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to Laura

and to Simon and Amos – our hybrid estimators

Psalm 19

1The heavens declare the glory of God;
the skies proclaim the work of his hands.

2Day after day they pour forth speech;
night after night they reveal knowledge.
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CHAPTER 1

Introduction

In this dissertation we consider making predictions in a high-dimensional dataset for

which only surrogate covariates are measured in a large fraction of the data. There is

a sparse body of literature for analyzing high-dimensional data, meaning the number

of observations is small relative to the number of covariates, with concurrent missing

information. Our goal is to contribute novel statistical methodology toward this problem,

specifically to improve predictions.

More formally, we predict a continuous outcome Y using high-dimensional covariates

X. In all observations, a surrogate covariate, W , is available, and only in a small number

of observations is X observed. We seek to integrate these auxiliary observations, those

for which X is missing, into the analysis of the smaller, complete dataset. Using notation

that will be introduced in Chapter 2, a schematic representation of the data structure is

given in Figure 1. Of primary interest are parameter estimates from the model

Y = β0 + X>β + σε, ε ∼ N{0, 1}.

Estimates of β0 and β will be used in the prediction of future observations, which we

assume will contain actual covariate information, meaning X is observed.

The attributes of the problem, ie many observations are missing X with only a surro-

gate W available, suggest plausible approaches to its analysis. First, this is a problem

of measurement error in the covariates, and standard techniques like regression calibra-
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tion (Fuller, 1987; Carroll et al., 2006) may replace the missing X’s with their conditional

expectation. Alternatively, taking a missing data approach, the missing X’s can be mul-

tiply imputed (Rubin, 2004). Complete data analysis techniques can then be employed,

and parameter estimates are obtained by averaging over results from each completed

dataset, as described in Little and Rubin (2002). Both the measurement error and miss-

ing data approaches will produce estimates of β, and therefore predictions for future

observations of Y , that are approximately unbiased.

As will be discussed in more detail in later chapters, a complication from these ap-

proaches is that estimates of β, although approximately unbiased, may have large vari-

ance, which will adversely affect predictions. This is due primarily to the high dimension

of the problem and further compounded by the large fraction of missing information.

Our approaches to this problem make extensive use of shrinkage methods, by which we

mean techniques for reducing the variance of parameter estimates at a cost of introduc-

ing bias. This trade-off may improve predictions for future observations, the quality of

which is a function of both bias and variance.

In the example that first motivated our work, Chen et al. (2011) analyzed a gene-

expression microarray dataset of 439 lung adenocarcinomas, with the goal of using gene

expression plus clinical covariates to improve predictions of survival time in lung cancer

patients relative to using just clinical covariates. The expressions were measured using

Affymetrix oligonucleotide microarray technology (W). 91 promising genes were iden-

tified and re-assayed using quantitative real-time polymerase chain reaction (qRT-PCR,

X). qRT-PCR is more precise and clinically applicable than Affymetrix, thus the goal

was to obtain a qRT-PCR-based prediction model for future use. However, because of

tissue availability, only 47 out of 439 tumors were re-assayed by qRT-PCR, creating a

high-dimensional, missing data problem. Specifically, Affymetrix data was available for

all observations, but the 91 qRT-PCR measurements corresponding to 392 tumors were

2



unobserved.

Except where otherwise noted, we will assume the framework of the lung adenocar-

cinoma data in Chen et al. (2011). However, this study is not an isolated example.

The ongoing development of array technologies for assaying genomic information has

accordingly resulted in high-dimensional datasets with several measures of the same

underlying biological process. This scientific context has made important the statistical

issue of integrating and synthesizing information from diverse data sources, all bearing

relevance to common biological phenomena. The techniques proposed in this disserta-

tion thus have broad applications in that general area. They help to answer the question

of integrating existing data sources, for example coming from prior technology, with

state-of-the-art measurements to enhance predictions for future patient outcomes. In the

remainder of this chapter, we briefly outline this dissertation’s contributions. Extensive

reviews of the relevant literature are given within each chapter.

In Chapter 2, we consider targeted ridge (TR) regression, a generalization of ridge re-

gression (Hoerl and Kennard, 1970) first discussed by Gruber (1998) that allows for

shrinkage of estimates of β toward non-zero values. Using ideas from the measurement

error literature, we propose several TR estimators. The shrinkage targets are derived us-

ing the auxiliary data, that is, the observations for which only surrogate measurements

are available, and the amount of shrinkage may be controlled by a tuning parameter, as

in ridge regression. We will interchangeably refer to this tuning parameter as a shrink-

age parameter, referring to its role in determining the shrinkage of β. We propose a

hybrid estimator, which is a weighted linear combination of multiple TR estimators. The

weights are data-adaptively estimated, so that the hybrid estimator may put more weight

on the better-predicting TR estimators, giving it a model-averaging flexibility. Moreover,

we give sufficient conditions under which the hybrid estimator has strictly smaller mean

squared prediction error than any of its ingredients, a phenomenon that has been ob-
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served empirically by Breiman (1996) and LeBlanc and Tibshirani (1996), among others.

Chapter 3 takes a fully Bayesian perspective to the same problem. Here, the shrink-

age parameters are interpreted as hyperparameters, which define the prior distribution

of the model parameters, including but not limited to β. This link between shrinkage

parameters and hyperparameters allows a flexibility in terms of which of the model pa-

rameters are shrunk and to what extent. In the estimation algorithm, the missing data

are iteratively sampled from their full conditional distribution in conjunction with the

model parameters and shrinkage parameters. Thus, all unknown quantities – the miss-

ing data, the model parameters, and optionally the shrinkage parameters – are treated

uniformly, and uncertainty in the imputations is propagated. As an alternative to it-

erative sampling of the shrinkage parameters from their full conditional distributions,

Empirical Bayes methods, which maximize marginal likelihoods, are also employed to

calculate explicit estimates, as in Casella (2001).

Our results from Chapters 2 and 3 suggest that the amount of shrinkage, as determined

by the choice of tuning parameter, plays a crucial role in the predictive success of a

shrinkage method. So as to explore this in more detail, in Chapter 4, we propose novel

approaches toward estimating the tuning parameter of a classical ridge regression, given

by λ, particularly when the number of observations is small. We adjust the Generalized

Cross Validation (GCV) criterion (Craven and Wahba, 1979), which is prone to overfit-

ting in this small-sample scenario. We also propose a “hyperpenalized” likelihood. This

shrinks the tuning parameter λ itself and protects against extreme choices. The hyper-

penalized likelihood can be maximized jointly with respect to β and λ, in contrast to

other likelihood-based approaches for choosing λ, which profile or marginalize over β

(eg Harville, 1977; Wecker and Ansley, 1983; Wahba, 1985; Lee and Nelder, 1996).

In Chapter 5, the hyperpenalized likelihood is adapted to the missing-data context by

embedding it into the penalized Expectation-Maximization (EM) algorithm (Dempster

4



et al., 1977; Green, 1990), allowing for the adaptive shrinkage of maximum likelihood

estimates. We apply this so-called hyperpenalized EM (HEM) algorithm to the motivat-

ing gene-expression problem. A dissertation-wide comparison of the predictive perfor-

mance of the Chapters 2 and 3 methods with the HEM algorithm method is conducted

in Chapter 5. For reference, all of the methods from Chapters 2, 3, and 5, that is, those

which address the missing data problem, are annotated in Tables D1 and D2 of Ap-

pendix D. We conclude the dissertation with a discussion of future work and related

open problems.
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CHAPTER 2

Incorporating Auxiliary Information for Improved
Prediction in High Dimensional Datasets: An Ensemble of

Shrinkage Approaches

2.1 Introduction

As sequencing and array technologies change, multiple platforms can measure the same

biological quantity of interest. Often, investigators have measurements using an older

technology on a large sample and those from a newer technology on a subset of this

sample. We are interested in predicting an outcome using the newer measurements,

which is a statistical problem of fitting a prediction model for Y|X, where Y is the

outcome and X is the p-dimensional vector of biomarkers. One such model is a linear

regression:

Y = β0 + X>β + σε, ε ∼ N{0, 1}. (1)

On nA subjects, we have Y, X and W , where W , also of length p, measures the same

biomarkers as does X but with a prior technology. A model for W |X consistent with

this motivating context is

W = ψ1p + νX + τξ, ξ ∼ Np{0p, Ip}. (2)
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Ip is the identity matrix and ψ, ν, and τ are scalars. For notational simplicity, we de-

velop methods under the assumption β0 = ψ = 0. Both quantities are estimated in our

analyses.

The quantity nA is of modest size, such that p > nA. Additionally, nB observations of

Y and W are available. Assume p < nB. Denote subsamples A and B, each assumed

to be from the same population, by {yA, xA, wA} and {yB, wB}, respectively. Using this

notation, xB, the set of X’s from subsample B, is missing data. Figure 1 gives a schematic

representation. xA is also standardized, ie if xij is from the ith row and jth column,

∑nA
i=1 xij = 0 and ∑nA

i=1 x2
ij = nA, j = 1, . . . , p.

The goal is a prediction model for Ynew|Xnew for a new subject: X>newβ̂. Predictive

performance of β̂ is measured by mean squared prediction error (MSPE), defined as

MSPE(β̂) = E[(Ynew − X>newβ̂)2] = σ2 + E[(β− β̂)>XnewX>new(β− β̂)]

= σ2 + Tr
[
(Bias β̂ Bias β̂> + Var β̂)E[XnewX>new]

]
, (3)

where Tr is the trace operator, and the expectation is over Ynew, Xnew, yA, yB|xA, wA, wB.

We consider two questions: (i) How can the auxiliary information in subsample B be

used in the prediction of Y|X? (ii) When does using such information lead to improved

MSPE?

A simple approach, which ignores subsample B, is ordinary least squares of yA on xA,

i.e. β̂ols = argminβ(yA − xAβ)>(yA − xAβ) = (x>A xA)
−1x>AyA. However, (x>A xA)

−1

does not exist for p > nA. Even for p ≤ nA, multicollinearity of the covariates may

lead to variance inflation and numerical instability. Ridge regression (ridg, Hoerl and

Kennard, 1970) can ameliorate these issues by shrinking coefficients toward zero, i.e.

β̂ridg = argminβ(yA − xAβ)>(yA − xAβ) + λβ>β = (x>A xA + λIp)−1x>AyA. This can

be viewed from a Bayesian perspective: given a normal prior on β with mean 0p and
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yA xA nA 
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yB wB 
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xB 

Figure 1: A schematic representation of the prediction problem: {yA, xA, wA} constitutes
subsample A, of size nA, and {yB, wB} constitutes subsample B, of size nB. xB is consid-
ered missing. W is an error-prone/noisy version of X. The goal is to utilize the data on
W to boost prediction of Y by X.
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precision σ−2λIp, the ridg coefficients are the posterior mode for a given λ. Hoerl and

Kennard showed that there exists λ > 0 that decreases mean squared error, MSE(β̂) =

E[(β̂− β)>(β̂− β)], compared with λ = 0. ridg penalizes the `2 norm; other methods

exist that constrain the `d norm for some d (eg Frank and Friedman, 1993). In contrast to

variable selection procedures, which might use an `1 penalty, our goal is using auxiliary

information to boost prediction, and so we restrict attention to ridge-type estimators.

Dempster et al. (1977) evaluate 57 variants of shrinkage estimators and argue for ridg.

Draper and van Nostrand (1979) are critical of ridg because of difficulties in choosing

the parameter λ. However, Craven and Wahba (1979) and Li (1986) demonstrate the

asymptotic optimality of the generalized cross-validation (GCV) function in selecting λ.

Simulation studies (Gelfand, 1986; Frank and Friedman, 1993) demonstrate good pre-

diction properties of ridg for many choices of β. Rao (1975) generalizes ridg to allow

for different levels of shrinkage between each coefficient. Swindel (1976) proposes ridge

estimators that take into account prior information, changing the direction of shrinkage.

Casella (1980) and Maruyama and Strawderman (2005) propose variants of ridge esti-

mators with minimax properties. Sclove (1968) adapts the shrinkage estimator of James

and Stein (JS, 1961) which, for p > 3, uniformly beats the maximum likelihood estimate

(MLE) of β in terms of MSE. Gruber (1998) offers a unified treatment of different kinds

of JS and ridge estimators from frequentist and Bayesian points of view.

By incorporating subsample B, this may be viewed as a problem of combining multiple

estimators. George (1986) proposes JS estimators that shrink toward multiple targets.

Green and Strawderman (1991) consider a targeted JS estimator: an unbiased estimator is

shrunk toward a biased but more efficient estimator so as to minimize MSE under certain

assumptions. LeBlanc and Tibshirani (1996) propose linear combinations of regression

coefficients to improve prediction error. This bias and variance trade-off in combining

estimators has been used in recent genetic studies (Chen et al., 2009).
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For p < nA, the problem closely resembles that of measurement error (ME) in the co-

variates, W being an error-prone version of X. Fuller (1987) and Carroll et al. (2006)

review ME methods for unbiased and efficient inference on β. In linear regression, us-

ing W instead of X gives biased estimates of β. However, this substitution is typically

not problematic for predicting Ynew with W>
newβ̂. Our prediction model of interest being

Y given X, this bias in β̂ from using W instead of X does bias X>newβ̂ away from Ynew.

Regression calibration, which fills in each missing X with its conditional expectation

given W , may provide unbiased estimates of β and therefore Ynew. In contrast, although

the substitution of X by W gives biased estimates of β, it may reduce the variance of esti-

mates of β relative to regression calibration (Buzas et al., 2005) and consequently reduce

MSPE. Even for p < nA, then, it is not evident that the regression calibration algorithm

is best for making predictions with X>newβ̂.

This chapter makes several new contributions. We consider an important but non-

standard prediction problem that has not yet received a rigorous mathematical treat-

ment. We introduce a class of targeted ridge estimators, borrowing ideas from the

shrinkage and regression calibration literature. We also consider combining an ensemble

of targeted ridge estimators, as in Green and Strawderman (1991). In contrast to mini-

mizing MSE, we determine the shrinkage weights adaptively so as to minimize MSPE.

Interestingly, one is able to combine two or more biased estimators of β for better predic-

tion than any individual estimator. This result applies to a linear combination of any set

of estimates of β. We evaluate all of these estimators via simulation studies and and a

data analysis.

The rest of the chapter is organized as follows. In Section 2.2, we unify ridg and re-

gression calibration methods under a class of targeted ridge estimators. In Section 2.3,

we propose hybrid estimators, which combine multiple estimators with data-adaptive

weights to achieve superior prediction. Section 2.4 presents a simulation study. Section
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2.5 applies the methods, in which survival time, Y, in lung cancer patients is predicted

with qRT-PCR data, X, with microarray data, W , from a larger sample aiding in predic-

tions. Section 2.6 concludes with a discussion. Most analytical details are in Appendix

A.

2.2 Targeted Shrinkage

For p > nA, ordinary least squares using subsample A is not applicable. In fact, when

Xnew is not in the column space of xA, no unbiased estimate of X>newβ using only sub-

sample A exists (Rao, 1945). A biased alternative is ridge regression (Hoerl and Kennard,

1970),

β̂ridg = (x>A xA + λIp)
−1x>AyA. (4)

ridg is equivalent to adding λ to each eigenvalue of x>A xA, thus allowing the matrix

inversion. The coefficient estimates are shrunk to zero, more so for larger values of λ.

That the ridge estimator is applicable for p > nA is crucial in our setting. Shrinkage

estimators from Sclove (1968) and Casella (1980) make use of unbiased estimators of β

and hence are not directly applicable for p > nA situations.

For ridge regression, Craven and Wahba (1979) proposed to select λ using the GCV

function, choosing the λ that minimizes

1
nA
(yA − H(λIp)yA)

>(yA − H(λIp)yA)

(1− Tr H(λIp)/nA)2 , H(Θ) = xA(x>A xA + Θ)−1x>A , (5)

where Θ is an arbitrary p× p positive semi-definite (PSD) matrix. Rao (1975) suggested

that any PSD matrix Ω−1
β can replace Ip in (4). Swindel (1976) proposed to shrink toward

a non-null vector γβ . From the Bayesian perspective, these replace the prior precision
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σ−2λIp in ridg with σ−2λΩ−1
β and the prior mean 0p with γβ . The posterior mode is

β̂(γβ , λ, Ω−1
β ) = argminβ

1
σ2 (yA − xAβ)>(yA − xAβ) +

1
σ2 (β− γβ )

>λΩ−1
β (β− γβ ) (6)

= (x>A xA + λΩ−1
β )−1(x>AyA + λΩ−1

β γβ ). (7)

Gruber (1998, p.241) calls this a generalized ridge estimator. Because “generalized ridge”

has been used for several distinct methods in the shrinkage literature, we instead call

this a targeted ridge (TR) estimator, referring to shrinkage toward a target γβ . The

estimator in (7) gives the three terms {γβ , λ, Ω−1
β } that determine the general class of TR

estimators. As we shall see, different estimators we propose either implicitly or explicitly

specify values for {γβ , λ, Ω−1
β }. In particular, ridg is a TR estimator: β̂ridg = β̂(0p, λ, Ip).

As stated in (3), MSPE(β̂) = σ2 + Tr
[
(Bias β̂ Bias β̂> + Var β̂)E[XnewX>new

]
. Thus we

calculate the MSPE of a TR estimator from its bias and variance, taking expectations

over the response distribution yA, yB|xA, wA, wB:

Bias β̂ = E β̂− β = (x>A xA + λΩ−1
β )−1(x>A xAβ + λΩ−1

β E γβ − x>A xAβ− λΩ−1
β β)

= λ(x>A xA + λΩ−1
β )−1Ω−1

β (E γβ − β) (8)

Var β̂ = (x>A xA + λΩ−1
β )−1(σ2x>A xA + λ2Ω−1

β Var γβ Ω−1
β )(x>A xA + λΩ−1

β )−1. (9)

These expressions assume that λ and Ω−1
β are fixed with respect to yA, yB|xA, wA, wB

but allow γβ to be data-dependent. A TR estimator may use a true prior, as in ridg, in

which case γβ is fixed.

We now propose several other TR estimators. If xB were observed, logical selections of

γβ and Ω−1
β would be (x>B xB)

−1x>B yB and x>B xB, respectively, with λ = 1, giving the

estimator (x>A xA + x>B xB)
−1(x>AyA + x>B yB). In the absence of xB, the naïve inclination

is to regress yB on wB and use (w>B wB)
−1w>B yB and w>B wB as γβ and Ω−1

β , that is,

use wB itself as an imputation for xB. We first consider approaches that derive a better
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replacement for the missing xB. This is obtained by modeling W |X based on the rela-

tionship observed in subsample A and thereby inducing data-driven values of γβ and

Ω−1
β . From the ME perspective, this is regression calibration. These TR estimators fix

λ = 1; data-adaptive estimation of λ may be done using, eg a GCV criterion.

Structural Regression Calibration (src): A distribution on X and the ME model for W |X

imply a value of E[X|W ]. src fills in the missing xB with its conditional expectation given

wB. Assuming that X is normal, say Np{µX , ΣX}, implies that X|W is also normal. Let

θ = {ν, τ, µX , Σ−1
X }. From properties of the conditional distribution of X|W ,

xsrc

B (θ) = E[xB|wB, θ] = 1nBµ>X(Ip − V(θ)) +
1
ν

wBV(θ) = [1nB , wB]M(θ), (10)

M(θ) =

µ>X(Ip − V(θ))

1
ν V(θ)

 , V(θ) =
(

Ip +
τ2

ν2 Σ−1
X

)−1
. (11)

We suppress the dependence on θ of xsrc

B (θ), M(θ), and V(θ) hereafter. This is a

precision-weighted average of 1nBµ>X and (1/ν)wB. Using (7), define β̂src = β̂(γβsrc
, 1, Ω−1

βsrc

),

with γβsrc
= (xsrc

B
>xsrc

B )−1(xsrc

B
>yB) and Ω−1

βsrc

= xsrc

B
>xsrc

B . In the ME literature, src

is the standard “Regression Calibration” approach. We append “Structural” (Carroll

et al., 2006, p.25), referring to a distributional assumption about X, to distinguish from

its “Functional” alternative, which does not assume this, proposed as follows.

Functional Regression Calibration (frc): Solving (2), W = νX + τξ, for X gives X =

(1/ν)W − (τ/ν)ξ. Another natural estimate of xB, and consequently a corresponding

γβ and Ω−1
β , is therefore

xfrc

B (θ) = (1/ν)wB, γβfrc
= (xfrc

B
>xfrc

B )−1xfrc

B
>yB, Ω−1

βfrc

= xfrc

B
>xfrc

B . (12)

This gives a TR estimate defined as β̂frc = β̂(γβfrc
, 1, Ω−1

βfrc

) . This imputation for xB is

a scaled version of a substitution of wB for xB, to which frc is equivalent when ν = 1,
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ie under the classical ME model. In Appendix A.1, we conduct extensive analyses that

suggest that frc is preferred over src in terms of MSPE as any of β>β, σ2, or τ/ν

increase.

The first rows of Table 1 summarize choices of (γβ , λ, Ω−1
β ) for ridg, frc, and src.

Assuming non-differential measurement error (NDME) , ie [Y|X, W ] = [Y|X], and µX =

0p, Table 1 also gives E γβ and Var γβ for frc and src. Because E γβsrc
= β, from (8), src

provides unbiased estimates of β.

Remark 1: When γβ and Ω−1
β are based on historical data, the prior in the second

expression of (6) is a power prior (Chen and Ibrahim, 2000), with λ controlling the

contribution of the historical data to the posterior.

Remark 2: These approaches require estimating θ = {ν, τ, µX , Σ−1
X }. One can regress

{wij} on {xij} for i = 1, . . . , nA and j = 1, . . . , p to compute MLEs for ν and τ. If it

is required that ν and τ be of a more general form than scalar-valued, the estimation

procedure can be modified accordingly. The MLE for µX is µ̂X = n−1
A x>A1nA , which will

be 0p when xA is standardized. For p > nA, the required inversion of Σ̂X = n−1
A x>A xA is

not possible. An alternative is the shrinkage estimator from Schäfer and Strimmer (2005):

since x>A xA is standardized, it is simply Σ̂∗X = (1− π)Σ̂X + πIp, for π ∈ [0, 1] chosen

data-adaptively. We used the R package corpcor to choose π targeting a minimum MSE

for Σ̂∗X .

Remark 3: The bias and variance outlined in Table 1 condition on the true value of θ

and are over and above any bias and variance coming from its estimation. In particular,

estimating ΣX may pose a challenge to src in the high-dimensional setting.

Remark 4: One other approach, which we do not further explore, is modifying frc

or src to do adaptive, component-wise shrinkage on β: a TR estimator where Ω−1
β is

diagonal and λ is estimated. When λ is not fixed, the GCV approach may be used to

choose an appropriate value of λ. The form of this modified GCV criterion is given later

14



on in (14), in connection with the hybrid estimator.

Method γβ Ω−1
β λ = 1?

ridg 0p Ip N
frc ν(w>B wB)

−1w>B yB ν−2w>B wB Y
src νV−1(w>B wB)

−1w>B yB ν−2Vw>B wBV Y
Method E γβ Var γβ

ridg – –
frc V β (σ2 + κ)ν2(w>B wB)

−1

src β (σ2 + κ)ν2V−1(w>B wB)
−1V−1

Table 1: Key information for several TR estimators, conditioning on the true value of θ.
κ = (τ2/ν2)β>V β. V = (Ip + (τ2/ν2)Σ−1

X ). The ‘λ = 1?’ column indicates whether λ is
fixed at 1 or tuned in a data-adaptive fashion using the general GCV function. The corre-
sponding estimator β̂(γβ , λ, Ω−1

β ) is given by plugging (γβ , λ, Ω−1
β ) into (7). The expec-

tation and variance of γβ , which are useful for calculating the MSPE of β̂(γβ , λ, Ω−1
β ),

are over yA, yB|xA, wA, wB under the assumption [Y|X, W ] = [Y|X].

2.3 Hybrid Estimators

While a particular TR estimator may do well for a given set of factors, eg p, nB, β,

τ, none is likely to give small prediction error under all settings. However, a hybrid

estimator, that is, an adaptively combined set of multiple TR estimators, may yield this

flexibility. Given m estimators, β̂1, β̂2, . . . , β̂m, and a vector ω = {ω1, ω2, . . . , ωm} such

that 1>mω = 1, let b(ω) = ∑m
i=1 ωi β̂i = [β̂1, β̂2, · · · , β̂m]ω. The vector ω determines the

contribution from each β̂i; a sensible choice for ω in our situation would be the one that

minimizes MSPE(b(ω)). The following theorem compares the prediction error of the

resulting optimal hybrid estimator, b(ωopt), to that of its constituents; the result uses the

following definition of the “mean cross-product prediction error” between β̂i and β̂ j:

MCPE(β̂ j, β̂ j) = σ2 + E[(β− β̂i)
>XnewX>new(β− β̂ j)]. (13)

Theorem 2.1. Let b(ω) = [β̂1, β̂2, · · · , β̂m]ω be a hybrid estimator.
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(i) If Var
[
(β̂1, β̂2, . . . , β̂m)v

]
has at least one positive eigenvalue for every v ∈ Rm\0m, then

there exists a unique vector ωopt that minimizes MSPE(b(ω)) subject to 1>mω = 1.

(ii) Further, let MSPE(β̂ j) = min` MSPE(β̂`). If MCPE(β̂ j, β̂i) 6= MSPE(β̂ j) for some i 6= j,

then MSPE(b(ωopt)) < MSPE(β̂ j).

The proof is in Appendix A.2. If the assumptions are satisfied, then, using prediction

error as the criterion, b(ωopt) will perform better than the best of its constituents. This

phenomenon has been observed empirically by Breiman (1996) and LeBlanc and Tib-

shirani (1996). Fumera and Roli (2005) prove a slightly weaker result for ensembles of

classifiers.

Now, MSPE(b(ω)) = ω>Pω, where P is the m×m matrix with the (ij)th element given

by Pij = MCPE(β̂i, β̂ j), which is just MSPE(β̂i) when i = j. The results from Theorem 2.1

apply when P is known. In practice, however, P and therefore ωopt must be estimated.

Since Pij is equivalently expressed as E[(Ynew− X>newβ̂i)(Ynew− X>newβ̂ j)], one might use

(1/nA)(yA − xAβ̂i)
>(yA − xAβ̂ j) as an estimate, but this will be biased. Lemma A.7 in

the Appendices, a generalization of a result from Mallows (1973) gives that, on average,

this underestimates Pij by the amount σ2(ψi + ψj), where ψ` = Tr H(λ`Ω
−1
β,`)/nA. Bor-

rowing Mallows’ idea of adjusting by σ̂2(ψi + ψj) does not work when there is no good

choice of σ̂2. We propose as an alternative adapting the GCV approach:

P̂ij =

1
nA
(y∗A,i − H(λiΩ

−1
β,i )y

∗
A,i)
>(y∗A,j − H(λjΩ

−1
β,j )y

∗
A,j)

(1− ψi)(1− ψj)
, (14)

where y∗A,` = yA − xAγβ,`. Because y∗A,` − H(λ`Ω
−1
β,`)y

∗
A,` = yA − xAβ̂`, this is a penal-

ized version of its naïve counterpart. Lemma B.4 provides further justification for this

approach.

Note the dual use of the GCV function to calculate b(ω). First, for each `, λ` is chosen,

when required, to minimize P̂``. Then, fixing these choices of λ`, (14) is employed on the
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m(m + 1)/2 pairwise combinations of components in b(ω) to estimate P. The particular

hybrid estimator we evaluate has three components: β̂hyb = [β̂ridg β̂src β̂frc]ω̂opt. Fol-

lowing LeBlanc and Tibshirani (1996), in addition to the constraint 1>mω = 1, we enforce

a non-negativity constraint on ω, which improves numerical results.

Remark 5: The key aspect that makes β̂hyb practical is that the sum

σ2 +E[(β− β̂hyb)>XnewX>new(β− β̂hyb)] is the quantity to minimize. Estimating either of

the terms alone is difficult. Green and Strawderman (1991) propose a similar combina-

tion of two estimators that minimizes the MSE of b(ω). For their method, the estimation

of ωopt requires an unbiased β̂1 and independent estimators β̂1 and β̂2. In our case,

because MSPE, not MSE, is of interest, we require neither unbiasedness nor independent

estimators.

Remark 6: Although Theorem 2.1 proves hyb has a smaller MSPE than any of its con-

stituents when using the true optimal weights ωopt, for a given dataset with estimated

optimal weights ω̂opt, this uniform dominance may not hold. Numerical performance

depends on how accurately (14) estimates P. As will be seen, β̂hyb with estimated

weights still performs well across a spectrum of scenarios and closely adapts to the

best of its constituents.

2.4 Simulation Study

We next describe a small simulation study. We fixed nA = 50 and used nB ∈ {400, 150}.

The diagonal elements of ΣX were set to unity, and the off-diagonals were ρ|j1−j2|,

ρ ∈ {0, 0.75}. Using these parameters, xA and xB were drawn from Np{0p, ΣX}. We

considered both high- (p = 99) and low- (p = 5) dimensional models: β = {j/100}j=49
j=−49

and β = {j/4}j=2
j=−2. The coefficient of determination, R2, was either 0.1 or 0.4. Thus,

given β, ΣX and R2, σ was determined by solving β>ΣX β/(β>ΣX β + σ2) = R2. β0 was

set to zero. yA|xA and yB|xB were drawn for each combination of β and σ from (1). This
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yielded 16 unique simulation settings: two choices each for p, nB, ρ, and R2. To draw the

auxiliary data, we set ψ = 0 and ν = 1 and repeated each of the 16 settings for τ ∈ (0, 2),

drawing wA|xA and wB|xB from (2).

For four methods, ridg, src, frc, and hyb, we estimated MSPE by averaging the squared

prediction error over 1000 new individuals. Figure 2 plots this empirical MSPE averaged

over 1000 replicates over τ. For reference, σ2, the smallest achievable MSPE, is also given.

Tables A2 and A3 in Appendix A provide numeric values of the empirical MSPE over

all settings.

Remark 7: In practice, the analyst estimates β0 in addition to β. Following the common

prescription for ridge regression, we did not shrink β0 but instead used a flat “prior” in

each of the TR methods.

Effect of τ: ridg is not affected by τ, as it does not use wA or wB. frc and src are

equivalent when τ is very small, close to the complete data case. The MSPE of src

always rises with τ; this increase is sharp when p = 99. However, larger values of τ

give favorable shrinkage in frc. When p = 99, the τ for which frc is best is larger than

zero; for p = 5, the “optimal” τ is quite small, and the MSPE rises sharply with τ. For

p = 99, hyb usually predicts very well regardless of τ; when p = 5, hyb does a better job

of improving upon its constituents when τ is large.

Effect of nB, p, ρ, R2 As might be expected, larger values of nB considerably decrease

MSPE for src, frc and, consequently, hyb. Notably, hyb sometimes fares poorly com-

pared with frc (see Remark 6) when p = 99, nB = 400, and ρ = 0.75. In the other

p = 99 scenarios, hyb matches or outperforms every other method. src fares poorly

when p = 99. On the other hand, when p = 5, hyb is typically not the best method.

Here, all the methods are similarly ranked regardless of other parameter settings, with

src usually having the smallest MSPE, the exception being the case of ρ = 0.75, R2 = 0.1

and nB = 150 case.
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Figure 2: Empirical MSPE over τ for 16 simulation settings described in Section 2.4.
p stands for the number of covariates, nB is the size of subsample B, ρ is the first-
order auto-regressive correlation coefficient for pairwise combinations of X, and R2 =
β>ΣX β/(β>ΣX β + σ2). The top strip varies between rows and the bottom strip varies
between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1. σ2, plotted in black, is
the smallest possible MSPE for any estimate of β.
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Evaluating MSE: We also evaluated each simulation in terms of MSE of β̂ (Figure A1

in Appendix A.3). When ρ = 0, the results are nearly the same as those for MSPE, up

to additive constant. This is to be expected: when µX = 0p and ΣX = Ip, MSPE(β̂) =

σ2 + MSE(β̂). When ρ = 0.75, this relationship does not hold, and some rankings of the

methods change. However, even though it minimizes prediction error, hyb is the best

method overall in terms of MSE, particularly for the p = 99 cases.

Appendix A.3 investigates several violations to the modeling assumptions in this study.

The most important result of these studies is that hyb is a flexible method. Under a

variety of model settings and violations, hyb is able to efficiently adhere to the best-

performing of its constituents.

2.5 Example: Lung Adenocarcinoma Data

We consider whether gene expression measurements offer information for predicting

survival time in patients with lung cancer. Expression data may be collected using

microarray technology, which assays the mRNA transcripts of thousands of genes. Al-

ternatively, quantitative real-time polymerase chain reaction (qRT-PCR) amplifies gene

expression in a targeted region of DNA so as to precisely measure it. Expression is

measured as the number of doublings until a threshold is reached. It is both clinically

practical to measure on a new tissue specimen, not requiring the specialized laboratory

facilities of microarrays, and typically considered a more precise measurement of gene

expression than microarrays.

Our dataset comes from Chen et al. (2011), who selected p = 91 high-correlating genes

representing a broad spectrum of biological functions upon which to build a predictive

model. Expression on the log-scale using Affymetrix (a microarray technology, W) was

measured on 439 tumor samples, and qRT-PCR measurements (X) were collected on

47 of these tumors. The individual correlations between the qRT-PCR and Affymetrix
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measurements from the 47 tumors are greater than 0.5 across the 91 genes. Clinical

covariates, age, gender and stage of cancer (I-III), are also available. Because qRT-PCR

is the clinically applicable measurement for future observations, the goal is a qRT-PCR

+ clinical covariate model for predicting log-survival time after surgery (Y). An inde-

pendent cohort of 101 tumors with qRT-PCR measurements and clinical covariates is

available for validation.

Eleven measurements in the qRT-PCR-only data, out of 47 × 91 = 4277 total, or 0.26

percent, were missing; in order to use all observations, these values were imputed using

chained equations and thereafter assumed known. Additionally, four tumors, three in

the Affymetrix-only sample and one in the validation sample, had event times less than

1 month after surgery, and these were removed before analysis. Thus nA = 47, nB = 389,

and the validation data contain 100 observations.

Because our methodology was developed for continuous outcomes, censoring necessi-

tated some preprocessing of the data. We first imputed each censored log-survival time

from a linear model of the clinical covariates, conditional upon the censoring time. This

model was fit to the training data but was applied to censored survival times in both

the training and validation data. Given completed log-survival times, we re-fit this same

model and calculated residuals from both the training and validation data. These resid-

uals were considered as outcomes, and the question is whether any additional variation

in the residuals is explained by gene expression.

Figure 3 presents the 91 LOESS curves comparing measurements from the 47 tumors

using Affymetrix (wA) to qRT-PCR (xA) after standardization. Based on this, we used a

gene-specific ME model: wij = ψj + νjxij + τξij. We modeled ψj and νj as random effects,

distributed as N{µψ, σ2
ψ} and N{µν, σ2

ν}, and used predictions {ψ̂j} and {ν̂j} to calculate

xsrc

B and xfrc

B . Violation of the constant τ assumption was also present: gene-specific

estimates were in the interval (0.209, 1.146) with the middle 45 in (0.368, 0.689). Consid-
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ering all genes simultaneously, τ̂ = .628. Because our simulations indicate robustness to

this assumption, this violation was ignored.

xA

wA

0

2

4

6

8

−2 0 2

Figure 3: LOESS curves of Affymetrix (wA) by qRT-PCR (xA) measurements for 91 genes
from the lung adenocarcinoma data

We present results for predicting survival time in the validation data using ridg, src,

frc, and hyb. Table 2 presents numerical results for each of the methods, and Figure 4

plots each estimate of β as a kernel density estimate. In terms of MSPE, the best method

was ridg, with an MSPE of 0.620, compared with 8.745 for src and 0.781 for frc. For hyb,

ω̂opt = {1, 0, 0}, corresponding to ridg, src, and frc; so β̂hyb ≡ β̂ridg and hyb matches

the best of its constituents. Plugging in β̂ = 0p yields an MSPE of 0.590, which none of

the methods can improve upon, suggesting a very weak signal in the set of expression

measures for predicting survival. The range of β̂ridg and β̂hyb, excluding the intercept,

is (−0.019, 0.014). For β̂src, it is (−0.600, 0.516) and for β̂frc, it is (−0.075, 0.062).

Finally, we generated 95% prediction intervals for each observation in the validation

sample, using a bootstrap algorithm described in Appendix A.4. Table 2 gives the pro-

portion of intervals that included the outcome and the average interval ranges. ridg and
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hyb have slight under-coverage (0.91), and src and frc have over-coverage (respectively

1.00 and 0.98).

Remark 8: As in the simulation study, we restricted our optimization of ω to the sub-

space of non-negative elements, which on average improves numerical results. In the

data analysis, removing the constraint yields ω̂opt = {1.094,−0.100, 0.006} and an MSPE

of 0.601. These results are also presented in Table 2 and Figure 4 denoted as hyb
unc.

ridg src frc hyb hyb
unc

ˆMSPE 0.620 8.745 0.781 0.620 0.601

min(β̂) -0.019 -0.600 -0.075 -0.019 -0.054

max(β̂) 0.014 0.516 0.062 0.014 0.058

Avg. Coverage 0.91 1.00 0.98 0.91 0.99

Avg(ŶB,97.5
new − ŶB,2.5

new ) 3.372 33.785 4.023 3.372 4.674

Table 2: Numerical results from analysis of the lung adenocarcinoma data ˆMSPE is the
empirical MSPE from the validation sample of size 100, min(β̂) and max(β̂) give the
range of the estimate of β for each model, Avg. Coverage is the proportion of bootstrap-
generated prediction intervals for the validation sample that contained the true outcome,
and Avg(ŶB,97.5

new − ŶB,2.5
new ) gives the average prediction interval length for the validation

sample. hyb
unc is the hybrid estimator without the non-negativity constraint (Remark 8).

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

RIDG
SRC
FRC
HYBunc

Figure 4: Kernel density estimates of the Chapter 2 methods’ 91 coefficient estimates
from the lung adenocarcinoma data. hyb

unc is the hybrid estimator without the non-
negativity constraint (Remark 8). β̂hyb, with the non-negativity constraint, is identically
equal to β̂ridg.
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2.6 Discussion

Augmenting high-dimensional data with external auxiliary information is useful to

boost predictive accuracy. We have described how to quantify this auxiliary informa-

tion using important ideas from the measurement error and shrinkage literature. The

regression calibration algorithm, src, yields unbiased estimates of future outcomes but

with large variance when p is large. A modified algorithm, frc, makes a bias-variance

trade-off and can give a smaller MSPE. We have also proposed a hybrid estimator, hyb,

which is a linear combination of multiple estimators. In addition to point estimates,

prediction intervals for capturing uncertainty are also typically of interest. A simple

bootstrap algorithm yields prediction intervals but will require some modifications to

achieve nominal coverage rates.

hyb stands out as the method of choice. Theorem 2.1 demonstrates its theoretical utility,

and, practically, the average performance of β̂hyb across all design and data configura-

tions is encouraging. Importantly, its flexibility is most apparent in the large p scenarios.

Because we combined TR estimators, a GCV criterion provides a simple estimate of P,

the prediction error matrix (14), which is required to optimize with respect to ω. When

taking linear combinations of arbitrary estimates of β for which GCV is not conducive,

a challenge is how to estimate P ; the “632 estimator” of Efron (1983) is one candidate.

Our implementation of β̂hyb combined just three estimators: β̂ridg, β̂src and β̂frc. Rel-

ative to β̂ridg and β̂frc, β̂src predicts unsatisfactorily when p = 99. Except for perhaps

one panel in Figure 2 (second from the left in the top row), this does not negatively

affect the performance of β̂hyb, because ω̂opt gives little weight to the src component.

However, this does underscore a practical challenge for the hybrid estimator when com-

bining many β̂’s, of which a few have much smaller MSPE than the others. Ideally,

ω̂opt would give little or no weight to the large-MSPE components. We investigated

this phenomenon by re-computing the hybrid estimator in the simulation study with
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ten (p = 99) or three (p = 5) additional “src-like” TR constituents. We constructed

such estimators by sampling, independently of any data, the p components of γβ from

a standard t5 distribution and the p diagonal components of Ω−1
β from a Gamma dis-

tribution with mean nB and variance n2
B/15. We plugged this randomly sampled prior

into (7), using λ = 1. Compared to the actual hybrid estimator, the increase in predic-

tion error ranged between 2% and 10% in the p = 99 cases and 0.5% and 2% in the

p = 5 cases. This extreme scenario highlights a gap between theoretical optimality and

practical implementation but suggests that the performance of the hybrid estimator is

relatively unchanged upon the introduction of a large number of ingredients that may

not be informative or efficient. It can still discern the better performing constituents,

data-adaptively assigning them more weight.

Of potential concern is that we have applied our methods, developed for continuous

endpoints, to a dataset with censored survival time as the endpoint. In much the same

way as ridge regression has been applied to logistic and Cox models, the targeted ridge

class may also be adapted to other endpoints. While our theoretical and numerical re-

sults have focused only on continuous endpoints, we believe that the ideas and intuition

developed will generally transfer to these other endpoints. However, the extension is

non-trivial and merits in-depth research, not only for deriving estimators but also in

determining the right criterion with which to assess prediction.

That this is a missing data problem can be exploited further than the single imputa-

tions considered in this chapter. Multiple imputation using chained equations can make

repeated draws of the missing xB as was done in Chen et al. (2011). Or, by writing

out the complete likelihood, a data augmentation/Gibbs sampler algorithm can make

alternating draws from the posterior distribution of xB, β and the rest of the model’s

parameters. Apart from the computationally demanding aspects of Bayesian methods,

because of the size of p and the large fraction of missing data, a fully Bayesian extension
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is not automatic. In particular, careful thought must be given to the choice of prior on β

and Σ−1
X , because the sampler is likely not to converge with non-informative priors.

In a likelihood-based approach, the NDME assumption, ie [Y|X, W ] = [Y|X], can be

relaxed. Violations to this assumption will change the MSPE of the methods we consid-

ered, although our simulations have shown robustness for several of the methods, partic-

ularly hyb. However, a likelihood-based method, including fully Bayesian approaches,

may be more sensitive to violations of other model assumptions.

The development of TR estimators assumes that xB is missing completely at random.

More thorough development of these methods under other missingness mechanisms

would be of interest. Outcome dependent sampling (ODS, Weaver and Zhou, 2005; Qin

and Zhou, 2011) and two-phase sampling (Neyman, 1938) would be important cases to

consider, since designs like these are an appealing way to select the subsample on which

expensive measures are taken. It is usually noted that ODS can enhance efficiency but

will introduce bias if the sampling mechanism is not properly accounted for in the anal-

ysis. However, MSPE is a function of bias and efficiency, thus methods and results from

the existing ODS literature that focus on obtaining consistent and unbiased estimates

do not directly apply to the prediction context. Also, the high-dimensional aspect of

the data implies that standard methods for analyzing two-phase likelihoods would not

apply. If a TR estimator that is robust to other missingness mechanisms were developed,

it could be included as an ingredient to hyb to balance efficiency and robustness in pre-

dictions. To conclude, the vast majority of shrinkage, regression calibration and ODS

literature has focused on estimation rather than prediction. The use of these techniques

to improve prediction merits further research.
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CHAPTER 3

Bayesian Shrinkage Methods for Partially Observed
High-Dimensional Data

3.1 Introduction

We consider making predictions of an outcome Y given length-p covariates X, using the

linear model

Y = β0 + X>β + σε, ε ∼ N{0, 1}. (15)

All observations contain Y and W , which is an error-prone length-p surrogate for the

true covariate X. On a small number of observations of size nA, subsample A, we also

observe X, which is missing for the remaining subjects, constituting subsample B, of

size nB. We assume nA < p < nB. Complete observations, then, contain an outcome Y,

covariates X, and surrogates W . Subsample A is written as {yA, xA, wA} and subsample

B as {yB, wB}. The true covariates from subsample B, xB, are unmeasured. The data are

schematically presented in Figure 1.

Our goal is a predictive model for Y|X as in (15), but because W is correlated with

X, subsample B contains information about β. Moreover, shrinkage of regression coeffi-

cients may alleviate problems associated with multicollinearity of covariates. In Chapter,

2, we proposed a class of targeted ridge (TR) estimators of β, shrinking estimates toward
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a target constructed using subsample B, making a bias-variance tradeoff. The amount

of shrinkage can be data-adaptive with a tuning parameter, denoted by λ. In our simu-

lation study in Section 2.4, two biased methods, frc, a regression calibration algorithm,

and hyb, a hybrid estimator which is a linear combination of multiple TR estimators

with data-adaptive weights, uniformly out-perform structural regression calibration, an

unbiased method, in terms of mean-squared prediction error (MSPE):

MSPE(β̂0, β̂) = E[(Ynew − β̂0 − X>newβ̂)2]

= σ2 +
(

E[β0 − β̂0 + X>newβ− X>newβ̂]
)2

+ Var[β̂0 + X>newβ̂]. (16)

However, there are reasons to consider alternative strategies. We show in Appendix A.1

that a TR estimator can be viewed as a missing data technique: make an imputation x̃B

of the missing xB and calculate β̂ treating the data as complete. When the shrinkage is

data-adaptive through the tuning parameter λ, there is an intermediate stage: choose

λ given x̃B. Uncertainty in x̃B or λ is not propagated in the TR estimators, thus it can

be viewed as improper imputation (Little and Rubin, 2002). Moreover, to choose λ,

a generalized cross-validation (GCV) criterion was applied to subsample A. Although

GCV asymptotically chooses the optimal value of λ (Craven and Wahba, 1979), it can

overfit in finite sample sizes, and an approach for estimating λ that also uses information

in subsample B is preferred. Finally, constructing prediction intervals corresponding to

the point-wise predictions generated by the class of TR estimators requires use of the

bootstrap. This resampling process is computationally intensive and provides coverage

that may not be nominal.

These reasons, ie characterizing prediction uncertainty and unifying shrinkage, imputa-

tion of missing data, and an adaptive choice of λ, motivate a fully Bayesian approach

to the same goal of improving predictions using auxiliary data. Consider the generic

hierarchical model presented in Figure 5. Known (unknown, respectively) quantities are
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η φ

Umis

Uobs

Figure 5: A hierarchical model with missing data Umis and observed data Uobs. The
shrinkage penalty parameters η are the hyperparameters of φ, the quantity(ies) of pri-
mary interest

bounded by square (circular) nodes. Instead of splitting the data into subsamples as in

Figure 1, we classify it more broadly into observed (Uobs) and missing (Umis) compo-

nents. Let φ denote parameters of interest and nuisance parameters in the underlying

joint likelihood of Uobs and Umis. Regularization of the high-dimensional φ is achieved

through the shrinkage parameter η, equivalently interpreted in the figure as the hyper-

parameters, which index a prior distribution on φ. One can impose another level of

hierarchy through a hyperprior distribution on η. Using [·] and [·|·] to denote marginal

and conditional distributions, draws from [Umis, φ, η|Uobs], the distribution of unknown

random quantities conditional on the observed data, constitute proper imputation and

incorporate all of the information in the data. Summary values, like posterior means,

as well as measurements of uncertainty, like highest posterior density credible intervals

and prediction intervals, can easily be calculated based on posterior draws.

Placing the shrinkage parameter η in a hierarchical framework allows the flexibility to

determine both which components of φ to shrink and to what extent. As an example of

the former, a TR estimator shrink estimates of the regression coefficients β, tuned by the

parameter λ. However, for improved prediction of the outcome Y, it may be beneficial

to shrink the parameters generating the missing data xB. In a non-missing-data context,

the scout method (Witten and Tibshirani, 2009) shrinks the estimate of Var(X) for better

prediction. As for the extent of shrinkage, the hyperparameter-equivalence of the tuning

parameters allows for the use of Empirical Bayes algorithms to estimate η. This has been
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used in the Bayesian Lasso (Park and Casella, 2008; Yi and Xu, 2008).

This chapter makes two primary contributions. First, in Section 3.2, we discuss variants

of the Gibbs sampler (Geman and Geman, 1984), a key algorithm for fitting hierarchi-

cal models with missing data. Here, we keep the context broad, assuming a generic

high-dimensional hierarchical model indexed by φ with missing data Umis and unspec-

ified hyperparameters η, as in Figure 5. One variant, Data Augmentation (Tanner and

Wong, 1987), is a standard Bayesian approach to missing data, and all unknown quanti-

ties have prior distributions. Two others are Empirical Bayes methods: the Monte Carlo

Expectation-Maximization algorithm (Wei and Tanner, 1990) and the Empirical Bayes

Gibbs sampler (Casella, 2001). Although proposed for seemingly different problems, we

argue that the sampling strategies in each are special cases of that in Figure 5: variants of

the same general algorithm, which we call EM-within-Gibbs. This framework allows for

the chapter’s second contribution (Section 3.3): a comparison of several fully Bayesian

and Empirical Bayes options and their adaptation in analyses such as ours. Of note in

the data are two crucial features: the number of partial observations where X is missing

is much larger than the number of complete observations and φ, comprised of β0, β, σ2

plus parameters for modeling the distribution of X, is high-dimensional, so that fitting

a model with no missing data would still be somewhat challenging. Meaningful analy-

sis then requires the regularization, or shrinkage, of φ via an appropriate specification

of the hierarchy and choice of η. We propose to shrink several different components

of φ, making use of the simultaneous interpretation of η as a shrinkage penalty and

a hyperparameter on φ. We evaluate these methods via a comprehensive simulation

study (Section 3.5), also considering robustness of these methods under model misspec-

ification. Finally, we turn to analysis of the Chen et al. dataset, analyzed previously

(Section 3.6). Because the likelihood-based approach can offer gains in efficiency but

relies more heavily on the underlying modeling assumptions, including the measure-

ment error structure, we include ridge regression (Hoerl and Kennard, 1970) and hyb,
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the data-adaptive linear combination of several TR estimators from Chapter 2.

3.2 Gibbs Sampler Variants

In this section, we discuss four existing variants of the Gibbs sampler relevant to our

analysis: DA, DA+, MCEM, and EBGS. We show that two of these, MCEM and EBGS,

are special cases of a fifth more general variant, which we call EWiG. This link between

MCEM and EBGS has not been previously noted. This equivalence leaves three distinct

methods: DA, DA+, and EWiG. We define a variant here as characterization of a poste-

rior distribution plus an algorithm for fitting the model. All variants are summarized in

Table 3.

Data Augmentation (DA+, DA) (Tanner and Wong, 1987)

Posterior: [φ, Umis, η|Uobs] ∝ [Uobs, Umis|φ]× [φ|η]× [η] (17)

Algorithm: at iteration i,

Umis(i) ∼ [Umis|Uobs, φ(i−1)] (18)

φ(i) ∼ [φ|Uobs, Umis(i), η(i−1)] (19)

η(i) ∼ [η|φ(i)]. (20)

This is the natural Bayesian treatment of missing data: Umis and φ are both unobserved

random variables. In DA+, which is given above, the hyperparameters η are also un-

known (Gelfand and Smith, 1990). In DA, a value for η is chosen. In either case, draws

of φ and Umis are sequentially made from their conditional posteriors. In DA+ only, η is

also sampled from its conditional posterior. Then, in either DA or DA+, the whole pro-

cess is iterated. Tanner and Wong prove that iterations will eventually yield a draw from

the true posterior distribution of interest, [φ, Umis, η|Uobs] for DA+ or [φ, Umis|Uobs, η]

for DA. The full conditional distribution [φ|Uobs, Umis, η] may be difficult to specify. Sup-

pose instead a set of partial conditional distributions is available, [φJ |φ(J), Uobs, Umis, η],
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where the set of J’s forms a partition of the vector φ. Then under mild conditions,

repeated iterative sampling from these partial conditional distributions will also yield

draws from the true posterior (Geman and Geman, 1984).

Monte Carlo Expectation-Maximization (MCEM) (Wei and Tanner, 1990)

Posterior: [φ, Umis|Uobs, η] ∝ [Uobs, Umis|φ]× [φ|η] (21)

Algorithm: at iteration i,

for k = 1, . . . , K,

Umis(i,k) ∼ [Umis|Uobs, φ(i−1)] (22)

φ(i) = argmaxφ

1
K

K

∑
k=1

ln[φ|Uobs, Umis(i,k), η]. (23)

MCEM provides a point estimate of φ rather than an estimate of the posterior distri-

bution, as with DA/DA+. It is a modification of the original EM algorithm (Dempster

et al., 1977), replacing an intractable expectation with a Monte Carlo average of multi-

ple imputations. K draws of Umis are sampled conditional on the current value of φ:

φ(i−1). The expected posterior is updated with a Monte Carlo average and maximized

with respect to φ. When φ has a flat prior, as in the originally proposed MCEM, {φ(i)}

will converge to the maximum likelihood estimate (MLE) of φ. If an informative prior is

specified through a particular choice of η, the sequence will converge to a penalized MLE

(Green, 1990).
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Empirical Bayes Gibbs Sampling (EBGS) (Casella, 2001)

Posterior: [φ|Uobs, η] ∝ [Uobs|φ]× [φ|η]

Algorithm: at iteration i,

for k = 1, . . . , K,

φ(i,k) ∼ [φ|Uobs, η(i−1)]

η(i) = argmaxφ

1
K

K

∑
k=1

ln[φ(i,k)|η].

EBGS allows the data to determine a value for the hyperparameter η. In the context of

Casella, the missing data Umis are absent. However, φ is considered missing for purposes

of determining η: choose η that maximizes its marginal log-likelihood, ln[Uobs|η]. Similar

to MCEM, an EM-type algorithm can maximize this intractable log-likelihood. K draws

of φ are made from the current estimate of its posterior, and η is updated by maximizing

a Monte Carlo estimate of E [ln[φ|η]], where the expectation is over the distribution

[φ|Uobs, η(i)]. This expected complete-data log-likelihood relates to the desired marginal

log-likelihood as follows. First observe that

[Uobs|η][φ|Uobs, η] = [φ|η][Uobs|φ, η]

= [φ|η][Uobs|φ].

Let C = E
[
ln[Uobs|φ]

]
, which is constant with respect to η. Then,

ln[Uobs|η] = E [ln[φ|η]]− E
[
ln[φ|Uobs, η]

]
+ C.

Because E
[
ln[φ|Uobs, η]

]
≤ E

[
ln[φ|Uobs, η(i)]

]
for any η, giving this crucial result: maxi-

mizing E [ln[φ|η]], or a Monte Carlo approximation thereof, over η will increase ln[Uobs|η]

and converge to a local maximum.
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EM-within-Gibbs (EWiG)

Posterior: [φ, Umis|Uobs, η] ∝ [Uobs, Umis|φ]× [φ|η]

Algorithm: at iteration i,

for k = 1, . . . , K,

Umis(i,k) ∼ [Umis|Uobs, φ(i,k−1)]

φ(i,k) ∼ [φ|Uobs, Umis(i,k), η(i−1)]

η(i) = argmaxφ

1
K

K

∑
k=1

ln[φ(i,k)|η].

Importantly, both MCEM and EBGS allow the lowest level of the hierarchy to be adap-

tively determined by the data rather than specified a priori. In MCEM, this lowest level

is φ, and in EBGS, it is η. However, MCEM can be expanded in the presence of an un-

specified η by putting both Umis and φ into the imputation step, so φ is sampled rather

than optimized. The maximization step determines η. This returns to the original goal

of DA+/DA: determining the posterior distribution of φ. Equivalently, we can take the

perspective of expanding EBGS: add an imputation step for sampling Umis, keeping the

maximization step the same. In either case, this yields the same result, which we call

EM-within-Gibbs (EWiG), given above. Because η is unspecified, the hierarchical model

here is the same as that given in Figure 5.

In summary, we have asserted that MCEM and EBGS are special cases of EWiG, so

we now have three distinct variants, which we apply to our problem in the following

section: DA, DA+, and EWiG.

3.3 Specification of the Likelihood and Priors

The discussion so far has been deliberately generic. We now specify a likelihood for our

problem of interest, which in turn specifies φ, and apply these Gibbs variants to several
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Variant Posterior Prior on η

DA (Tanner and Wong, 1987) [φ, Umis|Uobs, η] ∝ [Uobs, Umis|φ]× [φ|η] No
DA+ (Gelfand and Smith, 1990) [φ, Umis, η|Uobs] ∝ [Uobs, Umis|φ]× [φ|η]× [η] Yes
MCEM (Wei and Tanner, 1990) [φ, Umis|Uobs, η] ∝ [Uobs, Umis|φ]× [φ|η] No

EBGS(Casella, 2001) [φ|Uobs, η] ∝ [Uobs|φ]× [φ|η] No
EWiG [φ, Umis|Uobs, η] ∝ [Uobs, Umis|φ]× [φ|η] No

Table 3: A comparison of the general form of the Gibbs sampler variants from Section
3.2 as they were originally proposed. Differences between posteriors depend on the
presence of missing data Umis and whether the hyperparameters η are fully specified.
Differences in algorithms depend on how the lowest level of the hierarchy, which is
unknown, is treated. In particular, MCEM differs from DA because it returns only an
estimate of the posterior mode.

combinations of (i) choices of priors [φ|η] and (ii) values of the hyperparameter η. Trans-

lating the quantities in Figure 5 to our problem, we have Uobs = {yA, yB, xA, wA, wB}

and Umis = xB. A commonly used factorization of the joint likelihood is [Y, X, W ] =

[Y|X][W |X][X], which makes a conditional independence assumption [Y|X, W ] = [Y|X].

An alternative factorization is [Y|X][X|W ], which we do not consider as it is not consis-

tent with the measurement error structure of W to X. We make the following assump-

tions:

Y|X ∼ N{β0 + X>β, σ2}, W |X ∼ Np{ψ1p + νX, τ2Ip}, X ∼ Np{µX , ΣX}. (24)

The likelihood has an outcome model relating Y to X, a measurement error model relat-

ing the error-prone W to X, and a multivariate distribution for X. Thus,

φ = {β0, β, σ, ψ, ν, τ, µX , ΣX}.

η is described below. Of interest is prediction of a new value Ynew given Xnew, eg

Ŷnew = β∗0 + X>newβ∗, where β∗0 and β∗ are posterior summaries of β0 and β. Uncertainty

is quantified using the empirical distribution of Ŷ(t)
new = β

(t)
0 + X>newβ(t) + σ2(t)ε(t), where

{β(t)
0 , β(t), σ2(t)} is the set of posterior draws and ε(t)

iid∼ N{0, 1}. If xB = Umis were
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observed, the complete log-likelihood would be

`C = ln[Uobs, Umis|φ] = ln[yA|xA, β0, β, σ2] + ln[wA|xA, ψ, ν, τ2] + ln[xA|µX , ΣX ]

+ ln[yB|xB, β0, β, σ2] + ln[wB|xB, ψ, ν, τ2] + ln[xB|µX , ΣX ]. (25)

The log-likelihood gives the imputation step:

xB|Uobs, φ = NnB×p

{
x̃B(Uobs, φ), Γ(φ)

}
, (26)

where Γ(φ) = [ββ>/σ2 + (ν2/τ2)Ip + Σ−1
X ]−1 and x̃B(Uobs, φ) = [(yB − β01nB)β>/σ2 +

(ν/τ2)(wB − ψ1nB1>p ) + (1nBµ>X)Σ
−1
X ]Γ(φ). Note that the mean is an nB × p matrix,

where each row represents the mean vector corresponding to the p × 1 observation,

but the covariance is shared.

Remark 9: We describe in Appendix A.1 how the performance of src and frc changes

with τ2/ν2, the noise-to-signal ratio in the ME model. In summary, as τ2/ν2 increases,

β̂src downweights the contribution from the auxiliary data, appropriately so from an im-

putation perspective, but becomes increasingly instable because it tends to (x>A xA)
−1x>AyA

(assuming µX = 0p), which does not exist when p > nA. On the other hand, β̂frc ap-

proaches 0p as τ2/ν2 increases. The imputation step given in (26) resembles that of src

in that it downweights the contribution from wB as the noise-to-signal ratio becomes

large, but it has two important differences. First, it still makes use of the information

about xB contained in yB, which is invariant to the value of τ2/ν2. Second, it is not a

mean imputation but rather a random draw from a distribution, so that even if τ2/ν2 is

very large, the imputation of xB will be full-rank, an important property for sampling β.

Therefore, even as τ2/ν2 increases, the Bayesian methods still efficiently use the available

information in subsample B.

The imputation is defined only by the likelihood and is common to all methods we
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consider; the differences lie in the choice of prior [φ|η] and the hyperparameter η. These

crucially determine the nature and extent of shrinkage induced on φ. In what follows,

we propose several options, which are summarized in Table 4.

fb-flatbeta As a baseline approach, we apply DA to the problem. The choice of prior is

[φ|η] ∝ (σ2τ2)−1|Σ−1
X |

(2p−1)/2 exp
{
−2p− 1

2
Tr (diag(V̂ar[xA])Σ

−1
X )

}
, (27)

where diag(V̂ar[xA]) is the diagonal part of the empirical covariance of xA. This is a

Jeffreys prior on each component of φ except Σ−1
X (see Remark 10 below), and η is speci-

fied. The product of expressions (25) and (27) yields the full conditional distributions of

each component of φ. For brevity, we present only the Gibbs steps for β and Σ−1
X . The

complete set of full conditional distributions are listed in Appendix B.1.

β ∼ Np
{
(x>A xA + x>B xB)

−1(x>A [yA − β01nA ] + x>B [yB − β01nB ]), σ2(x>A xA + x>B xB)
−1},

(28)

Σ−1
X ∼W

{
3p + nA + nB, (29)(

(2p− 1)diag(V̂ar[xA])

+ (xA − 1nAµ>X)
>(xA − 1nAµ>X) + (xB − 1nBµ>X)

>(xB − 1nBµ>X)
)−1}

.

The Wishart distribution with d degrees of freedom, W{d, S}, is parametrized to have

mean dS.

Remark 10: A Jeffreys prior on Σ−1
X , Σ−1

X ∼ W{0, 0Ip}, may result in an improper joint

posterior if nB � nA and p is large, ie when the fraction of missing data is very large.

From our numerical studies and monitoring of trace plots, even a minimally proper prior

on Σ−1
X , that is, using p + 1 degrees of freedom, does not ensure a proper posterior. We

assume a priori Σ−1
X ∼ W

{
3p, (2p− 1)−1[diag(V̂ar[xA])]

−1}, a data-driven choice, the

density of which is given in (27). The prior mean of Σ−1
X is 3p[diag(V̂ar[xA])]

−1/(2p− 1),
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and the prior mean of ΣX is diag(V̂ar[xA]). Heuristic numeric evidence shows that 3p

degrees of freedom works well, but we have not demonstrated a theoretical optimality

for this choice. Other values that ensure convergence are equally defensible.

We call the Gibbs sampler that uses this mildly informative prior specification fb-flatbeta.

All the other methods we propose will have modified Gibbs steps for two components

of φ: β and Σ−1
X . Shrinking β is a clear choice: from (24), β is closely tied to prediction of

Y|X. As for Σ−1
X , this determines in part the posterior variance of xB (26); as this variance

increases, the a posteriori variance of β decreases (28), thereby shrinking draws β. Other

factors in the variance of xB, like τ2, are additional candidates for shrinkage, but we do

not pursue this here.

3.3.1 Adaptive Prior on β

Since we are interested in regularizing predictions of the outcome Y, a natural candidate

for shrinkage via an informative prior is the parameter vector β, which specifies the

conditional mean of Y|X. Ridge regression offers favorable predictive capabilities (Frank

and Friedman, 1993), and the `2 penalty on the norm of β is conjugate to the normal log-

likelihood. For these reasons, we replace the Jeffreys prior on β in (27) with

[β|σ2, λ] ∝
(

λ

σ2

)p/2

exp
{
− 1

2
λ

σ2 β>β

}
. (30)

This Normal prior on β is analogous to Bayesian ridge regression. λ is a hyperparameter,

ie η = {λ}. Conditional upon λ, the Gibbs step for β is

β ∼ Np

{
(x>A xA + xB

>xB + λIp)
−1(x>AyA + xB

>yB), σ2(x>A xA + xB
>xB + λIp)

−1
}

.

Thus, the posterior mean of β is shrunk toward zero and with smaller posterior variance.

As we have outlined, there are several options for the treatment of λ.
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fb-hibeta-ni Following Gelfand and Smith (1990), we can treat the hyperparameter λ as

random (DA+) with prior distribution [λ] ∝ λ−1. Then, we have the following additional

posterior step: λ ∼ G
{

p/2, β>β/(2σ2)
}

. This Bayesian ridge regression with posterior

sampling of λ is denoted by fb-hibeta-ni.

eb-hibeta-ni Alternatively, we may apply EWiG to estimate λ. That is, integrate

log[β|σ2, λ] with respect to the density [φ|Uobs, λ], differentiate with respect to λ, and

solve for λ. The resulting EWiG update is λ ← p
[
(1/K)∑K

k=1 β(k)>β(k)/σ2(k)
]−1

. This

is a Monte Carlo estimate of p
{

E
[
(β>β)/(σ2)

]}−1
, the maximum of the marginal likeli-

hood of λ. The update occurs at every Kth iteration of the algorithm using the previous

K draws of β and σ2; larger values of K yield a more precise estimate. This Bayesian

ridge with an Empirical Bayes update of λ is denoted by eb-hibeta-ni.

Remark 11: Although the Bayesian ridge imposes a `2-type penalty similar to the TR

class of estimators, there is an important distinction. TR estimators make use of the

surrogate data in subsample B by deriving pre-specified shrinkage targets. Here, the

information in the surrogate data has already been used in the imputation step for xB; the

Bayesian ridge shrinks β toward zero to regularize the conditional sampling distribution

and therefore predictions.

3.3.2 Adaptive Prior on Σ−1
X

(eb-hisigmax, eb-hibetasigmax) We noted previously that an informative prior on Σ−1
X is

necessary to ensure a proper joint posterior: Σ−1
X ∼W

{
3p, (2p− 1)−1[diag(V̂ar[xA])]

−1},

which has inverse scale matrix (2p− 1)diag(V̂ar[xA]). As we have noted, shrinkage of

Σ−1
X is closely related to that of β. This was exploited by Witten and Tibshirani (2009)

in the scout procedure, suggesting that prediction can be improved through adaptive
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regularization of Σ−1
X . Leaving the inverse scale matrix unspecified, the prior is

[Σ−1
X |Λ] ∝ |Λ|3p/2|Σ−1

X |
(2p−1)/2 exp

{
−(1/2)Tr (ΛΣ−1

X )
}

. (31)

Λ is the unknown positive-definite matrix of hyperparameters. The full conditional

distribution of Σ−1
X changes according to:

Σ−1
X ∼W

{
3p + nA + nB,(

Λ + (xA − 1nAµ>X)
>(xA − 1nAµ>X) + (xB − 1nBµ>X)

>(xB − 1nBµ>X)
)−1 }

.

Λ may be random, or it can be updated with an EWiG step. Given the potential diffi-

culty in precisely estimating a fully unconstrained matrix that maximizes the marginal

likelihood, we constrain Λ to be diagonal. Under this constraint, the EWiG update for

the ith diagonal of Λ is Λii ← 3p
(
(1/K)∑K

k=1 Σ−1
X

(k)
(ii)

)−1
. Σ−1

X (ii) indicates the ith diago-

nal element of Σ−1
X . Then, Λ = diag{Λ11, . . . , Λpp}. This is a Monte Carlo approximation

of 3pdiag{E[Σ−1
X ]11, . . . , E[Σ−1

X ]pp}−1, the minimizer of E
[
log[Σ−1

X |Λ]
]

with respect to Λ,

subject to the diagonal constraint, where [Σ−1
X |Λ] is given in (31). We will refer to this

approach as eb-hisigmax. Finally, we call the approach that uses both priors in (30)

and (31) with EWiG updates for λ and Λ eb-hibetasigmax. All of these alternatives are

summarized in Table 4.

Remark 12: Adaptively estimating the diagonal inverse scale matrix parameter Λ mod-

ifies the variance components of X. Alternatively, one might apply an EWiG update

to the degrees of freedom parameter, say d, which modifies the partial correlations of

X. For example, when d = p + 1, the induced prior on each partial correlation is uni-

form on [−1, 1] (Gelman and Hill, 2006). Larger values of d place more prior mass

closer to zero. Allowing the data to specify d is a reasonable alternative; however, we

encountered numerical difficulties in implementing this approach. The EWiG update
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cannot be expressed in closed form and must be estimated numerically. Additionally,

the “complete-data log-likelihood” in the M-step is often flat, such that a wide range of

values for d will return nearly equivalent log-likelihoods.

Method [β|η] ∝ [Σ−1
X |η] ∝ |Σ−1

X |(2p−1)/2× η Variant

fb-flatbeta 1 exp
{
− 2p−1

2 Tr (diag(V̂ar[xA])Σ
−1
X )
}
{} DA

fb-hibeta-ni

(
λ
σ2

)p/2
exp

{
− 1

2
λ
σ2 β>β

}
exp

{
− 2p−1

2 Tr (diag(V̂ar[xA])Σ
−1
X )
}
{λ} DA+

eb-hibeta-ni

(
λ
σ2

)p/2
exp

{
− 1

2
λ
σ2 β>β

}
exp

{
− 2p−1

2 Tr (diag(V̂ar[xA])Σ
−1
X )
}
{λ} EWiG

eb-hisigmax 1 |Λ|3p/2 exp
{
−(1/2)Tr (ΛΣ−1

X )
}

{Λ} EWiG

eb-hibetasigmax

(
λ
σ2

)p/2
exp

{
− 1

2
λ
σ2 β>β

}
|Λ|3p/2 exp

{
−(1/2)Tr (ΛΣ−1

X )
}
{λ, Λ} EWiG

Table 4: A summary of all Gibbs samplers and choices of priors considered. Λ is con-
strained to the class of diagonal matrices.

3.4 Estimation Under Predictive Loss

A fitted model may be summarized by measures of uncertainty, eg a posterior predic-

tive interval (ŶpL
new, ŶpH

new), as well as point predictions, Ŷnew = β∗0 + X>newβ∗ using sum-

mary values β∗0 and β∗. These are calculated with draws from the posterior distribution,

{φ(t)}. Predictive intervals are given by empirical quantiles of {Y(t)
new}, where Ŷ(t)

new =

β
(t)
0 + X>newβ(t) + σ2(t)ε(t) and ε(t)

iid∼ N{0, 1}. For point predictions, a summary value of

β0 is given by β̂0 = (1/T)∑t β
(t)
0 . For β, we minimize posterior predictive loss. We define

the posterior predictive mean by βppm = argminbEφ,Xnew|Uobs
(β− b)>XnewX>new(β− b).

This is in contrast to the posterior mean: βpm = argminbEβ|Uobs
(β− b)>(β− b). Esti-

mates of both quantities are given by

β̂ppm = ∑
t

(
Σ
(t)
X + µ

(t)
X µ

(t)
X
>
)−1

∑
t

(
Σ
(t)
X + µ

(t)
X µ

(t)
X
>
)

β(t), (32)

β̂pm = (1/T)∑
t

β(t). (33)
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To summarize, different posterior summaries of β come from minimizing different loss

functions; we have two estimates of β for each method and, as a consequence, two

choices of point predictions for Ynew. In contrast, we have only one posterior predictive

interval, that derived from the empirical quantiles of {Y(t)
new}.

3.5 Simulation Study

We conducted a simulation study to evaluate these methods. At first, the assumed

model of the data satisfied the generating model, as given in (24). We fixed nA = 50

and used nB ∈ {400, 150}. The diagonal elements of ΣX were set to unity, and the off-

diagonals were ρ|j1−j2|, ρ ∈ {0, 0.75}. Using these parameters, xA and xB were drawn

from N{0p, ΣX}. We considered both high (p = 99) and low (p = 5) dimensional

models: β = {j/100}j=49
j=−49 and β = {j/4}j=2

j=−2. R2 values were either 0.1 or 0.4. Thus

given β, ΣX and R2, σ2 was determined by solving β>ΣX β/(β>ΣX β + σ2) = R2. β0

was set to zero. yA|xA and yB|xB were drawn for each combination of β and σ2. This

yielded 16 unique simulation settings: two choices each for p, nB, ρ, and R2. To draw the

auxiliary data, we set ψ = 0 and ν = 1 and repeated each of the 16 settings for τ ∈ (0, 2),

drawing wA|xA and wB|xB based on the measurement error model in (24).

After a burn-in period of 2500, we stored 1000 posterior draws. We calculated β̂0,

β̂ppm (32) and β̂pm (33). For fb-flatbeta, fb-hibeta-ni, eb-hibeta-ni, eb-hisigmax, eb-

hibetasigmax, we estimated the MSPE of β̂ppm on 1000 new observations:

ˆMSPE(β̂0, β̂ppm) = (1/1000)
1000

∑
j=1

(Ynew,j − β̂0 − X>new,j β̂
ppm)2.

{Ynew,j, Xnew,j} are resampled from the same generating distribution for each simulation.

As a comparison, we fit a ridge regression (ridg) on subsample A only, choosing the

tuning parameter with the GCV function, and hyb, the flexible hybrid-type estimator
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described in Section 2.3. Figure 6, the primary results of the study, plots ˆMSPE averaged

over 250 simulated datasets over τ. We also estimated MSPE using β̂pm. Numerical

values are given in Tables B1 and B2. ridg and hyb yield only one estimate of β, and are

just repeated in the β̂ppm and β̂pm columns. Finally, we computed prediction intervals

for the new observations (Section 3.4). Although frequentist in nature, it is still desirable

for a Bayesian prediction interval to achieve nominal coverage ; the average coverage

rates of Ynew,j are given in Table 5.

From Figure 6, when p is large, eb-hibetasigmax uniformly dominates all other meth-

ods except eb-hibeta-ni, which is nearly identical and not plotted. All of the Bayesian

methods are similar when p is small; fb-flatbeta and fb-hibeta-ni are best by a small

margin when R2 = 0.1. eb-hisigmax, which corresponds to shrinkage on Σ−1
X alone,

does a poor job for large p, and fb-flatbeta predicts only slightly better. ridg and hyb

do not improve upon the best-performing Bayesian methods here. eb-hibetasigmax and

eb-hibeta-ni vary little over the values of τ we evaluated.

Coverage Properties eb-hibeta-ni and eb-hibetasigmax are the only two methods that

maintain close-to-nominal coverage under all scenarios (Table 5). In contrast, larger

values of τ considerably decrease the coverage of fb-flatbeta, fb-hibeta-ni and eb-

hisigmax.

Mean Squared Error. The results discussed above and reported in Figure 6 use the es-

timate of β that minimizes predictive loss, that is β̂ppm, and are evaluated by MSPE. If

instead we use ˆMSE(β̂ppm) or ˆMSE(β̂pm), eb-hibeta-ni and eb-hibetasigmax remain the

preferred methods (results not given).

Violations to Modeling Assumptions As we have noted, these likelihood-based approaches

depend on the assumed model approximately matching the true generating model. We

inspected robustness through violations to the model assumptions: (i) the distribution

of ε is skewed, shifted to maintain a zero mean: ε + 1 ∼ G{1, 1}, (ii) the measure-
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ment error model is misspecified: W |X ∼ Np{ψ1p + νX2, τ2Ip}, where we use X2

to denote the element-wise square, or (iii) X comes from a mixture of distributions:

X|Z ∼ Np{1[Z=2](3× 1p)− 1[Z=3](3× 1p), ΣX}, where 1[·] is the indicator function and

Z iid∼ Unif{1, 2, 3}.

The results of these modeling violations are given in Tables B3–B8. When ε is skewed

(B3,B4), the rankings change little; eb-hibeta-ni and eb-hibetasigmax are preferred for

large p, and all methods are similar for small p. The case is similar for the misspecified

measurement error model (B5,B6). Interestingly, when X comes from a mixture of nor-

mals (B7,B8), and when p is large, fb-hibeta-ni often has smaller MSPE than eb-hibeta-

ni and eb-hibetasigmax. Comparing this to Table B1, which has no modeling violations,

this is due to a decrease in MSPE for fb-hibeta-ni rather than increases in MSPE for eb-

hibeta-ni and eb-hibetasigmax. For example, in the MSPE(β̂ppm) columns of the sixth

block down, eb-hibeta-ni has values 85.0, 85.5, 86.1, 88.4, and 89.3 in Table B1 and val-

ues 85.0, 85.5, 87.1, 88.8, and 92.0 in Table B7. However, fb-hibeta-ni has, respectively,

94.2, 93.1, 93.1, 94.3, and 94.7 (B1) and 84.3, 84.8, 86.6, 87.7, and 90.0 (B7). In summary,

eb-hibeta-ni/eb-hibetasigmax are moderately robust to several strong modeling viola-

tions, and the fully Bayesian fb-hibeta-ni may even have decreased MSPE under one of

these violations.

3.6 Example: Lung Adenocarcinoma Data

As in Chapter 2, we consider whether gene expression measurements can help predict

survival time in lung cancer patients, using data from Chen et al. (2011), who selected

91 high-correlating genes representing a broad spectrum of biological functions upon

which to build a predictive model. Expression using Affymetrix on the log-scale was

measured on 439 tumor samples, and quantitative real-time polyermase chain reaction

(qRT-PCR) measurements were collected on a subset of 47 of these. Individual correla-

44



τ

15

20

={ρ,R2} {0,0.4}

={p,nB} {99,400}

0 1 2

80

90

100

110
={ρ,R2} {0.75,0.4}

={p,nB} {99,400}

80

90

100

={ρ,R2} {0,0.1}

={p,nB} {99,400}

0 1 2

450

500

550

600

650
={ρ,R2} {0.75,0.1}

={p,nB} {99,400}

15

20

25

={ρ,R2} {0,0.4}

={p,nB} {99,150}

80
100
120
140
160

={ρ,R2} {0.75,0.4}

={p,nB} {99,150}

80
100
120
140
160

={ρ,R2} {0,0.1}

={p,nB} {99,150}

600

800

1000
={ρ,R2} {0.75,0.1}

={p,nB} {99,150}

0.95

1.00

1.05

={ρ,R2} {0,0.4}

={p,nB} {5,400}

0.84
0.86
0.88
0.90
0.92
0.94

={ρ,R2} {0.75,0.4}

={p,nB} {5,400}

5.6

5.8

6.0

6.2
={ρ,R2} {0,0.1}

={p,nB} {5,400}

5.1
5.2
5.3
5.4
5.5

={ρ,R2} {0.75,0.1}

={p,nB} {5,400}

0.95

1.00

1.05

0 1 2

={ρ,R2} {0,0.4}

={p,nB} {5,150}

0.84
0.86
0.88
0.90
0.92

={ρ,R2} {0.75,0.4}

={p,nB} {5,150}

5.6

5.8

6.0

6.2

0 1 2

={ρ,R2} {0,0.1}

={p,nB} {5,150}

5.1
5.2
5.3
5.4
5.5

={ρ,R2} {0.75,0.1}

={p,nB} {5,150}

RIDG
HYB
FB−FLATBETA

FB−HIBETA−NI
EB−HISIGMAX
EB−HIBETASIGMAX

σ2

Figure 6: Empirical MSPE over τ for 16 simulation settings described in Section 3.5. For
each method, β was estimated with β̂ppm based on 250 independent training datasets,
and MSPE was estimated on 250 validation datasets of size 1000. The thick, solid bar
(σ2) corresponds to predictions made using the true generating parameters.
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τ τ
{ρ, R2} {p, nB} Method 0.01 0.5 1.0 1.5 2.0 {p, nB} Method 0.01 0.5 1.0 1.5 2.0

0,0.4 99,400 fb-flatbeta 949 925 760 518 474 5,400 fb-flatbeta 948 946 939 940 938
fb-hibeta-ni 928 926 933 937 937 fb-hibeta-ni 947 945 937 936 934
eb-hibeta-ni 949 949 950 951 950 eb-hibeta-ni 948 947 943 944 944
eb-hisigmax 949 930 809 550 474 eb-hisigmax 948 947 941 940 938

eb-hibetasigmax 949 948 948 949 949 eb-hibetasigmax 948 948 944 944 943
0.75,0.4 99,400 fb-flatbeta 948 922 882 854 813 5,400 fb-flatbeta 948 946 947 943 941

fb-hibeta-ni 930 910 898 898 899 fb-hibeta-ni 946 945 945 942 939
eb-hibeta-ni 948 943 941 939 935 eb-hibeta-ni 948 947 950 949 947
eb-hisigmax 948 920 874 811 721 eb-hisigmax 948 945 945 943 941

eb-hibetasigmax 948 946 943 942 938 eb-hibetasigmax 947 946 949 949 948
0,0.1 99,400 fb-flatbeta 949 932 846 592 490 5,400 fb-flatbeta 948 948 945 940 939

fb-hibeta-ni 919 908 912 913 914 fb-hibeta-ni 947 947 943 937 937
eb-hibeta-ni 947 949 949 948 949 eb-hibeta-ni 948 948 947 945 946
eb-hisigmax 949 934 878 628 521 eb-hisigmax 948 948 945 940 940

eb-hibetasigmax 948 948 949 948 948 eb-hibetasigmax 948 948 947 945 946
0.75,0.1 99,400 fb-flatbeta 948 924 884 846 800 5,400 fb-flatbeta 948 947 943 939 936

fb-hibeta-ni 928 908 892 886 883 fb-hibeta-ni 947 945 942 938 934
eb-hibeta-ni 948 947 945 944 943 eb-hibeta-ni 948 947 947 946 945
eb-hisigmax 948 923 879 812 723 eb-hisigmax 948 946 943 940 937

eb-hibetasigmax 948 948 946 945 945 eb-hibetasigmax 948 947 947 946 946
0,0.4 99,150 fb-flatbeta 948 918 493 442 411 5,150 fb-flatbeta 948 946 942 943 944

fb-hibeta-ni 919 931 939 940 938 fb-hibeta-ni 945 943 938 937 939
eb-hibeta-ni 946 949 949 949 945 eb-hibeta-ni 948 947 946 947 948
eb-hisigmax 948 922 468 494 453 eb-hisigmax 948 947 943 942 943

eb-hibetasigmax 946 947 947 947 944 eb-hibetasigmax 948 948 946 946 947
0.75,0.4 99,150 fb-flatbeta 947 880 653 619 548 5,150 fb-flatbeta 948 946 944 942 941

fb-hibeta-ni 925 911 909 911 916 fb-hibeta-ni 945 943 941 940 938
eb-hibeta-ni 947 942 940 937 939 eb-hibeta-ni 947 948 948 947 946
eb-hisigmax 947 854 565 531 461 eb-hisigmax 948 946 944 942 942

eb-hibetasigmax 947 945 943 941 943 eb-hibetasigmax 948 947 947 948 947
0,0.1 99,150 fb-flatbeta 949 922 491 455 399 5,150 fb-flatbeta 947 946 943 939 942

fb-hibeta-ni 899 907 918 920 922 fb-hibeta-ni 944 943 939 934 936
eb-hibeta-ni 946 947 948 947 949 eb-hibeta-ni 946 946 946 944 946
eb-hisigmax 948 923 546 470 443 eb-hisigmax 947 946 944 939 941

eb-hibetasigmax 946 947 947 947 948 eb-hibetasigmax 946 946 946 944 947
0.75,0.1 99,150 fb-flatbeta 946 879 714 616 600 5,150 fb-flatbeta 949 945 942 940 938

fb-hibeta-ni 921 906 897 895 894 fb-hibeta-ni 947 942 938 936 933
eb-hibeta-ni 947 947 945 944 944 eb-hibeta-ni 949 946 946 947 945
eb-hisigmax 946 834 581 533 519 eb-hisigmax 950 944 942 941 939

eb-hibetasigmax 947 948 946 946 946 eb-hibetasigmax 949 946 946 947 945

Table 5: Results from the simulation study described in 3.5: average coverage rates
×1000 corresponding to prediction of new observations, nominally 0.95× 1000, for each
Bayesian method. Specifically, each value is coverage averaged over 250 simulations,
1000 new observations per simulation. Values that lie in the interval (920, 980) are in
bold
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tions between the qRT-PCR and Affymetrix measurements from the 47 tumors exceed

0.5 across all 91 genes. Clinical covariates, age, gender and stage of cancer [I-III], are

also available. Because qRT-PCR is the clinically applicable measurement for future ob-

servations, the goal is a qRT-PCR + clinical covariate model for predicting survival time

after surgery. An independent cohort of 101 tumors with qRT-PCR measurements and

clinical covariates is available for validation.

11 measurements in the qRT-PCR-only data, out of 47× 91 = 4277 total, or 0.26 percent,

were missing; in order to use all observations, these values were imputed using chained

equations and thereafter assumed known. Bayesian methods of imputation, like those

discussed for imputing xB, are a better approach to handle this missingness but, given

the small percentage of missingness, would likely not affect the results. Additionally,

four tumors, three in the Affymetrix-only sample and one in the validation sample, had

event times less than one month after surgery; these were removed before analysis. Thus

nA = 47, nB = 389, and the validation sample is size 100.

Because our methodology was developed for continuous outcomes, censoring necessi-

tated some preprocessing of the data. We first imputed each censored log-survival time

from a linear model of the clinical covariates, conditional upon the censoring time. This

model was fit to the training data but was applied to censored survival times in both

the training and validation data. Given completed log-survival times, we re-fit this same

model and calculated residuals from both the training and validation data. These resid-

uals were considered as outcomes, and the question is whether any additional variation

in the residuals is explained by gene expression. While there are more appropriate

ways of dealing with coarsened data and additional covariates in the likelihood-based

framework, processing the data this way allowed for a straightforward comparison with

the non-likelihood-based methods of ridg and hyb. Finally, in Chapter 2, we used a

gene-specific ME model: wij = ψj + νjxij + τξij. To incorporate this modification into
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the Bayesian algorithms, we put independent flat priors on ψj and νj, j = 1, . . . , p. The

modified Gibbs steps are included in Appendix B.2

We applied each Bayesian approach, running each chain of the Gibbs sampler for 4000

iterations and storing posterior draws from the subsequent 4000 iterations. Table 6

presents numerical results, and Figure 7 plots β̂ppm from each method as a kernel density

estimate.

In terms of MSPE, eb-hibeta-ni and eb-hibetasigmax were the best performing meth-

ods, with MSPEs of 0.554 and 0.555, respectively, using β̂ppm. These results are some-

what better than those from ridg (0.620) and hyb (0.601) as well as fb-flatbeta (1.595),

fb-hibeta-ni (0.793), and eb-hisigmax (1.391). Using β̂pm, the estimated posterior mean

of β, the two best methods, eb-hibeta-ni and eb-hibetasigmax, gave almost identical

results, while the remaining Bayesian methods had worse prediction error.

From Figure 7, the induced shrinkage from eb-hibeta-ni and eb-hibetasigmax is con-

siderable; in both cases, the range of β̂ppm is about (-0.008,0.008). Plugging in β̂ = 0p

yields an MSPE of 0.59, which these two methods improve upon. Considering cov-

erage of the prediction intervals (Table 6), fb-hibeta-ni (0.94), eb-hibeta-ni (0.97) and

eb-hibetasigmax (0.96) all offer coverage rates that are close to their nominal values, as

opposed to both fb-flatbeta and eb-hisigmax, whose coverage rates are less than nom-

inal (both 0.86). We also created prediction intervals for ridg and hyb using a bootstrap

algorithm; these, too, had coverage rates that were not as close to nominal (0.91 and

0.99).

3.7 Discussion

We have considered the problem of shrinking coefficients in a high-dimensional model

when a large proportion of the data are missing and predictions for future observations
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ridg fb-flatbeta eb-hibeta-ni eb-hibetasigmax

hyb fb-hibeta-ni eb-hisigmax

ˆMSPE(β̂0, β̂ppm) 0.620 0.601 1.595 0.793 0.554 1.391 0.555

ˆMSPE(β̂0, β̂pm) – – 1.769 0.893 0.558 1.966 0.559

min(β̂ppm) -0.006 -0.023 -0.120 -0.041 -0.009 -0.083 -0.007

max(β̂ppm) 0.006 0.027 0.063 0.064 0.005 0.089 0.007

Avg. Coverage 0.91 0.99 0.86 0.94 0.97 0.86 0.96

Avg(ŶB,97.5
new − ŶB,2.5

new ) 3.37 4.67 4.00 3.31 3.11 3.92 3.10

Table 6: Numerical results from analysis of the lung adenocarcinoma data, with ridg

and hyb included for reference. ˆMSPE(β̂0, β̂ppm) is the empirical MSPE from the vali-
dation sample of size 100, min(β̂ppm) and max(β̂ppm) give the range of the estimate of
β for each model, Avg. Coverage is the proportion of the prediction intervals, for the
validation sample, that contained the true outcome. For ridg and hyb, these are based
on the bootstrap. Avg(ŶB,97.5

new − ŶB,2.5
new ) gives the average prediction interval length for the

validation sample.

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

RIDG
HYB
FB−FLATBETA
FB−HIBETA−NI
EB−HIBETA−NI
EB−HISIGMAX
EB−HIBETASIGMAX

Figure 7: Kernel density estimates of the Chapter 3 methods’ 91 coefficient estimates
from the lung adenocarcinoma data
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are of primary interest. A likelihood-based approach for fitting such a model confers

a number of advantages, among these being the inclusion of shrinkage into the like-

lihood and the proper accounting of uncertainty in predictions coming from the unob-

served data. A number of existing Bayesian approaches for the treatment of missing data

and/or implementation of shrinkage methods are easily adapted here. We have shown

how two such approaches, the Monte Carlo EM (Wei and Tanner, 1990), a Gibbs sampler

that multiply imputes missing data, and the Empirical Bayes Gibbs Sampler (Casella,

2001), a Gibbs sampler that adaptively shrinks parameter estimates, actually generalize

to the same algorithm, which we call EM-within-Gibbs. Finally, we have proposed sev-

eral specific choices of prior specification aimed at improving prediction with shrinkage

methods.

Two methods, the Bayesian ridge with Empirical Bayes estimation of the shrinkage pa-

rameter λ, eb-hibeta-ni, and Bayesian ridge in conjunction with Empirical Bayes shrink-

age of the precision matrix Σ−1
X , eb-hibetasigmax, stand out as the methods of choice.

Our simulation study and data analysis showed them to be best under a number of

scenarios using several criteria, including MSPE and prediction coverage, and robust to

several modeling violations.
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CHAPTER 4

Using Hyperpenalties to Select the Tuning Parameter in
Ridge Regression

4.1 Introduction

Suppose we have data, {y, x}, which are n observations of a continuous outcome Y and

p covariates X, with the covariate matrix x regarded as fixed. n is small relative to p.

We relate Y and X by a linear model, Y = β0 + X>β + σε, with ε ∼ N{0, 1}. Except

where noted, assume y is centered, x is centered and scaled to have unit variance and,

consequently, β̂0 = 0 (and thus ignored). Up to an additive constant, the log-likelihood

is

`(β, σ2) = −n
2

ln(σ2)− 1
2σ2 (y− xβ)>(y− xβ). (34)

We consider penalized estimation of β, with our primary interest being prediction of

future observations, rather than variable selection. Thus, we focus on `2-penalization, ie

ridge regression (Hoerl and Kennard, 1970), the significance of which has remained even

in the presence of more modern penalization methods (eg Frank and Friedman, 1993;

Tibshirani, 1996; Fu, 1998; Zou and Hastie, 2005). Ridge regression may be viewed as a

hierarchical linear model, similar to mixed effects modeling. Here the “random effects”

are the individual elements of β. An `2-penalty implicitly assumes these are jointly and
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independently Normal with mean zero and variance σ2/λ, because the penalty term

matches the Normal log-density up to a normalizing constant that does not depend on

β:

pλ(β, σ2) = − λ

2σ2 β>β +
p
2

ln(λ)− p
2

ln(σ2). (35)

The scalar λ is the ridge parameter and controls the shrinkage of β toward zero; larger

values yield greater shrinkage. Given λ, the maximum penalized likelihood estimate of

β is

βλ = argmaxβ|λ

{
`(β, σ2) + pλ(β, σ2)

}
= (x>x + λIp)

−1x>y. (36)

A choice of λ that is too small leads to overfitting of the data, and one that is too large

gives underfitting or oversmoothing of the data. When n− 1 ≥ p, a key result from Hoerl

and Kennard (Theorem 4.3, 1970) is that there exists λ > 0 for which the mean squared

error (MSE) of βλ, E[(β− βλ)
>(β− βλ)], decreases relative to λ = 0. A strictly positive λ

introduces bias in βλ but decreases variance, making a bias-variance tradeoff. This result

is relevant because prediction error, E[(β− βλ)
>x>x(β− βλ)], is closely related to MSE

and may correspondingly benefit from such a bias-variance tradeoff. One cannot simply

maximize `(β, σ2) + pλ(β, σ2) jointly with respect to β, σ2 and λ, because the expression

can be made arbitrarily large by plugging in β = 0 and letting λ → ∞. Typically, λ is

selected by optimizing some other other objective function.

Our motivation for this chapter is to investigate selection strategies for λ when n is

“small”, by which we informally mean n < p or n ≈ p, the complement being a more

standard n� p situation. This small-n situation increasingly occurs in modern genomic

studies. Our contribution is two-fold. First, we present new ideas for choosing λ in such

cases. These include both a small-sample modification to a common existing approach
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and novel proposals. Our framework categorizes existing strategies into two classes,

based on whether a goodness-of-fit criterion or a likelihood is maximized. Methods in

either class are susceptible to over- or underfitting; a third, new class extends the hi-

erarchical perspective of ridge regression, the first level being `(β, σ2) and the second

pλ(β, σ2). Following ideas by Takada (1979), who showed that Stein’s Positive Part Esti-

mator corresponds to a posterior mode given a certain prior, and, more recently, Straw-

derman and Wells (2012), who place a hyperprior on the Lasso penalty parameter, we

add a third level, defining a “hyperpenalty” on λ. This hyperpenalty induces shrinkage

on λ itself and thereby protects against extreme choices of λ. The second contribution

follows naturally, namely a comprehensive evaluation of all methods, both existing and

novel, in this small-n situation via simulation studies.

The remainder of this chapter is organized as follows. We review current approaches for

choosing λ (the first and second classes discussed above) in Sections 4.2 and 4.3 and pro-

pose a small-sample modification to one of these methods, generalized cross-validation

(gcv, Craven and Wahba, 1979). In Section 4.4, we define a generic hyperpenalty func-

tion. Given a hyperpenalty, we define two optimization algorithms, both of which yield

a choice of λ: joint optimization (4.4.1) and marginalized optimization (4.4.2). We then

present three choices for the form of hyperpenalty (4.4.3). Section 4.5 conducts a compre-

hensive simulation study. Our results suggest that the existing approaches for choosing

λ can be improved upon in many small-n cases. Section 4.6 concludes with a discussion.

4.2 Goodness-of-Fit-Based Methods for the Selection of λ

These methods define an objective function in terms of λ to be minimized. Commonly

used is K-fold cross-validation, which partitions observations into K groups,

κ(1), . . . , κ(K), and calculates βλ K times using equation (36), each time leaving out

group κ(i), to get β
−κ(1)
λ , β

−κ(2)
λ , etc. For β

−κ(i)
λ , cross-validated residuals are calculated
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on the observations in κ(i), which did not contribute to estimating β. The objective func-

tion estimates prediction error and is the sum of the squared cross-validated residuals:

λK-cv = argminλ ln
K

∑
i=1

(yκ(i) − xκ(i)β
−κ(i)
λ )>(yκ(i) − xκ(i)β

−κ(i)
λ ). (37)

K = 5 is a suggested choice; see Hastie et al. (2009) for more details. In the case of K = n,

some simplification (Golub et al., 1979) gives

λn-cv = argminλ ln
n

∑
i=1

(Yi − X>i βλ)
2/(1− Dλ[ii] − 1/n)2, (38)

with Dλ = x(x>x + λIp)
−1x. (39)

Dλ[ii] is the ith diagonal element of Dλ and measures the ith observation’s influence in

estimating β. Further discussion of its interpretation is given in Section 4.2.1. From (38),

observations for which Dλ[ii] is large, ie influential observations, have greater weight.

gcv multiplies each squared residual in (38) by (1− Dλ[ii] − 1/n)2/(1− Trace(Dλ)/n−

1/n)2, thereby giving equal weight to all observations. Using the equality y − xβλ =

(In − Dλ)y, further simplification yields

λgcv = argminλ

{
ln y>(In − Dλ)

2y− 2 ln(1− Trace(Dλ)/n− 1/n)
}

. (40)

Remark 13: The input for the functions in (37) and (38) is the non-centered y and un-

standardized x; for each fold, y is centered and x is standardized according to the model-

fitting portions, y−κ(i) and x−κ(i). Dλ is a function of a standardized x and thus depends

on the centering and scaling factors, which will change as each fold is sequentially left

out. On the other hand, the objection function in (40) contains Dλ standardized to all

observations. Our notation for Dλ is inadequate to reflect this subtlety. Furthermore,

re-centering y at each fold implies β0 is re-estimated; this is reflected by the “−1/n”

in (38). This term does not appear in the derivations by Golub et al. (1979) nor the
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implementation in Chapter 2 given by (5), both of which assume β0 is known.

Although derived using different principles, other methods reduce to a “model fit +

penalty” form similar to (40): Akaike’s Information Criterion (aic, Akaike, 1973) and

the Bayesian Information Criterion (bic, Schwarz, 1978). Respectively, each chooses λ as

follows:

λaic = argminλ

{
ln y>(In − Dλ)

2y + 2(Trace(Dλ) + 2)/n
}

, (41)

λbic = argminλ

{
ln y>(In − Dλ)

2y + ln(n)(Trace(Dλ) + 2)/n
}

. (42)

Asymptotically in n, gcv will choose the optimal λ, that is, the one that minimizes the

prediction criterion E
[
(β− βλ)

>x>x(β− βλ)
]

(Golub et al., 1979; Li, 1986). Further,

Golub et al. observe that gcv and aic asymptotically coincide. bic asymptotically selects

the true underlying model from a set of nested candidate models (Sin and White, 1996;

Hastie et al., 2009), so its justification for use in selecting λ, a shrinkage parameter,

is weak. In all cases, these methods depend on n � p. When n is small, extreme

overfitting is possible (Wahba and Wang, 1995; Efron, 2001), giving small bias/large

variance estimates. A small-sample correction of aic (aicC, Hurvich et al., 1998) and a

robust gcv (rgcvγ, Lukas, 2006) exist:

λaicC = argminλ

{
ln y>(In − Dλ)

2y + 2(Trace(Dλ) + 2)/(n− Trace(Dλ)− 3))
}

, (43)

λrgcvγ = argminλ

{
ln y>(In − Dλ)

2y− 2 ln(1− Trace(Dλ)/n− 1/n)

+ ln(γ + (1− γ)Trace(D2
λ)/n)

}
. (44)

For aicC, the modified penalty is the product of the original penalty, 2(Trace(Dλ) +

2)/n, and n/(n − Trace(Dλ) − 3). The authors do not consider the possibility of n −

Trace(Dλ) − 3 < 0, inappropriately giving a negative penalty; in our implementation

of aicC, we replaced n− Trace(Dλ)− 3 with max{ε, n− Trace(Dλ)− 3}, with ε a small
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positive number. As a rule of thumb, Burnham and Anderson (2002) suggest using

aicC over aic when n < 40p, their threshold for small n, and thus also when n ≈ p.

rgcvγ adds another penalty to gcv based on a tuning parameter γ ∈ (0, 1], as in (44);

we use γ = 0.3 based on Lukas’ recommendation. Small choices of λ are more severely

penalized, thereby offering protection against overfitting. To the best of our knowledge,

neither aicC nor gcvγ have been extensively studied in the context of ridge regression.

4.2.1 Small-Sample Generalized Cross-Validation

Trace(Dλ), with Dλ defined in (39), is the effective number of model parameters (ex-

cluding β0 and σ2). It is monotonically decreasing with λ > 0 and in the interval

(0, min{n − 1, p}). The upper bound on Trace(Dλ) is not min{n, p} because the stan-

dardization of x reduces its rank by one when n ≤ p. aic/bic do not depend on whether

β0 and σ2 are properly counted as parameters in the penalty. That is, the counting of

these parameters is represented by the “+ 2” expressions in (41) and (42) and thus only

additively affects the penalty. For this reason β0 and σ2 may be ignored in considering

model complexity. On the other hand, from (40), gcv counts β0 but not σ2; counting

both will change the penalty, being on the log-scale. This motivates our proposed small-

sample correction to gcv (gcvC), which properly counts σ2 as a parameter:

λgcvC = argminλ

{
ln y>(In − Dλ)

2y− 2 ln(max{ε, 1− Trace(Dλ)/n− 2/n})
}

, (45)

with ε a small positive number. As with aicC, 1− Trace(Dλ)/n− 2/n may be negative,

and the objective function is heavily penalized in this case. This is a small-sample cor-

rection because the objective functions in (40) and (45) coincide as n → ∞; in particular,

the asymptotic optimality of gcv transfers to gcvC.

The small-sample deficiency of gcv is corrected by gcvC as follows. If n − 1 = p, the
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model-fit term in the objective function of (40), ln y>(In − Dλ)
2y, tends to negative in-

finity as λ decreases. In the extreme case of λ = 0, each observation is allocated a

regression coefficient, and predictions perfectly fit the observations. The penalty term,

−2 ln(1− Trace(Dλ)/n− 1/n), tends to infinity as λ decreases, because Trace(Dλ) ap-

proaches n− 1. The rates of convergence for the model-fit and penalty terms determine

whether gcv chooses a too-small λ. In particular, if the model-fit term approaches nega-

tive infinity faster, the objective function is minimized by setting λ as small as possible.

Although this phenomenon is most striking in cases for which n − 1 = p, as we will

see in Section 4.5, the case is similar when n − 1 < p. That is, predictions will nearly

match observations as λ decreases but remains numerically positive to allow for the ma-

trix inversion in Dλ, and the penalty term still approaches infinity. The gcvC penalty,

however, is infinite when λ is small enough such that Trace(Dλ) = n − 2, rather than

n− 1, as with gcv. Therefore, the effective number of remaining parameters, beyond σ2,

is allowed to be at most n− 1, and perfect fit of the observations to the predictions never

occurs because the corresponding penalty is too large.

4.3 Likelihood-Based Methods for the Selection of λ

A second approach treats the ridge penalty in (35) as a log-density. One criterion con-

siders a marginal likelihood, where λ is interpreted as the variance component of a

mixed-effects model:

m(λ, σ2) = ln
∫

β
exp{`(β, σ2) + pλ(β, σ2)}dβ

= − 1
2σ2 y>(In − Dλ)y−

n
2

ln(σ2) +
1
2

ln
∣∣In − Dλ

∣∣. (46)

From this, y|λ, σ2 is Multivariate Normal with mean 0n (y is centered) and covariance

σ2(In − Dλ)
−1. The maximum profile marginal likelihood (mpml) estimate, originally

57



proposed for smoothing splines (Wecker and Ansley, 1983), profiles m(λ, σ2) over σ2,

replacing each instance of σ2 with σ̂2
λ = y> (In − Dλ) y/n, and optimizes the “concen-

trated” log-likelihood, m(λ, σ̂2
λ):

λmpml = argminλ

{
ln y> (In − Dλ) y− 1

n
ln
∣∣In − Dλ

∣∣} . (47)

Closely related is the generalized/restricted mpml (gmpml, Harville, 1977; Wahba, 1985),

which adjusts the penalty to account for estimation of regression parameters that are not

marginalized. Here, only β0 is not marginalized, so the adjustment is by one degree of

freedom (Appendix C.1):

λgmpml = argminλ

{
ln y> (In − Dλ) y− 1

n− 1
ln
∣∣In − Dλ

∣∣} . (48)

In a smoothing-spline comparison of gmpml to gcv, Wahba (1985) found mixed results,

with neither method offering uniformly better predictions. For scatterplot smoothers,

Efron (2001) notes that gmpml may oversmooth, yielding large bias/small variance esti-

mates.

Remark 14: Rather than profiling over σ2, one could jointly optimize m(λ, σ2) over λ

and σ2. This can be achieved with iterative gradient ascent steps. We have not found

this approach previously used as a selection criterion in ridge regression. Our initial

investigation of this (and its restricted likelihood counterpart) gave results similar to

mpml and gmpml; consequently, we do not consider them further.

An alternative to the marginal likelihood methods described above is to treat the objec-

tive function in (36) as an h-log-likelihood, or “h-loglihood”, of the type proposed by

Lee and Nelder (1996) for hierarchical generalized linear models. The link between pe-

nalized likelihoods (like ridge regression) and the h-loglihood was noted in the paper’s

ensuing discussion. To estimate σ2, the dispersion, and λ, the variance component, Lee
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and Nelder suggested an iterative profiling approach, yielding the maximum adjusted

profile h-loglihood (maphl) estimate. In Appendix C.2, we show one iteration proceeds

as follows:

σ2(i) ←

(
y− xβ(i−1))>(y− xβ(i−1)

)
+ λ(i−1)β(i−1)>β(i−1)

n− 1
, (49)

λ(i) ← argminλ

{
λβ(i−1)>β(i−1)/σ2(i) − ln

∣∣In − Dλ

∣∣} , (50)

β(i) ← βλ(i) , (51)

and λmaphl = λ(∞).

Finally, Tran (2009) proposed the “Loss-Rank” (lr) method for selecting λ. Its derivation,

which we do not give, is likelihood-based, but the criterion resembles that of aic in (41):

λlr = argminλ

{
ln y> (In − Dλ)

2 y− 2
n

ln
∣∣In − Dλ

∣∣} . (52)

Tran also suggested a modified penalty term that is dependent on y, but this did not

give appreciably different results from λlr in their study.

4.4 Optimization with Hyperpenalties

As we have noted, some existing methods may choose extreme values of λ, particularly

when n is small, suggesting a need for a second level of shrinkage, that is, shrinkage of

λ itself. We extend the hierarchical framework of (34) and (35) with a “hyperpenalty” on

λ, h(λ), which gives support for λ over a range of values. The hyperpenalty corresponds

to a log-density and therefore must satisfy
∫ ∞

0 exp{h(λ)}dλ < ∞. Further, h(λ) must

approach negative ∞ sufficiently fast with λ. We will propose three choices of h(λ).

When σ2 is unknown, the hierarchy is completed with a distribution on σ2; we use the
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improper log-density − ln(σ2) throughout. The “hyperpenalized log-likelihood” is then

hp`(β, λ, σ2) = `(β, σ2) + pλ(β, σ2) + h(λ)− ln(σ2). (53)

From the Bayesian perspective, the hyperpenalty is simply a hyperprior on λ, and the

hyperpenalized likelihood is the posterior. In contrast to fully Bayesian methods, which

characterize the entire posterior, we focus primarily on mode finding, that is, finding

a single estimate of β, σ2 and λ, which carries with it computational advantages. We

consider two options: joint optimization of β, σ2 and λ (jo) and optimization of β and σ2

after marginalizing over λ (mo). This hierarchical perspective also relates to our earlier

comment in Section 4.1 that one cannot simply optimize `(β, σ2) + pλ(β, σ2) alone and

demonstrates why h(λ) must correspond to a log-density. In other words, optimizing

(53) using h(λ) = C, C constant, would yield the same result as optimizing `(β, σ2) +

pλ(β, σ2), namely an infinite hyperpenalized log-likelihood. We first describe jo and mo

for a choice of h(λ) that satisfies the above conditions but is otherwise general and then

propose three specific choices of h(λ).

4.4.1 Joint Optimization

jo estimates a joint mode of (53), namely {β̂, λ̂, σ̂2} ← argmaxβ,λ,σ2{hp`(β, λ, σ2)}. If

this is intractable, the joint maximum may be calculated using conditional maximization

steps:

σ2(i) ← argmaxσ2

{
hp`(β(i−1), σ2, λ(i−1))

}
=

(
y− xβ(i−1))>(y− xβ(i−1)

)
+ λ(i−1)β(i−1)>β(i−1)

n + p + 2
, (54)

λ(i) ← argmaxλ

{
hp`(β(i−1), σ2(i), λ)

}
, (55)

β(i) ← argmaxβ

{
hp`(β, σ2(i), λ(i))

}
= βλ(i) , (56)
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and letting {β̂, λ̂, σ̂2} = {β(∞), λ(∞), σ2(∞)}.

4.4.2 Marginalized Optimization

In mo, λ is marginalized, and the resulting marginal likelihood of β and σ2 is maximized:

{β̂, σ̂2} ← argmaxβ,σ2 ln
∫

λ exp
{

hp`(β, λ, σ2)
}

dλ. An EM algorithm (Dempster et al.,

1977) achieves this:

E-step Q(β, σ2|β(i), σ2(i))← Eλ|β(i),σ2(i)

[
hp`(β, λ, σ2)

]
.

M-step {β(i+1), σ2(i+1)} ← argmaxβ,σ2 Q(β, σ2|β(i), σ2(i)).

Upon convergence, β̂ = β(∞). Because h(λ) is not a function of β and σ2, calculation

of Q, the expected hyperpenalized likelihood, requires only the expectation of pλ(β, σ2).

From (35), the only expression containing β and σ2 is linear in λ. Therefore, only the

expectation of λ is required, and equivalent formulations of the E- and M-steps are

written as

σ2(i) ←

(
y− xβ(i−1))>(y− xβ(i−1)

)
+ λ(i−1)β(i−1)>β(i−1)

n + p + 2
, (57)

λ(i) ← E
λ|β(i−1),σ2(i) [λ] =

∫ ∞
0 λ exp{pλ(β(i−1), σ2(i)) + h(λ)}dλ∫ ∞

0 exp{pλ(β(i−1), σ2(i)) + h(λ)}dλ
, (58)

β(i) ← βλ(i) . (59)

Thus, the only difference between mo and jo is in the update to λ.

4.4.3 Choice of Hyperpenalty

We now consider choices of the hyperpenalty h(λ). Each is parametrized with a shape

and rate parameter. The resulting jo and mo updates for λ are given Appendices C.3–

C.5.
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Gamma (ga) This uses the hyperpenalty hga(λ) = (a− 1) ln(λ)− λ/b, the log-density of

a G{a, b} variable. From the Bayesian perspective, this may be natural because it is con-

jugate to the precision of the Normal distribution, which is one possible interpretation

of λ (eg Armagan and Zaretzki, 2010; Tipping, 2001). In contrast, the Gamma distribu-

tion may not be amenable to interpreting λ as a shrinkage parameter. The density of the

random variable ln(λ) induced by hga(λ) above is negatively skewed (logarithms are

the appropriate scale here because of the relative impact of λ). This negative skewness

may lead to overfitting (ie small bias/large variance estimates). In small-n situations,

it is the variance of βλ, and not bias, that primarily drives prediction error, meaning

that underfitting is the less deleterious error to make. This motivates our considera-

tion of distributions for ln(λ) with no skewness (λ is Log-Normal) or positive skewness

(Inv-Gamma).

Log-Normal (ln) This uses hln(λ) = − ln(λ)− ln(bλ)2/(2a), which is the log-density of

Log-Normal variable with shape a and rate b. If λ is Log-Normal, ln(λ) is Normal, and

its density has no skewness.

Inverse-gamma (ig) This has the hyperpenalty hig(λ) = −(a + 1) ln(λ)− 1/(bλ), which

is the log of an IG{a, b} density. In this case, ln(λ) has positive skewness, offering

protection against overfitting. Although this is an unusual distributional choice when

viewing λ as a precision parameter (the Inv-Gamma distribution is conjugate to the

Normal variance), the properties of the Inv-Gamma distribution are amenable to the

desired behavior of a shrinkage parameter. One drawback to this choice of hyperpenalty

is that small values of a may result in an infinite mode (jo) or infinite intergral (mo).

This is discussed below.
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4.4.4 Specification of the Shape and Rate

Implementing the ga, ln and ig hyperpenalties requires the subjective determination of

the shape and rate (a and b, respectively). From the Bayesian perspective, a hyperpenalty

quantifies the prior knowledge one is willing to assume about λ, thus it is reasonable to

choose a and b by solving for desired moments, E ln(λ) and Var ln(λ). Because optimal

shrinkage typically increases with p, a simple choice for the mean is E ln(λ) = ln(p).

Var ln(λ) needs to allow for a sufficiently flexible hyperpenalty while, in the case of ig,

simultaneously ensuring that the optimization has a finite mode (jo) and that the integral

is finite (mo). Focusing on ig, in Appendix C.5, we show that a ≥ p/2 + 1 is sufficient to

ensure a finite mode and integral. Now, if λ ∼ IG{a, b}, then Var ln(λ) = ψ1(a), where

ψ1(z) = (d2/dz2) ln Γ(z) is the trigamma function, which is decreasing in its argument.

Thus, for ig, a = p/2 + 1 is a “maximum variance” choice that guarantees a finite value

of λ. For the sake of comparison, we use this same choice for all three hyperpenalties. In

summary, for ga, ln and ig, we choose a and b to solve E ln(λ) = ln(p) and Var ln(λ) =

ψ1(p/2 + 1).

4.5 Simulation Study

One simulated dataset consists of training and validation data generated from the same

model. We consider three choices of β, all of length p = 99:

(i) β = {1}99
j=1.

(ii) β = {j2/992}99
j=1 .

(iii) for i = 1, . . . , 99, βi|{π1, π2, π3}
iid∼ f , f = π1(1/

√
3)t3 + π2Exp{1}+ π3δ{0},

{π1, π2, π3} ∼ Dir{1, 1, 1}.
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The third choice draws a random β, ie β is randomly drawn for each dataset. The

sampling density is a random mixture of scaled t3, Exponential, and Dirac delta distri-

butions. We use n ∈ {25, 50, 100, 200}. The n× p matrix x is drawn from Np{0p, ΣX},

where the diagonal elements of ΣX are set to unity, and the (j1, j2) off-diagonal element

is taken from ρj1 j2 ∈ {0.75|j1−j2|, 0.75}. For the validation data, a 2000× p matrix xnew

is sampled. R2 = β>ΣX β/(β>ΣX β + σ2) comes from {0.1, 0.3, 0.5}, which specifies a

value for σ2. Finally, y|x (training data) and ynew|xnew (validation data) are drawn using

β and σ2. For each of the 72 combinations of β, n, ρj1 j2 , and R2, 1500 simulated training

and validation datasets are sampled.

We tested 16 methods, all of which are listed in Table 7. n-cv is left out because it is

approximated by gcv and is computationally expensive, even with the simplification in

(38), owing to the need to restandardize x and recalculate Dλ with each fold. Also, aic

is replaced with its small-sample correction, aicC. Each method differs only in its choice

of λ, which determines the estimate of β via (36). The criterion by which we evaluate

methods on the validation data is relative MSPE, rMSPE(λ), defined as follows:

rMSPE(λ) = 1000× (MSPE(λ)/MSPE(λopt)− 1), (60)

where MSPE(λ) = (ynew − xnewβλ)
>(ynew − xnewβλ) and λopt = argminλMSPE(λ).

(61)

Thus, rMSPE is a scaled measure of the percentage increase over the best possible MSPE,

with zero being the smallest achievable value. We calculated λopt with an iterative grid

search. Tables 8 and 9 give rMSPE averaged over the 1500 simulations for all methods

for ρj1 j2 = 0.75|j1−j2| and ρj1 j2 = 0.75, respectively.

aicC is the best-performing of the existing goodness-of-fit methods, and, by a large mar-

gin, bic is the worst. 5-cv has small rMSPE only for larger n. gcv, the most commonly

used method in the literature, has large average rMSPE in the n− 1 ≤ p cases, signifi-

64



Abbr. Name Eqn. Reference
5-cv Five-fold Cross Validation (37) (Section 7.10, Hastie et al., 2009)
gcv Generalized Cross Validation (40) (Craven and Wahba, 1979)
bic Bayesian Information Criterion (42) (Schwarz, 1978)

aicC Corrected Akaike’s Information Criterion (43) (Hurvich et al., 1998)
rgcvγ Robust Generalized Cross Validation (44) (Lukas, 2006)
gcvC Corrected Generalized Cross Validation (45) Section 4.2.1
mpml Maximum Profile Marginal Likelihood (47) (Wecker and Ansley, 1983)

gmpml Generalized Maximum Profile Marginal Likelihood (48) (Harville, 1977; Wahba, 1985)
maphl Maximum Adjusted Profile h-Likelihood (49)-(51) (Lee and Nelder, 1996)

lr Loss-Rank (52) (Tran, 2009)
ga-jo Gamma - Joint Optimization (54)-(56) Section 4.4
ga-mo Gamma - Marginal Optimization (57)-(59) Section 4.4
ln-jo Log-Normal - Joint Optimization (54)-(56) Section 4.4
ln-mo Log-Normal - Marginal Optimization (57)-(59) Section 4.4
ig-jo Inv-Gamma - Joint Optimization (54)-(56) Section 4.4
ig-mo Inv-Gamma - Marginal Optimization (57)-(59) Section 4.4

Table 7: A list of methods to select the tuning parameter of a ridge regression and their
associated references

cantly so when n− 1 = p. This is a reflection of plugging in λ = 0 to achieve an exact

fit when predicting the training data (Section 4.2.1). rgcv0.3, its robust counterpart, pro-

tects against some of the most drastic overfitting but has larger rMSPE than gcv in other

situations. Our proposed small-sample correction, gcvC, does very well and is on par

with aicC, exhibiting no extreme overfitting but otherwise closely matching gcv.

Considering the likelihood-based methods, mpml has uniformly larger rMSPE than

gmpml, which in turn has uniformly larger rMSPE than maphl. These become nearly

equal as n increases. lr predicts poorly in some cases, eg when n = 25 and occasionally

when R2 = 0.5.

Each of our proposed hyperpenalties demonstrates relatively small rMSPE in most sit-

uations, with the Inv-Gamma hyperpenalty the overall best-performing method. With

few exceptions, its rMSPE is always among the smallest. It is followed closely by the

Log-Normal hyperpenalty. As for choice of algorithm, joint optimization (jo) is perhaps

slightly preferred to marginalized optimization (mo).
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β = {1}99
j=1

Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5
5-cv 75 39 *17 *9 98 42 17 *7 97 47 18 *7

gcv 103 62 3255 *8 118 70 1866 *6 105 74 2744 *7

bic 709 1397 > 104
53 513 1225 > 104

93 362 1059 > 104
89

aicC *20 *17 *11 *7 91 45 16 *6 200 72 21 *7

rgcv0.3 *18 *21 1344 22 95 94 950 48 226 176 1421 49

gcvC 33 31 *19 *8 50 34 25 *6 *55 34 15 *7
mpml 577 60 *15 *8 483 92 20 *11 356 183 29 19

gmpml 60 28 *15 *8 87 37 19 *11 93 47 28 19

maphl 52 25 *14 *8 66 35 19 *11 67 47 28 19

lr 289 *14 *12 *10 297 33 24 18 267 48 35 25

ga-jo 41 49 54 53 *9 *11 21 28 *29 *9 *7 16

ga-mo 40 48 53 52 *9 *10 20 28 *31 *9 *7 16

ln-jo 33 39 43 44 *9 *8 16 23 *36 *11 *6 14

ln-mo 31 37 41 43 *9 *7 15 22 *39 *13 *6 *13

ig-jo *13 *14 *17 22 18 *8 *8 13 63 22 *6 *10

ig-mo *10 *11 *13 18 25 *11 *7 *11 78 27 *6 *9

β = {j2/992}99
j=1

Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5
5-cv 73 39 *20 *8 96 49 18 *8 96 49 17 *7

gcv 91 60 2656 *7 116 68 2332 *7 107 77 2199 *6

bic 698 1431 > 104
53 513 1239 > 104

95 365 1033 > 104
91

aicC *19 *17 *13 *6 88 47 18 *6 206 75 22 *7

rgcv0.3 *18 *21 815 23 92 97 976 49 233 182 1001 50

gcvC 32 29 *18 *7 48 35 18 *7 *55 34 26 *6
mpml 578 49 *17 *8 480 92 19 *11 361 190 27 18

gmpml 56 29 *16 *8 86 37 18 *11 92 46 26 18

maphl 48 26 *15 *8 63 36 18 *11 65 45 26 18

lr 272 *15 *13 *10 287 34 27 18 271 49 37 26

ga-jo 42 50 54 52 *9 *10 19 28 *31 *9 *6 15

ga-mo 41 49 53 51 *9 *10 18 27 *32 *9 *6 15

ln-jo 33 39 44 43 *8 *7 14 23 *38 *12 *5 13

ln-mo 31 37 42 42 *8 *7 13 21 *41 *13 *5 *12

ig-jo *13 *15 *18 22 *17 *9 *7 13 66 23 *6 *10

ig-mo *10 *11 *13 17 24 *12 *6 *11 81 29 *6 *8

βi |{π1, π2, π3}
iid∼ f , f = π1(1/

√
3)t3 + π2Exp{1}+ π3δ{0}, {π1, π2, π3} ∼ Dir{1, 1, 1}

Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5
5-cv 80 41 *20 *10 90 53 25 *9 103 56 23 *10

gcv 116 66 2691 *9 114 74 1793 *9 112 84 1849 *10

bic 694 1412 > 104
41 507 1138 > 104

128 347 914 > 104
150

aicC *14 *13 *11 *7 64 44 22 *9 155 84 33 13

rgcv0.3 *13 *15 880 21 64 78 796 65 168 176 856 81

gcvC 35 31 *17 *9 44 41 42 *9 61 41 26 *10

mpml 589 56 *15 *8 461 100 19 *8 339 170 19 *10

gmpml 63 27 *15 *8 76 37 19 *8 94 44 19 *9

maphl 57 25 *13 *8 57 34 19 *8 64 41 19 *9

lr 301 *12 *11 *10 269 33 31 27 254 59 53 46

ga-jo 49 55 54 46 *13 *12 *14 14 *20 *11 *7 *5

ga-mo 48 54 53 46 *12 *11 *13 14 *20 *12 *7 *5
ln-jo 40 44 44 38 *11 *9 *10 *11 *25 *15 *8 *5

ln-mo 38 42 42 37 *10 *8 *9 *10 *26 *16 *8 *5

ig-jo *17 *17 *18 19 *13 *8 *7 *7 47 29 *13 *6

ig-mo *13 *12 *14 15 *18 *11 *7 *6 60 36 15 *6

Table 8: Average rMSPE (to the nearest integer) as defined in (60) for 16 methods (sum-
marized in Table 7) over three choices of β and twelve combinations of n and R2, with
ρj1 j2 = 0.75|j1−j2|. Values in bold are the column-wise minima, and those with an ‘*’ are
less than twice the column-wise minima.
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β = {1}99
j=1

Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5
5-cv 79 50 19 8 78 45 17 8 71 43 16 *7

gcv 85 58 2745 8 86 59 2556 7 74 55 2322 *6

bic 362 1007 > 104
13 345 1009 > 104

15 332 1001 > 104
18

aicC *34 18 *8 *4 45 *15 *6 *4 40 *15 *6 *4

rgcv0.3 44 32 1120 *4 64 21 1023 *3 39 *15 1036 *4

gcvC 40 31 17 7 39 27 24 7 30 25 13 *6

mpml 344 171 13 6 337 189 15 9 331 199 21 13

gmpml 52 28 12 6 57 28 14 9 55 34 19 13

maphl 40 27 13 6 40 27 14 9 41 32 20 13

lr 276 26 13 6 281 28 11 *5 282 24 10 *5

ga-jo *23 *15 16 23 *17 *11 14 22 *14 *10 12 21

ga-mo *23 *14 16 23 *17 *11 14 22 *14 *10 12 20

ln-jo *21 *12 12 18 *16 *9 10 17 *14 *9 9 15

ln-mo *20 *12 12 17 *16 *9 10 16 *15 *9 8 15

ig-jo *18 *8 *4 *4 *28 *11 *4 *4 30 *12 *4 *5

ig-mo *24 *13 *5 *3 38 *15 *5 *3 37 *14 *4 *4
β = {j2/992}99

j=1
Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5

5-cv 79 48 20 9 83 44 19 8 76 43 16 7

gcv 85 59 2709 8 88 52 2493 7 81 53 2274 *6

bic 351 1020 > 104
13 349 1011 > 104

15 336 989 > 104
18

aicC *33 17 *8 *4 44 *15 *6 *4 42 *15 *6 *3
rgcv0.3 43 31 821 *4 64 20 582 *3 41 *15 1151 *4

gcvC 38 28 17 7 41 26 20 6 34 26 26 *6

mpml 332 157 13 6 341 178 16 9 333 217 20 13

gmpml 49 27 12 6 61 26 15 9 61 35 19 13

maphl 39 26 13 6 43 27 15 9 45 33 19 13

lr 268 24 13 6 286 26 11 *6 287 26 10 *5

ga-jo *22 *14 16 24 *18 *12 14 22 *16 *10 12 20

ga-mo *22 *14 16 23 *18 *12 14 21 *16 *10 12 20

ln-jo *19 *12 12 18 *17 *10 10 16 *17 *8 9 15

ln-mo *19 *11 12 17 *16 *9 10 16 *17 *8 8 14

ig-jo *17 *8 *4 *4 *28 *11 *4 *4 *32 *12 *4 *5

ig-mo *22 *12 *5 *3 37 *15 *5 *3 39 *14 *4 *4

βi |{π1, π2, π3}
iid∼ f , f = π1(1/

√
3)t3 + π2Exp{1}+ π3δ{0}, {π1, π2, π3} ∼ Dir{1, 1, 1}

Method/{n/R2} 25/0.1 50/0.1 100/0.1 200/0.1 25/0.3 50/0.3 100/0.3 200/0.3 25/0.5 50/0.5 100/0.5 200/0.5
5-cv 79 52 20 8 80 49 20 *9 73 44 *17 *9

gcv 84 68 2558 8 82 54 2503 *8 75 58 2925 *8

bic 344 984 > 104
14 322 954 > 104

25 299 896 > 104
49

aicC *31 17 *8 *5 47 *17 *9 *6 47 *20 *12 *7
rgcv0.3 39 28 722 *5 66 23 493 *9 51 *23 1142 21

gcvC 37 33 18 7 42 28 21 *8 *35 25 *22 *8

mpml 326 180 14 7 313 198 *16 *9 296 229 *18 *11

gmpml 48 30 13 6 57 30 *15 *9 57 32 *17 *11

maphl 40 29 13 *6 39 27 *15 *9 40 29 *17 *11

lr 257 24 13 7 273 31 *16 *9 255 30 *17 *12

ga-jo *22 *14 15 20 *18 *12 *12 17 *18 *12 *14 21

ga-mo *22 *14 14 19 *18 *12 *12 17 *18 *12 *14 20

ln-jo *20 *12 11 15 *17 *10 *10 13 *19 *12 *13 18

ln-mo *20 *12 11 14 *17 *10 *9 13 *19 *12 *13 18

ig-jo *17 *8 *5 *3 *28 *14 *8 *7 *36 *19 *16 17

ig-mo *22 *12 *6 *3 38 *17 *10 *8 43 *22 *18 18

Table 9: Average rMSPE (to the nearest integer) as defined in (60) for 16 methods (sum-
marized in Table 7) over three choices of β and twelve combinations of n and R2, with
ρj1 j2 = 0.75. Values in bold are the column-wise minima, and those with an ‘*’ are less
than twice the column-wise minima.

67



We also inspected the choices of λ for each method. Figure 8 plots histograms of

ln(λ/λopt) for the 16 methods from one simulation setting in Table 8 (ρj1 j2 = 0.75|j1−j2|):

β = {1}99
j=1, n = 100 and R2 = 0.1. When ln(λ/λopt) = 0, the method has selected the

optimal λ. From the figure, gcv in particular chooses very extreme values, and gcvC

effectively fixes this. The top-performing methods in this scenario, aicC and lr, have

bimodal histograms, indicating that a number of simulations chose a very large λ. In

contrast, shrinkage from hyperpenalization is evident: ig-mo, which ranks third in

rMSPE, closely behind aicC and lr, has less spread and is closer to zero. Also note-

worthy are the between-hyperpenalty differences, evident from the range of the x-axes.

Even though the hyperpenalties are selected so that the first two moments of ln(λ) are

equal for each (Section 4.4.4), the Inv-Gamma hyperpenalty allows the data to inform

the choice of λ to a greater extent than Gamma.

4.6 Discussion

We have examined strategies for choosing the ridge parameter λ when the sample size n

is small relative to p. Our small-sample modification to gcv, called gcvC, properly counts

the number of parameters in the model and uniformly dominates gcv in our simulation

study. We also proposed a novel approach using what we call hyperpenalties. These add

another level of shrinkage, that of λ itself, by extending the hierarchical model. Relative

to existing methods, these can offer superior prediction and protection against choosing

extreme values of λ. We also propose two optimization techniques given a choice of

hyperpenalty: one that jointly maximizes the hyperpenalized likelihood and one that

marginalizes over λ. The heavy positive tail of the Inv-Gamma distribution makes it the

most flexible of the hyperpenalties we considered.

One generalizable advantage of our approach is that jo or mo can be embedded within

larger optimization routines, eg an EM algorithm. For example, in a missing data prob-
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Figure 8: Histograms of ln(λ/λopt) for β = {1}99
j=1, ρj1 j2 = 0.75|j1−j2|, n = 100 and

R2 = 0.1. ln(λ/λopt) = 0 means that λ was chosen to yield optimal shrinkage.
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lem such as in the analysis of the lung adenocarcinoma data, it is not immediately clear

how one might do ridge regression concurrently using goodness-of-fit or marginal like-

lihood approaches. On the other hand, by taking advantage of the conditional indepen-

dence, specified by the hierarchical framework, between λ and any missing data given

the remaining parameters, it is relatively straightforward to embed a jo- or mo-type up-

date for λ within a larger EM algorithm. This is discussed in more detail in Chapter

5.

We have not given a formal definition of “small n”, which has implications for recom-

mending a hyperpenalty-based approach such as ig-jo over existing approaches. The

asymptotic optimality of the goodness-of-fit methods (5-cv, gcv, aicC, and gcvC) is ap-

parent in our simulation study, because it is when n = 200 that we see these methods

start to have the smallest rMSPE. So as to make recommendations, we investigated this

more thoroughly with a comparison of aicC, the best performing existing method, to

ig-jo and ig-mo, the best performing proposed methods. In the results summarized in

Table 10, p, the length of β, ranges from 4 to 99; in all cases, β is randomly drawn for each

simulation from the mixture density described in Section 4.5. In addition to the previous

choices of n, we consider n = 1000, thereby including the traditional regression situation

where n is much larger than p. The criteria for each pairwise comparison are respectively

1000× (MSPE(λaicC)/MSPE(λig-jo)− 1) and 1000× (MSPE(λaicC)/MSPE(λig-mo)− 1),

so that negative values favor aicC. Several insights come from these results. First, when

R2 = 0.1, ig-mo does better in a pairwise comparison with aicC than ig-jo, as evidenced

by larger numbers, but they are about equally good for R2 = 0.3 and R2 = 0.5. Second,

typically both ig-jo and ig-mo are equivalent or preferred to aicC when n ≈ p or n < p;

in the case of ig-jo, the one exception is the very top left panel: when ρj1 j2 = 0.75|j1−j2|

and R2 = 0.1. Also of interest is a comparison of the well-known and more frequently

used gcv with our proposed methods; we do not present the numerical results, but the

interpretation is the same, albeit more dramatic. That is, ig-jo and ig-mo are even more
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favored over gcv than aicC when n ≈ p or n < p.

That ig-jo and ig-mo do best when n is small is a reflection of the simple choices of

shape and rate parameters in the hyperpenalties. Given proper justification, more com-

plicated choices (eg having the shape and rate depend on both n and p) would make the

hyperpenalties even more flexible for large-n situations. However, our studies suggest

that a reasonable rule of thumb is that the proposed hyperpenalties, equipped with the

suggested shape and rate, are acceptable for a broad range of n ≤ p situations.

aicC vs. ig-jo R2 = 0.1 R2 = 0.3 R2 = 0.5
p = 4 24 49 74 99 p = 4 24 49 74 99 p = 4 24 49 74 99

ρj1 j2 = 0.75|j1−j2| n = 25 -21 -25 -13 -6 -4 27 37 50 54 51 31 66 93 97 103

50 -7 -21 -11 -6 -3 7 12 21 33 35 8 20 38 46 50

100 -1 -17 -15 -8 -7 1 0 5 8 16 2 3 10 15 21

200 -2 -14 -14 -13 -12 0 -3 -2 1 2 1 0 2 4 7

1000 0 -4 -8 -10 -11 0 -1 -3 -4 -5 0 0 -1 -1 -1
ρj1 j2 = 0.75 n = 25 -11 12 13 17 17 20 25 26 17 16 24 26 17 14 11

50 -5 5 9 10 9 5 4 7 5 4 6 4 1 4 2

100 -2 -7 3 4 4 1 -2 0 0 1 3 -6 -6 -6 -5
200 -3 -14 -6 0 1 1 -8 -5 -2 -2 1 -5 -8 -9 -9

1000 0 -6 -12 -15 -14 0 -3 -9 -11 -11 0 -2 -5 -8 -9
aicC vs. ig-mo R2 = 0.1 R2 = 0.3 R2 = 0.5

p = 4 24 49 74 99 p = 4 24 49 74 99 p = 4 24 49 74 99

ρj1 j2 = 0.75|j1−j2| n = 25 1 -7 -3 0 0 33 41 48 49 45 29 59 81 85 90

50 3 -7 -2 0 1 10 16 22 31 32 8 18 33 39 43

100 2 -8 -8 -3 -2 2 4 7 9 16 2 4 9 14 18

200 0 -9 -10 -9 -8 1 -1 -1 2 3 1 0 2 4 6

1000 0 -3 -7 -9 -10 0 -1 -2 -3 -4 0 0 0 -1 -1
ρj1 j2 = 0.75 n = 25 10 15 11 12 10 29 21 17 9 7 23 17 9 6 4

50 6 11 8 7 6 9 4 4 1 0 6 -1 -3 0 -1
100 2 0 5 3 3 2 1 -1 -2 -1 3 -5 -7 -8 -7
200 -1 -8 -2 1 2 1 -5 -3 -2 -2 1 -4 -7 -10 -10

1000 0 -5 -10 -13 -12 0 -2 -8 -9 -10 0 -1 -5 -7 -9

Table 10: A pairwise comparison of aicC to ig-jo (top table) and aicC to ig-mo (bottom):
respectively, the average over 1500 simulations of 1000× (MSPE(λaicC)/MSPE(λig-jo)−
1) and 1000× (MSPE(λaicC)/MSPE(λig-mo)− 1), rounded to the nearest integer, using
the definition of MSPE(λ) in (61). Thus, negative values favor aicC. The number p is
the dimension of β, and βi ∼ f , independently for i = 1, . . . , p, where f is the mixture
distribution presented in Section 4.5. β is randomly drawn from this mixture distribution
with each simulated dataset. n, R2 and ρj1 j2 are also as described in Section 4.5.
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CHAPTER 5

A Corrected Hybrid Estimator, Hyperpenalties & Missing

Data, and Conclusion

5.1 Introduction

The purpose of this final chapter is threefold. First, we we borrow ideas from Chapters 2–

4 to formulate two new approaches to the missing data problem of interest. Specifically,

in Section 5.2, we apply the corrected GCV criterion from Chapter 4 to the construction of

the hybrid estimator from Chapter 2 to improve its prediction performance in finite sam-

ples. In Section 5.3, we propose the hyperpenalized Expectation-Maximization (HEM)

algorithm, which extends the penalized EM algorithm (Dempster et al., 1977; Green,

1990) using the hyperpenalized log-likelihood from Chapter 4. This allows for adap-

tive estimation of shrinkage parameters in a maximum likelihood context with missing

data. Our second aim in this chapter is to compare the prediction error corresponding

to the best performing methods from Chapters 2 and 3, namely hyb, fb-hibeta-ni, and

eb-hibetasigmax, with these newly proposed ideas. This comparison across methods is

presented in Section 5.4. All missing data methods from the dissertation are annotated

in Tables D1 and D2 of Appendix D. Third, in Section 5.5 we summarize the contribu-

tions of this dissertation and outline several future directions, beyond the scope of this

document, that would be worthwhile to undertake.
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5.2 Hybrid Estimators Using the Corrected GCV

The corrected hybrid estimator, denoted as hybC, is a modified version of the hybrid

method hyb proposed in Chapter 2. The idea is the same, namely to calculate a lin-

ear combination of estimates of β from ridg, src and frc with weights that are data-

adaptively estimated using a GCV criterion. We call this “corrected” because it applies

the corrected GCV criterion from Section 4.2.1. This correction occurs at two places.

First, recall that the regular ridge regression estimate of β, which only uses subsample

A, is a component of hyb. In Chapter 2, the standard GCV criterion was used to select

the tuning parameter λ. It is now selected to minimize the following criterion:

1
nA
(yA − H(λIp)yA)

>(yA − H(λIp)yA)

(1− Tr H(λIp)/nA − 1/nA)2 , H(Θ) = xA(x>A xA + Θ)−1x>A . (62)

This differs from the original GCV, given in (5), by the “−1/nA” term in the denominator,

accounting for estimation of σ2. The other components corresponding to src and frc

are calculated exactly as before.

Now, given each component, the MSPE of the hybrid estimator is expressed as a quadratic

form, ω>Pω, where P is a positive definite prediction error matrix (Section 2.3). Using

the corrected GCV, the (i, j)th element of P is now estimated by

P̂ij =

1
nA
(y∗A,i − H(λiΩ

−1
β,i )y

∗
A,i)
>(y∗A,j − H(λjΩ

−1
β,j )y

∗
A,j)

(1− ψi − 1/nA)(1− ψj − 1/nA)
. (63)

Comparing this to our original estimate of P, as given in (14), the two expressions differ

by the “−1/nA” terms in the denominator.

Remark 15: The corrected GCV given in (62) implicitly assumes β0 is known, an assump-

tion also made in Chapter 2 for purposes of methodological development. In contrast,

in Chapter 4 we assumed β0 was unknown and to be estimated concurrently with β.
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In applications, β0 is unknown, and thus the adjustment in (62) and (63) must be by

“−2/nA” rather than “−1/nA” to account for this.

5.3 Hyperpenalized EM Algorithm

Here we use notation introduced in Chapter 3. Given observed data Uobs and a set of

model parameters φ, the EM algorithm (Dempster et al., 1977) indirectly maximizes

a log-likelihood `O = ln[Uobs|φ] with respect to φ that is difficult to maximize di-

rectly. It does so by introducing missing data Umis in such a way that the complete

log-likelihood `C = ln[Uobs, Umis|φ] is easy to calculate. This is done through succes-

sive iterations of the E-step, which calculates Q(φ|φ(t)) = E[`C|φ(t), Uobs], where φ(t)

is the maximized value of φ from the previous iteration, and the M-step, which calcu-

lates φ(t+1) = argmaxφQ(φ|φ(t)). The penalized EM algorithm (Green, 1990) modifies

the M-step with φ(t+1) = argmaxφ{Q(φ|φ(t)) + pη(φ)}, with pη(φ) a penalty function

indexed by a set of given hyperparameters η. Our proposed hyperpenalized EM algo-

rithm allows η to be unknown, instead giving support to a range of values by way of a

hyperpenalty, h(η). Both φ and η are sequentially updated, as in the joint optimization

(jo) update of Chapter 4. Thus one iteration of the HEM algorithm proceeds as follows:

E-step Q(φ|φ(t)) = E[`C|φ(t), Uobs]. (64)

First M-step φ(t+1) = argmaxφ{Q(φ|φ(t)) + pη(t)(φ)}. (65)

Second M-step η(t+1) = argmaxη{pη(φ
(t+1)) + h(η)}. (66)

As we noted before, the M-steps are generalizations of the jo scheme of Chapter 4. The

first M-step updates φ, the model parameters, fixing the current value of η. The second

updates η, the hyperparameters, fixing φ at its current value. We consider applications

of this algorithm to the prediction problem considered in Chapters 2 and 3. We make

74



the same modeling assumptions as in Chapters 2 and 3, namely

Y|X ∼ N{β0 + X>β, σ2}, W |X ∼ Np{ψ1p + νX, τ2Ip}, X ∼ Np{µX , ΣX}.

Thus, we have parameters collectively denoted by φ = {β, β0, σ2, ψ, ν, τ2, µX , ΣX}, ob-

served data Uobs = {yA, yB, xA, wA, wB}, and missing data Umis = xB. The observed

log-likelihood of the data is

`O = ln[Uobs|φ] = ln[yA|xA, β, β0, σ2] + ln[wA|xA, ψ, ν, τ2] + ln[xA|µX , ΣX ]

+ ln
∫
[yB|xB, β, β0, σ2][wB|xB, ψ, ν, τ2][xB|µX , ΣX ]dxB. (67)

Although this may be calculated analytically, the repeated calculations that a direct max-

imization would require are computationally difficult. On the other hand, the complete-

data log-likelihood, that is, the log-likelihood if xB were observed, is equivalent to (25)

from Chapter 3 and given by

`C = ln[Uobs, Umis|φ] = ln[yA|xA, β0, β, σ2] + ln[wA|xA, ψ, ν, τ2] + ln[xA|µX , ΣX ]

+ ln[yB|xB, β0, β, σ2] + ln[wB|xB, ψ, ν, τ2] + ln[xB|µX , ΣX ].

This is straightforward to calculate and forms the basis of the E- and M-steps, which we

now derive.

5.3.1 E-Step

We adapt the following notation from the Data Augmentation step given in (26), which

the E-step closely parallels. Let Γ(φ) = (ββ>/σ2 + (ν2/τ2)Ip + Σ−1
X )−1, xem

B (φ) =

([yB− 1nB β0]β
>/σ2 + [ν/τ2][wB− ψ1nB1>p ] + [1nBµ>X ]Σ

−1
X )Γ(φ), and, given φ(t) (the cur-

rent estimates of φ), Γ(t) = Γ(φ(t)) and xem

B
(t) = xem

B (φ(t)). From Appendix D.1, the
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expected complete log-likelihood is given by

Q(φ|φ(t)) = E[`C|φ(t), Uobs]

= −nA + nB

2
log(σ2τ2p|ΣX |)

− 1
2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

− 1
2σ2 (yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

− 1
2τ2 Tr [(wA − ψ1nA1>p − νxA)

>(wA − ψ1nA1>p − νxA)]

− 1
2τ2 Tr [(wB − ψ1nB1>p − νxem

B
(t))>(wB − ψ1nB1>p − νxem

B
(t))]

− 1
2

Tr [(xA − 1nAµ>X)Σ
−1
X (xA − 1nAµ>X)

>]

− 1
2

Tr [(xem

B
(t) − 1nBµ>X)Σ

−1
X (xem

B
(t) − 1nBµ>X)

>]

− nB

2
Tr
(

Γ(t)Γ−1(φ)
)
. (68)

Calculation of the E-step does not depend on the hyperparameters η and therefore re-

mains the same for any choice of pη(φ) and, if required, h(η).

5.3.2 M-Steps

Recalling the components of the general form of the M-steps in (65) and (66), we consider

two choices of penalty pη(φ); these correspond to the priors on φ in Chapter 3. The first

penalty fixes η at a given value and therefore does not require a hyperpenalty h(η). The

second choice of pη(φ) allows η to be unspecified and results in data-adaptive shrinkage,

as in the analogous Bayesian methods. In this latter case, a hyperpenalty h(η) must be

selected, and we consider three choices, borrowing ideas from Chapter 4.

em-flatbeta Maximizing Q given in (68) may result in an infinite likelihood when nei-

ther subsamples A nor B contain enough information about Σ−1
X . Specifically, this will

happen when p > nA, so the sample covariance of xA is singular and, simultaneously,

when τ/ν is too large, meaning the surrogate wB is too noisy. In these cases, the esti-
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mate for Σ−1
X approaches singularity. To address this problem of singularity, we mildly

penalize the estimate of Σ−1
X :

pη(φ) =
2p− 1

2
log |Σ−1

X | −
2p− 1

2
Tr (diag(V̂ar[xA])Σ

−1
X ). (69)

Comparing this to (27), this choice of pη(φ) uses the log-density of the same mildly

informative Wishart prior that was placed on Σ−1
X in the Bayesian fb-flatbeta method.

The penalty parameter η is given, so this is simply a penalized EM algorithm as first

outlined by Green (1990). This small amount of shrinkage induced by pη(φ) is necessary

to make the algorithm proceed, just as in the Bayesian fb-flatbeta method of Chapter

3. Following Meng and Rubin (1993), we divide φ into subvectors and use conditional

penalized M-steps to update each component of φ individually; these are derived in the

Appendix. We give only the resulting M-steps for β and Σ−1
X here:

β(t+1) = (x>A xA + xem

B
(t)>xem

B
(t) + nBΓ(t))−1(x>A [yA − β01nA ] + xem

B
(t)[yB − β01nA ]),

Σ−1
X

(t+1) =
( (xA − 1nAµ>X)

>(xA − 1nAµ>X) + xem

B
(t) − 1nBµ>X)

>(xem

B
(t) − 1nBµ>X)

nA + nB + 2p− 1

+
nBΓ(t) + (2p− 1)diag(V̂ar[xA])

nA + nB + 2p− 1

)−1
.

Because these are conditional penalized M-steps, any element of φ on the right-hand

side of the above equations is replaced with its value at the previous iteration, eg β0 is

replaced with β
(t)
0 in the β update.

em-hibeta-ga, em-hibeta-ln, em-hibeta-ig These are analogs to the Bayesian ridge

methods. In all three cases, then, the penalty function is expanded as follows:

pη(φ) =
2p− 1

2
log |Σ−1

X | −
2p− 1

2
Tr (diag(V̂ar[xA])Σ

−1
X )

− p
2

ln(σ2) +
p
2

ln(λ)− 1
2σ2 λβ>β. (70)
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This adds a Normal log-density term to the penalty function of em-flatbeta as given

in (69). Now, pη(φ) contains a (ridge) parameter λ, that is, η = {λ}, for which a value

must be chosen. Given λ, the M-step for β is modified as follows:

β(t+1) = (x>A xA + xem

B
(t)>xem

B
(t) + nBΓ(t) + λIp)

−1(x>A [yA − β01nA ] + xem

B
(t)[yB − β01nA ]).

We adaptively choose λ using a hyperpenalized M-step as in (66). In Chapter 4, we con-

sidered three choices of hyperpenalty based on the Gamma, Log-Normal, and Inverse-

Gamma distributions. Each is indexed by shape and rate parameters (a and b, respec-

tively). We have

hga(η) = (a− 1) ln(λ)− λ/b,

hln(η) = − ln(λ)− ln(bλ)2/(2a),

hig(η) = −(a + 1) ln(λ)− 1/(bλ).

In each case, we chose a and b to satisfy the moment-matching conditions E ln(λ) = ln(p)

and Var ln(λ) = ψ1(p/2 + 1), where p is the length of β, based on the discussion in

Section 4.4.4. The hyperpenalized M-steps are respectively as follows (no closed-form

exists for the Log-Normal):

em-hibeta-ga : λ(t+1) =
p + 2a− 2

β(t)>β(t)/σ2(t) + 2b
,

em-hibeta-ln : λ(t+1) = argmaxη{pη(φ
(t)) + hln(η)},

em-hibeta-ig : λ(t+1) =
p− 2a− 2 +

√
(p− 2a− 2)2 + 8β(t)>β(t)/(bσ2(t))

2β(t)>β(t)/σ2(t)
.

In summary, we have a penalized EM algorithm, em-flatbeta, and three implementa-

tions of the HEM algorithm, em-hibeta-ga, em-hibeta-ln, and em-hibeta-ig, based on

different choices of the penalty pη(φ) and hyperpenalty h(η).
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5.3.3 Bayesian Ridge with an Informative Hyperprior

fb-hibeta-ni is the Bayesian ridge that places a Jeffreys hyperprior on λ, equivalently

λ ∼ G{0, 0}, ie a Gamma distribution with shape and rate equal to zero. In contrast, we

define fb-hibeta-ga to be a Bayesian ridge that places a G{a, b} hyperprior on λ, using

the same shape and rate as the Gamma hyperpenalty of Chapter 4. Thus, using the lan-

guage of Section 3.2, it is a DA+ variant, like fb-hibeta-ni, and λ is iteratively sampled

in conjunction with the other unknown quantities: Uobs and φ. Because the Gamma

distribution is conjugate to Normal precision, the posterior step for λ is straightforward

and available in closed-form: λ ∼ G{a + p/2, b + β>β/(2σ2)}. Apart from this link be-

tween fb-hibeta-ga and fb-hibeta-ni, we note also that fb-hibeta-ga explicitly parallels

em-hibeta-ga: the log-density of the hyperprior in fb-hibeta-ga is equal to the hyper-

penalty in em-hibeta-ga. The crucial difference is that the former calculates parameter

and hyperparameter estimates by averaging over the posterior and the latter does so by

finding the maximum of the posterior, what we also call the hyperpenalized likelihood.

5.4 Comparison Across Methods

In this section, we conduct a dissertation-wide comparison of prediction error from the

same simulation study as in Chapter 3 and the lung adenocarcinoma data considered

throughout. See Section 3.5 for details on the construction of the simulated datasets

and Tables D1 and D2 in Appendix D for concise descriptions and annotations of all

the methods. A total of nine methods are evaluated here: hyb (Section 2.3), the cor-

rected hyb (hybC, Section 5.2), fb-hibeta-ni (Section 3.3.1), fb-hibeta-ga (Section 5.3.3),

eb-hibetasigmax (Section 3.3.2), em-flatbeta, em-hibeta-ga, em-hibeta-ln, and em-

hibeta-ig (Section 5.3.2).

Figure 9 gives empirical MSPEs from the simulation study. For clarity in graphically
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presenting results, em-flatbeta and em-hibeta-ln, which typically perform no better

than em-hibeta-ga or em-hibeta-ig, are not plotted. Based on these results, we make

the following observations.

(i) In the p = 99 case, the best-predicting method is always eb-hibetasigmax or

em-hibeta-ig. In the p = 5 case, the relative differences between all methods

are smaller; hyb and hybC predict the worst, and fb-hibeta-ni, fb-hibeta-ga, eb-

hibetasigmax, em-hibeta-ga, and em-hibeta-ig are about equally good.

(ii) hybC is uniformly better than hyb when p = 99, and the two are about equal when

p = 5.

(iii) fb-hibeta-ga is uniformly better than fb-hibeta-ni, indicating that the choice of

informative hyperprior on λ improves prediction. Moreover, there are some signif-

icant differences between em-hibeta-ga and fb-hibeta-ga. Specifically, em-hibeta-

ga is almost always preferred to fb-hibeta-ga when p = 99. Thus, maximizing

typically yields smaller prediction error than averaging in the high-dimensional

case.

(iv) The best performing of the HEM algorithms is em-hibeta-ig. As we saw in the

simulation study in Chapter 4, the non-conjugate inverse-gamma hyperpenalty

predicts considerably better than the conjugate gamma hyperpenalty.

Table 11 gives empirical MSPE from the validation sample of the lung adenocarcinoma

data. Here eb-hibetasigmax has the smallest MSPE (0.555), followed by em-hibeta-

ig (0.597) and hyb (0.601). Consistent with the simulation study results in Figure 9,

particularly the small R2, large nB panels, the best methods are eb-hibetasigmax and

em-hibeta-ig. In contrast with the simulation study results, hybC does not predict better

than the original hyb method. The benefit conferred by using hybC comes from average

performance over many datasets. Differences in average performance between hyb and

hybC are driven by occasional large differences in prediction error that occur when the
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Figure 9: Empirical MSPE of the dissertation’s best performing methods over τ for 16

simulation settings. For the Bayesian methods, β was estimated with the posterior pre-
dictive mean, β̂ppm. The thick, solid bar (σ2) corresponds to predictions made using the
true generating parameters.
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hyb fb-hibeta-ni eb-hibetasigmax em-hibeta-ga em-hibeta-ig
hybC fb-hibeta-ga em-flatbeta em-hibeta-ln

ˆMSPE(β̂0, β̂) 0.601 0.617 0.793 0.636 0.555 3.909 0.665 0.642 0.597

min(β̂) -0.023 -0.024 -0.041 -0.031 -0.007 -0.156 -0.029 -0.027 -0.023

max(β̂) 0.027 0.032 0.064 0.026 0.007 0.153 0.034 0.031 0.023

Runtime (sec) 1.4 1.5 404.6 398.6 402.6 71.4 82.6 57.4 70.5

Table 11: Numerical results from analysis of the lung adenocarcinoma data using the
dissertation’s best-performing methods. ˆMSPE(β̂0, β̂) is the empirical MSPE from the
validation sample of size 100, min(β̂) and max(β̂) give the range of the estimate of β for
each model, and Runtime is the number of seconds required to run each algorithm. The
Bayesian methods, fb-hibeta-ni, fb-hibeta-ga and eb-hibetasigmax, use β̂ correspond-
ing to the posterior predictive mean, defined in (32).

standard GCV overfits. We observe no such overfitting in the lung adenocarcinoma data,

and hyb and hybC are similar.

Finally, Figure 10 graphically summarizes the analysis of the lung adenocarcinoma data

with kernel density estimates of the 91 coefficient estimates of β. The top figure plots

estimates from the same seven methods as in Figure 9, and the bottom figure re-plots

the three methods with the best MSPE: eb-hibetasigmax, em-hibeta-ig and hyb.

As evidenced by these plots, the shrinkage induced by eb-hibetasigmax is considerably

greater than that of em-hibeta-ig. However, this is not because eb-hibetasigmax shrinks

Σ−1
X and em-hibeta-ig does not shrink Σ−1

X : from Figure 7 in Chapter 3, the kernel den-

sity estimates corresponding to eb-hibetasigmax and eb-hibeta-ni, which differ only in

whether or not Σ−1
X is adaptively shrunk, are nearly the same, which is why eb-hibeta-

ni was not presented in this present comparison. Rather, the difference in kernel density

estimates between eb-hibetasigmax and em-hibeta-ig in Figure 10 is a function of the

algorithm used, ie eb-hibetasigmax is Empirical Bayes, using maximum marginal likeli-

hood estimates for the hyperparameters and posterior sampling for the parameters, and

em-hibeta-ig is a maximum likelihood approach. em-hibeta-ig and hyb do yield similar

amounts of shrinkage, despite the differences in their construction.
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Figure 10: Kernel density estimates of the 91 coefficients from the lung adenocarcinoma
data for the dissertation’s best performing methods
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5.5 Summary and Future Work

We have considered a variety of shrinkage approaches to aid in prediction with high-

dimensional data. Represented as a missing data problem, most observations contain

only surrogate measurements of the true underlying covariates of interest, and only a

few contain measurements of both the true covariates and their surrogates. In this sec-

tion, we first summarize each chapter and highlight possible future work. We note that

many of the ideas between the chapters are interrelated, eg the corrected hybrid estima-

tor from Section 5.2 combines the hybrid estimator from Chapter 2 with the corrected

GCV from Chapter 4. In the same way, much of our additional prospective work also

seeks to take advantage of interrelated ideas between chapters. Next, we contrast the

methods in terms of their limitations and present some general recommendations, tak-

ing into account issues like predictive performance, modeling flexibility, and robustness

to model misspecification.

5.5.1 Chapter 2

In Chapter 2, we discussed a class of targeted ridge (TR) estimators, which includes as

a special case standard ridge regression (ridg), and a hybrid estimator (hyb), which is a

weighted linear combination of multiple TR estimators. hyb possesses several important

properties. First, it is flexible, being a linear combination of estimators, each of which

can make different modeling assumptions. For example, ridg assumes only the out-

come regression model in (1): Y|X ∼ N{β0 + X>β, σ2}. frc additionally assumes the

measurement error model in (2): W |X ∼ Np{ψ1p + νX, τ2Ip}. src assumes these two

models plus the marginal model: X ∼ Np{µX , ΣX}. Estimators with different modeling

assumptions, beyond what we have proposed in this dissertation, can also be included

in hyb. One such estimator could be that which allows for outcome dependent sam-

pling of the observations that comprise subsample A, ie those for which X is measured.
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From Theorem 2.1, the hybrid estimator will theoretically predict better than the best of

any of its constituents. Practically, the average performance of hyb across many design

and data configurations is encouraging, and, importantly, its flexibility is most appar-

ent in the large-p scenarios. Second, hyb is typically very fast to compute, whereas the

Bayesian methods of Chapter 3 require considerably more computational effort. Finally,

because hyb combines TR estimators, a GCV criterion, which is readily calculated on TR

estimators, provides a simple estimate of P, the prediction error matrix defined by (13)

required to estimate the optimal weight vector ωopt. In the dissertation-wide compar-

ison of Section 5.4, we used the corrected GCV criterion proposed in Chapter 4 as an

alternative, which, from the simulation results, further improved prediction.

5.5.2 Chapter 3

In Chapter 3, we considered Bayesian approaches to this same problem. In this context,

shrinkage occurs through specification of priors on the model parameters. The crucial

question here is which parameters to shrink, ie choice of prior distributions, and to what

extent, ie the choice of hyperparameters. We limited our exploration to shrinkage of

the regression coefficients β and the marginal precision Σ−1
X , and it is worthwhile to

consider the adaptive shrinkage of other model parameters, like τ2. The best-predicting

methods from Chapter 3 were eb-hibeta-ni and eb-hibetasigmax, the Bayesian ridge

using Empirical Bayes methods to estimate hyperparameters. An alternative course of

future work is to apply one of the recommendations from Chapter 4 and equip the

fully Bayesian ridge methods, eg fb-hibeta-ni or fb-hibeta-ga from Section 5.3.3, with

an inverse-gamma hyperprior. The difficulty in this extension is a computational one,

because conjugacy between the prior and hyperprior is lost, but there is reason to believe

that this approach would be more competitive with the Empirical Bayes approaches,

given the performance of em-hibeta-ig in Figure 9.
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For both Chapters 2 and 3, the adaptive shrinkage of parameters in nonlinear models,

such as those with censored or binary outcomes, would also be a valuable extension.

5.5.3 Chapter 4

Motivated by the problem of adaptive estimation of shrinkage parameters, Chapter 4

contributes several novel ideas toward estimating the tuning parameter of a ridge re-

gression. We proposed a modified GCV criterion that corrects the problematic behavior

of the standard GCV criterion in ridge regression when n− 1, that is, one less than the

number of observations, equals p, the dimension of the regression coefficients β. We

described how the standard GCV criterion may induce dramatic overfitting in this case

and showed how our corrected GCV effectively fixes this. Improved prediction of the

corrected GCV over the standard GCV was observed in many n ≈ p situations, and, like

the standard GCV criterion, the corrected GCV is asymptotically optimal with n.

The GCV/corrected GCV criteria can be utilized in a ridge regression setup using an

entirely different approach. Specifically, rather than adaptively choosing one value of the

tuning parameter λ, one could linearly combine multiple estimates of β calculated using

a supplied grid of values for λ, taking the form of a hybrid estimator from Chapter 2.

The role of the corrected GCV would be to estimate the prediction error matrix P, which

in turn is used to calculate the weight vector ω.

Also in Chapter 4, we proposed the “hyperpenalized” log-likelihood. Added to a pe-

nalized log-likelihood is a hyperpenalty, which is equivalent to the log-density of a hy-

perprior and protects from overfitting by shrinking the shrinkage parameter λ. The

hyperpenalized log-likelihood can be maximized jointly with respect to all parameters

or maximized after marginalizing over λ. In our simulation studies, the atypical choice

of using a hyperpenalty based on the inverse-gamma distribution yielded smaller pre-

diction error than the more common gamma distribution. We used simple choices of
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the shape and rate of the hyperpenalty function, and there is more work to be done on

justifying more complicated choices that would give the hyperpenalty more flexibility.

Another extension of this approach is the hyperpenalization of penalty functions used

for variable selection, such as the Lasso (Tibshirani, 1996).

5.5.4 Limitations and Recommendations

We broadly classify the potential limitations of our work into three categories, acknowl-

edging that they are not entirely distinct from one another. They are (i) violations to the

modeling assumptions, (ii) a more general missing data mechanism, or (iii) alternative

likelihood factorizations. Included in the first is misspecification of the error distribu-

tion or mean structure of the outcome, measurement error, or marginal models given in

(24). Sensitivity to such violations is studied via the simulation studies of Chapters 2

and 3. Results are presented in the Appendices in Figure A4 and Tables B3–B8. In gen-

eral, all of the methods are fairly robust to these violations. For the Bayesian/Empirical

Bayes/hyperpenalized likelihood methods, this robustness highlights the benefit of adap-

tive shrinkage. The hyperprior averages over different models and thus reduces sensi-

tivity to model misspecification.

Focusing on the second category, we have assumed throughout that the missing X’s are

“missing completely at random” (Little and Rubin, 2002), meaning that the missingness

indicator is independent of Y , X, and W . In fact, the likelihood-based methods, those

described in Chapters 3 and 5, only require independence between the indicator and X:

from (26) and (64), the imputation steps condition on Y and W , so, if instead the indicator

depends on Y and/or W , they remain equally valid. This contrasts with the TR and hyb

methods of Chapter 2, which will be negatively affected, as seen by comparing Figure

A3, in which subsample A tends to have larger values of the outcome Y, to Figure 2.

The third category considers alternative likelihood factorizations, of which two naturally
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arise. The first allows for [Y |X, W ] 6= [Y |X], an alternative to the more stringent NDME

assumption, which is discussed in Section 2.6. The second avoids modeling of the fully

observed auxiliary variable W : [Y, X|W ] = [Y|X][X|W ]. All methods in this dissertation

will break down to some degree if these factorizations more accurately model the true

underlying process, as we have assumed a different factorization, namely [Y, X, W ] =

[Y|X][W |X][X]. However, we emphasize that our choice of factorization is scientifically

motivated by the surrogate and matched relationship between W and X. In other words,

the ith element of W , corresponding to an assay of gene i using microarray technology, is

a possibly-scaled, noisier version of the ith element of X, the assay of gene i using qRT-

PCR, but does not depend on any other element of X. Because of this scientific rationale,

we do not evaluate in further detail the negative effects of violating this factorization,

but this suggests possible refinements of our work.

Integrating all of these individual factors – predictive performance, flexibility, robust-

ness, and other considerations – the Bayesian ridge with an Empirical Bayes update for

hyperparameters, eb-hibeta-ni/eb-hibetasigmax-ni, is a sensible overall choice. Impor-

tantly, prediction intervals for quantifying uncertainty are automatic, as outlined in Sec-

tion 3.4. The obstacles to the Bayesian methods are computational, the most significant

being that the algorithms require more advanced programming. In order to efficiently

run a Gibbs sampler when p is moderate-to-large, the use of a lower-level language like

C is required, which mitigates the applicability of our methodology to other problems.

Less important but still significant in a simulation study, the Gibbs samplers take longer

to run than their non-Bayesian counterparts. Table 11 includes the runtime of each

method for the analysis of the lung adenocaricnoma data. The Bayesian methods each

took about 7 minutes, compared to about 1 minute for the HEM methods and just 1-2

seconds for the hybrid estimator. Thus, em-hibeta-ig maintains most of the advantages

of eb-hibeta-ni/eb-hibetasigmax-ni, the most important being the adaptive shrinkage

feature, but with fewer computational challenges. It does not automatically yield auto-
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matic prediction intervals, which require variance estimates via the observed informa-

tion. Segal et al. (1994) propose methodology to calculate the observed information in

Green’s penalized EM. In principle, this may be extended to the HEM algorithm, yield-

ing variance estimates not only for the parameters but also the hyperparameters. Finally,

although hyb never improved upon the more complicated likelihood-based methods, it

is computationally straightforward and fast. It is also the most novel of the methods we

have considered. As such, there is potential for its improvement, as we have outlined

earlier in this section.

In conclusion, we have offered many novel ideas toward this high dimensional prediction

problem. Our proposals draw from a broad range of statistical literature, including

shrinkage estimation, measurement error, missing data, Bayesian sampling schemes, and

penalized regression, and further research can continue the work of this dissertation to

connect and build upon each of these.
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Appendix A: Chapter 2 Supplementary Materials

A.1 Analysis of Targeted Ridge Estimators

This section proves some results for TR estimators, first evaluating them as imputations

for the missing data, xB, and then evaluating them in terms of MSPE for predicting the

outcome Y. Throughout, we condition on the true value of θ and assume µX = 0p.

As demonstrated in their construction, β̂src and β̂frc are equivalent to filling in the

missing xB with xsrc

B and xfrc

B and doing OLS on the completed data. Due to Marquardt

(1970), ridg can also be viewed as imputing the missing xB with xridg

B = [
√

λIp 0p · · · 0p]>,

replacing the observed yB with 0nB , and doing OLS on the completed data. In general,

we have the following result for any targeted ridge estimator.

Theorem A.1. Assuming nB > p, a choice of (γβ , λ, Ω−1
β ) is equivalent to making imputa-

tions x̃B and ỹB and doing OLS on the completed data. That is, β̂(γβ , λ, Ω−1
β ) = (x>A xA +

x̃>B x̃B)
−1(x>A yA + x̃>B ỹB).

Proof. For any (γβ , λ, Ω−1
β ) defining a TR estimator in (7), let Ω−1/2

β be such that

Ω−1/2
β Ω−1/2

β
> = Ω−1

β . The Cholesky decomposition achieves this but is not the only

choice. Then let x̃B = [
√

λΩ−1/2
β 0p · · · 0p]>, where 0p is repeated nB − p times and

ỹB = [
√

λγ>β Ω−1/2
β 0 · · · 0]>, 0 repeated nB − p times. This gives the desired result.

Note, although yB is observed, its value is replaced by ỹB. Also, choices of x̃B and ỹB

that satisfy the theorem may not be unique. For example, applied to frc, the algorithm

presented in the proof does not yield x̃B = xfrc

B and ỹB = yB.
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The following result compares xsrc

B and xfrc

B in terms of their expected distance from xB.

Theorem A.2. The squared Frobenius norm of a matrix S be given by ‖S‖2
F= Tr

[
S>S

]
. Then,

ExB,wB

[
‖xfrc

B − xB‖2
F − ‖xsrc

B − xB‖2
F
]
≥ 0.

Proof. (Theorem A.2) Using xsrc

B = (1/ν)wBV and xfrc

B = (1/ν)wB,

E ‖xsrc

B − xB‖2
F

= ExBEwB|xB
Tr
[

1
ν2 Vw>B wBV − 1

ν
x>B wBV − 1

ν
Vw>B xB + x>B xB

]
= ExBTr

[
1
ν2 V(ν2x>B xB + τ2nBIp)V −

ν

ν
x>B xBV − ν

ν
V x>B xB + x>B xB

]
= Tr

[
1
ν2 V(ν2ΣX + τ2nBIp)V −

ν

ν
ΣXV − ν

ν
VΣX + ΣX

]
= Tr

[
nB

τ2

ν2 V2 + nB(Ip − V)2ΣX

]
(VΣX = ΣXV)

= nB
τ2

ν2 TrV (ΣX =
τ2

ν2 (Ip − V)−1V), (71)

E ‖xfrc

B − xB‖2
F= ExBEwB|xB

Tr
[

1
ν2 w>B wB −

1
ν

x>B wB −
1
ν

w>B xB + x>B xB

]
= ExB Tr

[
1
ν2 (ν

2x>B xB + τ2nBIp)−
ν

ν
x>B xB −

ν

ν
x>B xB + x>B xB

]
= nB

τ2

ν2 TrIp. (72)

A comparison of expressions (71) and (72), together with the inequality Tr (Ip − V) ≥ 0

implied by (11) completes the proof.

Thus, xsrc

B is closer on average to xB than xfrc

B is to xB, when the assumed model for X is

true. This is to be expected given that the assumptions of the src algorithm are exactly

satisfied; the frc algorithm does not make explicit use of the model for X. However, the

regression of the completed data is more relevant in our situation. TR estimators may

be evaluated in terms of prediction of the outcome Y, and, from this perspective, this

unequivocal preference of src over frc no longer holds.

To show this, we first establish that ridg and frc are closely related: β̂frc is an ap-
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proximate ridge-type estimator on the complete data, as demonstrated by the following

relationship in their functional forms. By definition, xfrc

B = (1/ν)wB = xB + (τ/ν)ξB,

where ξB is the unobserved nB × p error matrix. From this, and the definition of xfrc

B in

(12), we have:

Ω−1
βfrc

= x>B xB +
τ

ν
x>B ξB +

τ

ν
ξ>B xB +

τ2

ν2 ξ>B ξB, Ω−1
βfrc

γβfrc
= x>B yB +

τ

ν
ξ>B yB. (73)

Plugging these values of Ω−1
βfrc

and Ω−1
βfrc

γβfrc
into (7) gives that

β̂frc =

(
x>A xA + x>B xB +

τ

ν
x>B ξB +

τ

ν
ξ>B xB +

τ2

ν2 ξ>B ξB

)−1 (
x>AyA + x>B yB +

τ

ν
ξ>B yB

)
≈
(

x>A xA + x>B xB + nB
τ2

ν2 Ip

)−1 (
x>AyA + x>B yB

)
, (74)

where the last approximation replaces each expression involving ξB in the previous line

with its marginal expectation. Thus (74) characterizes β̂frc as an approximate ridge-type

estimator based on the complete data, with the shrinkage parameter nBτ2/ν2. Ridge

regression can improve prediction error over ols for certain choices of the tuning param-

eter (Gelfand, 1986; Frank and Friedman, 1993). Consequently, β̂frc may offer improved

prediction, even over ols on the complete data; whether this holds in practice depends

crucially on the size of nBτ2/ν2. As τ2/ν2 increases, β̂frc approaches zero, as seen by

the expansion above. Interpreted from the Bayesian perspective, this is because the prior

mean, γβfrc
, approaches 0p with τ2/ν2, and the prior precision, Ω−1

βfrc

, grows without

bound with τ2/ν2.

Following a similar expansion for src as above, note that xsrc

B = (1/ν)wBV = xBV +
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(τ/ν)ξBV (if µX is assumed to be zero). When we expand β̂src as in (74), we obtain

β̂src =

(
x>A xA + V x>B xBV +

τ

ν
V x>B ξBV +

τ

ν
Vξ>B xBV +

τ2

ν2 Vξ>B ξBV
)−1

×
(

x>AyA + V x>B yB +
τ

ν
Vξ>B yB

)
. (75)

From (11), as τ2/ν2 → ∞, the elements of V go to zero at a rate proportional to τ2/ν2.

Thus, for large τ2/ν2, β̂src is “unstable”, because it approximates (x>A xA)
−1x>AyA, the

ols estimate of β, which does not exist when p > nA. In contrast with the Bayesian

interpretation of frc, in which the prior precision matrix increases with τ2/ν2, for src,

the prior precision decreases to zero (a flat prior), and using a flat prior when p > nA

yields an improper posterior. From this comparison, we may infer that the MSPE of β̂src

is unbounded with τ2/ν2 (because Var β̂src is unbounded), while β̂frc is not. Next, we

more formally compare src and frc in terms of their MSPE.

Theorem A.3. Let V and Ω−1
βfrc

be as in (11) and (12), respectively. Also, define

κ = (τ2/ν2)β>V β,

∆src

σ = σ2(x>A xA + VΩ−1
βfrc

V)−1, (76)

∆src

β = κ(x>A xA + VΩ−1
βfrc

V)−1VΩ−1
βfrc

V(x>A xA + VΩ−1
βfrc

V)−1, (77)

∆frc

σ = σ2(x>A xA + Ω−1
βfrc

)−1, (78)

∆frc

β = κ(x>A xA + Ω−1
βfrc

)−1Ω−1
βfrc

(x>A xA + Ω−1
βfrc

)−1

+ (x>A xA + Ω−1
βfrc

)−1Ω−1
βfrc

(Ip − V)ββ>(Ip − V)Ω−1
βfrc

(x>A xA + Ω−1
βfrc

)−1. (79)

Then using (76)–(79), the MSPE of the src and frc methods can each be expressed as

σ2 + Tr
[
∆σΣX

]
+ Tr

[
∆βΣX

]
.

Proof. (Theorem A.3) The assumption [Y|X, W ] = [Y|X] gives that E[Y|W ] = β0 +

E[X|W ]β and Var[Y|W ] = σ2 + β>Var[X|W ]β. Because X and W are assumed jointly
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normal, it is seen that E[X|W ] = (Ip−V)µX +V(W −ψ1p)/ν and Var[X|W ] = (τ2/ν2)V .

Thus, E[yB|wB] = β01nB +[1nB , wB]Mβ and Var[yB|wB] = (σ2 +(τ2/ν2)β>V β)InB , where

M =

µ>X(Ip − V)− (ψ/ν)1>p V

1
ν V

 .

These in turn yield the mean and variance of γβsrc
and γβfrc

. Now, assume β0 = ψ = 0.

With these results and the bias and variance expressions given in (8) and (9), we can

write

Bias β̂frc Bias β̂>
frc

+ Var β̂frc

= (x>A xA + Ω−1
βfrc

)−1

×
{

Ω−1
βfrc

(E γβfrc
− β)(E γβfrc

− β)>Ω−1
βfrc

+ σ2x>A xA + Ω−1
βfrc

Var γβfrc
Ω−1

βfrc

}
× (x>A xA + Ω−1

βfrc

)−1

= (x>A xA + Ω−1
βfrc

)−1
{

σ2x>A xA + (σ2 + κ)Ω−1
βfrc

+ Ω−1
βfrc

(Ip − V)ββ>(Ip − V)Ω−1
βfrc

}
× (x>A xA + Ω−1

βfrc

)−1

= σ2(x>A xA + Ω−1
βfrc

)−1

+ (x>A xA + Ω−1
βfrc

)−1
{

κΩ−1
βfrc

+ Ω−1
βfrc

(Ip − V)ββ>(Ip − V)Ω−1
βfrc

}
(x>A xA + Ω−1

βfrc

)−1.

Next, using the identity Ω−1
βsrc

= VΩ−1
βfrc

V ,

Bias β̂src Bias β̂>
src

+ Var β̂src

= (x>A xA + Ω−1
βsrc

)−1

×
{

Ω−1
βsrc

(E γβsrc
− β)(E γβsrc

− β)>Ω−1
βsrc

+ σ2x>A xA + Ω−1
βsrc

Var γβsrc
Ω−1

βsrc

}
× (x>A xA + Ω−1

βsrc

)−1

= (x>A xA + VΩ−1
βfrc

V)−1
{

σ2x>A xA + (σ2 + κ)VΩ−1
βfrc

V
}
(x>A xA + VΩ−1

βfrc

V)−1

= σ2(x>A xA + VΩ−1
βfrc

V)−1 + κ(x>A xA + VΩ−1
βfrc

V)−1VΩ−1
βfrc

V(x>A xA + VΩ−1
βfrc

V)−1.
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By taking the difference of the two MSPE expressions for frc and src from Theorem

A.3, the following Corollary characterizes how MSPE(β̂src)−MSPE(β̂frc) changes as a

function of σ2 and β.

Corollary A.4. MSPE(β̂src)−MSPE(β̂frc) = σ2c1 + β> (C2 − C3) β, where

c1 = Tr
[{

(x>A xA + VΩ−1
βfrc

V)−1 − (x>A xA + Ω−1
βfrc

)−1
}

ΣX

]
, (80)

C2 = Tr
[
(x>A xA + VΩ−1

βfrc

V)−1VΩ−1
βfrc

V(x>A xA + VΩ−1
βfrc

V)−1ΣX

− (x>A xA + Ω−1
βfrc

)−1Ω−1
βfrc

(x>A xA + Ω−1
βfrc

)−1ΣX

] (τ2

ν2 V
)

. (81)

C3 = (Ip − V)Ω−1
βfrc

(x>A xA + Ω−1
βfrc

)−1ΣX(x>A xA + Ω−1
βfrc

)−1Ω−1
βfrc

(Ip − V). (82)

When p = 1, c1, C2, C3 are scalar-valued, and one can show the following:

(i) c1 > 0.

(ii) The sign of C2 − C3 is equal to that of

V2(x>A xA + Ω−1
βfrc

)2

(x>A xA + V2Ω−1
βfrc

)2
−Ω−1

βfrc

(1− V)2

(τ2/ν2)V
− 1. (83)

(iii) As τ2/ν2 → ∞,

(a) c−1
1 − x>A xAΣ−1

X = o(1) for x>A xA 6= 0.

(b) C2 = o(1) for x>A xA 6= 0.

(c) C3 − ΣX = o(1).

Thus fixing all other parameters, (i) indicates that MSPE(β̂src)−MSPE(β̂frc) increases

with σ2, making frc the preferred method for large values of σ2. From (ii), if nA � nB,

(83) is approximated by V2−Ω−1
βfrc

(1−V)2

(τ2/ν2)V − 1, because x>A xA and Ω−1
βfrc

increase linearly
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in nA and nB, respectively, and therefore (x>A xA +Ω−1
βfrc

)2 ≈ (x>A xA +V2Ω−1
βfrc

)2. Because

0 ≤ V ≤ 1, the entire expression is negative in this case, and src is preferred to frc for

large values of β2. When nB > nA, there is no clear dominance of src over frc, as the

sign of (83) then depends on V , which is in turn a function of τ2/ν2 and Σ−1
X .

The effect of an increasing τ2/ν2 on MSPE(β̂src)−MSPE(β̂frc) gives which method is

preferred in the large measurement error case. Replacing c1, C2 and C3 with the limiting

values implied by (iii), MSPE(β̂src) −MSPE(β̂frc) is approximately σ2(x>A xA)
−1ΣX −

β2ΣX . The first expression (σ2(x>A xA)
−1ΣX) is attributable to Var β̂src and the second

term (β2ΣX) to Bias β̂frc. Thus, when τ2/ν2 is large, MSPE(β̂src)−MSPE(β̂frc) > 0⇔

σ2(x>A xA)
−1 > β2. Moreover, x>A xA/nA consistently estimates ΣX ; some simplification

then suggests the approximately equivalent statement MSPE(β̂src)−MSPE(β̂frc) > 0⇔

(nA + 1)−1 > R2, where R2 = β2ΣX/(β2ΣX + σ2). The dominance of one method over

the other thus depends on nA and the signal in the model.

For p > 1, we were not able to prove multivariate versions of the above results; however,

extensive simulation studies that evaluate c1, C2, C3 (given in Table A1) indicate that the

preceding conclusions are still likely to hold in the general p case as long as p < nA. That

is, the results above depend crucially on the existence of (x>A xA)
−1. When p > nA, as is

the case in our motivating example, p− nA eigenvalues of x>A xA +VΩ−1
βfrc

V (appearing in

the expressions for c1 and C2) may be nearly zero for non-negligible measurement error.

Thus the matrix trace, being the sum of reciprocals of the eigenvalues, will be large. This

does not affect C3, and so both c1 and Tr(C2 − C3) tend to be large. Therefore, frc is

favored over src as either σ2 or β>β increase, more so as τ2/ν2 increases.

A.2 Analysis of Hybrid Estimators

Lemmas A.5 and A.6 are used in the proof of Theorem 2.1. We use ‘PSD’ to describe a

positive semi-definite matrix and ‘PD’ to describe a positive definite matrix.
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p nB τ2/ν2 c1 Tr C2 Tr C3 Tr C2 −C3
1 10 0.01 0.0001 -0.0000 0.0000 -0.0000

1 10 0.25 0.0012 -0.0002 0.0019 -0.0021

1 10 1 0.0038 -0.0011 0.0220 -0.0231

1 10 25 0.0161 -0.0026 0.6187 -0.6213

1 10 100 0.0188 -0.0010 0.8702 -0.8712

1 50 0.01 0.0001 0.0000 0.0000 -0.0000

1 50 0.25 0.0022 0.0000 0.0127 -0.0127

1 50 1 0.0065 -0.0000 0.1105 -0.1105

1 50 25 0.0185 0.0000 0.8557 -0.8557

1 50 100 0.0196 0.0000 0.9612 -0.9612

1 100 0.01 0.0001 0.0000 0.0000 -0.0000

1 100 0.25 0.0019 0.0001 0.0208 -0.0207

1 100 1 0.0059 0.0009 0.1616 -0.1607

1 100 25 0.0181 0.0009 0.8886 -0.8877

1 100 100 0.0195 0.0003 0.9709 -0.9706

1 400 0.01 0.0000 0.0000 0.0001 -0.0001

1 400 0.25 0.0009 0.0001 0.0332 -0.0331

1 400 1 0.0028 0.0010 0.2220 -0.2209

1 400 25 0.0151 0.0034 0.9158 -0.9124

1 400 100 0.0185 0.0014 0.9779 -0.9765

9 10 0.01 0.0006 -0.0000 0.0001 -0.0001

9 10 0.25 0.0130 -0.0088 0.0274 -0.0362

9 10 1 0.0395 -0.0658 0.2747 -0.3406

9 10 25 0.1507 -0.2165 4.5387 -4.7552

9 10 100 0.1821 -0.1458 6.5387 -6.6845

9 50 0.01 0.0010 0.0000 0.0003 -0.0002

9 50 0.25 0.0213 0.0037 0.1219 -0.1183

9 50 1 0.0647 0.0236 1.0202 -0.9966

9 50 25 0.1962 0.0306 7.6113 -7.5807

9 50 100 0.2130 0.0104 8.6141 -8.6037

9 100 0.01 0.0008 0.0000 0.0004 -0.0004

9 100 0.25 0.0184 0.0124 0.1908 -0.1784

9 100 1 0.0564 0.0887 1.4544 -1.3656

9 100 25 0.1905 0.1382 7.9884 -7.8502

9 100 100 0.2098 0.0469 8.7287 -8.6817

9 400 0.01 0.0003 0.0000 0.0007 -0.0007

9 400 0.25 0.0079 0.0110 0.2994 -0.2883

9 400 1 0.0253 0.0850 1.9981 -1.9131

9 400 25 0.1491 0.3707 8.2416 -7.8709

9 400 100 0.1931 0.1794 8.8009 -8.6214

99 100 0.01 0.0258 0.0197 0.0087 0.0110

99 100 0.25 0.5821 8.9737 3.5504 5.4233

99 100 1 1.9040 74.5419 22.2836 52.2583

99 100 25 26.8529 2405.7851 86.6150 2319.1701

99 100 100 100.7154 9693.8778 93.9312 9599.9466

99 400 0.01 0.0049 0.0039 0.0080 -0.0041

99 400 0.25 0.1098 1.7935 3.3435 -1.5500

99 400 1 0.3563 14.4882 21.9265 -7.4383

99 400 25 4.3277 358.4208 90.4184 268.0024

99 400 100 14.9043 1374.9888 96.7380 1278.2507

Table A1: Numerical calculations of c1, Tr C2, Tr C3, and Tr C2 − C3 as defined in Equa-
tions (80)–(82) in Corollary A.4 using the true value of θ = {ψ, ν, τ, Σ−1

X }. Each row is
averaged over 200 draws of xA, wA and wB. In all cases, nA = 50, ψ = 0, ν = 1, and
ΣX = Ip. 98



Lemma A.5. Given a PSD matrix M with at least one strictly positive eigenvalue and PD

matrix N, both of the same dimensions, Tr(MN) > 0.

Proof. Suppose the dimension of the matrices is p. Consider the eigendecomposition of

M, M = QΛQ>, where Λ = diag(λi, . . . , λp) is the diagonal matrix of eigenvalues of

M (in decreasing order) and Q = (q1, . . . , qp) is the column matrix of corresponding

eigenvectors of M (all non-zero). Then,

Tr(MN) = Tr(QΛQ>N)

= Tr(ΛQ>NQ)

=
p

∑
i=1

λi(q>i Nqi) (since Λ is diagonal)

≥ λ1(q>1 Nq1) > 0,

since the largest eigenvalue λ1 is positive, q1 is non-zero, and N is PD.

Lemma A.6. Given estimators β̂1, β̂2, . . . , β̂m, define P by (13) in the text, ie Pij = MCPE(β̂i, β̂ j).

If Var
[
(β̂1, β̂2, . . . , β̂m)v

]
has at least positive eigenvalue for every v ∈ Rm\0m, then P is PD.

Proof. We show v>Pv > 0 for v ∈ Rm\0m. Define the following random variable:

U` = β − β̂`. Let U = (U1, . . . , Um). Then, P = σ21m1>m + E[U>XnewX>newU]. Now,

choose v ∈ Rm\0m. Then,

v>Pv = σ2v>1m1>mv + v>E[U>XnewX>newU]v

= σ2(v>1m)
2 + Var

[
X>newUv

]
+ (E[X>newUv])2.

The first and third expressions are nonnegative. Considering the second expression,

Var
[

X>newUv
]
= Tr (ΣXVar[Uv]) + E[Xnew]

>Var[Uv]E[Xnew] + E[Uv]>ΣXE[Uv].
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The second and third expressions are nonnegative. We show the first is strictly positive:

Tr (ΣXVar[Uv]) = Tr
(

ΣXVar
[

β1>mv−
(

β̂1, . . . , β̂m

)
v
])

= Tr
(

ΣXVar
[(

β̂1, . . . , β̂m

)
v
])

.

ΣX is PD and, by assumption, Var
[(

β̂1, . . . , β̂m

)
v
]

has at least one positive eigenvalue.

Applying Lemma A.5, this is strictly positive.

Proof. (Theorem 2.1)

(i) Being an affine combination, there always exists a feasible solution; existence and

uniqueness of ωopt follow from P being PD, which in turn comes from Lemma A.6.

(ii) Without loss of generality, suppose MSPE(β̂m) = min` MSPE(β̂`). It is always

true that MSPE(b(ωopt)) ≤ MSPE(β̂m). To see this, define ω(1) = {0, 0, . . . , 0, 1}>, and

observe that MSPE(b(ω(1))) = MSPE(β̂m). By definition, ωopt will do no worse in terms

of MSPE than ω(1), ie MSPE(b(ωopt)) ≤ MSPE(β̂m).

We now demonstrate that a sufficient condition under which this inequality is strict is

MCPE(β̂m, β̂i) 6= MSPE(β̂m) for some i 6= j. Let ωopt = {ωopt
1 , ω

opt
2 , . . . , ω

opt
m }> and

define the m × m matrix P by (13) in the text, ie Pij = MCPE(β̂i, β̂ j). We show that if

ωopt = ω(1) (ie, if the best prediction error comes from using only β̂m, the estimator

with smallest MSPE), then P1m = P2m = · · · = Pmm. By contraposition, if Pim 6= Pmm

for some i 6= m, then ωopt 6= ω(1), which implies, by the uniqueness of ωopt, that

MSPE(b(ωopt)) < MSPE(β̂m) (the required result). For a general ω, MSPE(b(ω)) =
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ω>Pω will have zero slope at its minimum:

ω>Pω =
m−1

∑
i=1

Piiω
2
i + 2

m−1

∑
i=2

ωi

i−1

∑
j=1

Pijωj + Pmm

(
1−

m−1

∑
i=1

ωi

)2

+ 2

(
1−

m−1

∑
i=1

ωi

)
m−1

∑
i=1

Pimωi

⇒∂ω>Pω

∂ω`
= 2P``ω` + 2

m−1

∑
i 6=`

P`iωi − 2Pmm

(
1−

m−1

∑
i=1

ωi

)
+ 2P`m

(
1−

m−1

∑
i=1

ωi −ω`

)

⇒
(

∂ω>Pω

∂ω`

∣∣∣∣∣ωopt = ω(1)

)
= −2Pmm + 2P`m = 0,

which gives that P1m = P2m = · · · = Pmm.

Lemma A.7. Suppose we have two targeted ridge estimators, β̂k1 = β̂(γβ,k1 , λk1 , Ω−1
β,k1

) and

β̂k2 = β̂(γβ,k2 , λk2 , Ω−1
β,k2

), as defined by (7). Let ψ` = Tr H(λ`Ω
−1
β,`)/nA. If γβ,k1 and γβ,k2 are

not functions of yA, then

E
[
(1/nA)(yA − xAβ̂k1)

>(yA − xAβ̂k2)
]

= σ2 + E
[
(β− β̂k1)

>x>A xA(β− β̂k2)/nA

]
− σ2(ψk1 + ψk2). (84)

Proof. (Lemma A.7)

(1/nA)(yA − xAβ̂1)
>(yA − xAβ̂2)

= (1/nA)(yA − xAβ + xAβ− xAβ̂1)
>(yA − xAβ + xAβ− xAβ̂2)

= (1/nA)(yA − xAβ)>(yA − xAβ) (85)

+ (1/nA)(yA − xAβ)>(xAβ− xAβ̂1) (86)

+ (1/nA)(yA − xAβ)>(xAβ− xAβ̂2) (87)

+ (1/nA)(xAβ− xAβ̂1)
>(xAβ− xAβ̂2). (88)

Taking expectations, (85) evaluates to σ2 and (88) to E
[
(β− β̂1)

>x>A xA(β− β̂2)/nA

]
. For
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(86),

(1/nA)E
[
(yA − xAβ)>(xAβ− xAβ̂1)

]
= (1/nA)E

[
(yA − xAβ)>(xAβ− xA(x>A xA + λ1Ω−1

β,1)
−1(x>AyA + λ1Ω−1

β,1γβ,1))
]

(89)

= −(1/nA)E(yA − xAβ)>(H(λ1Ω−1
β,1)yA)

= −(1/nA)E(yA − xAβ)>(H(λ1Ω−1
β,1)yA − H(λ1Ω−1

β,1)xAβ) (90)

= −(1/nA)E(yA − xAβ)>H(λ1Ω−1
β,1)(yA − xAβ)

= −σ2Tr H(λ1Ω−1
β,1)/nA.

The equality between (89) and (90) assumes that yA − xAβ has mean 0p and is indepen-

dent of γβ,1. The analogous result comes from the expectation of (87).

The following lemma, a generalization from Golub et al. (1979), provides a condition for

the GCV expression being close to the true MSPE expression that it targets.

Lemma A.8. Let R` = E[(β− β̂`)
>x>A xA(β− β̂`)], ie the mean squared error in estimating

xAβ. This is a consistent estimate of MSPE(β̂`) as nA increases, up to the constant σ2. A

surrogate for MSPE(β̂`) is P̂`,`, defined in expression (14). The difference in ER` and EP̂`,`− σ2

relative to ER` is

ER` − (EP̂`,` − σ2)

ER`
=
−2ψ`

(1− ψ`)2 +
ψ2
`

(1− ψ`)2
ER` + σ2

ER`

and so is small when ψ` = Tr H(λ`Ω
−1
β,`)/nA is small.

Proof. We have P̂`,` = (1− ψ`)
−2(1/nA)(yA − xAβ̂`)

>(yA − xAβ̂`). Then,

ER` − ER̃` + σ2

ER`
=

ER` + σ2 − (1− ψ)−2(ER` + σ2 − 2σ2ψ`)

ER`
(from Proof of Lemma A.7)

=
−2ψ`

(1− ψ`)2 +
ψ2
`

(1− ψ`)2
ER` + σ2

ER`
.
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A.3 Further Simulation Study Results

Tables A2 and A3 give numerical values of empirical MSPE from Figure 2 in the main

text, and Figure A1 gives Empirical Mean Squared Error (MSE) from the same simulation

study. Next, we summarize simulation results under various model misspecifications.

α α

When [Y|X, W ] 6= [Y|X]: We repeated each simulation with the alternative generating

model Y = β0 + X>β∗ + W>α + σ∗ε. To keep fixed the model of interest, Y = β0 +

X>β + σε, for a given simulation setting, we set α = sβ, β∗ = (1 − sν)β and σ∗ =

σ − sτ
√

β>β for some s ∈ [0, 1]. Previously, s = 0; Figure A1 plots the MSPE when

s = 0.1. Because σ∗ decreases with τ, the MSPE of all methods, including ridg, also

tends to decrease with τ. hyb remains as an attractive choice.

Outcome Dependent Sampling: We repeated each simulation, automatically including

the nA/2 = 25 observations in subsample A with the largest values of Y and randomly

allocating the remaining observations, as before. MSPE is plotted in Figure A3. As

might be expected, since the methods do not account for outcome dependent sampling,

the MSPE is typically much larger than in the case of simple random sampling. hyb,

being a linear combination of all other methods, increases correspondingly but is still

the overall best performing method.

Violations to Normality of X Assumption and ME Structure: We drew X from a multi-

variate t distribution with 5 degrees of freedom, scaled to maintain Var X = ΣX . We

simultaneously perturbed (1.2): instead of Var[wij|xij] = τ2, the underlying true variance

was Var[wij|xij] = τ2|xij|1/4. These results are in Figure A4. MSPE actually decreases in

this situation, and, again, hyb has MSPE that is smallest or almost so in most scenarios.

When θ is known: The unbiasedness of β̂src was shown in the case that θ is known;

bias or variance in the estimates of the components of θ, particularly ΣX because it is
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of a large dimension, may increase MSPE beyond our analytical derivations. In our

simulation study, we estimated ΣX using the shrinkage method of Schäfer and Strimmer

(2005). However, that src does so poorly in the large p setting does not change if the

true θ is used (see Remark 3 in the main text).

We considered other values of the true β that spread the signal evenly over all compo-

nents or concentrated the signal in a few elements. Crucially, consistent with the results

in Figure 2, hyb proved to be the most flexible of all methods: small MSPE in each case

but not always the smallest.

A.4 Bootstrap Algorithm for Prediction Intervals

Since uncertainty in predictions is typically also of interest to the analyst, we describe

a simple method for calculating prediction intervals via the bootstrap. For b in 1, . . . , B,

repeat the following:

(i) Draw separate bootstrap samples from subsamples A and B, yielding (yb
A, xb

A, wb
A)

and (yb
B, wb

B). Use these to calculate β̂b
ridg

, β̂b
frc

, etc.

(ii) Let rb
A be the size of the set of remaining observations in subsample A not sam-

pled in step (i). Draw an additional observation from this set, say (yb∗, xb∗), and

calculate eb∗ =
√

rb
A/(rb

A − 1)
(

yb∗ − xb∗ β̂b
)

, for each of β̂b = β̂b
ridg

, β̂b = β̂b
frc

, etc

(Theorem A.9 gives a rationale for this approach).

(iii) For a new observation with covariate Xnew, the predicted value of Ynew is Ŷb
new =

X>newβ̂b + eb∗.

After B such iterations, the 95% prediction interval for Ynew is (ŶB,2.5
new , ŶB,97.5

new ), where

ŶB,2.5
new and ŶB,97.5

new are the 2.5 and 97.5 percentiles of the B bootstrap predictions.

Theorem A.9. Suppose Vi is N{0, σ2}, independently for i = 1, . . . , N, and U|V1, . . . , VN ∼

Unif{V1, . . . , VN}. Then E [Var[U|V1, . . . , VN]] = (N − 1)σ2/N.
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{ρ, R2} {p, nB} method τ = 0.01 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0,0.4 99,400 ridg 20.5 20.5 20.5 20.4 20.4 20.3 20.6 20.5 20.4
src 16.0 16.2 17.2 18.7 20.8 23.4 26.2 29.6 33.4
frc 16.0 15.9 15.9 16.2 16.7 17.2 17.8 18.2 18.6
hyb 15.7 15.8 16.2 16.7 17.3 17.8 18.4 18.7 18.9

0.75,0.4 99,400 ridg 101.5 100.4 101.2 101.1 100.6 99.8 100.5 101.2 100.6
src 100.2 100.8 105.1 116.9 134.4 161.7 196.1 235.1 280.7
frc 100.2 96.7 91.6 88.9 87.1 86.7 86.8 87.8 88.7
hyb 93.7 92.8 91.8 91.4 91.6 91.9 92.9 95.2 95.8

0,0.1 99,400 ridg 85.8 86.7 86.4 86.6 86.7 86.0 86.2 86.2 85.9
src 94.9 96.4 100.3 106.8 115.4 125.2 138.2 151.4 167.1
frc 94.9 94.1 92.0 89.8 88.0 86.1 85.6 84.8 84.3
hyb 84.0 84.7 84.6 85.1 85.4 84.7 85.5 85.3 85.3

0.75,0.1 99,400 ridg 524.8 526.3 531.8 531.3 531.3 531.9 527.3 529.7 531.9
src 595.8 600.8 623.8 678.6 760.8 875.3 1006.9 1160.7 1351.2
frc 595.7 577.1 546.6 526.9 513.4 506.6 500.3 496.8 495.9
hyb 518.0 518.6 520.7 521.6 521.3 522.6 521.7 526.4 527.3

0,0.4 99,150 ridg 20.5 20.3 20.4 20.5 20.6 20.5 20.5 20.4 20.4
src 24.6 25.5 28.6 33.1 39.1 46.5 55.1 65.8 77.5
frc 24.6 24.4 24.1 23.6 23.2 22.7 22.4 22.2 21.9
hyb 18.5 18.6 18.9 19.3 19.7 19.8 20.0 20.0 20.1

0.75,0.4 99,150 ridg 101.3 102.3 100.1 100.6 102.4 101.3 100.6 100.0 100.7
src 155.2 159.2 178.1 215.7 269.6 341.3 428.6 538.5 656.1
frc 155.2 145.1 130.2 119.8 111.9 107.3 104.6 102.1 101.3
hyb 100.1 100.8 99.7 100.6 101.7 101.7 101.7 100.8 102.5

0,0.1 99,150 ridg 86.1 86.0 86.0 86.0 85.9 86.7 85.6 86.2 85.6
src 147.7 151.9 162.8 182.0 207.0 238.7 271.7 315.2 358.0
frc 147.7 144.8 137.0 128.7 120.8 114.6 108.3 105.2 101.0
hyb 86.3 86.3 86.4 86.4 86.5 87.4 86.2 87.0 86.3

0.75,0.1 99,150 ridg 534.6 533.1 528.2 530.3 528.7 532.4 529.3 530.6 524.8
src 925.1 950.8 1051.6 1249.7 1501.3 1874.5 2271.3 2782.9 3311.8
frc 924.9 866.8 772.5 705.7 653.8 627.7 602.8 584.8 569.3
hyb 536.3 533.6 532.3 536.2 535.1 542.6 541.8 541.9 540.1

Table A2: Numerical values of empirical MSPE for 8 simulation settings described in
Section 2.4 when p = 99.The smallest MSPE for each τ in each rectangle is in bold
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{ρ, R2} {p, nB} method τ = 0.01 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0,0.4 5,400 ridg 1.06 1.06 1.06 1.06 1.06 1.07 1.06 1.06 1.06

src 0.97 0.97 0.97 0.98 0.98 0.99 1.00 1.01 1.01
frc 0.97 0.97 0.99 1.04 1.11 1.18 1.25 1.30 1.35

hyb 0.98 0.98 0.99 0.99 1.00 1.00 1.01 1.01 1.02

0.75,0.4 5,400 ridg 0.94 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.93

src 0.87 0.87 0.88 0.89 0.90 0.91 0.92 0.92 0.93

frc 0.87 0.87 0.89 0.94 1.00 1.08 1.13 1.19 1.22

hyb 0.88 0.88 0.89 0.89 0.90 0.91 0.92 0.92 0.92
0,0.1 5,400 ridg 6.18 6.17 6.17 6.19 6.19 6.19 6.16 6.16 6.18

src 5.80 5.80 5.82 5.84 5.88 5.89 5.93 5.96 6.00
frc 5.80 5.80 5.81 5.86 5.93 5.99 6.04 6.09 6.15

hyb 5.92 5.91 5.91 5.94 5.97 5.98 5.98 6.00 6.04

0.75,0.1 5,400 ridg 5.51 5.53 5.51 5.52 5.52 5.49 5.50 5.52 5.50

src 5.20 5.22 5.24 5.29 5.32 5.35 5.39 5.45 5.46

frc 5.20 5.20 5.21 5.26 5.32 5.37 5.43 5.49 5.52

hyb 5.29 5.32 5.31 5.34 5.36 5.37 5.40 5.43 5.43
0,0.4 5,150 ridg 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06

src 0.98 0.98 0.99 0.99 1.01 1.02 1.03 1.04 1.04
frc 0.98 0.98 1.00 1.03 1.10 1.16 1.23 1.28 1.32

hyb 1.00 1.00 1.00 1.01 1.02 1.02 1.03 1.03 1.04

0.75,0.4 5,150 ridg 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94

src 0.88 0.88 0.89 0.90 0.92 0.92 0.93 0.94 0.94

frc 0.88 0.88 0.89 0.93 0.99 1.05 1.11 1.17 1.20

hyb 0.89 0.89 0.90 0.91 0.92 0.92 0.93 0.93 0.93
0,0.1 5,150 ridg 6.18 6.18 6.18 6.19 6.17 6.15 6.17 6.17 6.19

src 5.90 5.89 5.91 5.96 6.00 6.02 6.07 6.12 6.16

frc 5.90 5.88 5.88 5.92 5.95 5.99 6.04 6.10 6.14

hyb 5.99 5.98 5.99 6.02 6.03 6.04 6.06 6.09 6.11
0.75,0.1 5,150 ridg 5.50 5.52 5.51 5.51 5.52 5.51 5.50 5.52 5.52

src 5.27 5.30 5.33 5.40 5.44 5.49 5.52 5.55 5.58

frc 5.27 5.27 5.25 5.30 5.34 5.39 5.43 5.47 5.51

hyb 5.36 5.37 5.36 5.39 5.42 5.44 5.44 5.46 5.47

Table A3: Numerical values of empirical MSPE for 8 simulation settings described in
Section 2.4 when p = 5.The smallest MSPE for each τ in each rectangle is in bold
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Figure A1: Empirical MSE over τ for 16 simulation settings described in Section 2.4
p stands for the number of covariates, nB is the size of subsample B, ρ is the first-
order auto-regressive correlation coefficient for pairwise combinations of X, and R2 =
β>ΣX β/(β>ΣX β + σ2). The top strip varies between rows and the bottom strip varies
between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1. The smallest possible
MSE is zero.
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Figure A2: Empirical MSPE over τ for 16 simulation settings described in Section
2.4 when the conditional independence assumption [Y|X, W ] = [Y|X] is violated. p
stands for the number of covariates, nB is the size of subsample B, ρ is the first-
order auto-regressive correlation coefficient for pairwise combinations of X, and R2 =
β>ΣX β/(β>ΣX β + σ2). The top strip varies between rows and the bottom strip varies
between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1. σ2, plotted in black, is
the smallest possible MSPE for any estimate of β.
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Figure A3: Empirical MSPE over τ for 16 simulation settings described in Section 2.4
under outcome dependent sampling. p stands for the number of covariates, nB is the
size of subsample B, ρ is the first-order auto-regressive correlation coefficient for pairwise
combinations of X, and R2 = β>ΣX β/(β>ΣX β + σ2). The top strip varies between rows
and the bottom strip varies between columns. In all cases, nA = 50, β0 = ψ = 0, and
ν = 1. σ2, plotted in black, is the smallest possible MSPE for any estimate of β.
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Figure A4: Empirical MSPE over τ for 16 simulation settings described in Section 2.4
under violations to normality of X assumption and ME structure. p stands for the
number of covariates, nB is the size of subsample B, ρ is the first-order auto-regressive
correlation coefficient for pairwise combinations of X, and R2 = β>ΣX β/(β>ΣX β + σ2).
The top strip varies between rows and the bottom strip varies between columns. In all
cases, nA = 50, β0 = ψ = 0, and ν = 1.σ2, plotted in black, is the smallest possible MSPE
for any estimate of β.
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Proof.

E [Var[U|V1, . . . , VN]] = E
[

1
N ∑ V2

i − V̄2
]
= σ2 − σ2/N =

N − 1
N

σ2.

Applying this result to the proposed bootstrap algorithm in the main text, let U be

yb∗− xb∗ β̂b, a random draw from the rb
A residuals of the observations not sampled in step

(i). Ignoring the bias and variance of βb, these residuals, corresponding to V1, . . . , Vrb
A

,

are approximately N{0, σ2}. Thus, if eb∗ =
√

rb
A/(rb

A − 1)
(

yb∗ − xb∗ β̂b
)

, E
[
Var

[
eb∗]] is

approximately σ2, which is our justification for using eb∗ as the prediction error.
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Appendix B: Chapter 3 Supplementary Materials

B.1 Enumeration of Gibbs Steps

fb-flatbeta From (27), the prior is

[φ] = [β0, β, σ2, ψ, ν, τ2, µX , Σ−1
X ]

∝ (σ2τ2)−1|Σ−1
X |

(2p−1)/2 exp
{
−2p− 1

2
Tr (diag(V̂ar[xA])Σ

−1
X )

}
,

where diag(V̂ar[xA]) is the diagonal part of the empirical covariance of xA. This is a

Jeffreys prior on each parameter except Σ−1
X , and η (the hyperparameter) is specified.

Using partial conditional distributions implied by the product of expressions (25) and

(27): [Uobs, Umis|φ]× [φ], every Gibbs step is derived as follows:

[
xi|yi, wi, β, β0, σ2, ψ, ν, τ2, µX , Σ−1

X

]
∝
[
yi|xi, β, β0, σ2

] [
wi|xi, ψ, ν, τ2

] [
xi|µX , Σ−1

X

]
∝ exp

{
− 1

2σ2 (yi − β0 − x>i β)2
}

exp
{
− 1

2τ2 (wi − ψ1p − νxi)
>(wi − ψ1p − νxi)

}
× exp

{
−1

2
(xi − µX)

>Σ−1
X (xi − µX)

}
∝ exp

{
−1

2

(
x>i [ββ>/σ2]xi − 2[(yi − β0)/σ2]x>i β

+ [ν2/τ2]x>i xi − 2[ν/τ2]x>i [wi − ψ1p] + x>i Σ−1
X xi − 2x>i Σ−1

X µX

)}
= Np

{
Γ
(
[(yi − β0)/σ2]β + [ν/τ2][wi − ψ1p] + Σ−1

X µX

)
, Γ
}

,

Γ =
(

ββ>/σ2 + ν2/τ2 + Σ−1
X

)−1
.
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[
β|yA, xA, wA, yB, xB, wB, β0, σ2, ν, τ2, µX , Σ−1

X

]
∝
[
yA|xA, β, β0, σ2

] [
yB|xB, β, β0, σ2

]
∝ exp

{
− 1

2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

− 1
2σ2 (yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
∝ exp

{
− 1

2σ2

(
β>
[

x>A xA + x>B xB

]
β− 2β>

[
x>A(yA − β01nA) + x>B (yB − β01nB)

]) }
= Np

{
(x>A xA + x>B xB)

−1(x>A [yA − β01nA ] + x>B [yB − β01nB ]), σ2(x>A xA + x>B xB)
−1
}

.

[
β0|yA, xA, wA, yB, xB, wB, β, σ2, ν, τ2, µX , Σ−1

X

]
∝
[
yA|xA, β, β0, σ2

] [
yB|xB, β, β0, σ2

]
∝ exp

{
− 1

2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

}
× exp

{
− 1

2σ2 (yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
∝ exp

{
− 1

2σ2

(
[nA + nB]β

2
0 − 2β0(yA − xAβ)>1nA − 2β0(yB − xBβ)>1nB

)}
= N

{
(yA − xAβ)>1nA + (yB − xBβ)>1nB

nA + nB
,

σ2

nA + nB

}
.

[
σ2|yA, xA, wA, yB, xB, wB, β, β0, ν, τ2, µX , Σ−1

X

]
∝
[
yA|xA, β, β0, σ2

] [
yB|xB, β, β0, σ2

]
∝ (σ2)−nA/2 exp

{
− 1

2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

}
× (σ2)−nB/2 exp

{
− 1

2σ2 (yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
(σ2)−1

= IG
{

1
2
(nA + nB) ,

1
2
(yA − β01nA − xAβ)>(yA − β01nA − xAβ)

+
1
2
(yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
.
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[
ψ|yA, xA, wA, yB, xB, wB, β, β0, σ2, ν, τ2, µX , Σ−1

X

]
∝
[
wA|xA, ψ, ν, τ2

] [
wB|xB, ψ, ν, τ2

]
∝ exp

{
− 1

2τ2 Tr (wA − ψ1nA1>p − νxA)
>(wA − ψ1nA1>p − νxA)

}
× exp

{
− 1

2τ2 Tr (wB − ψ1nB1>p − νxB)
>(wB − ψ1nB1>p − νxB)

}
∝ exp

{
− 1

2τ2

(
ψ2Tr [1p1>nA

1nA1>p + 1p1>nB
1nB1>p ]

− 2ψTr [1p1>nA
(wA − νxA) + 1p1>nB

(wB − νxB)]
)}

= N

{
1>nA

(wA − νxA)1p + 1>nB
(wB − νxB)1p

(nA + nB)p
,

τ2

(nA + nB)p

}
.

[
ν|yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, τ2, µX , Σ−1

X

]
∝
[
wA|xA, ψ, ν, τ2

] [
wB|xB, ψ, ν, τ2

]
∝ exp

{
− 1

2τ2 Tr (wA − ψ1nA1>p − νxA)
>(wA − ψ1nA1>p − νxA)

}
× exp

{
− 1

2τ2 Tr (wB − ψ1nB1>p − νxB)
>(wB − ψ1nB1>p − νxB)

}
∝ exp

{
− 1

2τ2

(
ν2Tr [x>A xA + x>B xB]

− 2νTr [x>A(wA − ψ1nA1>p ) + x>B (wB − ψ1nB1>p )]
)}

= N

{
Tr [x>A(wA − ψ1nA1>p ) + x>B (wB − ψ1nB1>p )]

Tr [x>A xA + x>B xB]
,

τ2

Tr [x>A xA + x>B xB]

}
.

[
τ2|yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, ν, µX , Σ−1

X

]
∝
[
wA|xA, ψ, ν, τ2

] [
wB|xB, ψ, ν, τ2

]
∝
(

τ2
)−(nA+nB)p/2

exp
{
− 1

2τ2 Tr (wA − ψ1nA1>p − νxA)
>(wA − ψ1nA1>p − νxA)

}
× exp

{
− 1

2τ2 Tr (wB − ψ1nB1>p − νxB)
>(wB − ψ1nB1>p − νxB)

}
(τ2)−1

= IG
{

1
2
(nA + nB)p,

1
2

Tr (wA − ψ1nA1>p − νxA)
>(wA − ψ1nA1>p − νxA)

+
1
2

Tr (wB − ψ1nB1>p − νxB)
>(wB − ψ1nB1>p − νxB)

}
.
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[
µX |yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, ν, τ2, Σ−1

X

]
∝
[

xA|µX , Σ−1
X

] [
xB|µX , Σ−1

X

]
∝ exp

{
−1

2
Tr (xA − 1nAµ>X)Σ

−1
X (xA − 1nAµ>X)

> − 1
2

Tr (xB − 1nBµ>X)Σ
−1
X (xB − 1nBµ>X)

>
}

∝ exp
{
−1

2

(
[nA + nB]µ

>
X Σ−1

X µX − 2µ>X Σ−1
X [x>A1nA + x>B 1nB ]

)}
= Np

{
x>A1nA + x>B 1nB

nA + nB
,

1
nA + nB

ΣX

}
.

[
Σ−1

X |yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, ν, τ2, µX

]
∝
[

xA|µX , Σ−1
X

] [
xB|µX , Σ−1

X

] [
Σ−1

X

]
=
∣∣Σ−1

X

∣∣(nA+nB)/2

× exp
{
−1

2
Tr Σ−1

X

[
(xA − 1nAµ>X)

>(xA − 1nAµ>X) + (xB − 1nBµ>X)
>(xB − 1nBµ>X)

]}
×
∣∣Σ−1

X

∣∣(2p−1)/2 exp
{
−2p− 1

2
Tr (diag(V̂ar[xA])Σ

−1
X )

}
= W

{
3p + nA + nB,

(
(2p− 1)diag(V̂ar[xA]) + (xA − 1nAµ>X)

>(xA − 1nAµ>X)

+ (xB − 1nBµ>X)
>(xB − 1nBµ>X)

)−1}
.

The Inverse-Gamma distribution, IG{a, b}, is parametrized to have mean b
a−1 and the

Wishart distribution with d degrees of freedom, W{d, S}, is parametrized to have mean

dS.

fb-hibeta-ni, eb-hibeta-ni Recall that we replace the Jeffreys prior on β in (27) with

[β|σ2, λ] ∝
(

λ

σ2

)p/2

exp
{
−1

2
λ

σ2 β>β

}
.

115



The following posterior steps are modified:

[
β|yA, xA, wA, yB, xB, wB, β0, σ2, ν, τ2, µX , Σ−1

X , λ
]

∝
[
yA|xA, β, β0, σ2] [yB|xB, β, β0, σ2] [β|σ2, λ

]
∝ exp

{
− 1

2σ2 (yA − xAβ)>(yA − xAβ)− 1
2σ2 (yB − xBβ)>(yB − xBβ)

}
exp

{
− λ

2σ2 β>β

}
∝ exp

{
− 1

2σ2

(
β>
[

x>A xA + x>B xB + λIp

]
β− 2β>

[
x>A(yA − β01nA) + x>B (yB − β01nB)

])}
= Np

{
(x>A xA + x>B xB + λIp)

−1(x>A [yA − β01nA ] + x>B [yB − β01nB ]),

σ2(x>A xA + x>B xB + λIp)
−1
}

.

[
σ2|yA, xA, wA, yB, xB, wB, β, β0, ν, τ2, µX , Σ−1

X , λ
]

∝
[
yA|xA, β, β0, σ2] [yB|xB, β, β0, σ2] [β|σ2, λ

] [
σ2]

∝ (σ2)−nA/2 exp
{
− 1

2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

}
× (σ2)−nB/2 exp

{
− 1

2σ2 (yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
(σ2)−1

× (σ2)−p/2 exp
{
− λ

2σ2 β>β

}
= IG

{
1
2
(nA + nB + p) ,

1
2

λβ>β +
1
2
(yA − β01nA − xAβ)>(yA − β01nA − xAβ)

+
1
2
(yB − β01nB − xBβ)>(yB − β01nB − xBβ)

}
.

The fb-hibeta-ni update for λ is given as follows:

[
λ|yA, xA, wA, yB, xB, wB, β, β0, σ2, ν, τ2, µX , Σ−1

X

]
∝
[
β|σ2, λ

]
[λ]

∝ λp/2 exp
{
− λ

2σ2 β>β

}
λ−1

= G
{

p
2

,
β>β

2σ2

}
.

To calculate the eb-hibeta-ni update for λ, observe that Eφ|Uobs,λ ln[β|σ2, λ] = (p/2) ln λ−

λE
[
β>β/σ2] /2. This is maximized with respect to λ when λ = p/E

[
β>β/σ2].

eb-hisigmax, eb-hibetasigmax Leaving the inverse scale matrix Λ unspecified, the mod-
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ified prior on Σ−1
X is

[Σ−1
X |Λ] ∝ |Λ|3p/2|Σ−1

X |
(2p−1)/2 exp

{
−(1/2)Tr (ΛΣ−1

X )
}

.

Λ is the unknown positive-definite matrix of hyperparameters. The Gibbs step for Σ−1
X

becomes

[
Σ−1

X |yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, ν, τ2, µX

]
∝
[

xA|µX , Σ−1
X

] [
xB|µX , Σ−1

X

] [
Σ−1

X |Λ
]

∝
∣∣Σ−1

X

∣∣(nA+nB)/2
{
− 1

2
Tr (xA − 1nAµ>X)Σ

−1
X (xA − 1nAµ>X)

>
}

× exp
{
− 1

2
Tr (xB − 1nBµ>X)Σ

−1
X (xB − 1nBµ>X)

>
}

×
∣∣Σ−1

X

∣∣(2p−1)/2 exp
{
−1

2
Tr
(

ΛΣ−1
X

)}
= W

{
3p + nA + nB,(

Λ + (xA − 1nAµ>X)
>(xA − 1nAµ>X) + (xB − 1nBµ>X)

>(xB − 1nBµ>X)
)−1 }

.

We now derive the Empirical Bayes update for the diagonal inverse-scale matrix Λ =

diag{Λ11, . . . , Λpp}. Observe that

Eφ|Uobs,Λ ln
[
Σ−1

X |Λ
]

∝ p ln
∣∣Λ∣∣− Tr (ΛE[Σ−1

X ]) = 3p
p

∑
i=1

log Λii −
p

∑
i=1

ΛiiE[Σ−1
X ]ii.

Thus, each element Λii may be optimized individually, yielding the Empirical Bayes

update Λii ← 3pE[Σ−1
X ]−1

ii .

B.2 Modified Gibbs Steps for Data Analysis

Let ψ ≡ {ψ1, . . . , ψp}, ν ≡ diag{ν1, . . . , νp} (that is, a diagonal matrix with components

ν1, . . . , νp), and {ej} the set of p-dimensional standard basic vectors. The conditional

distributions with individual intercepts and slopes (using flat priors on each ψj and νj)
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are given by

[
ψ|yA, xA, wA, yB, xB, wB, β, β0, σ2, ν, τ2, µX , Σ−1

X

]
∝
[
wA|xA, ψ, ν, τ2

][
wB|xB, ψ, ν, τ2

]
∝ exp

{
− 1

2τ2 Tr (wA − 1nA ψ> − xAν)>(wA − 1nA ψ> − xAν)
}

× exp
{
− 1

2τ2 Tr (wB − 1nB ψ> − xBν)>(wB − 1nB ψ> − xBν)
}

∝ exp
{
− 1

2τ2

(
Tr [ψ1>nA

1nA ψ> + ψ1>nB
1nB ψ>]

− 2Tr [ψ1>nA
(wA − xAν) + ψ1>nB

(wB − xBν)]
)}

= exp

{
− 1

2τ2

(
(nA + nB)

p

∑
j=1

ψ2
j −

p

∑
j=1

ψje>j
[
(wA − xAν)>1nA + (wB − xBν)>1nB

])}
.

[
ν|yA, xA, wA, yB, xB, wB, β, β0, σ2, ψ, τ2, µX , Σ−1

X

]
∝
[
wA|xA, ψ, ν, τ2

][
wB|xB, ψ, ν, τ2

]
∝ exp

{
− 1

2τ2 Tr (wA − 1nA ψ> − xAν)>(wA − 1nA ψ> − xAν)
}

× exp
{
− 1

2τ2 Tr (wB − 1nB ψ> − xBν)>(wB − 1nB ψ> − xBν)
}

∝ exp
{
− 1

2τ2

(
Tr [ν2x>A xA + ν2x>B xB]− 2Tr [νx>A(wA − 1nA ψ>) + νx>B (wB − 1nB ψ>)]

)}
.

From these, the modified Gibbs steps are

ψj ← N
{e>j

[
(wA − xAν)>1nA + (wB − xBν)>1nB

]
(nA + nB)

,
τ2

(nA + nB)

}
,

νj ← N
{e>j

[
x>A(wA − 1nAψ>) + x>B (wB − 1nBψ>)

]
ej

e>j
[
x>A xA + x>B xB

]
ej

,
τ2

e>j [x
>
A xA + x>B xB]ej

}
.

independently for j = 1, . . . , p.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 99,400 ridg 20.6 20.5 20.6 20.6 20.3 20.6 20.5 20.6 20.6 20.3
hyb 15.7 16.1 17.3 18.4 18.7 15.7 16.1 17.3 18.4 18.7

fb-flatbeta 15.6 18.5 28.4 38.6 41.0 15.6 19.3 32.3 42.1 44.2
fb-hibeta-ni 15.0 16.0 16.8 17.6 18.1 15.0 16.2 17.0 17.8 18.3
eb-hibeta-ni 15.0 15.5 16.6 17.5 18.1 15.0 15.6 16.7 17.5 18.1
eb-hisigmax 15.6 17.5 25.3 36.5 40.0 15.6 18.0 28.6 40.0 43.1

eb-hibetasigmax 15.1 15.5 16.6 17.4 18.0 15.1 15.5 16.6 17.5 18.1
0.75,0.4 99,400 ridg 101.3 101.8 103.0 100.5 101.7 101.3 101.8 103.0 100.5 101.7

hyb 94.0 92.3 92.7 92.6 96.7 94.0 92.3 92.7 92.6 96.7
fb-flatbeta 98.4 97.2 102.8 109.5 119.2 98.3 99.2 110.3 124.5 138.8
fb-hibeta-ni 89.1 89.1 89.6 90.3 92.3 89.1 89.7 90.9 92.4 94.3
eb-hibeta-ni 80.9 81.7 82.4 83.1 85.8 80.9 81.7 82.3 83.3 86.1
eb-hisigmax 98.3 105.1 113.8 127.8 147.8 98.3 108.9 125.6 148.9 172.2

eb-hibetasigmax 80.9 81.6 83.0 84.3 87.5 80.9 81.6 83.0 84.5 87.6
0,0.1 99,400 ridg 86.6 86.1 86.0 86.4 85.8 86.6 86.1 86.0 86.4 85.8

hyb 84.5 84.7 84.9 85.2 85.1 84.5 84.7 84.9 85.2 85.1
fb-flatbeta 93.2 107.7 142.5 192.7 206.7 93.2 111.8 163.8 214.6 225.5
fb-hibeta-ni 90.9 98.7 97.1 95.5 95.0 90.9 100.8 99.6 97.1 96.1
eb-hibeta-ni 79.5 80.1 80.3 80.6 80.7 79.5 80.1 80.3 80.6 80.6
eb-hisigmax 93.2 102.4 129.9 180.9 197.5 93.2 105.3 147.8 202.6 217.1

eb-hibetasigmax 79.5 80.1 80.3 80.5 80.6 79.5 80.1 80.3 80.5 80.6
0.75,0.1 99,400 ridg 534.3 518.7 526.5 539.2 522.1 534.3 518.7 526.5 539.2 522.1

hyb 523.4 512.9 521.0 529.9 527.5 523.4 512.9 521.0 529.9 527.5
fb-flatbeta 587.8 577.0 606.4 643.7 681.6 587.8 588.6 647.9 723.5 785.0
fb-hibeta-ni 535.3 532.5 538.0 545.4 548.3 535.2 536.3 546.7 557.7 561.2
eb-hibeta-ni 481.4 481.0 482.1 486.9 485.9 481.4 480.9 481.8 486.6 485.2
eb-hisigmax 587.9 622.5 662.8 737.6 825.2 587.9 644.0 728.4 851.6 960.6

eb-hibetasigmax 481.8 481.2 482.6 488.1 488.1 481.8 481.1 482.3 487.6 487.3
0,0.4 99,150 ridg 20.5 20.6 20.5 20.5 20.7 20.5 20.6 20.5 20.5 20.7

hyb 18.6 18.9 19.7 20.0 20.3 18.6 18.9 19.7 20.0 20.3
fb-flatbeta 24.2 31.7 57.3 59.2 61.2 24.2 34.1 60.9 62.6 64.3
fb-hibeta-ni 17.7 18.0 18.5 18.9 19.2 17.7 18.1 18.6 19.0 19.2
eb-hibeta-ni 16.9 17.3 18.1 18.7 19.1 16.9 17.4 18.1 18.8 19.1
eb-hisigmax 24.2 29.8 56.6 54.5 56.5 24.2 31.7 59.9 58.2 59.8

eb-hibetasigmax 16.9 17.3 18.1 18.7 19.1 16.9 17.3 18.1 18.7 19.1
0.75,0.4 99,150 ridg 101.0 100.4 101.2 102.7 101.1 101.0 100.4 101.2 102.7 101.1

hyb 100.1 99.5 101.4 103.0 101.9 100.1 99.5 101.4 103.0 101.9
fb-flatbeta 153.2 152.5 192.8 202.2 219.6 153.2 161.8 212.2 225.4 242.0
fb-hibeta-ni 94.2 93.1 93.1 94.3 94.7 94.2 93.4 93.8 95.5 95.9
eb-hibeta-ni 85.0 85.5 86.1 88.4 89.3 85.0 85.4 86.1 88.6 89.7
eb-hisigmax 153.4 178.8 231.1 241.0 266.2 153.3 193.4 252.9 264.9 287.6

eb-hibetasigmax 85.1 85.6 86.7 89.5 90.5 85.0 85.5 86.6 89.6 90.8
0,0.1 99,150 ridg 85.8 85.0 86.2 86.5 86.0 85.8 85.0 86.2 86.5 86.0

hyb 86.2 85.5 86.5 87.2 87.1 86.2 85.5 86.5 87.2 87.1
fb-flatbeta 145.8 181.8 311.3 292.7 301.6 145.8 194.8 332.0 311.1 317.3
fb-hibeta-ni 106.3 103.9 98.7 96.4 95.0 106.3 104.9 99.4 96.7 95.3
eb-hibeta-ni 80.8 81.1 81.3 81.6 81.3 80.8 81.1 81.3 81.5 81.2
eb-hisigmax 145.8 172.1 286.5 285.3 286.2 145.8 182.6 308.2 304.1 303.5

eb-hibetasigmax 80.8 81.1 81.3 81.6 81.3 80.8 81.1 81.2 81.5 81.2
0.75,0.1 99,150 ridg 531.8 533.6 530.4 530.1 524.2 531.8 533.6 530.4 530.1 524.2

hyb 532.1 535.7 539.3 538.5 539.4 532.1 535.7 539.3 538.5 539.4
fb-flatbeta 924.8 919.7 1049.4 1143.2 1161.3 924.5 977.5 1169.8 1269.2 1294.6
fb-hibeta-ni 568.6 558.9 559.4 561.5 565.8 568.6 561.0 565.1 569.0 574.0
eb-hibeta-ni 488.8 487.8 493.0 495.3 497.1 488.8 487.6 492.7 494.9 496.7
eb-hisigmax 924.6 1095.3 1333.3 1394.0 1390.7 924.3 1185.6 1466.7 1529.8 1527.1

eb-hibetasigmax 488.6 488.1 493.8 495.7 498.7 488.6 487.9 493.3 495.2 498.3

Table B1: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 99. β̂pm is the posterior mean and β̂ppm is the posterior predictive
mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 5,400 ridg 1.07 1.06 1.06 1.05 1.06 1.07 1.06 1.06 1.05 1.06

hyb 0.98 0.98 1.00 1.00 1.02 0.98 0.98 1.00 1.00 1.02

fb-flatbeta 0.95 0.96 0.98 0.98 1.00 0.95 0.96 0.98 0.99 1.01

fb-hibeta-ni 0.95 0.95 0.98 0.98 1.00 0.95 0.96 0.98 0.99 1.01

eb-hibeta-ni 0.95 0.95 0.98 0.98 1.00 0.95 0.95 0.98 0.98 1.00

eb-hisigmax 0.95 0.95 0.98 0.98 1.00 0.95 0.95 0.98 0.98 1.00

eb-hibetasigmax 0.95 0.95 0.97 0.98 1.00 0.95 0.95 0.97 0.98 1.00
0.75,0.4 5,400 ridg 0.94 0.94 0.93 0.94 0.93 0.94 0.94 0.93 0.94 0.93

hyb 0.88 0.89 0.90 0.92 0.92 0.88 0.89 0.90 0.92 0.92

fb-flatbeta 0.85 0.86 0.87 0.89 0.90 0.85 0.86 0.87 0.89 0.90

fb-hibeta-ni 0.85 0.86 0.87 0.89 0.89 0.85 0.86 0.87 0.89 0.89

eb-hibeta-ni 0.85 0.86 0.86 0.88 0.88 0.85 0.86 0.86 0.88 0.88
eb-hisigmax 0.85 0.86 0.87 0.90 0.90 0.85 0.86 0.87 0.90 0.91

eb-hibetasigmax 0.85 0.86 0.86 0.88 0.89 0.85 0.86 0.87 0.88 0.89

0,0.1 5,400 ridg 6.20 6.17 6.17 6.22 6.17 6.20 6.17 6.17 6.22 6.17

hyb 5.93 5.92 5.95 6.03 6.04 5.93 5.92 5.95 6.03 6.04

fb-flatbeta 5.71 5.72 5.80 5.93 5.95 5.71 5.72 5.81 5.95 5.98

fb-hibeta-ni 5.71 5.72 5.81 5.94 5.98 5.71 5.72 5.82 5.97 6.00

eb-hibeta-ni 5.81 5.83 5.85 5.92 5.95 5.81 5.83 5.85 5.93 5.95

eb-hisigmax 5.71 5.71 5.79 5.90 5.93 5.71 5.71 5.79 5.92 5.95

eb-hibetasigmax 5.81 5.82 5.85 5.91 5.94 5.81 5.82 5.85 5.92 5.95
0.75,0.1 5,400 ridg 5.53 5.50 5.51 5.55 5.53 5.53 5.50 5.51 5.55 5.53

hyb 5.32 5.30 5.35 5.45 5.45 5.32 5.30 5.35 5.45 5.45

fb-flatbeta 5.12 5.14 5.20 5.27 5.33 5.12 5.14 5.21 5.29 5.35

fb-hibeta-ni 5.12 5.14 5.20 5.28 5.33 5.12 5.14 5.21 5.29 5.35

eb-hibeta-ni 5.21 5.21 5.23 5.29 5.31 5.21 5.21 5.23 5.29 5.31
eb-hisigmax 5.12 5.15 5.23 5.31 5.37 5.12 5.16 5.25 5.33 5.40

eb-hibetasigmax 5.21 5.21 5.23 5.29 5.31 5.21 5.21 5.23 5.29 5.32

0,0.4 5,150 ridg 1.05 1.06 1.06 1.07 1.06 1.05 1.06 1.06 1.07 1.06

hyb 0.99 1.00 1.02 1.03 1.04 0.99 1.00 1.02 1.03 1.04

fb-flatbeta 0.96 0.98 1.00 1.02 1.02 0.96 0.98 1.00 1.02 1.02

fb-hibeta-ni 0.96 0.98 0.99 1.02 1.02 0.96 0.98 1.00 1.02 1.02

eb-hibeta-ni 0.96 0.98 0.99 1.01 1.02 0.96 0.98 0.99 1.01 1.02

eb-hisigmax 0.96 0.98 0.99 1.01 1.02 0.96 0.98 0.99 1.02 1.02
eb-hibetasigmax 0.96 0.97 0.99 1.01 1.02 0.96 0.97 0.99 1.01 1.02

0.75,0.4 5,150 ridg 0.93 0.93 0.94 0.93 0.94 0.93 0.93 0.94 0.93 0.94

hyb 0.89 0.90 0.92 0.93 0.94 0.89 0.90 0.92 0.93 0.94

fb-flatbeta 0.87 0.88 0.90 0.91 0.92 0.87 0.88 0.90 0.91 0.92

fb-hibeta-ni 0.87 0.88 0.89 0.90 0.91 0.87 0.88 0.89 0.91 0.91

eb-hibeta-ni 0.87 0.88 0.89 0.90 0.91 0.87 0.88 0.89 0.90 0.91
eb-hisigmax 0.87 0.88 0.90 0.92 0.93 0.87 0.88 0.90 0.92 0.93

eb-hibetasigmax 0.87 0.88 0.89 0.90 0.91 0.87 0.88 0.89 0.90 0.91

0,0.1 5,150 ridg 6.20 6.21 6.20 6.23 6.19 6.20 6.21 6.20 6.23 6.19

hyb 5.99 6.01 6.08 6.12 6.11 5.99 6.01 6.08 6.12 6.11

fb-flatbeta 5.80 5.86 5.99 6.05 6.06 5.80 5.86 6.01 6.07 6.07

fb-hibeta-ni 5.80 5.86 6.00 6.07 6.08 5.80 5.86 6.01 6.10 6.10

eb-hibeta-ni 5.90 5.94 6.00 6.02 6.05 5.90 5.94 6.00 6.02 6.05

eb-hisigmax 5.80 5.86 5.97 6.03 6.04 5.80 5.86 5.98 6.05 6.06

eb-hibetasigmax 5.91 5.94 5.99 6.01 6.04 5.91 5.94 6.00 6.02 6.05
0.75,0.1 5,150 ridg 5.48 5.50 5.53 5.48 5.50 5.48 5.50 5.53 5.48 5.50

hyb 5.35 5.36 5.43 5.42 5.46 5.35 5.36 5.43 5.42 5.46

fb-flatbeta 5.20 5.25 5.35 5.35 5.40 5.20 5.25 5.36 5.36 5.42

fb-hibeta-ni 5.19 5.25 5.34 5.35 5.40 5.19 5.25 5.36 5.36 5.41

eb-hibeta-ni 5.24 5.27 5.34 5.33 5.36 5.24 5.27 5.34 5.33 5.36
eb-hisigmax 5.20 5.27 5.38 5.39 5.43 5.20 5.27 5.40 5.40 5.45

eb-hibetasigmax 5.24 5.28 5.34 5.33 5.36 5.24 5.28 5.34 5.34 5.36

Table B2: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 5. β̂pm is the posterior mean and β̂ppm is the posterior predictive
mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 99,400 ridg 20.3 20.3 20.6 20.5 20.6 20.3 20.3 20.6 20.5 20.6
hyb 15.6 16.1 17.6 18.3 19.2 15.6 16.1 17.6 18.3 19.2

fb-flatbeta 15.7 18.5 29.2 38.1 40.3 15.7 19.3 33.0 41.5 43.7
fb-hibeta-ni 15.1 16.0 16.9 17.5 18.3 15.1 16.2 17.2 17.7 18.5
eb-hibeta-ni 15.3 15.8 16.7 17.4 18.3 15.3 15.9 16.8 17.4 18.3
eb-hisigmax 15.7 17.5 26.1 36.9 40.3 15.7 18.0 29.6 40.4 43.4

eb-hibetasigmax 15.3 15.8 16.7 17.4 18.3 15.3 15.8 16.7 17.4 18.3
0.75,0.4 99,400 ridg 99.6 100.6 100.0 99.3 100.1 99.6 100.6 100.0 99.3 100.1

hyb 92.9 91.4 91.1 93.8 96.0 92.9 91.4 91.1 93.8 96.0
fb-flatbeta 97.7 96.9 102.4 112.2 124.5 97.7 98.9 110.1 126.9 144.0
fb-hibeta-ni 88.6 89.0 88.9 91.0 93.1 88.6 89.5 90.2 92.9 95.0
eb-hibeta-ni 80.8 81.9 81.6 84.4 86.5 80.8 81.9 81.5 84.5 86.7
eb-hisigmax 97.7 104.5 113.6 131.9 151.9 97.7 108.3 125.9 152.1 175.8

eb-hibetasigmax 80.6 81.8 82.2 85.7 88.2 80.6 81.8 82.1 85.7 88.3
0,0.1 99,400 ridg 86.3 85.4 86.8 87.1 86.0 86.3 85.4 86.8 87.1 86.0

hyb 84.3 84.2 84.9 86.0 85.1 84.3 84.2 84.9 86.0 85.1
fb-flatbeta 94.4 107.9 140.6 194.4 197.1 94.4 112.1 161.4 216.3 216.8
fb-hibeta-ni 92.1 99.0 96.8 95.9 94.6 92.1 101.2 99.3 97.6 95.6
eb-hibeta-ni 79.9 80.0 80.2 80.9 80.6 79.9 80.0 80.2 80.9 80.5
eb-hisigmax 94.4 102.6 131.1 183.1 193.3 94.4 105.6 148.3 204.9 212.9

eb-hibetasigmax 79.9 80.0 80.2 80.8 80.5 79.9 80.0 80.2 80.8 80.5
0.75,0.1 99,400 ridg 527.4 539.0 522.0 527.8 542.9 527.4 539.0 522.0 527.8 542.9

hyb 519.6 523.9 516.8 522.9 528.7 519.6 523.9 516.8 522.9 528.7
fb-flatbeta 589.4 576.6 612.0 645.2 682.0 589.4 588.5 655.7 725.2 783.9
fb-hibeta-ni 536.3 531.6 538.3 541.5 550.4 536.2 535.4 547.0 553.6 564.2
eb-hibeta-ni 480.2 479.7 481.3 481.4 488.1 480.2 479.6 481.0 481.0 487.5
eb-hisigmax 589.3 621.6 675.0 742.8 801.3 589.4 643.2 744.2 856.0 933.9

eb-hibetasigmax 480.2 479.9 482.2 482.6 489.9 480.2 479.8 481.9 482.0 489.2
0,0.4 99,150 ridg 20.4 20.2 20.4 20.4 20.5 20.4 20.2 20.4 20.4 20.5

hyb 18.5 18.7 19.4 19.9 20.2 18.5 18.7 19.4 19.9 20.2
fb-flatbeta 24.3 31.4 57.5 57.8 58.8 24.3 33.8 61.0 61.1 62.0
fb-hibeta-ni 17.8 18.0 18.4 18.8 19.2 17.8 18.1 18.5 18.9 19.2
eb-hibeta-ni 16.8 17.2 18.0 18.6 18.9 16.8 17.2 18.0 18.7 18.9
eb-hisigmax 24.3 29.5 54.6 55.7 58.1 24.3 31.4 57.9 58.9 61.0

eb-hibetasigmax 16.8 17.2 18.0 18.6 18.9 16.8 17.2 18.0 18.6 18.9
0.75,0.4 99,150 ridg 101.4 100.0 101.3 99.2 98.8 101.4 100.0 101.3 99.2 98.8

hyb 100.2 99.9 101.2 100.1 102.1 100.2 99.9 101.2 100.1 102.1
fb-flatbeta 155.2 153.0 187.0 198.0 229.7 155.1 162.1 207.3 221.8 252.2
fb-hibeta-ni 94.8 93.1 93.3 93.6 94.8 94.8 93.4 94.1 94.7 96.1
eb-hibeta-ni 85.1 85.3 86.4 87.3 89.3 85.1 85.3 86.4 87.5 89.6
eb-hisigmax 155.1 178.8 233.8 245.8 269.2 155.1 193.1 256.8 269.2 291.8

eb-hibetasigmax 85.1 85.4 86.9 88.4 90.4 85.1 85.4 86.8 88.5 90.6
0,0.1 99,150 ridg 86.3 87.2 85.7 85.5 86.6 86.3 87.2 85.7 85.5 86.6

hyb 86.5 87.7 86.7 86.1 87.0 86.5 87.7 86.7 86.1 87.0
fb-flatbeta 146.1 185.5 300.0 302.9 295.5 146.1 199.0 322.1 321.2 312.1
fb-hibeta-ni 106.2 104.1 98.3 96.1 95.0 106.2 105.1 99.0 96.4 95.3
eb-hibeta-ni 80.8 81.4 80.9 81.1 81.2 80.8 81.4 80.8 81.0 81.1
eb-hisigmax 146.1 174.6 285.5 282.9 282.3 146.1 185.5 307.8 302.2 298.7

eb-hibetasigmax 80.8 81.3 80.8 81.0 81.2 80.8 81.3 80.8 80.9 81.1
0.75,0.1 99,150 ridg 519.8 531.2 527.5 518.1 520.2 519.8 531.2 527.5 518.1 520.2

hyb 520.6 534.4 534.3 532.9 533.0 520.6 534.4 534.3 532.9 533.0
fb-flatbeta 912.4 914.6 1104.0 1117.3 1165.1 912.4 969.5 1214.5 1246.9 1300.9
fb-hibeta-ni 566.6 558.8 561.1 559.2 565.2 566.5 560.7 566.8 565.2 574.1
eb-hibeta-ni 487.3 490.6 495.0 493.3 498.2 487.3 490.5 494.7 492.7 497.6
eb-hisigmax 913.1 1092.6 1335.5 1355.8 1426.1 912.8 1176.9 1461.3 1488.1 1562.7

eb-hibetasigmax 487.4 491.0 495.8 494.1 499.1 487.4 490.9 495.4 493.4 498.5

Table B3: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 99 and ε + 1 ∼ G{1, 1}. β̂pm is the posterior mean and β̂ppm is the
posterior predictive mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 5,400 ridg 1.05 1.06 1.06 1.06 1.06 1.05 1.06 1.06 1.06 1.06

hyb 0.98 0.99 0.99 1.01 1.01 0.98 0.99 0.99 1.01 1.01

fb-flatbeta 0.95 0.96 0.98 0.99 1.00 0.95 0.96 0.98 0.99 1.00

fb-hibeta-ni 0.95 0.96 0.98 0.99 1.00 0.95 0.96 0.98 0.99 1.00

eb-hibeta-ni 0.95 0.95 0.97 0.99 0.99 0.95 0.95 0.97 0.99 0.99

eb-hisigmax 0.95 0.95 0.97 0.99 0.99 0.95 0.96 0.98 0.99 1.00

eb-hibetasigmax 0.95 0.95 0.97 0.99 0.99 0.95 0.95 0.97 0.99 0.99
0.75,0.4 5,400 ridg 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94

hyb 0.87 0.89 0.91 0.92 0.93 0.87 0.89 0.91 0.92 0.93

fb-flatbeta 0.85 0.86 0.88 0.89 0.90 0.85 0.86 0.88 0.90 0.90

fb-hibeta-ni 0.85 0.86 0.87 0.89 0.90 0.85 0.86 0.88 0.89 0.90

eb-hibeta-ni 0.85 0.86 0.87 0.89 0.89 0.85 0.86 0.87 0.89 0.89
eb-hisigmax 0.85 0.86 0.88 0.90 0.91 0.85 0.86 0.88 0.90 0.91

eb-hibetasigmax 0.85 0.86 0.87 0.89 0.89 0.85 0.86 0.87 0.89 0.89

0,0.1 5,400 ridg 6.13 6.11 6.17 6.23 6.16 6.13 6.11 6.17 6.23 6.16

hyb 5.87 5.87 5.96 6.05 6.02 5.87 5.87 5.96 6.05 6.02

fb-flatbeta 5.68 5.68 5.81 5.93 5.95 5.68 5.68 5.82 5.95 5.97

fb-hibeta-ni 5.68 5.68 5.81 5.94 5.97 5.68 5.69 5.82 5.97 6.00

eb-hibeta-ni 5.77 5.79 5.85 5.94 5.90 5.77 5.79 5.86 5.94 5.91

eb-hisigmax 5.68 5.68 5.78 5.90 5.92 5.68 5.68 5.79 5.92 5.94

eb-hibetasigmax 5.76 5.78 5.85 5.93 5.90 5.76 5.78 5.85 5.93 5.91
0.75,0.1 5,400 ridg 5.49 5.50 5.52 5.47 5.53 5.49 5.50 5.52 5.47 5.53

hyb 5.28 5.31 5.38 5.37 5.46 5.28 5.31 5.38 5.37 5.46

fb-flatbeta 5.07 5.13 5.19 5.24 5.33 5.07 5.13 5.19 5.26 5.35

fb-hibeta-ni 5.07 5.13 5.19 5.24 5.34 5.07 5.13 5.20 5.26 5.35

eb-hibeta-ni 5.16 5.20 5.22 5.25 5.29 5.16 5.20 5.22 5.25 5.29
eb-hisigmax 5.07 5.14 5.22 5.27 5.37 5.07 5.14 5.23 5.29 5.39

eb-hibetasigmax 5.16 5.20 5.23 5.25 5.30 5.16 5.20 5.23 5.25 5.30

0,0.4 5,150 ridg 1.07 1.06 1.07 1.07 1.06 1.07 1.06 1.07 1.07 1.06

hyb 1.00 1.00 1.02 1.03 1.04 1.00 1.00 1.02 1.03 1.04

fb-flatbeta 0.97 0.98 1.00 1.02 1.03 0.97 0.98 1.00 1.02 1.03

fb-hibeta-ni 0.97 0.98 1.00 1.02 1.03 0.97 0.98 1.00 1.02 1.03

eb-hibeta-ni 0.98 0.97 0.99 1.01 1.03 0.98 0.97 1.00 1.02 1.03

eb-hisigmax 0.97 0.97 1.00 1.01 1.03 0.97 0.97 1.00 1.02 1.03

eb-hibetasigmax 0.98 0.97 0.99 1.01 1.03 0.98 0.97 0.99 1.01 1.03
0.75,0.4 5,150 ridg 0.94 0.93 0.95 0.93 0.93 0.94 0.93 0.95 0.93 0.93

hyb 0.89 0.90 0.93 0.92 0.93 0.89 0.90 0.93 0.92 0.93

fb-flatbeta 0.87 0.88 0.90 0.91 0.92 0.87 0.88 0.91 0.91 0.92

fb-hibeta-ni 0.87 0.88 0.90 0.90 0.91 0.87 0.88 0.90 0.90 0.91

eb-hibeta-ni 0.87 0.87 0.89 0.89 0.90 0.87 0.87 0.90 0.89 0.90
eb-hisigmax 0.87 0.88 0.91 0.91 0.92 0.87 0.88 0.91 0.92 0.92

eb-hibetasigmax 0.87 0.87 0.90 0.90 0.90 0.87 0.87 0.90 0.90 0.90

0,0.1 5,150 ridg 6.15 6.15 6.17 6.20 6.15 6.15 6.15 6.17 6.20 6.15

hyb 5.95 5.96 6.03 6.11 6.10 5.95 5.96 6.03 6.11 6.10

fb-flatbeta 5.79 5.81 5.94 6.06 6.13 5.79 5.81 5.95 6.08 6.14

fb-hibeta-ni 5.79 5.81 5.95 6.08 6.15 5.79 5.81 5.97 6.10 6.17

eb-hibeta-ni 5.87 5.87 5.97 6.02 6.03 5.87 5.87 5.97 6.02 6.03
eb-hisigmax 5.79 5.80 5.92 6.04 6.11 5.79 5.81 5.93 6.06 6.13

eb-hibetasigmax 5.87 5.87 5.96 6.02 6.03 5.87 5.87 5.96 6.02 6.03

0.75,0.1 5,150 ridg 5.50 5.50 5.51 5.42 5.59 5.50 5.50 5.51 5.42 5.59

hyb 5.35 5.38 5.42 5.38 5.55 5.35 5.38 5.42 5.38 5.55

fb-flatbeta 5.19 5.27 5.34 5.34 5.52 5.19 5.27 5.35 5.36 5.54

fb-hibeta-ni 5.19 5.27 5.33 5.34 5.51 5.18 5.27 5.35 5.35 5.53

eb-hibeta-ni 5.24 5.29 5.33 5.28 5.44 5.24 5.29 5.33 5.29 5.44
eb-hisigmax 5.19 5.29 5.37 5.37 5.56 5.19 5.30 5.39 5.39 5.58

eb-hibetasigmax 5.24 5.29 5.32 5.29 5.45 5.24 5.30 5.32 5.29 5.45

Table B4: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 5 and ε + 1 ∼ G{1, 1}. β̂pm is the posterior mean and β̂ppm is the
posterior predictive mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 99,400 ridg 20.4 20.7 20.7 20.7 20.6 20.4 20.7 20.7 20.7 20.6
hyb 16.1 16.3 16.8 17.5 18.1 16.1 16.3 16.8 17.5 18.1

fb-flatbeta 17.8 18.9 22.0 28.5 35.8 18.3 19.9 24.5 32.4 39.6
fb-hibeta-ni 15.9 16.1 16.4 16.7 17.3 16.1 16.3 16.6 17.0 17.5
eb-hibeta-ni 15.6 15.6 16.1 16.7 17.3 15.6 15.6 16.2 16.8 17.4
eb-hisigmax 17.1 17.9 20.4 25.7 33.0 17.4 18.6 22.3 29.1 37.0

eb-hibetasigmax 15.6 15.6 16.1 16.7 17.3 15.6 15.6 16.1 16.7 17.3
0.75,0.4 99,400 ridg 101.3 104.0 100.5 100.7 102.6 101.3 104.0 100.5 100.7 102.6

hyb 93.4 93.6 91.9 91.8 95.0 93.4 93.6 91.9 91.8 95.0
fb-flatbeta 99.1 98.8 100.0 102.6 107.7 100.8 101.1 104.1 110.0 119.9
fb-hibeta-ni 89.1 89.2 89.2 89.4 90.4 89.5 89.7 90.1 90.6 92.1
eb-hibeta-ni 82.4 82.8 81.9 82.1 83.1 82.4 82.8 81.9 82.0 83.1
eb-hisigmax 108.4 108.6 110.0 113.9 122.5 111.9 113.3 117.5 125.9 140.6

eb-hibetasigmax 81.8 82.2 81.9 82.5 83.9 81.8 82.2 81.9 82.4 83.9
0,0.1 99,400 ridg 86.4 87.0 85.4 86.7 87.5 86.4 87.0 85.4 86.7 87.5

hyb 85.0 85.1 84.0 85.4 86.2 85.0 85.1 84.0 85.4 86.2
fb-flatbeta 104.0 109.6 121.4 147.6 179.9 106.6 114.4 133.4 169.3 202.6
fb-hibeta-ni 97.7 99.2 98.2 97.9 96.3 99.2 101.4 101.0 100.5 98.3
eb-hibeta-ni 80.2 80.1 79.9 80.4 80.6 80.2 80.1 79.9 80.4 80.6
eb-hisigmax 100.0 104.5 114.7 133.5 167.8 101.9 108.0 124.0 152.4 190.4

eb-hibetasigmax 80.2 80.1 79.9 80.4 80.6 80.2 80.1 79.9 80.4 80.6
0.75,0.1 99,400 ridg 520.9 537.2 534.6 526.4 523.4 520.9 537.2 534.6 526.4 523.4

hyb 517.8 524.1 526.9 521.1 519.6 517.8 524.1 526.9 521.1 519.6
fb-flatbeta 586.6 582.2 594.0 604.7 623.1 596.5 595.6 619.0 647.0 686.3
fb-hibeta-ni 529.0 528.7 534.6 533.9 539.6 531.5 532.2 540.7 542.0 550.0
eb-hibeta-ni 480.1 480.5 482.8 480.0 483.2 480.1 480.5 482.7 479.8 482.9
eb-hisigmax 643.5 638.7 652.8 663.9 691.3 664.2 665.0 697.1 731.3 786.0

eb-hibetasigmax 479.8 480.3 482.9 480.7 483.8 479.7 480.2 482.7 480.4 483.4
0,0.4 99,150 ridg 20.3 20.1 20.6 20.4 20.4 20.3 20.1 20.6 20.4 20.4

hyb 18.8 18.7 19.3 19.6 19.8 18.8 18.7 19.3 19.6 19.8
fb-flatbeta 30.0 33.5 53.8 56.1 59.6 31.7 36.3 57.7 59.6 63.0
fb-hibeta-ni 18.0 18.0 18.2 18.4 18.8 18.1 18.1 18.3 18.5 18.8
eb-hibeta-ni 17.2 17.3 17.8 18.0 18.5 17.2 17.3 17.8 18.1 18.6
eb-hisigmax 28.9 31.6 48.7 56.9 57.8 30.2 33.9 52.5 60.1 61.0

eb-hibetasigmax 17.2 17.3 17.7 18.0 18.5 17.2 17.3 17.7 18.1 18.5
0.75,0.4 99,150 ridg 102.4 100.1 100.6 102.7 101.1 102.4 100.1 100.6 102.7 101.1

hyb 101.6 100.3 99.9 101.9 101.8 101.6 100.3 99.9 101.9 101.8
fb-flatbeta 164.3 165.7 172.1 183.9 205.1 172.5 176.3 187.5 203.4 226.3
fb-hibeta-ni 93.3 93.4 93.0 93.0 93.3 93.4 93.7 93.5 93.8 94.4
eb-hibeta-ni 85.1 85.5 85.8 86.3 87.1 85.1 85.5 85.7 86.3 87.3
eb-hisigmax 198.8 209.2 223.6 235.9 239.3 212.8 225.9 244.5 258.0 261.8

eb-hibetasigmax 85.0 85.6 86.0 86.7 87.9 85.0 85.5 85.9 86.7 88.0
0,0.1 99,150 ridg 86.1 85.3 85.8 86.6 87.3 86.1 85.3 85.8 86.6 87.3

hyb 86.8 85.8 86.4 87.2 87.9 86.8 85.8 86.4 87.2 87.9
fb-flatbeta 180.3 185.6 282.1 304.6 294.3 189.8 200.1 306.1 324.4 312.8
fb-hibeta-ni 105.1 103.5 100.6 98.0 96.6 106.0 104.5 101.5 98.7 97.0
eb-hibeta-ni 80.9 81.1 80.9 81.1 81.3 80.9 81.1 80.9 81.1 81.3
eb-hisigmax 172.9 175.8 261.2 294.7 291.0 181.1 188.1 283.0 314.1 307.4

eb-hibetasigmax 80.8 81.1 80.9 81.1 81.3 80.8 81.1 80.9 81.0 81.2
0.75,0.1 99,150 ridg 523.5 525.3 533.3 529.5 521.3 523.5 525.3 533.3 529.5 521.3

hyb 529.0 529.2 535.9 538.7 532.2 529.0 529.2 535.9 538.7 532.2
fb-flatbeta 951.9 966.9 1027.3 1082.1 1116.9 998.9 1028.5 1123.7 1198.5 1250.9
fb-hibeta-ni 558.4 558.6 559.3 562.0 561.9 559.5 560.4 562.9 567.6 569.7
eb-hibeta-ni 490.2 489.6 491.2 492.0 494.0 490.1 489.5 491.0 491.6 493.7
eb-hisigmax 1166.4 1217.1 1339.2 1344.3 1367.2 1248.9 1316.0 1457.2 1473.0 1507.7

eb-hibetasigmax 490.1 489.8 491.7 492.7 494.9 490.0 489.7 491.4 492.2 494.6

Table B5: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 99 and W |X ∼ Np{ψ1p + νX2, τ2Ip}. β̂pm is the posterior mean
and β̂ppm is the posterior predictive mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 5,400 ridg 1.06 1.07 1.06 1.06 1.06 1.06 1.07 1.06 1.06 1.06

hyb 0.99 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00

fb-flatbeta 0.96 0.96 0.97 0.97 0.98 0.96 0.96 0.97 0.98 0.99

fb-hibeta-ni 0.96 0.96 0.97 0.98 0.98 0.96 0.96 0.97 0.98 0.99

eb-hibeta-ni 0.96 0.96 0.97 0.97 0.98 0.96 0.96 0.97 0.97 0.98

eb-hisigmax 0.96 0.96 0.97 0.97 0.98 0.96 0.96 0.97 0.97 0.98

eb-hibetasigmax 0.96 0.96 0.97 0.97 0.98 0.96 0.96 0.97 0.97 0.98
0.75,0.4 5,400 ridg 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

hyb 0.89 0.89 0.90 0.90 0.91 0.89 0.89 0.90 0.90 0.91

fb-flatbeta 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.88 0.88

fb-hibeta-ni 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.88

eb-hibeta-ni 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.87
eb-hisigmax 0.87 0.87 0.87 0.88 0.88 0.87 0.87 0.87 0.88 0.89

eb-hibetasigmax 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.87

0,0.1 5,400 ridg 6.17 6.19 6.20 6.18 6.22 6.17 6.19 6.20 6.18 6.22

hyb 5.92 5.92 5.96 5.96 6.01 5.92 5.92 5.96 5.96 6.01

fb-flatbeta 5.73 5.72 5.77 5.81 5.88 5.73 5.72 5.77 5.82 5.89

fb-hibeta-ni 5.73 5.72 5.77 5.82 5.89 5.73 5.72 5.78 5.83 5.91

eb-hibeta-ni 5.81 5.81 5.85 5.86 5.91 5.81 5.81 5.85 5.86 5.91

eb-hisigmax 5.73 5.72 5.76 5.79 5.85 5.73 5.72 5.76 5.80 5.87
eb-hibetasigmax 5.81 5.81 5.85 5.86 5.90 5.81 5.81 5.85 5.86 5.90

0.75,0.1 5,400 ridg 5.51 5.51 5.49 5.53 5.52 5.51 5.51 5.49 5.53 5.52

hyb 5.33 5.34 5.31 5.37 5.40 5.33 5.34 5.31 5.37 5.40

fb-flatbeta 5.14 5.17 5.14 5.20 5.24 5.14 5.17 5.15 5.21 5.25
fb-hibeta-ni 5.14 5.17 5.14 5.20 5.24 5.14 5.17 5.15 5.21 5.25

eb-hibeta-ni 5.22 5.22 5.21 5.23 5.26 5.22 5.22 5.21 5.23 5.26

eb-hisigmax 5.15 5.18 5.16 5.23 5.27 5.16 5.19 5.16 5.24 5.29

eb-hibetasigmax 5.21 5.22 5.21 5.24 5.27 5.21 5.22 5.21 5.24 5.27

0,0.4 5,150 ridg 1.06 1.06 1.08 1.06 1.07 1.06 1.06 1.08 1.06 1.07

hyb 1.00 1.00 1.02 1.02 1.03 1.00 1.00 1.02 1.02 1.03

fb-flatbeta 0.98 0.98 0.99 1.00 1.01 0.98 0.98 0.99 1.00 1.02

fb-hibeta-ni 0.98 0.98 0.99 1.00 1.01 0.98 0.98 0.99 1.00 1.02

eb-hibeta-ni 0.98 0.98 0.99 0.99 1.01 0.98 0.98 0.99 0.99 1.01

eb-hisigmax 0.98 0.98 0.99 0.99 1.01 0.98 0.98 0.99 1.00 1.01

eb-hibetasigmax 0.98 0.98 0.99 0.99 1.01 0.98 0.98 0.99 0.99 1.01
0.75,0.4 5,150 ridg 0.94 0.94 0.93 0.93 0.94 0.94 0.94 0.93 0.93 0.94

hyb 0.91 0.91 0.91 0.92 0.93 0.91 0.91 0.91 0.92 0.93

fb-flatbeta 0.89 0.89 0.89 0.90 0.90 0.89 0.89 0.89 0.90 0.91

fb-hibeta-ni 0.89 0.88 0.89 0.89 0.90 0.89 0.88 0.89 0.90 0.90

eb-hibeta-ni 0.88 0.88 0.88 0.89 0.89 0.88 0.88 0.88 0.89 0.89
eb-hisigmax 0.89 0.89 0.90 0.90 0.91 0.89 0.89 0.90 0.90 0.91

eb-hibetasigmax 0.88 0.88 0.89 0.89 0.89 0.88 0.88 0.89 0.89 0.89

0,0.1 5,150 ridg 6.18 6.17 6.14 6.18 6.16 6.18 6.17 6.14 6.18 6.16

hyb 5.98 5.99 5.97 6.04 6.04 5.98 5.99 5.97 6.04 6.04

fb-flatbeta 5.84 5.86 5.87 5.94 5.98 5.84 5.86 5.88 5.96 6.00

fb-hibeta-ni 5.84 5.86 5.87 5.95 5.99 5.84 5.86 5.88 5.97 6.01

eb-hibeta-ni 5.90 5.90 5.91 5.93 5.95 5.90 5.90 5.91 5.93 5.96

eb-hisigmax 5.83 5.85 5.86 5.92 5.96 5.83 5.85 5.86 5.93 5.97

eb-hibetasigmax 5.90 5.91 5.91 5.93 5.95 5.90 5.91 5.91 5.93 5.95
0.75,0.1 5,150 ridg 5.56 5.52 5.51 5.49 5.51 5.56 5.52 5.51 5.49 5.51

hyb 5.43 5.39 5.40 5.39 5.43 5.43 5.39 5.40 5.39 5.43

fb-flatbeta 5.27 5.27 5.30 5.33 5.35 5.27 5.27 5.31 5.34 5.37

fb-hibeta-ni 5.26 5.27 5.30 5.32 5.35 5.27 5.27 5.31 5.34 5.37

eb-hibeta-ni 5.31 5.28 5.31 5.31 5.35 5.31 5.28 5.31 5.31 5.35
eb-hisigmax 5.29 5.29 5.33 5.36 5.38 5.29 5.29 5.34 5.38 5.40

eb-hibetasigmax 5.30 5.28 5.31 5.31 5.35 5.30 5.28 5.31 5.31 5.35

Table B6: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 5 and W |X ∼ Np{ψ1p + νX2, τ2Ip}. β̂pm is the posterior mean
and β̂ppm is the posterior predictive mean. The smallest MSPEs are in bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 99,400 ridg 21.1 20.8 20.7 20.9 21.0 21.1 20.8 20.7 20.9 21.0
hyb 15.8 18.1 29.3 38.7 44.7 15.8 18.1 29.3 38.7 44.7

fb-flatbeta 15.5 15.4 16.3 17.1 17.7 15.5 15.5 16.3 17.2 17.8
fb-hibeta-ni 14.9 15.5 16.5 17.3 17.9 14.9 15.5 16.5 17.3 17.8
eb-hibeta-ni 15.7 16.6 17.8 18.8 19.5 15.7 16.6 17.8 18.8 19.5
eb-hisigmax 15.5 17.5 22.9 32.5 35.9 15.5 18.0 25.8 36.6 39.8

eb-hibetasigmax 15.7 16.4 17.1 17.8 18.6 15.7 16.4 17.1 17.8 18.6
0.75,0.4 99,400 ridg 104.0 102.7 102.6 104.3 101.4 104.0 102.7 102.6 104.3 101.4

hyb 94.9 94.0 99.6 110.9 121.6 94.9 94.0 99.6 110.9 121.6
fb-flatbeta 97.9 88.8 87.1 87.2 86.6 97.9 89.2 87.3 87.2 86.8
fb-hibeta-ni 80.4 82.8 85.1 86.2 86.2 80.4 82.8 84.9 85.8 85.6
eb-hibeta-ni 81.8 83.6 85.6 87.9 88.1 81.8 83.5 85.5 87.7 87.8
eb-hisigmax 97.9 103.6 110.8 123.7 135.0 97.9 107.2 122.4 144.0 159.9

eb-hibetasigmax 81.8 82.0 82.4 84.5 86.1 81.8 82.0 82.4 84.6 86.3
0,0.1 99,400 ridg 87.0 88.1 85.5 86.8 87.4 87.0 88.1 85.5 86.8 87.4

hyb 84.5 88.4 103.0 115.1 129.2 84.5 88.4 103.0 115.1 129.2
fb-flatbeta 93.7 88.8 86.3 86.1 85.3 93.7 89.4 87.6 87.7 87.2
fb-hibeta-ni 80.2 80.7 80.7 81.6 81.2 80.2 80.7 80.8 81.7 81.4
eb-hibeta-ni 80.4 80.9 80.5 81.1 80.4 80.4 80.9 80.5 81.1 80.5
eb-hisigmax 93.7 101.3 124.7 159.3 174.6 93.7 103.9 139.4 182.4 197.1

eb-hibetasigmax 80.4 80.9 80.6 81.1 80.5 80.4 80.9 80.6 81.1 80.5
0.75,0.1 99,400 ridg 535.6 540.8 552.8 539.8 536.6 535.6 540.8 552.8 539.8 536.6

hyb 527.6 528.0 577.8 582.6 608.9 527.6 528.0 577.8 582.6 608.9
fb-flatbeta 589.9 521.7 503.0 498.0 495.8 589.9 524.7 507.2 503.8 504.1
fb-hibeta-ni 481.0 479.6 482.6 481.6 480.4 481.0 479.6 482.8 482.0 481.0
eb-hibeta-ni 486.4 488.4 490.6 491.5 490.1 486.4 488.4 490.7 491.5 490.3
eb-hisigmax 590.1 615.2 648.5 707.3 756.8 590.0 636.3 713.0 819.9 895.0

eb-hibetasigmax 486.4 487.6 489.1 490.8 490.9 486.4 487.5 488.9 490.5 490.4
0,0.4 99,150 ridg 21.1 20.9 21.0 21.0 20.7 21.1 20.9 21.0 21.0 20.7

hyb 19.0 21.0 27.8 36.8 38.5 19.0 21.0 27.8 36.8 38.5
fb-flatbeta 24.6 23.7 22.5 23.0 22.1 24.6 24.0 23.3 24.1 23.3
fb-hibeta-ni 16.7 17.2 17.8 18.5 18.8 16.7 17.2 17.8 18.4 18.7
eb-hibeta-ni 17.4 17.9 18.8 19.6 19.9 17.4 17.9 18.8 19.6 20.0
eb-hisigmax 24.6 29.6 52.9 54.8 54.9 24.6 31.4 56.4 58.2 57.9

eb-hibetasigmax 17.4 17.8 18.5 19.1 19.3 17.4 17.8 18.5 19.1 19.3
0.75,0.4 99,150 ridg 102.9 102.7 102.5 103.8 102.0 102.9 102.7 102.5 103.8 102.0

hyb 101.4 107.0 120.5 136.0 140.2 101.4 107.0 120.5 136.0 140.2
fb-flatbeta 153.0 125.0 104.2 99.0 97.9 152.9 126.6 107.4 103.4 102.8
fb-hibeta-ni 84.3 84.8 86.6 87.7 90.0 84.3 84.8 86.6 87.6 89.9
eb-hibeta-ni 85.0 85.5 87.1 88.8 92.0 85.0 85.6 87.1 88.8 92.0
eb-hisigmax 153.0 182.5 218.4 234.3 246.8 153.0 196.8 241.2 258.7 270.5

eb-hibetasigmax 85.0 85.6 86.8 88.2 90.3 85.0 85.5 86.8 88.4 90.6
0,0.1 99,150 ridg 86.8 87.5 87.0 86.9 86.2 86.8 87.5 87.0 86.9 86.2

hyb 86.7 90.5 108.0 114.0 122.8 86.7 90.5 108.0 114.0 122.8
fb-flatbeta 146.6 136.1 120.3 109.7 105.4 146.6 137.7 124.6 115.3 112.2
fb-hibeta-ni 82.5 82.2 82.1 82.9 82.7 82.5 82.2 82.1 82.8 82.6
eb-hibeta-ni 81.5 81.3 81.0 81.6 81.3 81.5 81.3 81.0 81.6 81.3
eb-hisigmax 146.6 169.4 277.6 283.1 273.5 146.6 179.3 299.3 302.1 290.6

eb-hibetasigmax 81.5 81.3 81.2 81.7 81.5 81.5 81.3 81.1 81.7 81.5
0.75,0.1 99,150 ridg 537.1 546.4 540.0 530.8 535.6 537.1 546.4 540.0 530.8 535.6

hyb 538.2 558.5 596.7 645.9 646.2 538.2 558.5 596.7 645.9 646.2
fb-flatbeta 928.7 731.5 608.1 576.6 563.1 928.4 740.8 627.6 603.5 595.2
fb-hibeta-ni 491.8 487.8 488.8 489.1 490.7 491.8 487.7 488.6 489.2 491.0
eb-hibeta-ni 494.7 493.1 496.7 498.9 499.7 494.7 493.1 496.7 499.0 499.8
eb-hisigmax 928.2 1066.8 1215.5 1314.1 1287.6 928.1 1150.9 1350.6 1468.6 1443.4

eb-hibetasigmax 494.8 493.3 497.5 500.0 500.6 494.7 493.2 497.3 499.8 500.5

Table B7: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 99 and X|Z ∼ Np{1[Z=2](3× 1p)− 1[Z=3](3× 1p), ΣX}. β̂pm is the
posterior mean and β̂ppm is the posterior predictive mean. The smallest MSPEs are in
bold.
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MSPE(β̂ppm) MSPE(β̂pm)
{ρ, R2} {p, nB} Method τ = 0.01 0.5 1.0 1.50 2.00 0.01 0.5 1.0 1.50 2.00

0,0.4 5,400 ridg 1.06 1.06 1.08 1.08 1.07 1.06 1.06 1.08 1.08 1.07

hyb 0.98 0.99 1.01 1.02 1.02 0.98 0.99 1.01 1.02 1.02

fb-flatbeta 0.95 0.95 0.98 1.00 1.00 0.95 0.95 0.97 0.99 1.00

fb-hibeta-ni 0.95 0.96 0.99 1.01 1.02 0.95 0.96 0.99 1.01 1.02

eb-hibeta-ni 0.95 0.96 0.98 1.02 1.02 0.95 0.96 0.98 1.01 1.02

eb-hisigmax 0.95 0.96 0.97 0.98 0.99 0.95 0.96 0.97 0.98 0.99

eb-hibetasigmax 0.95 0.95 0.97 0.99 0.99 0.95 0.95 0.97 0.99 0.99
0.75,0.4 5,400 ridg 0.93 0.93 0.94 0.94 0.94 0.93 0.93 0.94 0.94 0.94

hyb 0.88 0.88 0.90 0.91 0.92 0.88 0.88 0.90 0.91 0.92

fb-flatbeta 0.85 0.86 0.88 0.90 0.91 0.85 0.86 0.88 0.90 0.90

fb-hibeta-ni 0.85 0.86 0.90 0.92 0.94 0.85 0.86 0.89 0.92 0.93

eb-hibeta-ni 0.85 0.86 0.89 0.92 0.94 0.85 0.86 0.89 0.92 0.93

eb-hisigmax 0.85 0.86 0.88 0.89 0.90 0.85 0.86 0.88 0.89 0.91

eb-hibetasigmax 0.85 0.86 0.87 0.88 0.89 0.85 0.86 0.87 0.88 0.89
0,0.1 5,400 ridg 6.27 6.28 6.26 6.29 6.26 6.27 6.28 6.26 6.29 6.26

hyb 5.90 5.92 5.95 6.02 6.04 5.90 5.92 5.95 6.02 6.04

fb-flatbeta 5.68 5.70 5.73 5.78 5.82 5.68 5.70 5.73 5.78 5.82

fb-hibeta-ni 5.68 5.70 5.73 5.78 5.82 5.68 5.70 5.73 5.77 5.81
eb-hibeta-ni 5.86 5.87 5.94 6.01 6.05 5.86 5.87 5.94 6.01 6.04

eb-hisigmax 5.68 5.70 5.75 5.82 5.85 5.68 5.70 5.75 5.83 5.86

eb-hibetasigmax 5.85 5.87 5.93 5.99 6.02 5.85 5.87 5.93 6.00 6.02

0.75,0.1 5,400 ridg 5.55 5.57 5.57 5.57 5.51 5.55 5.57 5.57 5.57 5.51

hyb 5.31 5.33 5.36 5.42 5.40 5.31 5.33 5.36 5.42 5.40

fb-flatbeta 5.12 5.12 5.15 5.19 5.18 5.12 5.12 5.15 5.18 5.17

fb-hibeta-ni 5.11 5.12 5.15 5.19 5.17 5.11 5.12 5.15 5.18 5.17
eb-hibeta-ni 5.25 5.24 5.31 5.36 5.36 5.25 5.24 5.31 5.35 5.36

eb-hisigmax 5.12 5.15 5.23 5.31 5.30 5.12 5.15 5.25 5.33 5.32

eb-hibetasigmax 5.25 5.24 5.30 5.32 5.31 5.25 5.24 5.30 5.32 5.31

0,0.4 5,150 ridg 1.06 1.06 1.08 1.07 1.07 1.06 1.06 1.08 1.07 1.07

hyb 0.99 1.00 1.02 1.03 1.04 0.99 1.00 1.02 1.03 1.04

fb-flatbeta 0.96 0.97 0.99 1.01 1.02 0.96 0.97 0.99 1.00 1.01

fb-hibeta-ni 0.97 0.98 1.01 1.03 1.04 0.97 0.98 1.01 1.03 1.04

eb-hibeta-ni 0.96 0.98 1.00 1.03 1.05 0.96 0.98 1.00 1.02 1.04

eb-hisigmax 0.96 0.97 0.99 1.00 1.01 0.96 0.98 0.99 1.00 1.01
eb-hibetasigmax 0.96 0.98 0.99 1.01 1.02 0.96 0.98 0.99 1.00 1.02

0.75,0.4 5,150 ridg 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.94

hyb 0.89 0.90 0.92 0.92 0.93 0.89 0.90 0.92 0.92 0.93

fb-flatbeta 0.87 0.87 0.89 0.90 0.91 0.87 0.87 0.89 0.89 0.91

fb-hibeta-ni 0.87 0.88 0.91 0.93 0.95 0.87 0.88 0.91 0.92 0.94

eb-hibeta-ni 0.86 0.87 0.90 0.92 0.93 0.86 0.87 0.90 0.91 0.93

eb-hisigmax 0.87 0.88 0.90 0.91 0.92 0.87 0.88 0.90 0.91 0.92

eb-hibetasigmax 0.86 0.87 0.88 0.89 0.90 0.86 0.87 0.88 0.89 0.90
0,0.1 5,150 ridg 6.30 6.30 6.30 6.25 6.24 6.30 6.30 6.30 6.25 6.24

hyb 6.00 6.03 6.08 6.07 6.10 6.00 6.03 6.08 6.07 6.10

fb-flatbeta 5.79 5.83 5.86 5.90 5.92 5.79 5.83 5.87 5.90 5.93

fb-hibeta-ni 5.79 5.82 5.85 5.88 5.91 5.79 5.82 5.85 5.88 5.91
eb-hibeta-ni 5.97 6.01 6.06 6.12 6.14 5.97 6.01 6.06 6.12 6.14

eb-hisigmax 5.80 5.84 5.91 5.95 5.99 5.80 5.84 5.91 5.97 6.00

eb-hibetasigmax 5.98 6.01 6.07 6.11 6.12 5.98 6.01 6.07 6.11 6.12

0.75,0.1 5,150 ridg 5.50 5.55 5.56 5.55 5.55 5.50 5.55 5.56 5.55 5.55

hyb 5.35 5.37 5.41 5.46 5.51 5.35 5.37 5.41 5.46 5.51

fb-flatbeta 5.19 5.20 5.21 5.26 5.29 5.19 5.20 5.22 5.26 5.29

fb-hibeta-ni 5.16 5.18 5.20 5.24 5.27 5.16 5.18 5.20 5.24 5.27
eb-hibeta-ni 5.29 5.34 5.39 5.46 5.48 5.29 5.34 5.39 5.46 5.48

eb-hisigmax 5.19 5.27 5.34 5.39 5.46 5.19 5.27 5.36 5.41 5.48

eb-hibetasigmax 5.29 5.34 5.37 5.42 5.47 5.29 5.34 5.37 5.42 5.48

Table B8: Numerical values of empirical MSPE for 8 simulation settings described in
Section 3.5 when p = 5 and X|Z ∼ Np{1[Z=2](3× 1p)− 1[Z=3](3× 1p), ΣX}. β̂pm is the
posterior mean and β̂ppm is the posterior predictive mean. The smallest MSPEs are in
bold.
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Appendix C: Chapter 4 Supplementary Materials

C.1 Generalized Maximum Profile Marginal Likelihood (GMPML)

In estimating variance components, Harville (1977) suggests to maximize the restricted

log-likelihood, which offsets the log-likelihood to account for bias introduced from es-

timating “fixed” effects. Casting ridge regression in the mixed model framework, β is

treated as random and so does not contribute bias to estimation. However, y is cen-

tered and x is standardized, which together implicitly estimate β0 with β̂0 = 0. Thus,

there is one unknown parameter hidden in the mean of the distribution y|λ, σ2, and

the restricted marginal log-likelihood, denoted as mR(λ, σ2), is as follows (Section 4.3,

Harville, 1977):

mR(λ, σ2) = m(λ, σ2)− 1
2

ln
∣∣1>n (In − Dλ)1n/σ2∣∣

= −n− 1
2

ln(σ2)− 1
2σ2 y>(In − Dλ)y +

1
2

ln
∣∣In − Dλ

∣∣− 1
2

ln 1>n (In − Dλ)1n.

By standardization of x, it can be shown that the last term simplifies to a constant:

−(1/2) ln(n). Replacing each instance of σ2 with the restricted estimate σ̂2
λ = y>(In −

Dλ)y/(n− 1), the optimization in (48) follows.

C.2 Maximum Adjusted Profile h-Likelihood (MAPHL)

The h-loglihood (Lee and Nelder, 1996) is given by

`H(β, λ, σ2) = `(β, σ2) + pλ(β, σ2).
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When the dispersion and variance components, respectively σ2 and λ, are unknown,

Lee and Nelder propose maximization of the adjusted h-loglihood (Section 4.3, Lee and

Nelder, 1996), to simultaneously estimate β, λ, and σ2. This, too, is a restricted log-

likelihood. In contrast to mR(λ, σ2) above, the h-loglihood must be adjusted for both β0

and β, because there is no marginalization. This adjusted h-loglihood is defined as

`HA(β, λ, σ2) = `H(β, λ, σ2) +
1
2

ln(nσ2) +
1
2

ln
∣∣σ2(x>x + λ)−1∣∣

= −n− 1
2

ln(σ2)− 1
2σ2 (y− xβ)>(y− xβ)− λ

2σ2 β>β

+
1
2

ln
∣∣λ(x>x + λ)−1∣∣+ 1

2
ln(n)

= −n− 1
2

ln(σ2)− 1
2σ2 (y− xβ)>(y− xβ)− λ

2σ2 β>β

+
1
2

ln
∣∣In − Dλ

∣∣+ 1
2

ln(n).

Sequentially optimizing `HA(β, λ, σ2) with respect to each of β, λ and σ2 yields expres-

sions (49)-(51).

C.3 Gamma Hyperpenalty

We have

pλ(β, σ2) + hga(λ) = −
p
2

ln(σ2) +
p
2

ln(λ)− λ

2σ2 β>β + (a− 1) ln(λ)− bλ

= − p
2

ln(σ2) +
p + 2a− 2

2
ln(λ)− λ

(
β>β

2σ2 + b

)
.

From the conjugacy of the gamma hyperpenalty, the jo and mo updates immediately

follow:

jo : argmaxλ|β,σ2{pλ(β, σ2) + hga(λ)} =
p + 2a− 2

β>β/σ2 + 2b
,

mo : Eλ|β,σ2 [λ] =
p + 2a

β>β/σ2 + 2b
.
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C.4 Log-Normal Hyperpenalty

pλ(β, σ2) + hln(λ) = −
p
2

ln(σ2) +
p
2

ln(λ)− λ

2σ2 β>β− ln(λ)− 1
2

ln(bλ)2

a

= − p
2

ln(σ2) +
p− 2

2
ln(λ)− λ

2σ2 β>β− 1
2

ln(bλ)2

a
.

Neither the jo nor mo updates have closed forms, and we use numerical methods to

calculate both.

C.5 Inv-Gamma Hyperpenalty

We have

pλ(β, σ2) + hig(λ) = −
p
2

ln(σ2) +
p
2

ln(λ)− λ

2σ2 β>β− (a + 1) ln(λ)− 1
bλ

= − p
2

ln(σ2) +
p− 2a− 2

2
ln(λ)− λ

2σ2 β>β− 1
bλ

.

The jo update for λ can be computed using the quadratic formula. The mo update is

expressed in terms of integrals and must be calculated using numeric methods.

jo : argmaxλ|β,σ2{pλ(β, σ2) + hig(λ)}

=

(
p− 2a− 2 +

√
(p− 2a− 2)2 +

8β>β

bσ2

)/(2β>β

σ2

)
. (91)

mo : Eλ|β,σ2 [λ] =

∫
exp {−tλ− u/λ} λv+1 dλ∫

exp {−tλ− u/λ} λv dλ
, t =

β>β

2σ2 , u = 1/b, v =
p− 2a− 2

2
.

(92)

As discussed in the main text, caution must be exercised in specifying the choice of a;

this is made clear in the expressions immediately above. In particular, from (36), larger

values of λ cause β>β to go to zero (recall that β and σ2 are also sequentially updated).

If smaller values of β>β in turn increase λ, iterative updates of λ will increase without
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bound. For the jo update, this will happen if p − 2a − 2 > 0, ie a < p/2 − 1: the

numerator of (91) will not approach zero as β>β approaches zero, and the denominator

will. If p− 2a− 2 = 0, then both the numerator and denominator will both go to zero,

but the square root will cause the numerator to approach zero more slowly. Thus, a

must be such that p− 2a− 2 < 0, ie a > p/2− 1.

Similarly, a sufficient condition to ensure that the integrals in the mo update are finite

for any value of β and σ2 is if v + 1 ≤ −1, where v = (p− 2a− 2)/2. That is, observe

that

∫
exp {−tλ− u/λ} λv+1 dλ <

∫
λv+1 dλ.

Thus, the left-hand side is guaranteed to be finite if (p − 2a − 2)/2 + 1 ≤ −1, ie a ≥

p/2 + 1.
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Appendix D: Chapter 5 Supplementary Materials

D.1 E-Step

The complete log-likelihood is given by

`C = ln[Uobs, Umis|φ]

= ln[yA|xA, β0, β, σ2] + ln[wA|xA, ψ, ν, τ2] + ln[xA|µX , ΣX ]

+ ln[yB|xB, β0, β, σ2] + ln[wB|xB, ψ, ν, τ2] + ln[xB|µX , ΣX ]

= −nA + nB

2
log(σ2τ2p/|Σ−1

X |)

− 1
2σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

− 1
2

σ2(yB − β01nB − xBβ)>(yB − β01nB − xBβ)

− 1
2τ2 Tr (wA − ψ1nA1>p − νxA)

>(wA − ψ1nA1>p − νxA)

− 1
2τ2 Tr (wB − ψ1nB1>p − νxB)

>(wB − ψ1nB1>p − νxB)

− 1
2

Tr
(
(xA − 1nAµ>X)Σ

−1
X (xA − 1nAµ>X)

> + (xB − 1nBµ>X)Σ
−1
X (xB − 1nBµ>X)

>).
Because every expression containing xB in `C is a quadratic form, ie each expression of

xB is either linear or quadratic, Q(φ|φ(t)) can be calculated as follows. As in the main

text, let

Γ(φ) = (ββ>/σ2 + (ν2/τ2)Ip + Σ−1
X )−1,

xem

B (φ) = ([yB − 1nB β0]β
>/σ2 + [ν/τ2][wB − ψ1nB1>p ] + [1nBµ>X ]Σ

−1
X )Γ(φ).
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Then,

E[xB|φ, Uobs] = xem

B (φ),

E[x>B xB|φ, Uobs] = xem

B (φ)>xem

B (φ) + nBΓ(φ).

Setting Γ(t) = Γ(φ(t)) and xem

B
(t) = xem

B (φ(t)), Q(φ|φ(t)) as given in (68) is easily derived.

In words, to calculate Q(φ|φ(t)), begin with `C, replace each instance of xB with its

conditional expectation, and subtract off the term (nB/2)Tr
(

Γ(t)Γ−1(φ)
)
. This offset

accounts for the uncertainty in the “imputations”, xem

B
(t). Its size is based on both the

size of subsample B and the estimated covariance of the imputations, and it differentiates

the EM algorithm from a basic single imputation approach.
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D.2 Hyperpenalized M-Steps

em-flatbeta

Q(φ|φ(t)) = β>x>A [yA − β01nA ]−
1
2

β>x>A xAβ

+ β>xem

B
(t)[yB − β01nA ]−

1
2

β>xem

B
(t)>xem

B
(t)β− nB

2
β>Γ(t)β

⇒ ∂Q(φ|φ(t))

∂β
= x>A [yA − β01nA ]− x>A xAβ

+ xem

B
(t)[yB − β01nA ]− xem

B
(t)>xem

B
(t)β− nBΓ(t)β

⇒ β(t+1) = (x>A xA + xem

B
(t)>xem

B
(t) + nBΓ(t))−1(x>A [yA − β01nA ] + xem

B
(t)[yB − β01nA ]).

Q(φ|φ(t)) = − (nA + nB)

2
β2

0 + β0(yA − xAβ)>1nA + β0(yB − xem

B
(t)β)>1nB

⇒ ∂Q(φ|φ(t))

∂β0
= −β0(nA + nB) + (yA − xAβ)>1nA + (yB − xem

B
(t)β)>1nB

⇒ β
(t+1)
0 =

(yA − xAβ)>1nA + (yB − xem

B
(t)β)>1nB

nA + nB
.

Q(φ|φ(t)) = −(nA + nB) ln σ2 − 1
σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

− 1
σ2 (yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

− nB

σ2 β>Γ(t)β

⇒ ∂Q(φ|φ(t))

∂σ2 = −(nA + nB)
1
σ2 +

1
(σ2)2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

+
1

(σ2)2 (yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

+
1

(σ2)2 β>Γ(t)β

⇒ σ2(t+1) =
(yA − β01nA − xAβ)>(yA − β01nA − xAβ)

nA + nB

+
(yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

nA + nB
+

nBβ>Γ(t)β

nA + nB
.
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Q(φ|φ(t)) = − p(nA + nB)

2
ψ2 + ψTr [1p1>nA

(wA − νxA) + 1p1>nB
(wB − νxB)]

⇒ ∂Q(φ|φ(t))

∂ψ
= −ψp(nA + nB) + Tr [1p1>nA

(wA − νxA) + 1p1>nB
(wB − νxB)]

⇒ ψ(t+1 =
1>nA

(wA − νxA)1p + 1>nB
(wB − νxB)1p

(nA + nB)p
.

Q(φ|φ(t)) = νTr [x>A(wA − ψ1nA1>p )]−
ν2

2
Tr [x>A xA] + νTr [xem

B
(t)>(wB − ψ1nB1>p )]

− ν2

2
Tr [xem

B
(t)>xem

B
(t)]− nBν2

2
Tr [Γ(t)]

⇒ ∂Q(φ|φ(t))

∂ν
= Tr [x>A(wA − ψ1nA1>p )]− νTr [x>A xA] + Tr [xem

B
(t)>(wB − ψ1nB1>p )]

− νTr [xem

B
(t)>xem

B
(t)]− nBνTr [Γ(t)]

⇒ ν(t+1) =
Tr [x>A(wA − ψ1nA1>p ) + xem

B
(t)>(wB − ψ1nB1>p )]

Tr [x>A xA + xem

B
(t)>xem

B
(t) + nBΓ(t)]

.

Q(φ|φ(t)) = −p(nA + nB) ln τ2 − 1
τ2 Tr (wA − ψ1nA1>p − νxA)

>(wA − ψ1nA1>p − νxA)

− 1
τ2 Tr (wB − ψ1nB1>p − νxB)

>(wB − ψ1nB1>p − νxB)−
nBν2

τ2 Tr
(

Γ(t))
∂Q(φ|φ(t))

∂τ2 = −p(nA + nB)
1
τ2 +

1
(τ2)2 Tr (wA − ψ1nA1>p − νxA)

>(wA − ψ1nA1>p − νxA)

+
1

(τ2)2 Tr (wB − ψ1nB1>p − νxB)
>(wB − ψ1nB1>p − νxB)

+
nBν2

(τ2)2 Tr
(

Γ(t))
⇒ τ2(t+1) =

Tr (wA − ψ1nA1>p − νxA)
>(wA − ψ1nA1>p − νxA)

p(nA + nB)

+
Tr (wB − ψ1nB1>p − νxB)

>(wB − ψ1nB1>p − νxB)

p(nA + nB)
+

nBν2Tr
(

Γ(t))
p(nA + nB)

.
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Q(φ|φ(t)) = Tr
[
1nAµ>X Σ−1

X x>A −
1
2

1nAµ>X Σ−1
X µX1>nA

+ 1nBµ>X Σ−1
X xem

B
(t)> − 1

2
1nBµ>X Σ−1

X µX1>nB

]
= µ>X Σ−1

X x>A1nA −
nA

2
µ>X Σ−1

X µX + µ>X Σ−1
X xem

B
(t)>1nB −

nB

2
µ>X Σ−1

X µX

∂Q(φ|φ(t))

∂µX
= Σ−1

X x>A1nA − nAΣ−1
X µX + Σ−1

X xem

B
(t)>1nB − nBΣ−1

X µX

⇒ µ
(t+1)
X =

x>A1nA + xem

B
(t)>1nB

nA + nB
.

Q(φ|φ(t)) + pη(φ) = (nA + nB) ln |Σ−1
X | − Tr

[
(xA − 1nAµ>X)

>(xA − 1nAµ>X)Σ
−1
X
]

− Tr
[
(xem

B
(t) − 1nBµ>X)

>(xem

B
(t) − 1nBµ>X)Σ

−1
X
]
− nBTr

[
Γ(t)Σ−1

X
]

− (2p− 1) ln
∣∣Σ−1

X

∣∣− (2p− 1)Tr [diag(V̂ar[xA])Σ
−1
X ]

⇒ Σ−1
X

(t+1) =

(
(xA − 1nAµ>X)

>(xA − 1nAµ>X) + (xem

B
(t) − 1nBµ>X)

>(xem

B
(t) − 1nBµ>X)

nA + nB + 2p− 1

+
nBΓ(t) + (2p− 1)diag(V̂ar[xA])

nA + nB + 2p− 1

)−1

.

em-hibeta-ga, em-hibeta-ln, em-hibeta-ig Given λ, the M-steps for β and σ2 are mod-

ified as follows:

Q(φ|φ(t)) + pη(φ) = β>x>A [yA − β01nA ]−
1
2

β>x>A xAβ + β>xem

B
(t)[yB − β01nA ]

− 1
2

β>xem

B
(t)>xem

B
(t)β− nB

2
β>Γ(t)β− 1

2
λβ>β

⇒ ∂Q(φ|φ(t))

∂β
+

∂pη(φ)

∂β
= x>A [yA − β01nA ]− x>A xAβ

+ xem

B
(t)[yB − β01nA ]− xem

B
(t)>xem

B
(t)β− nBΓ(t)β− λβ

⇒ β(t+1) = (x>A xA + xem

B
(t)>xem

B
(t) + nBΓ(t) + λIp)

−1

× (x>A [yA − β01nA ] + xem

B
(t)[yB − β01nA ]).
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Q(φ|φ(t)) + pη(φ) = −(nA + nB) ln σ2

− 1
σ2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

− 1
σ2 (yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

− nB

σ2 β>Γ(t)β− p ln(σ2)− 1
σ2 λβ>β

⇒ ∂Q(φ|φ(t))

∂σ2 +
∂pη(φ)

∂σ2 = −(nA + nB)
1
σ2

+
1

(σ2)2 (yA − β01nA − xAβ)>(yA − β01nA − xAβ)

+
1

(σ2)2 (yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

+
1

(σ2)2 β>Γ(t)β− p
1
σ2 +

1
(σ2)2 λβ>β

⇒ σ2(t+1) =
(yA − β01nA − xAβ)>(yA − β01nA − xAβ)

nA + nB + p

+
(yB − β01nB − xem

B
(t)β)>(yB − β01nB − xem

B
(t)β)

nA + nB + p

+
nBβ>Γ(t)β + λβ>β

nA + nB + p
.
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Type of Algorithm
Assumed Ad-hoc Bayesian Empirical Bayes Maximum (hyper-)
Models penalized likelihood
Outcome frc

+ME (2.2)
Outcome src fb-flatbeta em-flatbeta

+ME (2.2) (3.3) (5.3.2)
+Marginal
Outcome ridg

+penalty on β (2.2)
Outcome fb-hibeta-ni eb-hibeta-ni em-hibeta-ga (5.3.2)
+ME (3.3.1) (3.3.1) em-hibeta-ln (5.3.2)
+Marginal fb-hibeta-ga em-hibeta-ig (5.3.2)
+penalty on β (5.3.3)
Outcome eb-hisigmax

+ME (3.3.2)
+Marginal
+penalty on Σ−1

X
Outcome eb-hibetasigmax

+ME (3.3.2)
+Marginal
+penalty on β

+penalty on Σ−1
X

Table D1: Cross-tabulation of the missing data methods indexed by the assumed models
and the algorithm. In parentheses is the section that describes the method. The Outcome
model, measurement error (ME) model, and Marginal model for X are all given in (24).
The penalty on β is given in (30) and the penalty on Σ−1

X is given in (31). Two addi-
tional methods, hyb (Section 2.3) and hybC (Section 5.2), are adaptively weighted linear
combinations of ridg, src and frc and thus average over several model assumptions.
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Name Description
Chapter 2 ridg Ridge regression on subsample A only using GCV to

choose λ
src Structural Regression Calibration.
frc Functional Regression Calibration. Similar to src but

with no explicit distributional assumption for X.
hyb Adaptively weighted linear combination of ridg, src

and frc

Chapter 3 fb-flatbeta Bayesian data augmentation with flat prior on β and
mild, fixed shrinkage of Σ−1

X .
fb-hibeta-ni Bayesian ridge with Jeffreys hyperprior on λ.
eb-hibeta-ni Bayesian ridge with Empirical Bayes estimation of λ.
eb-hisigmax Bayesian data augmentation with flat prior on β and

Empirical Bayes shrinkage on Σ−1
X .

eb-hibetasigmax Combination of eb-hibeta-ni and eb-hisigmax, ie
Empirical Bayes shrinkage on both β and Σ−1

X
Chapter 5 hybC hyb with weights estimated using the corrected GCV

criterion
fb-hibeta-ga Bayesian ridge with a Gamma hyperprior on λ
em-flatbeta The penalized maximum likelihood equivalent of

fb-flatbeta

em-hibeta-ga Maximum hyperpenalized likelihood using the HEM
algorithm with a Gamma hyperpenalty

em-hibeta-ln Maximum hyperpenalized likelihood using the HEM
algorithm with a Log-Normal hyperpenalty

em-hibeta-ig Maximum hyperpenalized likelihood using the HEM
algorithm with an Inv-Gamma hyperpenalty

Table D2: Glossary of the missing data methods indexed by chapter.
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