
Sparse Encoding of Signals through Structured

Random Sampling

by

Praveen Kumar Yenduri

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2012

Doctoral Committee:

Professor Anna C. Gilbert, Chair
Professor Michael P. Flynn
Associate Professor Clayton Scott
Professor Jun Zhang



c© Praveen K. Yenduri 2012
All Rights Reserved



To my beloved family, who constantly shower me with love, faith and support,
though we are thousands of miles apart on opposite sides of the planet.

ii



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Anna Gilbert, for her

constant support and guidance throughout the past few years. She has been a great

mentor and source of inspiration. Without her, this thesis would not have been

possible. I am also grateful to my committee members and co-advisors: Professor

Michael Flynn, Professor Jun Zhang and Professor Clayton Scott. Their expert tech-

nical advice and expectations have constantly motivated me to achieve success.

I would also like to thank my friend Jae Young Park for his support and en-

couragement. I appreciate his feedback on my proposal and thesis a lot. I would

also like to express my gratitude to my friends and class-mates, Arun Padakandla,

Madhu sudhan Reddy, Phani Motamarri, Supreet Jeloka, Kishan Kunduru, Jiten-

dra Kochhar and many others who have made my stay pleasant and enjoyable. I

am especially grateful to Janardhan and Jeenal Yandooru, my friends and family

away from home, for their help and guidance in my time of need. They have been

a constant source of kindness and have provided me the much needed love, fun and

company during my lonely days in Michigan.

I will always cherish the moments I had with many wonderful people I met in

Ann Arbor. Peren Ozturan and Jillian Ong require special mention in this regard.

It has been a true blessing to have a friend like Isha Patel, who has cheered and sup-

iii



ported me throughout my ups and downs. I am also thankful to Rajkumar, Sandhya,

Sowmya; my friends back home in India, for their love and best wishes throughout

the PhD journey.

I am lucky to be blessed with a wonderful family, my parents, Murali and Prasanna,

my sister Pavani and niece Akshara. I could not have come this far without the in-

spiration and support of my family, especially my mother. I will always be grateful

for her dedication and the sacrifices she made for us. Last but not least, I would like

to thank God for his continued blessings.

Om Asato Maa Sadgamaya...

Tamaso Maa Jyotir-Gamaya...

Mrityor-Maa Amritam Gamaya...

Om Shanti Shanti Shantihee !!

Oh lord, lead us from unreality (of transitory existence) to the reality (of self).

Lead us from the darkness (of ignorance) to the light (of spiritual knowledge).

Lead us from the fear of death to the knowledge of immortality.

Let there be peace everywhere !!

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Compressive sensing basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structured random sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Random PPM (Pulse Position Modulation) ADC . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related Compressive Sampling (CS) . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 The PPM ADC Architecture . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 The random PPM ADC Design . . . . . . . . . . . . . . . . . . . . 20

2.4 The random PPM ADC Implementation . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Ramp Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Random clock and start generator . . . . . . . . . . . . . . . . . . 28
2.4.4 The Time-to-Digital Converter . . . . . . . . . . . . . . . . . . . . 28

2.5 The Reconstruction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 The signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 The measurement matrix . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 The Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Analysis of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Algorithm 2: Median of estimators (MOE) . . . . . . . . . . . . . . . . . . . 42
2.9 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 44

2.9.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.2 Prototype and measurement results . . . . . . . . . . . . . . . . . . 53

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III. Model Of A Sparse Encoding Neuron . . . . . . . . . . . . . . . . . . . . . . . 58

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Input stimulus model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Time encoding with Integrate-And-Fire Neurons . . . . . . . . . . . . . . . . 62

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Integrate-And-Fire Neurons with Random Thresholds . . . . . . . 64

3.4 The Low-Rate Integrate-and-Fire Neuron . . . . . . . . . . . . . . . . . . . . 66
3.5 The Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV. Continuous Fast Fourier Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Background and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 The problem setup and notation . . . . . . . . . . . . . . . . . . . 77
4.2.2 The Ann Arbor Fast Fourier Transform (AAFFT) . . . . . . . . . 78

4.3 Continuous Fast Fourier Sampling . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Sample set construction . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 The CFFS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Proof of Correctness of CFFS . . . . . . . . . . . . . . . . . . . . . 83

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V. Spectrum Sensing Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 The Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 The Wideband Spectrum Sensing Model . . . . . . . . . . . . . . . . . . . . 95

5.3.1 The structured random sampling system . . . . . . . . . . . . . . . 95
5.3.2 The Uniformly-Interleaved Filter bank (UIFB) . . . . . . . . . . . 96
5.3.3 Frequency Identification . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.4 Improving robustness through median operation . . . . . . . . . . . 103

5.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 Varying Sub-sampling Ratio . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Varying Input SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.3 Varying R (Number of Frequencies per Channel) . . . . . . . . . . 109
5.4.4 Simple Heuristics for Estimating s (Number of Occupied Channels) 110

5.5 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



LIST OF FIGURES

Figure

1.1 Figure showing the on-grid and off-grid sampling. The crosses represent the Nyquist
grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Block diagram of the PPM ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Waveforms depicting the sampling procedure in the PPM ADC . . . . . . . . . . . 17

2.3 Histogram of Correlation Coefficients between different pairs of columns of a signal
dependent measurement matrix and a random measurement matrix (of size 15 x
40). The y-axis represents the number of correlation coefficients that fall in any
particular bin of coefficient values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Example probability distribution functions (pdfs) of τ , s and t = τ + s . . . . . . . 24

2.5 The random PPM ADC block diagram along with the TDC building blocks . . . . 25

2.6 Timing signals and comparison of operation between a regular PPM ADC and the
random PPM ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 The ramp generator which is a component of the ADC in [1] . . . . . . . . . . . . . 27

2.8 Schematic of the comparator, a component of the ADC in [1] . . . . . . . . . . . . 27

2.9 Random start signal and random clock generation . . . . . . . . . . . . . . . . . . 29

2.10 Measurement matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 (a) Mean output SNR versus input SNR and (b) success percentage (fraction of
trails that succeed) versus input SNR for 9-tone and 17-tone signals. The s-term
NYQ (Nyquist) benchmark represents the best s-term approximation to the signal
in frequency domain. Success means the correct identification of the frequencies of
all tones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.12 Reconstruction of a single tone signal with varying number of measurements (a)
with no noise (b) success percentage when no noise (c) sampling needed for 99%
success, with noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.13 Reconstruction of a 11 tone signal with varying amount of time jitter noise . . . . 49

2.14 Mean output SNR versus random PPM ADC sampling rate, for fixed bitrates of
4, 5 and 7 Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



2.15 Output SNR vs input SNR for a demodulated FM signal . . . . . . . . . . . . . . . 51

2.16 Output Vs Input SNR for a (a) multitone signal (b) demodulated AM signal with
a sawtooth message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.17 Hardware setup for the random PPM ADC . . . . . . . . . . . . . . . . . . . . . . 54

2.18 Reconstruction of a single tone signal from samples collected by the regular and
the random PPM ADC prototypes operating at varying sampling rates. The y-axis
on the right displays the corresponding root mean square (rms) error. . . . . . . . 55

2.19 Reconstruction of a 5-tone signal from samples collected by random PPM with
sampling rate at 8.65% of the Nyquist rate . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Spike trains produced by an auditory neuron . . . . . . . . . . . . . . . . . . . . . 59

3.2 Time encoding with an integrate-and-fire (IAF) neuron . . . . . . . . . . . . . . . . 63

3.3 Sparse time encoding with Low-Rate integrate-and-fire(IAF) neuron. . . . . . . . . 66

3.4 Output SNR vs input SNR for signals with S = 10 . . . . . . . . . . . . . . . . . . 72

3.5 Output SNR vs input SNR for signals with S = 60 . . . . . . . . . . . . . . . . . . 73

4.1 Figure showing the samples acquired in AAFFT for each (t, σ) pair . . . . . . . . . 78

4.2 Figure showing the samples acquired by S1 (X’s) and the samples (O’s) required
to apply AAFFT on B = [16, 47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Calculation of N -Wraparound t(1) from t . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Figure showing the arithmetic progression samples acquired in CFFS for a (t`, σ`)
pair and their wraparounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 The Sparsogram (time-frequency plot that displays the dominant frequencies) for a
synthetic frequency-hopping signal consisting of two tones. The same sparsogram
is obtained both by AAFFT (S1) and CFFS . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Applying CFFS to different blocks of signal x . . . . . . . . . . . . . . . . . . . . . 86

4.7 Frequency-hopping signal with unknown block boundaries. . . . . . . . . . . . . . . 87

5.1 (left) The magnitude spectrum of a wideband signal (FN = 120MHz) with s = 5
occupied channels in a total of K = 64 channels. (right) The desired output of the
spectrum detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Block diagram of the spectrum sensing scheme . . . . . . . . . . . . . . . . . . . . 96

5.3 (top) Sampling pattern of the proposed structured random sampling scheme and
(bottom) random samples of UIFB outputs . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Ideal Pass-bands of filters F0, F1, .. in a (left) Regular sub-band decomposition
filter-bank with R = 3 and (right) a uniformly-interleaved filter-bank (UIFB) with
R = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



5.5 A conceptual block diagram of the uniformly-interleaved filter bank . . . . . . . . . 98

5.6 (left) Input signal spectrum with K = 4 channels (N = 25), (right) signal spec-
trum after uniform frequency interleaving through mapping f 7→ 19f mod 25 which
corresponds to a time dilation t 7→ 4t mod 25 . . . . . . . . . . . . . . . . . . . . . 98

5.7 (top) Input signal spectrum with K = 4 channels (N = 25) and R = 6 frequencies
per channel, (middle) signal spectrum after uniform frequency interleaving through
mapping f 7→ 19f mod 25 which corresponds to a time dilation t 7→ 4t mod 25.
Also shown are the R = 6 pass-bands of the sub-band decomposition filter bank,
(bottom) signal spectrum at the output of the first filter in the UIFB. . . . . . . . 101

5.8 Figure showing the various terms in the linear system B(r)b(r) = y(r). . . . . . . 102

5.9 The spectrum detection scheme illustrated for a signal with s = 2 channels occupied
in a total of K = 4, for R = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Pd (left) and Pf (right) vs. sub-sampling ratio for J = 1, 3, 5, 9 . . . . . . . . . . . 107

5.11 Pd(left) and Pf (right) vs. SNR for Nyquist-rate ED and for proposed scheme with
J = 5, L/K = 0.35, 0.3, 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 (left) DTFT of a bandlimited signal with bandwidth 2W , (right) DFT of the same
signal observed in a limited time window . . . . . . . . . . . . . . . . . . . . . . . . 109

5.13 Probability of detection Pd versus R and Spectral leakage (expressed as a fraction
of total energy in an occupied channel) versus R . . . . . . . . . . . . . . . . . . . 110

5.14 Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 3,
input SNR = −2 dB, s = 5 and different values of sin. . . . . . . . . . . . . . . . . 111

5.15 Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 5,
input SNR = −2 dB, s = 5, sin = 8, with and without the estimation of s̃ using
Heuristic A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.16 Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 5,
input SNR = −2 dB, s = 5, sin = 8, with and without the estimation of s̃ using
Heuristic B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



LIST OF TABLES

Table

2.1 The Periodic Random Sampling Reconstruction (PRSreco) Algorithm . . . . . . . 35

2.2 Algorithm 2 : The Median of Estimators (MOE) . . . . . . . . . . . . . . . . . . . 43

2.3 Comparison of the PPMreco and MOE algorithms, used for signal reconstruction
with random PPM ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 The Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 The Continuous Fast Fourier Sampling (CFFS) algorithm . . . . . . . . . . . . . . 82

4.2 Percentage error in boundary identification . . . . . . . . . . . . . . . . . . . . . . 88

5.1 The Spectrum Sensing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



ABSTRACT

Sparse Encoding of Signals through Structured Random

Sampling

by

Praveen Yenduri

Chair: Anna Gilbert

The novel paradigm of compressive sampling/sensing (CS), which aims to achieve

simultaneous acquisition and compression of signals, has received significant research

interest in recent years. CS has been widely applied in many areas and several novel

algorithms have been developed over the past few years. However, practical im-

plementation of CS systems remains somewhat limited. This is due to the limited

scope of many algorithms in literature when it comes to the employed measurement

architectures. In several CS techniques, a key problem is that physical constraints

typically make it infeasible to actually implement many of the random projections de-

scribed in the algorithms. Also, most methods focus only on discrete measurements

of the signal, which is not always practicable. Therefore, innovative and practical

sampling systems must be carefully designed to effectively exploit CS theory in prac-

tice. This work focuses on developing techniques that randomly sample in time,

xi



that are also characterized by the presence of some structure in the sampling pat-

tern. The structure is leveraged to enable a feasible implementation of acquisition

hardware, while the randomness ensures recovery of sparse signals via greedy pursuit

algorithms. In certain cases, the presence of a predefined structure in the sampling

pattern can be further exploited to obtain other advantages such as reducing the

run-time of reconstruction algorithms.

The main theme in the thesis is to develop algorithms that bridge the gap be-

tween theory and practice of structured random sampling. The work is motivated

by several application problems where structured random sampling offers attractive

solutions. One of the applications involves development of a low-power architecture

for analog-to-digital conversion (ADC), that incorporates time-domain processing

and random sampling techniques. Improving energy efficiency in both ways, the

developed ADC occupies a unique position in the literature of compressive sensing

ADCs.

Similar techniques in structured random sampling are employed to develop a novel

low-rate neuron model which encodes information present in sensory stimuli at a rate

that is proportional to the actual amount of information present in the signal rather

than its duration. The developed neuron model demonstrated superior performance

in terms of sparse encoding and recovery error when compared to the neurons pro-

posed earlier in the literature.

Along with techniques borrowed from theoretical computer science, structured

random sampling has been successfully employed in designing a novel, distributive,

xii



spectrum sensing scheme for application in wide-band cognitive radios. Simulations

show that the proposed scheme exhibits a performance similar to that of a Nyquist

rate method, even with high noise and severe under-sampling. Additional structure

in random sampling was further utilized to develop a sophisticated, resource-efficient,

continuous sampling and reconstruction algorithm for quickly approximating the fre-

quency content of spectrally-sparse digital signals.

xiii



CHAPTER I

Introduction

Compressive Sampling/Sensing (CS) is a novel sampling paradigm that exploits

the redundancy present in many practical signals and images of interest to recover

them from far fewer samples or measurements, typically well below the number re-

quired by the Shannon/Nyquist sampling theorem [2]. CS achieves this through two

key ideas : (1) Sparsely representing the signals of interest in an appropriate basis

and (2) Employing random measurements (signal projections) to extract maximum

amount of information using only a minimum number of measurements. A key prob-

lem with many CS techniques in the literature is that physical constraints typically

make it infeasible to actually measure many of the random projections described

in the algorithms. Therefore, innovative and sophisticated sampling systems must

be carefully designed to effectively exploit CS theory in practice. In this work, we

focus on techniques that sample in time (which can be treated as linear projections

of Fourier coefficients). We develop random sampling algorithms, that are also char-

acterized by the presence of some structure in the sampling pattern. The structure

is leveraged to enable a feasible implementation of acquisition hardware, while the

randomness ensures recovery of sparse signals via greedy pursuit algorithms. We are

motivated by several application problems where structured random sampling offers

1



attractive solutions. Our theme is to develop algorithms that bridge the gap between

theory and practice of structured random sampling.

1.1 Compressive sensing basics

The basic idea of compressive sensing or compressive sampling is to exploit re-

dundancy (i.e. sparsity or compressibility) in an input signal in order to reconstruct

it from a small set of observations of the signal. In other words, compressive sensing

aims for “smart” sampling of signals to acquire only the “important” information.

In this way, the signal sampling rate can be reduced from the Nyquist rate to a rate

that is proportional to the actual amount of information present in the input signal.

The new sampling theory thus underlies procedures for sampling and compressing

data simultaneously.

Let the signal of interest be represented by a vector x of length N . We say that x

is sparse if it contains only a few non-zero components compared to the total length

(N) of the signal. A compressible signal is one that is reasonably well approximated

as a sparse signal. Let a vector y = Ax represent linear measurements taken from x

by the measurement system. The matrix, A, is called the measurement matrix and

has a size K x N , where the number of measurements K � N . The reduction in

the number of measurements that can be tolerated is proportional to the sparsity of

the input signal x. The problem of recovering the signal x can be cast as that of

solving an under-determined system of equations Ax = y. Solving for x based on

y is an ill-posed problem in general, as there are infinitely many x that satisfy the

relation Ax = y; however, it may be possible to uniquely solve for the input signal

2



x under the assumption that x is sparse or compressible. Of course, arbitrarily

under-sampled linear measurements (i.e. arbitrary matrices A) will not succeed in

recovering sparse vectors x. It has been shown that if the measurement matrix A

satisfies the Restricted Isometric Property (RIP), then the sparse vector x can be

recovered exactly [3]. A matrix is said to satisfy RIP with parameters (s, ε) for

ε ∈ (0, 1), if for all s-sparse1 vectors z,

(1− ε)||z||2 ≤ ||Az||2 ≤ (1 + ε)||z||2

Thus an RIP(2s, ε) matrix A approximately preserves the Euclidean length of 2s-

sparse vectors, which in turn implies that A approximately preserves the distance

between any two s-sparse vectors. For example, if x1 and x2 are two s-sparse vectors,

then x1 6= x2 implies that A(x1 − x2) 6= 0. Thus the input x can be recovered by

searching for the sparsest vector z that satisfies the condition, Az = y or ||Az−y||2 ≤

ε in case of noisy measurements. x can be expressed as the solution to the following

optimization problem:

arg min||z||1 such that ||Az − y||2 ≤ ε

There is no known algorithm that can verify if a given matrix is RIP other than the

exponential time brute force algorithm. However various results have been published

about the RIP nature of the matrix A if it is drawn from certain distributions of ran-

dom matrices. For example, in the cases where A is a random Gaussian matrix [4], a

random Bernoulli matrix [5] or a random partial DFT matrix [4], A satisfies RIP(s, ε)

with high probability, if the number of measurements K > O(ε−2slogO(1)N) (O(.)

refers to the Big-O notation [3]). Algorithms that carry out the `1−minimization

through linear programming to find x are typically referred to as the Basis Pursuit

1An s-sparse vector has at most s non-zero elements.

3



(BP) algorithms. BP algorithms are usually significantly slower (in theory) when

compared to greedy pursuit algorithms ([6],[7],[8]), which limit the search space for

x to s-sparse vectors, for a given s. Greedy pursuit algorithms try to minimize the

`2-norm of the error (defined as Ax− y) subject to the condition that x is s-sparse:

min||Ax− y||2 such that ||x||0 ≤ s

Conventional greedy pursuit algorithms such as those proposed in [7] and [8], require

the matrix A to be RIP.

The assumption of sparsity of x is justified by the fact that real world signals are

often sparse or compressible in some transform domain. For example, communica-

tion signals such as FSK (frequency shift keying) are sparse in Fourier domain and

natural images are often sparse in a Wavelet domain. In other words, even if the

input signal x is not sparse, it can be represented as x = WX for some sparse vector

X, where W denotes the sparsifying transform matrix. The net measurement matrix

now changes to B = AW for the system BX = y. In this work, we are interested in

input signals which are sparse in the frequency (Fourier) domain. In that case, X is

the DFT of x and W is the IDFT (inverse discrete Fourier transform) matrix.

1.2 Structured random sampling

Most CS algorithms use RIP matrices whose entries are obtained independently

from a standard probability distribution (e.g. random Gaussian measurements).

However, such matrices are highly impractical and not feasible for real-world appli-

cations. In fact, very often the physics of the sensing modality and the capabilities of

sensing devices limit the types of CS matrices that can be implemented in a specific

4



application. In contrast, in many applications, sampling in time can be efficiently

implemented through the use of analog-to-digital converters. More over, sampling

in time is the best option for frequency sparse signals, since time domain and fre-

quency domain are maximally incoherent [9]. Hence, we restrict our attention to

matrices that correspond to sampling in time. Now, it is also possible to construct

deterministic sampling schemes that result in measurement matrices that satisfy the

RIP property [10]. However, they require far more measurements when compared to

random sampling schemes (O(K2) vs O(K)). Hence, we focus on random sampling.

Applications, however, often do not allow the use of completely random matrices,

but put certain physical constraints on the measurement process. This leads us to

structured random sampling. The structure can be used to achieve a feasible imple-

mentation. In certain cases, the structure can also be used to obtain faster recovery

algorithms. However imposing structure onto random sampling also has its disad-

vantages. The resultant measurement matrices do not necessarily satisfy the RIP

condition, leading to the need to develop new algorithms and analysis. Depending

on the structure imposed, there might also be other undesired consequences which

have to be dealt with.

Figure 1.1:
Figure showing the on-grid and off-grid sampling. The crosses represent the Nyquist
grid.

5



Random sampling can be broadly classified into two categories, shown in Fig. 1.1.

In on-grid random sampling the time points at which the signal is sampled are cho-

sen randomly from a Nyquist grid (represented as crosses in the Fig. 1.1). On-grid

random sampling can be viewed as random sub-sampling of a digital signal. Where

as, in off-grid random sampling the time points have a continuous distribution and

do not have to lie on the Nyquist-grid or any other grid. If the signal is observed

during a time interval I, the off-grid time points at which the signal is sampled are

continuous random variables with their range in I. The distribution of the random

variables depends on the application. An example of an off-grid random sampling

device is the random PPM ADC (presented in Chapter II). Another example is a

level-crossing ADC, which samples the signal when it crosses some predefined am-

plitude levels.

Several fast sub-linear time algorithms can recover s-sparse signals from random

on-grid samples ([11],[12],[13],[14]). These algorithms have a storage requirement

and runtime of O(s logO(1)N) (with the exception of [14], which samples the signal

at an average rate close to Nyquist rate). A specific case of random off-grid sam-

pling is studied in [15]. In this work, we develop both on-grid and off-grid structured

random sampling techniques and investigate their application to different problems

of interest.

1.3 Contributions

This thesis treats both theoretical and application aspects of structured random

sampling. The main contributions of this thesis work, in structured random sampling,

6



are the following ([13],[16],[17],[18],[19],[20],[21]).

1.3.1 Theoretical

• Periodic random sampling reconstruction (PRSreco) algorithm (Sec-

tion 2.7): We developed a new algorithm [16][20] for recovering frequency-sparse

signals, from off-grid time samples, obtained in a periodically random pattern,

at a sub-Nyquist rate. In periodic random sampling, the input signal is sam-

pled at a random point within an interval of certain length and this process

is repeated in every subsequent interval of that length. The algorithm is used

for reconstruction in randomized time-based analog to digital converters that

implement periodic random sampling. We analyze the algorithm and provide

bounds on the reconstruction error. The PRSreco falls under the general cate-

gory of greedy pursuit algorithms, but does not require the measurement matrix

to be RIP. We also take a non-conventional approach in proving the error guar-

antees.

Reference [16]: P.K. Yenduri, A.C. Gilbert, M.P. Flynn, and S. Naraghi,

“Rand PPM: A low power compressive sampling analog to digital converter,”

IEEE International Conf. on Acoustics, Speech and Sig. Processing (ICASSP),

pp. 5980− 5983, May 2011.

• Continuous fast Fourier sampling (CFFS) algorithm [13] (Chapter IV):

Fourier sampling algorithms use a small number of structured random samples

to quickly approximate the DFT of a spectrally-sparse digital signal from a

given time window or block. Unfortunately, to obtain the spectral information

on a particular block-of-interest, the samples acquired must be appropriately

7



structured for that block. Thus the sampling pattern forces a block-wise anal-

ysis and does not accommodate an arbitrary block analysis. We developed a

new sampling procedure called Continuous Fast Fourier Sampling (CFFS) which

samples the signal at sub-Nyquist rates and permits a sub-linear-time analysis

of arbitrarily blocks of the signal. Thus, CFFS is a highly resource-efficient

continuous sampling and reconstruction algorithm.

Reference [13]: P.K. Yenduri and A.C Gilbert, “Conitnuous fast fourier sam-

pling,” In Proceedings of Sampling Theory and Applications (SAMPTA), Mar-

seille, France, 2009.

1.3.2 Applied

• Random PPM: A low power compressive sampling time based ADC

[16] [20]: A random pulse-position-modulation (PPM) ADC architecture is pro-

posed in Chapter II. A prototype 9-bit random PPM ADC incorporating

a pseudo-random sampling scheme is implemented as proof of concept. This

approach leverages the energy efficiency of time-based processing. The use of

sampling techniques that exploit signal compressibility leads to further improve-

ments in efficiency. The random PPM (pulse-position-modulation) ADC em-

ploys compressive sampling techniques to efficiently sample at sub-Nyquist rates.

The sub-sampled signal is recovered using the PRSreco algorithm, which is tai-

lored for practical hardware implementation. We develop a theoretical analysis

of the hardware architecture and the reconstruction algorithm. Measurements

of a prototype random PPM ADC and simulation, demonstrate this theory. The

prototype successfully demonstrates a 90% reduction in sampling rate compared

to the Nyquist rate for input signals that are 3% sparse in frequency domain.

8



Reference [20]: P.K. Yenduri, A. Rocca, A.S. Rao, S. Naraghi, A.C Gilbert,

and M.P. Flynn, “A low power compressive sampling time-based analog to

digital converter,” IEEE Journal on Emerging and Selected Topics in Circuits

and Systems (JETCAS), Special Issue on Circuits, Systems and Algorithms for

Compressive Sensing, Oct. 2012.

• LowRate IAF: A sparse encoding model of neuron [17] [18] (Chapter III):

Neurons as Time Encoding Machines (TEMs) have been proposed to capture the

information present in sensory stimuli and to encode it into spike trains. These

neurons, however, produce spikes at firing rates above Nyquist rate, which is

usually much higher than the amount of information actually present in stim-

uli. We propose a low-rate neuron which exploits the sparsity or compressibility

present in natural signals to produce spikes at a firing rate proportional to the

amount of information present in the signal rather than its duration, while us-

ing the spiking information in a smart manner to improve the performance of

stimulus recovery.

Reference [17]: P.K. Yenduri, A.C. Gilbert, and J. Zhang, “Model of a sparse

encoding neuron,” Twenty First Annual Computational Neuroscience Meeting

(CNS), Jul. 2012.

Reference [18]: P.K. Yenduri, A.C. Gilbert, and J. Zhang, “Integrate-and-

fire neuron modeled as a low-rate sparse time-encoding device,” Proceedings of

Third International Conference on Intelligent Control and Information Process-

ing (ICICIP), Jul. 2012.

9



• Compressive and collaborative spectrum sensing for wide-band cog-

nitive radios [19] (Chapter V): One of the primary tasks of a cognitive radio

(CR) is to monitor a wide spectrum and detect vacant channels, which can then

be used for secondary transmission opportunities (i.e. for transmission by un-

licensed users). CR systems thus enable dynamic spectrum access (DSA) and

improve the overall efficiency of spectrum usage. However, the requirement of

prohibitively high sampling rates to monitor a wideband, makes this a challeng-

ing task. In this work, we present a novel wideband spectrum sensing model

that reduces the sampling requirement to a sub-Nyquist rate, proportional to

the number of occupied channels in the wide spectrum. The sampling scheme

is efficiently implementable using low-rate analog-to-digital converters (ADCs).

The sensing algorithm uses techniques borrowed from theoretical computer sci-

ence and compressive sampling, to detect the occupied channels with a high

probability of success. The algorithm is implementable for spectrum sensing in

a single CR, as well as in a decentralized CR-network with minimal communica-

tion between one-hop neighbors. The algorithm also has many other attractive

features which make it different from other algorithms in literature.

Reference [19]: P.K. Yenduri and A.C. Gilbert, “Compressive, collaborative

spectrum sensing for wideband cognitive radios,” The Ninth International Sym-

posium on Wireless Communication Systems (ISWCS), Aug. 2012.

10



CHAPTER II

Random PPM (Pulse Position Modulation) ADC

2.1 Introduction

Applications of low-power ADCs include power constrained wireless environmen-

tal sensing, high energy physics and biomedical applications such as massive-parallel

access of neuron activity ([22],[23],[24]). We present a new low-power, compressive-

sampling analog to digital converter which we call a random PPM ADC. The ran-

dom PPM ADC is one of the first ADCs that takes advantage of the combination

of time-based analog-to-digital conversion techniques and compressive sampling. In

addition, we discuss a new reconstruction algorithm called PRSreco (Periodic Ran-

dom Sampling reconstruction) and present theoretical upper-bounds for input signal

reconstruction error. This algorithm is tailored to make it viable for practical hard-

ware implementation.

Technology scaling generally improves power consumption and speed, however,

it poses a number of challenges in the design of ADCs. Scaling reduces the supply

voltage, which in turn reduces the signal dynamic range. This has the direct effect

of reducing signal to noise ratio (SNR). One way to overcome the problems of low-

voltage design is to process signals in time domain. Technology scaling favors time

11



domain processing since it reduces gate delays and thus improves time resolution. A

wide variety of time-based ADCs that quantize time or frequency instead of voltage

or current, have been proposed. These designs include simple architectures such as

single-slope analog to digital conversion [25], pulse width modulation (PWM) ADC

[26], asynchronous level crossing designs [27], VCO-based Σ∆ modulators [28] and

integrate and fire circuits ([29],[30]). Continuous time DSPs are proposed in [31].

A continuous time level crossing ADC, such as [32] and [33] can be attractive for

slow moving signals. However, the the key advantages of these devices are lost if

continuous time DSP is not available. Furthermore, sparse signals can be dominated

by high frequency content.

This work expands on the pulse position modulation ADC architecture developed

in [1]. The PPM ADC is itself an elaboration of the PWM architecture in which

a continuous-time comparator compares the input to a periodic ramp, to convert

the input signal information to a time-domain representation (see Section 2.3). A

two-step time-to-digital converter (TDC) then converts the time domain information

to digital domain. With the use of a two-step TDC, the PPM ADC achieves both

high resolution and high dynamic range, along with low power consumption. An-

other way to obtain an improvement in the power efficiency of an ADC is to reduce

the sampling rate ([34]) since to a first order, power consumption is proportional to

sampling frequency. We can achieve this by employing random sampling techniques

that exploit the redundancy (i.e. compressibility or sparsity) of the input signal to

reduce the sampling rates to below the Nyquist rate. We implement random sam-

pling by introducing randomness into the reference ramp signal used by the PPM

ADC. The proposed random PPM ADC lies at the intersection of time-based ADCs

12



and compressive-sampling ADCs, and thus improves efficiency in both ways.

Many compressive sampling (CS) ADC architectures and acquisition systems have

been proposed in recent years. While some designs lack efficient implementation of

CS encoding or decoding (reconstruction) algorithms in hardware ([35],[36]), other

designs focus on efficient compression but not the optimization of power consumption

([37],[38]). Some compressive sensing designs, such as [39], employ a conventional

high-speed ADC as an integral component. Also, none of the above designs use

time-based conversion techniques to reduce power consumption. The random PPM

ADC, thus occupies a unique position in the literature of compressive sensing ADCs.

The remainder of the chapter is organized as follows. Section 2.2 briefly relates

the random sampling techniques used in this work with compressive sampling tech-

niques that reduce the number of measurements needed to store and reconstruct a

given input signal. The PPM and random PPM architectures are discussed in Sec-

tion 2.3. A prototype random ADC, implemented as a custom CMOS PPM ADC

coupled to an FPGA (Field-Programmable Gate Array) is described. The hardware

implementation of the random PPM ADC is described in Section 2.4. The problem

of reconstructing the input signal from ADC output samples is introduced in Sec-

tion 2.5. In Section 2.7, we develop the PRSreco algorithm for the recovery of input

signals that satisfy the signal model presented in Section 2.6. This new algorithm

falls under the general category of greedy pursuit methods that aim to minimize

the norm of the reconstruction error, subject to the sparsity conditions of the input

signal. The PRSreco is analyzed in Section 2.7.1. The error bound of the recovered

signal is discussed in Section 2.7.1. A second reconstruction algorithm called the

13



MOE (median of estimators) is developed and analyzed in Sec. 2.8. The appendices

contain details about the mathematical modeling of the randomized sampling sys-

tem along with lemmas and theorems that provide proof of correctness and run-time

details of the algorithms.

The PRSreco algorithm and the MOE algorithm can also be used for signal re-

construction in other randomized time based ADCs as the analysis in Section 2.7.1

is easily extended. The algorithms are tailored to reduce computational cost and

thus are viable for practical hardware implementation. Our analysis along with the

numerical simulations and experimental results presented in Section 2.9, show that

a random sampling time-based ADC exhibits much better performance than a non-

random ADC operating at sub-Nyquist sampling rates.

2.2 Related Compressive Sampling (CS)

Consider the under-determined system of equations BX = y, where B is

the net measurement matrix of size K x N , X is the DFT of the input signal

vector x of length N and y is the measurement vector of length K (K < N). The

sparse spectrum X can be expressed as the solution to the following optimization

problem1[40] :

arg min||X||0 such that BX = y

The above problem requires the solution of a non-convex combinatorial problem,

which is not practical [41]. Hence the `0-“norm” in the objective function is often

1arg min||X||0 solves for X that has the smallest `0-“norm”, where ||X||0 is defined as the number of non-zero
elements in X.

14



replaced by its convex relaxation, the `1-norm2. That is,

arg min||X||1 such that BX = y

It has been shown that if the measurement matrix B satisfies the Restricted Isometric

Property (RIP), then the sparse vector X can be recovered exactly [3]. Algorithms

that carry out the `1−minimization through linear programming to find X are typ-

ically referred to as the Basis Pursuit (BP) algorithms. Many of the proposed CS

ADCs ([35],[36],[39]) use BP algorithms for reconstruction. However, BP algorithms

are challenging to implement in hardware and are usually significantly slower when

compared to greedy pursuit algorithms ([6],[7],[8]). Greedy pursuit algorithms try to

minimize the `2-norm of the error (defined as BX − y) subject to the condition that

X is s-sparse:

min||BX − y||2 such that ||X||0 ≤ s

Conventional greedy pursuit algorithms such as those proposed in [7] and [8], require

the matrix B to be RIP. The measurement matrix B associated with the PPM ADC,

does not necessarily satisfy the RIP condition. If a new matrix B is constructed ran-

domly for each input signal X, then the RIP condition on B can be relaxed ([11],[6]).

Hence, we impose the condition that B be a random matrix (newly constructed for

each input signal X) and develop a new reconstruction algorithm, that falls under

the category of greedy pursuit algorithms, but does not require matrix B to be RIP.

Different CS algorithms offer different error guarantees. We call the error guar-

antee `2/`1, if the following is true:

||X − X̃||2 ≤
C√
s
||X −Xs||1

2The `1-norm of a vector is defined as the sum of the absolute values of its elements.

15



where X̃ is the output of algorithm, C is a constant and Xs is the best s-term

representation of X. A stronger error guarantee is the `2/`2, given by:

||X − X̃||2 ≤ C||X −Xs||2

CS algorithms also offer different kinds of failure guarantees. Some methods fix

the measurement matrix B and prove the reconstruction results for all input sparse

signals X, while other algorithms can prove the reconstruction results with high

probability for each input sparse signal X and a random measurement matrix B.

Algorithms such as the BP [3], [7], [8] offer the stronger “for all” guarantee, but

the weaker `2/`1 error guarantee. On the other hand Fourier sampling algorithms

([11],[12],[13]) offer stronger `2/`2 error guarantees and weaker “for each” failure

guarantee. If a new measurement matrix B is randomly chosen for each sparse sig-

nal X, then a “for each” failure guarantee is sufficient. The output of an ADC is

usually evaluated in terms of the reconstruction SNR, which involves the ratio of `2

norm of the signal to the `2 norm of the reconstruction error. Thus, a `2/`2 error

guarantee is more suitable for such an analysis. The only way to obtain a `2/`2 error

guarantee is to have a “for each” failure guarantee.

In this work, a “measurement” of the input signal is a measurement of the ampli-

tude of the input signal at some time point. To obtain a random measurement matrix

B, the input signal is sampled at random time points. The measurement vector y rep-

resents the amplitude of the signal at those random time points. Sub-linear time algo-

rithms ([11],[12],[13],[14]) can recover s-sparse signals from random on-grid samples.

However, PPM ADC produces off-grid samples. A specific case of random off-grid

sampling is studied in [15] with a number of measurements, K > O(sR2log(4N/ε)),

where R is the dynamic range of X and ε is a tolerance parameter. In this chap-

16



ter, we deal with reconstruction from signal-dependent3, random, off-grid samples.

Thus the problem setting is different from [15], leading to an algorithm that offers

different error guarantees and different conditions for recovery. We also take a non-

conventional approach in proving the error guarantees. Unlike the random on-grid

sampling techniques, our algorithm does not achieve a sub-linear run-time.

2.3 Hardware Design

In this section we describe the PPM ADC architecture and the design of the

random PPM ADC design.

Figure 2.1: Block diagram of the PPM ADC

Figure 2.2: Waveforms depicting the sampling procedure in the PPM ADC

2.3.1 The PPM ADC Architecture

A block diagram of the PPM ADC is shown in Fig. 2.1. The sampling proce-

dure [1] is depicted in Fig. 2.2. A comparator continuously compares the input signal
3The time points at which the signal is sampled depend on the signal, in contrast to being completely deterministic

or completely random.

17



with a reference voltage ramp. An output pulse is generated by the comparator at

the time instants where the ramp voltage exceeds the input signal. The time elapsed

between the beginning of the ramp and the instant the input signal crosses the ramp

(i.e. s1, s2, .. as seen in Fig. 2.2) is measured and quantized by a two-step 9-bit time

to digital converter (TDC). The simplest form of a TDC is a digital counter, how-

ever, to achieve a high resolution, one needs to have a very high counter frequency

which in turn leads to a large energy consumption. On the other hand, delay line

circuits [42] are more energy efficient for time measurement, however, the delay line

must be long to measure long periods of time and can suffer from non-linearity. As

a compromise, the two-step TDC consists of a 5-bit counter which performs coarse

quantization and a delay line TDC as the fine quantizer that resolves 4-bits. By

combining a low frequency counter and a delay line TDC, the two-step TDC thus

achieves both energy efficiency and a large dynamic range. Detailed implementation

of the TDC is discussed in [1].

The output of the ADC is a sequence of time duration measurements si, which rep-

resent the relative position of the output pulse in every ramp period. Since the signal

information is encoded into the position of the pulse, the ADC is called pulse position

modulation ADC. The starting points of the ramps are given by τi = (i−1)T , where

T is the period of the reference ramp signal. The crossover times are ti = τi + si.

If we assume the slope of the ramp is a constant m, the signal amplitude at the

crossover times is yi = msi. In this way, from the output {si} of the PPM ADC,

we can calculate the sample set {(ti, yi), i = 1, 2, ..}. Note that T is also the average

sampling period of the ADC, because the ADC takes one sample within every inter-

val of T seconds.

18



Non-uniform signal dependent sampling: If we make the approximation that

yi are samples at uniform time points τi instead of the non-uniform ti, we see har-

monic distortion in the frequency spectrum of the recovered signal. Linear low-pass

filtering is a straightforward conventional technique for constructing uniform samples

from non-uniformly sampled information. According to [43] an oversampling factor

of at least 8 is needed to use the traditional low pass filtering technique.

Another approach is to use a time-varying iterative non-linear reconstruction

method, (as described in [1]) which allows the signal to be sampled closer to the

Nyquist rate. Let us represent measurement vector y as y = Sx where S is the non-

uniform sampling operator. Let operator P represent a low pass filter with cut-off

frequency tuned to Nyquist frequency. The algorithm described in [1] is as follows:

x0 = y = Sx

x1 = Px0 = PSx

xi+1 = P (y − Sxi) + xi, for i = 1, 2, ..

It is easy to see that xi = PS(
i∑

k=1

(I − PS)k)x, where I is the identity opera-

tor and (I − PS)0 = I. Limi→∞
i∑

k=1

(I − PS)k = (PS)−1 and thus Limi→∞xi =

(PS)(PS)−1x = x. When the PPM ADC is operated at Nyquist rate, applying low

pass filter to non-uniform samples causes harmonic distortion which can be corrected

through the iterations. However below Nyquist rate, applying a low pass filter to

non-uniform samples causes severe aliasing in the frequency domain which cannot

be rectified through iterations. In other words, The operator PS cannot be inverted

through the algorithm used. Thus, the method still requires the sampling frequency

19



to be above the Nyquist rate (the oversampling factor of 8 is brought down to 2).

Further, a sufficient condition of si < T/4 is required to obtain a stable sampling set

[44]. If this condition is relaxed, there is no guarantee that the algorithm converges.

For sampling rates below the Nyquist rate, the method diverges. Our goal is to

convert the PPM ADC into a compressive sampling ADC so that the signal can be

recovered from samples acquired at sub-Nyquist rate. The sampling system and the

reconstruction algorithm are co-designed to achieve this.

A Regular PPM ADC at sub-Nyquist sampling rate: A straight-forward

way to operate a PPM ADC as a compressive sampling ADC is to increase its av-

erage sampling period T (which is also the reference ramp period). The sampling

frequency F can be brought down to a value F < FN , where FN is the Nyquist

frequency of the input signal. We refer to this sampling architecture as the regular

PPM ADC. We use the algorithm proposed in Section 2.7 for reconstruction. How-

ever, since the time points ti (calculated in Section 2.3.1) are non-random and highly

signal dependent, the resultant measurement matrix B is also non-random and thus

disobeys the design rules of random sampling algorithms. In order to fit into the

compressive sensing framework and to meet the criteria for successful signal recon-

struction, we need to make some modifications to the PPM ADC sampling system.

A random sampling scheme is introduced in the next section.

2.3.2 The random PPM ADC Design

Simple theoretical results from sparse approximation state that a low corre-

lation between different columns of a measurement matrix indicates the possibility

of better signal recovery [6]. Albeit crude, this is one of the elementary methods for

20



Figure 2.3:
Histogram of Correlation Coefficients between different pairs of columns of a signal
dependent measurement matrix and a random measurement matrix (of size 15 x 40).
The y-axis represents the number of correlation coefficients that fall in any particular
bin of coefficient values.

evaluating a measurement matrix with respect to its reconstruction properties. Con-

sider the following simple experiment to motivate the introduction of randomness

into the PPM ADC. Let Bc be the measurement matrix that relates the DFT of the

input signal to the samples obtained by the PPM ADC at sub-Nyquist rate with an

average sampling period of T . As discussed, the time points ti at which a signal is

sampled by the PPM ADC are signal dependent. Now let Br be the corresponding

measurement matrix, when in each interval [(i − 1)T, iT ] of length T , the signal is

sampled at a time point ti that is uniformly distributed on [(i−1)T, iT ]4. Ideally, we

want any measurement matrix B to be orthonormal (BHB = I) so that the input

signal can be easily recovered as BHy = BHBX = X. An orthonormal matrix is

characterized by a zero correlation between any two columns of the matrix. Fig. 2.3

plots the histograms of correlation coefficients between different columns, for both

the signal dependent Bc and the random Br matrices. As can be seen from the

figure, in the case of a signal dependent Bc several columns have high correlation

4Note that in the actual implementation of the random PPM ADC, we don’t have complete control over ti = τi+si,
and so we randomize τi instead.

21



coefficients. On the other hand for the random matrix Br, coefficients are all dis-

tributed in the left region of the plot. Intuitively, since Br achieves closer to zero

correlation coefficients when compared to Bc, it is more “orthonormal” than Bc and

is expected to lead to a better signal recovery.

Motivated by this observation, we introduce randomness into the PPM ADC sys-

tem. We convert the ramp starting times τi (which are deterministic in regular PPM

ADC) into random variables. More specifically, let τi− (i− 1)T ∼ Uniform[0, T ],∀i.

That is, in each interval [(i− 1)T, iT ] of length T , the reference ramp has a random

starting point. We call this architecture random PPM, as the ramp starting times

are now randomly and independently chosen. As before, the crossover times are

ti = τi + si and the signal amplitude at the crossover times is yi = msi, where m is

the slope of the ramp.

Assume that the duration of the reference ramp, that is the time for which the

ramp is greater than zero in each interval [(i − 1)T, iT ], is given by cT for some

0 < c < 1. For the original PPM, c ≤ 0.25, so as to satisfy the stability condi-

tion for the reconstruction algorithm presented in [44]. Choosing τi − (i − 1)T ∼

Uniform[0, T ],∀i can cause overlap between adjacent ramps. For example, when

τ1 = T and τ2 < T + cT there is an overlap. There are two ways to deal with this is-

sue. The first is to adjust the distribution of τi as τi−(i−1)T ∼ Uniform[0, T−cT ],∀i.

The implemented prototype random PPM ADC uses this adjustment. Another way

is to employ a second sampling system. The sampling systems each produce a ramp

in alternate periods and sample the input alternatively in each period. Thus there

will be no overlap in the ramps and the original choice of distribution for τi can

22



be maintained, that is τi − (i − 1)T ∼ Uniform[0, T ],∀i. Note that τi are all still

independently chosen. Also note that the net power consumption can be kept almost

same as before since the two samplers would sample at half the rate as before. Even

though we do not actually use two sampling systems in the prototype random PPM

ADC, we assume that the overlap between adjacent ramps is allowed for theoretical

simplicity. The presented “mathematical framework” thus closely matches the im-

plementation (actual or thought experiment).

The time points at which the random PPM ADC samples the signal are given

by ti = τi + si. To further aid the analysis, we assume that the phase φ of the

input signal x(t + φ), is uniformly distributed in [0, 2π]. This induces a probability

distribution on si. The probability density function (pdf) of ti can be obtained by

convolving the pdfs of τi and si (since τi and si are independent for all i). Dropping

the i for convenience, let h(r), 0 ≤ r ≤ cT be the pdf of s (not to be confused with

sparsity of the signal s). Recall that cT is the on-time of the reference ramp in each

period. The pdf of τ is pτ (r) = 1/T, 0 ≤ r ≤ T . Thus convolving the two it is easy

to see that pdf of t = τ + s is given by

pt(q) =



H(q)
T
, 0 ≤ q ≤ cT

1
T
, cT ≤ q ≤ T

1−H(q−T )
T

, T ≤ q ≤ T + cT

where H(q) is the cumulative distributive function of the random variable s. An

example of h(r) and pt(r) is shown in the Fig. 2.4 below. These results are used in

the proof of Lemma II.1 in Sec. 2.5.

23



Figure 2.4: Example probability distribution functions (pdfs) of τ , s and t = τ + s

2.4 The random PPM ADC Implementation

Fig. 2.5 shows a block diagram of the random PPM ADC. The individual blocks

are explained in detail in the following sections. A random clock generator block

produces two outputs, a start signal (which goes high at each τi) and a random

clock. The reference ramp is generated only when the start signal is high. The

comparator compares the output of the ramp generator with the input signal and

generates a stop signal when the ramp voltage exceeds the input signal. The ran-

dom clock acts as the time reference in the time-to-digital conversion (TDC) block.

The two-step TDC (with a 5-bit coarse quantizer and a 4-bit fine quantizer) mea-

sures the time elapsed between the rising edges of the start and the stop signal.

A synchronizer ensures correct alignment of the coarse and the fine time measure-

ments. The ramp generator, comparator and the two-step TDC are implemented in

90 nm digital CMOS, while the random clock generator is implemented on an FPGA.

Some of the key timing signals, shown in Fig. 2.6, provide a comparison of oper-

ation between a regular PPM ADC and the random PPM ADC. The regular PPM

ADC receives a regular periodic clock with period Tclk. The start signal of a regular

PPM ADC goes high at the beginning of each repetition period T . On the other

24



Figure 2.5: The random PPM ADC block diagram along with the TDC building blocks

hand, the random PPM receives a random clock, which consists of regular clock cy-

cles only when the start signal is high. The start signal for the random PPM ADC

goes high after a random time tRAND in each interval (of length T ). The start signal

remains high only for a time tH and then goes low for the rest of the interval. The

time tH is related to the slope m of the ramp such that the ramp covers the entire

voltage range of the input signal in a time tH . During the time [tRAND, tRAND + tH ]

when the start is high, the ramp is generated and when it crosses the input signal,

the random PPM ADC makes one measurement (denoted as s1 in the figure). This

process repeats in every interval [(i − 1)T, iT ], i = 1, 2, ... Therefore, the average

sampling frequency of the ADC is F = 1/T .

2.4.1 Ramp Generator

The ramp generator circuit is shown in Fig. 2.7. Charging a capacitor with a

constant current produces the ramp signal. Cascoded PMOS transistors M3 and M4

implement the current source while M1 and M2 are the digital switches that control

25



Figure 2.6:
Timing signals and comparison of operation between a regular PPM ADC and the
random PPM ADC

capacitor charging. The switches are, in turn, controlled by the start signal. The

capacitor discharge is achieved simply with a switch to ground [1].

2.4.2 Comparator

The comparator is continuous time and is made up of two stages. The circuit is

shown in Fig. 2.8. The first stage is a differential to single amplifier with a PMOS

input pair. This is followed by an NMOS common source stage. The PMOS input

pair operates in the subthreshold region. This is done to minimize power consump-

26



Figure 2.7: The ramp generator which is a component of the ADC in [1]

tion and to provide a larger input common mode range, which allows for a larger

dynamic range in the ramp [1].

Figure 2.8: Schematic of the comparator, a component of the ADC in [1]

27



2.4.3 Random clock and start generator

The random waiting times tRAND’s (in Fig. 2.6) are produced using a linear feed-

back shift register (LFSR) system as shown in Fig. 2.9. Although the output of

this system is only pseudo-random, with a large bit length sufficient randomness is

achieved. The LFSR bit string is initialized with a non-zero seed. This bit string

gives the number of regular clock cycles that the start signal initially remains low,

i.e., tRAND = (LFSR)Tclk, where LFSR stands for the (integer) value of the bit string.

The start signal then goes high and stays high for a time tH (which is chosen such

that mtH is greater than the input signal voltage range. tH is also chosen to be

a multiple of Tclk). To complete the interval of length T , the start signal is kept

low for an additional T − tH − tRAND seconds as shown in Fig. 2.6. Once a com-

plete interval of length T has elapsed, the LFSR sequence is advanced to its next

state and the same process is repeated with the new value of LFSR (thus, a new

tRAND = (LFSR)Tclk). The random clock is produced by gating the start signal with

the regular clock as shown in Fig. 2.9. The rising edges of start and the random

clock are thus synchronized. Note that two short bit length LFSR systems can be

coupled to produce a pseudo-random sequence with sufficiently large period.

2.4.4 The Time-to-Digital Converter

The two-step TDC [1] measures the time interval (s1 in the Fig. 2.6) between the

rising edges of the start signal (which is synchronous with the random clock), and the

stop signal generated by the comparator. To enable correct alignment of the coarse

and fine time measurements, the synchronizer block generates two additional signals,

clk stop and counter enable. The clk stop signal is set by the arrival of the second

28



Figure 2.9: Random start signal and random clock generation

rising edge of the clock after the stop signal. The counter enable signal is set by

start and reset by clk stop. A 5-bit counter (which is the coarse quantizer) measures

tc (in Fig. 2.6), which is the number of clock cycles elapsed while the counter enable

signal is high. The slope of the ramp is designed such that tc is always less than

32 clock cycles. The fine TDC measures the time tf between the stop signal and

clk stop signal rising edges. The overall TDC output is s1 = tc − tf . The fine TDC

consists of a 32-element delay line, spanning two full clock cycles (the fine TDC thus

divides one clock cycle into 16 equal slices and resolves 4 LSBs).

2.5 The Reconstruction Problem

We now formulate the problem of reconstructing the input signal from samples

collected by an ADC (regular PPM or random PPM). The samples are assumed to

be collected at a sub-Nyquist rate. Let an N -length vector X represent the input

signal in the Fourier domain. Let K (K < N) be the number of measurements

taken by the ADC. Let (ti, yi), i = 1, .., K denote the measurements obtained from

29



the output of ADC (see Section 2.3). The time ti is the ith time point at which the

ADC samples the input signal and yi is the signal amplitude at that time. Note that

K
N

= F
FN

< 1, where F = 1/T is the average sampling frequency of the ADC and

FN is the Nyquist rate of the input signal. We relate the input signal X with the

measurement vector y through the equation BX = y, where B is the measurement

matrix. The goal is to solve for X from BX = y. Note that X is the N -point DFT of

the time domain input signal x. The reconstruction is done in the frequency domain,

as the input signal is assumed to be sparse in frequency domain as indicated in the

following input signal model.

2.6 The signal model

In this paper we focus only on a subset of band limited signals that are band

limited to [−W,W ]. The Nyquist rate of the input signal space is FN = 2W . If

the input signal is sampled at Nyquist rate for a time of tTotal, then the number of

samples N = FN tTotal. We assume that the input signal is s-sparse or s-compressible

in the frequency domain. A signal is called s-sparse in the frequency domain, if the

DFT of the signal samples at Nyquist rate has only s non-zero terms. A signal is

called s-compressible5 in frequency domain, if the sorted list of its DFT coefficients

has only s significant or dominant terms, compared to which the other terms are

negligible. The input signal can be expressed as a linear combination of complex

exponentials as follows:

x(t) u
s∑

m=1

cm exp(j2πfmt)

where fm,m = 1, .., s are the s dominant frequencies which lie in the interval [−W,W ]

and cm are the corresponding coefficients. We further assume that the input signal is

5We call X, s-compressible, if it is well approximated as a s-sparse signal, ||X − X(s)||2 ≤ C.s−α for some
constants C and α > 0, where X(s) is the s-sparse signal that best approximates X.

30



real, hence s is even and one set of frequencies are the negative of the other set. Some

practical signals that are frequency-sparse include frequency-hopping communication

signals, narrowband transmissions with an unknown carrier frequency that can lie

anywhere in a wide band, communication to submarines, radar [45] and geophysical

[46] signals such as slowly varying chirps, etc.

2.6.1 The measurement matrix

Figure 2.10: Measurement matrix

To determine whether a successful signal recovery is possible from BX = y,

we analyze the properties of the measurement matrix B, which is shown in Fig. 2.10.

The matrix B can be intuitively constructed by making the observation that if f

is the only frequency with a non-zero coefficient in the DFT X, i.e., in time do-

main x(t) = exp(j2πft), then the samples of x(t) at time points ti are given by

{exp(j2πfti), i = 1, .., K}. Putting f = (n/N)FN (as in a N -point IDFT), the sam-

ples form the nth column of the measurement matrix, for n = [−N/2 : N/2 − 1]

(if N even) or [(−N − 1)/2 : (N − 1)/2] (if N odd). Hence, for a given i and n,

31



Bi,n = exp(j2π n
N
FN ti). It is to be noted that B is not a sub-matrix of the N -point

IDFT matrix, since ti are non-uniform and do not lie on any Nyquist grid.

We now look at the correlations between different columns of the random PPM

measurement matrix B. Let Cnm = BH
mBn denote the correlation between the nth

and mth columns of B. The Lemma II.1 provides a tight upper-bound, on the order

of 1/N , for the magnitude of expected correlation between different columns of B.

A small expected correlation implies a better signal recovery, as discussed in Sec-

tion 2.3.2 and illustrated in Fig. 2.3.

Lemma II.1. Let If = [−N/2 : N/2 − 1] (if N even) or [−(N − 1)/2 : (N − 1)/2]

(if N odd). For n,m ∈ If and n 6= m,

(2.1) |E(Cnm)| ≤ O

(
1

N

)
Proof.

E(Cnm) = E(BH
mBn) = E

(
K∑
i=1

1

K
exp(j

2π

NTN
(n−m)ti)

)

=
K∑
i=1

1

K
E (exp(θti))

where θ = j2π(n−m)
NTN

for convenience and TN = 1/FN . Now, using the distribution of

t1 derived in Sec. 2.3.2, it can be proven that,

E (exp(θt1)) ≤ (exp(θT )− 1)
exp(θcT )

θT

Now it is easy to obtain that

E (exp(θti)) = exp(θ(i− 1)T )E (exp(θt1))

32



Hence,

E(Cnm) ≤ 1

K

(
K∑
i=1

exp(θ(i− 1)T )

)
E (exp(θt1))

=
1

K

exp(θKT )− 1

exp(θT )− 1
E (exp(θt1))

=
exp(θKT )− 1

θKT
exp(θcT )

Now (using | exp(θcT )| = 1 and then NTN ≤ KT < (N + 1)TN) we have,

|E(Cnm)| ≤
∣∣∣∣exp(θKT )− 1

θKT

∣∣∣∣
= sinc

(
(n−m)

KT

NTN

)
≤ sinc((n−m)(1 + 1/N))

≤ 1/(N + 1)

≤ 1/N

2.7 The Reconstruction Algorithm

The random PPM ADC samples the signal at a rate proportional to its finite rate

of innovation, defined as the number of degrees of freedom per unit time [47]. For

the signal model considered in this paper, the rate of innovation is given by s, the

number of frequencies present in the signal. Algorithms have been proposed in [47]

that can recover the s frequencies and their coefficients by using only 2s consecu-

tive uniform samples from the signal. However, these algorithms cannot be applied

33



with the random PPM ADC as they require the samples to be uniformly spaced

at Nyquist rate. Also, the measurement matrix B associated with random PPM

ADC, is a signal-dependent non-uniform random Fourier matrix, and as such, does

not necessarily satisfy the Restricted Isometry Property (RIP) assumed in [7] or the

conditions assumed in [8]. This leads to the need to develop different algorithms with

different theoretical analysis. A probabilistic approach is presented in Section 2.7.1.

We call the developed reconstruction algorithm, Periodic Random Sampling re-

construction (PRSreco). A pseudo-code for the PRSreco algorithm is presented in

Table 2.1. From Lemma II.1, we see that correlations between different columns of

B are small on average. Hence, BHy is a good approximation to the signal X. In

particular, the largest components in BHy provide a good indication of the largest

components in X. The algorithm applies this idea iteratively to reconstruct an ap-

proximation to the signal X. At each iteration, the current approximation induces

a residual, which is the part of the signal that has not been approximated yet. The

current approximation vector X̃ is initialized to a zero vector and the residual is

initialized to the measurement vector y. For a vector z, supp(z) is defined as set

of indices of the non-zero elements of z and z(s) stands for the best s-term approx-

imation6 of z. For an index set T ⊂ {1, 2, .., N}, zT stands for a sub-vector of z

containing only those elements of z that are indexed by T . Similarly BT stands for

a sub-matrix of B containing only the columns of B indexed by T . The algorithm

initially obtains an estimate for the dominant frequencies in the signal through least

squares and then refines the estimate of the set of dominant frequencies and their

coefficients in an iterative fashion.
6The best s-term approximation of a vector z can be obtained by equating all the elements of z to zero, except

the elements that have the top s magnitudes.

34



PRSreco algorithm
input: N (signal length), s (sparsity), (ti, yi),i = 1, 2, .., K.

output: X̃ (s-sparse approximation to X, length N)

X̃ = 0, residual r(0) = y
T =supp

{
[BHy](2s)

}
X̃T =

(
BH
T BT

)−1
BH
T y (Least Squares)

r(0) = r(0) −BT X̃T

for i = 0, 1, 2, ..

X̃(i+1) = X̃ +BHr(i)

X̃ = [X̃(i+1)](s)
r(i+1) = y −BX̃

until ||r(i+1)||2 does not vary within a tolerance θ.

Table 2.1: The Periodic Random Sampling Reconstruction (PRSreco) Algorithm

The computationally intensive step of least squares is performed only once in the

PRSreco algorithm. The least squares is implemented using the accelerated Richard-

son iteration [48] with runtime of O(sKlog(2/et)) where et is a tolerance parameter.

The structure of the measurement matrix lends us to use the inverse NUFFT [49]

with cardinal B-spline interpolation for forming the products of the form BHr, in

a runtime of O(N logN). Hence the total runtime of the algorithm is dominated by

O(IN logN) where I is the number of iterations.

2.7.1 Analysis of Algorithm

Lemma II.2 says that the estimators of coefficients of X in the PRSreco algorithm

produce close to correct values and their second moments (variances) are bounded.

The results of Lemma II.2 and Lemma II.1 are used to prove Theorem II.3.

35



Lemma II.2. If number of measurements K = O(s/ε2) then for any s-sparse (or s-

compressible) vector X, each estimate of the form X̃m = BH
mBX for m = 1, 2, .., N ,

satisfies

(2.2) E(X̃m) = Xm ±O

(
1

N

)
||X||1

(2.3) Var(X̃m) ≤ ε2

s
||X||22

Proof. For any vector X,

E(X̃m) = E

(
N∑
i=1

BH
mBiXi

)
= E

(
Xm +

N∑
i=1,i 6=m

CimXi

)

= Xm +
∑
i 6=m

E(Cim)Xi

The required result is now true from Lemma II.1.

Now we will compute Var (X̃m) = E(X̃m
2
) − (E(X̃m))2. But first, consider the

following:

CH
imC`m =

1

K2

K∑
n=1

e

(
j
2π(m−i)tn
NTN

) K∑
q=1

e

(
j
2π(`−m)tq
NTN

)

=
1

K2

K∑
n=1

e

(
j 2π
NTN

(m−i+`−m)tn
)

+
1

K2

∑
n

∑
q 6=n

e

(
j
2π(m−i)tn
NTN

)
e

(
j
2π(`−m)tq
NTN

)

After applying expectation, and using that tn and tq are independent for n 6= q and

also using the Lemma II.1,we see that the second term above can be ignored as it is

O( 1
N2 ).

36



Hence E(CH
imC`m) u E(C`i)/K. We will use this in the expansion for E(X̃m

2
) as

follows,

E(X̃m
H
X̃m) = X2

m +
N∑

`=1,6=m

E(C`m)XH
mX`

+
N∑

i=1, 6=m

E(Cmi)X
H
i Xm +

∑
i 6=m

∑
` 6=m

E(C`i)

K
XH
i X`

≤ X2
m +

N∑
`=1,`6=m

E(C`m)XH
mX`

+
N∑

i=1,i 6=m

E(Cmi)X
H
i Xm +

N∑
i=1,i 6=m

1

K
X2
i

since, by Lemma II.1,E(C`m) ≤ 1/N, is negligible for ` 6= m. We can similarly ob-

tain the expansion (E(X̃m))2 = X2
m +

N∑
`=1,`6=m

E(C`m)XH
mX` +

N∑
i=1,i 6=m

E(Cmi)X
H
i Xm +

N∑
i=1,i 6=m

N∑
`=1,`6=m

E(Cmi)E(C`m)XH
i X`. The last term can be ignored (assuming signal

sparsity s� N). Now,

Var(X̃m) = E(X̃m
H
X̃m)− (E(X̃m))2

≤
N∑

i=1,i 6=m

1

K
X2
i ≤

ε2

s
||X||22

Once the PRSreco algorithm gets an approximation X̃ of X, it subtracts the

contribution of the current approximation from the measurements and proceeds to

recover the leftover signal X − X̃. As we move on to higher iterations of the algo-

rithm, the energy in the leftover signal goes down, bringing down the upper-bound

on the variance of the estimators (from Lemma II.2 applied to X − X̃). Thus a

better approximation is obtained for the signal X in each higher iteration until the

37



required tolerance is reached or the algorithm converges. Please refer to the proof

of Theorem II.3 for further details. Theorem II.3 offers an error guarantee for a

signal recovered using the PRSreco algorithm and establishes the conditions on the

sub-sampling ratio K/N that can be achieved using the random PPM ADC. If X is

s-sparse and there is no noise in the measurements obtained from the random PPM

ADC (operating at a sub-sampling ratio of K/N), then from Theorem II.3, signal

X can be recovered exactly. If the measurements are corrupted by some noise (e.g.

quantization noise), the `2-norm of the reconstruction error is bounded above by the

`2-norm of the noise.

Theorem II.3. Let y = BX + ξ be the time domain samples of signal X obtained

by the random PPM ADC, where ξ is an arbitrary noise contamination in the mea-

surements and B is the resultant measurement matrix of size KxN . Let the phase7 φ

of the time domain input signal x(t+ φ) be uniformly distributed in [0, 2π]. Suppose

|X[s]|2 ≥ 2α||X||22/s + |X[s+1]| for some constant α and a given sparsity parameter

s, where |X[i]| is the magnitude of the ith largest element of X. Given the error

tolerance in reconstruction θ and K = O(s logN/ε2), with probability > 1−O(ε2) the

algorithm produces an s-term estimate X̃ of signal with the following property,

(2.4) ||X − X̃||22 ≤ max

{
θ2,
||X −X(s)||22

1− α
+
c(B)||ξ||22

1− α

}
where X(s) is the best s-term approximation of X. The runtime of the algorithm

is O(IN logN) where I = Number of iterations, with a gross upper bound of I <

max(logN,log(||X||2/θ)). The net storage requirement is O(N)+O(sK). The con-

stant c(B) depends on the measurement matrix B.

7That is, the time t = 0 at which we start to observe the signal, is assumed to be random. This induces a
probability distribution on the signal dependent si.

38



Proof. First we will show that the PRSreco algorithm succeeds in identifying the top

s terms of the signal. We will then derive the error guarantee.

Let us begin with signal X exactly s-sparse. For simplicity lets assume that

Xi, i = 1, .., s are the non-zeros. There exists a β < 1 such that |Xi|2 ≥ β||X||2/s.

Let 0 < 2α ≤ β. For i = 1, .., s, using the Chebyshev inequality we have, Pr(|X̃(1)
i −

Xi|2) ≥ α||X||2
s

) ≤ Var(X̃
(1)
i )/α||X||

2

s
≤ ε2||X||2

s
/α||X||

2

s
= ε2

α
(using Equation (2.3) from

Lemma (II.2)). Hence

Pr
(
X̃

(1)
i good

)
= Pr

(
|X̃(1)

i −Xi|2 ≤
α||X||2

s

)
≥ 1− ε2

α

Let |Xmin| be the smallest non-zero in X. Again using Chebyshev inequality, for each

of Xi, i > s we have Pr(|X̃(1)
i |2 ≤ |Xmin| − α||X||2

s
) ≥ Pr(|X̃(1)

i |2 ≤ (β − α) ||X||
2

s
) ≥

1 − ε2

β−α = 1 − ε2

α
( since 2α ≤ β). Now, define Bernoulli random variables zi as

indicators of failure of the ith coefficient estimator. That is

Pr(zi = 0) = 1− ε2

α
= 1− Pr(zi = 1)

for all i = 1, .., N . Let Z1 =
∑s

i=1 zi and Z2 =
∑N

i=s+1 zi. We have

Pr
(
Z1 >

s

4

)
≤ E(Z1)

s/4
≤ sε2/α

s/4
=

4ε2

α
.

Hence Pr(No. of good estimators among X̃1
(1)

,X̃2
(1)

,...,X̃s
(1) ≥ 3s

4
) ≥ 1 − 4ε2

α
. Note

that the factor 1/4 is chosen as an example to simplify the presentation of the proof.

Now lets move on to the 2nd iteration of the algorithm. More than 3s/4 estimators

which were good in the first iteration are still good in the second iteration. This

is because the estimator X̃
(2)
i depends on the same random correlations (between

Bi and other columns of B) as the estimator X̃
(1)
i from the first iteration. Put

the current approximation X̃ = [X̃(1)](s) as defined in the PRSreco algorithm (see

39



Table 2.1). Now for those coefficients whose estimators were not good in the first

iteration we have,

Pr

(
|X̃(2)

i −Xi|2 ≥
α||X − X̃||2

s

)
≤ ε2||X − X̃||2/s
α||X − X̃||2/s

=
ε2

α

like before, using the Equation (2.3) from Lemma (II.2) applied to X − X̃. Now

define a new Z
(2)
1 for these estimators. Note that E(Z

(2)
1 ) ≤ sε2

4α
(since there are less

than s/4 terms in the definition of Z
(2)
1 ). Now as before we have

Pr
(
Z

(2)
1 >

s

42

)
≤ 4ε2

α
.

Hence by the end of second iteration number of good estimators among the i = 1, .., s

is ≥ 3s
4

+ 3
4
s
4

with a net probability ≥ (1− 4ε2

α
)2. Going on this way at kth iteration,

number of good estimators ≥ (1 − (1
4
)k)s, with probability ≥ (1 − 4ε2

α
)k. Similar

statements can be obtained about Z2, i.e., about the estimators with i > s. Hence

after sufficient number of iterations (say I), all the estimators are good which implies

that all the non-zero terms will be identified by the algorithm with

Pr(Success) ≥ (1− 4ε2

α
)2I ≈ (1− 8Iε2

α
) = 1−O(ε2)

after absorbing some constants along with number of iterations I into the number of

measurements. If I is the sufficient number of iterations at which all estimators are

good, then (1/4)IN < 1 ⇒ I = 0.5 logN = o(logN). Hence an increase in number

of measurements by a factor of log N is required. Note that the above is a gross

lower bound for the success probability. In reality since all the estimators are highly

dependent, the probability that they will be good together is higher than the product

of the individual success probabilities, which is the gross lower bound produced by

the above theory.

40



Now let the signal X be s-compressible (hence not exactly s-sparse). We start

with K =O(s/ε2) as before. Again for simplicity let the first s elements of X be the

top s terms. For i > s we assume that |Xi|2 ≤ γ||X||2/s for some γ < 1. Let Xh
min

be the smallest coefficient in the head (i = 1, .., s) of X. Similarly let X t
max be the

largest coefficient in the tail (i > s) of X. All the above arguments hold again except

that for i > s the probabilities will involve γ in the following manner. For example

in the first iteration,

Pr
(
|X̃i −Xi|2 ≤ |Xh

min| −
(α)||X||2

s
− |X t

max|
)

≥ Pr
(
|X̃i −Xi|2 ≤ ( 1

β
− α− γ) ||X||

2

s

)
≥ 1− βε2

1−(α+γ)β
= 1− ε2

α

(assuming 0 < 2α ≤ β − γ). Repeating the arguments from above we show that

the algorithm succeeds in identifying the top s-terms.

Now let us prove the error guarantee. Let us assume that ξ = 0 for the moment.

Lets say the algorithm correctly identifies the position of top s terms in I iterations.

For any k > I,at iteration k + 1, |(X̃(k+1)
i −Xi)|2 < α||X − X̃(k)||2/s for i = 1, .., s.

Summing up the s inequalities we get,

||X̃(k+1) −X(s)||2 ≤ α||X − X̃(k)||2

where X(s) is the best s-term approximation to X. Now, ||X − X̃(k+1)||2 ≤ ||X −

X(s)||2 + ||X(s) − X̃(k+1)||2 ≤ ||X − X(s)||2 + α||X − X̃(k)||2. This implies, ||X −

X̃(k+1)||2 ≤ 1−αk−I
1−α ||X −X(s)||2 + αk−I ||X − X̃(k−I)||2. For k large enough we have,

||X − X̃||2 ≤ 1

1− α
||X −X(s)||2

41



This is consistent with Equation 2.4.

Now let ξ = Bn for some vector n. we have y = B(X + n). Following the

arguments as before, we have, ||X + n − X̃||2 ≤ ||X+n−(X+n)(s)||2

1−α ≤ ||X+n−X(s)||2

1−α

(since (X + n)(s) is the best s-term approximation to X + n). Now, ||X − X̃||2 ≤

||X + n − X̃||2 + ||n||2 ≤ ||X+n−X(s)||2

1−α + ||n||2 ≤ ||X−X(s)||2

1−α + (2−α)||n||2
1−α . We will have

Equation 2.4 by putting ||n||2 ≤ c||ξ||2. This is true for some c(B) < 1
σmin(B)

where

the denominator is the smallest singular value of B.

2.8 Algorithm 2: Median of estimators (MOE)

Note that in the PRSreco algorithm (Sec. 2.7), the input signal was sampled

for a total time of t = N/FN to get K samples. Instead if we sample the signal for a

duration of mt, we get m copies of K measurements,with each set of measurements

from a block of time t. Assume that the set of top s frequencies in the signal remains

the same in all the m blocks of time (their coefficients can change). Then we can

take a median over the estimators from different blocks to improve the identification

of the top s frequencies. The idea of taking a median instead of mean was used in the

count sketch algorithm [50] which estimates the most frequent items in a data stream.

We propose to use the algorithm in Table 2.2 to identify and estimate the top s

frequencies in the signal. Let B(i) be the measurement matrix formed (as shown in

Section 2.6.1) from the time points in the ith block of time, for i = 1, ..,m. Similarly

let y(i) be the vector of measurements obtained from the ith block.

42



MOE algorithm
input: N (Block length), m (No. of Blocks), s (sparsity)

(t`, y`),` = 1, 2, ..,mK.
output: X(i) for i = 1, ..,m (signal in each block)

Identification: For j = 1, .., N ,

X̂j = median
{
|B(1)Hj y(1)|, .., |B(m)Hj y(m)|

}
T = supp([X̂]s)

Estimation: For i = 1, ..,m,

[X̃(i)]T =
(
B(i)HT B(i)T

)−1
B(i)HT y(i)

Table 2.2: Algorithm 2 : The Median of Estimators (MOE)

Theorem II.4. For m = O(ln(N
δ

)), the MOE algorithm correctly identifies the set

T of top s frequencies in the signal with Pr(Success) ≥ 1− δ.

Proof. Note that the arguments in proof of Theorem II.3 hold for all the m blocks of

time. Let X̃ij = B(i)Hj y(i) for i = 1, ..,m and j = 1, .., N . Note that X̂j =median(|X̃ij|, i =

1, ..,m) for j = 1, .., N . From Theorem II.3’s proof, Pr(|X̃ij| good) ≥ 1− ε2

α
= p(say),

for i = 1, ..,m. Assuming p > 0.5, from Chernoff bound we have Pr(X̂j good)

≥ 1 − e−2m(p−0.5)2 ≥ 1 − δ′ for m =O(ln( 1
δ′

)). Hence Pr(Success) = Pr(X̂j good for

j = 1, .., N) ≥ (1− δ′)N ≈ 1− δ for δ′ = δ/N .

Note that the computationally intensive step of least squares is performed

only once (per block of the signal) in both the algorithms. The least squares

was implemented using the accelerated Richardson iteration [48] with runtime of

O(sKlog(2/et)) where et is a tolerance parameter. The structure of the measurement

matrix lends us to use the inverse NUFFT [49] with cardinal B-spline interpolation

for forming the products of the form BHr, in a runtime of O(N logN). Hence the total

runtime of PRSreco algorithm is dominated by O(IN logN) where I is the number of

iterations. The per block runtime of the MOE algorithm which has only one iteration

43



is O(sKlog(2/et))+O(N logN), which is much less than that of the PRSreco algo-

rithm. However as mentioned in section 2.8 to apply the MOE algorithm the signal

has to satisfy the required additional condition of maintaining the same dominant

set of frequencies throughout the observed time. Also the MOE algorithm processes

the signal in blocks of m unlike the PRSreco algorithm. The sampling percentage

(K/N = mK/mN) is the same for both the algorithms. (100% sampling implies

sampling at Nyquist rate.) These statements are summarized in Table 2.3.

PRSreco MOE

Signal model Any sparse signal
Same set of dominant s frequen-
cies in all m blocks (coefficients
can vary)

Output
Estimate of signal of
length N

Estimate of signal of length N on
each of m blocks

Total number
of operations

O(IN logN) per block O(mN logN) per m blocks

% Sampling K/N mK/mN = K/N
Operation
efficiency

O(IN logN)
N

O(mN logN)
mN

Table 2.3:
Comparison of the PPMreco and MOE algorithms, used for signal reconstruction with
random PPM ADC.

2.9 Experimental Results and Discussion

The regular PPM and the random PPM sampling architectures (described

in Section 2.3) are implemented in hardware. The ADCs combined with the re-

construction algorithms are also simulated in MATLAB. A series of experiments

compares the performance of the algorithms for both the sampling architectures.

The Signal-to-Noise Ratio8 (SNR), which is defined as the ratio between the signal

energy and the reconstruction error, is used as the performance metric to evaluate

the quality of the reconstructed signal. MATLAB simulation results are presented

8SNR(dB) = 20 log(||X||2/||X − X̃||2), where X is the input signal and X̃ is the output of the algorithm

44



first and are followed by the experimental results from the hardware implementation.

2.9.1 Simulation results

The finite time resolution tr of the TDC block in the ADC induces some quanti-

zation into the measurements. For the simulation experiments to follow, the quanti-

zation is kept at 7 bits (= log2(ramp duration/tr), with a ramp duration of 0.25 µsec

and tr = 2 nsec). This corresponds to a signal to quantization noise ratio of about

44 dB for an input sinusoid.

Multitone signals In the first experiment we reconstruct multi-tone input sig-

nals, which are a linear combination of sinusoids. Each sinusoid has a random phase,

comparable amplitude and its frequency is chosen randomly from the Nyquist grid.

The Nyquist frequency is 3 MHz whereas the sampling frequency of the ADC is cho-

sen to be 1 MHz, giving a sub-sampling ratio of 0.33. That is, K/N = 0.33, where

K(= 150) is the number of measurements from the ADC and N(= 450) is the length

of input signal, X. The input signal is corrupted by additive white Gaussian noise

with varying power, sampled by the two sampling schemes and reconstructed using

the PRSreco algorithm. The performance of the algorithms is evaluated by measur-

ing the output SNR. The experiment uses the s-term Nyquist approximation as the

benchmark performance, which is defined as the SNR obtained when the signal is

sampled at Nyquist rate, quantized at the same quantization level as the ADC and

then truncated, in frequency domain, to keep only the s dominant terms. The s-term

Nyquist benchmark thus represents the best s-term approximation to the signal in

frequency domain. Fig. 2.11(a) plots the mean (of 200 trials) reconstruction output

SNRs for signals with 9 tones (corresponding s/N = 18/450 and s/K = 18/150) and

45



Figure 2.11:
(a) Mean output SNR versus input SNR and (b) success percentage (fraction of trails
that succeed) versus input SNR for 9-tone and 17-tone signals. The s-term NYQ
(Nyquist) benchmark represents the best s-term approximation to the signal in fre-
quency domain. Success means the correct identification of the frequencies of all tones.

17 tones (s/N = 34/450 and s/K = 34/150).

The experiment demonstrates the better performance of random PPM in two

ways. First, random PPM achieves a higher output SNR compared to the regular

PPM and is closer to the benchmark9 performance, owing to the better correlation

properties of the measurement matrix (Lemma II.1). The random PPM performance

approaches the benchmark as the input SNR increases. Secondly, as the number of

tones increases (making the signal less sparse), the random PPM output SNR is un-

9The benchmark considers the error in the amplitude of the s tones due to quantization and input noise

46



affected relative to the benchmark while the output of constant PPM degrades. This

indicates that the random PPM design can handle less sparse signals much better

than the regular PPM scheme for same number of measurements.

The output SNR can be higher than the input SNR, as the algorithm (like any

other greedy pursuit algorithm) only calculates the coefficients of the top s frequen-

cies in the signal and thus inherently filters out the noise at other frequencies. This

“denoising” effect decreases as the value of s increases. This explains the degrada-

tion in output SNR (of even the benchmark) when the number of tones is increased.

After input SNR is high enough, we see a saturation in the output SNR. This can be

attributed to the quantization noise in the measurements (which also gets “denoised”

to some extent).

Fig. 2.11(b) plots the percentage of trials that achieve success in signal recovery.

We call the reconstruction a success when the frequencies of all the tones in the input

signal are correctly identified. Once again we observe that random PPM performs

much better than the regular PPM. The plot also conforms that mean output SNR is

a good indicator of the quality of reconstruction, as it also captures (to some extent)

the information about the percentage of success.

Sampling percentage The next experiment reconstructs a single tone signal (ran-

domly chosen frequency, s/N = 2/450) with varying number of measurements and

noise levels using the PRSreco algorithm. The sub-sampling ratio is defined as the

ratio between the sampling rate of the ADC and the Nyquist rate of the signal (which

is twice the randomly chosen tone frequency), and can be computed as K/N . The

47



Figure 2.12: Reconstruction of a single tone signal with varying number of measurements (a) with
no noise (b) success percentage when no noise (c) sampling needed for 99% success,
with noise

sub-sampling ratio needed for at least 99% success (i.e. at least 99% of the total

trials succeed in identifying the input signal frequencies correctly) is empirically de-

termined for each input SNR level and is plotted in Fig. 2.12(c). We observe that at

all SNR levels the random PPM ADC succeeds with far fewer measurements than

the regular PPM. Further, when the input SNR is high enough the sub-sampling

ratio needed for success in the random PPM quickly falls to about 3%. This can also

be seen in the no-noise (i.e. only quantization noise) case (Fig. 2.12(a),(b)), where

the regular PPM scheme breaks down when the sampling rate goes below 20% of

Nyquist rate, whereas, the random scheme performs well enough for sampling rates

48



as low as 3% of the Nyquist rate, indicating much better incoherence properties of

the measurement matrix.

Figure 2.13: Reconstruction of a 11 tone signal with varying amount of time jitter noise

Time jitter noise Noise generated in the ramp and comparator circuits degrades

the accuracy of the time measurement. In this experiment, we model the time mea-

surement error as a normal random variable with standard deviation σ. Fig. 2.13

plots the reconstruction results for a random 11-tone signal sampled by both the

random and regular PPM ADCs, for varying σ (expressed as a multiple of the finite

time resolution tr of the TDC block). While there is a degradation in the SNR per-

formance of both the ADCs as σ increases, we see that the success percentage for

the regular PPM ADC is much more sensitive to time jitter.

Resolution versus sampling rate In this experiment we fix the bit-rate of

random PPM ADC, that is the product of ADC quantization (resolution) and its

49



Figure 2.14:
Mean output SNR versus random PPM ADC sampling rate, for fixed bitrates of 4, 5
and 7 Mbps.

sampling rate. For example, a bit-rate of 5 Mbps can be achieved by choosing an

ADC quantization of 5 bits and a sampling rate of 1 MHz. Fig. 2.14 displays the

constant bitrate curves for bitrate values of 4, 5 and 7 Mbps for a random 11-tone

input signal with input SNR of 15 dB. Each curve plots the mean output SNR for

varying sampling rate. A low sampling rate corresponds to high ADC resolution

and vice-versa (since the bitrate is fixed for each curve). If the sampling rate is too

low, resulting in a lack of enough measurements, the reconstruction error increases,

degrading the output SNR. If the sampling rate is too high, the output SNR again

degrades due to lack of sufficient resolution in each measurement. This trade-off

results in a sweetspot where the SNR performance is the best. From Fig. 2.14, we

observe that this sweetspot occurs when the ADC resolution is chosen to be about

5 bits.

50



Figure 2.15: Output SNR vs input SNR for a demodulated FM signal

FM signal with off-grid frequencies If a frequency falls in between two Nyquist

grid points, it causes spectral spread or leakage, thus adversely affecting the sparsity

of the signal. To counter this we propose to multiply the measurements from the

ADC (before reconstruction) with a window function, like the Hamming (which is

non-zero at all times, hence its effect can be reversed after the reconstruction). A

frequency modulated (FM) signal with single tone message, where both the carrier

and message frequencies are appropriately chosen to be off-grid acts as the input

signal for this experiment. At 33% sampling, the noisy FM signal is windowed, re-

constructed (using PRSreco algorithm), demodulated and the resultant output SNR

is plotted in Figure 2.15. Some output SNR is lost as the amplitude of the message is

smaller than the dynamic range of the ADC. The use of Hamming window improves

the performance of the algorithm at all SNR levels and approaches the benchmark

as SNR increases. Similar observations have been made for amplitude modulated

(AM) signals with different message signals. The plots exhibit similar qualitative

behavior when the sampling rate is increased or decreased. Note that for an FM

51



signal, windowing need not be reversed as the message is in the frequency of the

signal.

Figure 2.16: Output Vs Input SNR for a (a) multitone signal (b) demodulated AM signal with a
sawtooth message

Comparison of algorithms We now repeat the multi-tone (with 13 on-grid fre-

quencies) signal reconstruction and the reconstruction of AM signal with sawtooth

message (off-grid frequencies) experiments with the MOE algorithm, choosing the

number of blocks m = 7. From the Fig. 2.16 we see that at low SNR conditions

algo 2 (MOE) gives a better performance than algo 1 (PRSreco). This is because

the identification stage in algo 2 (MOE) is more successful as it nullifies the ef-

fect of noise to some extent by taking the median over a set of m blocks. At high

SNR, both the methods give comparable performance even though algo 2 (MOE)

has only 1 iteration. Hence algo 2 (MOE) can be used to reduce computations

whenever the input signal satisfies the additional conditions (in section 2.8), par-

ticularly if it is also known that the input SNR levels are low. We also observed

that when Hamming window is employed the performance of algo 1 (PRSreco)

improves whereas the algo 2 (MOE) shows little to no improvement. This is be-

52



cause, upon application of the Hamming window the input signal does not strictly

satisfy the assumptions made in section 2.8 and hence the improvement in sparsity

of the signal is balanced by the error amplification due to Hamming window reversal.

2.9.2 Prototype and measurement results

We now present experimental results obtained with the prototype 9-bit random

PPM ADC and 9-bit regular PPM ADC. The ramp generator, comparator and the

two-step TDC, which are part of both the random PPM and the regular PPM ADCs,

are implemented in 90 nm digital CMOS. The LFSR-based random clock generation

block is implemented by programming Verilog code onto a Field-Programmable gate

array (FPGA). The analog circuits operate with a 1 V supply, while the digital blocks

operate at near-threshold from a 400 mV supply. The regular clock is a 64 MHz sig-

nal giving a Tclk = 15.63 nsec. The LFSR is 9 bits with taps at bin 5 and 9 resulting

in a LFSR periodicity of 511. The entire evaluation setup of the random PPM ADC

consists of four main blocks as displayed in Fig. 2.17, an FPGA, the ADC, a Logic

Analyzer and a computer. The FPGA generates the start and the random clock

signals, which are input to the PPM ADC. The ADC measurements are collected by

the logic analyzer. The non-zero seed used to initialize the LFSR system is assumed

to be known during reconstruction, so that the sequence of tRAND’s can be calculated.

A single tone input signal is sampled both by the random PPM ADC prototype

and the regular PPM ADC prototype, operating at various sampling rates, and re-

constructed using the PRSreco algorithm. The results are displayed in Fig. 2.18.

Also displayed for convenience is the compression loss (root mean square error of

the reconstruction) on the right y-axis. Note that since the ADC resolution is fixed,

53



Figure 2.17: Hardware setup for the random PPM ADC

the compression achieved by the sampling scheme only depends on the sub-sampling

ratio K/N . As expected, the random PPM performs much better than the regular

PPM which breaks down when the sub-sampling ratio is around 0.7, whereas the

random PPM works well for sub-sampling ratios as low as 0.05. A compression ratio

of 0.05 in the random PPM ADC and 0.7 in the regular PPM ADC, both result in the

same compression loss of 0.77. Fig. 2.19 shows the reconstruction of a 5-tone signal

with frequencies arbitrarily chosen from the Nyquist grid on [0, 1MHz] (Nyquist rate

= 2 MHz). The multi-tone signal was sampled with the random PPM ADC operat-

ing at a sampling frequency of about 173 KHz which leads to a sampling percentage

of about 8.65%. The SNR of the recovered signal is 41.6dB.

The measured power consumption of the PPM ADC system is 14µW (excluding

digital post-processing). The analog and digital blocks each consume 7µW. For the

random PPM ADC system, the expected improvement in the power by a factor of

K/N (the sub-sampling ratio) is observed, however this does not include the power

consumed by the random clock generator and the comparator, both of which oper-

54



Figure 2.18:
Reconstruction of a single tone signal from samples collected by the regular and the
random PPM ADC prototypes operating at varying sampling rates. The y-axis on the
right displays the corresponding root mean square (rms) error.

ate all the time. The random clock signal is produced by the FPGA and the power

consumption of the FPGA itself is not a good indication of the actual power needed

since power is consumed by unnecessary circuitry in the FPGA. Implementing the

random clock generation on the CMOS IC along with the rest of the compressive

sensing ADC would only minimally increase the power consumption of the IC as the

LFSR system only requires on the order of ten shift registers and a few gates. The

PPM ADC itself uses approximately 50 registers and gates [1], therefore, the digi-

tal power consumption due to the addition of LFSR system, is expected to increase

by only 6 − 8%. An additional power reduction can be achieved by switching the

continuous-time comparator off, when not in use. Thus, the power consumption of

55



Figure 2.19:
Reconstruction of a 5-tone signal from samples collected by random PPM with sam-
pling rate at 8.65% of the Nyquist rate

the random PPM ADC (with on-chip random clock generation) is estimated to be

about (2K
N

+ 0.07)7µW. For a random PPM ADC operating at 20% of the Nyquist

sampling rate (= 1 MHz), the estimated power consumption is 3µW.

2.10 Conclusion

We propose a new low power compressive-sampling analog to digital converter,

called the random PPM ADC. It inherits the advantages of time to digital conversion

and also exploits compressive sampling techniques, to improve the power efficiency of

data conversion. An existing PPM ADC design is modified to achieve a 9-bit random

PPM ADC, through the use of a random clocking technique. The new random design

enables the reduction of the average sampling rate to sub-Nyquist levels and thus

reduces the ADC power consumption by a factor close to the sub-sampling ratio.

56



The random PPM performs much better than a regular PPM operating at a sub-

Nyquist sampling rate, in terms of obtaining closer-to-benchmark output SNR and

handling signals that are less sparse. The proposed reconstruction algorithm is not

only faster (greedy pursuit versus basis pursuit inspired algorithms in the literature

for compressive sampling ADCs) but also feasible for a hardware implementation.

With on-chip reconstruction and a low power front-end, the random PPM ADC is

attractive for power constrained applications such as wireless sensor networks, as

it reduces both the power consumption and the amount of data that needs to be

communicated by each sensor node.

57



CHAPTER III

Model Of A Sparse Encoding Neuron

3.1 Introduction

Neurons as Time Encoding Machines (TEMs) have been proposed to capture the

information present in sensory stimuli and to encode it into spike trains [51, 52, 53].

These neurons, however, produce spikes at firing rates above Nyquist, which is usually

much higher than the amount of information actually present in stimuli. We pro-

pose a low-rate spiking neuron which exploits the sparsity or compressibility present

in natural signals to produce spikes at a firing rate proportional to the amount of

information present in the signal rather than its duration. We consider the IAF

(Integrate-and-Fire) neuron model, provide appropriate modifications to convert it

into a low-rate encoder and develop an algorithm for reconstructing the input stim-

ulus from the low-rate spike trains. Our simulations with frequency-sparse signals

demonstrate the superior performance of the Low-Rate IAF neuron operating at a

sub-Nyquist rate, when compared with IAF neurons proposed earlier, which operate

at and above Nyquist rates.

It is a common belief that neurons encode sensory information in the form of a

sequence of action potentials (nerve impulses or “spike trains”). The fundamental

58



unit of a “message” conveyed by a neuron is a single nerve impulse, propagating at

high speed down its axon through well-understood electro-chemical processes [54].

These “spike trains” are interpreted by other neurons, leading to sensation and ac-

tion. Fig. 3.1 illustrates a spike train produced by an auditory nerve cell. When we

hear something, our brain is not actually interpreting the modulations in the acous-

tic waveform, but rather the spike trains generated, in response to the stimulus, by

thousands of auditory nerves. In other words, spike trains form the language that the

brain uses to communicate between neurons. Hence, understanding how a neuron

encodes the stimulus or input signal into spike trains is of great interest.

Figure 3.1: Spike trains produced by an auditory neuron

Neurons generate spikes at relatively low rates, presumably due to a metabolic

reason [55]. Metabolically efficient coding [56] is indicative of sparse encoding. Fur-

ther, it has been observed that the process of spike encoding exhibits variability or

randomness in response to identical inputs [57]. That is, for the same input stimulus,

the neuron may produce different spike trains (as shown in Fig. 3.1). We are inter-

ested in developing a sparse encoding model of neuron that explains these observed

59



features of spike trains.

Integrate-and-fire (or IAF, in short) models for neurons as generating time-stamp

codes have been studied in [51] and [53]. Lazar et al. proved that a band-limited

signal encoded by the precise spike timing of an IAF neuron can be reconstructed

with reasonable accuracy from the spike train, when the average firing rate is above

Nyquist rate [51]. When no other information is available about the input signal ex-

cept its bandwidth, the signal has to be encoded at above Nyquist rate for successful

recovery. However, most natural signals are often sparse or compressible in some

orthonormal basis and hence the actual information present in the signal is usually

much lower than the Nyquist rate.

From an information theoretic point of view, a sparse encoding neuron should be

able to encode such signals using spike trains that have a rate proportional to the

amount of information actually present in the signals. In other words, most natural

signals live in a low dimensional space and an efficient encoder should be able to

capture the low dimensional information from the high dimensional signal. In this

paper, we develop an efficient model of a sparse encoding neuron, which we call the

Low-Rate IAF neuron, by performing appropriate modifications to a conventional

integrate-and-fire model. The Low-Rate IAF neuron exploits the sparsity or com-

pressibility of input signals to encode them into spike trains with rates well below

the Nyquist rate. We show that the low-rate spike trains contain enough informa-

tion about the input stimulus to allow its recovery and develop a neural decoding

algorithm based on spike times.

60



The remainder of the chapter is organized as follows. The input signal model is

described in Section 3.2. A relevant background on time encoding through integrate-

and-fire neurons, including the model proposed by Lazar in [53], is briefly presented

in Section 3.3. The proposed Low-Rate IAF neuron is presented in Section 3.4 and

is followed by a description of the reconstruction algorithm in Section 3.5. A set of

numerical experiments compare the performance of Lazar’s IAF neuron (from [53])

with the proposed Low-Rate IAF neuron in Section 3.6. We conclude with a discus-

sion on future work in Section 3.7.

3.2 Input stimulus model

The class of input signals is assumed to be band-limited with cutoff frequency W

(in Hz) and periodic within a time period D. The Nyquist rate of the input signal

space is thus FN = 2W . W and D are related by

W =
N

2D

where N is a positive integer that denotes the dimension of input space. If an input

signal/stimulus x(t) is sampled at Nyquist rate for a time duration of D, then the

number of samples obtained is N = FND. Thus the signal x(t), observed for a time

duration D, can be represented as a vector x of length N in discrete domain, where

x[i] = x(i/FN)

for i = 1, .., N . The signal x(t) is further assumed to be S-sparse or compressible

in frequency domain. A signal is called S-sparse in the frequency domain, if the

DFT (discrete Fourier transform) of the signal samples at Nyquist rate has only S

non-zero terms. That is, if X represents the DFT of vector x, then X has at most

61



S non-zero elements. A signal is called S-compressible1 in frequency domain, if the

sorted list of its DFT coefficients has only S significant or dominant terms, compared

to which the other terms are negligible. Thus, a compressible signal is one that is

reasonably well approximated as a sparse signal.

The input signal can be expressed as a linear combination of complex exponentials

as follows:

x(t) u
S∑

m=1

cm exp(j2πfmt)

where fm,m = 1, .., S are the S dominant frequencies which lie in the interval

[−W,W ] and cm are the corresponding coefficients. We further assume that the

input signal is real-valued, hence S is even and one set of frequencies are the nega-

tive of the other set. Thus, the input stimulus is a mixture of periodic waveforms,

which is consistent with the brain mechanism of generating and entraining oscilla-

tions at multiple frequencies simultaneously.

3.3 Time encoding with Integrate-And-Fire Neurons

In this section we review the time encoding machine (TEM) consisting of an

integrate-and-fire (IAF) neuron [51, 52, 53]. Neurons encode continuous time sen-

sory stimuli into discrete time events, i.e. the firing of action potentials at variable

time points. Time encoding is an answer to one of the key questions arising in in-

formation processing, which is, how to represent a continuous signal as a discrete

sequence. In conventional sampling, a band-limited signal is represented by set of

amplitude samples spaced uniformly. If the uniform spacing is chosen to satisfy the

1We call X, S-compressible, if it is well approximated as a S-sparse signal, ||X − X(S)||2 ≤ C · S−α for some
constants C and α > 0, where X(S) is the S-sparse signal that best approximates X.

62



Nyquist rate condition, the signal can be recovered perfectly, under no noise, through

sinc interpolation. This is the well-known Shannon sampling theorem. In contrast,

time-encoding of a real-valued band-limited signal is an asynchronous process of map-

ping the amplitude information into a strictly increasing sequence of time points. A

time encoding machine (TEM) is a realization of such encoding. The reconstruction

of input signal from the sequence of time points is referred to as time decoding.

3.3.1 Preliminaries

A typical IAF TEM neuron is schemtaically shown in Fig. 3.2. A constant bias b

(b > 0 such that x(t) + b > 0,∀t) is added to the input signal, which is then fed to

the integrator. When the output of the integrator crosses a threshold δ, a spike is

produced. The spike triggers a zero reset of the output of the integrator. The output

of the TEM is thus a sequence of spikes at time points, {tk}, that models the spike

train produced by a neuron.

Figure 3.2: Time encoding with an integrate-and-fire (IAF) neuron

Let K denote the number of spikes produced by the IAF neuron in the duration

D for which the input stimulus is observed. From simple calculations we can easily

63



derive, ∫ tk+1

tk

x(s) ds = κδ − b(tk+1 − tk)

for k = 0, .., K−1, where t0 is the time point at which we begin to observe the signal.

If |x(t)| ≤ c, ∀t, then the inter-spike-interval is bounded by,

κδk
b+ c

≤ tk+1 − tk ≤
κδ

b− c

It has been proved [51][52] that a successful recovery of x is possible when,

κδ

b− c
<

1

2W

that is, the maximum inter-spike-interval is smaller than the Nyquist period TN =

1/FN = 1/2W . Hence, the TEM IAF neurons encode all input signals at an average

rate greater than the corresponding Nyquist rate.

3.3.2 Integrate-And-Fire Neurons with Random Thresholds

To model the variability or randomness characteristic of neuronal spike trains,

neurons with random thresholds were proposed in [58]. An IAF neuron model with

random thresholds is studied by Lazar in [53]. The model is identical to the TEM

shown in Fig. 3.2, but with random thresholds δk. Every output spike not only resets

the integrator output but also triggers the random selection of a new threshold δk.

The random thresholds are assumed to be drawn from a Gaussian distribution with

known mean δ and variance σ2.

For random thresholds TEM, let us define a measurement vector q and error

vector ε of length K, as follows. For k = 0, .., K − 1,

qk = κδ − b(tk+1 − tk),

64



εk = κ(δk − δ).

Time-encoding can be expressed as the following system of equations,

GX = q + ε

where X is the N -point DFT of vector x and G (of size K x N) is given as

Gk,n =

∫ tk+1

tk

ej2π
n
N
FNs ds

for k = 0, .., K − 1 and n = −N/2, .., N/2 (assuming N is even and with a slight

abuse of notation).

A weighted least squares with `2 penalty is used for reconstructing an approxima-

tion X̃ of X from q

X̃ = argmin||q −GX||2 +Kλ||X||2.

Here, λ is a positive smoothing parameter that regulates the trade-off between faith-

fulness to the measurements and smoothness. The regularization is used to prevent

over-fitting due to the noisy data.

For a successful recovery, the method requires that the average spike rate be above

Nyquist rate [53]. In other words, we need the number of spikes K > N . Note that

N is the number of samples at Nyquist rate and hence Lazar’s TEM neuron is firing

at rates above Nyquist. In the next section we develop a low-rate model of IAF

neuron that fires at a sub-Nyquist rate.

65



3.4 The Low-Rate Integrate-and-Fire Neuron

We introduce appropriate modifications in the TEM IAF neuron and develop

a low-rate IAF neuron model. The Low-Rate IAF neuron schematical is shown in

Fig. 3.3. We use fixed thresholds (δ) as opposed to random thresholds used in Lazar’s

model. The randomness in inter-spike-interval exhibited in neuronal spike trains is

produced by an additional component that switches off the IAF circuit for a random

amount of time τk (with mean µ) after each spike (see Fig. 3.3). The process of

switching off the IAF circuit mimics the “absolute refractory” period exhibited by

a neuron. After a single impulse, a dormant period occurs during which no other

impulse can be initiated [54], which is called the “refractory” period. We model this

refractory period as a random variable to account for the randomness in neuronal

spike trains in response to identical inputs.

Figure 3.3: Sparse time encoding with Low-Rate integrate-and-fire(IAF) neuron.

The time durations τk are assumed to be uniformly distributed with mean µ. The

operational equation of time-encoding can be obtained as follows,∫ tk+1

tk+τk

x(s) ds = κδ − b(tk+1 − tk − τk)

for k = 0, .., K − 1. Similar to Section 3.3, we define measurement vector q and

66



matrix G as follows,

qk = κδ − b(tk+1 − tk − τk)

Gk,n =

∫ tk+1

tk+τk

ej2π
n
N
FNs ds

for k = 0, .., K − 1 and n = −N/2, .., N/2.

In an actual implementation of the Low-Rate IAF neuron in hardware, the time

durations τk can be generated using a pseudo-random number generator such as lin-

ear feedback shift register (LFSR). If the seed that is used to initialize the LFSR is

assumed to be known, then τk can be computed by the reconstruction algorithm. An

alternative is to actually measure τk using a time to digital converter (TDC). The

measurements qk can thus be computed by the reconstruction algorithm.

The low-rate neuron produces spikes at a sub-Nyquist rate determined by the

parameters δ and µ. Let K denote the number of spikes produced in duration D,

then K < N . We are interested in solving for X (the N -point DFT of input signal)

given tk for k = 0, .., K − 1, i.e., we want to solve the following linear system of

equations for the case when K < N ,

GX = q + ξ

where ξ is a noise vector, which can model additive noise at the input or a time

jitter noise in measuring tk. The problem is ill-posed in general, since it is under-

determined and has infinitely many solutions. But under the assumption that X is

sparse or compressible (as described in Section 3.2), it may be possible to uniquely

recover X. We develop a new recovery technique to reconstruct X, which is described

in the next section.

67



3.5 The Reconstruction Algorithm

Given the measurements q = GX + ξ of a sparse or compressible signal X (of

length N), with number of measurements K < N , the novel area of Compressive

Sensing (CS) offers explicit constructions or distributions on matrices G and al-

gorithms such as those proposed in [8],[7] and [3], to recover an approximation of

X (denoted by X̃). One line of research assumes that the measurement matrix G

satisfies a property called the restricted isometry (RIP) [3], and uses either greedy

iterative algorithms ([8],[7],[6]) or convex optimizations to obtain X̃. Another line

of research designs matrices G and algorithms jointly, optimizing for reconstruction

time [13], storage requirements of G, or physical realizability [16] of measurement

with matrix G. The matrix G produced by an IAF time-encoding system (whether

deterministic or random) does not necessarily satisfy the RIP condition. Hence,

following the second line of research, we co-designed the measurement system (i.e.

the Low-Rate IAF neuron model) and the recovery algorithm, keeping in mind the

physical realizability of the TEM as well as the TDM (time decoding machine). In

this section, we describe the reconstruction algorithm developed for the Low-Rate

IAF neuron model presented in Section 3.4. We begin by transforming GX = q into

a new system of equations BX = y by doing the following.

From mean value theorem, we know that there exists sk ∈ (tk +τk, tk+1) such that

x(sk)(tk+1 − tk − τk) =

∫ tk+1

tk+τk

x(s) ds.

Thus we can define sk for k = 0, .., K − 1 and the corresponding signal amplitudes

68



as

yk = x(sk) =
qk

(tk+1 − tk − τk)
.

We define a new measurement vector y in this manner. The N -point DFT X and

measurement vector y can be related as

BX = y,

where the new measurement matrix B (of size K x N) is given by

Bk,n = ej2π
n
N
FNsk

for k = 0, .., K − 1 and n = −N/2, .., N/2. Note that B is not really a sub-DFT

matrix, since s′ks do not have to lie on a Nyquist time grid.

A pseudo-code of the reconstruction algorithm is presented in Table 3.1. For a

vector z, supp(z) is defined as the set of indices of the non-zero elements of z and z(s)

stands for the best s-term approximation2 of z. For an index set T ⊂ {1, 2, .., N},

zT stands for a sub-vector of z containing only those elements of z that are indexed

by T . Similarly GT stands for a sub-matrix of G containing only the columns of G

indexed by T .

The matrix B is similar to the matrix used in [16] and hence we use the algorithm

developed in [16] to estimate the indices of the dominant terms in X, that is, we

identify the dominant frequencies in X. The largest components in BHy provide

a good indication of the largest components in X [16]. The algorithm applies this

idea iteratively to reconstruct an approximation to the signal X. At each iteration,

2The best s-term approximation of a vector z can be obtained by equating all the elements of z to zero, except
the elements that have the top s magnitudes.

69



the current approximation induces a residual, which is the part of the signal that

has not been approximated yet. The current approximation vector X̃ is initialized

to a zero vector and the residual is initialized to the measurement vector y. At the

end of iterations, once the dominant frequencies are identified (denoted by index

set T in Table 3.1), their coefficients (i.e. the elements of XT ) are then estimated

through performing a least squares with a truncated matrix GT . We approximate

sk = (tk+1 + tk + τk)/2.

The reconstruction algorithm
input: N (signal length), S (sparsity), (sk, yk),k = 0, 1, .., K − 1.

output: X̃ (S-sparse approximation to X, length N)

X̃(0) = 0, residual r(0) = y

for i = 0, 1, 2, ..

X̃(i+1) = [X̃(i) +BHr(i)](S)

r(i+1) = y −BX̃(i+1)

until ||r(i+1)||2 does not vary within a tolerance θ.

T =supp
{
X̃
}

X̃T =
(
GH
T GT

)−1
GH
T y (Least Squares)

X̃T c = 0

Table 3.1: The Reconstruction Algorithm

The computationally intensive step of least squares is performed only once in

the algorithm. The least squares is implemented using the accelerated Richardson

iteration [48] with runtime of O(SKlog(2/et)) where et is a tolerance parameter.

The structure of the measurement matrix lends us to use the inverse NUFFT [49]

with cardinal B-spline interpolation for forming the products of the form BHr, in

a runtime of O(N logN). Hence the total runtime of the algorithm is dominated by

O(IN logN) where I is the number of iterations which has a gross upper bound of

70



logN . In practice, we find that the approximation sk u (tk+1 + tk + τk)/2 is good

when the threshold δ is small enough. It is possible to update sk, k = 0, .., K − 1

using the current approximation X̃ at the end of each iteration, by using Newton’s

method for example. More sophisticated methods might yield better results.

3.6 Results and Discussion

Lazar’s TEM neuron and our Low-Rate IAF neuron are simulated in MATLAB,

along with the reconstruction algorithms. We compared the performance of our Low-

Rate neuron firing at sub-Nyquist spike-rate with TEM neurons in [53] operating at

and above Nyquist rate. We define the sparse-encoding ratio of Low-Rate IAF neu-

ron as K
N

, which implies that the firing rate of the neuron is K
N
FN . The input signal,

as explained, is assumed to be a mixture of sinusoidal waveforms of S frequencies.

Because we inject additive white Gaussian noise into the input signal, we use the

traditional measure of signal-to-noise ratio (SNR) as the performance metric. The

output SNR3 is defined as the ratio between the signal energy and the reconstruction

error, whereas the input SNR is defined as the ratio between signal energy and noise

energy.

In the first experiment, we choose S = 10 and compare the recovery performance

of Lazar’s TEM neuron and Low-Rate IAF neuron. The sparse-encoding ratio of

Low-Rate neuron is chosen as K/N = 0.3052. Fig. 3.4 plots the mean output SNR

vs. input SNR. We see that the Low-Rate IAF neuron (even when operating at

about one third the Nyquist rate in this example) outperforms the TEM neurons

3Output SNR(dB) = 20 log(||X||2/||X − X̃||2), where X is the input signal and X̃ is the output of the algorithm

71



Figure 3.4: Output SNR vs input SNR for signals with S = 10

(which are not sparse encoders) operating at and above Nyquist rates. Moreover, we

see that Lazar’s reconstruction degrades significantly when the average firing rate of

TEM neurons is reduced to about 0.97FN .

In the next experiment, we choose S = 60. Mean output SNR vs. input SNR is

plotted in Fig. 3.5 for Low-Rate IAF neuron operating at different rates and Lazar’s

TEM neuron operating at about twice the Nyquist rate. To match the performance

of Lazar’s TEM neuron at twice the Nyquist rate, we need to set the firing rate of

the Low-Rate IAF neuron to about 0.38 times the Nyquist rate. Fig. 3.5 demon-

strates that an increase in sparse-encoding ratio K/N improves the performance of

the Low-Rate IAF neuron.

72



Figure 3.5: Output SNR vs input SNR for signals with S = 60

3.7 Conclusion and Future Work

We proposed a model for a sparse encoding neuron, called the Low-Rate IAF

(integrate-and-fire) neuron, which is an adaptation of the TEM IAF model proposed

by Lazar [51, 52, 53]. Lazar’s TEM model produces spikes above Nyquist rate, which

is usually much higher than the amount of information actually present in the input

sensory stimuli. By exploiting the sparsity, the Low-Rate IAF neuron encodes input

stimulus into spike trains with average firing rate well below Nyquist rate, while

using the spike timing information in a smart manner to improve the performance

of stimulus recovery. The developed reconstruction algorithm is computationally

efficient and can be tailored for practical hardware implementations. A number of

other time-encoding neuron models, including many other IAF architectures, have

been proposed in the literature. The methodology of low-rate or sparse encoding,

along with the developed reconstruction algorithm, can be extended to these neuron

73



models. This direction will be explored in the future. We are also interested in in-

vestigating the application of our Low-Rate neurons in developing a sparse encoding

model for videos. The classification of input stimuli from low-rate spike trains is

another potential future direction.

74



CHAPTER IV

Continuous Fast Fourier Sampling

4.1 Introduction

The problem of quickly computing the largest few Fourier coefficients of a signal

from a given (sliding) time window arises in numerous situations. For example, in

cognitive radio [59], where a wireless node alters its transmission or reception param-

eters based on active monitoring of radio frequency spectrum at various times, or in

incoherent demodulation of communication signals [60] (such as FSK, MSK, OOK,

etc.,) where the computed frequency spectrum at different times represents the mes-

sage being transmitted itself. Other applications include data compression, feature

extraction, data mining, continuous monitoring of signals, real-time change detec-

tion in signal parameters, etc. Most of these applications involve large signal sizes or

bandwidths while the signal is often redundant (sparse or compressible), with only a

few Fourier coefficients that are of interest. In such cases the Fast Fourier Transform

(FFT), which computes all the Fourier Transform (FT) terms, is computationally

wasteful. Hence algorithms with efficient storage requirements and low runtime are

of primary importance. Moreover, the resource efficient algorithm should be able to

quickly analyze a signal from any arbitrary placed time window.

75



Compressed Sensing (CS) methods [3] [6] provide a robust framework for reduc-

ing the number of signal samples required to estimate a signal’s Fourier transform.

Although the storage requirements are small, standard CS Fourier methods often

utilize Basis Pursuit (BP) [3] and greedy matching pursuit algorithms [6] that have

a runtime super-linear in signal’s size/bandwidth, and hence, inappropriate for ap-

plications such as those described above. A second body of work on algorithmic

compressed sensing includes methods which focus on achieving near-optimal running

times [61] [62]. However these algorithms do not achieve sub-linear storage require-

ments.

Fourier sampling algorithms [11] [63] achieve both sub-linear storage and runtime

requirements by exploiting the spectral redundancy of signals. In particular, a ran-

domized Fourier sampling algorithm called the AAFFT (Ann Arbor Fast Fourier

Transform) [63] has been shown to outperform the FFT in terms of runtime while

utilizing only a fraction of the FFTs required samples [64]. In these algorithms,

unevenly spaced samples of the signal (from a given time window) are acquired in

a structured random fashion, below Nyquist rate. These samples are used in a non-

linear iterative manner to quickly estimate the signal’s dominant Fourier coefficients.

The structure in the random sampling pattern, however, depends upon the bound-

aries of the time window in which the signal is analyzed (see Section 4.2.2). Thus

an arbitrary placing of the analysis window is not accommodated. We propose the

Continuous Fast Fourier Sampling (CFFS) algorithm which is both a highly efficient

reconstruction algorithm (like AAFFT) and adapted for arbitrary sliding window

calculations, thus attractive for the mentioned applications of interest.

76



The AAFFT algorithm and its limitations are briefly discussed in Section 4.2.2.

The CFFS algorithm is described in detail in Section 4.3, followed by theorems that

prove its correctness in Section 4.3.3. Section 4.4 presents a few results and numer-

ical experiments that provide proof of concept and apply the CFFS algorithm to

decoding frequency hopping signals with known and unknown change points.

4.2 Background and preliminaries

The algorithms in this chapter and their analysis are inherently discrete. The

samples are drawn from a discrete time signal (rather than an underlying continuous-

time signal) and output of the algorithms is an approximation to the discrete Fourier

spectrum of the signal.

4.2.1 The problem setup and notation

Let the input discrete time signal be denoted by x of length n (n very large). Let y

denote the signal x from a given analysis window or block of length N (N << n and

N = 2α for some integer α). If (n1, n2) are the boundaries of the analysis window,

then n2 − n1 + 1 = N and y(i) = x(i − n1 + 1), for i = 1, .., N . y is assumed to be

sparse or compressible in the frequency domain. A signal is called m-sparse in fre-

quency domain, if its Discrete Fourier transform (DFT) has only m non-zero terms,

while it is called m-compressible in frequency domain, if the DFT has m dominant

coefficients with other negligible coefficients. So y can be viewed as superposition of

m dominant frequencies. An algorithm is called sub-linear if it has O(m poly(log(N))

runtime and storage requirements. Furthermore, an algorithm is called “continuous”

or “sliding window algorithm” if it can accommodate arbitrary positions of block y.

77



We develop the CFFS algorithm (section 4.3), which is a sub-linear sliding window

algorithm.

4.2.2 The Ann Arbor Fast Fourier Transform (AAFFT)

The AAFFT is predicated upon non-evenly spaced samples (from block y), unlike

many traditional spectral estimation techniques [65, 66] and uses a highly nonlinear

reconstruction method that is divided into two stages, frequency identification of the

m dominant frequencies and coefficient estimation, each of which include multiple

repetitions of basic subroutines. A detailed description of the implementation of

AAFFT is available in [63].

Figure 4.1: Figure showing the samples acquired in AAFFT for each (t, σ) pair

Frequency Identification consists of two steps, dominant frequency isolation and

identification. Isolation is carried out by a two-stage process: (i) random time dila-

tion of y (corresponds to a random permutation of the spectrum of y), followed by (ii)

the application of a filter bank with K = O(m) filters. The probability of isolation

of dominant frequencies by different filters is increased with repetitions. Note that

all the above is carried out conceptually in the frequency domain but instantiated

78



in the time domain. In each repetition, a pair (t, σ) is chosen randomly with t ∼

U[1, 2, .., N ] and σ ∼ U[1, 3, .., N − 1] and the samples of the signal block y indexed

by the matrix in Fig. 4.1 are used to perform computations. Let P (t, σ) = {(t+ qσ)

mod N, q = 0, 1, .., K − 1} be the arithmetic progression that forms the first row in

figure 4.1. The other rows consist of arithmetic progressions P (tb, σ), where tb is an

element of the geometric progression tb = t + N
2b+1 , b = 0, 1, .., α − 1. The isolation

stage performs K-point FFT along each row of the matrix. After the FFTs, the

ith column contains the output of ith filter in the bank, evaluated at time points

t, t + N/2, t + N/4, ... given by the above geometric progression. The identification

stage performs group testing across each column to determine the (bits of the binary

representation of the) dominant frequency isolated by the corresponding filter. Let

A1 = {(t, σ)} be the set containing all the (t, σ) pairs used in the frequency iden-

tification stage. Similarly, let A2 be the set containing the (t, σ) pairs used in the

estimation stage (which also uses the random sampling pattern similar to the first

row of figure 4.1, for coefficient estimation of each of the identified dominant fre-

quencies). The whole process takes time and storage in the order of mpoly(log(N)).

Note that although the (t, σ) pairs in A1 and A2 are chosen randomly, the sample

indices that result from each pair are highly structured. Moreover, the indices are de-

pendent on the boundaries of block y (due to the mod N arithmetic). Thus AAFFT

can analyze the input signal x by dividing it into consecutive non-overlapping blocks

or windows of length N . Let us call this block-based analysis method S1. S1-

AAFFT clearly cannot accommodate arbitrary position of analysis window. This is

illustrated in Fig. 4.2 for a simple case of N = 32 with a dummy y-axis for clarity.

The X’s represent the indices where the samples are acquired by the S1-AAFFT

79



procedure from two consecutive blocks B1 and B2. The O’s represent the indices

where the samples are needed for applying AAFFT to an arbitrarily chosen block

B. As can be seen in the figure, the S1-AAFFT procedure did not acquire all the O’s.

Figure 4.2:
Figure showing the samples acquired by S1 (X’s) and the samples (O’s) required to
apply AAFFT on B = [16, 47]

4.3 Continuous Fast Fourier Sampling

In this section we construct a new sampling procedure for signal x, called the

CFFS, that permits a fast reconstruction algorithm (like AAFFT) on arbitrarily

placed analysis windows of length N from signal x.

4.3.1 Sample set construction

For each (t, σ) pair, define a sequence of time points t(j), j = 1, .., J (with

t(0) = t and J = dKσ
N
e) such that t(j) is the “N -wraparound” of t(j − 1). Fig-

ure (4.3) illustrates the calculation of a N -wraparound. Mathematically, t(j) =

(t(j − 1) + Q(j − 1)σ)modN where Q(j − 1) is the smallest integer such that

80



t(j − 1) +Q(j − 1)σ ≥ N .

Figure 4.3: Calculation of N -Wraparound t(1) from t

For j = 1, .., J , denote by Ij the following arithmetic progression formed by

(t(j), σ),

(4.1) Ij = {t(j) + qσ, ∀q ≥ 0 : t(j) + qσ ≤ n}

Now, consider the geometric progression tb = t + N
2b+1 for b = 0, 1, .., α − 1. For

each b,
(
t+ N

2b+1 , σ
)

is treated as another (t, σ) pair and the sequence tb(j) and the

corresponding progressions Ibj can be calculated. For each pair (t`, σ`) in A1 and

A2, expand as above and denote the arithmetic progressions produced by I`,j, for

j = 1, .., J`. Define the union of all such arithmetic progressions as I` =
⋃J`
j=0 I`,j. I`

is shown in Fig. 4.4.

Figure 4.4:
Figure showing the arithmetic progression samples acquired in CFFS for a (t`, σ`) pair
and their wraparounds

81



Similarly define Ib` =
⋃J`
j=0 I

b
`,j for each b = 0, .., α− 1.

Now define the union IB` =
⋃α−1
b=0 I

b
` . Finally define

(4.2) I(A1, A2) =

(⋃
A1

(I` ∪ IB` )

)
∪

(⋃
A2

I`

)
.

Given a set of indices I, we denote by Sx(I) the set of samples from signal x indexed

by I.

4.3.2 The CFFS Algorithm

Preprocessing

input: N // Block length

(1) Sample-set generation : Choose A1 and A2 as
defined and compute I(A1, A2) (as in Equation (4.2)).

output: I(A1, A2) // Index set

Sample Acquisition

input: I(A1, A2), x

(2) sample signal x at I and obtain samples Sx(I).

output: Sx(I)

Reconstruction

input: Sx(I), (n1, n2) // boundary indices of an
arbitrary block y of length N from signal x

(3) calculate A′1, A
′
2 (defined in Section (4.3.3))

and extract Sy(I(A′1, A
′
2)) ⊂ Sx(I).

(4) apply AAFFT on the sample-set Sy(I(A′1, A
′
2))

output: top m frequencies of x in block y = x[n1, n2]

Table 4.1: The Continuous Fast Fourier Sampling (CFFS) algorithm

82



4.3.3 Proof of Correctness of CFFS

In this section we show that CFFS permits application of AAFFT on any arbi-

trarily placed block y in signal x. We define new sets A′1 and A′2 as follows. Put

A′1 = {(t′, σ) : (t, σ) ∈ A1}, where t′ is the n1-wraparound of t. Mathematically,

t′ = (t + iσ)modn1 where i is the smallest integer such that t + iσ > n1. Similarly

define A′2. Note that A′1 and A′2 are still random since A1 and A2 were chosen ran-

domly. AAFFT is applied on y with the sampling pattern defined (in Section (4.2.2))

from A′1 and A′2. The following theorems together show that the required samples of

y are available in Sx(I(A1, A2)).

Theorem IV.1. For sets A′1 and A′2 as defined above, Sy(I(A′1, A
′
2)) ⊂ Sx(I(A1, A2)).

Theorem IV.2. AAFFT can be applied using the sample-set Sy(I(A′1, A
′
2)), i.e. the

index set I(A′1, A
′
2) has the required structure explained in Section (4.2.2).

Rather than giving detailed proofs, we prove a proposition that lies at the heart

of the two theorems.

Proposition IV.3. For every (t′, σ) in A′1 or A′2, Sy(P (t′, σ)) ⊂ Sx(I(A1, A2)).

Proof. Let (t, σ) be the pair inA1 or A2 from which (t′, σ) was obtained. We will prove

that the arithmetic progressions Ij formed by the sequence of wraparounds t(j),j =

1, .., J as defined in Section (4.3.1), induce mod-N arithmetic in the progression

P (t′, σ) (P as defined in Section (4.2.2)). Consider the first few terms in P (t′, σ),

till (t′ + (q0 − 1)σ) mod N where q0 is the smallest integer such that (t′ + q0σ) ≥ N .

From definition of t′ observe that t′ = (t+ iσ − n1). so

y(t′) = x(n1 + t′) = x(t+ σ) ∈ Sx(I0),

83



where I0 is defined in Equation (4.1). Similarly it is easy to see that the first q0

terms in Sy(P (t′, σ)) are contained in Sx(I0). Now call the next term (t′ + q0σ)

mod N = t′(1). Observe that t′(1) = t′ + σ
⌈
N−t′
σ

⌉
− N . Similarly observe that

t(1) = t + σ
⌈
N−t
σ

⌉
− N . Now, Substituting t′ = (t + iσ − n1) in the expression for

t′(1) we get,

t′(1) = t+ iσ − n1 + σ

⌈
N − t+ n1 − iσ

σ

⌉
−N

= t+ iσ − n1 + σ

⌈
N − t
σ

⌉
+ dσ −N

= t(1) + (i+ d)σ − n1,

for an appropriately defined d, which can be shown to be positive. So,

y((t′ + q0σ) mod N) = y(t′(1))

= x(t(1) + (i+ d)σ)

∈ Sx(I1),

where again I1 is defined in Equation (4.1). Let q1 be the smallest integer such that

(t′(1) + q1σ) ≥ N . Now it is easy to see that the next q1 terms in Sy(P (t′, σ)) are

contained in Sx(I1). Repeat this until all the terms in P (t′, σ) are covered.

Proposition IV.4. On average, the storage requirement of CFFS algorithm is in the

order of O( n
N
m logO(1)N), which is of the same order as that of a sampling scheme

which divides the signal into n/N non-overlapping blocks and samples each block for

AAFFT.

84



Figure 4.5:
The Sparsogram (time-frequency plot that displays the dominant frequencies) for a
synthetic frequency-hopping signal consisting of two tones. The same sparsogram is
obtained both by AAFFT (S1) and CFFS

4.4 Results and Discussion

The Continuous Fast Fourier Sampling algorithm has been implemented and

tested in various settings. In particular, we performed the following experiments.

Frequency hopping signal with known block boundaries: we consider a

model problem for communication devices which use frequency-hopping modulation

schemes. The signal we want to reconstruct has two tones that change at regular

intervals which are assumed to be known. The signal is assumed to be noiseless.

We apply both the straightforward S1-AAFFT and CFFS to identify the location

of the tones. Figure (4.5) shows the obtained sparsogram which is a time-frequency

plot that displays only the dominant frequencies in the signal. We get the same

sparsogram in both cases, as expected. S1-AAFFT samples about 0.94% of the sig-

nal whereas CFFS samples about 1.06% of the signal, which is only very slightly

larger than S1. This experiment demonstrates the efficiency and similarity of the

85



two methods and supports the proposition made in Section (4.3.3).

Figure 4.6: Applying CFFS to different blocks of signal x

Arbitrary position of analysis window: While S1-AAFFT cannot be applied

to compute the dominant tones in any arbitrary block, the CFFS has no such lim-

itation. This is demonstrated in the next experiment as follows. Let y be a signal

of length N = 220, with m = 4 known dominant frequencies. Note that the specific

values of m and N are not integral to the performance of the algorithm. AAFFT

has been tested exhaustively and its performance as a function of N ,m is completely

characterized [24]. Let x be an arbitrary signal of length n with N � n. Now let

x[n1, n2] be an arbitrary block of interest of length N . Set x(n1 + q) = y(q), for

q = 0, 1, . . . , N−1. Thus we have placed a copy of the known signal y in the block of

interest. The CFFS was then applied and the four dominant frequencies in the block

of interest were computed. The obtained values for frequencies and their coefficients

match closely with those of the signal y and satisfy the error guarantees of AAFFT.

The whole experiment was repeated with different values for n1 (and corresponding

n2 = n1 +N − 1) and the same results were obtained. Figure (4.6) shows the sketch

86



of a signal x, pre-sampled in a predetermined manner (according to CFFS), with

copies of y placed at arbitrary positions. Applying AAFFT to any block with a copy

of y gives the same results thus demonstrating the correctness of CFFS.

Unknown Frequency hopping signal: For simplicity let’s assume that the

signal has two tones that change at certain intervals which are not known. We are

interested in finding the unknown boundaries at which the tones change. In partic-

ular, consider two adjacent blocks with f1 and f2 as their respective frequencies (see

Figure (4.7)). We take an analysis window of length N . The center of the window

can be varied and a “binary” search can be performed for the block boundary in

the following manner. If the center is to the left of the actual boundary, then the

coefficient of f1 will be higher than that of the f2. This indicates that the center has

to be moved to the right from its current position. This step can be iterated a few

times to make the center converge to the actual block boundary.

Figure 4.7: Frequency-hopping signal with unknown block boundaries.

Note that looking at the relative ratios is just one way (albeit simple) of doing

change point detection in the frequency domain. More sophisticated algorithms ex-

87



ist ([67],[68],[69]), however they are not designed to work on sub-Nyquist samples

and are computationally intensive (with runtime superlinear in signal length). The

signal is sampled using the CFFS pattern, thus enabling the application of AAFFT

on any analysis window of length N while performing the search. Also the search

is not strictly binary since the amount by which f1 coefficient is higher than f2

can be used to shift the center of the window to the right by an equivalent amount.

Once the center converges after a few iterations, we express the error as the distance

to the true boundary and determine what percentage of the block this distance is.

Table (4.2) displays the error and how the error increases with decreasing SNR.

SNR(dB) %Error
∞ 0.39
10 0.58
8 0.70
6 0.78
4 0.79
2 1.56

Table 4.2: Percentage error in boundary identification

Note that even in the case of no noise (infinite SNR) there is some inherent am-

biguity in the identification of block boundary. This uncertainty is caused by two

factors. First, when the analysis window has portions of both the f1-block and

f2-block, the net signal is no longer sparse due to a sudden change in frequency

and has a slowly decaying spectrum. With m = 2 the AFFT guarantees that the

error made in signal approximation is about as much as the error in optimal 2-term

approximation [63]. Hence a slowly decaying spectrum implies more error in the

approximation. A second and more important factor is the number of samples actu-

ally acquired from the region of uncertainty around the block boundary. From the

88



entire block, CFFS acquires about 8% samples from the N = 217 present. Assuming

these samples are uniformly distributed (which is not true for CFFS), the number of

samples present in the region of uncertainty (0.4%) is about 40. In practice, CFFS

contains even fewer samples in the uncertainty region (about 30 on average). In

terms of samples actually acquired in CFFS, the boundary estimation is off by only

a few samples and hence is negligible, as it does not affect the computations. This

will be true for any sparse sampling method like CFFS. Furthermore, if the uncer-

tainty were to be reduced to 0.3% say, the boundary identification would improve

by only about 6 samples on average, which again is negligible. Hence the boundary

identification through the above method is accurate enough for all practical purposes.

4.5 Conclusion and Future Work

We described and proved a sub-linear time sparse Fourier sampling algorithm

called the CFFS which along with AAFFT can be applied to compute the frequency

content of sparse digital signals at any point of time. Once the block length N is

selected, a sub-Nyquist sampling pattern can be pre-determined and the samples

can be acquired from the signal (during the runtime if required). The AAFFT can

be applied to the samples corresponding to any block of length N of the signal and

the dominant frequencies in that block and their coefficients can be computed in

sub-linear time. The algorithm requires the block length N to be fixed beforehand.

Designing or extending the algorithm to work for different values of N can be con-

sidered in the future. Adapting the algorithm to further reduce the computational

complexity by using known side information about the signal can also be consid-

ered. The algorithm is also highly parallelize-able and can be adapted for hardware

89



applications. Also, we may be able to extend this sample set generation to the de-

terministic sampling algorithm described in [12] and the sparse FFT algorithm in [14].

90



CHAPTER V

Spectrum Sensing Cognitive Radio

5.1 Introduction

In recent years, as a result of numerous emerging wireless applications and ser-

vices, a scarcity in spectral resources and an increased demand for available spec-

trum has been witnessed. This scarcity, however, is paradoxical since most of the

allocated spectrum remains underutilized at any given time and geographic location.

This paradox occurs due to the static nature of the current spectrum licensing scheme

which allocates the channels or bands of the spectrum to the primary (licensed) users

(e.g. TV broadcast channels, mobile carriers), who do not transmit at all times and

locations. This results in spectrum holes or vacancies. These spectral holes are thus

free to be used by unlicensed or secondary users. Exploiting this fact, a Cognitive

Radio (CR) is proposed in [70]. A CR is a “smart” radio which is always aware of

its environment and can adapt accordingly. CR systems enable dynamic spectrum

access (DSA) and thus improve the overall efficiency of spectrum usage. One of the

primary cognitive tasks of a CR is to continuously monitor the frequency spectrum

in order to find holes or vacant channels that can be used for secondary transmissions.

A typical solution to spectrum sensing involves filtering the wideband signal with

91



a bank of narrow-band filters and monitoring each channel using classical techniques

such as energy detection (ED) [71] or more recent multi-antenna based detection [72].

However, this approach requires a huge number of RF (radio frequency) components

and consumes a large amount of power. An alternative is to sample the entire wide-

band signal at Nyquist rate and digitally monitor each channel. A primary challenge

with this approach is the requirement of ADCs with very high sampling rates, which

can be prohibitively expensive.

Recent advances in compressive sampling (CS) have demonstrated the principle

of sub-Nyquist-rate sampling and reliable signal recovery when the signals are sparse

or compressible [3]. Since licensed signal transmissions are sparse in the frequency

domain, CS techniques can be applied to the cognitive task of spectrum sensing. Ex-

ploiting this idea, numerous CS-based CR systems have been proposed in the past five

years. Many of them use impractical sampling schemes such as those involving ran-

dom Gaussian matrices and thus lack an efficient implementation [73, 74, 75, 76, 77].

Some systems use computationally intensive algorithms such as those based on, `1-

norm minimization [73, 75, 76, 78], matrix rank minimization [74], matrix completion

[79], PSD (power spectral density) estimation through autocorrelation [73, 76, 80] or

Bayesian iterative algorithms [77]. Some methods [74, 75, 79] approximate the wide-

band spectrum using a spectrum vector Sf (with length equal to number of channels

K) and assume that Sf = Fx where F is a DFT (Discrete Fourier Transform) ma-

trix and x (of length K) is the discretized input wideband signal. This results in a

frequency spectrum with very poor resolution and high spectral leakage because of

severely time-limiting the input signal. Some CS-CR systems propose cooperative

sensing using fusion centers to collect the measurements [79] or signal autocorrela-

92



tions [76] and perform joint support detection through complicated algorithms.

In contrast to the above, in this work, we develop a spectrum sensing algorithm

(Sec. 5.3) that has the following features. The wideband signal is sampled at a sub-

Nyquist rate, according to a sampling scheme (Sec. 5.3.1) which can be efficiently

implemented using low-rate ADCs. The occupied channels are identified using a

simple algorithm (Sec. 5.3.2 and 5.3.3) that processes the signal samples through ap-

plication of low-dimensional FFTs (Fast Fourier Transforms). The algorithm is easily

implemented in a cooperative fashion, with exchange of minimal bits between one-

hop neighbors. Also, the algorithm can be implemented in a decentralized fashion

without the need for a fusion center. Numerical simulations, in Sec. 5.4, support the

theory developed in Sec. 5.3. We conclude with a discussion of future work in Sec. 5.5.

5.2 The Problem Statement

The input wideband signal x(t) is assumed to be band-limited to [0, FN ] where

FN is the maximum frequency in x(t). Note that FN is also the Nyquist rate. For

convenience, we consider only the band of positive frequencies. The developed tech-

niques can be easily applied to a real-valued signal band-limited to [−FN/2, FN/2].

The wideband spectrum is assumed to be divided into K non-overlapping channels,

indexed by i = 0, 1, .., K − 1. Only s < K of channels are assumed to be occupied,

with Is ⊂ {0, 1, .., K − 1} denoting the set containing the indices of the occupied

channels. Given FN , K and s, the problem is to find the set Is. In practice, s

can be assumed to be known approximately from a history of channel occupancy

statistics. The problem is depicted in Fig. 5.1, where a spectrum of 120 MHz is

93



divided among K = 64 noisy channels with only s = 5 occupied or active channels

(Is = {11, 21, 27, 28, 62}). The desired output of the spectrum sensing algorithm is

plotted on the right, where a 1 indicates channel activity.

Figure 5.1:
(left) The magnitude spectrum of a wideband signal (FN = 120MHz) with s = 5
occupied channels in a total of K = 64 channels. (right) The desired output of the
spectrum detection

If the signal x(t) is observed for a time slot of duration tS = N/FN , the signal can

be discretized as a vector x of length N , with x[n] = x(n/FN) for n = 0, 1, .., N − 1.

The N -point DFT (Discrete Fourier Transform) of x[n], denoted by X[f ] has N fre-

quencies indexed by f = 0, 1, ..., N−1. Assuming N = KR+1 and ignoring the zero

frequency, each channel is made up of (N − 1)/K = R discrete frequencies. Since

only s channels are occupied, X is sR-sparse1. State-of-the-art sub-linear algorithms

such as [63] and [14], which reconstruct sparse vector X from random samples of x

can be used to identify the occupied bands, however, the required random sampling

pattern is challenging to implement in simple hardware. Also, since we only need

to detect the s occupied bands and not reconstruct the entire spectrum, we use a

similar but much simpler sampling scheme in our algorithm.

1A signal is called s-sparse if at most s terms are non-zero

94



5.3 The Wideband Spectrum Sensing Model

A high-level block diagram of the proposed wideband spectrum sensing scheme is

shown in Fig. 5.2, with explicit pseudo-code in Table 5.1. The individual blocks are

explained in detail in the sections following. The input signal is sampled according to

a structured random sampling pattern (detailed in Section 5.3.1). The samples are

processed by R filters (Fr, r = 0, .., R−1) whose pass-bands are uniformly interleaved

in the frequency domain (see Fig. 5.4). Together, the R filters form, what we call,

a uniformly-interleaved filter-bank (UIFB). The structure in the sampling pattern

is exploited to perform the filtering operations through low dimensional FFTs (see

Section 5.3.2). This process produces random samples of the R outputs of the UIFB,

denoted by xr[t], r = 0, .., R − 1, where xr[t] = (x ∗ Fr)[t]. As we will see, the UIFB

divides the high dimensional input signal into R low dimensional frequency-sparse

signals. The s dominant frequencies in these signals are identified by the next block

and a K-length output vector b is produced. The indices of the s biggest terms

in b give the set of active channels Is. The robustness of the detection algorithm

is improved by taking element-wise median over J independent copies of b. The J

copies are produced by the same cognitive radio or by J different cognitive radios

when implemented as a collaborative sensing scheme.

5.3.1 The structured random sampling system

The cognitive radio samples the vector x[n] according to the sampling pattern

shown in Fig. 5.3 (top portion), where t` ∼ U [0, 1, .., N − 1] is a uniform random

variable for ` = 0, 1, .., L − 1, with L = O(s logK). For each t`, the sampling pat-

tern contains an arithmetic progression of size R (under mod-N arithmetic). As we

95



Figure 5.2: Block diagram of the spectrum sensing scheme

will see in Section 5.3.2, the UIFB implementation consists of computing an R-point

FFT of each arithmetic progression. The sampling scheme can be easily implemented

through a multi-coset system [81], using analog-to-digital converters with a low rate

of FN/K (but with cut-off frequency FN).

Figure 5.3:
(top) Sampling pattern of the proposed structured random sampling scheme and (bot-
tom) random samples of UIFB outputs

5.3.2 The Uniformly-Interleaved Filter bank (UIFB)

An example of an ideal UIFB with R = 3 is shown in Fig. 5.4, where it is com-

pared with a regular sub-band decomposition filter-bank with R = 3. The UIFB can

be conceptually described as a three-step system (see Fig. 5.5). In the first step, the

frequencies from different channels in x are uniformly interleaved with each other to

give a new signal y. This is illustrated in Fig. 5.6 for K = 4 and R = 6. This step

96



Figure 5.4:
Ideal Pass-bands of filters F0, F1, .. in a (left) Regular sub-band decomposition filter-
bank with R = 3 and (right) a uniformly-interleaved filter-bank (UIFB) with R = 3.

is carried out through a time dilation t 7→ Kt mod N . In the Fourier domain, this

translates to the frequency mapping f 7→ K−1f mod N , ∀f = 0, 1, .., N − 1, where

K−1 = (K − 1)R+ 1 is the multiplicative inverse of K under mod-N arithmetic, i.e.

KK−1 mod N = 1. The second step consists of passing y through a regular sub-band

decomposition filter bank with R band-pass filters that cover the entire spectrum.

If h is a low pass filter with R taps whose cutoff frequency is about π/R radians,

then the sub-band decomposition filter bank in the second step, can be constructed

by modulating h to different frequency bands. That is, hr[t] = ej(2r+1)πt/Rh[t] for

r = 0, .., R− 1. For simplicity, we use the boxcar filter with R taps, i.e. h[i] = 1 for

i = 0, .., R− 1. It is possible that more sophisticated low-pass filters will sometimes

yield better results. In the final step, the frequencies in each filter output are restored

to their original places, by carrying out a reverse time dilation t 7→ K−1t mod N .

The entire process thus has the effect of passing the signal x through a filter bank in

which the passbands of different filters are uniformly interleaved.

It is important to emphasize that the algorithm actually implements the three

steps of UIFB in a single shot (see Table 5.1). Mathematically, the rth output of the

97



Figure 5.5: A conceptual block diagram of the uniformly-interleaved filter bank

Figure 5.6:
(left) Input signal spectrum withK = 4 channels (N = 25), (right) signal spectrum after
uniform frequency interleaving through mapping f 7→ 19f mod 25 which corresponds
to a time dilation t 7→ 4t mod 25

UIFB xr[t] can be expressed as,

xr[t] =
R−1∑
i=0

h[i]x[t−Ki]e
j(2r+1)πi

R =
R−1∑
i=0

x[t+Ki]e−
jπi
R e−

j2πri
R

Given a time point t`, the outputs of the filter bank xr[t`] for r = 0, .., R− 1 can be

simultaneously calculated by extracting the signal samples at arithmetic progression

as shown in Fig. 5.3, multiplying them by e−jπi/R, i = 0, .., R − 1, and computing

an R-point FFT. Thus, the R outputs of the UIFB can be randomly sampled at

t`, ` = 0, 1, .., L − 1, through computing R-point FFTs on the structured random

samples of the input signal.

In Prop. V.1, we prove that the desired uniform interleaving of channel frequencies

98



can be obtained as shown in Fig. 5.6.

Proposition V.1. The rth output of UIFB xr[t] captures the (r+1)th frequency from

every channel, for r = 0, 1, .., R− 1, assuming ideal rectangular filters in the UIFB.

Proof. For r = 0, 1, .., R − 1, the rth filter of the UIFB captures (N − 1)/R = K

frequencies of x[t] that get mapped to the rth filter pass-band, which is made up of

the frequencies of y[t] indexed by {(rK+ i+1), i = 0, 1, .., K−1}. Let fri denote the

frequency of x[t] that gets mapped to the frequency (rK + i+ 1) of y[t]. We have,

fri = [(rK + i+ 1)K−1] mod N

= [(rK + i+ 1)((K − 1)R + 1)] mod N

= [r(K − 1)KR + rK + i((K − 1)R + 1) + (K − 1)R + 1] mod N

= [r(K − 1)(KR + 1) + r + i(KR + 1)− iR + (K − 1)R + 1] mod N

= [(r(K − 1) + i)(KR + 1) + ((K − 1)− i)R + r + 1] mod N

= [(r(K − 1) + i)N + ((K − 1)− i)R + r + 1] mod N (putting N = KR + 1)

= ((K − 1)− i)R + r + 1

Thus, the rth filter output xr[t] captures the frequencies of x[t] indexed by {1 +

r, 1 + r +R, 1 + r + 2R, ..., 1 + r + (K − 1)R}, which are the (r + 1)th frequencies of

all the K channels. For example, the filter output x0[t] captures the first frequency

from all the K channels, given by the indices {1, 1 + R, 1 + 2R, ..., 1 + (K − 1)R}.

Thus the UIFB achieves uniformly interleaved filtering.

Proposition V.2. The rth output of UIFB xr[t] captures the frequencies of x(t) that

belong to the class {(r+ 1) mod R}, for r = 0, 1, .., R− 1, assuming ideal rectangular

99



filters in the UIFB.

Proof. From Prop. V.1, xr[t] captures the frequencies indexed by fri = ((K − 1) −

i)R + r + 1 for i = 0, 1, .., K − 1. Now,

fri mod R = (((K − 1)− i)R + r + 1) mod R = r + 1.

Thus fri belongs to the class {(r + 1) mod R}. In other words, fri = iR + r + 1

(from Proposition V.1 with change of variables i to (K − 1)− i). This is illustrated

for x0[t] in Fig. 5.7.

5.3.3 Frequency Identification

From Prop. V.1 and Prop. V.2, we see that each of the K channels contribute a

single frequency to each signal xr[t]. Since only s of the K channels are assumed to

be occupied, each signal xr[t] is s-sparse in frequency domain (in practice, due to the

non-ideal nature of the filters in the UIFB, each xr[t] will have non-zero frequencies

other than the the dominant s-frequencies captured by the ideal filter). If b(r) de-

notes the vector containing the coefficients of the K frequencies that are captured

by xr[t], then b(r) is s-sparse. Let y(r) = [xr[t0], ..., xr[tL−1]]T be the vector that

contains the L random samples of xr[t]. We can relate b(r) and y(r) with the under-

determined linear system B(r)b(r) = y(r), where B(r)`,i = ej
2π
N
frit` , ` = 0, 1, .., L−1,

i = 0, 1, .., K − 1 and fri = iR + r + 1 (from Proposition V.2). The linear system

B(r)b(r) = y(r) is shown in Fig. 5.8.

The s non-zero terms of each b(r) are identified by applying iterative thresh-

olding (IT) [8] to each set of equations B(r)b(r) = y(r) (see Table 5.1). Since

100



Figure 5.7:
(top) Input signal spectrum with K = 4 channels (N = 25) and R = 6 frequencies
per channel, (middle) signal spectrum after uniform frequency interleaving through
mapping f 7→ 19f mod 25 which corresponds to a time dilation t 7→ 4t mod 25. Also
shown are the R = 6 pass-bands of the sub-band decomposition filter bank, (bottom)
signal spectrum at the output of the first filter in the UIFB.

b(r),r = 0, 1, .., R − 1 are jointly sparse, i.e. they have the same non-zero support,

the IT can be modified and applied in a joint fashion over B(r)b(r) = y(r), ∀r.

However for simplicity and to achieve parallelize-ability, we apply IT to obtain an

estimate b̃(r) of each b(r) and combine the outputs at the end utilizing their joint

sparsity.

For a vector z, z(s) is defined as the best s-term approximation to z, which can

101



Figure 5.8: Figure showing the various terms in the linear system B(r)b(r) = y(r).

be obtained by setting all the elements of z to zero except the dominant (in magni-

tude) s-terms. The function Φ(a) is the indicator function which is defined as 1 if

a 6= 0 and zero otherwise. The algorithm gets an estimate of the non-zero terms in

b(r) by performing the multiplication B(r)Hy(r) and refines this estimate with each

iteration. We observed that reps = 5 is enough in practice. At the end of iterations,

the algorithm converts b̃(r) into a votes vector by using the indicator function Φ(.).

Hence, the votes vector Φ(b̃(r)) consists of 1′s at the indices corresponding to the

active channels identified from b̃(r). Since, b(r) are jointly sparse, we can obtain a

more robust estimate of the active channels by performing b =
∑R−1

r=0 b̃(r). The set

of active channels is obtained as Is = supp(b(s)), where supp(z) is defined as the set

of indices where z is non-zero.

Proposition V.3. If L = O(s log K), then the frequency identification algorithm

finds the correct set Is, with high probability.

102



input: {t`, ` = 0, 1, .., L− 1}, K, R, s.

output: b (length K, sum of votes from each b̃(r))

UIFB: (from Sec. 5.3.1 and Sec. 5.3.2)
for ` = 0, 1, .., L− 1,

define zr = x((t` + rK)modN), ∀r = 0, 1, .., R− 1
[x0[t`], .., xR−1[t`]] = FFT

{[
zre
−jπr/R, r = 0, 1, .., R− 1

]}
Frequency identification: (from Sec. 5.3.3)
for r = 0, 1, .., R− 1,

b̃(r) = 0, residual e(r) = y(r)
for i = 1, .., reps,

b̃(r) = [B(r)He(r) + b̃(r)](s)
e(r) = y(r)−B(r)b̃(r)

b̃(r) = Φ(b̃(r))

b =
∑R−1

r=0 b̃(r)

Table 5.1: The Spectrum Sensing Algorithm

Proof. If L = O(ε−2slogK), then the algorithm correctly identifies the s-non zero

terms of each b(r) with probability greater than 1 − O(ε2) (from a similar theorem

in [16]). The failure probability O(ε2) is further reduced to O(ε2)/R as b combines

the R different estimates of b (namely b̃(r),r = 0, 1, ..., R− 1).

Each frequency identification block has a run-time of O(sK logK). The run-time

of the spectrum sensing algorithm is thus dominated by the term O(sRK logK). The

entire process is illustrated for a signal with K = 4 and s = 2 in Fig. 5.9 (assuming

ideal conditions, i.e. the signal sparsity is sR = 12 and each xr[t] has only s = 2

non-zero frequencies).

5.3.4 Improving robustness through median operation

The robustness of the algorithm is improved further by combining J independent

copies of vector b. These copies are obtained by an individual cognitive radio which

observes the signal for J time slots each of duration tS = N/FN . This assumes that

103



Figure 5.9:
The spectrum detection scheme illustrated for a signal with s = 2 channels occupied in
a total of K = 4, for R = 6.

the wide band spectrum is either stationary or varying very slowly during the J time

slots. When implemented in a collaborative fashion, the J copies of b are obtained

by one-hop neighbors (Assuming each CR has J one-hop neighbors). Thus Klog2R

bits are exchanged between one-hop neighbors. The number of bits that are commu-

nicated can be reduced further by employing variable length coding techniques.

If b(i) denotes the ith copy of vector b, i = 0, 1, .., J − 1, then the final output b is

104



obtained as

b = median(b(0), b(1), .., b(J−1))

The active channel set is then obtained as Is = supp(b(s)).

The advantage of taking a median instead of mean can be demonstrated with the

following simple example. Let W be a random variable with unknown mean µ and

variance σ2. Say, we want to estimate W from N independent observations of itself

with failure probability of δ. Let U = mean(W1,W2, ..,WN) be the estimate through

mean and V = median(W1,W2, ..,WN) be the estimate obtained through taking me-

dian. Lets say the estimate fails if it is more than 2 standard deviations away from

mean. Pr(Wi bad) = Pr(|W − µ|2 > 4σ2) ≤ 1/4, by Chebyshev inequality. Now,

Pr(U bad) = Pr(|U −µ|2 > 4σ2) ≤ 1/4N . Equating δ = 1/4N =⇒ N = 1/4δ. Lets

do the same calculations for V and see how many measurements are needed to get

the same failure probability. Pr(V bad) = Pr( more than half of Wi’s are bad ) ≤

exp (−2N(0.5− 0.25)2). Equating to δ we get N = 8 ln(1/δ). For δ = 10−3 for

example, U -method needs 250 measurements whereas V -method needs 55 measure-

ments. Taking median has advantage of requiring O(ln(1/δ)) measurements versus

O(1/δ) required for mean.

Proposition V.4. If J =O(log
(

1
δ

)
), then all the active channels are correctly iden-

tified with probability greater than 1− δ.

Proof. From Proposition V.3, all the active channels are correctly identified in each

b(i) with high probability. Let this probability be p > 0.5. Then Pr(all active channels

are correctly identified in b) = Pr(more than half of b(i) correctly identify all the active

105



channels) ≥ 1− e−2J(p−0.5)2 (from Chernoff bound). Now, 1− e−2J(p−0.5)2 ≥ 1− δ for

J =O(log(1
δ
)).

5.4 Simulation Results and Discussion

The input signal is generated using the following model:

x[n] =
∑
i∈Is

aix0[n]e
j2π

iFN
K

n
FN + ξ[n]

where iFN
K

correspond to center frequencies of different occupied channels for i ∈ Is

and ξ[n] is additive white Gaussian noise. x0[n] is a signal composed of randomly

chosen off-grid2 frequencies ∈ [0, FN/K] with random amplitudes and phases. The

coefficients ai correspond to channel gain between the ith primary transmitter and

the cognitive radio. Hence, x[n] is modeled, by taking a random multi-tone signal

with appropriate frequencies, and translating it in frequency domain to different

bands that are to be occupied.

In the following simulations, FN = 120MHz with K = R = 64, s = 5 and ai are

chosen to be comparable to each other. Note that the values of FN , etc., are chosen

just as an example and are not critical to the performance of the algorithm. The

probability of detection3 Pd and probability of false alarm4 Pf are used as perfor-

mance metrics.

2An off-grid frequency does not lie on the Nyquist grid of frequencies and causes spectral leakage when input
signal is time-limited to a finite window

3Pd = Pr( all occupied channels are correctly detected )
4Pf = Pr( any of the vacant channels are falsely detected as occupied )

106



5.4.1 Varying Sub-sampling Ratio

In the first experiment, the SNR5 of each occupied channel is about −2 dB. The

probability of detection Pd is calculated empirically over 200 repetitions. We re-

peat the same experiment with J = 1, 3, 5 and 9. The plots for Pd and Pf versus

sub-sampling ratio (LR/N ≈ L/K) are shown in Fig. 5.10. As can be seen from

the figure, in the case of J = 1, for sub-sampling ratios greater than 0.15, Pd is

higher than 0.5 (demonstrating Prop. V.3) and Pd approaches a value close to 1

at L/K = 0.5. When J is increased to 3, we see substantial improvement for all

sub-sampling ratios that had Pd > 0.5 for J = 1 (demonstrating Prop. V.4). Pd

quickly approaches 1 at L/K ≈ 0.33. Further improvements in Pd can be obtained

by increasing J .

Figure 5.10: Pd (left) and Pf (right) vs. sub-sampling ratio for J = 1, 3, 5, 9

5.4.2 Varying Input SNR

In the next experiment, we compare the performance of our scheme (with L/K =

0.35, 0.3, 0.25 and J = 5) with the Nyquist rate energy detector, for various values

5SNR(dB) of each channel is calculated as the ratio of the power in channel and the power of noise ξ[n]

107



of SNR ranging from −25dB to 5dB. In a Nyquist rate energy detector, the received

signal is sampled uniformly at Nyquist rate, passed through K narrowband band-

pass filters and energy of each filter output is then monitored. A primary user is

detected as present, if the output energy of the corresponding filter is among the

top s values. The plots are provided in Fig. 5.11. As can be seen from the figures,

the performance of the proposed scheme closely follows that of a Nyquist rate energy

detector at different SNR values and gives the same performance when SNR > −2dB

for L/K = 0.25. This improves to SNR > −10dB for L/K = 0.35. Note that in

the above experiments, for example, J = 3 copies can also be viewed as obtained by

an individual cognitive radio which observes and samples the signal for 3 time slots

each of duration N/FN .

Figure 5.11:
Pd(left) and Pf (right) vs. SNR for Nyquist-rate ED and for proposed scheme with
J = 5, L/K = 0.35, 0.3, 0.25

The performance of our scheme is better than those in [80, 78, 74, 75], even though

we use a more realistic setting that does not ignore spectrum leakage due to time

limitation. It is not clear if we perform better or worse than [73, 76, 79], due to

differences in measurement schemes and performance metrics.

108



5.4.3 Varying R (Number of Frequencies per Channel)

Since the signal x(t) is observed only for a finite window of time duration tS =

N/FN (with N = KR + 1), the discretized signal x exhibits spectral leakage in its

DFT. The spectral leakage due to time-limiting is illustrated for a baseband signal

(of band width 2W ) in Fig. 5.12.

Figure 5.12:
(left) DTFT of a bandlimited signal with bandwidth 2W , (right) DFT of the same
signal observed in a limited time window

Quantitatively, the spectral leakage can be calculated as the ratio between the

energy that spilled out of the channel and the total energy of the baseband signal.

Increasing the value of R, increases N and the window duration tS, thus decreasing

the amount of spectral leakage. Hence the performance of the algorithm improves

as R increases. Increasing R, however, also increases (linearly) the runtime of the

algorithm. Hence, there is a trade-off involved in the choice of R. In Fig. 5.13, the

probability of detection Pd (for J = 3) and the spectral leakage (as a fraction of total

energy in an occupied channel) are both plotted on y-axis. It can be observed that

the probability of detection Pd increases as spectral leakage decreases (with increas-

109



ing R), and eventually approaches its maximum value of 1 when R is large enough.

In accordance with Fig. 5.13, a value of R around 64 seems prudent as there is no

advantage in increasing the value further.

Figure 5.13:
Probability of detection Pd versus R and Spectral leakage (expressed as a fraction of
total energy in an occupied channel) versus R

5.4.4 Simple Heuristics for Estimating s (Number of Occupied Channels)

The algorithm developed in Sec. 5.3 treats s as an input parameter, assuming its

knowledge from a history of channel occupancy statistics. However, this value of s,

hereafter referred to as sin, may slightly be in error. Fig. 5.14 shows the performance

of the algorithm when sin is in error.

In this section we present simple heuristics to estimate the correct value of s. We

assume that sin > s.

110



Figure 5.14:
Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 3,
input SNR = −2 dB, s = 5 and different values of sin.

Heuristic A

Let s̃ denote the estimated value of s. If b(j) denotes the output vector b obtained

by CR number j (as in Sec. 5.3.4), for j = 0, 1, .., J − 1, we calculate a new vector d

as follows,

d = sum(b(0), b(1), .., b(J−1)).

s̃ is then obtained as,

s̃ = argmaxi|d[i] − d[i+1]|

111



where d[i] is the ith largest element of d. In other words, the output votes vectors b

(from Table 5.1) for different CRs are added to obtain d. The vector d is sorted in

a descending order and the difference between consecutive elements is calculated. If

s = 5, then the fifth consecutive difference |d[5] − d[6]| is expected to be the largest

in magnitude. The active channel set can then be obtained as before in Sec. 5.3.4

using the estimated value s̃ in place of s.

Fig. 5.15 plots the Pd and Pf versus Sub-sampling ratio for the algorithm with

and without the estimation of s̃. For reference, Pd and Pf when sin = s = 5 are also

plotted. As expected, when sin = 8 and without estimation, Pd improves while Pf

degrades, since the algorithm tries to find 8(> s) channels that are occupied. With

estimation, both Pd and Pf are brought closer to the case when sin = s.

Heuristic B

If b(j) denotes the output vector b obtained by CR number j (as in Sec. 5.3.4), for

j = 0, 1, .., J − 1, we calculate a new vector d as follows,

d =
J−1∑
j=0

φ
(
b

(j)
(sin)

)
where z(s) is obtained by setting all the elements of z to zero except the dominant (in

magnitude) s-terms and φ(z) = 1 if z > 0, φ(z) = 0 if z = 0. For a chosen threshold

λ ∈ [0, J ], s̃ is then obtained as,

s̃ =
K−1∑
i=0

φ(di ≥ λ)

where φ(true) = 1 and φ(false) = 0.

112



Figure 5.15:
Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 5,
input SNR = −2 dB, s = 5, sin = 8, with and without the estimation of s̃ using
Heuristic A.

In other words, in the first step, each cognitive radio j votes for all the sin occupied

channels using its output vector b(j). In the second step, s̃ is obtained as the number

of channels that received more than λ votes. The net s̃ is chosen to be the maxi-

mum among this value and the one estimated by Heuristic A. Once s is estimated,

the final output vector is determined by the median operation described in Sec. 5.3.4.

Fig. 5.16 plots the Pd and Pf versus Sub-sampling ratio for the algorithm with and

113



without the estimation of s̃. The threshold is chosen as λ = dJ/2e. For reference,

Pd and Pf when sin = s = 5 are also plotted. Heuristic B performs better in terms

of Pf compared to Heuristic A.

Figure 5.16:
Pd(top) and Pf (bottom) vs. Sub-sampling ratio for proposed scheme with J = 5,
input SNR = −2 dB, s = 5, sin = 8, with and without the estimation of s̃ using
Heuristic B.

114



5.5 Conclusion and Future work

We proposed a novel spectrum sensing scheme for wideband CRs to detect spec-

trum opportunities, assuming low spectrum utilization. The scheme uses a multi-

coset type sampling to efficiently sample the signal at a sub-Nyquist rate close to

the channel occupancy. We divided the input signal into several low-dimensional

frequency-sparse signals using the newly developed concept of uniformly-interleaved

filter bank (UIFB). The UIFB is implemented by “smart” processing of signal sam-

ples through low-dimensional FFTs. We solved the frequency identification problem

through parallelize-able iterative thresholding techniques. The robustness of the

scheme is improved by observing the signal for a longer duration or by collaborat-

ing with neighboring one-hop CRs, with minimal pair-wise communication. The

algorithm can also be easily extended to estimate the number of occupied channels.

Reducing the run-time of frequency identification to a sub-linear time is a future

work of interest. Studying the performance under different types of fading channels

is another future research direction.

115



BIBLIOGRAPHY

116



BIBLIOGRAPHY

[1] S. Naraghi, M. Courcy, and M.P. Flynn, “A 9b 14µW 0.06mm2 PPM ADC in 90nm digital
CMOS,” IEEE International SolidState Circuits Conference, vol. 54, pp. 168–169, 2009.

[2] D.L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52(4), pp. 1289–1306,
Sep 2006.

[3] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information,” IEEE Transactions on Information
Theory, vol. 52(2), pp. 489–509, February 2006.

[4] M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relaxation: Fourier and gaus-
sian measurements,” 40th Annual Conference on Information Sciences and Systems (CISS),
2006.

[5] A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, “Smallest singular value of
random matrices and geometry of random polytopes,” Advances in Mathematics, vol. 195(2),
pp. 491–523, 2005.

[6] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal
matching pursuit,” IEEE Transactions on Information Theory, vol. 53(12), pp. 4655–4666,
December 2007.

[7] D. Needell and J.A. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate
samples,” Applied and Computational Harmonic Analysis, vol. 26, pp. 301–321, April 2008.

[8] T. Blumensath and M.E. Davis, “Iterative thresholding for sparse approximations,” Journal
of Fourier Analysis and Applications, vol. 14, pp. 629–654, September 2008.

[9] E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing
Magazine, vol. 25(2), pp. 21–30, March 2008.

[10] R. A. DeVore, “Deterministic constructions of compressed sensing matrices,” J. Complex.,
vol. 23(4), pp. 918–925, Aug 2007.

[11] A.C. Gilbert, S. Muthukrishnan, and M.J. Strauss, “Improved time bounds for near-
optimal sparse fourier representation via sampling,” In Proceedings of SPIE Wavelets XI,San
Diego,CA, 2005.

[12] M. Iwen, “A deterministic sub-linear time sparse fourier algorithm via non-adaptive com-
pressed sensing methods,” In Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2008.

[13] P.K. Yenduri and A.C Gilbert, “Continuous Fast Fourier Sampling,” In Proceedings of Sam-
pling Theory and Applications (SAMPTA), Marseille, France, 2009.

[14] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse
fourier transform,” In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
2012.

117



[15] S. Kunis and H. Rauhut, “Random sampling of sparse trigonometric polynomials, ii. orthogonal
matching pursuit versus basis pursuit,” Foundations of Computational Mathematics, vol. 8(6),
pp. 737–763, November 2008.

[16] P.K. Yenduri, A.C. Gilbert, M.P. Flynn, and S. Naraghi, “Rand PPM: A low power com-
pressive sampling analog to digital converter,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5980–5983, May 2011.

[17] P.K. Yenduri, A.C. Gilbert, and J. Zhang, “Model of a sparse encoding neuron,” Twenty First
Annual Computational Neuroscience Meeting (CNS), Jul. 2012.

[18] P.K. Yenduri, A.C. Gilbert, and J. Zhang, “Integrate-and-fire neuron modeled as a low-rate
sparse time-encoding device,” Proceedings of Third International Conference on Intelligent
Control and Information Processing (ICICIP), Jul. 2012.

[19] P.K. Yenduri and A.C. Gilbert, “Compressive, collaborative spectrum sensing for wideband
cognitive radios,” The Ninth International Symposium on Wireless Communication Systems
(ISWCS), Aug. 2012.

[20] P.K. Yenduri, A. Rocca, A.S. Rao, S. Naraghi, A.C Gilbert, and M.P. Flynn, “A low power
compressive sampling time-based analog to digital converter,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems (JETCAS), Special Issue on Circuits, Systems
and Algorithms for Compressive Sensing, Oct. 2012.

[21] P.K. Yenduri and A.C. Gilbert, “CFFS: A sub-Nyquist sub-linear time sliding window algo-
rithm,” In review, IEEE Signal Processing Letters, Oct. 2012.

[22] J.A. Michaelsen, J.E. Ramstad, D.T. Wisland, and O. Sorasen, Low-power Sensor Interfacing
and MEMS for Wireless Sensor Networks, InTech, 1 edition, 2011.

[23] F. Shahrokhi, K. Abdelhalim, D. Serletis, P.L. Carlen, and R. Genov, “The 128-channel fully
differential digital integrated neural recording and stimulation interface,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 4(3), pp. 149–161, February 2010.

[24] E. Delagnes, D. Breton, F. Lugiez, and R. Rahmanifard, “A low power multi-channel single
ramp ADC with up to 3.2 ghz virtual clock,” IEEE Transactions On Nuclear Science, vol.
54(5), pp. 1735–1742, October 2007.

[25] T. Fusayasu, “A fast integrating ADC using precise time-to-digital conversion,” IEEE Nuclear
Science Symposium Conference Record, vol. 1, pp. 302–304, 2007.

[26] A.H. Reeves, Electrical Signaling System, February 1942.

[27] J. Mark and T. Todd, “A non-uniform sampling approach to data compression,” IEEE
transactions on Communications, vol. 29(1), pp. 24–32, January 1981.

[28] M.Z. Straayer and M.H. Perrott, “A 10-bit 20MHz 38mW 950MHz CT Sigma Delta ADC with
a 5-bit noise-shaping VCO-based quantizer and DEM circuit in 0.13µ CMOS,” VLSI Symp.
Dig. Tech. Papers, pp. 246–247, June 2007.

[29] A.A. Lazar and L.T. Toth, “Perfect recovery and sensitivity analysis of time encoded ban-
dlimited signals,” IEEE Transactions on Circuits and Systems-I:Regular Papers, vol. 51(10),
pp. 2060–2073, October 2004.

[30] Aurel A. Lazar and Eftychios A. Pnevmatikakis, “Reconstruction of sensory stimuli encoded
with integrate-and-fire neurons with random thresholds,” EURASIP Journal on Advances in
Signal Processing, vol. 2009, 2009, Special Issue on Statistical Signal Processing in Neuro-
science.

118



[31] M. Kurchuk and Y. Tsividis, “Signal-Dependent Variable-Resolution clockless A/D conversion
with application to CT-DSP,” IEEE Trans. Circuits and Systems, vol. 57(5), pp. 982–991, May
2010.

[32] B. Schell and Y. Tsividis, “A continuous-time adc/dsp/dac system with no clock and with
activity-dependent power dissipation,” IEEE Journal of Solid-State Circuits, vol. 43(11), pp.
2742–2481, Nov. 2008.

[33] Y. Li, “A 0.5v signal-specific continuous-time level-crossing adc with charge sharing,” IEEE
Biomedical Circuits and Systems Conference (BioCAS), pp. 381–384, Nov. 2011.

[34] B. Murmann, “A/D converter trends: Power dissipation, scaling and digitally assisted archi-
tectures,” IEEE Custom Integrated Circuits Conference (CICC), pp. 105–112, 2008.

[35] J.N. Laska, S. Kirolos, M.F. Duarte, T.S. Ragheb, R.G. Baraniuk, and Y. Massoud, “Theory
and implementation of an analog-to-information converter using random demodulation,” IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1959–1962, 2009.

[36] C. Luo and J.H. McClellan, “Compressive sampling with a successive approximation adc
architecture,” International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3920–3923, 2011.

[37] S.R. Becker, “Practical compressed sensing: modern data acquisition and signal processing,”
in Dissertation (Ph.D.). California Institute of Technology, 2011.

[38] M. Mishali, Y.C. Eldar, and A.J. Elron, “Xampling: Signal acquisition and processing in union
of subspaces,” IEEE Transactions on Signal Processing, vol. 59(10), pp. 4719–4734, October
2011.

[39] F. Chen, A.P. Chandrakasan, and V. Stojanovic, “A signal-agnostic compressed sensing ac-
quisition system for wireless and implantable sensors,” Custom Integrated Circuits Conference
(CICC), pp. 1–4, 2010.

[40] M. Fornasier and H. Rauhut, Compressive Sensing, Springer, 2011.

[41] S.G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans.
Signal Processing, vol. 41(12), pp. 3397–3415, 1993.

[42] S. Szczepnski P. Dudek and J.V. Hatfield, “A high-resolution CMOS time-to-digital converter
utilizing a vernier delay line,” IEEE Journal on Solid-State Circuits, vol. 35(2), pp. 240–247,
February 2000.

[43] F. Marvasti, Nonuniform Sampling Theory and Practice, Kluwer Academic Publisher, 1990.

[44] F. Marvasti, M. Analoui, and M. Gamshadzahi, “Recovery of signals from nonuniform samples
using iterative methods,” IEEE Transactions on Signal Processing, vol. 39(4), pp. 872–878,
April 1991.

[45] R.G. Baraniuk and P. Steeghs, “Compressive radar imaging,” IEEE Radar Conf., pp. 128–133,
Apr. 2007.

[46] F.J. Herrmann, D. Wang, G. Hennenfent, and P. Moghaddam, “Curvelet-based seismic data
processing: A multiscale and nonlinear approach,” Geophysics, vol. 73(1), pp. A1–A5, Feb.
2008.

[47] J. Berent, P. Dragotti, and T. Blu, “Sampling piecewise sinusoidal signals with Finite Rate of
Innovation methods,” IEEE Trans. Sig. Proc., vol. 58(2), pp. 613–625, February 2010.

[48] A. Bjorck, Numerical Methods for Least Squares Problems, Philadelphia: SIAM, 17 edition,
1996.

119



[49] G. Steidl, “A note on fast Fourier transforms for nonequispaced grids,” Advances in Compu-
tational Mathematics, vol. 9, pp. 337–352, November 1998.

[50] M. Charikar, K. Chen, and M. Farach-colton, “Finding frequent items in data streams,”
Theoretical Computer Science, vol. 312, pp. 3–15, January 2004.

[51] A.A. Lazar and L.T. Toth, “Perfect recovery and sensitivity analysis of time encoded bandlim-
ited signals,” IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 51, pp. 2060–2073,
2004.

[52] A.A. Lazar, “Time encoding with an integrate-and-fire neuron with a refractory period,”
Neurocomputing, vol. 58-60, pp. 53–58, Jun. 2004.

[53] A.A. Lazar, E.A. Pnevmatikakis, and Zhou Y., “Encoding natural scenes with neural circuits
with random thresholds,” Vision Research Special Issue on Mathematical Models of Visual
Coding, vol. 50(22), pp. 2200–2212, 2010.

[54] E.D. Adrian, The Basis of Sensation: The Action of the Sense Organs, Christophers (London),
1928.

[55] D. Attwell and Laughlin S.B., “An energy budget for signaling in the grey matter of the brain,”
Journal of Cerebral Blood Flow and Metabolism, vol. 21, pp. 1133–1145, 2001.

[56] V. Balasubramanian and M. J. Berry, “A test of metabolically efficient coding in the retina,”
Network: Computation in Neural Systems, vol. 13(4), pp. 531–552, 2002.

[57] A. Manwani P. N. Steinmetz and C. Koch, “Variability and coding efficiency of noisy neural
spike encoders,” BioSystems, vol. 62(1-3), pp. 87–97, 2001.

[58] G. Gestri, H.A.K. Mastebroek, and W. H. Zaagman, “Stochastic constancy, variability and
adaptation of spike generation: performance of a giant neuron in the visual system of the fly,”
Biological Cybernetics, vol. 38(1), pp. 31–40, 1980.

[59] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty, “Next generation dynamic spectrum
access cognitive radio wireless networks: A survey,” Computer Networks Journal (Elsevier),
vol. 50, pp. 2127–2159, Sep 2006.

[60] Simon Haykin, Communication systems, John Wiley and Sons, 4 edition, 2005.

[61] A.C. Gilbert, M.J. Strauss, J.A. Tropp, and R. Vershynin, “Algorithmic linear dimension
reduction in the l1 norm for sparse vectors,” Allerton Conference, 2006.

[62] G. Cormode and S. Muthukrishnan, “Combinatorial algorithms for compressed sensing,” IEEE
Int. Conf. on Information Sciences Systems, pp. 230–294, April 2006.

[63] A.C. Gilbert, M.J.Strauss, and J. A. Tropp, “A tutorial on fast fourier sampling,” IEEE
Sig.Proc.Mag., vol. 25(2), pp. 57–66, 2008.

[64] M. Iwen, A.C. Gilbert, and M.J. Strauss, “Empirical evaluation of a sub-linear time sparse
DFT algorithm,” Commun.Math.Sci, vol. 5(4), pp. 981–998, 2007.

[65] G.K. Smith and D.M.Hawkins, “Robust frequency estimation using elemental sets,”
J.Comput.Graph.Stat, vol. 9(1), pp. 196–214, 2000.

[66] G. Harikumar and Y. Bresler, “FIR perfect signal reconstruction from multiple convolutions:
minimum deconvolver orders,” IEEE Trans.Signal Processing, vol. 46(1), pp. 215–218, 1998.

[67] O. Mustapha, M. Khalil, G. Hoblos, H. Chafoukand, and D. Lefebvre, “Abrupt change de-
tection algorithm: from theory to implementation,” Colloque Evaluation des performances et
matrise desrisques technologiques pour les systmes industriels et nergtiques, pp. 28–28, May
2009.

120



[68] S. Rezk, C. Join, S.E. Asmi, M. Dogui, and M.H. Bedoui, “Frequency change-point detection
in physiological signals : an algebraic approach,” IJ-STA, vol. 2(1), pp. 456–468, 2008.

[69] J. Berent, P. Dragotti, and T. Blu, “Sampling piecewise sinusoidal signals with finite rate of
innovation methods,” IEEE Trans. Sig. Proc., vol. 58(2), pp. 613–625, Feb 2010.

[70] J. Mitola and Jr. Maguire, “Cognitive radio: Making software radios more personal,” IEEE
Pers. Commun., vol. 6, pp. 13–18, 1999.

[71] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Sel. Top. Signal Process.,
vol. 2, pp. 4–17, 2008.

[72] R. Lopez-Valcarce, G. Vazquez-Vilar, and M. Alvarez-Diaz, “Multiantenna detection of multi-
carrier primary signals exploiting spectral a priori information,” CROWNCOM, pp. 1–6, Jun
2009.

[73] Y.L. Polo, Ying Wang, A. Pandharipande, and G. Leus, “Compressive wide-band spectrum
sensing,” IEEE ICASSP, pp. 2337 – 2340, 2009.

[74] Y. Wang, Z. Tian, and C. Feng, “Cooperative spectrum sensing based on matrix rank mini-
mization,” IEEE ICASSP, pp. 3000 – 3003, 2011.

[75] Q. Ling and Z. Tian, “Decentralized support detection of multiple measurement vectors with
joint sparsity,” IEEE ICASSP, pp. 2996 – 2999, May 2011.

[76] Y. Wang, A. Pandharipande, Y.L. Polo, and G. Leus, “Distributed compressive wide-band
spectrum sensing,” Info. Th. App. Workshop, pp. 178 – 183, May 2009.

[77] G. Vazquez-Vilar, R. Lopez-Valcarce, C. Mosquera, and N. Gonzalez-Prelcic, “Wideband
spectral estimation from compressed measurements exploiting spectral a priori information in
cognitive radio systems,” IEEE ICASSP, pp. 2958 – 2961, March 2010.

[78] Z. Tian, “Compressed wideband sensing in cooperative cognitive radio networks,” IEEE
GLOBECOM, pp. 1 – 5, Dec 2008.

[79] S. Corroy, A. Bollig, and R. Mathar, “Distributed sensing of a slowly time-varying sparse
spectrum using matrix completion,” ISWCS, pp. 296 – 300, Nov 2011.

[80] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg, “A NLLS based sub-Nyquist rate spec-
trum sensing for wideband cognitive radio,” IEEE DySPAN, pp. 545 – 551, May 2011.

[81] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and bounds on aliasing
error in sub-Nyquist nonuniform sampling of multiband signals,” IEEE Trans. Info. Th., vol.
46(6), pp. 2173–2183, Sep 2000.

121


