressure. Numerical results were obtained using a shooting 

method. The presented solution is an exact solution in which equations of tension and 

geometry can simply be solved using the Newton-Raphson method and boundary 

conditions. Other cases of a tube being partially or fully submerged, laid on deformable 

foundation, and exposed to non-symmetric pressure were also studied. The tubes were 

assumed to be weightless and incompressible. A linear study of a two-dimensional liquid-

filled floating membrane was conducted by Zhao [4] to predict dynamic tension and 

motion in waves. Neglecting the elastic deformation, he first solved the static case by 

using the equilibrium equation and then a numerical scheme was developed to predict the 

shape and tension. Ghavanloo and Daneshmand [5] applied nonlinear analysis to reach a 

closed form solution to the profile of air-filled membranes laid on different inclined 

surfaces. Numerical results were developed for different conditions and confirmed by 

comparison with previously published works.  
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2.2. Two-Dimensional Partially Submerged Membranes 

 

Consider the profile of a circular membrane with a rigid cover with uniform internal 

pressure as shown in Figure 2.1. The shape of the membrane changes under the water line 

due to varying pressure, while it remains circular above the waterline. 

 

 

Figure 2.1. Profile of the membrane 

 

Figures 2.2a and 2.2b show a section of this membrane in three and two dimensions, 

respectively, where N  is the tension force per unit length, T  is the tension force, P  is 

the internal pressure and q  is the internal force per unit length. In Figure 2.2b, the 

membrane is of unit width perpendicular to the page. Also, as depicted in Figure 2.2b, the 

angle   is measured from the horizontal to the tangential plane. 
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It is assumed that the membrane is inextensible and has negligible weight. Tangential 

friction is also neglected. Force equilibrium then requires 

 

T

q

ds

d



         (2.1) 

 

and  

 

0
ds

dT
         (2.2) 

 

The difficulties of solving Equation (2.1) when density of the external fluid is less than 

twice the density of the internal fluid are described by Hawthorne [6]. 

 

The horizontal coordinate is x and the vertical coordinate is y as shown in Figure 2.2b. 

Considering the geometrical configuration in Figure 2.2b, we note also 

 

sin
ds

dy
 ,  cos

ds

dx
       (2.3a,b) 

 

From geometric considerations we denote the curvature,  , and radius of curvature, R , 

which are related by: 

 

ds

d

R


 

1
         (2.4) 
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Figure 2.2. Representative membrane segment  (a) Three-dimensional depiction 

(b) Two-dimensional depiction 

 

The radius, R , can be written in terms of the tension and pressure in familiar fashion by 

substituting Equation (2.1) into Equation (2.4): 

 

q

T
R            (2.5) 

 

 

2.3. Parametric Analysis 

 

The relationships for position x and y are sought as functions of arc length, s . The 

equilibrium configuration, )(sx and )(sy  are thus established by solving the governing 

differential equations.  These relationships are later compared to the developed finite 

element solutions presented in Chapters 4 and 5. 

The portion of a partially submerged membrane above the waterline has constant pressure 

and constant radius, while the pressure under the waterline is variable with depth and 
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therefore the solution to the governing equations are different for these two parts (Figure 

2.3). For compatibility, the values for pressure, tension, angle and position should be the 

same at the waterline. Consider point O being the lowest point on the membrane and 1O  

being the point where the membrane meets the waterline. The y-axis is thus a plane of 

symmetry. Solutions above and below the waterline are established in the following 

Sections. 

 

Figure 2.3. Above the waterline and general case coordinate systems 

 

 

2.4. Constant Pressure – Above the Waterline 

 

From Equation (2.1) with constant pressure 0q we find the inclination angle above the 

waterline 

 

01
0

1   s
T

q
         (2.6) 
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or, 

 

)( 01

0

1  
q

T
s         (2.7) 

 

Here we note the boundary condition at point “ 1O ” is 01 )0(  s . The rectangular 

coordinate, x  and y , above the waterline are then found from Equations (2.3) and (2.7)  

 

)cos(cos 10

0

1  
q

T
y        (2.8) 

)sin(sin 01

0

1  
q

T
x        (2.9) 

 

 

2.5. Varying Pressure – Below the Waterline 

 

Consider a membrane in which the deformed submerged depth is 1d . As it is depicted in 

Figure 2.4, the origin of s  is set to be the lowest point of the membrane. For a given 1d , 

the following equations describe the exact solution to the profile of the submerged 

portion of the membrane. 
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Figure 2.4. Coordinate system below the waterline 

 

The pressure below the waterline follows from hydrostatics 

 

)( 101 dyqq f           (2.10) 

 

where f  is the weight density of water times the unit membrane width. Also from 

Equations (2.1) and (2.10) 

 

yKK
ds

d
21 


        (2.11) 

 

in which,  

 

T

dq
K
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1


         (2.12) 

 

and   
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T
K

f
2          (2.13) 

 

Differentiating Equation (2.11) with respect to s  and applying Equation (2.3a), 

 




sin22

2

K
ds

d
         (2.14) 

 

We now let 

 

yKK
ds

d
p 21 


        (2.15) 

 

and hence: 

 

d

dp
p

ds

dp
          (2.16) 

 

Combining Equations (2.14) , (2.15) and (2.16), 

 

 dKdpp sin2         (2.17) 

 

and upon integration, 
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cos2 21 KCp 
        (2.18) 

 

In Equation (2.18), 1C  is constant of integration. From Equation (2.15), we also find, 

 





cos2 21 KC

d
ds


        (2.19) 

 

and 

 



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



cos2 21 KC

d
s        (2.20) 

 

From Equations (2.3) and (2.19), 

 


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21 KC

d
dy


        (2.21) 

 

Integration of Equation (2.21) yields 

 

)2cos2(
1

2121

2

KCKC
K
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Recall that from Equations (2.15) and (2.18), 
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yKKKCp 2121 cos2       

 

Solving for 1C  by applying the symmetry conditions of the origin yields 

 

2

2

11 2KKC          (2.23) 

 

By substituting Equation (2.23) into Equations (2.20) and (2.22), 

 

)cos2(
1

121

2

KKC
K

y         (2.24) 

 

By repeating the process in the same manner for x , we also find 

 









cos2

 cos

21 KC

d
x        (2.25) 

 

The value of the integrals in Equations (2.20) and (2.25) can be evaluated using the 

trapezoid method or using the Taylor series of the integrand. 

 

For any particular depth ( 1d ), the angle between the waterline and membrane can be 

calculated from Equation (2.24): 
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We note that x , y and s  are all expressed as functions of the parameter  . Our approach 

is to first solve for s  as a function of   from Equation (2.20). Equations (2.24) and 

(2.25) then provide )(xx   and )(yy  . Expression for )(sxx   and )(syy  can 

then implicitly be found through Equation (2.20). The iterative method to find the tension 

is described in detail in the following Section. 

 

 

2.6. Iterative Solution on the Tensile Force 

 

The correct answer for T, the tension in the membrane, results in a deformed shape in 

which the top of the membrane meets the corner of the cover (Figure 2.5). Starting with 

an initial value (the tension in the membrane above the waterline is used) the Newton-

Raphson method [6] is applied to reach the correct answer. Figure 2.5 shows the correct 

deformed shape versus the shape resulted from an initial estimate for the tension value. 

 

Figure 2.6 shows an algorithm of the process adopted from the Newton-Raphson 

method.The slope of the line connecting any two solution points in the (xTotal - xTop) vs. T 

plane, is found by 
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and the new tension is calculated using: 

 

m

xx
TT

oldtoptotal

oldnew

][ 
        (2.28) 

 

 

Figure 2.6. The Algorithm of the Newton-Raphson iteration process 
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The iteration convergence rate is very good. The process is explained in more detail in 

the following Section. 

 

Figure 2.5. Resulted shape in an iteration step (dashed line) and correct deformed shape of 

the membrane (solid line) 

 

 

2.7. Example Analyses and Results 

 

As an example, consider a membrane with an initial radius of 1.000 m. The length of the 

membrane is 4.712 m and it is positioned symmetrically with respect to the vertical 

radius (y axis). The membrane is connected to a rigid plate at the top. The width of the lid 

is 1.414 m (Figure 2.1).The internal pressure is 10.14 kPa and weight density of water is 
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10.12 kN/m
3
. The undeformed shape is such that the inscribed angle of the membrane is 

3/2 π (at the attachment points of the membrane to the cover, θ=  3/4 π). The distance 

from the cover to the membrane bottom is thus 1.707R. The cover and membrane are 

moved down such that the submerged depth is 0.5R. This depth is then fixed for the exact 

solution example. We first calculate an initial estimate for the tension using

14.100  RqT kN. The configuration for the submerged portion of the membrane is 

then calculated using Equations (2.17) and (2.21). The resulting geometry at the waterline 

then allows solution for the top portion. In other words, the coordinates and the slope of 

the end of the submerged portion is used as a starting point for the top portion. 

 

For the second iteration, another value close to the first iteration value is chosen for 

tension equal to 632.9 T kN. This value is then used to determine the solution of the 

submerged geometry. Table 2.1 shows a summary of results obtained for these first two 

iterations for our example.  
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Table 2.1. First and second iterations for the analytic solution. 

 Iteration 1 Iteration 2 

K1 (m
-1

) 0.5005 0.5267 

K2 (m
-2

) 0.9990 1.051 

C1 (m
-2

) 2.249 2.379 

  0.8958 0.9207 

xw (m) 1.211 1.175 

sw (m) 1.353 1.321 

xTotal (m) 1.377 1.278 

xTop (m) 0.7071 0.7071 

T (kN) 10.14 9.632 

 

Based on Equation (2.27), we next find 1949.0m  and the tension in the membrane for 

the third iteration can be calculated from Equation (2.28), 751.6newT kN. This process 

continues in the same manner and after eight iterations the value for tension is found to 

be 7.481 kN. Tension values after each iteration are shown in Table 2.2 and Figure 2.7. 

 

Table 2.2. Values of tension in membrane during the Newton-Raphson iterations. 

Iteration 
Tension in the 

membrane(kN) 

1 10.14 

2 9.632 

3 6.751 

4 7.688 

5 7.432 

6 7.479 

7 7.482 

8 7.481 

 

Based on this final deformed geometry, the vertical distance from the highest point of the 

membrane to its lowest point is 1.516 m. We denote the out of water height of the 

membrane as TopY . Recall that the submerged depth of the membrane in 0.5000 m and 
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therefore our solution yields for our example a final configuration with

m 016.1m 5000.0m 516.1 TopY . 

 

Figure 2.7. Convergence of tension versus the number of elements 

 

Figure 2.8. shows the membrane of this example in a deformed configuration where it is 

partially submerged and the submerged depth is 0.7609 m. The lowest point of the 

undeformed geometry is set to the origin. The diagram of the membrane in this example 

along with some other examples are shown and discussed in Chapters 4 and 5. It is also 

of great interest to consider the case the membrane loses its symmetry as it is immersed 

in the fluid. At this configuration the largest width of the profile of the membrane and the 

waterline overlap. 
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Figure 2.8. Deformed profile of a membrane with 0.7609 m submerged depth 

 

The solution to the problem of 0.7609 m submerged depth for this membrane is unique if 

symmetry is imposed. In the case that symmetry is not enforced there are other solutions 

to the problem, such as the profile demonstrated in Figure 2.9. This solution has the same 

submerged profile and length. In this case, out of the fluid part is located only at one side 

of the cover. The boundary condition that needs to be satisfied (the coordinate of the 

point that the membrane is attached to the cover) by Newton-Raphson iterative method is 

different in this case. 



 37 

 

Figure 2.9. The non-symmetrical deformed profile of a membrane with 0.7609 m 

submerged depth 

 

 

2.8. Conclusion 

 

The methodology presented in this Chapter applies specifically to partially submerged 

membranes. The methods discussed in Chapters 4 and 5 can be applied to more general 

geometries, also the results of different methods will be compared. 
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Chapter 3 

 

Numerical Modeling of a Surface Effect Ship 

Bow Seal 

 

 

In this Chapter, the beam bending theory is employed to determine the hydrodynamic 

pressure in the bow seal system of Surface Effect Ships (SESs). The flexural rigidity of 

the seal membrane is determined by beam bending tests and other geometric information 

is collected from visual snapshots taken during an experiment involving a test apparatus 

in a towing tank. In addition to hydrodynamic pressure, the seal membrane is under 

constant cushion pressure, shear forces, and its own weight.  

 

 

3.1. Introduction 

 

Previous experimental analyses have considered the overall resistance of SESs [1, 2]. The 

SES finger-type seal performance has also been investigated in detail from the vibration 

and material durability stand point [3]. However, there is a lack of experimental data 

required for conducting and validating numerical analysis methods. As such, existing 

numerical methods need to be improved to be able to effectively determine the structural 



 40 

behavior of air cushion vessels under the complex environment at sea. An advanced 

knowledge of seal membrane characteristics is essential for such an improvement. 

 

In this Chapter, the seal system of SESs is modeled using beam bending theory to find 

the hydrodynamic pressure required to achieve a specific geometry determined during an 

experiment. The experiment [4] was conducted in a towing tank facility with a test 

apparatus of 3.660 m long by 1.219 m high by 1.524 m wide, equipped with a flat bow 

seal membrane. The seal was selected according to the two-dimensional theoretical seal 

model devised by Doctors and McKesson [5].  

 

The result of this analysis was also compared with the results of a Computational Fluid 

Dynamics (CFD) analysis based on the same experimental information [4]. Figure 3.1 

shows a snapshot of the seal membrane and the test apparatus during the experiment with 

the following conditions: 

 Forward speed of 2.438 m/s 

 Cushion pressure of 107.7 mm H2O 

 Initial submerged depth of 0.2286 m 

 Total calculated hydrodynamic thrust force of approximately 551.6 N 
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Figure 3.1. Transverse view of the bow seal (courtesy of [4]) 

 

The membrane was marked with a 7.620 cm × 7.620 cm grid in contrasting color of white 

to allow digital optical analysis. In addition, the wall of the test apparatus was also 

marked with a 2.540 cm × 2.540 cm black and white checkerboard grid. The upper 

portion of the bow seal was made of stiffened aluminum plate connected to the front wall 

of test apparatus at a 45 degree angle. The lower part of the bow seal was a flexible 

membrane made of vulcanized neoprene rubber with the thickness of 3.175 mm. The 

membrane was equipped with two nylon mesh inserts to minimize stretching. 
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3.2. Model Assumptions 

 

In order to conduct seal deflection analysis, a strip of the seal along its length is selected 

from Figure 3.1. This seal strip is treated as a flexible elastic beam under hydrodynamic 

pressure on one side and constant cushion pressure on the other side. The equilibrium is 

established for quasi-static steady state conditions and the pressures are assumed to act 

normal to the surface of the seal. In addition, large displacements are presumed. 

 

 

3.3. Mathematical Establishments 

 

For a seal membrane described in Section 3.1 the net transverse pressure is calculated as 

the difference between the cushion and hydrodynamic pressure, 

 

hydrocushion ppq          (3.1) 

 

Contributing components to the applied normal pressure to the membrane is shown in 

Figure 3.2. In addition to the normal pressure, a number of other forces act on the 

membrane, including, membrane’s weight, w , and shear load,
 
V which acts in the 

direction normal to the displaced surface. Also, due to large displacements, an axial 

tension force is generated in the membrane. The density of the seal membrane weight is 

approximated to be 2N/m 47.34w .  
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Figure 3.2. Contributing components to the total normal pressure applied to the membrane 

 

If the slope of the seal membrane with respect to the horizontal direction at any point 

along its length is shown with  , establishing equilibrium equations in the transverse and 

tangential directions for an element of arc length , ds , will lead to Equations (3.2) and 

(3.3) respectively, 

 

ds

d
Twq

ds

dV 
  cos        (3.2) 

 

ds

d
Vw

ds

dT 
  sin         (3.3) 

 

Due to the flexural rigidity, the moment at any point of the seal is related to the change of 

inclination angle through the length of the membrane,  
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ds

d
EIM


          (3.4) 

 

On the other hand, establishing equilibrium equations for moments yields, 

 

V
ds

dM
          (3.5) 

 

By substituting Equations (3.4) and (3.5) into Equation (3.3) and integrating, shear and 

tension forces are expressed in Equations (3.6) and (3.7), respectively in terms of weight 

density, flexural rigidity, seal slope and its first and second derivatives with respect to arc 

length, 

  

2

2

ds

d
EIV




         (3.6) 
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






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


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


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






 


  sin

2

2

     (3.7) 

 

Again, substituting Equations (3.6) and (3.7) into Equation (3.2) will result in an 

expression for net transverse pressure, q , in terms of the seal inclination angle ,  , the 

weight density, w , the flexural rigidity, and the seal axial tension in the form of Equation 

(3.8), 
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ds

d
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
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      (3.8) 

 

Accordingly, the hydrodynamic pressure acting on the seal is easily calculated knowing 

the internal pressure of cushion, using Equation (3.8) and rearranging Equation (3.1), 

 

qpp cushionhydro          (3.9) 

 

 

3.4. Model Results 

 

Figure 3.1 is used to derive the geometry of the seal during the test described in Section 

3.1 by selecting 99 data points and obtaining their coordinates in the plane of the Figure 

by determining their horizontal and vertical distance from the upper left corner of the seal 

membrane, where it is connected to the vessel bow frame. For smoothing purposes, a 7
th

 

order polynomial fit, based on least squares, was established. The inclination angle is 

calculated as a function of the arc length, )(s  , based on the relative position of the 

data points. This defines a geometry shown in Figure 3.3. The flexural rigidity of the seal 

was determined to be approximately 0.04519 N-m
2
 per unit width, based on beam 

bending tests [4]. It should be noted that there is variability in this value due to the 

existence of the fibers added to the membrane to add extensional stiffness in the plane of 

the seal. By differentiating slope with respect to arc length and using Equation (3.4), the 

moment is determined as a function of arc length. This is illustrated in Figure 3.4.  
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Figure 3.3. Seal geometrical configuration example of a two-dimensional structural analysis 
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Figure 3.4. Seal moment intensity determined from the example structural analysis 

 

Knowing the geometry of the seal, the net transverse pressure is calculated considering 

only bending resistance and shear forces. The hydrodynamic pressure is calculated based 

on Equation (3.9) knowing constant cushion pressure. The results are shown by a dashed 

line in Figure 3.5. However, based on Equation (3.8), other factors, specifically weight of 

the seal and the axial tension generated due to nonlinear geometric effects also contribute 

to bending resistance. The effects of these factors are considered in the calculation of 

hydrodynamic pressure which is illustrated by a solid line in Figure 3.5. 
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Figure 3.5. Hydrodynamic pressures determined from the example structural analysis 

 

It should be noted that these analyses highly depend on the seal’s inclination angle as its 

third derivative with respect to arc length is involved in the calculation of the 

hydrodynamic pressure. As shown in Figure 3.5, the hydrodynamic pressure decreases in 

the vicinity of the connection point to the vessel frame. This is due to the fact that unlike 

most parts of the seal membrane, at this area, for a very short distance, the seal profile has 

a slight negative curvature which results in lower hydrodynamic pressure values. 

 

The opposite edge of the seal is completely free; this results in minimum tension in the 

seal. The cases where ends of seal membrane are fixed have been previously analyzed [5, 

6]. Fixed ends allow the tensile forces in the membrane to increase and subsequently to 
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resist normal pressures. In this research, due to the free end of the seal, the effect of the 

tensile forces is not very high and the resulting hydrodynamic pressure is mostly a 

function of bending resistance. This is confirmed by the difference between two cases 

shown in Figure 3.5. Therefore, the structural behavior of the seal depends highly on 

boundary conditions as well as material characteristics.   

 

 

3.5. Conclusion 

 

The beam bending theory was used to model a two-dimensional seal membrane of SESs 

under quasi-static conditions. The required information for conducting the analysis was 

determined by experiments. The beam bending theory analysis showed that the results 

were very sensitive to local element inclination angle,  .  
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Chapter 4 

 

Finite Element Approach of Inextensible 

Membranes 

 

 

In this Chapter, an innovative Finite Element (FE) methodology to analyze two-

dimensional inextensible curved membranes with negligible flexural rigidity is presented. 

To accommodate for curved geometries, arc elements with constant radii through their 

lengths are used. Each element has two nodes and two degrees of freedom (DOFs) 

expressed in terms of displacement per node. The “stiffness influence coefficient” 

method is used to calculate the stiffness matrix. Also, in addition to normal pressure, the 

effects of shear and membrane weight are investigated.  

 

 

4.1. Introduction 

 

In our FE development, the elements are presumed inextensible with negligible flexural 

rigidity. Each element is assumed to have a constant radius of curvature which varies 

with pressure loading. The applied forces are resisted by the membrane tension in the 

element in its deformed configuration. In the analysis, equilibrium is satisfied using the 
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deformed geometry. The analysis is thus nonlinear in nature. The solution approach is to 

linearize the equilibrium equations using a “current state” for which the linearized force-

displacement relations are established. Increments in loading are thus related to 

increments in displacements. The resulting new geometry can then be used to update the 

stiffness matrix of the elements and to determine the forces for computing the 

displacement increments for the next iteration.  

 

Although some analytical solutions (e.g. the method described in Chapter 2) have been 

previously published, deriving an analytical solution for more complicated problems may 

be infeasible. The FE method, on the other hand, enables the solution to be easily 

programmable in a variety of computer applications. This results in solutions with high 

precision in a remarkably short processing time.  

 

 

4.2. Prior Work in Finite Element Analysis of 

Membranes 

 

If extensibility, flexural rigidity and compressive strength are added to an ideal 

membrane, the result is categorized as a shell element. As a result of their small 

thickness, they are usually used in applications where light structures are needed, e.g. 

watercrafts, airplanes and also as roof systems for large buildings.  

 

A FE formulation for a general shaped shell was developed by Ahmed et al. [1].  Based 

on this formulation, two and three-dimensional situations were analyzed by Hughes and 
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Liu ([2] and [3]). These shell elements were also analyzed under dynamic loading [4]. 

Hughes and Carnoy developed this concept for the cases where large strains may develop 

[5]. These methods are based on the principle of minimum total potential energy using an 

elastic potential function. 

 

In a comprehensive work, Bushnell [6] used finite difference energy method to develop a 

FE formulation for shells. Considering a one-dimensional curved beam, he used the 

energy method and presented the components of the total potential energy as strain 

energy, kinetic energy, constraint energy and work done by external loads. The systems 

were defined to have five DOFs: displacement in two directions: along the curved beam 

and perpendicular to that, rotation, strain and change in curvature. Each of these DOFs 

and terms of total energy were defined as a function of displacement vector. This vector 

was made of tangential displacement at the two ends of the element in addition to the 

normal displacement of the element and its adjacent ones. Equilibrium equation was then 

developed by making the potential energy stationary. It should be noticed that although 

somewhat similar, shells and membranes cannot be analyzed by the same methods 

considering the extra strength and rigidity and lack of flexibility in shells. 

 

Oden and Sato analyzed the large deformation in elastic membranes by modeling them 

with flat triangular elements [7]. A nonlinear stiffness matrix was derived and numerical 

examples were provided to illustrate the procedure. The deformation process was 

assumed reversible and isothermal and therefore an elastic potential function existed 

which described the strain energy. According to Rivlin [8] strain energy is appropriately 
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quantified as a function of the strain invariants. The stiffness was then found by 

differentiating the strain energy with respect to displacement. A similar FE formulation 

for membrane shells was developed by Gruttmann and Taylor using the tangential 

stiffness matrix [9]. The stiffness matrix was derived in a similar manner to Oden and 

Sato’s, but the strain energy was defined as a function of principal strain.  

 

The theory for large deformations has also received considerable attention. In an effort to 

model blood vessels, Holzapfel et al. developed a FE formulation for large strain in 

membranes following the same theory [10]. Demiroz developed a FE method to predict 

large deformations in a flexible cantilever beam under buckling to model fabrics [11]. 

The Galerkin method [12] was used to develop a FE solution where rotation and 

curvature were defined as two DOFs. Newton-Raphson iteration method was used to 

solve for rotation and curvature and the FE formulation was established. The results were 

compared with previously published work. A few methods have already been developed 

for membranes with drilling DOFs. Ibrahimbegovic et al. [13], and Iura and Atluri [14] 

both derived a quadrilateral membrane FE for such membranes.  

 

None of the previously established methods account for inextensible membranes. Thus, 

this Chapter aims to develop a new numerical method that can be easily applied to curved 

inextensible membranes with no bending stiffness. Another advantage is that in this 

method the boundary conditions are often defined in terms of displacements, hence 

readily adapted to the FE approach. 
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4.3. Local Stiffness of an Element Due to Normal 

Pressure 

 

In order to find the stiffness matrix, the stiffness influence coefficient method is used. 

The stiffness component, 
ijk , is the force at degree of freedom i due to a unit 

displacement at degree of freedom j with all other displacements equal to zero. 

 

Figure 4.1 illustrates an element in the local coordinate system, with chord length, l , and 

its local DOFs. The arc length of the element is denoted by L , and the radius is R .  These 

are shown in Figure 4.2. Each element has four DOFs, the ( ex , ey ) coordinate of each 

nodal end point. 

 

Figure 4.1. An element in the local coordinate system 

 

From geometry by considering the angle  , the defining parameters of this element, arc 

length L , radius of curvature R , angle   and cord length l  are related by 
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R

L

2
          (4.1) 

 

Also, from geometry, 
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          (4.2) 

Forces associated with all four DOFs are, 
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where the subscript “ e ” denotes the local element DOF. 

 

Assuming that the membrane element is of unit width and subjected to a constant 

pressure p  ,  the resulting force, per unit length along the membrane arc length can be 

written as,  

 

)1(pq           (4.4) 

 

The loading q  per unit length along the membrane arc length resulted from applied 

constant pressure p on a membrane element of unit width has a dimension of force per 
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unit length. In this section, with weight and shear loading ignored, from equilibrium we 

have, 

 

qRT           (4.5) 

where 21 TTT   is the constant force in the membrane. 

 

As an example of the application of the stiffness influence coefficient method, consider 

the case where displacement in the third DOF is unity while other displacements are zero 

(Figure 4.2). 

 

Figure 4.2. Unit displacement at the element third degree of freedom 

 

Then due to the elongation of the chord length l , the radius R  and the angle   also 

change when, 
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3 ll          (4.6) 

 

As an example, the change in tension in first local DOF due to a change in nodal 

displacement, 3 , can be expressed as, 

 

33 
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 d

dl

dl

dR
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d
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d
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        (4.7) 

 

For this example, 

 

3

1

3

1
13





 d

dl

dl

dR

dR

d

d

dT

d

dT
K e         (4.8) 

 

where, 
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1
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and thus, 
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By repeating the analysis in this manner, the other elements of the stiffness matrix are 

determined. Therefore, the stiffness matrix of the element due to pressure is found to be 
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where, 
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4.4. Local Stiffness of an Element Due to Shear Load 

 

Consider an element in the local coordinate system (Figure 4.3). Suppose that a pressure 

loading, 0q , is applied simultaneously with a uniformly distributed shear load, sq , 

applied in the tangential direction. Due to this load, the tension through the length of the 

membrane is not constant and the two tension forces at the ends are different. 

 

 

Figure 4.3. Pressure and shear loading applied on an element 

 

From the equilibrium equations, these two forces are found to be  
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Note there must be sufficient pressure to maintain equilibrium; for example equilibrium 

without pressure is generally not possible for a curved shape under shear loading alone.  
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4.5. Local Stiffness of an Element Due to Element 

Weight 

 

Consider the element in the global coordinate system shown in Figure 4.4, where the 

angle between the chord line and horizontal line is  . The uniformly distributed weight 

load   is applied on the element in the -yG direction. The tension forces on the two ends 

are also different in this case. 

 

From the equilibrium equations, these two forces are found to be  
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Figure 4.4. An element with uniformly distributed weight 
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Again applying the stiffness influence coefficient method, we find the stiffness due to 

weight: 
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where: 
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4.6. Global Stiffness of an Element 

 

Figure 4.5 shows the membrane element in an arbitrary orientation (an arbitrary value for 

angle  ). As an example of calculating an element of the global stiffness matrix, suppose 

the first node of the element moves 1 unit in the G1  direction when all other nodal 

displacements are zero. This displacement has two components in the ex  and ey  

directions. We denote these displacements 1x  and 1y  as shown in Figure 4.6.  
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Figure 4.5. An element in the global coordinate system 

 

Figure 4.6. Decomposition of unit nodal displacement in the local degrees of freedom 
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From geometry, the value of the displacement components in the ex  and ey direction 

respectively are, 
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The resulting force in the G1  direction (
11GK ) also has two components: xF1  and 

yF1
 in 

the ex  and ey  directions respectively. Again from geometry we find, 

 

 sincos 1111 yxG FFK         (4.21) 

 

where, 

 











yKxKF

yKxKF

ee

y

ee

x

221211

1121111
        (4.22) 

 

11GK is found by substituting Equations (4.20) and (4.22) into Equation (4.21). The 

components of the global stiffness matrix are found in this manner and are expressed in 

the following set of formulae: 
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4.7. Total Stiffness Matrix of an Element 
 

The total stiffness matrix can be calculated by adding all the stiffness matrices due to 

different factors which were considered.  
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        (4.24) 

 

This should be done either before or after transformation to the global coordinate system 

when all the elements of the total stiffness matrix are in one coordinate system. The 

stiffness matrices of all elements then will be assembled to make the total stiffness 
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matrix. Again we note the stiffness matrix is geometry dependent and is therefore 

updated based upon the membrane “current state”. 

 

 

4.8. Assembled Global Stiffness Matrix 

 

The stiffness matrix of the entire membrane structure is determined by first modeling the 

structure as an assemblage of elements (Figure 4.7). The position of each nodal point and 

each element should be determined with respect to others in the overall model. The local 

element DOFs must be mapped to the global DOFs, and the total stiffness components 

are found by adding the element stiffness components having common global DOFs. 

 

For example, in Figure 4.7, for each nodal point, both of the elements connected to it 

contribute to the stiffness associated with that nodal point. The components of the total 

global stiffness matrix which have contributions from element i  are shown in the 

following: 
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Figure 4.7. The position of element number “i” in a model consisting of several elements 

 

 

4.9. Force Vector 

 

In general, before an equilibrium configuration is determined, there may be an equivalent 

load applied on each node due to an imbalance of forces at the node. Consider the node 

between “element i” and “element j” (Figure 4.8). This node has a DOF “m” in the Gx  

direction and a DOF “n” in the Gy  direction. At the node, force iT  is applied by element 

“i” and force 
jT  is applied by element “j” as shown in Figure 4.9. The resulting force 

vector is computed by the following steps: 

 

 a) Decompose each element’s force applied on the node in the Gx  and Gy  directions  

 b) Compute the net force vectors in the Gx  and Gy direction. This yields, 
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c) To counteract the force imbalance, consider the force components in their related 

position to calculate the forcing vector. 

 

 

Figure 4.8. Forces applied on a node by its adjacent elements 

 

 

Figure 4.9. Orientation of the applied membrane forces on a node 

 

Figure 4.10 shows the resultant components of the applied load corresponding to the two 

nodal DOFs. mF  and nF are respectively the m
th

 and nth elements of the forcing vector. 
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Figure 4.10. Nodal force resultants corresponding to global degrees of freedom m and n 

 

 

4.10.  The Global System of Equations 

 

For a particular structural analysis, the membrane is modeled as an assemblage of finite 

elements as discussed in the previous section. An initial geometrical configuration is first 

established and the global DOFs determined. A mapping of the local element DOFs to 

global DOFs is also required. This allows one to establish the global stiffness matrix from 

the total local stiffness matrix for each element. Also using the initial geometry, the total 

forcing vector is calculated and the system displacements can be solved using 

 

   GGG
dKF ][         (4.27) 

 

where  G
d  is the vector of displacements.  
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4.11. Example Analyses and Results 

 

4.11.1. A Partially Submerged Membrane 

 

Recall the example discussed in Section 2.7. The radius of the undeformed membrane is 

R=1.000 m and the internal gauge pressure is 10.14 kPa. First, four elements are used to 

mesh the membrane, each 0.5890 m. Then the mesh is refined and six 0.3925 m elements 

are used. Due to symmetry about the y-axis, only the right-hand half of the system is 

modeled. The origin of the coordinate system is set to the lowest point of the undeformed 

membrane when it is partially submerged with a given 
TopY . The boundary conditions are 

thus x = 0 m at s = 0 m, and a fixed value of position at the top end of the membrane 

given by (x = XTop= 0.7071 m, y = 1.707 m) for our example. 

 

For each element, a mean pressure is calculated based on the mean depth of that element 

and using Equation (2.2). Supposing that each element is an arc with constant radius, the 

radius of the element is calculated from geometry using Equation (2.5). Tension in each 

element is calculated based on the mean calculated pressure. The values of the stiffness 

matrix elements in the local coordinate system can then be determined. This matrix is 

transformed to the global coordinate system. This process is repeated for every element in 

the model and ultimately, the stiffness matrices for all elements can be assembled using 

the method described in Section 4.8.  

 

The elements of the forcing vector are also found following the method discussed in 

subsection 4.9. The system of equations is solved for changes in the values of the DOFs. 
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After the DOFs are adjusted based on the solution to the system of equations, this process 

is repeated until convergence, which can be analyzed based on either displacement or the 

tension in the membrane. In the examples presented in this section the goal is to derive 

the displacement to zero. 

 

As noted previously, we let 
TopY  denote the distance of the rigid cover from the waterline. 

This value is fixed for a FE solution. As it was calculated in the example described in 

Section 2.7, the value of 
TopY  from the analytical solution is 1.016 m. In the FE 

calculations, if 
TopY  is relatively small, which means the submerged depth is relatively 

high and the change in geometry before and after the process is considerable, the process 

must be broken down to smaller steps. To solve a problem with a small 
TopY , it might be 

necessary to first solve for the case where the out of water height is larger and use this 

deformed geometry as the starting point to solve for the case of a smaller 
TopY . Therefore, 

in case on a small 
TopY , the submerged depth is increased in displacement increments. At 

each increment, new geometry and tension is found through iterations. 

 

We found this to be the case when we compare our FE analysis to the analytical solution 

analysis. We first attempted to solve for the condition with m 016.1TopY . Convergence 

failed for this attempt, so a smaller depth of submergence of 0.25R was analyzed. This 

reduced depth results in a larger m 390.1TopY , which was found using the analytical 

solution following the procedure of Section 2.7. Figure 4.11 demonstrates the resulted 

value of tension in the membrane versus the number of elements where m 390.1TopY . 
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When compared with the analytical method the error in tension from less than 2% in a 

two element model was rapidly reduced to almost 0.1% in an eight element model. 

Using this initial geometry, the process of finding the resulting equilibrium configuration 

and membrane tension converged in five iterations (the convergence threshold was set at 

1N). As the next step, m 016.1TopY was considered. This process converged in seven 

iterations. Tension values during these seven iterations are summarized in Table 4.1. 

 

Figure 4.11. Convergence of tension versus the number of elements 
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Table 4.1. Values of tension in the four-element model during the finite element method 

iterations 

 Tension(kN) 

Iteration Element 1 Element 2 Element 3 Element 4 

1 5.345 6.896 8.822 9.078 

2 11.96 8.470 7.352 9.345 

3 8.836 7.247 6.960 7.599 

4 7.386 6.945 6.923 7.000 

5 6.963 6.924 6.924 6.925 

6 6.924 6.924 6.924 6.924 

 

The solution for the model with six elements once again started with m 390.1TopY  and 

converged in seven iterations. As the second step, 
TopY  was set to 1.173 m. This process 

converged in eight iterations. For the final step, m 016.1TopY  was considered. The 

values of tension converged in five iterations. Table 4.2 shows these values. 

 

Table 4.2. Values of tension in the six-element method during the finite element method 

iterations 

 Tension(kN) 

Iteration Element1 Element2 Element3 Element4 Element5 Element6 

1 7.915 7.602 7.372 7.485 7.485 7.485 

2 7.607 7.634 7.609 7.563 7.568 7.582 

3 7.562 7.562 7.558 7.561 7.561 7.561 

4 7.561 7.561 7.562 7.561 7.561 7.561 

5 7.561 7.561 7.561 7.561 7.561 7.561 
 

The magnitudes of the displacement vector at each iteration are plotted in Figure 4.12. 

The jumps at iterations 9 and 18 correspond to a new iteration on geometry. 
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Figure 4.12. Convergence of Finite element method for a membrane with 0.5R submerged 

depth 
 

Figure 4.13 shows the FE solutions in comparison with the analytical solution. As it can 

be seen in this Figure, there is a very good agreement between these two methods. The 

error of the FE solution for the four elements model (dashed line) in the displacement on 

the lowest point of the membrane is about 16%. This is the point where the maximum 

difference between the two methods occurs. For the six-element model (circles), this 

error is about 7%. The difference tension between the six-element model and the 

analytical solution is 1.1%. 
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Figure 4.13. Analytical and finite element solution for deformed membrane under pressure 

 

Figure 4.14 shows the undeformed profile of the membrane in comparison with the 

deformed solution by analytical and FE method. 
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Figure 4.14. Profile of the deformed and undeformed membrane 

 

Figure 4.15 illustrates the output of the presented FE solution with four elements in 

comparison with the result of another FE method [11] with three elements in which DOFs 

are in terms of rotation and curvature.  The rotation based FE has two elements in the 

submerged part of the membrane while in our method four equal length elements are 

used. Each of these methods may result in a more accurate solution when compared with 

the other one, depending on where along the length of the membrane the point of interest 

is located. But, it should be noted that the rotation based FE solution does not satisfy the 

boundary condition at the top point as its calculated top point is higher than the point 

where the actual membrane and lid are connected. On the other hand, the displacement 

based FE method presented here totally satisfies the displacement boundary conditions at 
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this point and this is the major advantage of this method over the methods published in 

the past. 

 

Figure 4.15. The presented finite element method in comparison with another one 

 

4.11.2. A Weighted Membrane Under Internal Pressure 

 

In this section a distributed weight load of 34.47 N/m is added to a membrane with the 

same geometry as the membrane analyzed in Subsection 4.11.1. The width of the 

membrane is 1 m. In the first example, the internal pressure is 344.7 N/m.  The 

membrane is first analyzed with a four element model, then the mesh is refined and ten 

elements are used. The lengths of the elements from the lowest element to the highest in 

the four element model are LLL
10

3
,

10

2
,

10

1
 and L

10

4
 respectively. The lengths of the 
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elements in the ten element model are LLL
55

10
,...,

55

2
,

55

1
 respectively, where L  is half of 

the length of the cross section of the membrane. The smallest element is the one which is 

the closest to the lowest point. 

 

The stiffness matrix for each element is calculated based on Equation (4.18), and will be 

added to the stiffness due to pressure (based on Equation (4.14)). Then every matrix will 

be transformed to the global coordinate system and assembled. The system of the 

equations for the model can be solved for changes in the values of the DOFs after the 

forcing vector is calculated. After the DOFs are adjusted based on the solution to the 

system of equations, this process is repeated until convergence. 

 

Figure 4.16 shows the FE solutions in comparison with the previously developed 

analytical solution presented in [15]. The origin of the coordinate system is set to the 

lowest point of the undeformed membrane. As it can be seen in this Figure; there is a 

very good agreement between these two methods. Also the improvement of the result due 

to refinement is noticeable. 
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Figure 4.16. Analytical and Finite element solution for deformed weighted membrane with 

internal pressure of 344.7 N/m 

 

The internal pressure is then reduced to 34.47 N/m which is equal to the membrane 

weight. The result of the FE analysis in comparison with analytical analysis is shown in 

Figure 4.17. Since the change in geometry before and after deformation is considerable, 

this process was broken to smaller steps, meaning the internal pressure was reduced 

gradually. The result of the case with 344.7 N/m internal pressure was used as the first 

step and it was reduced in four steps to 34.47 N/m. 
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Figure 4.17. Analytical and Finite element solution for deformed weighted membrane with 

internal pressure equal to its weight 

 

As the internal pressure decreases, the shapes of the elements get closer to a straight line 

and the assumption of constant radius is not accurate anymore. Therefore, there is a 

lowest limit for the internal pressure in any FE model with the constant radius 

assumption. Higher number of the elements results to shorter elements and therefore 

more straight elements. This means that for analysis with higher number of elements the 

lowest limit of internal pressure has a higher value. Figure 4.18 shows the four-element 

FE solution compared with analytical solution. Internal pressure is 21.37 N/m which is 

less than membrane weight. 
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Figure 4.18. Analytical and Finite element solution for deformed weighted membrane with 

internal pressure of 21.37 N/m 

 

Figure 4.19 shows the ten-element FE solution compared with analytical solution. 

Internal pressure is 31.03 N/m. This is the lowest limit for this analysis which is higher 

than the lowest limit for four element analysis. As it can be seen in deformed shape, the 

membrane is closer to a straight line in upper part of the membrane and it has more 

curvature in lower part of the membrane. This requires longer elements in lower 

curvature positions. Therefore, choosing elements with different lengths speeds up the 

convergence process. That is the reason of the specific element length selection in this 

problem. 
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Figure 4.19. Analytical and Finite element solution for deformed weighted  membrane with 

internal pressure of 31.03 N/m 

 

4.11.3. A Membrane Under Internal Pressure and Shear loading 

 

Consider now a membrane 2.310 m long with radius 0.9655 m. This membrane is 

symmetric with respect to the y axis, such that the origin of the coordinate system is set 

to the lowest point of the membrane. The shear loading is applied as horizontal 

distributed load in x  direction. The boundary conditions are fixed value of position at 

the two top ends of the membrane given by (x = 0.8985 m, y = 0.6121 m) and (x = -

0.8985 m, y = 0.6121 m). 
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Internal pressure is 6.895 kN/m and shear distributed load is 3.447 kN/m. First, two equal 

length elements are used to mesh the membrane. Then, the mesh is refined and four 

elements are used. Again the analysis is done based on the method and equations 

described in Sections 4.3 and 4.4. Figure 4.20 illustrates the deformed shape of the 

membrane under shear loading and internal pressure. 

 

 

Figure 4.20. Analytical and Finite element solution for deformed membrane under shear 

loading and internal pressure 
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4.11.4. A Weighted Membrane Under Internal Pressure and 

Shear loading 

 

Reconsider again the membrane described in Subsection 4.11.2. A weight equal to 34.47 

N/m is also applied to the membrane. The internal pressure is distributed gradually.  The 

membrane is modeled using two, four and six elements. In the six element model the 

internal pressure is reduced from 14.20 kN/m to 4.247 kN/m which is the lowest amount 

of internal pressure to which the presented FE solution can be applied. The reduction of 

internal pressure in this model was achieved in three steps. In the four element model the 

internal pressure is reduced from 9.439 kN/m to 4.123 kN/m which is the lowest amount 

of internal pressure to which the presented FE solution can be applied. The reduction of 

internal pressure in this model was achieved in three steps.  

 

In the two element model, the internal pressure is reduced from 6.895 kN/m to 110.3 N/m 

in eight steps. Figure 4.21 shows the deformed profiles of the membrane modeled with 

two, four and six elements. In this Figure, the lowest limit of internal pressure for the six 

element model is used to derive the deformed profiles. Figure 4.22 compares the 

deformed profile of the membrane modeled with two elements in the lowest limit of 

internal pressure corresponding to the four element model (i.e. 4.123 kN/m) with the 

deformed profile of the same membrane in the lowest limit of internal pressure 

corresponding to the two element model (i.e. 110.3 N/m). Due to the lack of analytical 

methods considering shear and normal pressures for weighted membranes, these results 

are not compared with results of other methods. 
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Figure 4.21. Deformed membrane with lowest limit of internal pressure modeled with six 

elements 
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Figure 4.22. Deformed shape of the membrane in two different internal pressures 

 

 

4.12. Conclusions 

 

The developed FE formulation can be effectively used to model any loading conditions 

for the two-dimensional membranes where deformation in terms of displacements is 

desired. The developed results will contribute tremendously in modeling the response of 

the flexible seals of surface effect ships and inflatable pontoons, which is the main 

motivation, although it can also be applied to any membrane deformation problem in 

other fields than marine engineering. The FE applications are more general than the 

examples provided here; the approach can be used to model membranes subjected to 

general loading and various boundary conditions.  
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The FE solution is defined in terms of nodal displacements in the x and y directions. The 

stiffness influence coefficient method is used to find the stiffness matrix of the elements. 

The result from the developed FE solutions when compared with the result obtained from 

the analytical solution for the partially submerged membranes is found to be very 

accurate.  In the example discussed in Section 4, the coverage rate is comparable to that 

of the analytical solution. This rate is a function of increments in the submerged depth or 

deformation in general. The process is very fast when the submerged depth increment is 

small.  As the depth increment increases the convergence rate decreases. Therefore for 

large depth increments, the FE solution may need intermediate steps. This is similar to 

the behavior of load stepping increments when applied loading is prescribed in nonlinear 

FE simulations. The number of intermediate steps increases where the number of 

elements are higher, since elements are closer to a straight line and their chord length 

cannot be stretched more than their arc length. 

 

In case of applied shear force, the existence of the internal pressure is essential to 

maintain equilibrium equations as shown in Figure 4.3 and Equations 4.16. The analysis 

does not converge when internal pressure is lower than a specific amount. This amount 

depends on the number of elements and it is lower when the number of elements is small.  

 

One important assumption in deriving the presented FE method is that each element has a 

constant radius. When this radius increases and the elements get closer to a straight line, 

either because of the large radius of the membrane or high number of elements, the 

convergence rate decreases. Therefore, although increasing the number of elements 



 88 

improves the results, which in some cases might be negligible depending on the problem, 

it reduces the convergence rate. 

One of the significant advantages of the presented method is its accuracy when compared 

with the previously developed method for the cases where satisfaction of displacement 

boundary conditions is essential. This is very important due to the fact that displacement 

is usually prescribed in many engineering problems and the previous methods fail in 

imposing this condition. 
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Chapter 5 

 

Isogeometric Approach for Membrane 

Structural Analysis 

 

 

In this Chapter, a numerical method is developed based on the Isogeometric analysis to 

investigate the deformation of two-dimensional membranes under different loading and 

boundary conditions. To adequately represent complex geometries and shapes, each 

element is selected as a quadratic Bezier curve. Therefore, each element will have three 

control points and two degrees of freedom (DOFs) per control point expressed in terms of 

displacement. In addition to inextensible membranes, linear elastic membranes with 

uniaxial extension and membranes with bending stiffness and small strains are also 

considered. Due to the fact that the problem at hand is a non-conservative system, the 

principle of virtual work is used to calculate the total virtual work including the strain 

energy in case of extensible membranes, as well as the constraint energy.  
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5.1. Introduction 

 

Isogeometric Analysis [1] is a computational mechanics method that integrates Computer 

Aided Design (CAD) and Finite Element (FE) analysis. The need for Isogeometric 

Analysis is rooted in the fact that an FE model is only an approximation of the geometry, 

and that data must often be translated from one system (i.e. CAD modeling) to the other 

(i.e. mesh generation). In many cases, the results of the analysis highly depend on the 

exact geometry and the main goal of the Isogeometric Analysis is to achieve geometric 

accuracy and systematic treatment by integrating CAD and FE analysis. Another 

advantage of Isogeometric Analysis is that it reduces the overall computational cost. In 

traditional practice, most of the analysis time is spent on creating CAD models that are 

suitable for FE analysis and remeshing. Another reason to develop Isogeometric methods 

is the desire to reduce the analysis time by integrating CAD and FE method and 

eliminating the need to communicate between them. This concept is shown in Figure 5.1. 

 

In this research, analysis is based on “Bezier Curves”, which is one of the earliest 

parametric curve approximation methods used in CAD [2]. A Bezier curve is a 

polynomial curve. The terms of the polynomial are weighted points of a polyline that fits 

the curve. The Bernstein polynomial is used by Bezier to describe weight values of the 

ployline. This polynomial is a function of the number of points as well as a dimensionless 

parameter which is usually the location of the multiplier point with respect to the first and 

last points of the curve. 
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Figure 5.1. The schematic comparison of FE method and Isogeometric Analysis 

 

Verron and Marckmann [3] developed a model based on B-spline curves. This method 

was established to study the free inflation of axisymmetric hyper-elastic membranes 

based on Mooney-Rivlin solid model. The non-linear system of equations was iteratively 

solved. Based on their method the instability and complex equilibrium path in the 

problem of the inflation of two connected rubber balloons was studied [4]. 

 

Due to its ability in modeling complex geometries, Isogeometric Analysis can benefit 

Fluid Structure Interaction (FSI) problems especially when there are large deformations 

in the structure. Accordingly, there are a few FSI problems analyzed by Isogeometric 

Analysis such as blood flow in veins, ventricular assist devices, and the arterial wall 

which was treated as a hyper-elastic solid [5, 6].  
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5.2. Bezier Description for an Element with Six Degrees 

of Freedom 

 

The coordinates of any point on a Bezier curve can be expressed in terms of the 

coordinates of its controlling points as well as its position with respect to the two end 

points. Knowing the geometric description of a Bezier curve, the curve length can be 

conveniently calculated as a function of its control points’ coordinates. 

 

5.2.1. Geometric Description 

 

To reduce computational complexity and easily control the geometry, a Bezier curve of 

second degree is selected. It should be noted that a quadratic curve does not have an 

inflection point and therefore, when the problem involves an inflection point, this point 

must be located where elements are connected. Still, at inflection point, unless the 

curvature is zero, there will be discontinuity between elements.  

 

A quadratic Bezier curve is the path defined by the following function, 
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, where ),(),,( 111000 YXPYXP  and ),( 222 YXP are control points and ]1,0[u . The path 

described by Equation (5.1) is shown in Figure 5.2. Therefore the ),( yx coordinates of 

any point on the path can be defined by, 
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Figure 5.2. A quadratic Bezier curve and  the point corresponding to u=0.25 

 

5.2.2. Length of an Element 

 

The rate of change of the curve length with respect to u  can be calculated from, 
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Based on Equation (5.2), 
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Now let, 
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and, 
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Therefore, 
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and, 
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Again, let, 
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From Equations (5.7) and (5.8), 

 

222 )(4 duucbuads         (5.10) 

duucbuads 22         (5.11) 

 

Therefore, the length of an element can be calculated by integrating ds. After simplifying 

and considering that at u=0, length (L) is zero,  
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5.3. Stiffness Matrix Calculations 

 

5.3.1. The Principle of Virtual Work 

 

It should be considered that pressure is a follower force. In other words, it is not a 

conservative force and thus, the Principle of Minimum Total Potential Energy cannot be 

applied to it.  On the other hand, the Principle of Virtual Work can be applied to 

conservative and non-conservative forces and therefore, this principle is used to derive 

the stiffness matrix [7]. 

 

According to this Principle, the sum of the virtual external work done by real external 

forces acting through virtual displacements and the virtual internal work done by the real 

internal forces acting through the virtual displacements is equal to zero. When external 

work is denoted as eW  and internal work is denoted as iW , this principle can be 

expressed as, 

 

0 ie WW 
        (5.13) 

 

The internal virtual work is stored in the body in the form of virtual strain energy, 

denoted by U , in other words,  

 

UWi  
         (5.14) 
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Combining Equations (5.13) and (5.14) will result in the new form for the principle of 

virtual work, 

 

         (5.15) 

 

5.3.2. General Solution Procedure 

 

In general, total work includes work done by external forces, internal work which is equal 

to strain energy, and work done by constraints which have the form of energy, denoted by

T .The latter will be explained in more details in Section 5.4. 

 

TUWW e 
        (5.16) 

 

In this research, the external work done by normal and shear pressures as well as the 

distributed weight of the membrane is considered, 

 

wsqe WWWW 
        (5.17) 

 

To find the deformed shape of the membrane, the force vector and stiffness matrix 

corresponding to all DOFs should be calculated. These will be used to calculate the 

displacement. To find the deformed geometry, the Newton-Raphson iterative method is 

employed to solve the following equation to obtain increments in displacement where 

0 UWe 
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N is the number of DOFs, if  is a generic element of the force vector and j  is a generic 

DOF, 

 

ij

N

j

i f
f





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1         (5.18) 

 

In order to apply this method, the force vector and stiffness matrix are calculated for 

initial geometry and applied forces. Comparing Equation (5.18) with the general formula, 
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          (5.19) 

 

the stiffness matrix can be calculated using, 
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         (5.20) 

 

To calculate the force vector, the virtual work is defined in terms of increments in DOFs, 

as follows, 

 

j
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W
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        (5.21) 

 

Comparing Equation (5.21) with the definition of work we have, 
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fW


            (5.22) 

 

After calculating the virtual work based on the known applied loads, strain energies and 

constraint, the elements of the force vector corresponding to each DOF can be easily 

determined to be, 
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         (5.23) 

 

After the increments in DOFs are found using Equation (5.18), the values of DOFs are 

updated and Equation (5.18) is used again to find the new increments and this process 

continues until convergence. 

 

5.4. Inextensible Membrane 

 

No strain is generated in inextensible membranes. Therefore the virtual strain energy and 

virtual internal work are zero. In addition, if a membrane is inextensible, the length of 

each element at every step of the iteration process should remain constant. This can be 

introduced as a constraint and included in the process, using the “Lagrange Multipliers”.  

The term that is added to the overall Virtual Work to ensure the constant length is 

)( 0LLT    in which  is the Lagrange Multiplier, L is the length of the element, and 

0L  is the initial length of the element. This term has been called “constraint energy” [8]. 

Then the Principle of Virtual Work can then be expressed as, 
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0 TWe           (5.24) 

 

This constraint adds another degree of freedom (DOF) to the problem. Therefore, for an 

element with six DOFs and length constraint, Equation (5.24) can be rewritten as,  
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or, 
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where i  is a generic or generalized DOF. 
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5.5. Contribution of Normal Pressure to External Work 

 

Figure 5.3 shows a membrane under internal pressure q . As shown in this Figure, the 

components of the total applied internal pressure to a portion of the membrane with 

length ds, are dyq  and dxq , along x  and y directions, respectively. 

 

 

Figure 5.3. The components of the applied internal pressure to a membrane 

 

Therefore, the virtual work done by q is the sum of force components multiplied by the 

virtual displacement in the same direction as the applied force, 

 

ydxqxdyqWd q      )(         (5.28) 

 

where x  and y can be calculated as follows using Equation (5.2), 
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By integrating Equation (5.28) along the length of the membrane, the virtual work of the 

internal pressure can be calculated, 

 

 )( qq WdW          (5.30) 

 

After a few steps of integration and simplification, the external force of normal pressure 

is found to be: 
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5.6. Contribution of Axial Extension to Internal Work 

 

For a membrane that is extensible, the contribution of the strain energy should be 

considered in calculating the force vector and stiffness matrix. In this case, the total work 

W includes the internal work which is equal to the strain energy generated by the 

extension of the membrane, U . Therefore from Equation (5.16), 

TUWW e           (5.32) 

 

The strain energy generated by axial extension is calculated using, 

  dVU A 
2

1
        (5.33) 

 

For a linear elastic material, uniaxial stress is, 

 

 E          (5.34) 

 

Substituting equation (5.34) into equation (5.33), 

 

 dVEU 2

2

1
         (5.35) 

 

with constant modulus of elasticity and cross section, 
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A dzEAU          (5.36) 

 

If the elongation with respect to initial length of the element is small, the Cauchy strain 

can be defined as follows, 
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By substituting this into Equation (5.36) and integrating, 
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To calculate the force vector and stiffness matrix, derivative of strain energy with respect 

to DOFs is calculated as follows, 

)(
0 ii

A L

L

L
EA

U

 







        (5.39) 

 

 

5.7. Contribution of Uniformly Distributed Weight to 

External Work 

 

Figure 5.4 shows a membrane with weight intensity w , which has the unit of force per 

unit arc length. 
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Figure 5.4. A membrane under uniformly distributed weight 

 

Considering that weight has no components along x  direction, the virtual work done by 

uniformly distributed weight on a portion of the membrane with length ds is, 

 

ydswWd w    )(          (5.40) 

 

Substituting from Equations (5.11) and (5.29) and integrating, the work done by 

uniformly distributed load is found to be, 
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(5.41) 

 

 

5.8. Contribution from Shear Loading 

 

Figure 5.5 shows a membrane under shear load. As shown in this Figure, the shear load 

applied to an infinitesimal portion of the membrane with length ds  has a component with 

the magnitude equal to dxqs  along x  direction and a component equal to dyqs  along y  

direction. 
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Figure 5.5. A membrane under shear load 

 

The work done by the shear load on the infinitesimal portion of the membrane ( ds ) is 

equal to, 

 

ydyqxdxqWd ssqs
   )(         (5.42) 

 

Again, substituting from Equations (5.11) and (5.29) and integrating, 
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 110 

5.9.  Contribution of Bending Strain Energy to Internal 

Work 

 

Figure 5.6 shows an infinitesimal portion of a membrane. The radius of the membrane 

profile is denoted by  . 

 

 

Figure 5.6. An infinitesimal portion of a membrane under shear load 

 

If the midplane is inextensible, the length is related to the radius by, 

 

 dds            (5.44) 

 

For any other plane, 

 

 dzds  )(*          (5.45) 

 

For small strains, Green strain is defined as, 
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ds
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          (5.46)  

 

Substituting Equations (5.44) and (5.45) into Equation (5.46), 

 




z
           (5.47) 

 

To calculate the strain energy, Equation (5.47) is substituted in Equation (5.35). Denoting 

the length of the membrane perpendicular to the profile shown in Figure 5.5 by b , and 

thickness of the membrane with t , 
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By integration, 
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The moment of inertia for a membrane with the geometry depicted in Figure 5.5 is, 

 

12

3bt
I           (5.50) 

 

Substituting Equation (5.50) into Equation (5.49), 
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Considering the fact that curvature is the inverse of radius, 
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Equation (5.51) can be rewritten as, 
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After substituting equation (5.44) and integrating, 
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5.9.1. Curvature in Terms of Degrees of Freedom 

 

For a two-dimensional curve with Cartesian coordinates (x,y), the curvature is, 
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, where 
du

dX
x   and 

du

dY
y  .  Differentiating x  and y with respect to u  using Equation 

(5.7), 
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By substituting Equations (5.7) and (5.56) into Equation (5.55), 
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From Equation (5.9) by substituting a, b, and c into f, 
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Substituting Equation (5.58) into Equation (5.57) simplifies the equation of curvature, 

 

2

3

2 )(
2

1

cubua

f



        (5.59) 

 

 



 114 

5.10.   Example Analyses and Results 

 

5.10.1. A Two-Element Model with Variable Pressure 

 

Consider the profile of a circular membrane. The length of the membrane is 3.141 m and 

it is positioned symmetrically with respect to the vertical radius (y axis). The undeformed 

shape is such that the inscribed angle of the membrane is 2/ . The radius of undeformed 

membrane is R=1 m and the internal gauge pressure is 6.895 kN/m.  Two elements are 

used to mesh the membrane, each 0.393 m long. Due to symmetry about the y-axis, only 

the right-hand half of the system is modeled. The origin of the coordinate system is set to 

be the lowest point of the undeformed membrane. For this example, the boundary 

conditions are x = 0 m at s = 0 m, and the fixed position at the top end of the membrane 

as given by (x = 1 m, y = 1 m). The internal pressure of the second (rightmost) element is 

kept constant (6.895 kN/m) and the internal pressure of the first (leftmost) element was 

reduced in several steps from 6.895 kN/m to -6.895 kN/m. The result of the deformed 

geometry is shown in Figure 5.6. In each step, the virtual work of the internal pressure is 

calculated using Equation (5.31). The geometry of this model is shown in Figure 5.7. 
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Figure 5.7. The geometry of the model investigated in Subsection 5.10.1 in undeformed 

geometry 

 

There are a few constraints that are taken into consideration. The length of each element 

is fixed by applying the Lagrange Multiplier method. Another constraint is the C1 

continuity of the two elements where they meet, which can be considered again by 

applying the Lagrange Multiplier method. In addition, the slope at x=0 m should be equal 

to zero due to symmetry. 

 

Since the control point at which the two elements are connected is a common control 

point, the contributing terms from both elements is considered at that point. The stiffness 

matrix and forcing vector for DOFs including the Lagrange multipliers are calculated 

using Equations (5.20) and (5.23), respectively. The result of the deformed geometry is 

shown in Figure 5.8. 
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Figure 5.8. A membrane under variable pressure 

 

It is worth mentioning that when no pressure is applied on the left element, the membrane 

becomes a completely straight horizontal line. At this point the analysis experiences a 

discontinuity due to the fact that the position of the middle control point in not unique for 

this case. This matter will be discussed in more detail in Chapter 6. 

 

5.10.2. A Partially Submerged Membrane 

 

Consider a circular membrane with a radius of undeformed geometry equal to R=1 m. 

The length of the membrane is 4.712 m and similar to the example presented in 

Subsection 4.11.1, it is positioned symmetrically with respect to the y-axis. The 
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undeformed shape is such that the inscribed angle of the membrane is 2/3 . Also, the 

internal gauge pressure is 10.135 kN/m.  Due to symmetry about the y-axis, only the 

right-hand half of the system is modeled. First three elements were used to conduct the 

analysis, each 0.7854 m long. Then the number of elements were increaded to five 0.4712 

m long elements. The origin of the coordinate system is set to the lowest point of the 

undeformed membrane. Similar to previous case, the boundary conditions are x = 0 m at s 

= 0 m, and a fixed position at the top end of the membrane given by (x = 0.707 m, y = 

1.707 m). Suppose that this membrane is submerged in water with underwater depth 

equal to m 5.05.0 R . Similar to the problem discussed is Subsection 5.10.1, constant 

length, C1 continuity and symmetry at x = 0 m are enforced. 

 

The results of the analysis with three- and five- element models are shown in Figure 5.9 

and compared to the analytical solution. This Figure shows a very good agreement 

between these two methods. The difference in the vertical position of the lowest point of 

the membrane based on the Bezier curve analysis with three elements (dashed curve) in 

comparison with analytical solution is 5.6 cm which is 5.6% of the initial radius of the 

membrane. It should be noted that this is the point where the maximum deviation from 

the analytical model occurs. For the four-element model, this difference is about 2% of 

the initial radius and for the five-element model (dotted curve), it is about 1.1% of the 

initial radius. Recalling from Chapter 4, these differences in the results of FE analysis 

were 3.1% and 1.3% for a four-element and six-element model respectively. This shows 

that the Bezier curve method results in noticeable improvements in the displacement 

analysis. 
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Figure 5.9. Deformed membrane under hydrostatic pressure modeled by 3 and 5 elements 

 

5.10.3. A Weighted Membrane under Internal Pressure 

 

In this Subsection, the same problem studied in Subsection 3.11.2 is considered. In 

summary, a distributed weight load of 34.474N/m is added to the same membrane 

described in Subsection 5.11.2. The width of the element is considered to be 1 m. 

Initially, the internal pressure is set at 344.736 N/m. The membrane is analyzed with one-

, three-, and five- element models. In case of more than one element, elements of same 

length are used. 
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In calculating the stiffness matrix and force vector, the contribution by the weight of the 

elements based on Equation (5.41) is added to that of the normal pressure based on 

Equation (5.31), along with the contributions due to constraints on the length of the 

elements, and slope continuity at points where elements are connected. After finding the 

stiffness matrix and force vector, Newton-Raphson iterative method is employed to find 

the deformed geometry. 

  

Figure 5.10 shows the finite element solutions in comparison with the analytical solution 

presented in [9]. The origin of the coordinate system is set at the lowest point of the 

undeformed membrane. As shown in this Figure, the improvement of the result due to 

refinement is noticeable. For instance, the difference in the vertical position of the lowest 

point of the membrane based on Bezier curve analysis with one element in comparison 

with analytical solution for one element model is 49.5 cm or 49.5% of the initial radius of 

the membrane, while the same value for three- and five-element model is 3.2 cm and 3.1 

cm, respectively. Although the results presented in Subsection 3.11.2 were closer to the 

results of analytical methods, it should be noted that the results of FE method were 

enhanced by selecting elements with different lengths based on their anticipated 

curvature. 
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Figure 5.10. Bezier curve based analysis for deformed weighted membrane with internal 

pressure of 344.736N/min comparison with analytical results 

 

Figure 5.11 shows the result of the case where the internal pressure is reduced to as low 

as the membrane weight, which is 34.474 N/m. The difference in the vertical position of 

the lowest point of the membrane based on Bezier curve analysis with four elements in 

comparison with analytical solution is 4.2 cm or 4.2% of the initial radius of the 

membrane. It is also observed that the curvature continuity is not maintained. This 

problem appears as the curvature of the part of membrane modeled by an element 

approaches zero. As an example, the curvature discontinuity grows as the internal 

pressure decreases. 
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Figure 5.11. Bezier curve based analysis for deformed weighted membrane with internal 

pressure equal to membrane weight in comparison with analytical results 

 

The next example considers the catenary case. When compared to the example presented 

in Subsection 4.11.2, it is seen that unlike the FE method example, in which there was a 

low internal pressure limit, Bezier curve analysis allows for the internal pressure to be 

dropped to zero. In FE solution, the problem occurred when the arc elements modeled 

straight lines; although this introduces continuity problems in Bezier curve analysis, it 

still converges to a solution. This is in fact one of the major benefits of the Bezier curve 

analysis in comparison with the FE method introduced in Chapter 4. 

 

The results of the catenary analysis are shown in Figure 5.12. The difference in the 

vertical position of the lowest point based on Bezier curve analysis and analytical 
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solution is 4.8 cm, although this is not the point with maximum deviation from the 

analytical solution. 

 

Figure 5.12. Bezier curve based analysis of catenary solution for deformed weighted 

membrane in comparison with analytical results 

 

5.10.4. A Membrane under Internal Pressure and Shear Loading 

 

In this Subsection, the problem considered in Subsection 4.11.3 is analyzed using Bezier 

curve analysis. The membrane is 2.310 m long and before the application of any shear 

pressure, the radius is 0.966 m. This membrane is symmetric with respect to the y-axis, 

such that the origin of the coordinate system is located at the lowest point of the 

membrane. The boundary conditions are fixed values of position at the two top ends of 

the membrane given by (x = 0.899 m, y = 0.612 m) and (x = -0.899 m, y = 0.612 m). 
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In this problem, internal pressure is 6.895 kN/m and shear distributed load is 3.447 kN/m. 

The analysis is done using one, three and five elements. The contribution of the normal 

pressure (Equation (5.31)) as well as shear pressure (Equation (5.43)), constant length 

constraint and C1 continuity were considered in calculating the total virtual work for the 

membrane. Figure 5.13 illustrates the deformed shape of the membrane under shear 

loading and internal pressure. 

 

Figure 5.13. Bezier curve based analysis of a membrane under internal pressure and shear 

loading in comparison with analytical results 

 

 

 

 



 124 

5.10.5. Elastic Membranes 

 

5.10.5.1. A Membrane under Increasing Internal Pressure 

 

Consider ¼ of the circle as the initial shape of a membrane that can be axially expanded 

and has bending stiffness. It is symmetric with respect to the y-axis, such that the origin 

of the coordinate system is at the lowest point of the membrane. The boundary conditions 

are fixed values of position at the two top ends of the membrane given by (x = 0.7071 m, 

y = 0.2929 m) and (x = -0.7071 m, y = 0.2929 m). The membrane has flexural rigidity of 

0.001148 N-m
2
 and its modulus of elasticity multiplied by its cross-sectional area is 

1.366 kN. The membrane is modeled with four elements of equal length. 

 

In calculating the total virtual work on the membrane, the work of normal pressure was 

added to the contribution of the applied constraint of having C1 continuity as well as 

axial extension and flexural rigidity based on Equations (5.38) and (5.54), respectively. It 

should be noted that the constraint of constant length elements is not valid in this 

example. The internal pressure of 34.474 kN/m was applied to the membrane, and was 

later reduced to 6.895 kN/m and 0.689 kN/m in two steps. The result of the analysis 

which led to the expansion of the membrane is illustrated in Figure 5.14. As the internal 

pressure reduces the membrane becomes shorter. The accuracy of the results decreases 

when the internal pressure approaches zero, the point where the curvature changes. This 

inaccuracy in the results is shown in Figure 5.14 where the internal pressure is 0.689 

kN/m. 
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Figure 5.14. Bezier curve based analysis of an elastic membrane under increasing internal 

pressure 

 

5.10.5.2. A Weighted Membrane under Internal Pressure 

 

A modified version of the example discussed in Subsection 5.11.3 is revisited in this 

Subsection. Here, the membrane has axial extension and bending stiffness. The flexural 

rigidity of membrane is 0.001148 N-m
2
 and its modulus of elasticity multiplied by its 

cross-sectional area is 1.366 kN. It is modeled with four elements of equal length. The 

internal pressure is initially equal to 6.895 kN/m and then reduced to 25.511 N/m. The 

contributing components in the calculation of virtual work are internal normal pressure 

(Equation (5.31)), membrane mass (Equation (5.41)), axial extension (Equation (5.38)), 
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flexural rigidity (Equation (5.54)), and C1 continuity constraint. The change in the 

geometry of the membrane during internal pressure reduction is shown in Figure 5.15. 

 

Figure 5.15. Deformation of an elastic weighted membrane due to decreasing internal 

pressure 

 

Figure 5.16 shows the geometry of an inextensible membrane and an elastic membrane 

under internal pressure of 6.895 kN/m and distributed weight of 34.474 N/m. As shown 

in this Figure, although deformation of the inextensible membrane from initial geometry 

is almost negligible, the elastic membrane significantly deforms upward. 
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Figure 5.16. Geometry of an inextensible weighted membrane and an elastic weighted 

membrane in identical conditions 

 

5.10.5.3. A Membrane under Internal Pressure and Shear Loading 

 

The problem discussed in Subsection 5.10.4 is modified by adding axial extension and 

bending stiffness. The flexural rigidity of membrane is 0.001148 N-m
2
 and its modulus of 

elasticity multiplied by its cross-sectional area is 1.366 kN. The membrane is modeled 

using four elements of equal length. Internal pressure is kept at 6.895 kN/m, and shear 

pressure is increased from -0.689 kN/m to -3.447 kN/m and to -6.895 kN/m. The 

deformation of the membrane due to an increase in shear pressure is illustrated in Figure 

5.17. 
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Figure 5.17. Deformation of an elastic membrane under increasing shear pressure 

 

5.10.5.4. Multiple Solutions for a Set of Forces and Boundary Conditions 

 

The method described in Chapter 5 in some cases results in multiple solutions. As an 

example, the deformation of a circular membrane under external pressure is considered. 

The membrane in its original configuration is ¼ of a circle with radius of 1 m. The 

flexural rigidity of membrane is 0.001148 N-m
2
 and its modulus of elasticity multiplied 

by its cross-sectional area is 1.366 kN. The membrane is modeled using two elements of 

equal length where C1 continuity is enforced. The position is fixed at the two top ends of 

the membrane and external pressure of 2.068  kN/m is applied upward. Figure 5.18 

shows the multiple solutions resulted from Bezier curve based analysis. It should be 
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noted that not all of these solutions are acceptable. For instance, the solution in bold 

black line crosses itself which is physically impossible for a three dimensional 

membrane. The dashed blue line and the solid red line with dot markers represent two 

unstable solutions before the membrane reaches the stable solution represented by the 

dash-dot line in black. 

 

Figure 5.18. Multiple solutions for a unique initial and boundary conditions 

 

 

5.11.  Conclusions 

 

The methodology presented in this Chapter to structurally analyze membranes based on 

quadratic Bezier curve, can be used to model any class of simple or complex geometry 
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and its applications are beyond the examples discussed herein. In order to demonstrate 

the applicability of the developed method to cases that involve elastic membranes, 

membranes with axial extension and bending stiffness were also included in the analysis. 

 

The developed methodology considered the deformation of two-dimensional membranes, 

using elements with three control point and two DOFs in term of displacements along x 

and y directions for each control point. The stiffness matrix and force vector were 

calculated based on the principle of total virtual work. The terms contributing to the total 

virtual work were the results of external loads (i.e. normal and shear pressure), membrane 

mass, and constraint conditions such as constant length, and C1 continuity. In case of an 

elastic membrane, the effects of axial extension and bending stiffness were added to the 

total virtual work; in this case, the constraint of constant length did not hold. The results 

of the analysis were compared to the analytical solutions, and a very good agreement was 

observed between these methods. In addition, in some cases the method based on Bezier 

curve showed improvement over the FE method presented in Chapter 4 in terms of the 

displacement analysis, the range of the problems they could solve, and even the 

convergence rate. However, it should be noted that compared to the method presented in 

Chapter 3, due to the increased number of DOFs and complexity of formulations, higher 

convergence ratio was expected. Similar to the FE method in Chapter 3, displacement 

stepping increments were required for large displacements 

 

There are several issues that potentially benefit from further studies and improvement of 

the developed methodology. An example is the discontinuity of the solution in situations 
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where the curvature of an element changes from positive to negative or vice versa. In 

addition, the quality of the results can be enhanced by increasing the degree of continuity.  

Another concern originates from the fact that due to nonlinear characteristics of the 

problem, the analysis may lead to multiple solutions, depending on the initial values of 

the contributing parameters. As such, a method to further analyze these solutions to select 

the most appropriate one will enormously improves the analysis. A more detailed 

discussion on these subjects will be presented in Chapter 6. 

 

The most important advantage of the methodology presented in this Chapter is its ability 

to represent complex geometries. This is especially important in cases where 

displacements are large in comparison with the dimensions of the model such as FSI 

problems. Due to the same reason, the developed methodology results in more accurate 

analysis compared to the FE analysis. In particular, in several cases, when compared to 

the FE analysis presented in Chapter 4, it resulted in better results in terms of 

displacements. In addition, problems that could not be solved with the FE method due to 

low internal pressure, can be solved using Bezier curve based analysis.  
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Chapter 6 

 

Conclusion 

 

 

Understanding the structural behavior of membranes is the first and one of the essential 

steps in their design process. This behavior is a function of the membrane material, 

geometry, boundary conditions, and applied loads. Depending on the application, any 

combination of these characteristics may be selected to construct a membrane that best 

satisfies all design criteria. A few membrane types have been studied previously using 

existing analytical and numerical methods [1-4]. However, there are types of membranes 

the structural behavior of which is not considered by previously developed methods.  As 

an example, elastic and hyper-elastic membranes have been frequently studied by 

numerical, experimental and analytical methods; yet, the structural behavior of 

inextensible membranes which have marine applications specifically in inflatable 

pontoon or the skirt system of Air Cushion Vehicle (ACVs), have not been thoroughly 

analyzed in the past. Thus, the presented research in this dissertation was to a large 

extent, motivated by this identified gap in knowledge. 
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This dissertation documented the research that led to the development of analytical and 

numerical methods to analyze two-dimensional curved membranes under different 

loading and boundary conditions, and constraints.  

 

Prior developed methods in this area, do not fully apply to inextensible membranes. Since 

they mostly considered some degrees of elasticity, to impose inextensibility, a high 

modulus of elasticity should be selected which results in high bending stiffness. This 

contrasts with the almost negligible bending stiffness of membranes. On the other hand, 

considering that membranes are constructed from fabrics coated with rubberlike material, 

there might be some similarities in the behavior of fabrics and membranes. As an 

example, some analyzed fabrics by modeling them as cantilever beams with flexural 

rigidity to study their buckling and bending performance where degrees of freedom 

(DOFs) were in terms of slope and curvature of the beam.    

 

This dissertation successfully developed methods to find how inextensible and elastic 

two-dimensional curved membranes react to different loading conditions. The developed 

numerical analyses in this research pick DOFs in terms of displacement. This facilitates 

the analysis especially since very often; known boundary conditions as well as the output 

of the analysis are also expressed in terms of displacements. This research also takes 

advantage of new numerical methods (Isogeometric Analysis) that promise more 

accuracy in geometric modeling. All numerical methods were validated by comparing 

their results to the analytical method. 
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In Chapter 2, an analytical solution to the problem of initially circular two-dimensional 

membranes partially submerged in fluid was established. It was assumed that the 

membranes were weightless and that they were only under constant normal internal and 

hydrostatic external pressure. The solution was in the form of a system of equations that 

related the deformed geometry to membrane tension and was solved for both deformed 

geometry and tension through an iterative method. The results of this Chapter were used 

as a point of reference to validate the methodologies developed in the following Chapters. 

 

In Chapter 3, beam bending theory was used to study the two-dimensional seal of a 

Surface Effect Ship (SES). The pressure field required to achieve the seal geometry for 

the given test conditions was derived from a beam-bending theory approach. The results 

of this analysis were compared to an experimental study previously conducted by [5]. 

In Chapter 4, a Finite Element (FE) solution based on the stiffness influence coefficient 

method was established to model two-dimensional curved membranes. In this respect, 

constant-length arc-shaped elements with two nodes and two DOFs per node were 

selected. In addition to the normal pressure, the deformation of membrane under shear 

loading and self-weight was also considered. Deformation and DOFs were expressed in 

terms of displacements. This method was then validated using the results obtained in 

Chapter 2. It was shown that there was a very good agreement between the two methods 

in terms of calculated deformation. It was also observed that there was a limitation in the 

applications of this method where elements were expected to represent curves with very 

low curvatures, such as a weighted membrane with low internal pressure or a membrane 

under high shear pressure. Moreover, in case of large deformations, displacements were 
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required to be incremented in several steps rather than one. One of the significant 

advantages of this methodology is its ability in satisfying the “displacement” boundary 

conditions. This aspect is where some of the previous methods to model fabrics failed [6]. 

 

Chapter 5 introduced an alternative solution to the problem of two-dimensional 

membrane deformation under different loading and boundary conditions. The work in 

this Chapter was inspired by the “Isogeometric Analysis”, a computational method that 

deploys the same Computer Aided Design (CAD) basis functions used in geometric 

modeling for structural analysis. In this research, a quadratic Bezier curve was used to 

represent an element. This indicates that each element has three control points and two 

DOFs per control point. The principle of virtual work (that is valid for conservative and 

non-conservative systems) was used to formulate the problem. The total virtual work 

consisted of work of external applied pressure as well as membrane’s weight. Constraints 

such as constant length and C1 continuity were also enforced by means of Lagrange 

multiplier method. Also, to consider membranes that can be axially extended and 

membranes with bending stiffness, their contributing energies were added to the total 

virtual work. Computations to calculate the stiffness matrix and force vector were easier 

when compared to FE method since there was no need for assembly and transformation 

from local to global coordinate system. The results were validated by comparing them 

with the results presented in Chapter 2. An overall improvement in terms of displacement 

analysis was observed when compared with the FE method. When elements were to 

represent low curvature curves, a discontinuity in curvature was observed. Yet, unlike the 

FE method discussed in Chapter 4, the analysis converged to a solution. Similar to the FE 
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method, displacement stepping increments were required for large displacements. In the 

case where curvature changed sign during the analysis, discontinuity in the analysis was 

detected. Despite these issues, based on the analysis results, the Bezier curve approach 

turned out to be very promising. In addition, methods to improve many of the 

abovementioned issues are deliberated in Section 6.1. The essential advantage of this 

methodology is its capability in precise geometric modeling which in turn will result in 

more accurate structural analysis.  

 

In summary, although the motivation of this research was the need for methods capable 

of analyzing the skirt system of ACVs, the developed methods can be used to model a 

wide range of membranes in many engineering or non-engineering applications.  

 

 

6.1. Recommendations for Future Work 

 

The FE method discussed in Chapter 4 provided a solution with a high convergence rate 

capable of modeling relatively simple geometries. The Bezier curve based analysis 

described in Chapter 5, is potentially able to model more complex geometries and 

provide better results. As discussed earlier, there are still a few issues that can 

significantly benefit from further studies. Selecting a more appropriate basis function, can 

contribute to the issue of curvature discontinuity that appeared in parts of the results 

obtained from the Bezier curve based analysis. In cubic Bezier curves, the curvature 

changes continuously and can have an inflection point. In cases when local control is an 

issue such as when a material should react locally to a pointed or local load rather than an 
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overall deformation of the model, a B-spline is a proper choice. This also helps conduct a 

more accurate geometric modeling which leads to a more accurate analysis, and therefore 

fewer numbers of elements. The representation of a circular arc with 3π/4 angle by 

quadratic Bezier curve is shown in Figure 6.1. The representation of the same arc by 

cubic Bezier curve is shown in Figure 6.2 and they are compared in Figure 6.3. For a 

quadratic Bezier curve, by matching the two end points and the slope of the curve at these 

point with those of the arc, the Bezier polygon is determined. Figure 6.1 shows that the 

resulted curve is has a different length than the arc. The polygon of the cubic Bezier 

curve can be determined in the same manner which results in a family of solutions. By 

enforcing symmetry, this family of solutions is narrowed down to the polygon and the 

curve in Figure 6.2 which is the geometrically exact representation of the arc.  Therefore, 

increasing the degree of basis function will benefit the analysis especially for complex 

geometries. Figure 6.3 shows these two Bezier curves in comparison with the arc. 
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Figure 6.1. Representation of an arc with quadratic Bezier curves  



141 

 

 

Figure 6.2. Representation of an arc with cubic Bezier curves  
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Figure 6.3. Representation of an arc with quadratic and cubic Bezier curves 

 

When curvature in a part of geometry changes sign, a discontinuity in the solution may be 

experienced. An example of this situation was explained in Subsection 

4.11.1.Considering that problem, the discontinuity happened due to the fact that the three 

control points defining a straight line lie on the line itself. The first and last points were 

located on the right and left end of the line, respectively; but in order to define a straight 

line, the middle point could be anywhere on the line. Therefore, under no internal 

pressure, there was no unique solution to the problem in terms of the location of the 

central control point. As the pressure was reduced and approached a small value close to 

zero, the middle control point got closer to the right control point. The movement of the 

middle point was completely symmetric with respect to the case of “no internal 
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pressure”. In other words, for small negative internal pressures close to zero, the middle 

control point was very close to the left control point. It can thus be concluded that as the 

pressure changes from a small positive value to a small negative value, the middle control 

point moves from the far right to the far left on the membrane curve that is very close to a 

straight line, and therefore, there is a discontinuity about the position of the middle 

control point as internal pressure approaches zero. This sudden change in the position of 

the middle point is illustrated in Figure 6.4 in which solid circles indicate end control 

points and hollow circles show the middle control point. This issue can be solved by 

introducing and including a parameter (e.g. such as slope of the curve at end points) that 

changes continuously as the curvature changes sign. 

 

 

Figure 6.4. The position of the middle point is not defined for zero curvature 

 

Another aspect of the developed Bezier curve analysis method is that depending on the 

initial values of Lagrange multipliers and geometry, multiple solutions may exist for a 
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certain combination of loading and boundary conditions. An example of these 

circumstances is shown in Figure 6.5. This Figure illustrates the results of analysis 

conducted using two elements (the right element is dashed and the left one is solid line). 

In all solutions, slope continuity at points where the two elements are connected is 

maintained. An algorithm to select the correct solution or to optimize the initial value of 

Lagrange multipliers based on loads and geometry conditions will tremendously 

contribute to the robustness of the solution. 

 

  
Figure 6.5. Multiple solutions for a single loading scenario 

 

Additionally, parallel experimental analysis will yield better understanding of the 

problem, can be used in validation, and will lead to more realistic results. To this end, the 



145 

 

presented research in this dissertation is the first step towards dynamic Fluid Structure 

Interaction (FSI) analysis. In particular, since large displacements are of concern in many 

FSI problems, Isogeometric Analysis methods that introduced in this research can be 

effectively used as very powerful tools for more accurate analysis of this class of 

problems.  

 

 

6.2. Comparison of the Described Methods  

 

To investigate the strengths and shortcomings of the methods described in Chapter 4 and 

Chapter 5, the results of the analysis using these methods are compared. As an example, 

reconsider the problem investigated in Subsections 4.11.1 and 5.10.2. Figure 6.6 shows 

the results of the analysis using constant radius FE method with four elements and Bezier 

curve based analysis with six elements. 
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Figure 6.6. A comparison between the methods described in Chapters 4 and 5 applied to the 

semi-submerged membrane 

 

This comparison shows very close results from the two methods. However, the number of 

DOFs should also be considered in this comparison. The six element constant radius FE 

model has seven nodes. Considering that the position of the last node and the horizontal 

position of the leftmost node is fixed, and all other nodes have two DOFs in terms of 

displacement in x and y direction, the model has 11125  DOFs. The four element 

quadratic Bezier curve based model has nine control points. Again, the constraints 

applied to the first and last control points are considered in calculating the DOFs. Also 

applying the C1 continuity condition at three control points at element joints and constant 

length constraint applied to four elements, DOFs of the model is equal to

83412)29(  . Therefore it can be concluded that in this example, with the 
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same number of DOFs, quadratic Bezier curve analysis gives more accurate results when 

compared with the analytical method. 

 

As another example, reconsider the problem investigated in Subsections 4.11.3 and 

5.10.4, a membrane under shear loading and internal pressure. Figure 6.7 shows the 

results of the analysis using a four element constant radius FE model and a three element 

quadratic Bezier curve model. 

 

Figure 6.7. A comparison between the methods described in Chapters 4 and 5 applied to a 

membrane under shear loading and internal pressure 

 

The constant radius FE model has 623  DOFs and Bezier curve based model has 

52325   DOFs considering constant length and C1 continuity constraints. In this 
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case, the constant radius FE method shows more accurate results when compared with the 

Bezier curve based analysis due to the issues discussed earlier in this Chapter. 

 

The example described in Subsections 4.11.2 and 5.10.3 shows another aspect of the 

difference between the two methods. To investigate the deformation of a membrane 

under its own weight, the application of elements with constant radius along the length 

showed some limitations. The internal pressure of the membrane cannot be lowered that a 

certain value. This value grows with the number of elements. On the contrary, the 

application of the quadratic Bezier curve based analysis has no limitation in terms of the 

internal pressure. The catenary solution was obtained using the Bezier curve based 

method and the results were comparable to the analytical solution. 

 

In conclusion, the method described in Chapter 5, exclusive of the issues regarding 

concentration of the energy in one side of the element and curvature discontinuity which 

happens in some cases and can be improved by increasing the number of elements or 

using higher degree base functions, is a very reliable method with wide range of 

applications suitable for complex geometries and where more accurate results are 

required. On the other hand, the method described in Chapter 4, despite some limitation, 

especially in cases of low curvature, is a simple method with less calculation when 

compared with the method described in Chapter 5 with very accurate results and more 

suitable for simple geometries where large number of elements is not necessary. 
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