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selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.72 Maximum and actual propagation for a command injected at 8 a.m.
during weekdays for various delays for bus botnet using Näıve AP-
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ABSTRACT

The Analysis, Modeling and Detection of Botnet-based Hosting Services and
Emerging Threats

by

Matthew S. Knysz

Chair: Kang G. Shin

Botnets—vast collections of compromised computers (i.e., bots) under the control of a

botmaster—have become one of the greater threats facing the Internet community due

to their versatility and financial appeal. Much of their success, financial and otherwise,

can be attributed to 4 properties/strategies: stealth—first and foremost, bots want

to remain stealthy in their infection and occupation, keeping botnet resources high;

modularity, granting bots new functionality by allowing already infected machines

to update their bot malware; Command and Control, permitting coordination and

post-deployment modification of the botnet functionality and behavior as needed for

various scams or to evade detection; and content-delivery mechanisms, such as botnet-

based hosting services and FF DNS-advertisement strategies, permit botmasters to

serve scams and malicious content to victims for profit or the purpose or swelling

their botnet ranks.

The dissertation addresses this stealthy aspect of botnets and its imposed limita-

tions, exploring botnets’ primary content delivery mechanism—botnet-based hosting

services utilizing FF DNS-advertisement strategies—and the future mobile botnet

xix



threatscape emerging with the increase in mobile devices and wireless connectivity. It

introduces and evaluates an automated enterprise solution, called RB-Seeker, for accu-

rately detecting domains and bots involved in botnet-based hosting services. It grants

insight into the global DNS-advertisement strategies and limitations FF botnets by

deploying DIGGER—a distributed DNS-monitoring system comprising hundreds of

nodes spanning multiple continents—for an extended period of time, identifying in-

trinsic behavioral-detection features and evaluating if current botnet resources are

sufficient to mimic benign domains and evade detection. Finally, using real-world

WiFi network locations, mobility traces and bus routes for the city of San Francisco,

it simulates highly mobile botnets utilizing only open WiFi networks, demonstrating

that they can pose a serious threat and provide an ideal mechanism for botmasters

transitioning to the mobile landscape. This dissertation demonstrates that the pow-

erful distributed systems granted by botnets can support numerous stealthy evasion

tactics, requiring a more intimate knowledge of botnet resources and capabilities so

that properties intrinsic to their functionality can be more effectively targeted and

exploited. It gives valuable insight into these intrinsic properties and resource lim-

itations of both current and future botnets, providing more resilient detection and

disruption approaches.
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CHAPTER I

Introduction

1.1 Background

As the Internet and computer systems have become more staple and ubiquitous

components of our everyday lives, attacks against them have experienced a funda-

mental paradigm shift, evolving from isolated, destructive, proof-of-concept attacks

carried out primarily for ‘bragging-rights’ to a more systematic and organized en-

deavor aimed at generating profits. Perhaps the best example embodying this new

profit-based mentality is the emergence and constant growth of botnets: systems con-

taining thousands of compromised computers under the command of a single botmas-

ter. Botnets adopt a novel, hybrid approach when it comes to malware, incorporating

various aspects of its predecessors (i.e., trojans, viruses, worms) into its bot malware

in a way that promotes profits. Like trojans, bots install backdoors on their com-

promised systems, allowing attackers to issue remote commands. However, unlike

trojans, which typically grant attackers control to a single system at a time, bots

introduce a Command and Control (C&C) channel, permitting simplified control of

the entire distributed systems of bots and resulting in an unprecedented level of free

computing power. Bots make use of propagation mechanisms traditionally attributed

to viruses (i.e., spreading by attaching themselves to infected files) and worms (i.e.,

spreading through network vulnerabilities) as well as all new mechanisms, such as
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leveraging social connections and drive-by scripting attacks. Unlike viruses, bots do

not typically attempt to cause damage to the underlying system once compromised;

doing so would hinder the usefulness of the newly acquired bots and result in them

being more easily detected and shutdown. Likewise, bots do not attempt to spread as

rapidly and without bounds as worms since this, too, would cause their activity to be

more easily detected, crippling the botnet’s potential power. On the contrary, bots

attempt to spread more slowly and discretely, often patching up vulnerabilities after

gaining access to a system to prevent competing botmasters from gaining control of

their valuable resources. It is far more lucrative for a botmaster to retain control of a

sizable botnet than to spread rapidly (worms) and cause noticeable damage (viruses).

This is because the value of a botnet lies in the power such a massively connected

system of compromised computers can afford. Like shadow governments, botmasters

have realized that their power can be wielded longer by staying out of the spotlight,

making stealthy operations of paramount importance to a successfully functioning

and lucrative botnet. This stealthy property/strategy of botnets extends throughout

bots’ entire life cycles, from their propagation and infection to their operations. Since

building a massive and powerful botnet in a stealthy manner takes time and resources,

botmasters also stealthily execute their scams in order to retain their compromised

constituent bots for as long as possible; stealthy scams are also more likely to remain

undetected and operational longer, increasing their potential for profits.

A further distinction of bots over earlier malware is their use of updatable and

modular code. When combined with their versatile C&C channel, this allows bot-

masters to quickly and easily update their bots with new functionality or evasion

strategies as needed. In this way, botnets resemble powerful distributed computing

systems running a suite of upgradable money-making software. This makes botnets a

versatile computing platform capable of running numerous, simultaneous scams, in-

cluding Distributed Denial of Service attacks (DDoS), information theft (e.g., credit
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cards, passwords, entire identities), hosting services, sending spam, and phishing

campaigns. Furthermore, by using encrypted communication in their C&C channels

and upgrading binaries to evade the currently dominate signature-based detection

strategies of most Anti-Virus (AV) systems, bots are notoriously difficult to detect,

making them a scourge to the security community. Even newer behavior-based de-

tection strategies can be evaded by botnets if the monitored behavior isn’t intrinsic

to the botnet’s functionality; a simple bot upgrade with a slightly different behav-

ioral approach can render such detection strategies impotent. This phenomena has

already been observed in the wild. For instance, when behavioral detection strategies

began targeting botnets’ once-popular IRC-based C&C mechanisms, botmasters re-

sponded by incorporating encrypted channels or switching to HTML- or P2P-based

approaches.

The potential for profits that botnets provide has spawned a new underground

economy, which, in turn, has resulted in a proliferation of “off-the-shelf” malware

toolkits for the automatic generation of generic bots. These toolkits, which can be

purchased by aspiring botmasters, allow even novice programmers to quickly develop

and deploy new bot variants. The newly acquired botnets can then be sold to inter-

ested buyers, either in their entirety or as a particular service, such as sending spam

email. More than anything, it is this shift in mentality, from malware being a source

of destruction and prestige to a viable model for profits, that has necessitated the

adoption of stealthy approaches and propelled botnets to a major contender in the

Internet threatscape. The influx of money into the malware scene has resulted in not

only an explosion of new malware variants, but also a class of much more stealthy

and dangerous malware, endued with the power and resources typically attainable

only by corporations and governments with powerful distributed computing systems.

Botnets’ success, financial and otherwise, can be attributed to four major proper-

ties/strategies. First and foremost, in order to keep their resources high enough to
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support their lucrative scams, bots must remain stealthy during their infection and

occupation. To do otherwise would result in their detection and mitigation, severely

decreasing the power and versatility gained from such a distributed system and reduc-

ing the effectiveness of their scams and potential to generate profits. Second, to help

maintain their stealth and keep botnet activities adaptable, bots must be modular in

nature, allowing them to be easily updated post deployment by adding new function-

ality and evasion techniques. Third, to permit their coordination for scams and their

post-deployment modification of functionality, botnets require a Command and Con-

trol channel, granting botmasters the control necessary to alter their activities and

behavior to evade detection and target new victims. Lastly, to perpetrate their scams

and infect new victims, botnets depend upon content-delivery mechanisms, such as

botnet-based hosting services and FF DNS-advertisement strategies. Throughout

the dissertation, we study this stealthy aspect of botnets and its imposed limita-

tions, exploring botnets’ primary content-delivery mechanism—botnet-based hosting

services—and the future mobile botnet threatscape emerging with the increase in

mobile devices and wireless connectivity.

Figure 1.1: Fast-Flux botnet redirection/proxy mechanism
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1.2 Motivation

Due to their tremendous success in generating profits, the botnet threat is likely to

increase and become even more popular in the future. This dissertation is motivated

by the following observations concerning botnets:

1. Stealth is intrinsic to botnet success. If not stealthy during propagation, infec-

tion and occupation, bots can be more easily detected and removed, decreasing

the botnet’s overall resources and its ability to perpetrate scams and attacks.

Likewise, if the scams and attacks themselves are not operated in a stealthy

manner, they are more easily discovered and quickly shutdown or mitigated,

rendering them less effective and resulting in a loss of profits. Making use of

this relationship, we will explore ways to make stealthy operations more difficult

for botmasters, easing their detection while reducing their potential power and

making their scams less effective.

2. Since botnets typically host a variety of nefarious scams, the detection and

removal of bots involved in one particular scam can potentially hinder the entire

botnet, decreasing its overall resources and indirectly hurting the other scams

it perpetrates.

3. Many scams rely on victims visiting malicious websites for the purpose of in-

fection, phishing for personal information, or hawking wares. Botnets provide

an ideal environment for anonymously hosting such malicious content, shown

in Figure 1.1. Victim machines are redirected to multiple bots before finally

reaching the actual content server; alternatively, or in conjunction with redirec-

tion, the content can be proxied to the victim through an intermediary bot or

actually hosted on a bot—though distributing content to be hosted on so many

different bots is much more difficult to manage than a centralized approach. In
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this way, botmasters obtain an additional layer of misdirection and protection

for themselves and their nefarious content.

4. In order to successfully serve as a hosting service, botmasters must advertise

their bot IPs using the publicly available Domain Name Service (DNS), allowing

new victims to locate their bot-hosted content. Consequently, there is essentially

a public record of active bot IPs, provided botnet domains can be identified

based on their DNS-advertisement behavior.

5. The bots composing a botnet consist of a variety of heterogeneous compromised

computers, all with varying local resources and network connectivity. Individual

bots may go offline at any moment for numerous reasons, including the com-

promised computer being shutdown or having the bot malware detected and

removed. Consequently, botnet-based hosting services must account for this

unreliable nature by adopting an unconventional approach to DNS advertise-

ment, earning them the moniker of Fast-Flux (FF) domains.

6. Mobile devices are rapidly becoming more powerful, prolific, and the preferred

access point of many for their online activities. With their expanding applica-

tion markets, standardized OSes, and advancements in processing power and

memory, they are quickly approaching the capabilities of modern computers.

However, their multiple communication channels (i.e., WiFi, 3G/4G, Bluetooth,

SMS and MMS messaging) and always-on connectivity allow for more advanced

and stealthy attacks than are possible with traditional computers. Combined

with their high mobility, mobile devices can be leveraged by botmasters to attain

an unprecedented level of stealth, permitting longer-lasting and more lucrative

scams. Consequently, they provide an attractive target for botmasters, and it

is only a matter of time before mobile botnets emerge in force on the Internet

threatscape. A preemptive analysis of the covert techniques made possible with
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mobile bots and their limitations can provide valuable insight in how to curtail

their nefarious impact.

From these observations, a potential strategy for combating the botnet threat

takes shape. With stealth such an important contributor to botnets’ long-term suc-

cess and financial gain, uncovering and exploiting botnets’ limitations for function-

ing covertly can provide powerful improvements in detection and mitigation. One

such scam, botnet-based hosting services, is particularly well-suited to this approach

since the DNS records necessary for its functionality are publicly available and easily

monitored. This makes stealthy operations more difficult for botmasters since it pre-

vents the use of encryption or covert channels, facilitating behavior-based detection.

Furthermore, since botnets are used for numerous different scams simultaneously, de-

tecting and shutting down bots involved in one scam can have a significant impact

on their other scams, requiring them to give up this particular scam entirely or risk

possible detection and disruption. Therefore, a primary focus of this dissertation

is to better understand the stealthy limitations of botnets with respect to the DNS

advertisement of botnet-based hosting services and the burgeoning mobile landscape,

permitting the development of better detection, mitigation and disruption strategies.

1.3 Research Goals

Motivated by the financial success of botnets and their necessary use of stealth,

this dissertation focuses on a better understanding of the current and future stealthy

capabilities and strategies of botnets for perpetrating their nefarious scams (in par-

ticular, botnet-based hosting services and mobile botnets), allowing for more resilient

approaches in detection and mitigation and the development of a more robust and

accurate detection system. It has the following objectives:

• We aim to develop a real-time detection system capable of fast and accurate de-
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tection of botnet-based hosting services targeting an enterprise network. To do

so, we will attempt to make use of multiple input sources to identify suspicious

domains and then identify those belonging to botnets based on their publicly

available DNS records.

• We attempt to better understand the various differentiating features distin-

guishing FF botnet domains from other domain types in terms of their DNS-

advertisement strategy. To do so, we will monitor the DNS behavior for different

domains from a unique global perspective, giving us a better understanding of

botnets’ overall content-hosting resources.

• Based on extensively gathered DNS data, we hope to model the current re-

sources available to FF botnets. This will allow us to determine if DNS mon-

itoring can ultimately serve as a viable option for botnet detection or if the

versatility provided by botnets is sufficient enough to mimic benign domains’

DNS-advertisement behavior and evade detection.

• Using our newfound understanding of FF botnet DNS-advertisement strategies

and their capability for mimicry attacks, we will propose a more powerful de-

tection approach. Like the previous enterprise-level solution, it should be able

to do so quickly and accurately. We hope that our new insight into current

botnet resources will allow for the creation of a detection mechanism that is

more resilient or immune to possible mimicry attacks.

• Lastly, we will look to the future of botnets and explore their viability on mobile

devices using open WiFi networks for communication and perpetrating scams.

Such an approach, if achievable, would allow botnets to quickly begin harnessing

the newly emerging mobile market by adding mobile devices to their already

swollen botnet ranks.
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1.4 Research Contributions

The work in this dissertation has demonstrated the vast power and versatility

distributed systems of compromised computers and mobile devices can obtain with

proper management. Botnet-based hosting services, with their FF DNS-advertisement

techniques, can achieve a content-distribution system comparable to industry-level

Content Distribution Networks (CDNs). Through clever manipulation of their re-

sources, they can even appear benign to existing detection systems, allowing their

scams to continue unabated for longer durations. Likewise, through the cunning use

of open WiFi networks, botmasters can turn an otherwise chaotic swarm of highly

mobile, low-end devices into an efficacious and stealthy attack system. This capacious

adaptability is attained through the organized cooperation of numerous and diverse

compromised components. Should the distributed systems’ currently swollen ranks

decrease, much of this flexibility would be lost, severely decreasing botnet capabil-

ities and their potential for profits. Consequently, we find stealth to be integral to

continued botnet operations, lest too many bots are discovered and removed from

service. However, our work has shown that even an unreliable distributed system of

compromised computers can, if large enough, adapt to new detection approaches ef-

ficiently and effectively with high statistical probability. Thus, advances in detection

are quickly met with advances in evasion, ultimately relying on intrinsic limitations

of the distributed system’s underlying components—whether they are the unreliable

connectivity and diurnal distribution patterns of compromised computers or the rapid,

vehicular mobility of hand-held devices—to disrupt stealthy operations and expose

botnet activities. Certainly, security is an ever-escalating arms race where, in this

digital age, the stakes are drastically increasing. Faced with the raw power and ver-

satility afforded by massive distributed systems of bots, which are soon to be joined

by mobile and always-on bots, it is increasingly important for security professionals

to understand the underlying nature and limitations of the apparent threat if there
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is to be any hope of disruption. This dissertation has strived to further this under-

standing, both for the current Internet threatscape and for that which looms on the

horizon, presenting detailed and practical approaches towards botnet detection and

disruption. Specifically, it has made the following research contributions:

1.4.1 Real-Time Botnet Detection for Enterprise Networks

We have designed and implemented a prototype system called Redirection Bot-

net Seeker (RB-Seeker) for detecting botnet-based hosting services utilizing redirec-

tion. RB-Seeker achieves fast and automatic detection of botnets, irrespective of their

C&C protocol or structure, by employing several statistical correlation and classifi-

cation techniques to analyze network traffic and DNS behavior. The system begins

with two parallel subsystems, the SSS and the NAS, as first-line filters, coopera-

tively detecting redirection domains from multiple data sources. The SSS inspects

spam emails for embedded links participating in redirection, while the NAS explores

unique temporal/spatial features (e.g., inter-flow duration, flow size) of typical redi-

rection activities so that redirection domains can be identified without the expensive

inspection of packet payloads. The second-line detector, the a-DADS, exploits the

atypical DNS-query statistics of Redirection Botnets (RBnets) to distinguish between

malicious and legitimate domains. Our evaluation of RB-Seeker on real-world traces

showed it’s capable of detecting both Aggressive and Stealthy RBnets with few false

positives. Because of the prevalent and major role botnets play in redirection infras-

tructures, fast and automatic detection of such RBnets can not only protect users

from phishing and scam websites, but also potentially deter many other malicious

activities commonly perpetrated by botnets. Furthermore, RB-Seeker is expected to

be incrementally deployable and easily incorporated into existing security systems

since its data sources are readily available in most enterprise networks.
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1.4.2 Understanding of FF Botnet Global DNS Behavior

We have examined the global IP-usage patterns exhibited by different types of

malicious and benign domains, including single FF (FFx1) and double FF (FFx2)

domains. We have deployed DIGGER, a lightweight DNS-probing engine, on 240

PlanetLab nodes spanning 4 continents. Collecting DNS data for over 3.5 months on

a plethora of domains, our global vantage point enabled the identification of various

IP-usage patterns inherent to the operations of the different domain types. Conduct-

ing a detailed analysis, we were able to determine distinguishing behavioral features

between the domain types based on their DNS-query results. We have quantified

these features and demonstrated their effectiveness for differentiation by building a

multi-leveled, multi-week SVM classifier capable of discriminating between five do-

main types: CDN, non-CDN/MAL, FFx2, FFx1 Arec and FFx1 NArec. Applying

our classifier on a set of 5,171 unknown domains produced promising results, correctly

categorizing the domains with only 1 false positive—due to a CDN exclusively using

a load-balancing DNS-advertisement strategy. Our classification results showed the

relative distribution of the domain types in our testing data and the current state of

FF domains, including the increased presence and versatile implementation range of

FFx2 domains. We have shown that fluxiness is typically more pronounced in A recs

and that there is an apparent trend towards using FFx1 NArec domains, which were

previously unseen in the wild.

1.4.3 Mimicry Attack Modeling/Analysis and Improved Detector

We have examined the current, state-of-art, DNS-based FF detectors, analyz-

ing their effectiveness in detection. In doing so, we developed accurate models for

bot decay, online availability, DNS advertisement, and performance, which we used

to evaluate novel mimicry attacks against these detection systems. Based on these

models, empirical evidence, and logical assumptions, we have demonstrated that cur-
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rent botnet resources are sufficiently capable of subverting state-of-art FF detection

mechanisms. We have discovered evidence of current FF domains adopting aspects of

our proposed mimicry attacks, although they aren’t managed as assiduously as our

optimal models assume and, therefore, still possess room for improvement. We have

shown that the incorporation of more advanced views—such as an extended detection

window—serves to encumber mimicry attacks by introducing additional, necessary

parameters unknown a priori to botmasters. We introduced a novel spatial-detection

system utilizing 5 cooperating monitoring nodes on different continents, forcing bot-

net mimicry attacks to replicate the location-aware DNS-advertisement strategy of

CDNs to evade detection. We modeled such a system and demonstrated that, as with

previous detection systems, current botnet resources can successfully evade detection

at the expense of online availability and performance. We found that current botnet

resources are sufficient for mimicry attacks against increasingly advanced detection

systems, but that such attacks decrease their connectivity and performance. Taking

advantage of this relationship, we introduced a new detection metric for defending

against mimicry attacks, percent connectivity, that measures the percentage of online

IPs advertised. Using our models, we showed that percent connectivity can make

existing detection systems more resilient to mimicry attacks, requiring botmasters

to increase their diligence with shorter TTLs to succeed. When combined with our

proposed spatial-detection system, we found that even the largest botnets currently

lack the resources necessary to evade detection continuously within a 24-hour period.

1.4.4 Analysis of Future WiFi Botnet Threat

We leverage real-life cab mobility traces, bus routes and actual open WiFi AP

locations to successfully simulate the C&C, DDoS attacks and spam attacks of a

mobile botnet using only open and unencrypted WiFi networks. We have shown that

such a mobile botnet, traveling quickly through an urban environment in vehicles, can
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successfully achieve an HTTP-based C&C channel with a fine level of control, with

new commands typically propagating to more than 75% of the cab botnet within 2

hours of injection—sometimes, within as little as 30 minutes of injection. For our bus

botnet, we found that, within a single hour, botmasters can reach over 80% of their

total potential botnet, often reaching more than 90%. Moreover, those bots able to

receive commands usually have an ≈30–50% probability of being able to do so within

a minute of the command being issued. With our cab botnet, we have shown that even

a small mobile botnet of 536 devices can successfully mount a DDoS attack against

unprotected systems or systems using default firewall settings. Utilizing intelligent AP

selection, our bus botnet has demonstrated that mobile WiFi botnets can potentially

mount even more powerful DDoS attacks, typically capable of over 2 million SYN

packets per hour (≈555 per second) and as many as 4 million (≈1,100 per second)

during its peak hour. We have also established that a highly mobile botnet can

serve as a powerful spamming mechanism, despite being limited to only open and

unencrypted WiFi APs. Our small cab botnet was able to issue ≈20,000–300,000

spam emails hourly during peak weekday and weekend hours and between ≈400,000

and 6.4 million emails daily during weekends; even when issuing spam during only

weekday rush hours (i.e., 8 hours a day) it was able to send between ≈150,000 and

2.3 million emails daily. We discovered similar results for our bus botnet, which

could issue between ≈600,000 and 11.7 million spam emails daily and over 1 million

per hour in certain instances. Furthermore, simulations have demonstrated that the

C&C, DDoS attack and spam attack traffic were all adequately distributed across

open WiFi networks, and no single open AP was over utilized at any given moment;

together, these results affirm the stealthy nature of mobile WiFi botnets, making

them especially alluring to botmasters. Finally, we provided some simple defensive

mechanisms, showing their overall effectiveness in disrupting botnet operations.
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1.4.5 Related Work

Botnets have now become one of the biggest threats to the Internet community.

Most of the previous research focused on analyzing and understanding the operations

and threats of botnets [41]. Cook et al. [28] studied the structure of botnets and high-

lighted the potential threats of peer-to-peer (P2P) botnets. They also showed that

detecting botnets based solely on the C&C channel is not effective. Rajab et al. [62]

constructed a distributed measurement infrastructure to measure botnets’ Internet

Relay Chat (IRC) activities and found that botnets contribute the majority of un-

wanted traffic in the Internet. Botnets’ diurnal properties are studied in [30] and used

to model the propagation of botnets. More recently, P2P botnets appeared in the wild

that use the P2P infrastructure as the C&C channel and, therefore, are more robust

against node failures and difficult to be taken down. Grizzard et al. [33] analyzed the

architecture and communication protocol of the P2P botnet Peacom (a.k.a. storm

worm) [23]. A model for advanced hybrid P2P botnets has also been proposed in

[71], which provides robust connectivity, control traffic dispersion, encryption, easy

recovery and many other techniques that significantly improve the capability of P2P

botnets in surviving the node failure and shutdown of C&C channels. Most of these

methods fall into the category of passive analysis. To gain an insider view of a botnet,

researchers also took more active approaches, infiltrating botnets with actual malware

samples or customized crawlers. For example, Holz et al. [40] crafted a specific P2P

client to join the Storm Worm’s P2P botnet and estimate the total number of com-

promised machines. Researchers also disrupted the Conficker botnet by sinkholing

future DNS domains of the C&C server, preventing botmasters from updating the

infected hosts [42]. More recently, Stone-Gross et al. [66] successfully took over the

Torpig botnet for ten days by preemptively registering DNS domains the bots would

be contacting as C&C servers in the near future. This allowed them to reveal detailed

operations of the Torpig botnet and accurately estimate the number of compromised
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hosts.

While there are numerous strategies to mitigate the effects of malware, most of

them are ill-suited for combating botnets. Due to the modular nature of bots and the

popularity of bot-development toolkits, it becomes fairly easy for even moderately

skilled hackers to acquire botnets of their own, churning out numerous bot variants

before up-to-date signatures can be generated for a signature-based anti-virus or in-

trusion detection system. In addition, sandboxes, honeypots, and honeynets [75],

while useful for capturing and analyzing malicious binaries, incur much too long of a

time delay (often involving human intervention) to be practical for botnet mitigation.

To address these limitations, several botnet detection approaches have recently been

proposed, trying to discover botnets based on the network or host behavior typical

of most bots. Since the IRC protocol [47] is currently one of the most popular C&C

protocols used by botnets, most approaches to date focus on using some aspects of

the IRC protocol for botnet identification, such as traffic monitoring and identify-

ing IRC C&C servers. For example, Rishi [32] passively monitors IRC traffic for

suspicious IRC nicknames, IRC servers, and uncommon server ports to detect bot-

infected machines. Binkley and Singh [22] proposed detection of IRC-based botnets

via TCP anomaly detection and IRC message statistics. BotHunter [35] attempts

detection using IDS-driven dialog correlation based on IRC C&C communication and

other common actions taken during the life cycle of a bot. Meanwhile, to track and

analyze botnets in a large tier-1 ISP, Karasaridis et al. [49] proposed a wide-scale

detection technique that looks for typical network-flow patterns between bots and

their controllers. BotSniffer [36] identifies HTTP- and IRC-based C&C channels by

capturing the coordinated and synchronized communication patterns in the C&C

traffic. Unfortunately, because of their reliance on IRC- or HTTP-based C&C proto-

cols, these detection schemes can potentially be subverted using encrypted channels

or customized C&C protocols (e.g., P2P, FTP, etc.). To eliminate the reliance on
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IRC- or HTTP-based C&C protocols for identifying botnets, Gu et al. proposed Bot-

Miner [34], which clusters similar communication and malicious traffic and performs

cross-cluster correlation to identify potential bot-infected hosts.

The consistently evolving nature of botnets has attracted significant interest from

the research community, yielding several proposals to predict the design of future

botnets that enables greater robustness, more efficient communication and better

resilience against node failures and C&C channel shutdown. For example, Zou and

Cunningham [76] proposed a two-stage reconnaissance technique for constructing and

maintaining a honeypot-aware botnet that is capable of removing infected honeypots

from its network. Hund et al. [45] focused their botnet design on strong encryption

and protection mechanisms to guard against potential disruption techniques. In addi-

tion, researchers have also studied strategies of using other communication channels,

such as email [65], to disseminate botnet commands, exploiting the lack of sufficient

defense mechanisms in these protocols.

1.4.6 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter II describes our

automatic, real-time detection system for detecting botnet-based hosting domains

utilizing redirection on enterprise networks. Chapter III covers the analysis of how

botnet-based hosting services advertise with DNS on a global scale. It compares this

to other domain types, identifying potential differentiating features. Chapter IV uti-

lizes detailed DNS data and formal models to determine if current botnet resources

are capable of thwarting existing detection mechanisms by mimicking benign do-

mains. It introduces new detection strategies that are more resilient to such mimicry

attacks. Chapter V examines the future threat that botnets can pose in the quickly

growing mobile environment. It evaluates the feasibility of highly mobile botnets

utilizing only open and unencrypted WiFi networks—for an unprecedented level of
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stealth—to perform C&C, DDoS attacks and spam attacks, comparing various AP-

selection algorithms and exploring possible defenses. Lastly, Chapter VI concludes

the dissertation.
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CHAPTER II

RB-Seeker: Auto-detection of Redirection Botnets

2.1 Introduction

In this chapter, we focus on detecting bots (or other compromised systems) used

in redirection/proxy scams. We term these bots Redirection Bots (RBs) and call the

botnets they compose Redirection Botnets (RBnets). Since botnets are the primary

source of such redirection endeavors, detecting computers partaking in suspicious

redirection can provide a critical means of detecting these botnets. Furthermore,

a botnet’s versatility allows it to provide multiple criminal services, and hence, by

detecting and mitigating RBnets, we can help deter the other malicious activities

they may perpetrate.

Botnets are essentially an abundant source of disposable redirection servers/proxies,

which serve as the front-end to malicious content hosted elsewhere—on anything from

a powerful central server to another bot. Used as a misdirection mechanism for evad-

ing detection, RBnets are used in tandem with other criminal scams, constituting only

a portion of the overall operation. For example, spam/phishing campaigns often uti-

lize a RBnet for misdirection. They begin by using some spamming mechanism (e.g.,

a hijacked mail server and/or a botnet) to send seemingly interesting phishing emails.

Within the phishing emails are innocuously disguised embedded links pointing to a

RBnet. Once victims click the embedded links, they connect to the bots which then
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redirect them to—or serve as proxies for—the actual host of the nefarious content, as

shown previously in Fig. 1.1. While this single layer of redirection is the simplest case,

it is common for criminals to employ multiple layers of redirection between the victim

and the malicious content host. Botnets are an attractive redirection mechanism be-

cause if one is discovered and blocked, there is an ample supply of other bots to take

its place, and the blocked bot can still be used for other villainous activities. The use

of RBnets for spam/phishing campaigns is so successful at protecting the malicious-

content hosts that criminals are beginning to centralize their operations. Numerous

bots act as forwarding servers for the same phishing/scam campaigns, redirecting

users to the same final-destination servers (called motherships) which host the illegal

content. This strategy grants criminals a high level of anonymity via redirection while

enabling easy centralized management.

While the RBnets can be used to deliver malicious content to victims via either

redirection or proxy, redirection offers several financial and performance advantages

over proxy in terms of content availability, resource utilization, and ease of man-

agement. Because botnets are composed primarily of compromised home computers

with unreliable connectivity, it is common for them to unexpectedly go offline. If a

botmaster is using bots as proxies to deliver malicious content to victims, the bots

must remain online during the entire session. When a proxy bot unexpectedly goes

offline, the connection between the victim and the source of the malicious content is

severed. Using bots for redirection, on the other hand, is more resilient to connec-

tion failure because individual bots within the RBnet need to maintain connectivity

only long enough to redirect the victim. As a result, the use of redirection will be

more effective in terms of content availability. Moreover, individual bots experience

more resource strain when used as proxies. Each bot must maintain connections with

victims while serving as a proxy to the actual content host. Since bots are often

less powerful compromised home computers, this limits the number of victims that
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can be serviced by an individual bot. A botmaster can achieve better utilization of

the botnet’s resources by using redirection, as it is considerably less taxing on the

compromised home computers composing the botnet. This greatly improves the fi-

nancial gain achievable with the botnet, making it possible for botmasters to rent

out a single RBnet for multiple criminal redirection infrastructures. Finally, as a side

effect of proxy bots’ poor utilization of resources, botmasters must be more diligent

in management. They must ensure that enough bots are online and that they are

intelligently dispersed across multiple DNS servers, such that the number of victims

connecting to an individual bot is within its ability to function as a proxy.

For the above reasons, we propose a system called Redirection Botnet Seeker , or

RB-Seeker , that detects RBnets based on their intrinsic network behavior patterns.

Our contributions are three-folded. First, the system make uses of comprehensive

and abundant data sources, including approximately two month’s worth of: NetFlow

records dumped from a core router of the campus network, spam emails from online

and local spam archives, and DNS logs from two major local DNS servers. These rich,

real-world data sources complement each other and provide RB-seeker with extensive

views from multiple vantage points, resulting in a better detection rate of RBnets.

Second, we design and develop several effective algorithms to exploit unique features of

RBnets, such as their connection patterns, flow characteristics, DNS record behavior

and typical involvement in spam/phishing attacks. As a practical implementation for

enterprise networks, RB-Seeker comprises multiple network-monitoring subsystems,

collaborating to identify malicious redirection infrastructures. The first subsystem

takes advantage of the fact that redirection is often used for phishing/advertising. It

analyzes embedded HTTP links in spam emails acquired from various sources using

traditional spam detection systems and looks for links that redirect victims to dif-

ferent domains. The second subsystem improves the redirection detection capability

by analyzing passive network traces at a large (i.e., of 40,000 students and several

20



thousand faculty and staff) university core router and exploiting the statistical differ-

ence between the connection patterns of redirection and normal browsing. Together,

these two subsystems compile a database of redirection domains, which is used by the

third subsystem that actively polls and monitors the DNS-query results for suspicious

behavior. Third, we developed a 2-tier detection system that can detect both typi-

cal/aggressive and stealthy RBnets (i.e., those mimicking valid DNS behavior, such

as Content Distribution Networks (CDNs)), which are likely participating in multiple

botnet activities. In addition, as a behavior-based approach, RB-Seeker doesn’t rely

on malware signatures and is, therefore, more immune to traditional evasion tech-

niques that are often and successfully employed by botmasters (e.g., polymorphism

or malware packers).

The remainder of the chapter is organized as follows. We review the related

literature in Section 2.2. Section 2.3 presents an overview of the system design and

architecture. Sections 2.4–2.6 describe the three closely interacting subsystems of

RB-Seeker, which cooperatively achieve accurate identification of RBnets based on

their unique network and DNS behavior. Section 2.8 evaluates the effectiveness of

RB-Seeker, and the chapter concludes with Section 2.9.

2.2 Related Work

In this chapter, we propose a novel detection technique for discovering botnets

involved in redirection infrastructures. Our approach differs from previous work in

that, instead of identifying botnet C&C channels, which can be evaded through modi-

fied or customized C&C protocols, we focus on the intrinsic behavior of RBnets. The

behavior can be collected in real time from a variety of network-level traces, such

as NetFlow, spam emails and DNS logs, regardless of the C&C protocols used by

botnets. Similar network-level traffic analysis has also been widely used in both re-

search projects and commercial products to combat malicious attacks, such as DDoS
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and spam. For instance, the Internet Motion Sensor (IMS) [21] is a global monitor-

ing system that utilizes many distributed sensors to monitor traffic to Internet dark

spaces, capturing the scanning traffic of worm propagation. The major purpose of

IMS is to detect random-scanning worms and prevent scanning traffic from reaching

victims. Hence, it is not efficient for detecting botnets since not all scanning traffic

originates from botnets, and botnets often propagate through other channels, such as

email attachments (e.g., Peacomm bot), social engineering, browser vulnerabilities,

etc. Cisco’s Ironport [26] and P-cube [27] products investigate network (in particular

SMTP) traffic as it passes through the systems. They use blacklist- or content-based

filtering to detect spam emails and stop them before reaching the mail server. Be-

cause of the growing involvement of RBnets in spam/phishing campaigns [18], our

approach can be easily integrated into these systems for practical deployment. The

success of Ironport and P-cube in detecting incoming spam emails at the connection

level will enable our approach to proactively detect RBnets and protect unsuspecting

customers.

Redirection techniques have often been used for redirection web spams, where

attackers try to boost their rankings in search engine results by presenting false

content to indexing crawlers, automatically redirecting users’ browsers to different,

and often nefarious, web pages. Wu and Davision [73] studied the distribution of

different redirection techniques. Chellapilla and Maykov [25] researched the preva-

lence of JavaScript redirection on the web and gave a detailed taxonomy of different

JavaScript-based redirection approaches. They concluded that this type of redirection

is the most notorious and difficult to detect due to the versatility of JavaScript, which

allows for a number of obfuscation and dynamic-script-injection techniques. Wang et

al. [72] built a system called “Strider Honeymonkey” to visit each page with a web

browser and analyze the redirection behavior of malicious web servers. Their results

showed that most malicious websites use front-end servers to automatically redirect
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browser traffic to a back-end exploit server that specializes in exploiting client com-

puters. Along the same lines, Spamscatter [18] mines the URL links the spam emails

and follows any redirection to reach the destination scam websites. They found that

over 68% of scams adopt certain redirection techniques to protect the true destination

servers. Because of the large-scale and disposable nature of botnets, bots serve as ideal

platforms for hosting redirection services. This is exemplified by the recent emergence

of fast-flux service network (FFSNs) [60], which achieve high online availability by

rapidly changing the IP addresses associated with the fast-flux (FF) domains. In FF-

SNs, most of the nodes are bots whose purpose is to redirect the unsuspecting users to

the destination website hosting the phishing/scam content and/or exploit code. Holz

et al. [39] studied the characteristics of FFSNs and developed detection algorithms

that first extract URL links in spam emails and then identify FFSNs based on the

number of unique IP addresses returned in DNS queries and the number of unique

Autonomous Service Networks (ASNs) to which those IP addresses belong. This is

very efficient in capturing FFSNs whose behavior is drastically different from the

normal cases. RB-Seeker differs from these in several ways. First, RB-Seeker detects

RBnets by utilizing more comprehensive data sources, including NetFlow, DNS-query

logs and URLs in spam emails. This approach effectively alleviates the shortcomings

of the spam-only approach. For instance, the URLs embedded a spam email could

be heavily obfuscated or included inside a PDF or image. Furthermore, inspecting

the content of all the emails is not always possible given privacy concerns. Second,

RB-Seeker monitors multiple features of suspicious domains’ DNS behavior over an

extended period of time, utilizing an effective 2-tier detection strategy; this enables

RB-Seeker to accurately detect RBnets with both aggressive and slowly changing

(stealthy) DNS characteristics.

23



Figure 2.1: Architecture of the proof-of-concept RB-Seeker

2.3 System Architecture

We have developed and prototyped a system aimed at the automatic identification

of suspicious redirection behavior and bot-infected computers involved in RBnets.

Fig. 2.1 shows the architecture of the proof-of-concept RB-Seeker, which consists of

three cooperative subsystems monitoring three primary input sources: spam emails

(acquired from various sources using existing spam detectors), NetFlow data, and

DNS server logs and query results.

The first subsystem, called the Spam Source Subsystem (SSS), consists of two

components: a content analysis component and a URL probing engine. The former

accrues a vast collection of spam emails using traditional spam detection techniques

on personal spam mailboxes, online spam archives, and a spam relay server setup on

a residential network. It analyzes the spam and extracts the embedded links into

the spam URL database. The URL probing engine follows the embedded links stored

in the spam URL database and compiles a list of domains participating in redirec-
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tion, which are added to the redirection domain database. The second component, the

NetFlow Analysis Subsystem (NAS), also generates a list of redirection domains. How-

ever, unlike the SSS, the NAS monitors network flows on a large university core router

and uses sequential hypothesis testing to detect IPs participating in redirection based

on flow characteristics. These IPs are fed into the correlation engine, which uses DNS-

query logs to extract the associated domains, adding them to the redirection domain

database. The redirection domain database compiled by the SSS and the NAS is used

by our third—and final—subsystem, the active DNS Anomaly Detection Subsystem

(a-DADS), which comprises two components. The first component, the DNS probing

engine, continuously performs DNS digs on the domains in the redirection domain

database, logging the results to the DNS-query database. The other component of the

a-DADS, the RBnet classification engine, extracts various attributes for each domain

from the DNS-query database and uses a hyperplane decision function to classify the

domains as valid (i.e., benign) or malicious (i.e., belonging to a RBnet). If a domain

is determined to be valid, it is removed from the redirection domain database and

whitelisted to prevent the SSS or the NAS from reading it. When a RBnet domain is

detected, it generates an alert report, containing the detailed DNS-query logs for the

domain (stored in the DNS-query database) and allowing for further manual analysis

on the RBnet’s DNS behavior if needed.

2.4 Spam Source Subsystem

Because spammers are driven by an incentive for profits, most spam emails con-

tain embedded phishing/scam links to lure unsuspecting individuals to phishing/scam

websites or web pages containing malicious exploit code. In most cases, to protect

the destination servers, users are redirected through one-or-more redirection servers,

which are likely to be compromised computers serving as RBs. Taking advantage

of this close connection between RBs and spam/phishing emails, the SSS uses the
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embedded URLs in the spam message bodies as the starting point to trace out and

detect machines participating in the redirection infrastructure. The SSS starts with

the real-time collection of spam emails from multiple sources, including a spam relay

trap set up at a residential network,1 spam emails from the department mail server

and several personal junk mailboxes at large email service providers. The SSS also

downloads the latest spam emails from an online spam archive [37], which publishes

more than 50,000 spam emails monthly. Upon collecting a new spam email, con-

tent analysis is performed on the message body to extract embedded URLs. After

eliminating legitimate URLs using a precomposed whitelist, the SSS timestamps the

remaining suspicious links and puts them into the spam URL database. The prob-

ing engine periodically retrieves URLs from the database and probes them to detect

redirection behavior.

According to [25], modern browsers can be redirected in three ways: HTTP-

status-code redirection (e.g., 301 moved permanently, 302 temporary redirect, etc.),

HTTP-meta-refresh-header redirection, and client-side script redirection. The SSS

handles HTTP-status-code redirection by using wget [5] to fetch the web page of

a URL link. By default, wget detects the redirection status code and follows the

URL specified in the location header entry of the HTTP response. By parsing the

wget log file, the SSS can identify all intermediate redirection servers using HTTP-

status-code redirection. Unfortunately, wget does not handle the other two types of

redirection. To solve the problem, the SSS analyzes each downloaded web page and

searches for HTTP refresh tags and redirection scripts. More specifically, to capture

HTTP-meta-refresh-header redirection (where web pages use a META tag to redirect

users), the SSS searches for the specific META tag with http-equiv attribute set to

1A spam relay trap works like a spam honeypot. It appears to be an open SMTP server that
allows anyone on the Internet to send email through it (we block the outgoing traffic, so no spam
emails are sent). Because spammers extensively scan and exploit open relays to re-route their spam
emails, our open relay trap is able to collect a large amount of spam every day (on average 7,900
spam emails/day).
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“refresh” and extracts the destination URL from the content attribute. For exam-

ple, a typical use of META refresh header is as follows: <meta http-equiv="refresh"

content="0;url=http://www.destination.com">. For script-based redirection, which

is known to be most notorious and difficult to capture, the SSS focuses on detect-

ing the most common JavaScript-based redirection techniques by scanning the web

page for JavaScript code that changes a location property (e.g., “window.location,”

“location.replace,” “document.location,” “location.href,” etc.) to the redirection des-

tination URL. However, this type of static analysis can be evaded by sophisticated

redirection techniques such as obfuscation, dynamic code injection and self-modifying

JavaScript code [25]. We leave the dynamic analysis of web pages to identify redirec-

tion as our future work. However, a possible solution is to use a client-side honeypot

(such as Capture-HPC [1]) that drives a real browser (with JavaScript enabled) to

visit each suspicious URL and monitor the transition between web pages. After ex-

tracting the destination URL from either META headers or JavaScript code, the

SSS invokes the probing engine again on these links to identify further redirection

attempts. This procedure is repeated until no further redirection is identified in the

final destination web page or a predefined threshold is reached (to prevent an infinite

loop). The numbers of observed web pages that use each redirection technique are:

61,280 (54.1%) Status Code, 6,639 (5.9%) Refresh Tag and 45,285 (40.0%) JavaScript.

2.5 NetFlow Analysis Subsystem

This section describes the design of the second subsystem, the NetFlow Analysis

Subsystem (NAS). Although quite useful, spam emails as a data source provide only

a single vantage point with its own limitations. For example, spammers send image-

or PDF-based spam emails to evade content-based filtering, so URL links might not

appear as plain text in the spam body. Also, a user could be directed to a RB

by clicking a link on a malicious web page, an IM message or many other ways.
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In addition, inspecting each email body is not always possible because of privacy

concerns/laws. To complement the SSS and improve the detectability of RBnets, the

NAS takes advantage of NetFlow records, identifying redirection servers without the

need for packet content analysis.

2.5.1 Redirection behavior characterization

Currently, the NAS operates on the NetFlow records collected from a core router

of a very large university (the University of Michigan) network and looks for suspi-

cious redirection attempts of web traffic. NetFlow is a network protocol developed by

Cisco for summarizing IP traffic information [7]. Although capturing and analyzing

packet-level data can provide the highest accuracy, the associated cost is prohibitively

high even for a medium-size network. As a result, NetFlow, as a light-weight alter-

native, has become the most widely used technique for network monitoring, traffic

accounting, etc. A flow is defined as a sequence of packets between a source and a

destination within a single session or connection. A NetFlow record contains a variety

of flow-level information such as IP protocol, source/destination IP and port, start

and finish timestamps, and flow size. However, packet contents are not available,

making it impossible to examine packet payloads and detect redirection behavior

via HTTP status code or refresh headers. To address this limitation, we developed

several redirection identification heuristics based only on the transport-layer infor-

mation available in NetFlow data and the correlation of the traffic flow’s size and

timing behavior. The intuition behind these heuristics is that the behavior of vis-

iting a redirection web server exhibits unique characteristics in terms of flow size,

flow duration, and inter-flow duration, which are statistically different from normal,

non-redirecting websites (see Table 2.1 for a detailed comparison) and can, therefore,

be used to capture redirection activities. In Table 2.1, to obtain the “ground truth”

of redirection behavior, we collected a set of server IPs that have been determined
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Mean Median Std dev

Flow duration redirection 305.5 128.6 2159.2
(ms) normal 33042.3 10028.8 91912.5

Inter-flow redirection 392.7 154.4 872.4
duration (ms) normal 40132.9 1345.5 87281.0

Flow size redirection 2401 629 44530
(bytes) normal 51495 4852 192431

Table 2.1: Comparison of average flow characteristics between redirection and normal
browsing

by the SSS to perform redirection activities; we then use use tcpdump to capture all

the packets between the SSS and those servers. In this way, we can build a database

of redirection behaviors from the confirmed redirection-server IPs and compute the

values for each feature. Similarly, the values for normal browsing are computed using

two days’ packet traces of a user’s normal web browsing activities after removing the

packets of identified redirection connections. Next, we will elaborate on each feature

and the intuition behind it.

Short inter-flow duration Redirection often leads to multiple, consecutive HTTP

flows from the same source IP address to different destination web servers within a

short time period. The inter-flow duration is defined as the difference between the

start times of two consecutive flows originating from the same source IP and destined

for distinct destination IPs. Intuitively, the fast and automatic transition caused by

redirection from one web server to another is in stark contrast to the considerably

longer time taken for a user to move between websites during normal web browsing,

e.g., by manually clicking the links. From Table 2.1, we can see that normal browsing

usually takes two orders-of-magnitude longer than redirection.

Small flow size The flow size of visiting a redirection website is much smaller

than that of visiting a normal website. This is because the redirection server usually

returns only the redirection command data, such as HTTP status code, so that it

will not waste bandwidth and, hence, can be used for redirecting more clients. For
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example, in the case of most HTTP-status-code redirections, the redirection server

returns only several tens of bytes, containing the status code (e.g., 301, 302) and

a new destination server location. On the other hand, visiting a normal website

usually necessitates downloading its homepage (often with pictures, longer texts, and

embedded objects); thus, the flows of normal browsing are much larger in size (see

Table 2.1).

Short flow duration Because of the small amount of data returned by a redi-

rection server, the communication time (i.e., flow duration) between a user and a

redirection server is often much smaller than for that of a valid web server. Since

the purpose of a RB is to forward a client to the mothership hosting the nefarious

content, there is no benefit for a RB to maintain the connection with the client longer

than needed. In most cases, the RB terminates the connection as soon as the client is

handed over to another web server. By contrast, the connection time for normal web

browsing is considerably longer, especially because the current version of HTTP/1.1

introduces the keep-alive mechanism, which allows long-lived, persistent connections.

For example, Internet Explorer (IE) times out a connection only after 60 seconds of

inactivity.

2.5.2 Sequential hypothesis testing

Based on the above characteristics, the NAS exploits the temporal and size corre-

lations among flows to identify redirection behavior. The NAS first sorts flow records

chronologically and groups them by the source IP addresses. Within each group,

the NAS computes the values of each feature—inter-flow duration, flow size and flow

duration—for each destination IP; this forms an observed sample for each connection

event between the source IP and a destination server. Our goal is then to classify

whether the remote server is performing “redirection” or “normal” behavior. The sim-

plest approach is to set up a fixed threshold for all three features and make decisions
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based on each individual observation. However, as we will show later, all the features

of normal and redirection behavior have heavy-tailed distributions, indicating that a

simple threshold method may introduce significant classification errors. Intuitively,

this could be improved by utilizing multiple observations so that each decision is made

with a high level of confidence. To achieve this goal, we adopt Sequential Probability

Ratio Testing (SPRT) [70]—a type of statistical hypothesis testing where the number

of observations required by the test is not predetermined but is a random variable

determined by the underlying distribution. In other words, a decision is made only

after enough evidence has been accumulated to support the acceptance or rejection

of the hypothesis. Thus, SPRT achieves high accuracy and has been widely used in

many anomaly detection scenarios, such as detecting port scanners [48] and botnets

[36].

We consider two hypotheses when performing Sequential Hypothesis Testing (SHT):

H0 (the remote server is a normal server) and H1 (the remote server is a redi-

rection server). In order to demonstrate how SHT works, let’s examine how the

NAS uses it to arrive at a classification decision for the inter-flow-duration feature

(the procedure is identical for the other two features). Assuming the hypothesis Hi

holds, the inter-flow duration follows some distribution (how to model such a dis-

tribution is discussed in the next subsection) whose density function is denoted as

fi(Tinter) = f(Tinter|Hi). Let T1, T2, . . . , Tn be a sequence of observed samples of the

inter-flow duration for the same destination IP. We can compute the likelihood ra-

tio as Λ(n) = f1(T2)f1(T2)···f1(Tn)
f0(T2)f0(T2)···f0(Tn)

=
∏n

k=1
f1(Tk)
f0(Tk)

. Then, for each stage k, or the k-th

observation (k = 1, 2, . . . , n), the test leads to one of three decisions based on the

following decision rules: (1) accept H1 if the likelihood ratio exceeds the threshold η1;

(2) accept H0 if the likelihood ratio is below another threshold, η0; and (3) otherwise,

pend and wait for another observation. More specifically, for the k-th observation of
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a new connection:

Output =























Accept H1 if Λ(n) ≥ η1

Accept H0 if Λ(n) ≤ η0

Pend otherwise.

One nice property of SHT is that the thresholds η0 and η1 can be set according

to the target false-positive rate α (type-1 error: reject H0 although it is true) and

false-negative rate β (type-2 error: accept H0 although it is false). Wald [70] showed

that, by setting the threshold to η0 = 1−β

α
and η1 = β

1−α
, the true false-positive and

false-negative rates will deviate from α and β by only a small margin.

2.5.3 Flow-based redirection identification

Fig. 2.2 shows the flowchart of how the NAS combines the three features and

applies SHT to detect redirection servers. When a new connection is observed from

a source IP (assuming the new connection is the n-th observation), the inter-flow

duration Tn (defined as time difference between the current flow and the immediately

preceding flow from the same IP) is compared against a loose threshold; this thresh-

old value is chosen so that any inter-flow duration larger than this threshold is very

unlikely to have been caused by redirection.2 Then, if the inter-flow duration is below

the threshold, the hypothesis testing history Λ(n− 1) is retrieved from the database,

and the new likelihood ratio is computed as Λ(n) = Λ(n − 1) ∗ f1(Tn)
f0(Tn)

. Depending

on the likelihood ratio, the NAS outputs one of three decisions: accept H0, reject

H0 (i.e., accept H1), or pend. If the output is to accept H0, then the destination

IP of the preceding flow is considered a normal server, and the hypothesis testing

history for that IP is cleaned up. If the existing data samples cannot provide enough

confidence to reject or accept the hypothesis, the pending decision is chosen, and the

current likelihood ratio is stored in the hypothesis testing database for future testing

when additional observations become available. Finally, if the output suggests that

2In our current experiment, we set this threshold to 30 seconds.
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a potential redirection behavior has been observed (i.e., to accept H1) according to

the inter-flow duration, a second hypothesis testing is performed on the flow size of

the preceding flow. The reason why the NAS relies on multiple metrics to identify

redirection behavior is that a single metric often leads to false positives. Specifically,

the inter-flow-based hypothesis testing cannot distinguish concurrent flows from redi-

rection flows. Concurrent flows occur when the destination web server references

resources (e.g., pictures, videos) from other servers. As a result, when the client

browses the web page, it requests several concurrent connections to multiple destina-

tions within a short time frame. This results in short inter-flow durations that are

indistinguishable from those caused by redirection behavior. Thus, we use flow size as

a second-line filter to eliminate the potential false positives resulting from concurrent

flows. Because the purpose of concurrent flows is often to fetch the (multimedia)

contents of a web page, the flow size is expected to be much larger than is needed for

redirection commands (e.g., status code). The hypothesis testing on flow size deter-

mines whether to accept the hypothesis or store the likelihood ratio for future testing.

If the result indicates redirection behavior, then a third, optional, hypothesis testing

on flow duration could be performed. The flow duration is optional because our ex-

perimental measurements have shown that some redirection servers do not terminate

connections—even after sending the redirection status code. The idle connection is

kept alive without any data transmission until the client browser times out and closes

the session. We conjecture this could be due to misconfiguration of the server. Thus,

if a more strict detection algorithm is desirable, the optional flow-duration hypoth-

esis testing can be performed to reduce false positives at the cost of increasing the

false-negative rate (e.g., the NAS may fail to detect long-lived redirection servers).

In our current implementation of the NAS, only the first two hypothesis tests are

performed.
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Figure 2.2: Flowchart of the algorithm for identification of redirection behaviors

2.5.4 Modeling the distribution of flow features

One of the prerequisites for a hypothesis test is to determine the density function

of different features conditioned on the hypothesis, i.e., fi(T ) and fi(S), where T is

the inter-flow duration, S is the flow size and i = 0 or 1. As mentioned before, to

obtain the “ground truth” of redirection behaviors, we collect packet traces of con-

firmed redirection servers from the SSS and normal web-browsing activities to build

two (i.e., normal and redirection) datasets for each feature. A simple examination

of the histogram of these datasets shows that all the features follow non-negative,

heavy-tailed distributions, each with a single tail. Statistical distributions that sat-

isfy these conditions include Pareto, log-normal and Weibull distributions. We apply
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µ 95% C.I. of µ σ 95% C.I. of σ

Inter-R 5.270 [5.260, 5.281] 0.974 [0.966, 0. 9812]

Inter-N 7.982 [7.896, 8.067] 2.512 [2.454, 2.574]

Size-R 6.529 [6.517, 6.542] 0.956 [0.948, 0.965]

Size-N 8.423 [8.380, 8.466] 2.093 [2.063, 2.125]

Table 2.2: Maximum likelihood estimates of parameters for a log-normal distribution
(Inter-R means inter-flow duration for redirection, and Inter-N means inter-
flow duration for normal browsing; Size-R and Size-N are defined similarly.)
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Figure 2.3: Log-normal distribution fit for inter-flow durations

the maximum likelihood (ML) method to estimate parameters for each distribution

and compute Kolmogorov-Smirnov statistics [6]—a popular method to evaluate how

well a distribution fits the actual data. The results reveal that the log-normal dis-

tribution achieves the best fit between the empirical data and analytical model. Its

density function is given in the form of: f(x; µ, σ) = 1
xσ

√
2π

e−
(lnx−µ)2

2σ2 . The log-normal

distribution is characterized by two parameters, µ and σ. Table 2.2 shows the ML

estimates of these two parameters and their 95% confidence interval for inter-flow

and flow-size features. Fig. 2.3 depicts the CDF of inter-flow durations in both redi-

rection and normal cases as well as the log-normal distribution fitting the results of

the ML estimation. The flow-size result is similar to this and, hence, omitted. Hav-

ing estimated µ and σ, the hypothesis tests on these features can be done easily by

calculating the likelihood ratio with the density function of a log-normal distribution

and the parameter values in Table 2.2.
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2.5.5 DNS log correlation

Using continuous monitoring of traffic flows, the NAS performs SHT to detect

potential redirection activities and stores the IP addresses of suspected redirection

servers (Fig. 2.1). However, many redirection servers could be benign since redirection

is also frequently used for legitimate purposes (e.g., website migration, the use of a

short and easily-remembered domain name to replace a long and convoluted one,

redirection among alias domain names, etc.). To pinpoint malicious RBnets, we need

to validate the DNS behavior of their domain names. However, NetFlow records only

store the flow IP addresses without their domain names. Note that the reverse DNS

lookup is not useful in identifying the domain names for RBs. The forward mapping

between the phishing/scam domains and bots’ IPs are registered by the adversaries

and are resolved by DNS servers they possibly control, allowing attackers to associate

an arbitrary domain name with their bots’ IPs. On the other hand, a reverse DNS

lookup returns the actual domain name of the RB as determined by the bot’s Internet

Service Provider (ISP); thus, it will not match the malicious domain used in the scam.

To address this problem, the NAS correlates the redirection IPs it has detected with

domains found in the local DNS servers’ DNS-query logs. These identified redirection

domains will first be filtered against a known whitelist to remove legitimate redirection

domains, such as popular CDNs3 (e.g., Akamai, CoDeeN, LimeLight, etc.) and known

redirection service domains [4] (e.g., google, yahoo, tinyurl, etc.). The remaining

domains are placed into the redirection domain database to be probed and verified

by the a-DADS, which we discuss next.

3We also developed an effective heuristic to detect previously unseen CDN domains and IPs,
which will be discussed in Section 2.6.3.
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2.6 Active DNS Anomaly Detection Subsystem

The SSS and the NAS identify domains involved in redirection, either determin-

istically (from spam emails) or probabilistically (from NetFlow records), and store

them in the redirection domain database. However, since valid domains commonly

make use of redirection (e.g., to balance server load), there is no guarantee that the

redirection domains detected belong to a RBnet. It is the purpose of the active DNS

Detection Subsystem (a-DADS) to determine if any of the suspicious domains in the

database actually belong to a RBnet.

2.6.1 Data collection and analysis

For each unique domain in the redirection domain database, the a-DADS contin-

uously performs and logs DNS queries for the domain’s IPs (A records), name servers

(NS records), name servers’ IPs (NS-A records), the reverse DNS lookup on any IPs

returned (i.e., the A and NS-A records), and the Autonomous System Number (ASN)

to which each IP belongs. To analyze RBnet behavior over time, we continue to per-

form these digs until we have obtained at least a week’s worth of valid queries (i.e.,

non-cached queries that didn’t time out).

2.6.2 Characterization of RBnet behavior

RBnets, by their very nature, exhibit atypical DNS behavior. This is due to

the way a RBnet is structured and the function it serves. A criminal, utilizing a

redirection infrastructure for misdirection, will register an arbitrary domain name—

perhaps a misspelling of a popular domain or an innocuous name used for a phishing

email—and then point it to several bots in the RBnet. Thus, when the victim tries

to visit the malicious domain, the DNS server will respond with some of the many

bots’ IPs, redirecting the victim. In order for this mechanism to provide reliable

content delivery for the malicious domain, the botmaster must make certain the bots
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registered with DNS for the malicious domain are online. Otherwise, the victim will

not be able to connect to the bot and be redirected to the nefarious content. Botnets

naturally suffer from unreliable connectivity, since they are typically comprised of

less secure home computers which are not always online. Even with increased use of

‘always-online’ broadband Internet, home desktops and laptops are often turned off

or suspended, making them unreliable. To overcome this shortcoming, the botmaster

must take certain measures to ensure the domain resolves to one of the online RBs,

resulting in abnormal DNS-query behavior. Based on the mechanisms available to

the botmaster through DNS, we expect to observe behavioral abnormalities for the

following attributes.

IP usage Botmasters incorporate several IP-management strategies when adver-

tising their RBnets to the DNS. These strategies cause the DNS-query results for

RBnet domains to exhibit discernible variations from those of valid domains using

CDNs or Round-Robin DNS (RRDNS). First, we expect there to be more unique

IPs associated with a particular RBnet domain over time. RBnets will accrue, over

time, more unique IPs than valid domains, since valid domains will have more stable

servers hosting the content. In addition to supplying more IPs than valid domains

over time, we expect many RBnets to supply more unique IPs per individual valid

query. By supplying a larger set of IPs per query, the botmaster helps ensure the

malicious domain resolves to a valid IP. With a larger pool of IPs, there is a higher

probability one of them belongs to an online bot, decreasing the level of vigilance

required in monitoring the RBnet’s connectivity. As a further consequence of poor

connectivity, botmasters will have to replace the IPs registered to their malicious

domain frequently, requiring short TTL values. While CDNs also replace their IPs

frequently, they will have a smaller pool of unique IPs over time than RBnets due to

their use of more stable servers.
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Reverse DNS lookup This involves a reverse DNS query (i.e., PTR records) on

the IPs returned in the A records. While a reverse DNS lookup doesn’t always return

a result, when it does, it can be used to help detect a RBnet. Specifically, RBnets

will often return domain names with “bad words” typical of home computers, such as

cable, broadband, comcast, charter, dialup, dynamic, etc. Therefore, for each domain,

we rank the occurrences of suspicious words. This is a reliable metric since the domain

names returned by a reverse DNS lookup (i.e., reverse DNS names) are set by the the

bots’ ISPs and cannot be easily faked by botmasters. For this reason, reverse DNS

queries on compromised home computers will often return domain names littered

with suspicious words not present for valid domains (both RRDNS and CDNs). We

also filter out valid domains containing “bad words” (e.g., comcast.net, charter.net)

so that these are not unfairly weighted.

AS count Because the compromised computers composing botnets are scattered

geographically, the IPs returned for RBnet domains will belong to a more diverse set

of Autonomous Systems (ASes). Thus, we keep track of the number of unique ASes

associated with a domain, as it should be a helpful metric in identifying RBnets.

2.6.3 CDN Filter

Consisting of thousands of servers distributed around the globe, CDNs must as-

sume that any (and potentially many) of their servers could experience downtime

due to network, software, or hardware failures. With this pragmatic view in mind,

CDNs have been developed to be resilient to such failures, ensuring reliable content

availability to their customers [16]. Consequently, they utilize DNS-based solutions

similar to those currently being employed by botmasters. For example, CDNs and

RBnets both use very small TTL values, allowing their networks to quickly respond

to failure. Also, they both often advertise multiple IP addresses for a given domain,

hedging their bets should some IP addresses go offline. CDNs also make use of ag-
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gressive load balancing, frequently changing the IPs advertised by DNS to ensure

the highest throughput for their customers. These techniques often make the DNS

behavior of CDNs appear akin to that of a RBnet.

Because of this behavioral similarity among CDNs and RBnets, we have developed

a CDN Filter for the a-DADS to remove—from the redirection domain database—

those domains that we can determine to be using legitimate CDNs. The CDN Filter

operates based on the following two observations: (1) RBnet domains do not return

IPs for legitimate CDNs in their DNS A records, and (2) each CDN server (with its

corresponding IPs) will be used to service multiple legitimate domains. As a result,

the a-DADS’s CDN Filter analyzes the reverse DNS lookup of the A-record IPs for

all the domains in the redirection domain database. When an A-record IP displays

a reverse DNS name matching that of a legitimate CDN, we add the IPs seen for

that domain to the CDN-IP database. The CDN-IP database is then cross-referenced

against the IPs seen for other domains in the redirection domain database. When

a domain is discovered to contain an IP from the CDN-IP database, it is flagged as

using a CDN, and its IPs are added to the CDN-IP database. This process repeats,

filtering out those domains that are using valid CDNs. In this way, the a-DADS’s

CDN Filter removes those valid (non-RBnet) domains from the redirection domain

database that exhibit DNS patterns most similar to those of RBnets.

2.6.4 RBnet classification

After filtering out the known CDNs with the CDN Filter, the a-DADS employs

a 2-tier , linear Support Vector Machine (SVM) detection strategy on the remain-

ing suspicious domains. The first-tier SVM (SVM-1) is designed to quickly identify

those RBnets exhibiting a strong deviation from normal DNS behavior, which we

term Aggressive RBnets. Any domain not identified as a RBnet by SVM-1 is fur-

ther analyzed. The a-DADS continues to perform digs on the domain and applies
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the second-tier SVM (SVM-2) to the results. While SVM-1 is designed to identify

Aggressive RBnets quickly from minimal valid DNS queries, SVM-2 takes more time

and is capable of detecting RBnets that try to mimic the short-term DNS behavior

of valid domains, which we term Stealth RBnets.

Both SVM-1 and SVM-2 make use of a linear classifier of the form:

F (x) =











wT x − b > 0 , if x is valid domain

wT x − b < 0 , if x is RB domain

where w is a weight vector, b is a bias term, and x is a vector of behavioral attributes.

These variables and vectors are different for each tier, and will be discussed next.

2.6.4.1 SVM-1

Using the CDN Filter, we filtered out any known CDN domains from the redirec-

tion domain database compiled by the SSS and the NAS. After filtering, the remaining

suspicious domains were predominantly RRDNS, with a few CDN domains that es-

caped detection by our filter. We carefully selected a set of 124 valid domains that

were representative of the different types of valid DNS behavior we observed. We also

manually identified 18 Aggressive RBnet domains, which were easy to identify by

hand due to their aggressive IP management tactics. These 142 domains (124 valid

domains and 18 Aggressive RBnet domains) composed the training set for SVM-1.

We then used 10-fold cross-validation on the training set to determine which be-

havioral characteristics best differentiated RBnets from valid domains based on only

two valid queries. We discovered that three behavioral characteristics dominated the

SVM equation: the total number of unique IPs seen, the total number of unique ASes

seen, and the number of reverse DNS names with “bad words”. The other behav-

ioral characteristics we previously mentioned, while useful when analyzing multiple

queries, were not as significant when observing only two valid queries. We chose to
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Figure 2.4: Domain attributes for the 142 domains in SVM-1 training set (two valid
queries)

use the linear SVM best suited for classification based on the minimal number of valid

queries, since the goal of SVM-1 is fast, accurate detection of Aggressive RBnets. The

resulting equation is used for SVM-1, with the value returned being indicative of a

domain’s suspicion level:

f(x) = wT x − b

= −1.257 ∗ Nunique IPs − 26.401 ∗ NASes

−13.024 ∗ NDNS bad words + 162.851

where Nunique IPs is the number of unique IPs, NASes is the number of ASes, and

NDNS bad words is the number of DNS “bad words” seen (should the reverse DNS lookup

return a result). Testing the SVM-1 equation by using 10-fold cross-validation on the

training set achieved 99.3% accuracy. We further evaluated the accuracy of SVM-1

by running it on the remaining domains in the redirection domain database not used

in the training set; the evaluation of these results will be discussed Section 2.8.2.

A graph of the three attributes used in SVM-1 can be seen in Fig. 2.4. Each

attribute is represented as a fraction of the largest value seen for that attribute among
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all the domains in the training set, allowing us to show all their relationships on a

scale from 0 to 1. From Fig. 2.4, it is clear that Aggressive RBnets display a distinct

behavioral difference from valid domains for the monitored attributes (gaps in the

graph visually separate valid domains from Aggressive RBnet domains). The spike at

the end of the good domains for the Total unique IPs is due to a CDN that managed

to escape our CDN Filter. While it contains a large number of IPs (on par with

Aggressive RBnets), there is a noticeable difference in its number of ASes and DNS

“bad words”. This difference allows SVM-1 to classify it as benign, causing it to be

further monitored by SVM-2. Should any RBnets exhibit behavior similar to valid

CDNs, they also will be monitored by SVM-2, which takes advantage of long-term

DNS behavior to distinguish valid domains from RBnets.

2.6.4.2 SVM-2

One factor that will differentiate a Stealth RBnet from a valid domain is the

number of unique IPs and ASes it accrues over time. While DNS queries for valid

domains (such as some CDNs) may return many IPs spanning multiple ASes (similar

to RBnets), queries will continue to return those same IPs after a significant period

of time. That is to say, the number of unique IPs and ASes returned by a valid

domain over a day will be nearly the same set of IPs and ASes returned a few days

later. This is because valid domains have fairly stable servers. While hardware or

software failures may result in a server temporarily going offline, causing a new IP to

be introduced to the DNS, they will not remain offline indefinitely. Ultimately, the

problem will be fixed, the server brought back online, and its IP reintroduced into

the DNS. On the contrary, Stealth RBnets are only able to appear like valid domains;

they are still composed of compromised computers. The compromised computers

may be more persistent than those in Aggressive RBnets, but they will still be more

unreliable than the servers used in valid domains, such as CDNs. Additionally, some
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Stealth RBnets may utilize a legitimate redirection infrastructure that has been com-

promised, allowing them to mimic valid domains more easily. However, the servers

in the compromised redirection infrastructure will still be less persistent than a valid

CDN for the following reasons. First, the system administrators of the legitimate

redirection infrastructure might thwart the botmasters’ abuse of their system, ren-

dering some of the botmasters’ IPs useless. Second, in an effort to remain undetected

by the system administrators, the botmaster will have to continuously change which

servers are being exploited for the Stealth RBnet. In either case, the Stealth RBnet

will slowly, over time, continue to accrue more and more unique IPs that span more

and more ASes. This is in direct opposition to a valid domain or CDN, which has a

fairly stable pool of server IPs to advertise to the DNS.

From our manual analysis of Stealth RBnets, we discovered that they tend not to

return reverse DNS names. This could be because they are not composed of home

computers (which tend to return reverse DNS names more often than legitimate

servers) or are utilizing legitimate redirection infrastructures that have been compro-

mised. Additionally, they tend to show very little variance in unique IPs and ASes

between valid queries. We discovered this is because they are utilizing very short

TTL values of around one second. This allows the botmaster to use a single IP (or

a small set of IPs) for multiple valid queries. The incredibly small TTL provides the

botmaster with a fine level of control, permitting the IP to be changed as soon as the

bot goes offline. In this way, the botmaster can keep both the unique IP count and

the number of ASes low across multiple, valid queries, allowing the Stealth RBnet

to go undetected by our SVM-1 as well as traditional FFSN detectors. To counter

this strategy, our SVM-2 monitors the number of unique IPs and ASes seen in a day.

It then continues to monitor the suspicious domain for up to a week, analyzing how

many unique IPs and ASes it has accrued after this time span.

For the SVM-2’s training set, we removed the 18 Aggressive RBnet domains from
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the SVM-1’s training set and replaced them with 10 Stealth RBnet domains, which we

identified manually. We then used 10-fold cross-validation on the 134-domain training

set (124 valid domains and 10 Stealth RBnet domains) to determine the behavioral

attributes best suited for differentiating Stealth RBnets from valid domains, given

an extended observational period. As expected, the previously mentioned attributes

based on changes between valid queries became insignificant due to the very short

TTL values imposed by botmasters. Additionally, the reverse DNS names with “bad

words” became insignificant because none of the Stealth RBnets returned reverse

DNS names. Thus, we found that SVM-2 only needed to monitor the number of

unique IPs and ASes seen over time, for up to 1 week. We tested these metrics

using 10-fold cross-validation on the training set and achieved 96.7% accuracy. We

further evaluated the accuracy of SVM-2 by running it on the remaining domains in

the redirection domain database not used in the training set; the evaluation of these

results will be discussed in Section 2.8.2. The resulting linear equation is used for

SVM-2, with the result indicating a domain’s suspicion level:

f(x) = wT x − b

= 52.497 ∗ NDAY unique IPs − 63.109 ∗ NWEEK unique IPs

−10.924 ∗ (NDAY ASes + NWEEK ASes) + 227.985

where NDAY unique IPs is the number of unique IPs seen after a day, NWEEK unique IPs

is the number of unique IPs seen after a week, NDAY ASes is the number of ASes seen

after a day, and NWEEK ASes is the number of ASes seen after a week. Fig. 2.5 shows

a graph of these four attributes for a subset of SVM-2’s training set. While some good

domains slightly increase their total unique IP count from a day to a week, the increase

is not nearly as drastic as with Stealth RBnets. Furthermore, all of the good domains

have a constant number of ASes over the week, whereas most of the Stealth RBnets

display a slight increase. Also, from Fig. 2.5, it is apparent that during the first day,

the Stealth RBnets and the good domains share similar behavioral attributes. It is
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Figure 2.5: Domain attributes for subset of good and bad domains in SVM-2 training
set

only after monitoring for an extended period of time that the Stealth RBnets show

their true colors, demonstrating the need for SVM-2’s extended monitoring window.

2.7 Discussion

Thus far, we have described the architecture of RB-Seeker and its effectiveness in

detecting current RBnets. However, security solutions are in a constant arms race

between defenders and attackers, and RB-Seeker is no exception. In this section, we

discuss several ways adversaries may attempt to evade RB-Seeker, providing potential

countermeasures against them.

An attacker or botmaster who has learned RB-Seeker’s detection schemes may try

to evade or confuse them by altering the RBnet’s behavior according to the features

used by the NAS, the SSS and the a-DADS. For instance, adversaries may try to

confuse the NAS by invalidating the basic assumption that the NAS has made for

redirection activities. Specifically, RBs may attempt to mimic normal, non-redirection

servers by waiting for an extended period of time (e.g,. 30 seconds) before redirect-

ing clients, creating a longer inter-flow duration. They may also try sending useless
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content in their packets in addition to redirection commands, increasing the flow

size. This may force the NAS to delay the detection decisions in order to accumulate

enough observational samples. In the worst case, the NAS may misclassify the redi-

rection activities as normal. Like most behavior-based detection systems, the NAS is

vulnerable to mimicry attacks, where adversaries successfully disguise their behavior

as normal activities. However, because the characteristics of redirection are gener-

ally two orders-of-magnitude smaller than those of normal browsing (Table 2.1), in

order to mimic the normal behavior, the attacker has to use most of the bot’s already

limited resources. For example, bots must keep connections alive and send useless

data, which will limit the number of victims that can be served by each individual

bot. Otherwise, their consistent deviation from normal activities will still present a

high probability of being caught by the NAS after observing enough samples. Sec-

ond, to prevent the SSS from automatically extracting HTTP links from the email

body, attackers may embed obfuscated/encoded URL links in spam emails instead of

using plaintext or HTML format. They could also take advantage of sophisticated

redirection techniques (e.g., obfuscated JavaScript) to circumvent the redirection de-

tection engine in the SSS. Although our prototype implementation only handles the

most common and simple URL formats and redirection techniques, the SSS can be

easily strengthened to counter such evasion tactics by incorporating existing methods

for analyzing text embedded in images [31] and detecting sophisticated redirection

links with client-side honeypots [1]. Finally, to circumvent the a-DADS detection, a

botmaster may attempt to mirror the DNS behavior of popular CDNs by reducing

the number and diversity of IPs associated with the domain. However, as discussed

earlier, this not only limits the availability and throughput achievable by the RBnets,

but these Stealth RBnets can still be detected with the a-DADS’s improved CDN

filtering technique and 2-tier detection strategy. Therefore, while there are several

ways a botmaster could attempt to evade detection, some of them are too expensive
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to provide enough incentive to botmasters. Furthermore, as is demonstrated in the

next section, RB-seeker is still quite effective in identifying many RBnets.

2.8 Implementation and Evaluation

In this section we describe the implementation of the overall system and evaluate

the overhead of its subcomponents. We then evaluate the performance of the a-

DADS classification function, comparing it with the current state-of-the-art. Lastly,

we describe some of the DNS behavior for the RBnets detected with RB-Seeker.

2.8.1 Implementation and overhead evaluation

We implemented a proof-of-concept RB-Seeker for Linux kernel 2.6.18 on an HP

ServerBlade with 2 Dual-Core AMD Opteron(tm) Processors (2.2 GHz, 2024 KB

cache), 4 GB of RAM, and 260 GB of disk space. The subcomponents were im-

plemented in Perl and Python. They were continuously run to extract redirection

domains from spam emails and NetFlow traces and perform DNS queries on the

suspect domains.

On average, the SSS analyzes approximately 10,000 spam emails daily (80% from

spam relay and 20% from the spam archive and personal junk mail boxes) and extracts

9,000 unique URL links. Among them, the SSS applies the techniques described in

Section 2.4 and determines more than 700 redirection domains daily, adding them

to the redirection domain database. Meanwhile, the NAS receives 95,000,000 flows

from the core router daily, 6,974,015 of which are HTTP flows4 and are analyzed by

the SHT algorithm (described in Section 2.5) to identify redirection activities. On

average, the NAS identifies between 500 and 600 domains daily. We also test the

processing speed of the NAS; the results show that the NAS is capable of parsing one

day’s HTTP flow data within 10 minutes, demonstrating its efficiency and suitability

4We consider a flow an HTTP flow if its destination port is 80 or 8080. Since no packet payload
information is available, we are not able to detect HTTP flows using non-standard ports.
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for online analysis. Another important factor influencing the NAS’s speed in detecting

a redirection server is the number of flows (i.e., observational samples) needed for

the SHT algorithm to make a decision (i.e., accept or reject a hypothesis). Since

the required number of observed samples in sequential testing is a random variable,

depending on both current and historical observations [70], the expected number of

observations (flows) for the NAS to determine if the destination IP is performing

redirection can be approximated by:

E[N |H1] =
β ln β

1−α
+ (1 − β) ln1−β

α

E[ln f1(x)
f0(x) ]

=
β ln β

1−α
+ (1 − β) ln1−β

α

lnσ0
σ1

+
σ2
1+(µ1−µ0)2

2σ2
0

− 1
2

where µi and σi (i = 0, 1) are parameters for a log-normal distribution on the

condition of normal browsing (H0) and redirection (H1). The values of µi and σi can

be found in Table 2.2. As a result, the expected number of observations depends only

on the target false-positive rate (α) or false-negative rate (β). Intuitively, if we want

to reduce α and β, the expected number of required flows will increase because the

NAS has to accumulate more observed samples to reach the desired confidence level

before making a decision. Figs. 2.6 and 2.7 depict E[N |H1] with different values of α

and β based on inter-flow duration and flow size, i.e., the expected number of flows

the NAS has to observe in order to accept the hypothesis that the destination server

performs redirection. One can see from the figures that the NAS is able to detect

redirection servers by using only a small number of observed samples (normally 5 or

6) with low false-positive and false-negative rates.

In addition, because the a-DADS can perform queries on multiple redirection

domains simultaneously, we split its functionality into two parts to keep its overhead

and memory footprint small. The first part simply reads the most recent domains

in the redirection domain database (built by the SSS and the NAS) and performs

queries on the domains, logging the results to the DNS-query database. The second

part then runs the RBnet classifier on these DNS logs once two valid queries have
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Figure 2.6: Expected number of flows required to determine redirection servers based
on inter-flow duration

been obtained. If, based on these two queries, the classifier cannot identify the domain

as belonging to a RBnet, it continues to gather DNS queries on the domains until

it has accumulated enough for SVM-2 to re-attempt classification. This approach

reduces the amount of memory required by the a-DADS and maintains DNS-query

logs (in the DNS-query database) for the suspicious domains should manual analysis

be required later.

When calculating the suspicion level for a domain, the classifier must read all the

domain’s data from the DNS-query database, extract the relevant behavioral charac-

teristics from the data, and then use those characteristics in the SVM equation (either

SVM-1 or SVM-2). To determine the overhead of the unoptimized, proof-of-concept

RBnet classifier, we did run-time performance tests for 150 domains,5 consisting of

5All the domains in the test already had enough DNS-query data in the DNS-query database
for the classifier to arrive at a decision. Therefore, these performance measurements don’t reflect
the time needed to gather the necessary DNS data, only the time taken to process it and calculate
suspicion levels.
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Figure 2.7: Expected number of flows required to determine redirection servers based
on flow size

50 randomly-chosen domains from each of the following sets: Aggressive RBnet do-

mains, Stealth RBnet domains, and valid (i.e., benign) domains. We measured the

total time it took for the RBnet classifier to classify each domain; this includes such

unoptimized operations as reading the data, parsing the data, extracting the char-

acteristics, etc. Therefore, we also measured the amount of time it took for SVM-1

and SVM-2 to calculate the suspicion levels used for classification after the relevant

characteristics have been extracted from the DNS-query data. The implementation

of SVM-1 and SVM-2 leaves little room for optimization, unlike the rest of the RB-

net classifier. We found that the RBnet classifier had an average run-time of 0.644

second per domain. Meanwhile, SVM-1 and SVM-2 had average run-times of 8 and

12 microseconds, respectively, making them suitable for a real-time detection system.

Even when unoptimized, the proof-of-concept RBnet classifier takes (on average) less

than a second per domain, which is sufficient for fast detection.
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2.8.2 Evaluation of RBnet classifier

The a-DADS’s RBnet classifier (described in Section 2.6.4) continuously moni-

tored the 91,600+ suspicious domains in the redirection domain database detected

by the SSS and the NAS over a period of approximately two months. Utilizing the

CDN Filter, the a-DADS was able to determine 4,164 CDN domains (4,506 IPs)

based on the reverse DNS name. Using the recursive iteration technique described

in Section 2.6.3, this number was increased to 5,005 CDN domains (5,185 IPs), for

a 16.8% increase in CDN domains (13.1% increase in IPs). The remaining domains

were further filtered for known valid domains, using a technique similar to the CDN

Filter. After filtering these domains, the a-DADS continued to monitor the remaining

35,500+ domains, applying SVM-1 and SVM-2.

With just two valid queries, SVM-1 was able to detect 125 Aggressive RBnet

domains comprising 3,541 bot IPs. These Aggressive RBnet domains were then re-

moved from the redirection domain database. The a-DADS continued to monitor

the remaining domains in the redirection domain database, pruning the list as new

CDN Filter data became available. After a week of monitoring, SVM-2 was able to

identify an additional 156 Stealth RBnet domains, which comprised 249 IPs. Thus,

RB-Seeker managed to isolate a total of 3,790 bot IPs utilized by 281 unique domains

for nefarious purposes. Further analysis revealed that 64 of the 125 Aggressive RB-

net domains (51.2%) were used as proxies while the remaining 61 (48.8%) were used

in a redirection infrastructure. All of the observed Stealth RBnets were involved in

redirection infrastructures. SVM-1 experienced one false-positive (FP-rate < 0.008%

for SVM-1), which has been removed from the previously-reported results. The false

positive arose from SVM-1 misclassifying a valid mozilla.org domain used in a CDN

for distributing releases. This single false positive results in the a-DADS’s RBnet clas-

sifier (SVM-1 and SVM-2) having the low FP-rate of < 0.004%. This false positive

can be avoided with the addition of mozilla.org to the CDN Filter.
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Figure 2.8: Unique IPs (as represented by unique IP index) seen for each detected
Aggressive RBnet domain

For comparison, we also implemented the FFSN detector described in [39] and

ran it on all the domains detected by the NAS and the SSS. The FFSN detector

looks at the number of IPs and ASes over two valid queries. It succeeded in correctly

identifying 124 of the 125 Aggressive RBnet domains that RB-Seeker detected. It also

incurred a false positive, incorrectly classifying the mozilla.org domain. Because the

FFSN detector only looks at two valid queries, it is unable to distinguish the slower,

more stealthy Stealth RBnets from valid domains (such as CDNs). The a-DADS’s

SVM-1 suffers from this same limitation. However, by utilizing the 2-tier system

and monitoring suspicious domains over a longer period of time, SVM-2 is capable of

detecting these Stealth RBnets.

2.8.3 Analysis of detected RBnets

Using the 125 Aggressive RBnet domains RB-Seeker detected, we generated the

plot in Fig. 2.8, which shows the unique 3,541 IPs (represented by a unique index)
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seen for each Aggressive RBnet domain. The graph is divided into two parts along the

x-axis; the left half represents domains using redirection while the right half contains

domains using only proxies. Likewise, Fig. 2.9 shows a plot of the 156 Stealth RBnet

domains and their corresponding 249 unique IPs (also represented by a unique index).

The Aggressive RBnets and Stealth RBnets are shown in separate plots because they

share no common IPs.

From the figures, it is apparent that while Stealth RBnets have more unique

domains than Aggressive RBnets, they utilize vastly fewer IPs. Because Stealth

RBnets attempt to mimic the DNS behavior of valid domains (such as CDNs), they

must use computers with more stable IPs than Aggressive RBnets. If a Stealth

RBnet attempted to use less persistent computers and still keep its DNS behavior

“below the radar,” the availability of the nefarious content serviced by the RBnet

would suffer. It is the unreliable connectivity of the constituent bots in an Aggressive

RBnet that necessitates the abundant advertising of IPs. Stealth RBnets, on the other

hand, consist of more reliable redirection servers—whether they are compromised

machines or legitimate redirection infrastructures that are being exploited. However,

this doesn’t mean that Stealth RBnets are exactly like valid CDNs. Recall from

Fig. 2.5, that over time, Stealth RBnets must continue to supply fresh IPs, either to

avoid detection or as a result of being detected. Thus, to differentiate Stealth RBnets

from valid CDNs, it is necessary to perform long-term DNS monitoring.

One thing Stealth and Aggressive RBnets do seem to have in common is their use

of multiple domains resolving to a similar set of IPs. This can indicate (1) that a

single botnet is servicing multiple scams, (2) that a single scam is utilizing multiple

domains to evade detection, or (3) that those computers serving as bots are highly

susceptible to attacks and have been incorporated into multiple botnets and their

scams. It is likely that each of these scenarios plays a role in the observed behavior.

However, from Fig. 2.9, it seems that the Stealth RBnets have IPs that are more
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Figure 2.9: Unique IPs (as represented by unique IP index) seen for each detected
Stealth RBnet domain

compartmentalized to various domains’ indices. This seems to favor the scenario

that those domains sharing a set of IPs are aliases for the same scam, while those

domains with different sets of IPs are partaking in different scams. For example,

there are many domains that seem to share the same IPs with IP indices around

125. These domains are all derivations of [XXX].bay.livefilestore.com, where [XXX]

is some random character string. Norton Safe Web identifies livefilestore.com as a

high risk for Trojans, viruses, worms, spybots, identity theft, and phishing attacks

[67], affirming that this Stealth RBnet is involved in numerous malicious activities

and employing multiple domain aliases. Looking at Fig. 2.8, we can see that roughly

half the Aggressive RBnet domains are using redirection (labeled redirection domains

in the graph) while the other half are using only proxies (labeled proxy domains in

the graph). Interestingly, many of the same IPs are shared among both redirection

and proxy domains. This lends credence to the scenario that the shared IPs belong

to computers which have been compromised by more than one bot, so they are being

used in multiple, separate botnet campaigns (i.e., proxy vs. redirection campaigns).
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Also, notice from Fig 2.8 that those Aggressive RBnet domains below domain index

40 share only a small set of IPs with the higher domain indices. They also seem to

have a large subset of IPs that they share only among themselves. While we would

expect a break like this to occur near the division between redirection and proxy

domains, this occurs in the middle of the redirection domains. Those redirection

domains with a domain index greater than 40 tend to share more IPs with the proxy

domains. This seems to indicate that many of these computers are servicing multiple

botnet campaigns. While this could be the result of multiple bots compromising the

same machines or a botmaster using a single botnet for multiple scams, one thing is

certain: by discovering these bots and blocking their IPs, we can potentially mitigate

numerous botnet scams.

2.9 Conclusion

In this chapter, we have designed and implemented a prototype system called

RB-Seeker for detecting RBnets, which are increasingly used by attackers to redirect

unsuspecting victim to web servers hosting nefarious content. Analyzing network

traffic and DNS behavior using several statistical correlation and classification tech-

niques, RB-Seeker achieves fast and automatic detection of RBnets, independent of

their C&C protocol or structure. First, the SSS and the NAS cooperatively de-

tect redirection domains using various data sources. The NAS identifies redirection

domains without the need for expensive and intrusive packet analysis; it leverages

temporal/spatial features derived from NetFlow traces that are unique to redirection

activities, such as inter-flow duration and flow size. Meanwhile, the SSS identifies

domains participating in redirection by inspecting spam emails and following any dis-

covered embedded links they contain. The suspicious domains identified by the SSS

and the NAS are then given to the a-DADS, which performs DNS queries on them

and identifies malicious domains based on their atypical DNS-query results. Using
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real-world network traces to evaluate RB-Seeker, we discovered it is capable of de-

tecting both Aggressive and Stealthy RBnets with low false positives. Since the bots

used in RBnets also likely take part in numerous other botnet scams, their fast and

automatic detection can protect users from phishing and scam websites while simulta-

neously encumbering other malicious activities in which they partake. Furthermore,

since its data sources are readily available in most enterprise networks, RB-Seeker is

incrementally deployable and easily incorporated into existing security systems.
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CHAPTER III

Charlatan’s Web: The Measurement and Analysis

of Global IP-Usage Patterns of Fast-Flux Botnets

3.1 Introduction

Used as a misdirection mechanism for evading detection, botnet-based hosting

services often come in tandem with a variety of other criminal scams, constituting

an essential portion of botnets’ overall operation. For example, spam/phishing cam-

paigns often utilize botnets for misdirection. They begin by using some spamming

mechanism (e.g., a hijacked mail server and/or a botnet) to send seemingly interest-

ing phishing emails. Within the phishing emails are innocuously disguised embedded

links whose domain names resolve to IP addresses of compromised computers in a

botnet. Once victims click the embedded links, they connect to the bots, which then

redirect them to—or serve as proxies for—the central host (often called the mother-

ship) of the nefarious content. This strategy grants criminals a high level of anonymity

while enabling easy and centralized management of the malicious content. However,

because botnets are composed primarily of compromised home computers with unre-

liable connectivity, it is not uncommon for them to unexpectedly go offline (e.g., the

computer is turned off or the installed malware is discovered and removed). Botnet-

based hosting services, therefore, must be protected against the failure or disruption of
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individual bots, ensuring the availability and stability of the hosted service/content.

As a result, it is beneficial for bot-based hosting infrastructures to adopt fast-flux

(FF) DNS techniques, which frequently change the domain name mappings to dif-

ferent bots’ IP addresses. When the victim tries to visit the malicious domain, the

DNS server responds with a set of up-to-date, active bot IPs. By recruiting a large

pool of IPs and supplying a large set of IPs per query, botmasters can ensure, with

high probability, that the malicious domain resolves to at least one valid IP belonging

to an online bot. An additional level of control and resilience is attained by giving

the domain’s IP mappings a short time-to-live (TTL) value. This permits botmas-

ters a quick response when a bot goes offline, replacing its IP with one from the

ample supply of online bots. Using this FF technique, botmasters effectively trans-

form their botnets into a global Content Delivery Network (CDN), providing highly

available and reliable content-hosting services in spite of node failures. This extends

the lifetime of illegal activities (and thus profits) the botnets provide, complicating

disruption efforts by introducing an additional layer of misdirection.

Previous research has studied the features of FF botnets and their malicious uses

in phishing scams [53] (e.g., Storm Worm and Rock Phish). However, little has been

reported on botnets’ IP-usage behavior from a global perspective. Because botnets are

formed with myriad compromised hosts dispersed around the world, accurate charac-

terization of how botmasters manage this vast number of IPs can only be achieved by

collecting and analyzing data from a global viewpoint. In this chapter, we attempt to

fill this important gap and explore the global usage patterns of botnets’ IP addresses.

Our work is unique and different from the previous work in the following ways. First,

we build a global query engine called DIGGER that monitors complete DNS behav-

ior from 240 geographically-dispersed vantage points for an extended period of time.

This provides us with a unique, global view of how different types of domains differ

in their IP-usage patterns. Second, we propose effective methods to characterize and
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quantify the temporal and spatial IP-usage patterns of FF botnet domains, facilitat-

ing the classification and detection of different domain types. This also allows us to

reveal several previously-unknown features of FF botnets and uncover new, discreet

IP-management strategies currently employed by criminals to evade detection. Third,

to help us better analyze the current state of FF botnets and their relative prevalence,

we design and implement a multi-level classifier capable of separating different types

of malicious and benign domains based on their IP-usage behavior. Applying the

classifier on more than three months’ worth of data allows us to spot potential trends

of FF botnets and demonstrate the wide spectrum of their implementations.

The remainder of this chapter is organized as follows. Section 3.2 reviews re-

lated work. Section 3.3 describes our system architecture, defines the terminology

we use and explores the global DNS IP-usage patterns for different domain types.

Section 3.4 presents our proof-of-concept classifier and its experimental results, and

finally, Section 3.5 concludes the chapter.

3.2 Related Work

Among the numerous criminal uses of botnets, their use as hosting or redirec-

tion/proxy servers for illegal content and phishing scams provides an ideal platform

for financial gain. However, because of the unreliable nature of the bots, more and

more botmasters have adopted FF DNS techniques to ensure the availability and sta-

bility of their malicious service/content. Fast-flux techniques are characterized by the

frequent change of domain name mappings to the IP addresses of different bots. Holz

et al. [39] studied the characteristics of FF networks and first developed detection

algorithms; they extract URL links from spam emails and then identify FF networks

based on the number of unique IP addresses returned in DNS queries and the number

of unique ASNs to which the IPs belong. Nazario and Holz [53] applied a similar

approach to track the use of FF domains and characterize several features of FF bot-
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nets, such as member size, lifetime, and top-level domain distribution. Their work

demonstrated that continuous data mining of FF DNS records can yield insights into

the operations of FF botnets. Despite the increasing awareness of FF botnets to the

security community [63], there has been little effort in understanding botnets’ global

IP-usage patterns for different types of FF domains—in particular, double FF (FFx2)

domains. We attempt to fill this important gap by continually monitoring the DNS

properties of FF domains from a large number of geographically-dispersed vantage

points, allowing us to study their behavior patterns from a global perspective. In

addition, since the purpose of using FF botnets is to reliably distribute nefarious con-

tent to users despite host failures, their behavior resembles that of traditional CDNs

[15] like Akamai and CDNetworks. As a result, we conduct an in-depth, compara-

tive analysis of IP management for both FF botnets and popular CDNs. With this

knowledge, we are able to identify features that can accurately distinguish between

the different types of FF domains and discern them from other domain types—both

benign and malicious.

3.3 Measuring and Analyzing Global IP-Usage Patterns of

Domains

In this section, we explore the DNS IP-usage patterns of different malicious and

benign domains. First, we describe the deployment of a globally-distributed monitor-

ing system and give an overview of the different domain types we have observed in

the gathered data. Then, we discuss various interesting features we’ve identified that

are useful in understanding the inherent operations of the different domains types.
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Table 3.1: Global distribution of DIGGER nodes by continent

3.3.1 System Architecture

We created a distributed DNS-query engine called DIGGER, deployed on 240

geographically disparate nodes in the PlanetLab test bed [59]. The nodes were chosen

based on the location of the DNS servers they queried, such that DIGGER would issue

queries to DNS servers (i.e., digs) in different geographic locations around the world.

Table. 3.1 shows the distribution of DIGGER nodes, which is reflective of the overall

distribution of available PlanetLab nodes.

Table 3.2: Domains’ DNS-record data gathered by DIGGER

On each node, DIGGER performed DNS queries on a set of domains to gather

the information shown in Table 3.2. Based on a domain’s most recently returned

DNS results, DIGGER continued to dig active domains periodically based on their

observed TTL, ensuring fresh DNS-query results. Domains determined to be offline

were intermittently dug every 24 hours, so that DIGGER could discover if they came

back online. The set of suspicious domains monitored by DIGGER was compiled

from multiple sources, including online repositories of phishing [14] and malware [13]

62



websites; additional suspicious domains were extracted from URL links embedded in

spam emails, which were collected from a spam relay trap and recent additions to

online spam repositories [37]. As a result, the domains probed by DIGGER tend

to be malicious in nature, which is desirable for our purpose of studying malicious

FF domains. DIGGER was deployed and gathered global DNS-usage patterns for

over 3.5 months in early 2009 on 5,171 active domains. Analysis of this data has

revealed several distinct types of IP-usage patterns employed by malicious and benign

domains. Next, we will describe these domain types whose differentiating features will

be explored throughout this paper.

3.3.2 Domain Types

Before delving into the details of different domain features, we present the reader

the following high-level overview of the domain-type nomenclature. To provide an

intuitive view of these domain types, we have plotted the global IP usage—as seen

from the DNS queries—for some representative domains in Figs. 3.1 and 3.2. In

this figure, the Time axis represents the time since DIGGER started monitoring the

domain; Node Index represents the DIGGER node that the IP was observed on, with

positive values indicating an A-rec IP and negative values an NA-rec IP; IP Index is

a unique index incrementally assigned to each newly-observed IP.

FF domains (Fig. 3.1 (a)-(c)) are malicious domains utilizing a fast-flux (FF)

DNS-advertisement strategy, typically built atop botnets. Because bots may unex-

pectedly go offline, FF domains advertise numerous IPs in their DNS-query results,

helping ensure some of the IPs belong to a functional bot. The TTL of the IPs used by

FF domains tend to be relatively short; this permits botmasters a finer level of control

in replacing IPs advertised to DNS servers, increasing the availability of an online bot

and access to the malicious payload. It is this excessive number of constantly-changing

IP addresses that qualifies a domain as “fluxy”, and the domain is considered a FF
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domain. Domains exhibiting FF behavior in only a single record type (i.e., A rec or

NA rec) are considered FFx1 domains (single fast flux). More specifically, FFx1

domains that are fluxy in their A recs (i.e., content servers) are termed FFx1 Arec

domains (Fig. 3.1 (a)), while those that are fluxy in their NA recs (i.e., name servers)

are termed FFx1 NArec domains (Fig. 3.1 (b)); FFx1 NArec domains are able to

evade current detection strategies that focus on A recs by migrating their fluxy be-

havior to their NA recs, where it is less likely to be noticed. When FF domains are

fluxy in both their A and NA recs, they are considered double fast flux, or FFx2

domains (Fig. 3.1 (c)).

Figure 3.1: Global IP-usage patterns (in DNS-query results) for some examples of the
FF domain types

Figure 3.2: Global IP-usage patterns (in DNS-query results) for some examples of the
non-FF domain types

CDN domains (Fig. 3.2 (d)) are valid, benign domains that uses a Content

Delivery Network, such as Akamai, to improve the delivery of their content. CDNs—

consisting of a system of computers networked together for the purposes of improving

the performance and scalability of content distribution—produce DNS-query results
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resembling those of malicious FF domains: numerous, changing IPs per query with

short TTL values. This affinity is a consequence of their similar goal to provide

reliable content delivery despite node failure as well as their shared assumption that

any node can temporarily or permanently fail at any time. However, CDN domains

demonstrate geographic awareness (i.e., IPs geographically close to a DNS server

will be advertised with higher probability at that server) and load balancing (i.e.,

techniques improving performance and scalability not observed in FF domains).

Non-CDN domains (Fig. 3.2 (e)) are valid, benign domains that don’t use a

CDN for delivery of their content. Typically, non-CDN domains use a few stable

content servers and name servers (NSes) during the entire monitored period.

MAL domains (Fig. 3.2 (f)) are domains that aren’t fluxy enough to be con-

sidered FF domains, nor benign enough to be considered non-CDN domains. Their

DNS behavior demonstrates potentially suspicious behavior often attributed with ma-

licious domains. They tend to recruit more IPs than a non-CDN, but not nearly as

many as a FF domain. For example, during a monitoring period of a few months, a

FF domain typically advertises thousands of different IPs. A MAL domain, on the

other hand, will advertise perhaps a total of 20–30 IPs—roughly one or two new IPs

every few days. MAL domains will tend to slowly add more IPs because they will

slowly lose some as their malicious activities are detected and their IPs are blocked.1

The IPs used by MAL domains may consist of bots or valid servers being used for

malicious means.

Having introduced the nomenclature we adopted to describe different domain

types, we now present several interesting features of their IP-usage patterns we dis-

covered through the analysis of the globally collected data. For our subsequent anal-

ysis, we manually identified 15 domains of each type (i.e., 90 domains total), allowing

1Notice, websites hosted on home computers with dynamic IP addresses could be considered
MAL domains by our definition. However, we consider this acceptable since most valid websites are
not hosted on home computers, causing those that are to be inherently suspicious.
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us to better compare and identify distinguishing features between them.

3.3.3 Number of Unique IP Addresses per Node

The first feature we examine is the number of unique IPs seen across the DIGGER

nodes over time. Fig. 3.3 and 3.4 show the CDFs of the number of unique A-rec and

NA-rec IPs observed by our 240 DIGGER nodes during the ≈3.5 month monitoring

period for some representative domains. MAL domains have been omitted in the

plots due to their similarity to non-CDN domains. Our empirical data reveals that

non-CDN and FFx1 NArec domains (whose A recs behave like a non-CDN) use a

small set of stable content servers. For example, in Fig. 3.3, neither the non-CDN

nor the FFx1 NArec domains contain more than 18 unique A-rec IPs per node. CDN

domains are sometimes found to demonstrate a larger number of unique A-rec IPs

on some nodes, though the number of nodes is considerably fewer than observed

for FFX1 Arec and FFx2 domains. For example, for the CDN in Fig. 3.3, ≈2% of

the DIGGER nodes observed more than 100 unique A-rec IPs. On the other hand,

FFx1 Arec and FFx2 domains clearly possess a much greater number of unique A-

rec IPs on a larger percentage of nodes—a direct consequence of the bots’ unreliable

connectivity. For the FFx1 Arec domain in Fig. 3.3, more than 35% of nodes detected

over 200 unique IPs, and a few observed over 700. The numbers observed for the FFx2

domain are even higher, with over ≈63% of the nodes observing over 200 unique IPs,

≈43% more than 500, and several more than 2,500.

While the number of unique A-rec IPs per node appears a promising distinguishing

feature, our data implies that this is not the case for the average number of unique

NA-rec IPs. From Fig. 3.4 it is apparent that CDN and FFx2 domains possess many

more unique NA-rec IPs per node than the other domain types. On average, FFx2

and CDN domains advertise 999 and 727 unique IPs on a single node, respectively.

It seems that, over time, CDNs can advertise numerous name server (NS) IPs. This
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behavior might arise from the CDN trying to ensure the availability of its NSes,

affording it better control when performing load balancing.

To better understand how the number of unique IPs per node can differentiate

between the different domain types, let us quantify the feature as follows:

F1 Let Pi = number of unique IPs on node i, and let N = number of nodes (of the

240 total) where the number of unique IPs ≥ 1. Then, the average number of unique

IPs per node (F1) is computed as:

F1 =

∑N
i=1 Pi

N
(3.1)

Using Eq. (3.1), we calculate F1 over a typical week for the 90 manually identified

domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.5. Most malicious FF

domains aren’t online during the entire ≈3.5-month monitoring period, eventually

becoming detected and blocked; therefore, calculating F1 over a single week when the

domains are active grants us a more standardized representation for comparison. Fig-

ure 3.5 affirms that FFx1 Arec and FFx2 domains have a considerably higher average

number of unique A-rec IPs per node than the other domain types. Additionally, we

find that within these FF domain types, the actual average number of A-rec IPs per

node is highly variable, indicating that there is a wide spectrum in the amount of

observable fluxiness demonstrated within a single week. Furthermore, we find that

CDN domains actually demonstrate a considerably higher value for F1 in their NA

rec than the other domain types, including FFx2 domains. Interestingly, while the

FFx1 NArec domains do not use as many NA-rec IPs per node on average as their

FFx2 counterparts, they are much more consistent in their advertising strategies, and

they tend, on average, to use more IPs per node than their non-CDN counterparts

(i.e., FFx1 Arec, MAL, and non-CDN). When looking at the A+NA-rec IPs together

as a single IP pool, we find that the CDN, FFx1 Arec, and FFx2 domains distinguish
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themselves from the other domain types. Consequently, while F1 seems only par-

tially successful in its ability to identify FF domains from the other domain types, it

could prove a powerful tool in distinguishing CDN/FF domains from non-CDN/MAL

domains, allowing us to rely on other features to separate CDN and FF domains.
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Figure 3.3: CDF of number of unique A-rec IPs per DIGGER node (all weeks)
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Figure 3.4: CDF of number of unique NA-rec IPs per DIGGER node (all weeks)
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Figure 3.5: Average Number of Unique IPs per DIGGER Node (1 week)
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3.3.4 Number of Nodes per IP Address

Since the number of unique IPs per node proved a promising feature for differ-

entiation, we decided to look at the relationship from the inverse perspective: for

individual IP addresses, how many different nodes (i.e., DNS servers) were the IP

addresses observed on. We restate this as the number of nodes per IP address, and it

attempts to capture some spatial aspect of the various domains’ DNS advertisement

strategies.

First, we will examine the CDF for the number of nodes per A-rec and NA-rec

IP for some representative domain types, shown in Fig. 3.6. From the figure, we can

clearly see that FFx2 and FFx1 Arec domains exhibit remarkably similar trends in

their A recs, separate from those of the other domain types. Since the non-CDN

domain advertises its small set of stable A-rec IPs with every DNS server around the

globe, we observe nearly all the IPs on every node and, therefore, a large number

of nodes per IP. The FFx1 NArec domain behaves similarly. However, since some of

its A-rec IPs might belong to bots (or otherwise unstable content servers), some of

its IPs may not appear on all nodes. As a consequence of its location-aware DNS-

advertisement strategy (i.e., advertising IPs geographically close to the queried DNS

server), many of the CDN domain’s IPs will only be advertised to a small set of nearby

DNS servers, generally keeping its average number of nodes per IP small and setting

it apart from the other domain types. Likewise, the FFx2 and FFx1 Arec domains

fall somewhere in between due to their necessity-based DNS-advertisement strategy

(i.e., limited to advertising whichever bots happen to be currently online and avail-

able to serve content). It may be the case that bots with unstable connectivity only

get advertised to a handful of DNS servers before they go offline. If a bot only inter-

mittently loses connectivity, its IP may eventually propagate to more DNS servers,

increasing its nodes-per-IP count. However, if the bot permanently disconnects from

the botnet, its nodes-per-IP count will remain stunted, decreasing the overall average
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nodes-per-IP.

Contrary to the A-rec IPs, the different domain types all demonstrate similar be-

havior in relation to their NA-rec IPs. We find that the non-CDN and FFx1 Arec

domains exhibit very similar behavior since, like non-CDN domains, FFx1 Arec do-

mains utilize traditional name servers for their NA-rec IPs. Furthermore, we have

found that FF domains tend to use some of their more stable and consistently online

bots for their NA-rec IPs. In this way, if the domain’s content servers are all offline,

there is a higher probability that bots serving as the name servers can be reached,

allowing them to provide fresh, online bot IPs for the domains A rec. While they use

some more stable bots for their NA-rec IPs, FF domains still augment this with their

normal, less-stable bots. Thus, we find a small portion of stable bot IPs appearing

on many nodes, while the less stable bots go offline before appearing on too many

nodes. Consequently, FFx2 and FFx1 NArec domains demonstrate similar behavior

in their NA recs as CDNs, though for different reasons. CDN domains tend to use

location-aware advertising strategies, and so their behavior results from only adver-

tising certain name servers (i.e., NA-rec IPs) to nearby DNS servers. In any case,

the different domain types NA-rec behavior appears too similar to make this a useful

differentiating metric.

To better understand if the number of nodes per IP can be useful in differentiating

between the various domain types, let us quantify the feature as follows:

F2 Let Ni = number of different nodes a unique IP, i, was seen on, and let PT =

total number of unique IPs seen over all nodes. Then, the average number of nodes

per IP (F2) is computed as:

F2 =

∑PT

i=1 Ni

PT

(3.2)

Using Eq. (3.2), we calculate F2 over a typical week for the 90 manually identified
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domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.7. The figure confirms

that the NA-rec IP behavior is too similar among the different domain types to be

useful in classification. It has also revealed that FFx2 and FFx1 Arec domains do

not always exhibit unique behavior from the other domain types, and sometimes

appear similar to non-CDN/MAL domains. From the A-rec box plot in Fig. 3.7, we

find that the FFx2 and FFx1 Arec domains demonstrate different behavior from the

CDN domains. They also tend to exhibit different behavior than the other domain

types for their A-rec IPs, as was demonstrated in Fig. 3.6; however, the strength in

differentiation is not as strong as with the CDN domains due to their unique location-

aware advertisement strategy, and there is some overlap in their F2 values. These

somewhat nebulous results imply that the number of nodes per IP address may not

serve as a useful feature in differentiation.
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Figure 3.6: CDF of number of nodes per IP (all weeks)
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Figure 3.7: Average number nodes per IP (1 week)
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3.3.5 Overlap between IPs of A and NA Records

While analyzing our data, it quickly became apparent that FF domains tend to

exhibit some IP overlap. We observed IPs advertised for a domain’s A rec reappearing

in the same domain’s NA rec. Furthermore, when DIGGER performed DNS digs on

the domain’s NSes, the same IP would often be returned for different NSes. We

discovered that the malicious domains were not only reusing their available IP pool

for both A and NA recs, but were also returning IPs from the same IP pool regardless

of which NS was queried, resulting in different NSes with identical IPs—a trend not

witnessed for benign domains.

Table 3.3 shows the total number of A-rec, NA-rec, and overlap IPs for some

representative domains from each domain type. This overlap phenomenon was much

more prevalent in FFx2 domains than either type of FFx1; we never observed it in

valid, benign domains. The FFx1 domains almost entirely use valid IPs for one record

type and the IPs of compromised computers for the other. While the representative

MAL domains have a small number of total unique IPs (like non-CDN domains),

their IP overlap is exceptionally high, with almost all of their A-rec IPs also used for

their NA recs, setting them apart from valid domains. The IP overlap we empirically

observed evinces that valid domains use separate machines for their content and name

servers to prevent a single point of failure. FF and MAL domains, on the other hand,

attempt to make the most of their limited resources, reusing IPs for both the A and

NA records.

So that we can draw more accurate comparisons between the different domain

types, let us formally quantify the feature of IP overlap as follows:

F3 represents the percentage of unique IPs that overlap between the A and NA recs.

Thus, if all the IPs from one record type are also used for the other record type, there

will be a 100% IP overlap. For a given domain across all nodes, let PA be the set of
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Domain Type Domain A rec NA rec Overlap
FFx1 Arec drugsn.com 932 33 0

www.couldchoose.com 486 37 5
FFx1 NArec icausmyox.com 16 370 1
FFx2 old-and-girl.com 5,227 3,047 879

mountainready.com 4,060 2,219 2,144
MAL duelready.com 16 32 15

tsqfsny.jukutuxef.cn 23 42 20
CDN www.msnbc.msn.com 1,160 5,412 0
non-CDN hostingprod.com 18 32 0

Table 3.3: Total A-rec, NA-rec, & overlap IPs for the different domain types

unique A-rec IPs and PNA be the set of unique NA-rec IPs. Then, F3 is calculated

as:

F3 =
|PA

⋂

PNA|

min{|PA|, |PNA|}
(3.3)

Using Eq. (3.3), we calculate F3 over a representative week for the 90 manually

identified domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.8. As can be seen

from the figure, CDN and non-CDN domains demonstrate no observable IP overlap.

While MAL domains seem to exhibit the highest rate of IP overlap at nearly 100%, it

should be noted that there are some MAL domains which demonstrate no IP overlap;

those possessing no IP overlap will be difficult to discern from non-CDN domains if not

monitored for a significant duration of time. The FF domains tend to demonstrate

anywhere from no IP overlap to almost 100% overlap. The FFx1 NArec domains

seem to demonstrate this behavior the least, with about half of them containing no

IP overlap and the rest all containing less than 20% overlap. While about half of

the FFx1 Arec domains also possess no IP overlap, the other half has considerably

more overlapping IPs than the FFx1 NArec domains, evenly spread from 0 to nearly

100% overlap. This indicates that some FFx1 Arec domains are augmenting their

name servers with bots from their A rec, yet not so much as to make their NA recs

appear fluxy. From the figure, it is clear that the FFx2 domains consistently exhibit
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the most IP overlap among the FF domain types; only a few outliers contain no

IP overlap, while the majority demonstrate between 15% and nearly 60% overlap.

Since FFx2 domains make extensive use of bots in both their A and NA recs, this

high and consistent overlap observed is justified. Furthermore, while some possess

exceptionally high rates of overlap approaching 100%, most do not, indicating that

FFx2 domains are reserving some of their bots for a particular record type. This trend

results from a combination of advertising their more stable bots exclusively in NA recs

and their unstable bots exclusively in A recs. Name servers are not actually visited

as frequently as content servers and, consequently, possess a lower risk of detection

and blocking. By keeping their most stable bots (i.e., those most consistently online)

in the NA rec, botmasters decrease their risk of detection and mitigation, further

ensuring they are more reachable than their other, less reliable bots. In addition,

should all the advertised A-rec bots go offline or become blocked, it is imperative

to the botmaster that a NA-rec bot be reachable to provide fresh bot IPs for the

A rec. Therefore, it behooves botmasters to protect a select set of stable bots for

use exclusively as name servers. Clearly, IP overlap should prove a useful feature

for helping identify malicious FF and MAL domains from the other benign domain

types.
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Figure 3.8: IP Overlap between A-rec and NA-rec IPs (1 week)

3.3.6 Continental Distribution of IPs

Next, we examine how the various domain types differ in their IP distribution

(i.e., where the IPs returned in DNS queries are geographically located). We examine

the IP location based on continent rather than country because the close proximity of

European countries made a country-based resolution too fine-grained. In particular,

we examined two features: 1) percentage of IPs from the wrong continent, i.e., what

percentage of IPs returned in DNS queries are located in a different continent than

the queried DNS server; 2) continental IP distribution, i.e., from the perspective of

each continent containing queried DNS servers, what percentage of IPs returned are

located in each continent.

Figure 3.9 shows the percentage of A-rec and NA-rec IPs from the wrong conti-

nent for some representative domains. From the figure, it is evident that the CDN

domain has a considerably smaller proportion of IPs from the wrong continent than

the other domain types. The few CDN IPs from the wrong continent are due to

load balancing. For example, to distribute load when traffic volume is high in Asia,

CDNs may advertise some European IPs to Asian DNS servers, resulting in a small
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Figure 3.9: Percentage of IPs from wrong continent

percentage of IPs from the wrong continent.

Insight into continental IP distribution can be found in Fig. 3.10 for some repre-

sentative domains. For brevity, we have not plotted any FFx1 domains, since their

results are a subset of the FFx2 domain type; likewise, we have omitted plots for a

MAL domain since their distribution is functionally similar to non-CDN domains. In

Fig. 3.10, the bars represent the continental IP distribution from different perspec-

tives. In each domain’s plot, the first bar represents the continental IP distribution

from a global perspective, while the other bars are from the perspective of the different

continents where we deployed DIGGER nodes. For example, the bar labeled “Asia”

under old-and-girl.com indicates the percentage of IPs located in each continent base

on queries to Asian DNS servers.

From Fig. 3.10, we notice that the continental IP distribution for CDN domains

varies greatly across the different continents, clearly revealing the location-aware DNS

advertisement employed by CDNs. The DNS-query results for CDN domains often

contain a majority of IPs located near the query issuer, providing fast, reliable ser-
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Figure 3.10: Percentage of total A-rec and NA-rec IPs seen from each continent by
DIGGER nodes globally and in each continent

80



vices and quicker content delivery to end users by reducing the data’s travel distance.

Consequently, CDNs demonstrate a smaller percentage of IPs from the wrong con-

tinent and a larger variance in continental IP distribution than other domain types.

On the other hand, we find that MAL and non-CDN domains operate in a similar

manner. They indiscriminately advertise their small pool of stable server IPs around

the world nearly simultaneously. This causes the continental IP distribution at each

continent to be identical, and the percentage of IPs from the wrong continent reflects

the global distribution of our DIGGER nodes.2 Finally, our analysis suggests that

FF domains adopt an advertisement strategy dictated by the unstable nature of their

constituent bots, which we term necessity-based DNS advertisement. Since bots can

go offline at any moment, FF domains must rely on whichever bots are currently avail-

able and advertise their IPs to DNS servers around the globe as necessity dictates,

regardless of geographic location. This results in a large percentage of IPs from the

wrong continent and a fairly consistent continental IP distribution across continents.

Let us quantify these distribution features so that we may better compare them

between domain types as follows:

F4 Using an online database [29], we were able to determine the country of origin

for most IPs observed by DIGGER. For those IPs not present in the database, we

were able to perform a “who is” lookup and determine most of their countries of

origin. The few remaining IPs whose locations couldn’t be determined were labeled

as “unknown”. Thus, for nearly all IPs monitored by DIGGER, we could determine

which continent the IP was located on: N. America, S. America, Europe, Asia, Africa,

Oceania, Antarctica, and—very rarely—unknown. Let Wi = number of unique IPs

on node i that are located in a different (i.e., wrong) continent than node i. Let

2Figure 3.10 shows that for the non-CDN domain hostingprod.com, almost all of the A-rec IPs are
from N. America. Because about 45% of our DIGGER nodes are located in N. America (Table 3.1),
we find that 53.77% of hostingprod.com’s IPs are from the wrong continent (Fig. 3.9), approximately
the same percentage as DIGGER nodes not in N. America.
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Pi = the total number of unique IPs on node i. Then, the percentage of IPs from the

wrong continent (F4) is computed as:

F4 =

∑N
i=1 Wi

∑N
i=1 Pi

. (3.4)

F5 We want to determine the average continental IP distribution across all nodes

from a given continent. To obtain this, we grouped the nodes together based on

the continent they are located in. Then, we examined each group of nodes, tallying

the number of unique IPs (per node) seen from each continent. If, for example, an

IP appears on more than one node from a given continent, it will be counted once

for each node it appears on. Calculating a continent’s continental IP distribution in

this way is more robust to misbehaving or abnormal nodes and better reflects the

continental IP distribution of the majority of nodes from a given continent.

Since CDN domains differ from the other domain types due to their location-aware

DNS advertisement strategy, their continental IP distribution will be biased in favor

of the queried node’s continent. Contrarily, the other domain types will demonstrate

nearly identical continental IP distributions regardless of the queried node’s location

(see Fig. 3.10). Therefore, we want to quantify how similar this distribution appears

between continents, enabling us to discern CDNs from the other domain types.

Let the continents N. America, S. America, Europe, Asia, Africa, Oceania, Antarc-

tic and “unknown” be represented by the numbers 1–8, respectively. Then, ni =

number of nodes on continent i, for 1 ≤ i ≤ 4 (continents with DIGGER nodes).

For node j, let âj be a vector representing the number of unique IPs seen from each

continent. Thus, â
j
i is the number of unique IPs from continent i that were seen on

node j. Then, for each continent i with DIGGER nodes, where 1 ≤ i ≤ 4, we calcu-

late Âi as shown in Eq. (3.5). We calculate the cosine similarity (shown in Eq. (3.6))

between every possible pair of vectors Âi, for 1 ≤ i ≤ 4, and then take the average,
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producing the IP continental distribution’s average cosine similarity (F5). The closer

this value is to 1, the more similar the continental IP distributions appear on each

continent and the less likely the domain is a CDN domain.

Âi =

ni
∑

j=1

âj (3.5)
Similarity(X̂, Ŷ ) = cosθ =

X̂ • Ŷ

‖ X̂ ‖‖ Ŷ ‖
(3.6)

Using Eq. (3.4), we calculate F4 over a typical week for the 90 manually identified

domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.11. Likewise, we produce a

similar plot for F5 using Eqs. (3.5) and (3.6), shown in Fig. 3.13. First, from Fig. 3.11,

we find that for both the A-rec and NA-rec IPs, the percentage of IPs from the wrong

continent serves as a powerful differentiating feature between CDN domains and the

other domain types. CDN domains seldom to advertise more than 20% of their IPs

from from the wrong continent, while the other domain types never advertise less than

35% from the wrong continent, and most advertise more than 40%. For comparison

purposes, we used a variation of Eq. (3.4) to calculate and plot the percentage of

IPs from the wrong country in the same manner, shown in Fig. 3.12. The figure

affirms our previous claim that the close proximity of countries—especially in the

European Union—results in a too fine-grained resolution to be particularly useful

in differentiation. While there is still some separation between CDN domains and

the other domain types in the A rec, it is lost in the NA rec. Even the separation

present in the A rec is not as distinct as when using continents to generate F4. Next,

examining Fig. 3.13, we discover that feature F5 exhibits an even stronger separation

between CDN domains and the other domain types than feature F4. Despite CDN

domains’ complex use of load-balancing and location-aware advertisement strategies,

they seem to invariably produce a different continental distribution fingerprint for each

monitored continent, resulting in a considerably lower average cosine similarity than

the other domain types. Interestingly, in terms of their A-rec IPs, the other domain
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types seem to advertise the same set of IPs nearly everywhere, which accounts for their

average cosine similarity being nearly 1. These findings indicate that the percentage

of IPs from the wrong continent and the variance of the continental IP distribution

are useful features for distinguishing CDN domains from the other domain types.
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Figure 3.11: Percentage of IPs from wrong CONTINENT (1 week)
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Figure 3.12: Percentage of IPs from wrong COUNTRY (1 week)
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Figure 3.13: Continental IP Distribution Average Cosine Similarity (1 week)
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3.3.7 IP Recruiting

In this subsection, we study the distinct strategies employed by FF, CDN, and

non-CDN domains when advertising IPs to DNS servers. For a given domain, we

assigned a unique IP index to each newly-seen IP in the DNS-query results across

all DIGGER nodes. This IP index is plotted against time for example FFx2, CDN,

non-CDN, and MAL domains in Figs. 3.14–3.17.3 The points in the graphs represent

when a new IP was returned in a DNS query on a global scale. Therefore, the slope

of each curve demonstrates the rate, or speed, with which a domain seems to globally

“recruit” more IPs. Notice, when we discuss recruitment, we mean the apparent

recruitment of IPs based on the DNS-query results, not the actual recruitment of

bots via compromising computers.

Figure 3.14: Global IP usage for example FFx2 domain

Recruitment Speed refers to the speed (or rate) at which one observes new,

unique IPs for a given domain when monitoring that domain’s DNS queries over

time. Fig. 3.14 shows how a FFx2 domain slowly and nearly continuously accrues

unique IPs over its entire online lifetime, with short, intermittent periods of stability.

These results indicated that FF domains must constantly advertise new IPs to help

ensure reliable delivery of their nefarious content. In addition, the bots used by FF

3Plots for FFx1 Arec and FFx1 NArec domains are excluded since they are essentially specific
subsets of FFx2 domains.
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Figure 3.15: Global IP usage for example CDN domain

Figure 3.16: Global IP usage for example non-CDN domain

domains may obtain dynamic IP addresses from their Internet Service Provider (ISP).

Consequently, a bot may be assigned different IPs over time, causing our DIGGER

nodes to observe the apparent recruitment of new IPs; this effect, called DHCP churn,

is not present for valid domains using stable servers with static IPs.

Meanwhile, when viewed globally, we have discovered that CDN domains (Fig. 3.15)

achieve a much faster recruitment speed, indicating that they advertise IPs from a

large pool of stable IP addresses, which they rotate quickly and efficiently for per-

formance purposes, such as load balancing. Since CDNs advertise their IPs in a

geographically-conscious manner (e.g., a DNS query in Asia will often result in a

different set of IPs than a query in Europe), DIGGER’s global perspective observes
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Figure 3.17: Global IP usage for example MAL domain

most of the CDN’s IPs in a short period of time. In contrast, FF domains, using

necessity-based DNS advertisement, advertise the same pool of IPs irrespective of

the DNS servers’ geographic locations. Thus, while FF domains may change their

advertised IPs as rapidly as CDNs, DIGGER’s global perspective doesn’t permit it

to observe many more IPs than at any given local vantage point, resulting in the

comparatively slower IP-recruitment rate.

Non-CDN domains (Fig. 3.16), on the other hand, hardly recruit any additional

IPs over time. Rather, their IP pools consist of a small number of stable servers that

are almost simultaneously advertised to DNS servers around the world.

MAL domain (Fig. 3.17) often demonstrate a slow and somewhat steady recruit-

ment of IPs. This behavior is likely the result of the MAL domains’ malicious activ-

ities being detected and their IPs blocked, requiring them to register fresh IPs with

DNS to maintain content availability. Unlike FF domains, which recruit thousands of

IPs, MAL domains recruit only tens of IPs over ≈3.5 months. This drastic difference

should prove beneficial in distinguishing MAL domains from CDN and FF domains.

To determine if a domain’s recruitment speed can serve as a useful differentiating

feature, let us quantify it as follows:
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F6 First, we calculate the domain’s recruitment time, denoted as Tr. We consider

a recruitment point to be a point in time where we have observed a new IP address

(i.e., one that hasn’t occurred earlier in time). If the difference in time between two

consecutive recruitment points is less than the threshold, we add the it to Tr. Let

N = the total number of unique IPs observed globally for a domain. Then, the

IP-recruitment speed (F6) is calculated as:

F6 =
N

Tr

(3.7)

In those instances where all of a domain’s IPs are observed instantaneously, re-

sulting in a Tr = 0, we set F6 to 0, indicating that the domain has no recruitment

time and thus no recruitment speed.

Using Eq. (3.7), we calculate F6 over a representative week for the 90 manually

identified domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.18. From the

figure, we find that, when viewed over only a single week, feature F6 is not as useful a

differentiating feature as originally indicated. It seems a better representation of do-

mains’ recruitment behavior is required to capture the various recruitment strategies

employed by the different domain types. In an effort to find such a representation,

we next explore the IP-recruitment period.

Recruitment Period represents the amount of time during which new IPs are

witnessed for a given domain when monitoring that domain’s DNS queries over time.

Our data indicates that non-CDN domains (Fig. 3.16) have almost no recruitment

period; a small pool of very stable IPs are advertised initially and used throughout

the lifetime of the domain. On the other hand, the fast recruitment speed of CDN

domains causes DIGGER to quickly observe most of their available IPs, resulting in

a short recruitment period at the onset of monitoring followed by a longer, stable

period consisting mainly of previously seen IPs. From Fig. 3.15, we notice that the
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CDN’s recruitment period is smaller than its total online period. After its initial

recruitment period, the CDN domain stabilizes and advertises a much smaller set of

IPs before a quick advertisement spike followed by another stable period; the stable

period looks like a gap in the graph, but closer examination reveals a small set of

IPs with low IP indices (i.e., the earliest observed IPs). We have also discovered, as

shown in Fig. 3.14, that the fluxy records for FF domains recruit new IPs for nearly

the entire duration of the domains’ online period, with only short, intermittent periods

of stability. This constant IP recruitment is a result of the unreliable nature of the

compromised computers serving as bots.

In order to better evaluate a domain’s recruitment period as a distinguishing

feature, let us quantify it as follows:

F7 First, we calculate a domain’s online time, denoted as To, as the amount of time

we consider the domain to be online. Analyzing all available DNS-query data from

all nodes, we consider an online point to be a point in time where we have observed

IP addresses. If the difference in time between two consecutive online points is less

than a threshold of several hours, we add it to the To. Then, using Tr as in Eq. (3.7),

the recruitment period (F7) is calculated as:

F7 =
Tr

To

. (3.8)

Using Eq. (3.8), we calculate F7 over a representative week for the 90 manually

identified domains’ A-, NA-, and A+NA-record IPs, shown in Fig. 3.19. From the

figure, we find that F7 achieves much better success as a distinguishing feature than

F6. For the A-rec IPs, we find that FFx1 Arec and FFx2 domains recruit new IPs

for a greater percentage of their total online time than the other domain types. In

particular, almost all of the FFx1 Arec domains tend to recruit A-rec IPs for over

90% of their total online time. While there is a greater variation in the FFx2 A-rec
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IPs, we can still see that 50% of them recruit IPs nearly constantly (i.e., for almost

100% of their online time). Of the remaining 50%, most of them recruit A-rec IPs

for over 80% of their online time. On the contrary, non-CDN and MAL domains

almost never recruit new A-rec IPs when analyzed for a single week. FFx1 NArec

domains, which behave mostly like non-CDN domains in the A rec, have a much

lower recruitment period in their A-rec IPs than the FFx1 Arec and FFx2 domains.

However, they seem to have a higher recruitment period than the non-CDN and MAL

domains. This is likely due to their limited use of IP overlap, using a few select A-

rec bots as NA-rec IPs. Finally, CDN domains have a smaller recruitment period

in their A rec than the FFx1 Arec and FFx2 domains, but a significantly larger one

than the other domain types. The IP-recruitment period of CDNs in the NA rec is

even more pronounced, typically achieving results greater than 80%—similar to the

FFx1 NArec and FFx2 domains. As expected, we find that FFx1 NArec domains

demonstrate a high recruitment period (typically greater than 90%) in their NA rec,

while FFx1 Arec domains have below 10% in most cases. As with the A-rec IPs,

FFx2 domains demonstrate more variance in their NA rec IP-recruitment period;

50% of them easily recruit IPs for more than 95% of their online time, while the

other 50% demonstrate recruitment periods of 20% or more. Conversely, in the NA

rec, FFx1 Arec domains, non-CDN domains, and MAL domains often recruit NA-rec

IPs for less than 20% of their total online time. When calculating the recruitment

period on the A+NA rec (i.e., the combined A-rec and NA-rec IP pool), we find

that CDN and FF domains, with recruitment periods typically greater than 75%, are

easily distinguishable from the non-CDN and MAL domains, whose periods generally

fall below 40%. Unlike recruitment speed (F6), this should prove a powerful metric

for identifying non-CDN and MAL domains from the other domain types.
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Figure 3.18: IP-Recruitment Speed (1 week)
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Figure 3.19: IP-Recruitment Period (1 week)
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3.3.8 Total Number of Unique IPs Globally

The total number of unique IPs seen across all DIGGER nodes (i.e., feature F8)

proves remarkably apt as a metric for distinguishing non-CDN and MAL domains

from CDN and FF domains. This is because, compared to CDN and FF domains, non-

CDN and MAL domains advertise only a few stable content and name servers with

DNS. Since non-CDN and MAL domains’ A-rec and NA-rec IPs are seen ubiquitously

around the globe, their total number of unique IPs observed by the DIGGER nodes

over time will be meager. Table 3.3, which shows the number of IPs in the A and

NA recs for examples of the different domain types, demonstrates this effect. The

CDN and FFx2 domains display abundant IPs in their A and NA recs. While the

FFx1 Arec domains possess a modest number of NA-rec IPs, they have a substantial

number of A-rec IPs—a clear distinction from non-CDN domains. The opposite holds

true for the FFx1 NArec domain; the small number of IPs cause its A rec to resemble

a non-CDN domain, while the much larger number of NA-rec IPs betrays this guise.

We plot F8 over a typical week in Fig. 3.20 for the 90 manually identified domains’

A-, NA-, and A+NA-record IPs. From the figure, we can clearly see that the FF and

CDN domains utilize more unique IPs globally than the non-CDN and MAL domains.

While the FF domains tend to use more IPs on average in their A recs, this honor

belongs to the CDN domains for the NA recs. It appears that the combined A+NA

recs can be used to distinguish CDN and FF domains from the other domain types,

indicating that this could serve as a useful feature in identification.

96



Figure 3.20: Total number of unique IPs globally (1 week)
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3.3.9 Reverse DNS lookup and TTL

The last two features we will discuss seem to be obvious candidates for use in

classification: the reverse DNS lookup result (i.e., the reverse DNS name) and the

TTL values of the A and NA recs. Clearly, if the reverse DNS lookup on a domain

contains suspicious words typical to home computers (e.g., comcast, dynamic, dial-up,

etc.), it is a strong indicator that the IP belongs to compromised computer, or bot.

Because an IP’s reverse DNS name is set by the IP’s ISP and not the owner of the

domain, it cannot be faked by a botmaster. This makes it a fairly useful metric for

identifying bots. Unfortunately, the reverse DNS lookup is highly unreliable. Often, a

reverse DNS lookup will not return a result, thus providing no insight into the actual

identity of the suspect IP. Additionally, we don’t have a complete list of suspicious

words, and occasionally, the presence of such words may not be indicative of a bot;

often, it is only after thoroughly analyzing the DNS data in conjunction with the

reverse DNS words that we can determine them to be bad, strengthening a malicious

classification. Therefore, we have decided not to incorporate the reverse DNS name

for automatic domain classification. Instead, when present, we use it to help reinforce

or confirm our manual identification of the different domain types. By omitting it

from our automatic identification, we hope to gain a better insight into the potential

of the more reliable classification features.

The A and NA recs’ TTL values also appear highly useful for differentiating

between the domain types. CDNs and FF domains tend to use small TTL values,

affording them a high level of control over the domain’s IPs. CDN domains use this

extra control for load balancing and reliable content delivery. FF domains are really

only concerned with reliable content delivery in the presence of unreliable content

servers (i.e., bots). Non-CDNs, unperturbed by these concerns, use much longer

TTL values for their stable content and name servers. However, unlike many of the

other features we have previously explored, the TTL value is not an uncontrollable
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consequence of a botnet. While it is difficult for a botmaster to mimic features such as

a CDN’s location-aware DNS-advertisement strategy or a valid domain’s recruitment

speed/period without sacrificing content availability, this is not the case with the

TTL value. An IP’s TTL value is set by the owner of the domain. A botmaster

can easily increase the average TTL value for its A or NA records without sacrificing

the availability of the malicious content. By setting a short TTL value for some

IPs and very large TTL values for others, the average TTL of FF domains can be

made to resemble the average TTL of non-CDN domains without sacrificing the fine

level of control over some of the IPs. Those IPs with large TTLs (used to inflate

the average value) could belong to more reliable bots; they could just as easily be

bogus IPs that don’t resolve to anything. So long as some of the IPs (presumably

those with the shorter TTLs) resolve to online bots, the malicious content can still be

reached. While we could try more complicated methods of measuring the TTL values

to account for this inflation technique, it would be just as easy for botmasters to

come up with another clever way to circumvent our metric. Botmasters simply have

too much control over the TTL value for it to be a reliable feature for classification.

Therefore, we have decided not to use it as such. It should be noted that other

features, like the recruitment speed and period, cannot be as easily manipulated by

the botmaster since the unstable bot IPs necessitate constant recruitment.

3.4 Analysis of the Different Domain Types

In this section, we will first describe the multi-level, multi-week, linear SVM classi-

fier we use to identify the different domain types present in DIGGER’s ≈3.5 months

of global DNS data. The SVM classifier allows us to quickly identify the various

domain types out of the 5,171 monitored domains. Next, we will compare the dif-

ferent domain types in terms of the previously discussed features and in their overall

breakdown of the monitored domains.
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Figure 3.21: Flow chart for multi-level, linear SVM classifier

3.4.1 SVM Classifier

The purpose of our classifier is not to serve as a detector. The purpose of our

classifier is for the classification of a large number of domains, allowing us to bet-

ter analyze and understand their various DNS-advertisement strategies and uncover

trends in FF domains’ DNS behavior. While DIGGER’s global vantage point of 240

nodes spanning 4 continents can provide us with an unprecedented view of DNS-

advertising strategies, requiring such a massive distributed system for detection is

impractical. Likewise, our monitoring period of ≈3.5 months is far too long to prove

useful for detection; by the time the FF domains are detected, they would have had

months to perpetrate their scams. However, by analyzing these domains from so

many different vantage points for such an extended period of time, we can develop
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Table 3.4: Linear SVM Equations for multi-level classifier

an off-line classification system capable of quickly analyzing the massive amount of

data and accurately identifying the different domain types.

3.4.1.1 Challenges

In designing our classifier, there were a couple of challenges we had to overcome.

First, despite DIGGER gathering global DNS data for ≈3.5 months, not all domains

we monitor are actually active for that entire duration. In particular, FF and MAL

domains, which are eventually detected by other means, are blocked and unexpect-

edly go offline (i.e., their DNS results no longer contain valid IP data). As a result,

comparing features extracted over the entire monitoring period could give an incon-

sistent and incorrect representation. For example, benign domains, such as CDNs

and non-CDNs, will have many more data points than many malicious MAL and

FF domains. For accurate comparisons, the different domain types’ features must be

extracted over a normalized time period when the domains are active and online. Sec-

ond, despite discovering differentiating features, there can be situations when benign

CDNs or non-CDNs temporarily appear like FF domains and vice versa. This can

be an artifact of CDN domains utilizing load-balancing over location-aware strate-

gies in their DNS advertisement, causing features F4 and F5, which encapsulate this

location-aware behavior, to appear similar to the other domain types. Additionally,

FF domains that have been detected and gone offline can have their domains blocked
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by their ISPs or DNS. Visiting these domains results in a web page informing unsus-

pecting users that the malicious site has been shutdown for their protection. Such

warning pages are typically hosted on traditional servers, causing their DNS behav-

ior to resemble non-CDN domains. Clearly, these two challenges are not entirely

independent; when making a classification decision, the greater the duration of DNS

activity examined, the more likely it will include and be influenced by some of these

irregular DNS-advertisement strategies.

In designing our classifier to overcome these challenges, we make use of the fol-

lowing insights. First, DIGGER’s global vantage point and extensive monitoring

period has provided us with a plethora of DNS-advertisement data. As such, even

when FF domains go offline, DIGGER will have already accrued some DNS data

from when the domain was active, albeit, not the full ≈3.5-months worth of data.

Consequently, by using a smaller, consistent examination period, we can ensure that

the extracted behavioral features used for comparison occur while the domains are

still active and online. Second, with such a comprehensive dataset, even domains

periodically demonstrating irregular DNS-advertisement behavior will only do so for

a portion of the entire monitoring period. By extracting and examining features from

those periods when the domains’ are not expressing deviant behavior, we can better

compare and contrast their various DNS advertisement strategies.

Based on these insights, we have designed our classifier to utilize a 1-week exami-

nation window when extracting the behavioral features discussed in Sections 3.3.3—

3.3.8. We chose a 1-week window for two reasons. First, it allows us to extract

multiple weeks for examination from the entire monitoring period, increasing the

probability that any unorthodox behavior will be confined to a particular week and

not influence the features extracted from other weeks. Second, a week-long duration

is sufficient for the FF domains—especially the less fluxy domains—to differentiate

themselves from the benign domains. Unfortunately, since MAL domains are es-
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sentially non-CDN domains that recruit new IPs once or twice a week when they

are ultimately detected and blocked, the week-long examination window will prove

inadequate for distinguishing them from non-CDN domains. However, since MAL

domains’ recruiting behavior is a direct consequence of being detected and blocked

by other systems, and since the focus of this paper is to better understand the behav-

ioral features distinguishing FF domains from other domain types, this is acceptable.

While we can use feature F3 (IP Overlap) to determine which non-CDN domains

are definitely MAL, some non-CDN domains identified by our classifier could ac-

tually be MAL domains not utilizing IP overlap. Consequently, for the remainder

of this section, non-CDN domains should be considered the combined domain type

non-CDN/MAL.

3.4.1.2 SVM Design and Implementation

As previously mentioned, our classifier examines all available DIGGER data for

domains by extracting features over week-long periods when the domains’ are active.

Consequently, this results in most domains containing multiple weeks of feature data

for which we can attempt to arrive at a classification decision. Choosing representa-

tive weeks for 15 manually identified domains of each type, we built a training dataset

of 90 domains. The 10- and 5-fold cross validation scores were used in conjunction

with the trained SVM equations’ weights to arrive at an optimal ordering for domain

classification and determine which features to use at each stage of the classifier. This

was accomplished by testing all possible feature combinations and orderings for clas-

sifying domains. The resulting multi-level SVM classifier’s decision tree is shown in

Fig. 3.21, and Table 3.4 shows the weights for the individual linear SVM equations

used at each decision node.

When classifying a domain for subsequent analysis, we first apply the classifier to

each individual week of DIGGER data for which the domain was active and online.
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Next, based on each domain’s weekly classification results, we arrive at an overall clas-

sification for the domain. As mentioned previously, domains can sometimes exhibit

DNS behavior uncharacteristic of their normal advertisement strategies. For exam-

ple, CDNs can favor load-balancing over location-aware strategies or FF domains

can become blocked and appear more like non-CDN/MAL domains. In addition,

the further classification of FF domains into their various advertisement strategies

(i.e., FFx2 vs. FFx1 Arec vs. FFx1 NArec) is determined by which record type (A

or NA) exhibits fluxy behavior; this can be complicated by the fact that sometimes

FF domains temporarily alter this strategy or reduce fluxiness for a particular record

type. When viewed in discrete, weekly segments, this can result in typically FFx2

domains intermittently exhibiting FFx1 behavior and being classified as such. To

account for these irregular weekly classification results and arrive at a more accurate

and representative classification for the domains, we make use of several insights.

First, the location-aware DNS-advertisement strategy espoused by CDN domains

is inherently difficult—if not impossible—for FF domains to successfully duplicate.

Relying only on unreliable, compromised computers, FF botnets are at the whim of

their constituent bots’ online availability. Even if a large botnet comprises enough

bots sufficiently dispersed around the world to theoretically duplicate such a strategy,

the bots’ intermittent connectivity makes actually achieving this feat exceptionally

difficult. Not all compromised computers possess 24-hr online connectivity, and for

those that do, diurnal usage patterns can limit their reachability as they are shut-

down or put to sleep/hibernation when not in use (e.g., when people are sleeping

for the evening). Consequently, while CDN domains that temporarily favor load-

balancing over location-aware advertisement strategies may mistakenly be classified

as FF domains, the converse is highly improbable and has never been witnessed in

our experience. Thus, any domain which demonstrates sufficient location-aware be-

havior (i.e., features F4 and F5) to be classified as a CDN domain during one of the
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examined weeks is considered a CDN domain; any other weekly classification results

are trumped in favor of this uniquely distinguishing and nearly impossible to replicate

DNS-advertisement strategy. Second, since FF domains, once blocked, can appear

as non-CDN/MAL domains, a weekly classification of FF is favored over competing

non-CDN/MAL classifications. This allows us to identify the domain for what it truly

is: a previously active FF domain that has since been detected and blocked. Third,

for competing FF classifications, we perform a majority vote to determine which type

of FF advertising strategy is predominantly used. In the case of a tie, we examine

the magnitudes of the classifier’s many SVM output branches, choosing the most

confident FF classification decision. Lastly, recall that MAL domains are essentially

non-CDN domains that recruit new IPs when their nefarious actions have been de-

tected and their IPs blocked. As a result, they demonstrate malicious IP-recruitment

behavior infrequently, recruiting only a handful of IPs over the entire monitoring pe-

riod. Since our classifier extracts features based on a week of DNS data at a time, the

malicious IP-recruitment behavior of MAL domains is seldom demonstrated. Thus,

non-CDN and MAL domains often appear identical when viewed over a week, with

the only differentiating feature being the presence of IP overlap (F3). Therefore, our

classifier makes use of this simple observation to identify domains with IP overlap as

definitely MAL. However, since not all MAL domains demonstrate IP overlap, our

classifier is able to partition the non-CDN and MAL domain types into two sets: 1)

those that demonstrate IP overlap and, therefore, are certainly MAL domains and

2) those that do not demonstrate IP overlap and could be either non-CDN or MAL

domains. Since our focus is on the understanding of FF DNS-advertising strategies

and MAL domains are essentially non-CDN domains used for nefarious purposes,

this lack of precision in distinguishing benign non-CDN domains from their malicious

counterparts (i.e., MAL domains) is acceptable.

By training our classifier and aggregating its weekly results in this manner, our
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multi-level, multi-week classifier is more robust to irregular behavior and blocked

domains. Having arrived at a confident classification decision, we once again make

use of the SVM branches’ output magnitudes to determine the best representative

week for each domain. Next, we present a comparison of these representative weeks

for the the different domain types in terms of their behavioral features. We also

examine the distribution of the various domain types relative to our set of monitored

domains, exposing trends in DNS-advertising strategies.

3.4.2 Results

We applied our classifier successfully to the entire dataset and identified the various

domain types. First, we will examine the relative distribution of the domain types

within our dataset. Next, choosing the most representative week for each domain, we

will compare the features previously discussed to determine how well they differentiate

in the context of this large population of domains.

3.4.2.1 Domain Type Distribution

The relative distribution of the various domain types is shown in Table 3.5. Be-

cause the domains monitored by DIGGER come primarily from spam emails and

online repositories of malicious domains, it is not surprising that the primary domain

type in our dataset is non-CDN/MAL domains, with the majority of them being

decidingly MAL due to IP overlap. The use of traditional content and name servers

for delivering malicious web pages is still the most popular and dominate strategy,

accounting for over 95% of the domains monitored by DIGGER. This is presumably

due to their ease of use; bad guys can easily find less-than-reputable hosting services

in a variety of countries, permitting simple deployment of a malicious website. When

hosting services are pressured to shut down the malicious domain, it’s arbitrary for

the malicious content to be moved to another hosting service to continue its nefarious
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scams. Likewise, the small amount of legitimate, benign CDN domains is a conse-

quence of DIGGER’s domain sources of being ill repute. Certainly, some of the spam

emails could contain legitimate web pages hosted on CDNs, however, we discovered

that this occurs infrequently.

The additional level of misdirection and the nearly limitless supply of bot IPs make

FF domains appealing for nefarious purposes, despite their more diligent maintenance

requirements. Thus far, it has been primarily FFx1 Arec domains observed in the

wild, and their popularity is supported with our findings: ≈40% of the FF domains

are FFx1 Arec. FFx1 Arec domains are likely the most popular since they provide

botmasters the greatest return on their investment, affording them an additional layer

of misdirection without the hassle of maintaining volatile botnet NSes. Botmaster

must still monitor the domain and replace the botnet IPs to avoid an interruption of

service, but this task is greatly simplified with the use of stable NSes. Unfortunately

for botmasters, security professionals have become aware of the FFx1 Arec botnet

technique, devising clever detection strategies. While the botnet provides a steady

source of fresh A-rec IPs, the NSes can still be blocked, crippling the botmaster’s

control until new NSes can be acquired.

One means of overcoming this limitation is to adopt a FFx2 advertising strategy,

using bots in the domain’s NA rec as well. This technique seems to be gaining support

among botmasters, with FFx2 domains composing ≈27% of the FF domains observed.

FFx2 domains improve upon FFx1 Arec domains by providing an additional layer of

misdirection, further protecting the botmaster. Clearly, FFx2 domains require a

more diligent management effort than FFx1 Arec domains; in addition to the A rec,

the botmaster must constantly replace IPs in the NA rec as well. However, this

extra effort also makes FFx2 domains more difficult to subvert, protecting the NSes

against simple countermeasures such as IP blocking. Interestingly, when we analyzed

the identified FFx2 domains, we discovered a spectrum in the amount of NA-rec
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fluxiness botmasters were incorporating. Obviously, there were domains that were

incredibly fluxy in both record types, as demonstrated by old-and-girl.com (Fig. 3.14).

Such FFx2 behavior is essentially what we had envisioned when applying the better-

known, fluxy A-rec behavior to the NA rec. While it’s interesting to observe these

aggressive FFx2 domains in the wild, it was the FFx2 domains at the other end of the

spectrum that proved more insightful. As an example, we present the more modest

FFx2 domain ehuytyt.cn, shown in Fig. 3.22. With over 2,500 unique A-rec IPs,

ehuytyt.cn is considerably more more fluxy in its A rec than its NA rec. Using stable

bot IPs from its A rec for roughly a quarter of its NA-rec IPs, FFx2 domains like

ehuytyt.cn benefit from the increased control and stability provided by traditional

NSes, while simultaneously enhancing the domain’s resilience to subversion—for a

minimal increase in management—through the use of botnets.

Another interesting discovery is the apparent popularity of FFx1 NArec domains,

accounting for ≈33% of the total FF domains observed. Surprisingly, this is a larger

share than the FFx2 domains. It seems that botmasters have become aware of se-

curity professionals analyzing domains’ A recs for FF behavior. Consequently, they

have migrated the fluxy behavior to the NA recs, where it is less likely be noticed.

Fig. 3.23 is a typical example of the FFx1 NArec domains identified by our classifier.

It demonstrates a MAL domain strategy for its A-rec IPs and a FF strategy for its

NA-rec IPs. This results in the domain appearing more benign when its A recs are

analyzed, while providing the botmaster with a fine level of control over the NSes.

Should the domain’s malicious activity be detected and the A-rec IPs blocked, the

botmaster, having retained control over the NSes, can easily replace the IP’s with

minimal service interruption. The implication of this discovered behavior is straight-

forward: both record types must be monitored for fluxy behavior in order to quickly

identify FF domains and their botnets. A real-time monitor analyzing only domains’

A recs will not identify FFx1 NArec domains as fluxy, and it could take days for the
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Figure 3.22: Classified FFx2 domain

A rec’s MAL domain behavior to display its slow and steady IP recruitment; even

then, the observed recruitment is a side effect of others detecting the malicious do-

main and blocking its IPs. However, a real-time detection system monitoring NA recs

for fluxy behavior could identify the domain to be FF more rapidly—quite possibly

before any MAL domain behavior becomes apparent in the A rec. Obviously, the

faster malicious domains can be identified, the sooner they can be shutdown or have

their nefarious influence mitigated.

Table 3.5: Relative distributions of the various domain types
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Figure 3.23: Classified FFx1 NArec domain

3.4.2.2 F1 - Average Number of Unique IPs per Node

In Fig. 3.24, we have plotted the CDF for feature F1 during a representative week

for the 5,171 domains monitored by DIGGER and classified by our classifier. From the

figure, we find that F1 seems to do a decent job at differentiating FFx1 Arec and FFx2

domains from the other domain types in the A rec. However, there are still a decent

portion of CDN domains which share similar behavior, complicating classification.

This behavioral affinity in F1 between FF and CDN domains is further demonstrated

in the NA rec, where CDN domains actually have a greater average number of IPs per

node than the FF domain types. In addition, while FFx1 NArec domains certainly

possess a greater F1 on average than non-CDN and MAL domains, the distinction

is not as strong as would be desired for confident classification purposes. The most

promising results come from the combined A+NA rec, where there is a strong line

of demarcation separating the FFx1 Arec, FFx2 and CDN domains from the other

domain types. From the figure, we observe that in the A+NA rec, over 90% of

FFx1 Arec, FFx2 and CDN domains have an average of more than 20 IPs per node;

on the contrary, only 20% of FFx1 NArec domains and less than 1% of non-CDN and

MAL domains have an average of more 20 IPs per node. These findings confirm that

F1 can serve as a powerful feature for differentiating FFx1 Arec, FFx2 and CDN
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domains—and to a lesser extent FFx1 NArec domains—from non-CDN and MAL

domains.
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Figure 3.24: CDF of F1 - Average number of unique IPs per node (1 week, log scale)

112



3.4.2.3 F2 - Average Number of Nodes per IP

In Fig. 3.25, we have plotted the CDF for feature F2 during a representative week

for the 5,171 domains monitored by DIGGER and classified by our classifier. As

previously anticipated, feature F2 does not appear to be a powerful feature for use

in detection. Only in the A rec, where CDN domains’ location-aware advertising

strategies dominate, does it seem to possess any merit as a differentiating feature.

In the A rec, the only domain type that seems to have any comparable F2 values

is the MAL domain type. Deeper analysis into these MAL domains with very low

F2 values has shown that they are the result of already detected and offline MAL

domains. In such a cases, most DNS servers around the world will report empty DNS

results, as the domains are no longer advertising with DNS. However, a few, either

due to misconfiguration or an effort to protect users by returning a warning page,

will return a result. In such cases, the domain’s F2 value is kept low, as only one or

two nodes around the world return any result. If such MAL domains are removed at

an earlier stage in detection, examination of F2 in the A rec could potentially prove

useful for distinguishing CDN domains from the other domain types. Unfortunately,

in the NA rec, no such distinction between domain types exists, and F2 appears to

contain no value for detection when applied to the NA rec.
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Figure 3.25: CDF of F2 - Average number of nodes per IP (1 week)
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3.4.2.4 F3 - IP Overlap Between A-rec and NA-rec IPs

In Fig. 3.26, we have plotted the CDF for feature F3 during a representative

week for the 5,171 domains monitored by DIGGER and classified by our classifier.

Obviously, all the MAL domains in the figure experience IP overlap while none of the

non-CDN domains do; this is because F3 is the only metric differentiating a MAL

from a non-CDN domain, as discussed in Section 3.4.1.2. Amazingly, almost all of

the MAL domains (≈ 99%) experience 100% IP overlap, indicating that most MAL

domains go for an all-or-nothing approach when it comes to advertising IPs in both

record types. From the figure, we find that FFx2 domains adopt a rich and varied

strategy in terms of IP overlap. While some FFx2 domains make excessive use of IP

overlap (e.g., ≈20% have more than 70% IP overlap) and others express little to none

(e.g., ≈15% have less than 10% IP overlap), it seems that the majority (i.e., 55%)

take a moderate approach of between 10–20% IP overlap. On the other hand, 90% of

FFx1 Arec domains never utilize IP overlap, and of those that do, none demonstrate

more than ≈12% overlap. Similarly, 90% of FFx1 NArec domains never make use of

IP overlap. Unlike FFx1 Arec domain, however, the FFx1 NArec domains using IP

overlap do so excessively, advertising all of their limited A-rec IPs in their NA-rec

as well. Lastly, we notice that there is some unexpected IP overlap observed for

the CDN domains. Since our classifier only identified 18 CDN domains, the 10% of

them with IP overlap corresponds to 2 myspace CDNs. When monitored from S.

America, where they have no content or name servers, these myspace domains make

heavy use of load-balancing over location-aware DNS strategies. For some reason,

possibly due to misconfiguration, it is from this vantage point that the few overlap

IPs are observed. Clearly, these anomalous instances, with less than 5% IP overlap,

are insignificant when compared to the overlap observed for FFx2 and MAL domains,

meaning that F3 could prove a useful feature in the detection of FFx2 domains.
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Figure 3.26: CDF of F3 - IP Overlap between A-rec and NA-rec IPs (1 week)

3.4.2.5 F4 - Percentage of IPs from Wrong Continent

In Fig. 3.27, we have plotted the CDF for feature F4 during a representative

week for the 5,171 domains monitored by DIGGER and classified by our classifier.

For comparison, we have also plotted the CDF for the percentage of IPs from the

wrong country in Fig. 3.28. From the figures, we can see that both variations of F4

(i.e., country vs. continent) work well for differentiating CDN domains from the other

domain types. However, we find that the finer-grained country resolution produce less

impressive results, especially in the NA rec. While there appears to be some overlap

with CDN and non-CDN/MAL domains in Fig. 3.27, further analysis has revealed this

is the result of those offline MAL domains previously discussed in Section. 3.4.2.3, with

the non-CDN domains in the plot actually being MAL domains that demonstrated no

IP overlap. In this case, the 1 or 2 DNS servers that are misconfigured or returning

warning web pages are either returning IPs from the same continent or bogon IPs,

which are ignored in our calculations of F4 and F5 since they don’t belong to a

country or continent. In any case, by first identifying non-CDN and MAL domains

and removing them from the set of unclassified domains, feature F4 can then prove
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a useful feature for separating CDNs from FF domains. When looking at F4 in the

A+NA rec, we discover that all the CDN domains have less than ≈41% of their

IPs from the wrong continent, and over 95% have less than ≈17% from the wrong

continent. In contrast, all the FF domains have at least ≈46% of their IPs from

the wrong continent, and over 90% have more than 60% from the wrong continent.

Clearly, feature F4 can prove a powerful distinguishing feature between CDN and FF

domains.
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Figure 3.27: CDF of F4 - Percentage of IPs from the wrong CONTINENT (1 week)
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Figure 3.28: CDF of F4 - Percentage of IPs from the wrong COUNTRY (1 week)
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3.4.2.6 F5 - Continental IP Distribution Average Cosine Similarity

In Fig. 3.29, we have plotted the CDF for feature F5 during a representative week

for the 5,171 domains monitored by DIGGER and classified by our classifier. In the

figure, the long-tail distribution of the non-CDN and MAL domains is the result of

them actually being MAL domains which have gone offline. As previously discussed

in Sections 3.4.2.3 and 3.4.2.5, these domains either return no results, bogon IPs, or

IPs of warning web pages. As with feature F4, this can result in a misrepresentation

of the domain. By first identifying and removing non-CDN and MAL domains from

the pool of unknown domains, feature F5 can clearly be used to differentiate between

CDN and FF domains. From the figure, we find a strong separation between CDN

and FF domains in the A rec, while some CDNs can demonstrate values for F5

similar to FF domains in their NA rec. Deeper examination into these domains has

revealed that this is an artifact of favoring a load-balancing over a location-aware

advertisement strategy. This discrepancy is reduced when examining the A+NA-rec

IPs, and the combination of features F5 and F4 should result in a highly accurate

method of identifying CDNs from FF domains.
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Figure 3.29: CDF of F5 - Continental IP Distribution Average Cosine Similarity (1
week)
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3.4.2.7 F6 - IP Recruiting Speed

In Fig. 3.30, we have plotted the CDF for feature F6 during a representative week

for the 5,171 domains monitored by DIGGER and classified by our classifier. There

is little to say about this figure, other than that it strongly reaffirms our previous

understanding that F6 does not sufficiently capture the the various IP-recruitment

strategies of the different domain types. The different domain types exhibit too similar

behavior, meaning that we must look elsewhere to accurately represent their various

IP-recruitment behaviors.
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Figure 3.30: CDF of F6 - IP Recruiting Speed (1 week, log scale)
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3.4.2.8 F7 - IP-Recruitment Period

In Fig. 3.31, we have plotted the CDF for feature F7 during a representative week

for the 5,171 domains monitored by DIGGER and classified by our classifier. Like

feature F6, feature F7 attempts to capture the different IP-recruitment strategies of

the various domain types. Unlike feature F6, feature F7 appears to have some success

in this endeavor. From the figure, we find a clear distinction between non-CDN/MAL

domains and the other domain types. For example, in the A rec, all the CDN domains

recruit IPs for at least 30% of their online time and all the FFx2 domains for at least

37% of their online time. All the FFx1 Arec domains recruit A-rec IPs for some

percentage of their online time, with 90% of them doing so for over 50% of their

online time. In contrast, less than 1% of non-CDN and MAL domains recruit A-rec

IPs for more than 30% of their online time, while ≈68% don’t recruit A-rec IPs at

all. The FFx1 NArec domains are primarily traditional, non-CDN content servers in

the A rec, possibly complimented with some bot IPs. As such, they demonstrate a

slightly greater recruiting period in their A rec than the non-CDN and MAL domains,

but far less than the CDN and other FF domains. For instance, more than 75% of

them recruit IPs for less than 30% of their online time. However, in the NA rec, the

FFx1 NArec domains have similar recruiting periods as the CDN and FFx2 domains,

while the FFx1 Arec behaves like the non-CDN and MAL domains. Thus, when

examining the A+NA rec, the fluxy recruiting behavior of the FFx1 Arec and the

FFx1 NArec domains is sufficiently represented, aligning them with the FFx2 and

CDN domains. This makes it a useful feature for identifying non-CDN and MAL

domains from the other domain types. Once non-CDN and MAL domains can be

identified, the process of distinguishing between CDN and FF domains using features

F4 and F5 (and possibly F2 in the A rec) becomes more accurate.
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Figure 3.31: CDF of F7 - IP-Recruitment Period (1 week)
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3.4.2.9 F8 - Total Unique IPs Globally

Lastly, in Fig. 3.32, we have plotted the CDF for feature F8 during a representative

week for the 5,171 domains monitored by DIGGER and classified by our classifier.

From the figure, it is apparent why the total number of IPs globally could aid in

discriminating CDN and FF domains from non-CDN and MAL domains. In the A rec,

there is a sharp separation at about 20 unique IPs globally. More than 95% of FFx2

domains and all FFx1 Arec and CDN domains have more than 20 unique IPs globally.

Meanwhile, more than 99% of FFx1 NArec, non-CDN and MAL domains have fewer

than 20 unique IPs globally. In the NA record, more than 75% of CDN domains

and all FFx1 NArec and FFx2 domains have more than 30 unique IPs globally, while

≈90% of FFx1 Arec and ≈95% of non-CDN and MAL domains have fewer than

30 unique IPs globally. Naturally, combining them into the A+NA-rec results in

an excellent separation between the non-CDN/MAL domains and the other domain

types. Between ≈90–98% of CDN and FF domains have more than 60 unique IPs

globally, while ≈99% of non-CDN/MAL domains have fewer than 60 unique IPs

globally. It seems that this feature can prove useful in separating non-CDN/MAL

domains from CDN and FF domains, provided one has a global vantage point.
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Figure 3.32: CDF of F8 - Total unique IPs globally (1 week, log scale)
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3.5 Conclusion

In this chapter, we explored and analyzed the global IP-usage patterns exhibited

by various types of malicious and benign domains, including FFx1 and FFx2 do-

mains. Deploying a lightweight DNS-probing engine (DIGGER) on 240 PlanetLab

nodes spanning 4 continents, we collected DNS data on a plethora of domains for

over 3.5 months. Our unique global vantage point permitted the identification of

several IP-usage patterns integral to the operations of the different domain types.

Through detailed analysis of their publicly available DNS-query results, we were able

to determine powerful distinguishing behavioral features between the domain types.

Quantifying these features, we demonstrated their effectiveness for differentiation by

building a multi-level, multi-week SVM classifier. The classifier proved capable of

accurately discriminating between five domain types: CDN, non-CDN/MAL, FFx2,

FFx1 Arec and FFx1 NArec. When applied to a set of 5,171 unknown domains, it

correctly categorized them all with only a single false positive: a CDN strictly using

a load-balancing DNS-advertisement strategy. Analysis of the classification results

revealed the relative distribution of the various domain types in our testing data. It

also granted insight into the current state of FF domains, uncovering the increased

presence and versatile implementation range of FFx2 domains and evincing that flux-

iness is typically more pronounced in the A recs. Lastly, we discovered an apparent

trend towards using FFx1 NArec domains, which were previously unseen in the wild.
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CHAPTER IV

Good Guys vs. Bot Guise: Mimicry Attacks

Against Fast-Flux Detection Systems

4.1 Introduction

While their tremendous success as service networks has spurred the development

of novel detection strategies, fast-flux (FF) botnets remain a persistent threat. The

advent of fast, reliable FF detection systems has not yet eradicated FF botnets;

rather, it has coaxed them to evolve, developing more robust, efficient, and stealthy

mechanisms for subverting detection. This cycle continues, with defenders and bot-

masters caught in an ever-escalating “arms race”. Unfortunately for the good guys,

bots are free, easy to come by, capable of granting significant amounts of coordinated

processing power, and incredibly effective sources of revenue.

During our global monitoring of FF botnet domains, we have observed that de-

spite the detection mechanism or mitigation strategy imposed, botnets constantly

evolve methods for subverting them, growing into ever more formidable systems—in

many ways resembling enterprise-level Content Delivery Networks (CDNs). While

efficient when first introduced, many FF detection systems quickly become outdated;

they are designed to detect the current advertising strategies of FF botnets, which

are all too easily and quickly adapted to avoid detection. Thus, it is not sufficient to
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base FF detection on the current class of differentiating features. Instead, improve-

ments could be made if botnets’ limitations were also taken into consideration. While

previous research has focused on identifying behavioral features uniquely intrinsic to

FF botnets for detection, we have decided to take an alternate approach; assuming

the role of the enemy, we explore botnets’ mimicry capabilities and limitations in

evading detection. Analyzing the resources currently available to FF botnets, we de-

velop models for their bot decay, online availability, DNS-management strategies, and

performance. Using these models, we examine the potential success of novel mimicry

attacks against state-of-art FF detection systems, demonstrating that such attacks

are easily within the capacity of current botnets. We also propose a novel spatial-

detection system and evaluate mimicry attacks against it using our models. Finally,

based on our findings, we introduce a new detection metric, percent connectivity, that

can be used to hinder mimicry attacks. While its addition to fast-detection systems

is not sufficient to catch diligent botnets using short TTLs, when applied to our pro-

posed spatial-detection system, even the largest botnets lack the current resources

necessary to evade detection over a 24-hour period. By better understanding the cur-

rent arsenal botnets have at their disposal and how it can be—and is being—applied

to defeat current detection strategies, we hope to foster improvements to existing

systems, as well as yield new insight into the mimicry limitations of FF botnets.

4.2 Related Work

Recently, a number of techniques have been proposed to effectively detect FF

domains [39, 43, 44, 56, 57]. They begin by collecting DNS queries for a large number

of suspicious domains through either active or passive monitoring, over time periods

ranging from 1 or 2 TTLs to weeks. From these traces, they extract similar sets of DNS

features that can be used to characterize FF domains, such as the number of unique
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IPs, ASes, TLDs and spatial distribution [44] of IPs.1 Classification algorithms, such

as support vector machines (SVM)[39], decision trees[56] and Bayesian network[44],

are then applied to the extracted features, determining if each domain is a FF domain.

In this chapter, we will demonstrate that, with the abundant resources currently

available to botmasters, most of these features can be effectively subverted by the

proposed mimicry attacks.

The concept of a mimicry attack was first proposed for host-based intrusion de-

tection systems (IDSes), which typically monitor application behavior in terms of

system-call sequences. Mimicry attackers attempt to slip under the radar by cloaking

malicious system calls with innocuous-looking system-call sequences. Wagner and

Soto [69] proposed a method that embeds nullified system-call sequences (i.e., “se-

mantic no-ops”) between malicious system calls. Kruegel et al. [50] devised techniques

that allow an attacker to regain control after a system call by corrupting the memory

and manipulating code pointers. This allows attackers to extend traditional mimicry

attacks to more sophisticated IDSes. More recently, Parampalli et al. [55] proposed

the persistent, control-flow interposition techniques that make mimicry attacks sim-

pler, more reliable and stealthy. Similar to these previous works, in this chapter,

we design and evaluate several mimicry strategies that attackers may employ to cir-

cumvent FF detection systems. The goal of our work is to anticipate attackers’ next

moves and better understand their capability in launching potential mimicry attacks.

We hope that, by demonstrating the effectiveness of spatial-connectivity detectors

against mimicry attacks and of percent connectivity as a supplemental feature in any

FF botnet detection system, our work will foster the development and improvement

of such techniques in future DNS-based FF detection systems.

1Similar to the number of ASes, the spatial-distribution feature captures the dispersive nature of
FF botnet IPs.
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Table 4.1: Global distribution of DIGGER nodes by continent

4.3 Background

In this section, we investigate the DNS IP-advertisement patterns of current FF

botnets and benign domains. First, we will describe how we set up a globally dis-

tributed DNS monitoring system. Then, we will discuss different types of domains

and their unique features discovered through over 4 months of monitoring. Because

most existing FF detection systems rely on DNS features to detect FF botnets, our

unique, global perspective of IP-advertising strategies provides insight into the cur-

rent state of FF domains and their ability to successfully evade detection via mimicry

attacks.

4.3.1 Global DNS-Monitoring System

We created a distributed DNS-query engine called DIGGER, deployed on 312

geographically disparate nodes in the PlanetLab test bed [59]. The nodes were chosen

based on the location of the DNS servers they queried, such that DIGGER would issue

queries to DNS servers in different geographic locations around the world. Table 4.1

shows the continental distribution of DIGGER nodes, which is reflective of the overall

distribution of available PlanetLab nodes.

DIGGER was deployed for over 4 months in early 2010 and gathered global DNS-

query results for domains compiled from multiple sources, including online reposito-

ries of phishing and malware websites as well as the top 1000 most popular benign

domains. On each node, for malicious and benign domains, DIGGER performed

DNS queries (i.e., digs) on their A (address) records, NS (authoritative name server)
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records, NA records (A records of the name servers) and the reverse DNS (rDNS)

lookup (i.e., PTR records) for the A- and NA-record IPs. DIGGER continued to dig

active domains periodically based on their observed TTL. Domains determined to be

offline were dug every 24 hours to discover if they came back online.2 For each domain,

DIGGER also collected connectivity information (used to derive a bot online-decay

model) on both A and NA record IPs by attempting to establish TCP connections on

ports 80 and 53.3 By applying simple heuristics on the aggregate data, we manually

identified and verified 45 FF domains by looking for IP addresses with rDNS names

indicative of compromised computers (e.g., dynamic, dialup).

4.3.2 Domain Types

4.3.2.1 Fast-Flux Domains

FF domains are malicious domains utilizing a FF DNS-advertisement strategy,

typically built atop botnets and used for scams where the potential profits depend

on the availability of the hosted services/content. To counter the unreliable connec-

tivity of the bots hosting the malicious services/content, botmasters adopt FF DNS

techniques and advertise numerous IPs in their DNS-query results with frequently-

changing mappings between the domain name and different bots’ IP addresses.

Figure 4.1-a illustrates the global IP usage—across all 312 DIGGER nodes—for

an example FF domain. In the figure, the Time axis represents the time (in seconds)

since DIGGER started monitoring the domain; Node Index represents the DIGGER

node that the IP was observed on, with positive values indicating an A-record IP and

negative values an NA-record IP; IP Index is a unique index incrementally assigned

to each newly observed IP. From the figure, we notice that the FF domain slowly

2A domain is offline if its DNS query returns no A record.
3Although DNS primarily uses UDP protocol to serve requests, DNS servers also accept TCP

connections on port 53 in order to support response data exceeding 512 bytes or for tasks such as
zone transfer [51].
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and nearly continuously advertises new, unique IPs over its entire online lifetime.

Over the 4-month monitoring period, we have observed that a typical FF domain

usually advertises thousands of unique IP addresses, with the most aggressive botnets

advertising over 35,000. As we will demonstrate later, this huge IP pool affords

botmasters considerable flexibility and abundant resources to mimic a wide range of

benign DNS behaviors for evading detection.

4.3.2.2 Benign Domains

CDN domains are benign domains that use a Content Delivery Network (CDN),

such as Akamai, to improve the delivery of their content. CDNs—consisting of a

system of computers networked together for the purpose of improving the performance

and scalability of content distribution—produce DNS-query results resembling those

of malicious FF domains: numerous, changing IPs per query with short TTL values.

For instance, nfl.com, a CDN domain shown in Fig. 4.1-b, has a short TTL (20

seconds) and constantly changes its A-record IPs, resulting in the accumulation of

almost 1,200 IP addresses over all DIGGER nodes during our monitoring period. This

affinity between CDN and FF domains is a consequence of their similar goal to provide

reliable content delivery despite node failures as well as their shared assumption

that any node can temporarily or permanently fail at any time. Consequently, it

is possible for botmasters to cloak their malicious DNS-advertisement strategy as

normal, benign CDN behavior. However, a CDN’s DNS-advertisement profile depends

on whether a location-aware4 or load-balancing5 strategy dominates and, therefore,

can be highly dependent on the DNS server monitored. For example, most of the

servers for nfl.com reside in N. America and Europe, with a small amount in Asia.

As a result, in N. America and Europe, location-aware techniques dominate, with DNS

queries consistently returning a small set of IPs belonging to the nearest servers. On

4Advertises IPs geographically near DNS servers to reduce transmission overhead due to distance.
5Advertises the IPs of servers with lower load to increase performance.
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the other hand, DNS queries in continents such as S. America, where nfl.com has no

servers, are influenced far less by location, and load-balancing techniques dominate;

servers from all over N. America, Europe, and Asia are advertised based on their

current load, resulting in hundreds of IPs observed per S. American DIGGER node

over the monitoring period.

Non-CDN domains are benign domains that do not use a CDN for delivery of their

content. Typically, non-CDN domains use a few stable content servers and a modest

number of name servers. Some popular non-CDN domains may advertise more than

18 IPs in a single DNS query, using the same set of IPs in each query and rotating

the order across queries for load-balancing purposes. This type of DNS strategy is

often referred to as Round-Robin DNS .

4.4 Fast-Detection Systems (2 queries)

Given the serious threats posed by FF botnets, researchers have proposed various

detection systems. In this section, we first analyze existing fast-detection systems

(“good guys”) and then propose mimicry strategies botmasters can use for evasion

(“bad guise”). Advanced detectors and mimicry attacks against them will be de-

scribed in Section 4.5.

Figure 4.1: Global DNS-query results for FF and CDN domains
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4.4.1 Good Guys

The original FF detection system proposed by Holz et al. [39] (i.e., Holz detector),

shown in Eq. (4.1), and RB-Seeker’s first-tier detector [43], shown in Eq. (4.2), are

considered fast-detection systems, as they are capable of detecting FF domains with

high accuracy from only 2 DNS queries. This is achieved through the use of a linear

decision function containing weighted terms derived from the DNS queries and a bias

term.

f(x) = 1.32 · nA + 18.54 · nASN − 142.38 (4.1)

f(x) = −1.257 · Nunique IPs − 26.401 · NASN (4.2)

−13.024 · NDNS bad words + 162.851

In Eq. (4.1), the number of unique A-records IPs and Autonomous System Num-

bers (ASNs) are represented by nA and nASN , respectively. In Eq. (4.2), Nunique IPs

represents the number of unique IPs seen in the A records, NASN the unique ASNs,

and NDNS bad words the number of rDNS lookups containing “bad words” indicative

of compromised home computers, such as comcast, dynamic, dialup, etc. In both

equations, the magnitude of f(x) represents the degree of confidence when classifying

domain x, with positive values indicating a FF domain for Eq. (4.1) and a benign

domain for Eq. (4.2).

We implemented both detectors and applied them to our manually verified set of 45

FF domains to determine how they would fare against today’s FF botnet threat. They

identified 6 (Holz detector) and 12 (RB-Seeker) FF domains, respectively, resulting in

86.7% and 73.3% false-negative rates and demonstrating the extent to which botnets

have evolved. Both papers realize their weights and thresholds used for detection

must be periodically retrained to counter future mimicry attacks. However, doing so
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will increase the false-positive rate, causing benign domains—whose DNS activity is

being mimicked by FF domains—to be misclassified as malicious.

4.4.2 Bot Guise

4.4.2.1 ASN-Mimicry Attack

From Eqs. (4.1) and (4.2), we find that the dominant factor in identifying FF

domains is the number of unique ASNs. Clearly, an effective mimicry attack against

these fast-detection systems should reduce the number of ASNs to levels seen for

benign domains. Since DNS queries on benign domains often contain A-record IPs

from 2 ASNs (e.g., www.avast.com), let us assume that a fast-detection system adopts

the following overly strict policy: over 2 DNS queries, any domain containing IPs

from more than 2 ASNs will be flagged as malicious. While this policy can result

in false positives for benign domains, such as some CDNs, if it can be effectively

subverted, so can more lenient constraints.

Figure 4.2: IP distribution for top 20 ASNs

To discover if this is feasible with current botnet resources, we aggregated the

IPs for each FF domain globally monitored by DIGGER, determined their ASNs,
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Figure 4.3: ASN-mimicry strategy (2 DNS queries)

and then analyzed their IP distribution across ASNs. We found that, despite the

size of the botnet, the distribution was long-tailed, with at least one ASN containing

a disproportionately large number of IPs. This is possibly due to certain ASNs

(e.g., ISP networks) containing a large proportion of vulnerable computers, or from

botmasters targeting certain institutions. Fig. 4.2 plots this trend for 3 representative

FF domains of varying sizes; to keep the graph readable, we have only plotted the

distribution for the top 20 ASNs from which the botnets have 100+ IPs.

Assuming botnets contain a suitable number of IPs from at least a single ASN

(as our data indicates), there is a simple IP-advertisement strategy for mimicking the

ASN behavior of benign domains. This mimicry strategy is demonstrated in Fig. 4.3,

with each TTL (i.e., fresh DNS query) showing the distribution of IPs from various

ASNs. For example, assume the botnet controls a large number of IPs from AS1 and

a moderate to small number of IPs from AS2. At TTL1, the majority of advertised

IPs are from AS1 with a smaller subset from AS2. While there exists a sufficiently

large pool of online IPs from AS1, this is not the case with AS2, eventually requiring

the introduction of IPs from a different ASN. However, because the detection window

is 2 DNS queries, the botmaster must ensure that all the IPs seen over 2 consecutive

queries belong to no more than 2 ASNs. Thus, before IPs from a new ASN can be

introduced, the botmaster must first advertise only IPs belonging to one of the ASNs
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present in the previous TTL, as shown in TTL2. Then, at TTL3, the botmaster is

free to utilize IPs from the new ASN, AS3. If the botmaster happens to control a

large number of IPs in AS3, AS1 can slowly be replaced as the dominant ASN, as

shown in TTL3–TTL6. In this way, botmasters can successfully mask their use of

numerous ASNs from fast-detection systems.

4.4.2.2 rDNS-Mimicry Attack

From Eq. (4.2), notice that the second most influential feature when identifying

FF domains is NDNS bad words. However, RB-Seeker asserts that a rDNS lookup on an

IP will not always return a result, although when it does, it can be useful. Despite its

inconsistency, the term is still an order-of-magnitude more important than the number

of unique IPs. Therefore, an effective mimicry attack should include a mechanism for

subverting this detection metric.

Let us assume the following aggressive detection policy: over 2 DNS queries, any

domain with more than 2 “bad words” in its rDNS results will be flagged as malicious.

Certainly, this policy is overkill, as many legitimate domains (e.g., www.comcast.com)

will have rDNS results that contain “bad words”. However, if botnets can defeat this

harsh limitation, more realistic thresholds can also be subverted. If current FF botnets

contain enough IPs without rDNS results (i.e., rDNS=NONE IPs), then a mimicry

strategy similar to that proposed for ASNs in Section 4.4.2.1 could be applied. To

determine the feasibility of this approach, we aggregated the IPs for each FF domain

monitored globally by DIGGER and determined the percentage of rDNS=NONE IPs.

We discovered that, for each FF domain, at least 15% of its total IPs lacked a rDNS

result. Furthermore, for ≈24% of the FF domains, over 50% of their IPs lacked a

rDNS result. Considering the large proportion of rDNS=NONE IPs and the fact that

rDNS results for bots that aren’t compromised home computers will be free of “bad

words”, the mimicry strategy proposed earlier for ASNs can easily be applied: IPs
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without rDNS results (or without “bad words”) can be used in conjunction with IPs

containing “bad words”, such that only 2 “bad words” are observed over 2 queries.

Thus, we have confirmed the unreliable nature of rDNS, demonstrating that it can

easily be subverted if used as a detection metric.

However, to be truly effective, we need to ensure that this strategy can be com-

bined with the previous ASN-mimicry attack. Thus, for each FF domain, we ana-

lyzed the distribution of rDNS=NONE IPs across ASNs, once again observing the

long-tailed distribution. This phenomenon is shown in Fig. 4.4 for 3 representative

domains of varying sizes. The majority of botnets we observed still possessed enough

IP-dense ASNs to sufficiently mount the dual mimicry attacks; however, to be suc-

cessful, some of the smaller botnets might require more diligent maintenance.

Figure 4.4: rDNS=NONE IP distribution for top 20 ASNs

4.4.2.3 IP Mimicry

Having determined that current botnet resources are capable of implementing

ASN- and rDNS-mimicry attacks, we turn our attention to the final attribute utilized

by the fast-detection systems in Eqs. (4.1) and (4.2), the number unique IPs. It stands
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to reason that the more IPs a FF domain advertises per query, the more likely some

of the bots will be online. Furthermore, because most DNS servers perform round-

robin scheduling within a given TTL, advertising more IPs per query decreases the

load imparted on each bot, thereby increasing the botnet’s total service capacity

and its revenue. Since benign non-CDN domains may also advertise a large number

of stable IPs (e.g., hostingprod.com uses 18 IPs per DNS query), FF domains are

afforded a fair amount of freedom in the number of bots they can advertise; this

is supported by Eqs. (4.1) and (4.2), where the number of unique IPs is the least

influential detection feature. However, non-CDN domains advertise the same set of

IPs for every TTL, causing their total unique IPs to remain bounded and facilitating

the use of a maximum IP threshold, Nthresh, for detection.

Figure 4.5: DNS IP-advertising strategies

When performing an IP-mimicry attack, there are two basic strategies for keeping

the total number of IPs over two TTLs below Nthresh. The first, shown in Fig. 4.5-a,

has no IP overlap, with the botnet advertising a completely new set of IPs every

TTL. The alternate strategy, shown in Fig. 4.5-b, has IP overlap, with some of the

IPs being advertised for multiple TTLs. Each strategy has certain pros and cons.

Having no IP overlap allows for the rapid replacement of offline IPs; however, as can

be seen from Fig. 4.5, this reduces the number of IPs that can be used for any given

141



TTL, which, in turn, decreases the botnet’s service capacity. On the other hand, with

an increase in IP overlap, more IPs can be advertised per TTL, decreasing the load

per bot (from Fig. 4.5, we can see that the total number of IPs advertised per query is

equal to the number of overlapped and new IPs, i.e., N = Noverlap + Nnew); however,

this reduces the rate at which offline IPs can be replaced, resulting in a greater

proportion of dead bots and failed victim connections. Considering bots’ unreliable

connectivity, finding the optimal IP-advertisement strategy for FF domains requires

a better understanding of the underlying bots’ online availability (i.e., at any given

time, what is the probability of bots being online).
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Figure 4.6: Bot online-decay model (first 72 hours)

4.4.2.4 Bot Online-Decay Model

We developed a bot online-decay model, Ponline(t), to predict the probability a

bot will be online after time t. In building the model, we aggregated all the bot

IPs seen for FF domains globally monitored by DIGGER, recording the time they

were observed and if they were online and reachable at that time (i.e., a connection

could be established). Notice that while each individual DIGGER node monitors

the bot IPs at the granularity of the domain’s TTL, they are not synchronized and
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do so independently and at different times due to competing PlanetLab workloads.

Furthermore, many botnets are used for multiple online scams; thus, many of the same

bot IPs will be observed in queries on different FF domains.6 Therefore, by combining

all available data points for each bot IP—regardless of the DIGGER node’s location

or the FF domain it was observed for—we can build a fairly complete picture of

the online times of bots currently used by FF domains. If an IP is not seen by any

DIGGER node for over 12 hours, we assume that it has gone offline during that time.

The resulting bot online-decay model has a long-tailed distribution, with a non-zero

probability that some bots will remain online for over 2 months. In Fig. 4.6, which

plots the first 72 hours of this model, the y-axis represents the probability that a bot

is continuously online for more than some time t, represented by the x-axis. From the

plot, it is clear that the probability of a bot being online decays exponentially with

time, such that, after a day, there is less than a 10% chance it’s still online. These

findings reassert the notion that a bot’s connectivity is highly unreliable, resulting

from the varied usage patterns of the compromised computers’ owners.

4.4.2.5 Performance Model

Using our online-decay model, we can determine the optimal IP-mimicry strategy

in terms of performance, which we evaluate based on the number of incoming connec-

tions per unit time the botnet can handle. This metric is chosen because the revenue

from FF botnets results from victims visiting the hosted content, and therefore, bot-

masters want to maximize the number of connections the botnet can support. If

the mimicry attack drastically reduces this amount, then the bots will become over-

whelmed, resulting in dropped connections and decreased revenue. We assume both

the inter-arrival time of victim connections and the bots’ service time are Poisson

6Over 11% of all FF IPs were advertised by ≈22.2% or more of the monitored FF domains; over
51% of all FF IPs were advertised by ≈6.7% or more FF domains; of the less than 34% of FF IPs
advertised by only a single FF domain, over 15.7% were either dead (i.e., never reachable) or only
seen once during our entire monitoring period.
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processes with Markovian (i.e., exponential and memoryless) distributions, with λ

and µ representing the incoming connection rate and average service times, respec-

tively. Within a given TTL, most DNS servers perform round-robin scheduling when

responding to DNS queries. As a result, incoming victim connections will be evenly

dispersed among the online bots advertised during that TTL. Therefore at each TTL,

FF botnets can be modeled as Nonline parallel and identical M/M/1/K queues [19],

where K is the online bots’ queue length (i.e., the maximum connections each can

queue before dropping additional connections). Applying queueing theory[19] to this

model, we can calculate the connection-loss probability (i.e., the probability that an

online bot will drop connections due to a full queue) as:

Ploss =











ρK−ρK+1

1−ρK+1 : ρ 6= 1

1
K+1

: ρ = 1

where ρ = λ
Nonline·µ

Because we assume that each online bot is identical, an individual bot’s Ploss

is equivalent to that of the entire botnet, allowing us to compare the various IP-

mimicry attacks’ performance; a higher probability of dropped connections results in

fewer exploitable victims and decreased revenues.

4.4.2.6 DNS-Strategy Model

To successfully apply the performance model, we must first establish a formal

relationship between an IP-mimicry attack’s DNS-advertisement strategy and our

online-decay model, Ponline(t), so that we can estimate the potential number of online

IPs, Nonline(t), during a given TTL. This relationship is straightforward when there

is no IP overlap, as in Fig. 4.5-a. Since each TTL contains a fresh set of IPs under

this strategy (i.e., N = Nnew), they can only decay for the time, t, that has elapsed

in the current TTL; thus, for a max TTL of Tttl seconds, Nonline(t) = N · Ponline(t),

where 0 ≤ t < Tttl.
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Determining Nonline(t) becomes more complicated for a strategy utilizing IP over-

lap, as in Fig. 4.5-b. Because IPs are persistent for multiple TTLs, they suffer an

increased probability of going offline. For modeling purposes, we must rely on the

reasonable assumption that older IPs—being more likely to be offline—will always be

replaced before newer IPs. Additionally, to best distribute load among their bots, we

can assume that botmasters will choose to advertise as many IPs as possible without

exceeding the detection threshold, Nthresh. These two assumptions imply an optimal

replacement strategy for botmasters, from which we can deduce the following intrinsic

properties: in any given TTL, (1) there exist a total of Nnew IPs also present in the

previous 0, 1, 2, . . . , ⌊ N
Nnew

⌋ − 1 TTLs, and (2) there exist a total of (N mod Nnew)

IPs also present in the previous ⌊ N
Nnew

⌋ TTLs. The effect of these properties can be

seen in Fig. 4.7 for two examples. Thus, for any given DNS query, we can formulate

formulate Nonline(t) in terms of Ponline(t) as:

Nonline(t) = (N mod Nnew) · Ponline(t + ⌊
N

Nnew
⌋ · Tttl)

+

⌊ N
Nnew

⌋−1
∑

n=0

Nnew · Ponline(t + n · Tttl) (4.3)

Having defined Nonline(t) in terms of the IP-advertisement strategy, we can use it in

our definition of Ploss(t):

Ploss(t) = ρ(t)K−ρ(t)K+1

1−ρ(t)K+1 where ρ(t) =
λ

Nonline(t) · µ
(4.4)

4.4.2.7 Evaluation of current FF botnet strategies

Before evaluating the performance of our mimicry strategies, we establish a basis

for current FF botnet performance. We examine the 3 FF domains shown in Table 4.2

using our online-decay model and Eq. (4.4). We first compare these various strategies

by applying N and Nnew to Eq. (4.3), finding N online when the system reaches a
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Figure 4.7: Persistence of overlapped IPs

steady state, shown in Table 4.2.7 From the results, botmasters appear quite adept

at configuring their DNS-advertisement strategies to minimize the effect of bot decay.

Through the skillful manipulation of their Tttl, N and N overlap, these remarkably

different strategies were all able to achieve greater than 90% online availability (i.e.,

Nonline

N
).

Table 4.2: Current FF DNS strategies and performance

Next, we examine the influence each type of strategy has on the botnet’s overall

capacity (i.e. P̂loss), which translates to the amount of potential victims and revenue.

We use the values λ = 100, µ = 10 and K = 10 for their ease of computation

since, for comparison purposes, the actual choice for these values is trivial, so long as

we are consistent and use the same values when evaluating each strategy. Applying

Eq. (4.4) to each of the 3 botnets’ DNS strategies, we determine P loss once the system

7The values N , Nnew and Nonline are the average values for N , Nnew and Nonline.
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achieves a steady state, shown in Table 4.2. While the various DNS strategies offered

comparable performance in terms of Nonline

N
, they clearly differ in the total capacity

each botnet can support. This is a direct consequence of the number of bots available

during a given TTL, with mountainready.com having approximately twice as many as

bentlycap.net and 4x as many as old-and-girl.net. With both a large N and Noverlap,

it seems that mountainready.com is attempting to capitalize on the load-balancing

benefits provided by a large number of advertised IPs, while using large IP overlap

to keep the total number of unique IPs over 2 queries relatively low; additionally,

its use of a fairly small Tttl indicates a proactive approach to countering the bot-

decay phenomena, which will be accentuated due to its large N overlap. Conversely,

old-and-girl.net makes use of a far different strategy. With its N overlap constituting

only a small fraction of its N , the effect of bot decay due to IP overlap is less severe,

permitting less diligent IP replacement and allowing for a longer Tttl. Interestingly,

its decision to use a small N and Noverlap appears to be a double-edged sword; while

keeping the total unique IPs over 2 queries low, it also results in fewer IPs per TTL for

load-balancing purposes, reducing the botnet’s overall capacity. Lastly, bentlycap.net

seems to have found some middle ground between the other techniques, with a Tttl

and N almost exactly between the those of others. However, like old-and-girl.net, it

has chosen a small ratio of
Noverlap

N
, reducing the amount of bot decay and the need

for more rapid IP replacement.

4.4.2.8 IP-Mimicry Attack

Now we present how our proposed IP-mimicry attack influences the connectivity

and capacity of the aforementioned FF domains. The key idea of the attack is to

manipulate N and Noverlap such that the online time and capacity are maximized

while keeping the number of IPs below the detection threshold. First, we retain

the FF domains’ Tttl values, assuming that they were chosen by the botmasters in
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response to how diligently they were willing to monitor and replace IPs. Second, in

order to reduce false positives from benign, non-CDN domains advertising a large

number of stable IPs, such as hostingprod.com, we assume—for the purposes of this

mimicry attack—a detection threshold of Nthresh = 20 IPs, resulting in the following

policy: over 2 DNS queries, any domain with more than 20 unique A-record IPs will

be flagged as malicious.8

Figure 4.8: N online optimization

It is clear from the results in Section 4.4.2.7, that the more online IPs available

during a given TTL, the greater the botnet’s overall capacity. Therefore, an optimal

DNS strategy will necessarily advertise the maximum IPs allowed by the detector’s

threshold, Nthresh. This reduces the problem to an optimization problem, i.e., to

determine an optimal Noverlap that maximizes Eq. (4.5) or minimizes Eq. (4.6), subject

to the constraints: 2 · N − Noverlap = Nthresh.

8An attack defeating the ASN and DNS-“bad word” thresholds of Sections 4.4.2.1 and 4.4.2.2
can evade detection by the Holz and RB-Seeker detectors with as many as 79 and 66 unique IPs,
respectively.
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Figure 4.9: P loss optimization

N online =

∑Tttl

t=1 Nonline(t)

Tttl

(4.5) P loss =

∑Tttl

t=1 Ploss(t)

Tttl

(4.6)

For the FF domains in Table 4.2, Figs. 4.8 and 4.9 plot the results of Eqs. (4.5)

and (4.6) across the search space N ∈ [⌈Nthresh

2
⌉, Nthresh − 1]. From the figures, we

notice while mountainready.com and bentlycap.net achieve optimal performance with

N = 18, for old-and-girl.net, N = 17. Apparently, its longer Tttl of 600 seconds re-

sults in additional bot decay, causing N = 17—with its 2 fewer overlapped IPs—to

provide better performance. We also find that for bentlycap.net and old-and-girl.net,

their Nonline has increased to 13.52 and 12.35, while their P loss has decreased to

1.34% and 2.58%, respectively. While neither of these FF domains would have been

detected by the imposed Nthresh under their original DNS strategies, utilizing the IP-

mimicry attack has kept them from being detected while also greatly increasing their

performance and capacity. On the other hand, the mimicry attack caused mountain-

ready.com to suffer a reduction in N online, dropping from 17.8 to 14.82. The attack
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also caused its P loss to increase from 0.14% to 0.65%. However, mountainready.com’s

original DNS strategy advertised 24 unique IPs over 2 queries, exceeding the detection

threshold. Thus, the IP-mimicry attack has allowed it to successfully evade detection

with only a minor decrease in performance; its average connection-loss probability

remains under 1%, and its average online IPs has been reduced by fewer than 3.

4.5 Extended-Window Detectors (more queries)

4.5.1 Good Guys

A logical extension to the fast-detection systems of the previous section is to in-

crease the monitoring window to analyze more queries. Examining multiple TTLs

when making a decision exploits a commonly known property of FF domains: they

need to continuously advertise fresh IPs to account for their unstable constituent

bots. While non-CDN domains may advertise a large number of IPs in their queries,

they will be stable IPs that will not change over time. Thus, FF domains will quickly

become exposed once additional queries are examined. Furthermore, while CDN

domains can demonstrate the fluxy behavior characteristically attributed to FF bot-

nets, for many CDNs, a longer detection window can allow their more stable nature

to emerge from the chaos.

Current detectors, such as FluXOR [56] and RB-Seeker’s second-tier detector,

make use of longer detection windows (e.g., 1 week) to increase accuracy and support

the detection of stealthy FF domains, which use slower DNS advertisement strate-

gies to fool fast-detection systems. Like the Holz and RB-Seeker detectors, FluXOR

examines the number of unique A records and ASNs. These are augmented with ad-

ditional features aimed at capturing the quickly changing and dispersed nature of FF

domains, such as TTL and the number of returned qualified domain names, or top-

level domains (TLDs). Next, we examine how botmasters can mimic these features
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to evade detection.

4.5.2 Bot Guise

4.5.2.1 ASN-Mimicry Attack

Regrettably, extending the detection window does little to weaken the ASN-

mimicry attack described in Section 4.4.2.1. Because botnets seem to invariably

control a sizable number of bots from within at least one ASN, the same essential

attack can be performed by simply repeatedly using IPs from the same ASes to ac-

commodate the larger detection window, as shown in Fig. 4.10.

Figure 4.10: ASN-mimicry strategy (multiple queries)

4.5.2.2 rDNS-Mimicry Attack

While the specifics of FluXOR’s “returned qualified domain” metric are not re-

vealed in their paper, we can assume it operates as any TLD metric would. Essentially,

for any rDNS results returned, the number of unique TLDs are calculated—the in-

sight being that FF botnets, consisting of bots scattered across many networks, will

return numerous TLDs. However, this feature also suffers from the inherent short-

coming of the rDNS lookup process, which doesn’t always return a result. This allows
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Figure 4.11: IP distribution for top 20 TLDs

for a sufficient quantity of rDNS=NONE IPs (adequately distributed across ASNs)

and IPs from other TLDs to perform a similar dual-mimicry attack. Additionally,

we analyzed the distribution of bot IPs across TLDs and found a similar distribution

as across ASNs, in that there exist some TLDs from which a large number of bots

belong. In Fig. 4.11, we have plotted this distribution for representative FF domains

of varying sizes. Like the ASN distribution, it is long-tailed. While rDNS=NONE IPs

dominate, there are clearly other TLDs with a sufficient number of IPs to similarly be

used in the aforementioned mimicry attack, providing botmasters additional freedom

in their DNS-advertisement strategies. Thus, we find that rDNS can be effectively

mimicked based on FF botnets’ current resources.

4.5.2.3 Improved DNS-Strategy Model

The DNS-strategy model developed in Section 4.4.2.6 can be extended to accom-

modate the larger detection window. First, let us assume the detector uses a detection

window of Dttl fresh DNS queries (where TTL = Tttl seconds) and applies a thresh-

old, Nthresh, on the number IPs seen during this detection window. The choice of

Nthresh and Dttl creates two scenarios botnets must overcome to avoid detection when
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replacing dead IPs. In the first case, when Dttl ≤ Nthresh, they can simply replace

at least one new IP every fresh TTL. However, if Dttl > Nthresh, they can no longer

introduce new IPs each TTL without exceeding Nthresh. To keep their total IPs below

the threshold, botnets must repeat the same set of IPs over multiple TTLs before in-

troducing any new IPs. We term this the botnet’s repetition window and define it as

Rttl DNS queries (also of length Tttl) for which the botnet repeats the same set of IPs,

effectively extending Tttl. Thus, we can determine Nonline(t) by substituting Rttl · Tttl

for Tttl in Eq. (4.3). The choice of Rttl determines, at most, the amount of IP changes

any detection window, Dttl, will observe, represented by Attl. This relationship is

shown in Eq. (4.7), and an example is given in Fig. 4.12, where we see that Attl = 2

when Dttl = 4 and Rttl = 2. Clearly, botnets can add Nnew IPs every Rttl queries, so

long as Eq. (4.8) is satisfied.

Attl = ⌊
Dttl − 2

Rttl

⌋ + 1 (4.7) N + Attl · Nnew ≤ Nthresh (4.8)

Figure 4.12: Relationship between Attl, Rttl and Dttl
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Figure 4.13: Attl when Rttl ∈ [1, Dttl] and Dttl = 4, 10

4.5.2.4 IP-Mimicry Attack (TTL-based Detection Window)

We apply the improved DNS-advertisement strategy using Rttl to our previous

performance model to determine how the IP-mimicry attack fares against a larger

detection window. For this purpose, we examine the same real-world FF domains as

in Section 4.4.2.8, once again fixing their Tttl to the values originally used by each

domain. Modifying Eqs. (4.5) and (4.6) to incorporate the increased detection window

produces:

Nonline =

∑Rttl·Tttl

t=1 Nonline(t)

Rttl · Tttl

(4.9) P loss =

∑Rttl·Tttl

t=1 Ploss(t)

Rttl · Tttl

(4.10)

The goal for botmasters is to determine the optimal values for Rttl and N that

maximize Eq. (4.9), or minimize Eq. (4.10), under the constraints that Rttl ∈ [1, Dttl]

and N ∈ [⌈Nthresh

Attl+1
⌉, Nthresh−Attl]. The search space for N is ascertained from Eq. (4.8)

and the observation that 1 ≤ Nnew ≤ N . The optimization results for Nthresh = 20

and Dttl = 4, 10 are shown in Table 4.3. Notice that all the FF domains under their

original DNS strategies (i.e., Table 4.2) would have been caught by the extended

detection window, with the exception of old-and-girl.net when Dttl = 4. However,
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by using the proposed IP-mimicry strategy in Table 4.3, they not only successfully

circumvent detection but also achieve better capacity in most cases (i.e., bentley-

cap.net and old-and-girl.net). While mountainready.com’s performance goes down

marginally, its P loss is still less than 1% when Dttl = 4 and less than 3% when

Dttl = 10. These slight decreases in performance are easily justified, considering that

its original DNS strategy would have resulted in immediate detection, with 34 unique

IPs seen when Dttl = 4 and 64 when Dttl = 10.

Table 4.3: Optimization Results: IP-mimicry attack against Dttl

In Fig. 4.14, we show an example of the N online optimization plots for mountain-

ready.com’s Tttl = 120, marking some local optimal points. To explain these plots,

recall the relationship between Dttl, Rttl and Attl defined in Eq. (4.7) and shown for

Dttl = 4, 10 in Fig. 4.13. From the figures, we find that for values of Rttl resulting

in the same Attl, the lowest Rttl is optimal. This is best exemplified when Dttl = 10

in Figs. 4.13 and 4.14-b, with local maxima at Rttl = 1, 2, 3, 5, and 9. To under-

stand this behavior, recall that the amount of bot decay increases with Rttl (due to

repeating the same set of IPs over an extended duration). Since N and Nnew are

maximized with respect to Attl and Nthresh in Eq. (4.8), if Attl remains constant while

Rttl increases, performance will necessarily degrade, resulting in the observed trend.

As an additional experiment, we determined the optimal strategy for a FF do-

main using a Tttl = 1 second, as it provides the finest granularity for adjusting the
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Figure 4.14: N online optimization: Tttl = 120 seconds and Nthresh = 20

IP replacement strategy in terms of Rttl. This strategy, shaded gray in in Table 4.3,

achieves better results than mountainready.com’s original configuration. With such

a short Tttl, a Dttl = 10 will only monitor the domain for 10 seconds, resulting in less

bot decay and allowing for a larger N . Additionally, we find that the optimal Rttl in

this case is Dttl − 1, i.e., the minimal Rttl for which the detection window observes

only a single IP change (Attl = 1). An Rttl < Dttl − 1 results in more IP changes,

further limiting the maximum N achievable without exceeding the detection thresh-

old, Nthresh. With an Rttl ≥ Dttl, IPs are subjected to additional bot decay, while

Attl remains at its minimum value of 1; regardless of Rttl, eventually the detection

window always observes a single IP change. Thus, at the cost of more diligent IP

management, this technique maximizes the number of online IPs possible per query

while minimizing the effect of bot decay.

4.5.2.5 IP-Mimicry Attack (Time-based Detection Window)

Thus far, we have defined the detection window in terms of the number of fresh

DNS queries (Dttl), showing that it can be subverted through the use of a repetition

window, Rttl. However, a detection window can also be defined in terms of absolute

time (i.e., Dt seconds), requiring that the FF domain adhere to the IP threshold im-
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posed over the duration Dt. Thus, the longer the duration, the more the FF domain’s

IPs are subjected to bot decay, decreasing performance. We model this detection

technique and evaluate its susceptibility to IP-mimicry attacks under current botnet

resources. For the purposes of this evaluation, we adopt a Dt equal to 1 week (as used

in RB-Seeker). Certainly, requiring longer than a week to arrive at a detection deci-

sion grants botnets sufficient time to perpetrate their scams under a given domain.

To find a suitable IP threshold, Nweek, we analyzed the number of unique IPs accrued

by benign CDN domains over 1 week. Not surprisingly, due to load-balancing tech-

niques, CDN domains can advertise a large number of unique IPs depending on the

DNS server monitored. For example, during a week, certain DIGGER nodes observed

171 IPs used by nfl.com. The amount was even greater for www.myspace.com, with

many DIGGER nodes witnessing over 400 unique IPs weekly, and in one case, over

700. We model the IP-mimicry attacks against varying values of Nweek ∈ [100, 800]

to evaluate how increasing the threshold—to reduce false positives—will affect a bot-

net’s performance. To ensure that the mimicry attack would also continue to subvert

fast-detection systems, we imposed the additional constraint of Nthresh unique IPs

over any 2 DNS queries as before (i.e., N + Nnew ≤ Nthresh). Then, for each value of

Nweek, we calculate the maximum queries for which Dt can observe new IPs without

violating Nweek as A′
ttl = ⌊

Nweek−Noverlap

Nnew
⌋. If we assume IPs are changed every TTL,

then we can calculate the optimal Tttl as Topt = Tweek

A′

ttl

, where Tweek is the number of

seconds in a week. Under these constraints, the FF domain won’t exceed the thresh-

old of Nweek unique IPs over the detection window Dt = 1 week. Furthermore, for

any 2 queries, the number of unique IPs will satisfy the threshold Nthresh. Finally,

notice that a repetition window, Rttl, can be applied to Topt to defeat a Dttl detection

window.

Table 4.15 shows our optimized results for N , Noverlap, and Topt with Nthresh = 20

under varying thresholds of Nweek. For all values of Nweek, the optimal values are
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N = 19, Noverlap = 18, and thus Nnew = 1. This is because it is necessary to

provide as many IPs per query as possible to counteract the enhanced botnet decay

resulting from the longer Topt. From the table, it is apparent that even for the strictest

threshold Nweek = 100,9 the botnet will continue to have online IPs. Despite the

high probability of lost connections, the botnet is still reachable and, therefore, can

continue to generate revenue. For the larger thresholds of Nweek ≥ 200, the botnet

capacity is greater than that of old-and-girl.net under its original configuration. These

results affirm that, because benign CDN domains legitimately advertise large amounts

of unique IPs over time, current botnet resources can sufficiently mount IP-mimicry

attacks despite an increased detection window, Dt.

Figure 4.15: Optimization results: IP-mimicry attack against Dt = 1 week (Nthresh =
20: N = 19, Noverlap = 18)

4.5.3 Empirical Observations

We discovered several FF domains in the wild adopting some of the mimicry

attacks we have presented. While the strategies employed by FF domains in the wild

aren’t as meticulously regular as those in our models, they are close, only deviating

from their average values rarely and in small amounts. Analysis of these domains

show that many of them were able to defeat the Holz and RB-Seeker detectors in

9A low threshold could result in many false positives since it’s well below the number of IPs seen
at individual DIGGER nodes for some CDN domains, such as nfl.com and www.myspace.com.

158



Section 4.4.1. An example FF domain is shown in Fig. 4.4, with each box in the

plot representing a unique IP seen in its DNS-query results. Notice that it adds 1

or 2 IPs every ≈1,000 seconds, replacing older IPs to keep the total number equal

to 5 per query; thus, it uses an N = 5 and an Noverlap = 3, 4. Since it has a

Tttl = 10, it’s essentially using a repetition window of Rttl = 100. Under this DNS-

advertisement strategy, the FF domain can defeat a fast-detection system with an

Nthresh ≥ 7, as it occasionally introduces 2 new IPs per query. Furthermore, it will

also defeat an extended detection window with Dttl ≤ 101 and Nthresh ≥ 7. By

using an average Noverlap = 4 in our model, the domain is estimated to achieve an

N online = 3.73 (i.e., an average of 75% of its advertised IPs being online). This clearly

shows that FF domains are beginning to incorporate advanced mimicry techniques to

subvert detection systems, requiring novel detection methods exploiting the mimicry

limitations of botnet resources. One such technique we will explore next is the use

of multiple, cooperating, and geographically disparate detectors to take advantage of

the spatial-mimicry limitations of botnets.

Table 4.4: Empirical observation of FF domain adopting certain evasion techniques
(Tttl = 10 seconds)
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4.6 Spatial Detectors

4.6.1 Good Guys

In the previous Sections 4.4 and 4.5, we have shown that botnet resources are ad-

equate to defeat fast-detection and extended-window detection systems. While using

a week-long window and threshold can severely hurt the botnet’s performance and

decrease the amount of online IPs available, it is somewhat impractical, allowing FF

domains to operate for a week before detection. Furthermore, because CDNs also

accrue a large number of IPs during a week, the larger thresholds necessary to reduce

false positives allow botnets to perform mimicry attacks with minimal reduction in

online IPs and performance. It is because of these two limitations of the week-long

detection window that we look to exploit the spatial properties of CDN and FF DNS-

advertisement strategies. During our analysis, it became apparent that CDNs adopt

a location-aware DNS-advertisement strategy, advertising IPs geographically near the

queried DNS server to improve performance. CDNs use this location-aware strategy

in conjunction with load-balancing techniques to further improve performance. Since

botnets primarily consist of compromised home and office computers, most of them

do not have 24-hour connectivity, resulting in their FF advertisement strategy. Addi-

tionally, a botnet’s available bots typically follow some diurnal trend, with fewer bots

available during the evening hours. This should make it more difficult for botnets to

mimic the location-aware DNS-advertisement strategies of CDNs; during the evening,

CDN domains will still have an ample amount of local IPs, while botnets will have

to utilize online bots from other parts of the world. By monitoring DNS activity

on multiple continents for 24-hours, we should be able to observe the location-aware

DNS-advertisement strategy of CDNs and use it to quickly identify FF domains.

While previous sections have explored the effectiveness of mimicry attacks against

real-world DNS-based FF detection systems, to the best of our knowledge, no such
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system yet exists for spatial detection utilizing multiple, cooperating and geograph-

ically disparate DNS monitors. Therefore, we propose a system that makes use of

the location-aware DNS-advertisement property of CDNs, evaluating if current FF

botnet resources are capable of defeating it with a mimicry attack. While DIGGER

was deployed on 312 nodes spanning 5 continents, this level of coverage is unrealistic

for a commercial detector. Rather, we will examine a detection system utilizing 5

monitoring nodes, one on each of the continents of Asia (AS), Europe (EU), North

America (NA), Oceania (OC) and South America (SA). Over every 2 queries, each

node will calculate the percentage of unique IPs seen for that domain that are from a

different continent, which we term the percent wrong continent. Since not all CDNs

have complete coverage on all 5 continents, the percent wrong continent from a single

vantage point will often fail as a detection metric. However, CDNs lacking coverage in

certain continents will have ample, 24-hour coverage on other continents. FF botnets

lack this 24-hour coverage and, therefore, wont be able to maintain, on average, the

low percent-wrong-continent value in as many continents as CDN domains. Our de-

tector makes use of this effect by calculating the average percent wrong continent over

every 2 queries, averaging the percent wrong continent reported by the 5 monitoring

nodes.

We simulate how well such a spatial detector differentiates between our manually

identified FF and CDN domains using our ≈4-month DIGGER data. For the active

duration of each domain, each monitoring node calculates the percent wrong continent

between every pair of queries observed. Then, we pair each node’s reported percent-

wrong-continent results with those of 4 other nodes, one from each continent, observed

in close temporal proximity, calculating the average percent wrong continent. Thus,

for each FF and CDN domain, we obtain thousands of instances of the average percent

wrong continent over 2 queries. We have plotted these results for our manually

identified FF and CDN domains in Fig. 4.16 as a CDF. Clearly, the two different
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domain types exhibit conflicting trends, with FF domains demonstrating concave

growth compared to CDNs’ convex growth. This bodes well for the average percent

wrong continent as a detection metric against current FF and CDN domains. The

plots show that for current CDN domains, the average percent wrong continent will

typically be small, with over half of them having an average of 20% wrong or less.

Meanwhile, no FF domains have an average less than 30% wrong; in fact, half of the

FF domains have more than 80% wrong. The disparate convex and concave curves

grants us an excellent 60% detection threshold, producing false-positive and false-

negative rates below 5%. Next, we examine if current resources permit botnets to

mimic CDN’s location-aware DNS-advertisement strategy.

Figure 4.16: CDF of average percent wrong continent over 2 queries for FF and CDN
domains
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4.6.2 Bot Guise

4.6.2.1 Continental Online-Decay Models

In our spatial models, we are concerned with the available bots within a particular

continent. Therefore, as we generated the global IP online-decay model in Fig. 4.6, we

generate IP online-decay models specific to each continent. Additionally, we generate

online-decay models for every combination of 4 continents. In this way, for each

continent, we have a decay model representing IPs from that continent and a decay

model for all other IPs (i.e., those not from that continent). Later, when simulating

mimicry attacks against our spatial detector, we will use these continental online-

decay models to reflect the botnet IP distribution specific to each continent’s DNS-

query results.

4.6.2.2 Diurnal Continental Online-IP Model

One of the benefits CDNs have over FF domains in providing location-aware DNS

advertisement is that CDN servers are online 24-hours, while the online availability of

FF domains’ compromised home and office computers often follow diurnal patterns.

Thus, FF domains should have difficulty mimicking location-aware advertising on each

continent without hurting performance. We will test the mimicry attack capabilities

of three representative FF domains of varying sizes: purgand.com, www.aquauna-

ttour.ru, and bentleycap.net. For each domain, we find the maximum number of

online IPs (i.e., bots) hourly from each continent over DIGGER’s entire monitoring

period.10 Figure 4.17 demonstrates the diurnal nature of the maximum online bots

per continent for the example domain purgand.com. We will use these maximum

values later in our DNS-strategy model when modeling the percent wrong continent.

These maximum values are typically higher than the average, and thus, on many

days, the online bots available would be too few to support these attacks.

10We determine an advertised bot to be online by attempting connections on ports 80 and 53.

163



Figure 4.17: Max online IPs hourly per continent for example FF domain pur-
gand.com

4.6.2.3 DNS-Strategy Model

Since our proposed spatial detector operates over 2 queries, each local monitoring

node will also apply an Nthresh as in Section 4.4.2.3. Consequently, we will use the

same DNS-strategy model as in Section 4.4.2.6 at each node, with some minor alterca-

tions. With the spatial detector, the average percent wrong continent must be below

some threshold, Cthresh. We must assume that botmasters will attempt to advertise

as many IPs as possible such that they don’t exceed Nthresh at any given monitoring

node, as this will provide the best performance for the botnet. Furthermore, during

hours when there are not enough online bots for a given continent, botmasters will

use online bots from other continents. Lastly, botmasters must ensure that the av-

erage percent wrong continent is below Cthresh. If necessary, botmasters will insert

fake (and thus offline) bots into the DNS-query results to bring down the average; we

assume that fake IP insertion is applied equally to all continents until the threshold

has been reached.
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Since we are utilizing 5 cooperating monitoring nodes, this model actually consists

of 5 complementary models, one for each node (i.e., continent). For each node, we

determine the amount of online bots available per hour as in Section 4.6.2.2, which we

term Nlocal. When a node’s continent doesn’t contain enough online bots to support 2

DNS queries, we assume botmasters will advertise bots from other continents, which

we term Nother, and they will be impartial about which continents the advertised bots

reside in. Therefore, for each monitoring node, N = Nlocal+Nother. After determining

Nlocal and Nother for each node, we can find each node’s percent wrong continent as

Nother

N
. If the average percent wrong continent for an hour exceeds the threshold

Cthresh, then fake IPs from the same continent as the monitoring node are inserted to

bring down the average, which we term Nfake. To keep the average down, these fake

IPs are always advertised, yet they are never online, essentially lowering that node’s

Nthresh by Nfake. Therefore, they are not included when calculating a node’s Nonline,

as N = Nlocal + Nother.

Having added fake IPs to defeat Cthresh if necessary, we can finally model each

node’s Nonline. Let the continental online-decay models, as described in Section 4.6.2.1,

for Nlocal and Nother be represented by Plocal and Pother, respectively. Then, we find

Nonline as in Eq. (4.3), both for Plocal and Pother in place of Ponline. Let Lonline rep-

resent the number of online bots found using the Plocal online-decay model, and let

Oonline represent the number of online bots found using Pother. Let the percentage of

bots from the node’s correct continent be represented by p = Nlocal

N
. Then for a given

node, Nonline = p ∗Lonline +(1− p) ∗Oonline. Finally, Ploss can be found for each node

using Eq. (4.4).

4.6.2.4 Spatial-Mimicry Attack

We evaluate the hourly mimicry attack capabilities against our proposed spatial

detector for 3 FF domains of representative sizes. We use the continental online-IP
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Figure 4.18: Max online IPs hourly in Europe for example FF domain purgand.com
under various ASN/rDNS constraints

models described in Section 4.6.2.2 to determine the botnets’ hourly online resources.

In addition, we evaluate how further constraints on the number of unique ASNs and

rDNS results influence the mimicry attack. We achieve this by filtering the maximum

online IPs seen per hour as in Section 4.6.2.2, such that all IPs are from a single

ASN (i.e., the top ASN), all IPs have rDNS=NONE, or all IPs are both from the

top ASN and have rDNS=NONE. Notice, if each continent only uses IPs from the

top ASN, then IPs used from other continents can belong to a second ASN without

violating a threshold of 2 ASNs per query. Likewise, if all IPS have rDNS=NONE,

then a threshold on rDNS results returned will not be violated. As can be expected,

the addition of each constraint reduces the amount of online bots available to the

botmaster. This can be seen in Fig. 4.18, which shows the constraints’ effects on the

purgand.com’s hourly online bots in Europe.

We model the DNS-advertisement strategy as in Section 4.6.2.3, using an Nthresh =

20 and a Cthresh = 60%, as discovered in Section 4.6.1. This results in the following

166



detection policy: over 2 DNS queries, any domain with more than 20 unique IPs

observed at any individual monitoring node or with an average percent wrong continent

of more than 60% across all nodes will be flagged as malicious. From our analysis,

we find that most current FF domains don’t possess the hourly resources necessary

to maintain the location-aware DNS-advertisement strategy needed to defeat our

spatial detector. Only the larger botnets, such as purgand.com, have sufficient hourly

online IPs in enough different continents to do so for modest Tttl values. For most

hours, the majority of FF domains have enough online IPs to support only a few

fresh queries per hour. However, since we assume the online bots we observe in an

hour are online for the entire hour, we will also assume that if a domain has sufficient

resources to satisfy 2 DNS queries, as described in our DNS-strategy model, then it can

maintain that DNS-advertisement strategy during the entire hour. This assumption

over-represents the botnets’ actual online resources according to our measurements,

however, it represents what a spatial detector, taking a single, unbiased snapshot for

detection at a random point of time within that hour, might observe for the botnets.

Using our hourly continental online IP-models for various constraints, we model

the hourly DNS-advertisement strategy for each continent’s node as outlined in Sec-

tion 4.6.2.3 for the example domains. Using the three common Tttl values of 120, 300

and 600 seconds, we choose values for Noverlap such that 2∗N−Noverlap = Nthresh, opti-

mizing Eqs. (4.5) and (4.6) as before. Thus, we obtain an optimal DNS-advertisement

strategy for each domain, continent, Tttl, ASN/rDNS constraint and hour combina-

tion, shown in Table. 4.19 for the optimal hours. For a visual representation, we show

the optimal hours’ Nonline and Ploss for bentleycap.com’s continents using a 600-second

Tttl under various ASN/rDNS constraints in Figs. 4.20 and 4.21, respectively. From

the table, we find that the use of a smaller Tttl increases the number of online IPs and

improves performance since it reduces the amount of IP decay. We also notice that

the ASN/rDNS constraints reduce the online availability and hinder performance.
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While most current FF botnet resources are inadequate for supporting the short Tttl

values we examine, we have shown previously, with our week-long detection window,

that even the decay resulting from longer Tttl values can still support some botnet

functionality. When taken in conjunction with these optimal FF domain results, it

appears that current botnet resources are capable of mimicking location-aware DNS-

advertisement strategies to evade detection by our spatial detector.
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Figure 4.19: Optimization results: IP-mimicry attack against 2-query spatial detec-
tion (Nthresh = 20, Cthresh = 60%)
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Figure 4.20: Optimal Nonline for example domain bentleycap.net with 600-second Tttl

Figure 4.21: Optimal Ploss for example domain bentleycap.net with 600-second Tttl
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4.7 Connectivity Detectors

4.7.1 Good Guys

Thus far, we have shown that current FF botnet resources are capable of sup-

porting mimicry attacks against DNS-based FF detection systems at the expense of

online availability and performance. While we have been able to reduce their online

availability and performance with additional constraints and detection metrics, we

have failed to demonstrate with our models that such an approach can incapacitate

botnets, reducing their online availability to zero. Inevitably, current botnet resources

provide some mechanism for evading detection, while still preserving some fraction of

online, reachable bots. In light of this discovery, we propose a novel detection metric

to use in conjunction with existing and future DNS-based FF detection systems: the

domain’s percent connectivity. Percent connectivity measures how many of the ad-

vertised IPs are actually online (i.e., have connectivity to the Internet). For benign

CDN domains, this ratio is typically low, with the majority of the advertised IPs

being online. The unreliable connectivity of botnets, on the other hand, ensures they

will intrinsically possess fewer online IPs. Furthermore, we have shown throughout

this chapter that botnets can only defeat these DNS-based FF detection systems at

the expense of their online connectivity. While successful mimicry attacks against the

previous detection systems do not reduce the botnets’ online IPs to zero, they may

be able to reduce them past a threshold not seen for valid domains, leading to their

detection.

We propose a modification to our previously proposed spatial detector to incorpo-

rate connectivity as a detection metric. Over every 2 queries, each monitoring node

will also calculate the domain’s connectivity as the ratio of online IPs to total IPs.

The individual node’s connectivity results are then averaged to find the domain’s

average percent connectivity. To explore how well this serves as a detection metric
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against current FF botnet advertising strategies, we calculated the average percent

connectivity for our manually identified FF and CDN domains. As in Section 4.6.1,

we make use of DIGGER’s extensive 4-month DNS data. For the active duration of

each domain, each node calculates the connectivity between every pair of consecu-

tive queries observed. Then, we pair each node’s reported connectivity results with

those of 4 other nodes, one from each continent, observed in close temporal proximity,

calculating the average. The resulting distribution is shown in Fig. 4.22 as a CDF.

Unlike the percent-wrong-continent feature, the CDN and FF plots exhibit similar

concave trends. From the figure, we see that ≈99% of CDN queries have an average

percent connectivity of 80% or greater, compared to only ≈75% of FF domains. It

appears that an average-percent-connectivity threshold, Othresh, of 80% would sel-

dom misclassify a CDN domain. Next, we will explore if current botnet resources can

both successfully perform mimicry attacks and satisfy the new detection constraint,

Othresh = 80%.

Figure 4.22: CDF of average percent connectivity over 2 queries for FF and CDN
domains
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4.7.2 Bot Guise

4.7.2.1 Fast-Connectivity Detection Systems

First, we will examine the feasibility of current FF botnets to perform mimicry

attack against 2-query, fast-detection systems augmented with a connectivity thresh-

old, which we will term fast-connectivity detection systems. We will use a percent-

connectivity threshold of Othresh = 80%: over 2 DNS queries, any domain with an

average percent connectivity less than 80% will be flagged as malicious. As before, we

will invoke an Nthresh=20, limiting the total IPs seen over any 2 queries to 20. Like-

wise, we assume botmasters attempt to advertise as many IPs as possible so long as

Nthresh is not violated, as this maximizes online availability and performance. Once

again, we find an optimal Noverlap such that 2 ∗ N − Noverlap = Nthresh, optimizing

Eqs. (4.5) and (4.6). We do this for various Tttl values ranging from 10 minutes to 1

second, shown in Fig. 4.23. As we can see from the figure, the commonly used Tttl

values of 300 and 600 seconds cannot successfully perform a mimicry attack against

the fast-connectivity detector; current botnet resources could not achieve 80% av-

erage connectivity while still defeating the requisite Nthresh, resulting in detection.

However, we notice that with shorter Tttl values of 120 seconds and less, botnets can

defeat both Nthresh and Othresh, successfully evading detection. While the addition

of Othresh has made the popular Tttl choices of 300 and 600 seconds infeasible for

mimicry attacks, more diligent botnet management using shorter Tttl values can still

succeed.

4.7.2.2 Spatial-Connectivity Detection Systems

While the addition of average percent connectivity improved upon the fast-detection

system, the use of shorter Tttl values within current botnet capabilities still permit-

ted successful mimicry attacks. We will now explore mimicry attacks against our
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Figure 4.23: Average percent connectivity using 2-query fast detection for various Tttl

values

spatial detector enhanced with average percent connectivity, which we term spatial-

connectivity detection systems. We model the spatial simulator as before in Sec-

tion 4.6.2, applying the same ASN/rDNS constraints to the continental online-IP

model. In addition, we will add constraints allowing the top two ASNs (2nd ASN)

and an additional rDNS return result (2nd rDNS). Since these constraints are applied

to each continent’s DNS-advertisement strategy, the DNS-query results can can con-

tain 3 ASNs, including those due to IPs from other continents, before being flagged

as malicious. As before, most FF domains do not contain the requisite resources

to support a successful spatial-mimicry attack; most would only be able to provide

one or two fresh queries per hour, and when accounting for online-decay, they will

easily fall below the average-percent-connectivity threshold. However, as before, we

will assume that if they possess the necessary resources to support 2 queries, then

they will have those resources during that entire hour. If botnets are still not able

to attain the required average percent connectivity under this favorable assumption,
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Figure 4.24: Average percent connectivity hourly for example FF domain bentley-
cap.net using 120-second Tttl and 2-query spatial detection for various
ASN/rDNS constraints

then such a spatial-connectivity detector holds promise as a fast and viable detection

mechanism.

As in Section 4.6.2, we find the optimal advertisement strategy for each hour

under the various ASN/rDNS constraints using different Tttl values. Clearly, allow-

ing botmasters to use IPs from a 2nd ASN on each continent increases the amount

of online bots available each hour, making it easier to obtain the required percent

wrong continent threshold, Cthresh. However, the amount of IPs from the 2nd ASN

is typically much fewer than from the top ASN, requiring botmasters to substitute

new IPs from other ASNs using the ASN-mimicry attack described in Section 4.4.2.1.

Consequently, there will exist a transition period where one DNS query must contain

only IPs from a single ASN on that continent, while the other will contain IPs from

2 ASNs on that continent. The reduction of ASNs in this transitional query will

often require the use of fake IPs from that continent and ASN in order to continue
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satisfying Cthresh. We can find the average percent connectivity during this tran-

sitional period by using the optimal Nonline under each ASN/rDNS constraint, one

for each constituent query, which we term the transition constraint in future plots.

In Fig. 4.24, we have plotted the average percent connectivity attained hourly under

the various constraints for the example domain bentleycap.net using a 120-second Tttl.

This plot demonstrates how, when under no constraints, the FF domain has sufficient

resources to successfully defeat the spatial detector and achieve the necessary thresh-

old for average percent connectivity. However, after applying even a single constraint,

the botnet can no longer achieve the required 80% average connectivity, resulting in

detection. From the plot, we observe that the constraint with only a single ASN

per continent performs worse than the constraint allowing two, with the transition

constraint’s results falling in between. Within the context of our assumptions thus

far, the transitional results best exemplify how we would expect botnets with these

resources to perform periodically throughout the hour. While they may often perform

better, they will invariably have to transition ASNs throughout the hour, resulting

in the transition constraint’s performance; if they cannot defeat the detector when

transitioning, they will be caught and the mimicry attack considered a failure. We

plot the hourly average percent connectivity under the transition constraint, using

various Tttl values ranging from 10 minutes to 1 second, for the example domains

in Figs. 4.25, 4.26 and 4.27. We find that the smaller domain, bentleycap.net, can-

not achieve the required 80% connectivity threshold over the entire 24-hour period,

regardless of its use of Tttl; even under our favorable assumptions, the botnet does

not have enough online resources adequately distributed globally to overcome the

spatial-connectivity detector. The moderately sized domain, www.aquauna-ttour.ru,

also has difficulty with the mimicry attack. For most Tttl values, the botnet cannot

defeat the detector at any point during the day. However, with very short Tttl values

of 1 and 5 seconds, the botnet can evade detection at 11 a.m. GMT; with a 1-second
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Tttl, it can also evade detection at 12 a.m. and 1 a.m. GMT. While the larger botnet,

purgand.com, cannot defeat the detector at any point with Tttl values of 5 minutes

or more, it can occasionally evade detection with 1- and 2-minute Tttl values. Un-

fortunately, Tttl values of 30 seconds and less allow it to attain an average percent

connectivity above the threshold.

Figure 4.25: Average percent connectivity hourly for bentleycap.net under the transi-
tion constraint and using 2-query spatial detection for various Tttl values

As we have previously mentioned, we make the assumption that if the botnet’s

resources can satisfy 2 DNS queries, it can do so for the entire hour, regardless of the

Tttl value used. If under these favorable assumptions, botnets using the minimal 1-

second Tttl cannot defeat the detector, then the spatial-connectivity detector should

serve to successfully combat mimicry attacks. However, purgand.com has demon-

strated that its resources under these previous assumptions are capable of defeating

the detector using short Tttl values. Therefore, we must better represent the actual

Tttl capabilities of the botnets in order to determine if they can indeed obtain the

small values required to avoid detection. To keep the complexity of the models down,
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Figure 4.26: Average percent connectivity hourly for www.aquauna-ttour.ru under
the transition constraint and using 2-query spatial detection for various
Tttl values

we will once again adopt the approach of utilizing a favorable, upper-bound assump-

tion, granting botnets their best hope of evading detection. For the representative FF

domains, we determine the minimum Tttl value (minTTL) attainable hourly at each

continent based on the amount of online bots available to each domain globally during

each hour. If botnets cannot escape detection under this favorable assumption, then

the actual resources available at each continent cannot possibly support a successful

mimicry attack.

To determine the minTTLs that could be used on each continent hourly, we ex-

amine the maximum online IPs available globally under the constraint: top ASN,

rDNS=NONE, and 2nd ASN/rDNS. We use the globally available online IPs to de-

termine the minTTLs that could be supported if one new IP were introduced in

each query (i.e., Nnew = 1), as this provides the highest online availability for the

botnet. Let Nglobal(h) represent the global online IPs the botnet has for an hour,

h; then that hour’s minTTL is calculated as TLLmin(h) = ⌊ 3600
Nglobal(h)−Noverlap

⌋, where
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Figure 4.27: Average percent connectivity hourly for purgand.com under the transi-
tion constraint and using 2-query spatial detection for various Tttl values

Noverlap = 18 since Nthresh = 20. The hourly minTTLs for the example domains are

shown in Table. 4.5. Next, we find the average percent connectivity attained hourly

by the botnets based on each hour’s minTTL, shown in Fig. 4.28 for the example

domains under the transition constraint. Neither the small (bentleycap.net) nor the

medium (www.aquauna-ttour.ru) botnets can evade detection at any point during the

day based on their globally achievable minTTLs. This is unsurprising, as only the

medium-sized botnet could evade detection previously, and even then, when using

1- and 5-second Tttl values, it could only do so for a few hours. Interestingly, even

under these favorable assumption, the minTTLs possible for the large botnet (pur-

gand.com) cannot support the mimicry attack continuously over 24 hours. There

are 5 hours during the day—the prime European evening hours of 8 p.m. to 12 a.m.

GMT—when the average-percent-connectivity threshold cannot be reached, allowing

the botnet to be detected within a 24-hour period. In Fig. 4.29, we plot the minTTLs

purgand.com can achieve hourly with its globally online bots under no constraints
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and under the constraint: top ASN, rDNS=NONE, 2nd ASN/rDNS. Under no con-

straints, purgand.com possesses enough online bots globally to support a minTTL of

3–4 seconds each hour. With no spatial-detection mechanism, this would be sufficient

to defeat a fast-connectivity detection system. Even under our favorable assumptions

for the spatial-mimicry attack, the large botnet could still avoid detection. However,

once applying such constraints on the ASN and rDNS values returned in each conti-

nent, the domain no longer has sufficient resources to defeat the detector 24 hours a

day. These results imply that a spatial-connectivity detection system could be used

to combat FF mimicry attacks, as actual botnet resources will be fewer than our

favorable assumptions permit.

Figure 4.28: Average percent connectivity hourly for example FF domains under the
transition constraint and using 2-query spatial detection for each hours’
minTTL
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Table 4.5: minTTL (seconds) per hour for example FF domains under constraint:
top ASN, rDNS=NONE and 2nd ASN/rDNS
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Figure 4.29: Hourly minTTL possible for purgand.com, based on globally available
online bots, under no constraints and under constraint: top ASN,
rDNS=NONE and 2nd ASN/rDNS
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4.8 Conclusion

In this chapter, we examined the current, state-of-art, DNS-based FF detectors

and analyzed their effectiveness in detection. We evaluate the feasibility of novel

mimicry attacks against such systems using accurate models we developed for bot

decay, online availability, DNS advertisement, and performance. Combining these

models with empirical evidence and logical assumptions, we have shown that current

botnet resources are sufficient for subverting state-of-art, DNS-based FF detectors

via mimicry attacks. Additionally, we uncovered evidence of current FF domains

already adopting aspects of our proposed mimicry attacks, although their observed

management is less meticulous than our optimal models assume. Nevertheless, as

detection systems improve and become more pervasive, we expect botmasters will

increase their diligence in IP management to extract the most from their botnets’ re-

sources. We have found that incorporating more advanced views, such as an extended

detection window, can significantly encumber mimicry attacks through the introduc-

tion of additional, necessary parameters unknown a priori to botmasters. However,

since security by obscurity is always a bad idea, ultimately, they are still susceptible

to determined adversaries; for example, trial-and-error reconnaissance missions could

derive the detection window size and type. Still, subverting the more advanced detec-

tors requires significantly more effort from botmasters, making a strong argument for

their adoption in augmenting the simpler, fast-detection systems. We have proposed

a novel spatial-detection system utilizing 5 coordinating DNS-monitoring nodes on

different continents. Even without the necessary global distribution of online bots to

perform location-aware DNS-advertisement strategies, through the use of fake IPs,

botnets can defeat spatial detection at the expense of online availability and perfor-

mance. The observation that current botnet resources continue to defeat DNS-based

FF detection systems at the expense of online availability led us to introduce another

novel detection metric, percent connectivity. We have shown that the incorporation
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of percent connectivity can significantly improve fast-detection systems, requiring in-

creased diligence by botmasters to evade detection using short Tttl values. Lastly, we

have shown that current FF botnets do not posses the online resources required to

defeat our spatial-connectivity detection system. The additional spatial constraints,

combined with the ASN/rDNS constraints, overly strains botnet resources, with even

the largest botnets unable to perform mimicry attacks 24 hours a day under favorable

assumptions. We hope that showing the mimicry potential currently attainable by

FF domains will foster improvements to existing detection systems as well as pro-

vide new insight into the adaptive limitations of FF botnets. By demonstrating the

effectiveness of spatial-connectivity detectors against mimicry attacks—and percent

connectivity as a supplemental feature in any DNS-based FF detection system—we

hope to encourage the development and improvement of such techniques in future

DNS-based FF detection systems.
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CHAPTER V

Can Open WiFi Networks Be Lethal Weapons for

Botnets?

5.1 Introduction

Currently, much research has been done to understand and detect existing botnets

as well as predict their future capabilities and C&C channels. However, at this time,

little research has been done examining mobile botnets, i.e., botnets composed entirely

of compromised mobile devices. To be fair, this is primarily due to the lack of mobile

botnets in the wild; at present, mobile botnets do not enjoy the same popularity

as their more traditional brethren. Nevertheless, with their booming application

markets, standardized OSes and rapid advances in processing power and memory,

mobile devices are capable of increasingly sophisticated tasks, approaching those of

modern computers. Combined with their multiple communication interfaces (i.e.,

WiFi, 3G/4G, Bluetooth, SMS and MMS messaging) and always-on connectivity,

they are capable of sophisticated attacks not possible with traditional computers.

For example, a mobile botnet could potentially cripple local cellular communication

by flooding the network’s service towers with calls or SMS/MMS messages. As a

result, mobile devices are quickly becoming an attractive target for botmasters, and

it is only a matter of time before mobile botnets emerge on the Internet threatscape.
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In this chapter, we evaluate the potential for mobile botnets to communicate and

perform nefarious actions solely over open WiFi Access Points (APs), which we term

mobile WiFi botnets; to the best of our knowledge, we are the first to research this

scenario. The use of open WiFi networks for mobile botnets can provide a higher

level of stealthiness and has fewer barriers to entry than other communication medi-

ums, which we discuss further in Section 5.3.1. In assessing the feasibility of mobile

WiFi botnets to support botnet C&C, DDoS attacks and spam attacks, we make

the following contributions. First, we design a proof-of-concept mobile WiFi botnet,

including its C&C, DDoS attack and spam attack protocols as well as multiple AP-

selection algorithms designed to exploit the predictable mobility patterns of public

transportation. Second, we build a mobile WiFi botnet simulator, using accurate

timing models for AP association, Internet communication and achievable wireless

throughput based on the mobile bot’s distance from the open AP. Third, we run this

simulator for various attack scenarios using real-world cab mobility traces, bus routes

and actual open WiFi AP locations for the urban environment of San Francisco.1

Fourth, through in-depth simulations, we demonstrate that mobile WiFi botnets can

support rapid command propagation,2 can successfully mount DDoS3 and spam4 at-

tacks, and are sufficiently distributed across open WiFi networks—with no single

network being over-utilized at any given moment—to make detection difficult. More-

over, those bots able to receive commands usually have ≈30–50% probability of being

1We enhance the cab traces and bus routes to provide accurate location information at a one-
second granularity.

2For cabs, commands typically reach more than 75% of the botnet within 2 hours of injection—
sometimes, within as little as 30 minutes after injection. For buses, more than 80% of the botnet is
often reached in under an hour.

3The bus botnet was typically capable of issuing over 2 million SYN packets per hour (≈555 per
sec) and as many as 4 million (≈1,100 per sec) during its peak hour. The smaller cab botnet was
typically capable of issuing 0.8–1.2 million SYN packets per hour (≈222–239 per second) and as
many as 1.7 million (≈472 per sec) during its peak hour.

4The bus botnet could issue between ≈600,000 and 11.7 million spam emails daily and over
1 million per hour in certain instances. During weekday rush hours (i.e., 8 hours), the cab botnet
could issue between ≈150,000 and 2.3 million spam emails daily. On weekends, it could issue between
≈400,000 and 6.4 million spam emails daily.
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able to do so within a minute of the command being issued. Finally, we present and

evaluate some defensive strategies against future mobile WiFi botnets.

The remainder of this paper is organized as follows. Section 5.2 gives an overview

of related work. Section 5.3 describes the type of mobile WiFi botnet we examine,

explaining how mobile devices could become infected, our threat model, and how

C&C, DDoS attacks and spam attacks can operate over only open and unencrypted

WiFi networks. Section 5.4 describes the datasets used in our experiments, the AP-

selection algorithms we examine and a detailed breakdown of the C&C, DDoS and

spam attacks used in our simulations. Section 5.5 analyzes our simulation results,

while Section 5.6 describes and evaluates some potential defenses against mobile WiFi

botnets. Finally, Section 5.7 offers our concluding remarks.

5.2 Related Work

Despite the rich literature on botnets in the Internet environment, relatively little

has been done to study and understand the same threats in mobile environments. In

recent years, there has been a surge of mobile malware which have already started

to demonstrate botnet-like traits. For instance, SymOS.Yxes [68], discovered in

early 2009, reports user-sensitive information back to a centralized server through

an HTTP-based C&C protocol. Ikee.B [46], targeting jailbroken iPhones, uses a

similar HTTP-based mechanism to connect to a control server, download additional

components and steal user information. There have also been several research efforts

to design advanced C&C protocols for mobile botnets. Singh et al. [64] evaluated the

feasibility of using Bluetooth as a medium for botnet C&C; they demonstrated that,

due to the repetitive nature of human daily routines, such a Bluetooth-based C&C

infrastructure allows the propagation of C&C messages to ≈67% of infected devices

within a day. Muliner [52] proposed SMS and SMS-HTTP hybrid C&C protocols to

facilitate the communication between compromised smart phones. Xiang et al. [74]
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introduced the design of Andbot for Android phones, which exploits URL Flux as

a stealthy and robust C&C channel. Taking a different angle, Traynor et al. [61]

demonstrated the impact of DDoS attacks against the core of cellular networks utiliz-

ing compromised mobile phones. Their idea was to issue resource-consuming service

requests to overwhelm the Home Location Register (HLR), a critical component pro-

viding users’ location information. Their focus is on the characterization of large-scale

attacks, whereas our work investigates the effectiveness of using open WiFi networks

as a stealthy channel to coordinate a large number of moving bots and launch DDoS

and spam attacks. Lastly, Akritidis et al. [17] explore how attacks can spread from

stationary host to stationary host using urban WiFi networks. While it may be

possible to construct a botnet using their techniques, this possibility is only briefly

mentioned in their work. In this chapter, we focus on the nature such a botnet if it

were to exist and function solely over open and unencrypted WiFi networks, studying

the complexities of mobility and its effect on botnet attacks and stealthiness.

5.3 WiFi-Based Mobile Botnets

In this section, we first explain the advantages open WiFi networks provide to

mobile botnets over other communication interfaces. Next, we describe how a mo-

bile botnet can use open WiFi networks for C&C, DDoS attacks and spam attacks,

followed by our threat model and assumptions.

5.3.1 Why WiFi

One of the challenges facing mobile botnets is the omniscient view cellular providers

have of their networks, making it easier to discern coordinated botnet activities. All

cellular network communication—including SMS/MMS messages and 3G/4G data—

can be observed by the cellular provider, and all devices participating on the network

must first authenticate using a non-spoofable mobile ID. Therefore, mobile bots uti-
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lizing only the cellular network for botnet activity can be more easily detected and

neutralized. Moreover, since mobile IDs can’t be spoofed, infected devices can be

denied network access until the bots have been removed. Consequently, the use of

a cellular network for botnet activities can result in the compromised devices being

quickly detected and removed from the botnet.

To be effective, mobile botnets will have to adopt novel, stealthy approaches for

their communication and attacks, exploiting some of the other interfaces available to

mobile devices. It has been shown by Singh et al. [64], that Bluetooth can operate

fairly successfully as a covert C&C channel, with ≈67% of their proof-of-concept bot-

net receiving commands within 24 hours of injection. Unfortunately, while stealthy,

a Bluetooth C&C channel suffers from a significant barrier to entry: to successfully

transmit commands, a large number of identically infected, slowly moving devices

must continuously come in close proximity to one another. This constraint—due to

Bluetooth’s limited communication range (typically only a few meters) and its slow

transmission rates (typically less than 1 Mbit/s)—makes Bluetooth C&C unsuitable

for newly emerging mobile botnets, where the infected devices may be few and geo-

graphically dispersed.

Cellular-network interfaces, such as SMS/MMS and 3G/4G, can provide a more

feasible communication channel for small, newly emerging botnets than Bluetooth.

However, their inherent lack of stealth can result in rapid detection and mitigation,

ultimately rendering the botnet impotent. On the other hand, a Bluetooth-based

mobile botnet, though stealthy, can only function once the amount of infected de-

vices in a given area has reached a certain critical mass and density. The use of

WiFi networks for botnet C&C and attacks resolves both issues. Unlike Bluetooth, a

fledgling mobile WiFi botnet’s dispersed bots can communicate and participate with

other bots around the world, transmitting at rates an order-of-magnitude greater

than Bluetooth. Furthermore, the use of WiFi networks for C&C and attacks de-
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prives cellular providers of their complete network view, hindering detection. The

use of WiFi grants additional stealthiness to botnets since nearly all WiFi APs use

Network Address Translation (NAT) to support multiple, simultaneously connected

wireless devices—all sharing a single external IP address for Internet access. As a

result, botnet activity is hidden amidst a plethora of benign traffic generated by the

WiFi AP’s other users, making detection by the AP’s Internet Service Provider (ISP)

increasingly difficult. Additionally, ISPs cannot simply deny service to a mobile WiFi

bot’s IP address, since this results in all the WiFi AP’s connected devices—most of

which are benign—also losing service. Detection can be further inhibited by spreading

botnet activity across many different WiFi networks, limiting the amount observable

at any given network. In fact, the less botnet activity performed behind a single WiFi

AP, the more difficult detection becomes. Mobile bots are well suited to take advan-

tage of this technique, as their inherent mobility can result in exposure to multiple

WiFi APs throughout the day. Despite the persistent connectivity available when at

the home or office, mobile bots have minimal opportunities for spreading their nefar-

ious traffic across multiple networks, limiting their potential stealthiness. However,

when commuting, mobile bots come in contact with numerous WiFi networks and

can discretely distribute their activity across any number of them. Even when they

are detected, the bots’ mobility ensures they will soon have access to other WiFi net-

works. By spoofing IPs and leveraging users’ mobility to obtain short online sessions

over many different WiFi networks, mobile WiFi botnets could grant botmasters an

unprecedented level of stealth.

As a result, in this chapter, we examine the effectiveness of mobile WiFi botnets

during both weekdays and weekends. For our cab botnet, our weekday analysis is

limited to morning and afternoon office-commute hours, though this time period is

not a requirement. Clearly, mobile bots will make use of open WiFi networks whenever

they are within range, regardless of the time of day. However, during the weekdays,
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office-commute hours are the most likely time when bots will be moving through

multiple networks, allowing communication to be at its stealthiest and impeding

detection. Moreover, we will examine mobile bots traveling in vehicles, as their rapid

pace ensures—with the exception of traffic jams, lights and refueling—that a bot will

be within range of a given WiFi AP for typically just a few seconds. If the limited

duration of quickly moving vehicles is sufficient to perform botnet C&C and DDoS

and spam attacks, then the more leisurely pace of bikers and pedestrians will have no

difficulty doing so as well.

Moving through an urban environment in a vehicle, a mobile bot will have access

to numerous home and business WiFi APs. While the vehicle’s speed and movement

ensures that the mobile bot will continuously have access to new WiFi networks, it

also ensures that the amount of time on any given network is limited. Therefore,

it isn’t practical for a mobile WiFi bot to attempt hacking into an encrypted or

closed network for online access. Rather, by only utilizing open and unencrypted

WiFi networks, mobile bots can quickly perform a small subset of malicious activities

on each network before moving out of range. Despite the tightening of home WiFi

network security, necessity dictates that many businesses (e.g., restaurants and cafes)

leave their WiFi networks open and unencrypted. Inconveniencing customers with a

password before granting network access could potentially drive them to competitors

with open networks, especially if they have to wait in line to obtain the password.

While many businesses employ a semi-open network, requiring a customer to click on

an “Accept” button before granting access, this does little to defend against mobile

WiFi botnets (see Section 5.6). Consequently, while the prevalence of open and

unencrypted WiFi networks is dwindling, between businesses placating customers

and home users indifferent to security, they will not entirely disappear, making them

a useful medium for mobile botnets.
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5.3.2 Mobile Botnet

Since most businesses with open WiFi networks limit online activity to web traffic

over port 80, a mobile WiFi botnet should use an HTTP-based C&C channel; this

provides the added benefit of hiding C&C traffic among other, benign HTTP traffic

on the network. Traditionally, bots utilizing an HTTP-based C&C periodically poll

the command server for new commands. The command server is typically reached

using a deterministic yet changing domain name, making it difficult for defenders to

predict and block the malicious domains using such techniques as a DNS sink hole.

Requests to the current command server’s domain are often serviced by proxy bots,

further protecting the botmaster from detection and disruption. While a mobile WiFi

bot could still poll periodically throughout the day, this could result in numerous

polls originating from a home or office WiFi network (i.e., where the user spends

the majority of his time), increasing the probability of detection. A more stealthy

approach would be to limit periodic polling to when the bot is connected to an open

WiFi network, particularly one that is not a home or office network.5 Depending on

the amount of control and stealthiness required by the botmasters, mobile bots can

poll once or multiple times per open network. In this way, an HTTP-based C&C can

be modified for a mobile WiFi botnet, providing botmasters with an unprecedented

level of anonymity and protection. Likewise, DDoS and spam attacks can be issued

from multiple open networks as they are in range, issuing small portions of the total

attack at each AP. In Section 5.4.4, we will discuss in detail how our prototype

mobile WiFi botnet actually achieves HTTP-based C&C and performs DDoS and

spam attacks.

5Home and office networks can easily be determined based on the duration of connectivity as well
as the time of day; mobile devices are likely to spend the evenings on a home network and business
hours on an office network.
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5.3.3 Threat Model

Our focus in this paper is to determine the effectiveness of open WiFi networks for

botnet C&C, DDoS attacks and spam attacks using high-mobility devices (i.e., those

traveling in vehicles). We are not concerned with the problem of mobile device infec-

tion, which is out of the scope of this paper and has been previously researched. For

example, due to homogeneous mobile OSes, malware can spread through download-

able content (e.g., applications and ringtones), infected SMS/MMS messages, email,

and browser exploits. Instead, we assume all devices are infected with the same bot

malware, allowing us to ignore the complications of infecting heterogeneous devices.

It seems obvious that mobile devices will have sufficient online access when connected

to a user’s home or office WiFi network. However, at this point, little/no research

has been done to determine if botnet activities can be supported using only open

WiFi networks, which can significantly encumber detection. In our model, we assume

the existence of a small mobile botnet operating solely over open and unencrypted

WiFi networks in a single metropolitan city. The botmaster’s adversarial goals are

three-fold. The first goal is to obtain a sufficient amount of control over a modest

portion of the total botnet during the bots’ most transient and high-speed period,

which is the most difficult to control. This period occurs when bots are traveling

in a vehicle, and we will determine if this goal can be achieved by designing and

simulating a C&C protocol for a mobile WiFi botnet. We will explore what amount

of the total potential botnet is actually reachable, how frequently bots can receive

commands and how quickly new commands propagate throughout the botnet. The

second adversarial goal is to use the small mobile WiFi botnet to issue successful

DDoS and spam attacks. Likewise, we will design and simulate such attacks for a

mobile WiFi botnet to evaluate its feasibility. The final goal is that both botnet C&C

and its attacks can function in a stealthy manner, which we will evaluate by ensuring

that the malicious botnet’s traffic is adequately dispersed over multiple WiFi APs.
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In addition to the above goals, we considered whether a botmaster could make use of

mobility patterns known a priori to improve botnet performance in any of the three

goals. We noticed that with knowledge of the exact mobility patterns of the bots,

botmasters could make intelligent choices for which APs to connect to and potentially

improve their C&C and attacks. This approach is further described in Section 5.4.3

5.4 Experimental Setup

5.4.1 Description of Datasets

We now describe the datasets used in our experiments to determine open WiFi

APs and simulate vehicular mobility patterns in an urban environment.

5.4.1.1 Open WiFi APs

To obtain a comprehensive dataset of open WiFi APs, we made use of the Wire-

less Geographic Logging Engine (WiGLE) dataset for downtown San Francisco [11].

WiGLE contains an extensive database of wireless AP information, built from a col-

laborative effort of thousands of researchers and WiFi enthusiasts. Using WiFi scan-

ners, individuals report on an area’s WiFi topology, including such information as

the AP’s MAC, geographic coordinates, open or closed status and use of encryption.

Removing any APs not unanimously identified both as “open” and unencrypted, our

resulting dataset contains the location of 2,349 open and unencrypted WiFi APs in

downtown San Francisco, ideal for the purposes of the proposed mobile WiFi botnet.

5.4.1.2 Cab Mobility Traces

To simulate vehicular mobility patterns in an urban environment, we use the mo-

bility traces of taxi cabs in the San Francisco Bay area [2], first published in [58]. The

dataset contains mobility traces for 536 cabs over 30 days. Unfortunately, the cabs’

194



location granularity ranges from seconds to minutes, making it too inconsistent and

course-grained for our purposes. To overcome this limitation, we converted the traces

into the TIGER [10] map coordinate system, removing any resulting from misbehav-

ing GPS devices. Combining this with the VanetMobiSim [38] vehicular simulation

system, we simulated the path and speed between any two cab-trace points based on

San Francisco’s actual road topology. The resulting dataset contains detailed location

information at a one-second granularity for 536 cabs over 24 days in downtown San

Francisco. This rich, finely grained mobility dataset will allow us to represent the

movement patterns of vehicles during weekday office commutes and weekends.

5.4.1.3 Bus Mobility

To simulate public transportation patterns in an urban environment, we use the

San Francisco Bay area’s bus route information made available by [9]. The dataset

contains detailed bus and trolley route information—broken down into their con-

stituent trips—for weekday, Saturday and Sunday services, indicating each stop loca-

tion, time and duration. Unfortunately, only knowing the location of buses/trolleys

when they arrive at their stops is too coarse-grained for our purposes. To overcome

this limitation, we converted the route information into the TIGER [10] map coordi-

nate system and combined it with the VanetMobiSim [38] vehicular simulation system,

simulating the path and speed between any two bus stops based on San Francisco’s

actual road topology. The resulting dataset contains detailed location information at

a one-second granularity, allowing us to accurately represent the regular movement

patterns of public transportation in downtown San Francisco.

5.4.2 Modeling Open WiFi APs

With the requisite information unavailable, we simplify our simulation environ-

ment by assuming each AP has the same signal strength, ignoring attenuation due
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to competing wireless signals and environmental obstructions.6 Then, by fitting ex-

ponential curves to the empirical data in [12]—which gives achievable throughput

based on distance for 802.11b/g routers—we find Eq. (5.1), allowing us to calculate a

mobile bot’s average throughput (Mbit/s) based on its current distance in meters, d,

from an open WiFi AP. Using our improved mobility dataset (Section 5.4.1), one of

our various AP-selection algorithms (see Section 5.4.3) and Eq. (5.1), our simulator

calculates each mobile bot’s throughput at a one-second granularity, which we use to

determine if open WiFi networks are suitable for supporting botnet activities.

f(d) =



































37.5 :d≤1.52

37.97 ∗ e−8.15∗10−3∗d + 4.154 ∗ 10−4 ∗ e0.33∗d :1.52<d≤22.86

3379 ∗ e−0.22∗d + 22.48 ∗ e−0.042∗d :22.86<d≤53.34

0 :d>53.34

(5.1)

5.4.3 AP-Selection Algorithms

This section discusses the various AP-selection algorithms we examine in this

chapter for bus botnet simulations. Since the cab botnet simulations represent in-

dividual commutes, which are more difficult to predict than public transportation

routes, it only makes use of the Näıve protocol below. Bus routes are more amenable

to AP-selection optimization. The routes are public knowledge, and once a bus leaves

a stop, bots can check nearby WiFi APs to determine the current route and then op-

timize AP selection. Therefore, the bus botnet simulations will explore how all of the

following AP-selection algorithms affect botnet activities and attacks.

Näıve utilizes 802.11’s simple AP-selection algorithm. When a mobile bot is

within range of open WiFi networks, it chooses the network with the strongest signal

strength, performing botnet activities until it is out of range and must connect to

6It is trivial for us to relax this assumption if and when the required information becomes avail-
able.
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a new AP. Such a näıve AP-selection approach is easily implemented by botmasters

and works equally well in any urban environment, requiring no a priori knowledge.

If a mobile WiFi botnet can operate under this simple AP-selection algorithm, more

complicated mechanisms can potentially achieve better results.

Setcover takes advantage of the predictable nature of bus routes and attempts

to minimize the amount of expensive AP reassociations performed by bots (i.e., AP

switches). Using the offline bus route and open WiFi AP data from Section 5.4.1, we

can determine which APs are within range of each bus at a one-second granularity.

Finding the minimal number of AP switches then becomes a set cover problem in

graph theory, treating each second as a node and each continuous timespan when a

given AP is within range as a set. Thus, we want to select the least number of sets

(i.e., AP switches) such that the bots will always be connected to an AP if one is

available. Unfortunately, set cover is an NP-complete problem, so we approximated

the solution with a greedy algorithm: until all seconds with an AP in range are

covered, we iteratively choose a set covering the most uncovered seconds.

Weighted Setcover is a modified version of Setcover that takes the bots’ distance

from the AP into account when choosing sets. This can prove an influential factor in

an attack’s success because the transmission rate decreases with distance, as shown in

Eq. 5.1. Therefore, Weighted Setcover weights each set by the ratio of the uncovered

seconds it contains to its average distance. For example, if two APs cover the same

number of seconds, the one closer, on average, to the bus will have a larger weight

and thus be selected. This minimizes AP switches while maximizing data throughput,

potentially resulting in more successful attacks.

Patched is a simple heuristic applied to the other AP-selection algorithms for

the bus botnet simulations that takes advantage of the idle time at bus stops; if long

enough, a bot could benefit by switching to a closer AP for an increased data rate.

At each bus stop, we perform a three-fold test: if 1) the currently selected AP is at
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a distance greater than a threshold of 22.86 meters,7 2) there is another AP closer

than 22.86 meters, and 3) the idle time at the bus stop is sufficient to restore the

attack to its state prior to switching APs, then the bot switches to the nearest AP.

This attempts to further improve attacks by increasing the data rate when bots are

stationary for long periods. Interestingly, we discovered that Weighted Setcover and

its patched version produced virtually identical results, indicating that the inclusion of

distance in Weighted Setcover naturally takes advantage of the increased throughput

available from nearby APs when bots are idle at bus stops.

5.4.4 Attack Protocols

5.4.4.1 C&C Protocol

Fig. 5.1 gives a high-level representation of our HTTP-based C&C protocol be-

tween a mobile bot and an open WiFi AP. To acquire commands, mobile bots must

first connect to an open WiFi AP (STAGE 1). Once connected, bots must query

for new commands from the botnet’s command server. This is accomplished by first

issuing, over UDP, a DNS query (STAGE 2) on the command server’s domain name,

likely chosen from a set of predetermined candidate domains. Upon receiving a DNS

response, bots must establish a TCP connection (STAGE 3) with the command server.

Then, bots can issue an HTTP GET (STAGE 4), requesting the current commands.

When the complete HTTP response is received—as indicated by the closing FIN

packet—the mobile bot has successfully received the current commands and can be-

gin acting on them. Notice that the mobile bot only successfully receives commands

if it remains connected to a given open WiFi network long enough to complete all four

stages. Premature interruption of the protocol due to loss of connectivity (likely due

to the bot’s mobility), resets the protocol to STAGE 1 with the nearest open AP. In

our simulations, after successfully completing STAGE 4, our mobile bots immediately

7Based on Eq. (5.1), the data rate drops considerably for distances greater than 22.86 meters.
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attempt to receive another fresh command by returning to STAGE 2; this process

continues, so long as they remain connected to the same open AP, allowing us to

determine the finest level of control available.

To determine the timing for STAGE 1, we turn to [24], which reports an average

of 2.757 seconds for a mobile device (traveling in a vehicle) to scan for an open

WiFi AP, associate with it and obtain an IP. For the later stages, we must account

for 802.11b/g’s overhead and transmission rates as well as wired communications

between the open WiFi AP and Internet servers (i.e., DNS and botnet command

servers). In 802.11b/g, a 24-byte PLCP preamble and header must be transmitted

at a constant 1 Mbit/s before any subsequent transmission; this constant, 0.192-

millisecond overhead is incurred for every wireless transmission in STAGES 2, 3 and

4. Messages are then transmitted at a rate determined by the bot’s distance from

the WiFi AP and Eq. (5.1), recalculating the rate every second. To simplify the

complexity of Internet communications, we use the median Round Trip Time (RTT)

of 0.086 second for cable connections in the USA [20] to estimate the RTT between

the WiFi AP and Internet servers. The packet sizes of TCP’s 3-way handshake in

STAGE 3 and the FIN message in STAGE 4 are well defined. For the DNS request

and response in STAGE 2, we choose a message size of 100 bytes, which provides

ample space for complicated domain names in the DNS request and multiple server

IPs in the response. For the HTTP messages in STAGE 4, we choose a message

size of 512 bytes, as this will remain within a single packet, is close to the average

Internet’s packet size and will support complicated GET requests (e.g., reporting

device capabilities) and multiple, complex commands in the response.

5.4.4.2 DDoS Protocol

Botmasters achieve the required coordination for DDoS attacks via the C&C chan-

nel, informing bots of future attack targets and times. Later, at the appropriate times,

199



Figure 5.1: Mobile bot’s C&C protocol

mobile bots with access to open WiFi networks perform the synchronized DDoS at-

tacks. Attacks are hidden among benign traffic and dispersed across multiple open

WiFi networks, making mitigation difficult.

Unlike the C&C protocol in Fig. 5.1, mobile bots only require an online connection

(STAGE 1) before they can begin a DDoS attack. As they move, bots continue to

connect to different open WiFi APs, issuing a stream of SYN packets at the target

for the duration of the attack. Since we know the average time for STAGE 1 and

the size of SYN packets, we use Eq. (5.1) and the bots’ locations to simulate a DDoS

attack originating from a mobile WiFi botnet and evaluate its effectiveness.

5.4.4.3 Spam Protocol

As with the DDoS attack, botmasters achieve the required coordination and setup

for spam attacks via the C&C channel, informing bots of the attack time, target

emails and the spam message body. Later, at the appropriate times, mobile bots

with access to open WiFi networks perform the spam attacks. Unlike the C&C and
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DDoS attacks, the amount of transmission overhead in a spam attack is much more

nebulous. Therefore, we first examine its lower bound, where each email recipient

resides at a different domain. In this scenario, which we term spam lower, mobile

bots connect to an open AP, locate the mail server using DNS and then establish a

TCP connection, as in STAGES 1, 2 and 3 of Fig. 5.1. Next, they communicate with

the mail server using SMTP as shown in STAGES 4 through 9 of Fig. 5.2. Upon

completing STAGE 9 and successfully issuing a spam email, bots return to STAGE

2, querying DNS to locate the next target’s mail server and continue the attack.

If botmasters don’t require customized spam messages for each target and mul-

tiple targets reside at a single mail server, transmission overhead could be reduced

by issuing to multiple email recipients at STAGE 6. For attacks such as these, per-

formance can vary considerably, depending on how many targets reside at common

mail servers. Therefore, we examine its upper bound, where each target email resides

at the same mail server. In this scenario, which we term spam upper, mobile bots

first connect to an open AP (STAGE 1). Because bots only connect to a single mail

server, we assume its IP address is included in the setup stage, allowing bots to skip

STAGE 2 and immediately begin establishing a TCP connection with the mail server

(STAGE 3). Bots then proceed as normal through STAGES 4 and 5. At STAGE 6,

they add as many recipients as possible, such that they can finish STAGES 7 through

9 before losing connectivity with the current open AP; the attack then continues from

STAGE 1 with the next available open AP. In determining the number of recipients

to add at each AP, this technique achieves a level of precision nearly impossible in

practice, allowing us to confidently identify the optimal amount of spam our mobile

botnet could send.

For both the spam lower and spam upper attacks, we use the average email address

length of 23 bytes for our target emails and the dominate domain length of 11 bytes

for our mail servers [3]. Spam message data is set to 5KB, which was the size of
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Figure 5.2: SMTP portion of mobile bot’s SPAM protocol

over half of all spam emails for the first half of 2010 [8]. Since Ethernet’s MTU is

typically 1,500 bytes, bots can’t send the entire 5KB message payload as a single

data fragment in STAGE 8, requiring them to repeat the stage four times before

completing the protocol at STAGE 9.

5.5 Experimental Results

In this section, we examine the results of our simulated mobile botnets’ activities.

Our simulator makes use of fine-grained cab and bus mobility traces, as described in

Section 5.4.1. Ignoring the issue of infection (Section 5.3.3), we treat each cab/bus

as a mobile bot. We examine the feasibility of mobile WiFi botnets during weekends

and weekdays; for the cab traces during weekdays, we only examine the the office-

commute hours (i.e., rush hours) of 6–10 a.m. and 3:30–7:30 p.m. For buses, we will

also explore the effect of our various AP-selection algorithms on the different botnet

attacks. For each AP-selection algorithm and attack, we are interested in determining

both how successful the attack is and how distributed it is across open WiFi APs,

further hindering detection.
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5.5.1 AP-Selection Algorithms

First, we will examine the performance of the various AP-selection algorithms de-

fined in Section 5.4.3 independent of the attack protocols. We examine each algorithm

in terms of its cumulative throughput, demonstrating its potential achievable“work”,

and its APs’ connection durations, demonstrating how quickly it switches between

APs, which increases detection difficulty. Figures 5.3 and 5.4 show the cumulative

throughput for each AP-selection algorithm for weekdays and Sunday; we have omit-

ted Saturday since its results are similar to Sunday. From the figures, we find that the

cumulative throughput displays a clear diurnal trend, with peak throughput achieved

at around 5 p.m. on both weekdays and Sunday (i.e., weekends). This increases in

throughput is a consequence of the number of buses in service at that time of day,

with the fewest buses in service during the early morning and late-evening hours.

The number of buses in service, and thus total throughput, increases considerably

during the morning rush hours of 5–8 a.m. for weekdays. During weekends, when

as many buses aren’t in service during the early morning, we observe a smoother

increase in throughput. For both weekends and weekdays, the total number of buses

and throughput increases until the evening rush hour of 5 p.m. before decreasing once

again. Furthermore, as the day progresses, the difference in throughput for the various

AP-selection algorithms becomes more pronounced, culminating at around 5 p.m.. At

5 p.m. on weekdays, each improved selection algorithm increases the throughput by

an average ≈57 million Mbit/s, while on weekends, the average improvement is ≈46

million Mbit/s.

These deviations result from the different approaches taken in minimizing AP

switches and distance. Figures 5.5 and 5.6 show the CDF of the APs’ connection

durations seen over an entire weekday and Sunday for the different AP-selection algo-

rithms, respectively. We find that the the intelligent AP-selection algorithms produce

nearly identical results, which are clearly different than those of the Näıve algorithm.
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Figure 5.3: Cumulative throughput during weekdays

This is due to the intelligent algorithms’ attempts to minimize the number of AP

switches, which results in longer connection durations with most APs. For example,

≈4% fewer bots have a connection duration over 30 seconds for the Näıve algorithm

than the intelligent algorithms. Interestingly, we find that the two curves intersect

at about 8 seconds, indicating that the intelligent algorithms have a greater number

of short-lived connections (i.e., less than 8 seconds) than the Näıve approaches. Af-

ter having selected those APs with the longest durations to minimize AP switches,

the intelligent algorithms select whichever short-lived connections remain, such that

all possible seconds are covered by some AP within range. As a result, they have

a greater amount of both short-lived and long-lived connections, producing the ob-

served trend. Despite these minute variations, all AP-selection algorithms are fairly

distributed. For example, 25% of all AP connections are for 8 seconds or less, while

≈98% are less than a minute. This means the majority of attacks utilize each AP for

less than a minute, significantly complicating detection.

Since the connection durations are nearly the same for the intelligent algorithms,
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Figure 5.4: Cumulative throughput on Sunday
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Figure 5.5: CDF of APs’ connection durations per day during weekdays

they cannot account for the variations in throughput like they can for the Näıve ap-

proaches. Rather, these deviations are a consequence of how the intelligent algorithms

attempt to minimize distance. Because Setcover doesn’t take the AP’s distance into
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Figure 5.6: CDF of APs’ connection durations per day on Sunday

account, it performs the poorest. Naturally, the patched version of Setcover—which

optimizes distance (and thus throughput) at bus stops—performs slightly better, and

the Weighted Setcover algorithms—which take distance into consideration during ev-

ery AP selection decision—achieve the best throughput.

Lastly, Fig. 5.7 shows a CDF of the APs’ connection durations by hour for

Weighted Setcover on weekdays.8 Each hour is represented in the plot, with some

interesting hours labeled for analysis. From the figure, we can see that the APs’ con-

nection durations also follows a diurnal trend. In the early morning and late-evening

hours, when there are fewer buses and vehicles on the road, bots maintain shorter

connections with each AP; for example, at 3 a.m. and 11 p.m., ≈98% and ≈92% of

AP connections last 30 seconds or less, respectively. During rush hours and midday,

the connection durations increase, with 8 a.m., 12 p.m. and 5 p.m. having ≈85%,

≈80% and ≈78% of connections lasting 30 seconds or less, respectively. Despite these

incongruities, ≈98% of all connections are for a minute or less, meaning attacks will

8The various intelligent algorithms all have similar results, and even Näıve demonstrates similar
trends, though for slightly decreased connection durations.
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be spread across many different APs, hindering detection.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

P
e
rc

e
n
t 
o
f 
c
o
n
n
e
c
ti
o
n
s

Connection length

03 AM
08 AM
12 PM
05 PM
11 PM

Figure 5.7: CDF of APs’ connection durations per hour for Weighted Setcover during
weekdays

5.5.2 Command and Control

In this section, we aim to answer the following questions concerning mobile WiFi

botnet C&C:

• What level of control does the botmaster have in terms of the number of bots

reachable and how frequently the bots can receive commands?

• How long does it take a command to propagate through the reachable botnet?

• How is the botnet distributed across open WiFi APs?

First, to help determine the botmaster’s level of control, we calculated, for each

hour, the average number of unique bots (i.e., cabs or buses) that could receive at

least one command, which we term the reachability. For cabs during the weekday

rush hours, the results were fairly consistent, with typically ≈73–75% of the total
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cabs receiving commands. Exceptions included 6–8 a.m., with only ≈56–65%, and

6:30–7:30 p.m., where the amount steadily increases from ≈75% to ≈82% as the week

progresses, presumably from people also going out recreationally in the evening (e.g.,

dinner). During the weekend, the results demonstrate a clear diurnal trend, shown in

Fig. 5.8. Unsurprisingly, Saturday evening from 7 p.m. to midnight—when people go

out for dinner or to bars—provides botmasters access to the largest portion of their

available botnet per hour (≈75–84%). These results are also observed for Saturday

and Sunday mornings between midnight and 2 a.m., when people are returning home

from a Friday and Saturday night out.

Figure 5.8: Average number of cabs receiving commands on weekends

When analyzing the bus botnet’s C&C results, it quickly became apparent that

the various AP-selection algorithms achieved nearly identical results. To determine if

this was a shortcoming of the selection algorithms or an artifact of the bots’ mobility

and San Francisco’s open WiFi topology, we simulated a theoretically optimal AP-

selection algorithm that is impossible to achieve in practice: we treat every AP within

range of the bot as the same AP at a distance of 0 meter from the bot. Notice
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that in this scenario, bots will not need to perform AP switches unless there is a

period when no APs are within range; the throughput at every AP will also be the

maximum achievable. By removing any overhead due to AP reassociations and using a

maximum throughput at all times, we can determine if there is any room for potential

improvement in our AP-selection algorithms with respect to C&C.

As previously done for cabs, we calculated and plotted the bus botnet’s reacha-

bility, shown in Figs. 5.9 and 5.11 for weekdays and Sundays; Saturdays have been

omitted due to their similarity to Sundays. For both weekdays and weekends, the

plots demonstrate the same strong diurnal trend—dependent on the number of buses

in service—as in Figs. 5.3 and 5.4. Since the number of buses in service changes hourly,

we have plotted the percentage of running buses reachable per hour in Figs. 5.10 and

5.12. From the figures, we can see that the various AP-selection algorithms achieve

virtually identical results, which are nearly those achieved by the optimal algorithm.

These results indicate that achieving optimal hourly C&C is independent of the AP-

selection algorithm used. This is because botnet C&C can function effectively when

receiving commands every few hours, and for a given hour, it is highly likely that bots

will be within range of at least one AP long enough to receive a command. Form

Figs. 5.10 and 5.12, we can see that for any hour of the day, more than 80% of the

running buses can receive a command, often more than 90%.

Next, for those bots able to receive commands within a given hour, we calculated

the percentage of minutes when a new command could be received, which we term the

bot responsiveness. It can be interpreted as a bot’s probability—for a given hour—

of receiving commands within a minute of them being issued. For the less regular

cab mobility, the botnet’s average responsiveness is shown in Figs. 5.13 and 5.14 for

weekday rush hours and weekends; a complementary CDF of the responsiveness per

bot across all weekdays and weekends for particular hours is shown in Fig. 5.15. From

the figures, we see that the evening hours afford the greatest responsiveness due to
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Figure 5.9: Number of reachable buses per hour during weekdays

the combined traffic congestion of people returning from work and going out for the

evening. When traffic is less congested, cabs are able to move more quickly, spending

less time at each WiFi AP. Once out of an AP’s range, bots must associate and

reconnect with a new network before receiving commands, and this delay results in

the lower average responsiveness demonstrated during less popular commute hours.

From Figs. 5.8 and 5.14, which share a strong diurnal trend, we find that the peak

evening and early morning hours not only grant access to a large percentage (≈75–

84%) of the available botnet, but that bots receiving commands during these times

are highly responsive, with the average responsiveness exceeding 50%. This fine-

level of control is also observed during weekday evenings between 6:30–7:30 p.m.

While evenings impart the greatest level of control during a given hour, all the hours

examined provide relatively quick control over a significant portion of the botnet.

Even during the worst period, between 4–6 a.m. on weekends when people are asleep

and fewer cabs are active, ≈39% of mobile bots are able to receive commands with an

average responsiveness above 30%. If a greater level of control is necessary, botmasters
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Figure 5.10: Percentage of active buses reachable per hour during weekdays

could resort to using home WiFi networks at this time, though it may increase their

risk of detection.

Similar responsiveness results are observed for the bus botnet, shown for the var-

ious AP-selection algorithms during weekdays and Sundays in Figs. 5.16 and 5.16,

respectively; again, Saturday is omitted due to its similarity to Sunday. From the

figures, we find that, as with reachability, the various AP-selection algorithms have

little effect on the bots’ responsiveness, with all of them performing nearly optimally.

Furthermore, with the exception of midnight, 1 a.m. and 5 a.m., the botnet’s average

responsiveness is at least 30% and often more than 35%. Figure 5.18 shows the CDF

of the responsiveness per bot across all weekday hours when using Weighted Setcover;

the other AP-selection algorithms produced similar results. From the figure, we find

that for all the hours except midnight, 1 a.m. and 5 a.m., ≈20–40% of the botnet has

a responsiveness greater than 50%. Taken in conjunction with our previous reacha-

bility results, we discover that, for any given hour, more than 80% of our bots will

receive a command, and of those that do, typically more than 1/3 of them will receive
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Figure 5.11: Number of reachable buses per hour on Sunday

the command within a minute of it being issued.

To determine how quickly commands spread throughout the botnet, we issue a

new command at various hours, plotting how many bots the command propagates

to over a 2-hour period. For the cab botnet, we show this for 4 command-injection

times averaged across all weekdays and 4 command-injection times averaged across

all weekend days in Fig. 5.19. Fig. 5.20 shows 4 weekend command-injection times

independently averaged across all Saturdays and Sundays. In Fig. 5.19, all commands

(except those issued at 7 a.m. on a weekend) reach at least 300 mobile bots (i.e., ≈56%

of the botnet) within 30 minutes of injection; after 2 hours, they have propagated

to at least 75% of the reachable botnet. Similar results are observed in the more

detailed weekend plot. It is apparent that certain injection times provide significant

gains in command propagation. Issuing commands at 10 p.m. on weekends or at 9

a.m. or 6:30 p.m. on weekdays results in at least 65% of the reachable cabs receiving

the command within 30 minutes of injection. From Fig. 5.20, we find that commands

issued on Saturdays at 10 p.m. propagate even more quickly, arriving at ≈76% of the
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Figure 5.12: Percentage of active buses reachable per hour on Sunday

Figure 5.13: Average cab responsiveness during weekday rush hours

reachable botnet within 30 minutes of injection. Even in the worst case, when issuing

a command at 7 a.m. on a weekend, over 61% of bots have received the command

within 2 hours of injection.
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Figure 5.14: Average cab responsiveness during weekends

For the bus botnet, we look at the number of active buses and the number able to

receive commands for the different AP-selection algorithms and injection times, shown

in Figs. 5.21 and 5.22 for 4 and 8 a.m. on weekdays, respectively. We observed similar

behavior for all injection hours on weekdays and weekends, with most exhibiting

convex growth, as in Fig. 5.22, while the early morning hours demonstrated concave

growth, as in Fig. 5.21. In both figures, the upper line represents the number of

buses that have been active since the time of injection, while the lower line shows the

number of bots that have received a command since injections for the various AP-

selection algorithms. Notice in both figures that the shape of the curve is dictated by

the upper line, i.e., the number of buses active and able to receive commands. The

convex growth in early morning hours results from there being so few buses in service;

when more buses are introduced, the relative growth rate is more extreme. From the

figures, it is clear that the improved throughput of the more advanced AP-selection

algorithms has almost no influence on command propagation. Despite the choice of

AP-selection algorithm or the time of injection, commands quickly reach over 80%

of the botnet—and soon over 90%. For example, at 8 a.m. on a weekday, it takes
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Figure 5.15: CDF of responsiveness per cab

only ≈10 minutes for the command to reach over 80% of the active buses. Despite

the constant introduction of new buses, this ratio continues to improves with time,

such that after one hour, ≈94% of active buses have received a command. These

results demonstrate that botmasters can reach a large percentage of their botnet in a

relatively short amount of time, and in the case of buses, this propagation keeps pace

with the increasing size of the botnet as new buses are introduced.

Lastly, we are interested in determining how the botnet is distributed over the

open WiFi networks. If only a small set of networks are used, then they have a

significant view of the overall botnet activity, making detection and mitigation easier.

Fig. 5.23 shows a heat map of the open APs used by the cab botnet from 6–10 a.m.

on weekdays. Each dot is an area of 2,500 m2, where the color represents the average

number of unique cabs receiving commands from open APs in that area. Fig. 5.24 is

a CDF plot that’s complementary to the heat map, showing the average number of

cabs using an open AP per minute. As can be seen from the map, the botnet C&C

is spread across a large number of open WiFi networks, making detection difficult.
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Figure 5.16: Average responsiveness per hour during weekdays for bus botnet

While the open APs along major highways and downtown are utilized by more cabs,

most service only around 50 different cabs during the 4-hour period. Furthermore,

Fig. 5.24 shows that 90% of the open APs are used by only 5 or fewer simultaneous

bots during any given minute. Of the remaining 10%, less than 2% ever have more

than 10 bots using them during any given minute, and even they never have more

than 23. Since commands can take only seconds to receive, even 23 bots sharing

an open WiFi network produce little traffic during a minute, easily blending amidst

other traffic and hindering detection.

C&C activity is also well distributed for the bus botnet. Fig. 5.25 is a CDF

showing the number of bots performing C&C at each unique AP per minute for

Weighted Setcover on weekdays; results were similar for the weekends and the other

AP-selection algorithms. From the figure, we find that during any given minute,

≈90% of APs have 5 or fewer simultaneous bots using them for C&C, and ≈99%

have 10 or fewer. The presence of 5–10 bots performing C&C per AP is easily hidden

amidst the network’s normal traffic. Fig. 5.26 shows the number of unique APs used

216



 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20

A
v
e
ra

g
e
 r

e
s
p
o
n
s
iv

e
n
e
s
s

Hour

Optimal
Weighted setcover patched

Weighted setcover
Setcover patched

Setcover
Naive patched

Naive

Figure 5.17: Average responsiveness per hour on Sunday for bus botnet

by bots per minute and hour for both the Weighted Setcover and the Näıve AP-

selection algorithms. We find that there are typically 100–300 unique APs used per

minute for C&C, sufficiently spreading the attack across multiple networks. While

this number can occasionally drop to as low as 10 APs per minute in the early morning

hours, we find, from Fig. 5.9, that the number of buses reachable during these times

is also significantly reduced (to ≈50–100 bots), meaning that the attack is sufficiently

distributed. We also find that Weighted Setcover uses fewer unique APs per hour than

the Näıve protocol. This is an artifact of it minimizing AP switches by increasing the

amount of time spent at each AP, resulting in the attack being spread across fewer

open networks. Still, even intelligent AP-selection achieves a sufficiently distributed

attack to make detection more difficult. From these results, we observe that a highly

mobile WiFi botnet can successfully be controlled using only open WiFi APs, and

when spread across many different APs, its C&C traffic for any given AP is small and

easily hidden, making it difficult to detect.
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weekends for cab botnet
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Figure 5.21: Maximum and actual command propagation for various AP-selection
algorithms injected at 4 a.m. on weekdays for bus botnet
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5.5.3 DDoS Attack

In this section, we aim to answer the following questions concerning mobile WiFi

botnet DDoS attacks:

• What is the botnet’s capacity for DDoS attacks?

• How are DDoS attacks distributed across open WiFi APs?

To answer these questions, we simulate the DDoS protocol described in Sec-

tion 5.4.4.2 using our cab and bus mobility data. Figures 5.27–5.30 plot the average

number of SYN packets sent per hour by the mobile WiFi botnet for cabs during

weekday rush hours and weekends and for buses during weekdays and Sundays.9 In

the case of the more random cab mobility, shown in Figs. 5.27 and 5.28, we find that

during the peak weekday commute hours of 8–10 a.m. and 5:30–7:30 p.m., the botnet

is capable of issuing ≈1.4 million SYN packets per hour (≈389 per second). During

prime weekend hours, the capacity is even greater, achieving ≈1.4–1.7 million SYNs

per hour (≈389–472 per second). Except for the lull between 3–7 a.m. on weekends,

the mobile botnet can achieve between 0.8–1.2 million SYNs per hour (≈222–389 per

second). Even at its lowest capacity, between 4–6 a.m. on weekends, the botnet can

issue ≈500,000 SYNs per hour (≈139 per second).

For the more predictable bus mobility, shown in Figs. 5.29 and 5.30, we discover

that the more intelligent AP-selection algorithms achieve a slight edge over their näıve

counterparts. During the peak hour of 5 p.m., both Näıve and Setcover can issue ≈3.8

and 4 million SYN packets per hour (≈1,100 per sec) on weekdays, respectively, and

≈3 and 3.1 million per hour (≈850 per sec) on Sunday, respectively. Typically, all

of the AP-selection algorithms can issue more than 2 million SYNs per hour (≈555

per sec) on weekdays and more than 1.5 million (≈417 per sec) on Sunday. Even

at its lowest point, the botnet can issue ≈110,000 SYNs per hour (≈30 per sec) on

9Bus results for Saturday have been omitted since they are similar to Sunday’s.
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weekdays and Sunday.

According to [54], an unprotected server—or one using a default firewall configuration—

can survive DDoS attacks of only 100 SYNs per sec. However, a properly configured

firewall can survive DDoS attacks of 500 SYNs per sec, effectively defeating the DDoS

capacity of the smaller cab botnet as well as the larger bus botnet during early morn-

ing hours. Nevertheless, we have demonstrated that mobile WiFi botnets have the

potential to issue disruptive DDoS attacks; even with only a few bots or during sub-

optimal hours, they could prove valuable when used to augment the DDoS attacks

of larger, traditional botnets or mobile botnets in other cities, making them an ideal

mechanism for infiltrating the mobile environment.

Figure 5.27: Average number of SYN packets sent during weekday rush hours by cab
botnet

While mobile WiFi botnets’ DDoS attacks possess sufficient capacity for mayhem,

they must also be adequately distributed across multiple open WiFi networks to avoid

detection. If the attack originates from only a small set of open APs, or too many

bots operate from behind a single network, the attack is more easily detected and

mitigated. To determine if the DDoS attack is sufficiently distributed to encumber

detection, we examine the number of APs used per minute for both sets of mobility
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Figure 5.28: Average number of SYN packets sent during weekends by cab botnet

data. First, Fig. 5.31 plots the average and maximum number of APs used per minute

by cabs during their morning commute hours (6–10 a.m.); a complementary CDF of

the average number of cabs using an open AP per minute during this same time

period is provided in Fig. 5.32. From Fig. 5.31, it is apparent that the DDoS attack

is spread across multiple APs, ranging from 220 to over 340 different APs per minute

in the average case. Furthermore, Fig. 5.32 shows that over 50% of the open APs

used in the attack only service a single mobile bot per minute, and over 86% service

5 or fewer bots per minute.

To capture the extremes of the bus botnet’s different AP-selection algorithms,

we have plotted the number of unique APs used per minute and hour for Näıve and

Weighted Setcover during weekdays in Fig. 5.33. As with C&C, the number of APs

used in the DDoS attack demonstrates a strong diurnal trend in conjunction with

the number of buses in service. From the figure, it is apparent that the DDoS attack

is spread across numerous APs per minute and hour, with Weighted Setcover using

fewer unique APs as a consequence of minimizing AP switches. From the CDF plot

in Fig. 5.34, showing the the number of bots performing the DDoS attack at each AP
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Figure 5.29: Number of SYN packets sent each hour during weekdays by bus botnet

per minute for Weighted Setcover during weekdays, we find, for all hours, that ≈90%

of APs have 6 or fewer simultaneous bots per minute, and ≈99% of have 10 or fewer;

these results are representative of the other AP-selection algorithms as well.

Thus, we find that mobile WiFi botnet DDoS attacks are distributed across many

different open networks, with each network participating in only a small portion

of the attacks. Obviously, this makes detection increasingly difficult for defenders.

Considering their overall stealth and capacity, mobile WiFi botnets could prove a

serious future threat as a DDoS attack mechanism.
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Figure 5.30: Number of SYN packets sent each hour on Sunday by bus botnet
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Figure 5.31: Average and max number of APs used per minute for DDoS attacks
during weekday morning rush hours by cab botnet
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during weekdays for cab botnet
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Figure 5.33: Total number of unique APs used in DDoS per unit time during weekdays
by bus botnet
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5.5.4 Spam Attack

In this section, we aim to answer the following questions concerning mobile WiFi

botnet spam attacks:

• What is the botnet’s capacity for spam attacks?

• How are spam attacks distributed across open APs?

For the cab botnet, we plot the lower- and upper-bound (i.e., spam lower and

spam upper) average number of spam emails sent hourly during weekday rush hours,

Saturdays, and Sundays in Figs. 5.35–5.38. From the figures, we find that the amount

of spam sent follows the familiar diurnal patterns seen in the previous, less data-

intensive, C&C and DDoS attacks. Furthermore, between the lower- and upper-

bounds, there is an order-of-magnitude disparity in the quantity of spam sent, with

spam lower being capable of issuing tens of thousands of spam emails hourly compared

to spam upper’s hundreds of thousands. For the weekday rush hours, both achieve

their best results during the second half of the morning and afternoon commute

hours (i.e., 8 and 9 a.m. and 5:30 and 6:30 p.m.). During these times, spam lower

can typically issue over 20,000 spam emails hourly, while spam upper can typically

issue over 300,000; the exception being Mondays, when slightly fewer emails can be

sent. During the other weekday commute hours, spam lower and spam upper can,

on average, send over 15,000 and 200,000 spam emails, respectively. Even amidst

their weakest hour of 6 a.m., spam lower can still issue over 10,000 emails an hour

and spam upper over 150,000. Despite utilizing only these 8 weekday rush hours,

this amounts to a considerable volume of daily spam, as shown in Figs 5.39 and 5.41

for spam lower and spam upper, respectively. Independent of the day, spam lower

can send between ≈130,000 and 160,000 spam emails, while spam upper can attain

the considerably higher range of ≈1.9 to 2.3 million. For both spam upper and

spam lower, we observe a similar allotment of spam sent hourly during the weekends
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as is seen during the weekday rush hours. However, the magnitude sent follows

a different diurnal trend due to the weekends possessing mobility patterns distinct

from the weekdays. For instance, the optimal weekday hours of 8 and 9 a.m. and

5:30 and 6:30 p.m. are not the optimal hours during the weekends. On the contrary,

Sunday’s spam throughput is fairly consistent from 7 a.m. until midnight, with only

minor oscillations, while Saturday’s peak hours are observed during the evenings,

when people are likely out to dinner and/or the bars; in fact, Sunday’s maximum

spam throughput occurs between midnight and 1 a.m., when people are returning

from a Saturday night out. Throughout Saturday’s evening hours (i.e., from 6 p.m.

to 1 a.m.), spam lower is able to issue over 20,000 emails hourly, while spam upper

is able to issue over 300,000. For both Saturdays and Sundays, spam lower rarely

falls below 15,000 emails per hour, and spam upper rarely falls below 200,000. Even

during their worst hours, both spam lower and spam upper can issue a formidable

amount of spam; during the early morning hours of 4 and 5 a.m., spam lower can

send over 6,000 emails, while spam upper can send over 100,000. The spamming

potential during the weekends becomes even more apparent when viewed as a daily

aggregate, with spam lower able to issue between ≈400,000 and 450,000 spam emails

daily and spam upper between ≈5.5 and 6.5 million, as shown in Figs. 5.40 and

5.42, respectively. The sizable gulf that exists between the upper- and lower-bound

spamming capabilities evinces the potential for improvement that can be made with

more intelligent spamming methods. However, even the lower-bound quantity of

spam sent is daunting, numbering in the hundreds of thousands daily and originating

from only a small mobile botnet, which never exceeds 536 simultaneously active bots.

Should our highly mobile botnet prove as adept in spreading its spamming traffic

across numerous APs as it has with its other attack traffic, it will further attest to

the severity of the future mobile botnet threat lurking on the horizon.
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Figure 5.35: Average number of spam messages sent each hour during weekday rush
hours for spam lower by cab botnet
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Figure 5.36: Average number of spam messages sent each hour during weekends for
spam lower by cab botnet
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Figure 5.37: Average number of spam messages sent each hour during weekday rush
hours for spam upper by cab botnet
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Figure 5.38: Average number of spam messages sent each hour during weekends for
spam upper by spam cab botnet
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Figure 5.39: Average total number of spam emails sent per day during weekday rush
hours for spam lower by cab botnet

Figure 5.40: Average total number of spam emails sent per day during weekends for
spam lower by cab botnet
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Figure 5.41: Average total number of spam emails sent per day during weekday rush
hours for spam upper by cab botnet

Figure 5.42: Average total number of spam emails sent per day during weekends for
spam upper by cab botnet
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For the bus botnet’s various AP-selection algorithms, the amount of lower- and

upper-bound spam emails sent during weekdays and Sunday are shown in in Figs 5.43–

5.46; Saturday has been omitted due to its similarity to Sunday. For both spam lower

and spam upper, Setcover and Setcover patched performed better than the Näıve

algorithms but only slightly worse than the Weighted Setcover variants. For example,

for spam lower during the peak hour of 5 p.m. on weekdays, Setcover patched issued

≈1,000 fewer (≈98.7%) spam emails than Weighted Setcover and its patched version;

likewise, Setcover issued ≈1,100 fewer (≈98.5%) than Setcover patched, and Näıve

issued ≈1,200 fewer (≈98.1%) than Näıve patched. More significant gains could be

found between Näıve patched and Setcover, with Näıve patched issuing ≈7,900 fewer

(≈89.4%) spam emails hourly than Setcover; this is ≈7–8x the improvement observed

between any other pair of AP-selection algorithms. The improvement between the

simple Näıve and the more advanced Weighted Setcover10 is even more pronounced,

with Näıve issuing ≈65,700 emails at 5 p.m. on weekdays compared to Weighted

Setcover’s ≈77,000—over a 17% increase in spam emails sent. Saturday and Sunday

have similar results, though the quantity of spam is slightly less as there are fewer

buses in service on weekends than the weekdays—e.g., at 5 p.m. on Sundays, ≈15,000

fewer spam emails are sent per AP-selection algorithm than on weekdays. Even

during the early morning hours, when there is less distinction between the various

AP-selection algorithm’s output, they are all still capable of spamming ≈2,000 targets

hourly on both weekdays and weekends.

The intelligent AP-selection algorithms produce similar results for spam upper,

though the sheer magnitude in the amount of spam sent is greatly increased. For ex-

ample, for spam upper during the peak hour of 5 p.m. on weekdays, Setcover patched

issued ≈8,500 fewer (≈99.2%) spam emails than Weighted Setcover and its patched

version; likewise, Setcover issued ≈5,200 fewer (≈99.5%) than Setcover patched, and

10Recall, Weighted Setcover and its patched variant produced nearly identical results.
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Näıve issued ≈5,600 fewer (≈99.4%) than Näıve patched. As with spam lower, the

most significant gains were found between Näıve patched and Setcover, with Näıve

patched issuing ≈95,900 fewer (≈90.7%) spam emails than Setcover—between ≈11–

18x the improvement observed between any other pair of AP-selection algorithms.

Once again, the greatest improvement is observed between Näıve and Weighted Set-

cover; however, spam upper’s use of multiple recipients has drastically increased the

amount of spam sent. For example, at 5 p.m., Näıve can issue ≈934,000 spam on

weekdays and ≈738,000 on Sundays. The use of Weighted Setcover has increased this

quantity by over 12%, to ≈1,050,000 on weekdays and ≈830,000 on Sunday.

These similar results for spam lower and spam upper clearly demonstrate the room

for improvement that intelligent AP-selection can provide, accentuating the bene-

fits of more advanced approaches over simpler ones based on heuristics, such as our

patch-based solutions. While simple, heuristic approaches are easier to implement

and require less a priori knowledge, they cannot produce the level of improvement

attainable through more complex techniques assimilating various sources of data into

their solution. More intelligent AP-selection methods than our Setcover and Weighted

Setcover variants could provide botmasters with even greater improvements, further

increasing the threat of mobile botnet spam. Furthermore, the figures demonstrate

the type of gains that can be achieved from issuing multiple spam emails to a single

mail server, with spam upper able to send an order-of-magnitude (i.e, ≈12–15x) more

spam than spam lower, independent of the day or AP-selection algorithm. These dra-

matic increases are also observed during the early morning hours, when the number

of buses in service is at its minimum. At these times, spam upper can send ≈23,000–

39,000 emails on weekdays and ≈19,000–30,000 on Sunday—between 25–50% of the

maximum amount spam lower can issue during its optimal hour. The discrepancy

between these two spam protocols can be further witnessed in Fig. 5.47, which shows

the total amount of spam sent daily by each protocol for Näıve and Weighted Set-
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cover. While our spam upper protocol represents a theoretical maximum unlikely to

occur in nature, it demonstrates that using multiple recipients for common email do-

mains can result in improvements over the simpler one-to-one approach—a technique

made practical by the popularity and prevalence of free email services, such as GMail,

Hotmail, and Yahoo! mail.
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Figure 5.44: Number of spam messages sent each hour on Sunday for spam lower by
bus botnet
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Figure 5.45: Number of spam messages sent each hour during weekdays for
spam upper by bus botnet
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Figure 5.46: Number of spam messages sent each hour on Sunday for spam upper by
spam bus botnet

Figure 5.47: Total number of spam emails sent per day by bus botnet

240



As previously done for C&C and DDoS, we next examine if the cab and bus

botnet spam attacks are sufficiently distributed across APs to encumber detection.

We first examine the cab botnet, plotting the number of bots sending spam at each

AP per minute during weekday rush hours, Saturdays, and Sundays for spam lower

and spam upper in Figs. 5.48–5.53. Additionally, we plot the maximum and av-

erage number of APs used during each minute and hour by the cab botnet during

weekday rush hours, Saturdays, and Sundays for both spam lower and spam upper in

Figs. 5.54–5.59. These results, which are similar for both spam lower and spam upper

independent of the day, indicate that the cab botnet’s spam attack is well distributed

across open APs, complicating detection. For example, for any given day and hour,

for both spam lower and spam upper, ≈80–94% of open APs are utilized by only a

single bot per minute, and ≈99.1–99.6% of open APs are used by 3 or fewer bots per

minute. Of the ≈0.9–0.4% of open APs that do service more than 3 bots per minute,

none ever exceed 10–15 bots per minute. While 10–15 bots issuing spam behind a

single open AP could simplify detection, it should be noted that these extremes only

occur for a very limited number of APs, and when they do occur, it is only for a

minute or less before the bots migrate to another open AP; even if the bots are dis-

covered during this short window, they will have soon transferred to another open

AP where they can continue their attack unabated.

Figures 5.54–5.59 affirm the distributed nature of the cab botnet’s spam attack.

With the exception of the early morning hours, the botnet typically makes use of

more than ≈1,000 unique open APs per hour, or ≈100–200 per minute. Even during

the early morning hours, when there are considerably fewer mobile bots in service, the

botnet still spreads its attack over a significant number of open APs. For example,

during 6 a.m. on weekdays, it makes use of over ≈900 distinct APs per hour, while

during the extreme weekend lull from 3–6 a.m., it spreads the attack across ≈700–900

APs per hour. Also from these figures, we can see that the average number of unique

241



APs used, both hourly and per minute, is nearly as many as the maximum, indicating

that the attack is consistently well distributed throughout the day and not oscillating

over a wide and unpredictable range.
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spam lower during weekday rush hours for cab botnet
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Figure 5.49: CDF of number of bots sending spam at each AP per minute for
spam lower on Saturday for cab botnet

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
A

P
s

Number of cabs using an AP each minute

6 AM
12 PM
6 PM

Figure 5.50: CDF of number of bots sending spam at each AP per minute for
spam lower on Sunday for cab botnet
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Figure 5.51: CDF of number of bots sending spam at each AP per minute for
spam upper during weekday rush hours for cab botnet
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Figure 5.52: CDF of number of bots sending spam at each AP per minute for
spam upper on Saturday for cab botnet
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Figure 5.53: CDF of number of bots sending spam at each AP per minute for
spam upper on Sunday for cab botnet
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Figure 5.54: Average and max number of unique APs used for spam lower per unit
time during weekday rush hours by cab botnet
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Figure 5.55: Average and max number of unique APs used for spam lower per unit
time on Saturday by cab botnet
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Figure 5.56: Average and max number of unique APs used for spam lower per unit
time on Sunday by cab botnet
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Figure 5.57: Average and max number of unique APs used for spam upper per unit
time during weekday rush hours by cab botnet
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Figure 5.58: Average and max number of unique APs used for spam upper per unit
time on Saturday by cab botnet
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Figure 5.59: Average and max number of unique APs used for spam upper per unit
time on Sunday by cab botnet
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For the bus botnet, the number of bots sending spam at each AP per minute

when using Weighted Setcover during weekdays is shown in Figs 5.60 and 5.61 for

spam lower and spam upper, respectively; the results were similar for Saturday and

Sunday as well as the other AP-selection algorithms. Figures 5.62 and 5.63 show

spam lower’s and spam upper’s total number of APs used per minute and hour by

the Näıve and Weighted Setcover AP-selection algorithms; the other AP-selection

algorithms fell between the bounds of the two end-cases displayed, with Saturday

and Sunday producing similar results. From the figures, we find that, as with the cab

botnet, both spam lower and spam upper are sufficiently distributed across numerous

APs. Furthermore, for all hours in both attacks, ≈90% of the APs are used by 5 or

fewer simultaneous bots per minute, and ≈99% are used by 8 or fewer. Lastly, we

notice that because Weighted Setcover attempts to minimize AP switches, it naturally

uses fewer unique APs per hour than Näıve; even so, it still makes use of hundreds of

unique APs per hour and is sufficiently distributed to encumber detection.

Because spam emails issued by a mobile WiFi botnet originate from multiple APs,

with bots sending a few at each network before switching, detection and mitigation of

the spam sources becomes incredibly difficult. Considering that the amount of spam

sent by our lower-bound is in the hundreds of thousands daily, mobile WiFi botnets

should be considered a serious potential threat as a discrete and powerful spamming

mechanism for botmasters.
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Figure 5.60: CDF of number of bots sending spam at each AP per minute for
spam lower using Weighted Setcover during weekdays for bus botnet
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Figure 5.61: CDF of number of bots sending spam at each AP per minute for
spam upper using Weighted Setcover during weekdays by bus botnet
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Figure 5.62: Total number of unique APs used for spam lower per unit time during
weekdays by bus botnet
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Figure 5.63: Total number of unique APs used for spam upper per unit time during
weekdays by bus botnet

251



5.6 Defense Strategies

The most obvious defense strategy is to require WiFi APs to use some form of

encryption, such as WEP or WPA2, reducing the number of open APs available to

mobile botnets and diminishing their overall capabilities. However, this approach

may not be suitable for many WiFi networks, whose users may desire or require

the networks to be unencrypted (e.g., restaurant and cafes, see Section 5.3.1). An

alternate strategy can be employed that imposes an association delay on open WiFi

APs, making users wait a certain amount of time before granting online access.11

Depending on the delay’s duration, mobile bots traveling in vehicles may not be

within range of APs long enough to complete the C&C protocol.12 Likewise, a delay

limits the number of SYN packets and spam emails mobile bots can issue from a given

AP.

We simulate this strategy for several different delay periods. For weekday rush

hours and various delays, Figs. 5.64 and 5.65 show the average number of cabs able

to receive commands and the average cab responsiveness. While even modest delays

of 5 to 10 seconds can impact the average cab responsiveness, the number of cabs

able to receive commands is not significantly diminished until larger delays of 30 and

60 seconds are enforced. This is reaffirmed in Fig. 5.66, which shows the average

propagation rate for different delay periods when a command is issued at 9 a.m. on

a weekday. Only with 30- and 60-second delays do we begin to see a significant

decrease in propagation. Longer delays degrade the botnet’s C&C even further, with

a 5-minute delay reducing command propagation from ≈80% after 2 hours down to

only ≈20%, and 10-minute delay to less than 10%.

11Notice, open WiFi networks that require users to click an “Accept” button before granting
access are essentially implementing a very short delay, as bots can automatically “click” the button
to gain access.

12Clearly, this approach is best suited for highly mobile bots, such as those traveling in vehicles,
and it is unlikely to achieve as good as results with the slower mobility of pedestrians.
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Figure 5.64: Average number of bots receiving commands during weekday rush hours
for various delays for cab botnet

Figure 5.65: Average bot responsiveness during weekday rush hours for various delays
for cab botnet
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Figure 5.66: Average number bots receiving commands after a 9 a.m. injection for
various delays during weekdays for cab botnet
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Similar results are observed for the bus botnet. Figures 5.67–5.70 show the per-

centage of the bus botnet reachable and its responsiveness during weekdays and Sun-

day for various delays using the Näıve AP-selection algorithm; the other AP-selection

algorithms produced similar results for the different delays. From the figures, we can

see that while shorter delays somewhat decrease the botnet’s reachability and respon-

siveness, delays of 30 seconds or more are required to significantly reduce the amount

of bots able to receive commands. We also notice, from the Figs 5.67 and 5.68, that

delays more than 30 seconds have minimal additional impact on the botnet’s overall

responsiveness. The choice of a 30-second delay defense is supported by the command

propagation plots in Figs. 5.71 and 5.72 for commands injected at 4 and 8 a.m. on

weekdays, respectively. While the figures only show the effect of delays on the Näıve

AP-selection algorithm, the other selection algorithms produced similar results. Here,

too, we find that delays of 30 seconds or more are required to significantly impair the

botnet’s command propagation, with further delay increases providing diminishing

returns.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

P
e
rc

e
n
t 
o
f 
re

a
c
h
a
b
le

 b
u
s
e
s

Hour

0s
05s
10s
30s
60s

120s
300s
600s

Figure 5.67: Percent of active botnet able to receive commands during weekdays using
Näıve AP-selection for various delays for bus botnet
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Figure 5.68: Percent of active botnet able to receive commands on Sunday using
Näıve AP-selection for various delays for bus botnet
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Figure 5.69: Average bot responsiveness during weekdays using Näıve AP-selection
for various delays for bus botnet
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Figure 5.70: Average responsiveness on Sunday using Näıve AP-selection for various
delays for bus botnet
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Figure 5.71: Maximum and actual propagation for a command injected at 4 a.m. dur-
ing weekdays for various delays for bus botnet using Näıve AP-selection
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Figure 5.72: Maximum and actual propagation for a command injected at 8 a.m. dur-
ing weekdays for various delays for bus botnet using Näıve AP-selection
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Since considerable delays are necessary for this defensive strategy to succeed, likely

annoying legitimate users, this approach is not ideal for mitigating C&C activity.

However, if a delay is to be used, it appears as if a 30-second delay is the best choice

for hindering the botnet with minimal impact on legitimate users.

While certainly useful, most botnets do not require a high level of responsiveness

per hour, functioning effectively when able to receive commands every few hours.

Meanwhile, a DDoS attack’s success is directly tied to the rate it can issue SYN

packets to a target victim. Therefore, we expect the delay strategy to disrupt DDoS

attacks better than the C&C channel. Fig. 5.73 shows the average number of SYN

packets issued by the cab botnet per hour for different delays during weekday rush

hours. As expected, even small delays significantly reduce the botnet’s DDoS capacity.

Delays of 30 seconds and more reduce the capacity to below 300,000 SYNs per hour

(≈83 SYNs per second) for most hours, making the attack no longer feasible against

even unprotected servers. Unfortunately, botmasters can combat this by swelling

their mobile botnet ranks to increase their overall DDoS capacity. While defenders

can respond by with longer delays, these will likely irritate legitimate users, limiting

the applicability of this defensive measure.

For the bus botnet, we plot the effect of various delays on the amount of SYN

packets for weekdays and Sunday in Figs. 5.74 and 5.75, respectively. Both figures

contain plots of the various AP-selection algorithms we have examined in this chapter.

As previously discovered, we find that the Näıve and Näıve patched variants perform

nearly identically; likewise, the different setcover-based intelligent AP-selection al-

gorithms produce nearly indistinguishable results. Interestingly, the improvement of

the intelligent AP-selection algorithms over the Näıve variants becomes more pro-

nounced for delays of 5 and 10 seconds, indicating that an intelligent AP-selection

algorithm can somewhat mitigate the effects of a delay defense. However, we find that

30-second delays still have a significant impact on the overall number of SYN packets
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sent, despite the use of intelligent AP selection, with further delays providing limited

improvement. For example, between 8 a.m. and 8 p.m. on weekdays, the botnet can

send between 2 and 4 million SYN packets hourly. However, with a 30-second delay

defense, none of those hours can issue more than 700,000 SYN packets (≈194 per

sec); that’s over an 80% decrease from its peak performance of over 4 million SYN

packets with no delay and easily within the capabilities of standard firewalls.

Figure 5.73: Average number of SYN packets issued during weekday rush hours by
cab botnet for various delays
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Figure 5.74: Number of SYN packets issued during weekdays by bus botnet for vari-
ous AP-selection algorithms and delays
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Figure 5.75: Number of SYN packets issued on Sunday by bus botnet for various
AP-selection algorithms and delays
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Lastly, we examine how a delay defense affects the botnet’s spam attack. A

spam attack’s success is measured by the amount of spam the botnet is able to send.

While it is unlikely that a delay defense will completely prevent the botnet from

sending spam, it could significantly impact the quantity of spam sent, much like the

DDoS attack’s SYNs were reduced. Since spam is one of a botnet’s more lucrative

ventures, significantly reducing their capacity for sending spam could severely impact

the botnet’s revenue and spam-based infection mechanisms.

For both spam upper and spam lower, we plot the effect of various delays, ranging

from 5 seconds to 10 minutes, on the amount of spam issued hourly by the cab botnet

during weekday rush hours, Saturday, and Sunday in Figs. 5.76–5.81. As with DDoS,

we find that a delay defense can successfully hinder the magnitude of spam the highly

mobile botnet is able to send. For example, during the top weekday rush hours, a

5-second delay can reduce the amount of spam issued by spam lower by over 5,000

emails and spam upper by over 50,000. Larger delays of 10 and 30 seconds reduce

spam lower by over 10,000 and 15,000 emails, respectively, and reduce spam upper

by over 100,000 and 150,000 emails, respectively. We find similar results during the

weekend. For spam lower, a 5-second delay reduces Saturday’s optimal evening hours

by ≈10,000 spam emails and Sunday’s optimal hour of midnight by over 5,000; for

spam upper, the amount of spam is reduced by ≈100,000 emails in both instances.

Delays of 10 and 30 seconds reduce Saturday’s optimal evening hours by ≈15,000 and

≈20,000 spam emails for spam lower, respectively, and ≈150,000 and over 200,000

for spam upper, respectively. During Sunday’s optimal hour of midnight, 10- and

30-second delays reduce the amount of spam sent by spam lower by over 10,000 and

over 15,000, respectively, and reduce the amount sent by spam upper by ≈150,000

and over 200,000 emails, respectively. While delays greater than 30 seconds continue

to inhibit the amount of spam the botnet can issue, as with the other attacks, the

benefits exhibit diminishing returns and are unlikely to be worth the inconvenience
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they would cause legitimate users.

The effect of various delays on the aggregate amount of spam sent daily by the cab

botnet are plotted in Figs. 5.82 and 5.83 for spam lower and in Figs. 5.84 and 5.85

for spam upper; the weekday plots are averaged across all weekdays (i.e., Monday–

Friday) to keep them readable. From the figures, it is clear that 30-second delays

can significantly impact the amount of spam the botnet is able to send, while delays

greater than 30 seconds provide minimal improvements in countering the attack.

Regardless of the day, delays of 30 seconds tend to reduce the daily amount of spam

both spam lower and spam upper can send by ≈60–70%. For spam lower, this equates

to a reduction of ≈100,000 emails daily during weekday rush hours and ≈300,000

and ≈250,000 emails during Saturday and Sunday, respectively. For spam upper,

the results are similar but, obviously, greater in magnitude, with the daily spam

during weekday rush hours reduced by ≈1.2 million emails and Saturday and Sunday

reduced by ≈4 and ≈3.3 million emails, respectively. Certainly, a simple 30-second

delay can considerably reduce the highly mobile botnet’s spam capacity with minimal

disruption to legitimate users, making it a viable and easily implemented defensive

strategy that preserves the open nature of the APs.
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Figure 5.76: Lower-bound average number of spam emails issued by cab botnet during
weekday rush hours for various delays
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Figure 5.77: Lower-bound average number of spam emails issued on Saturday by cab
botnet for various delays
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Figure 5.78: Lower-bound average number of spam emails issued by cab botnet on
Sunday for various delays
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Figure 5.79: Upper-bound average number of spam emails issued by cab botnet dur-
ing weekday rush hours for various delays
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Figure 5.80: Upper-bound average number of spam emails issued by cab botnet on
Saturday for various delays
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Figure 5.81: Upper-bound average number of spam emails issued by cab botnet on
Sunday for various delays
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Figure 5.82: Lower-bound average number of spam emails issued by cab botnet daily
during weekday rush hours for various delays
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Figure 5.83: Lower-bound average number of spam emails issued by cab botnet daily
during weekends for various delays
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Figure 5.84: Upper-bound average number of spam emails issued daily by cab botnet
during weekday rush hours for various delays
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Figure 5.85: Upper-bound average number of spam emails issued by cab botnet daily
during weekends for various delays
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For the bus botnet, we likewise plot the effect of various delays on the botnet’s

spam capacity. The lower-bound amount of spam sent hourly (spam lower) for week-

days and Sunday is shown in Figs. 5.86 and 5.87, respectively. The hourly upper-

bound (spam upper) for weekdays and Sunday is shown in Figs. 5.88 and 5.89, re-

spectively. The daily amount of spam sent on Saturday, Sunday, and weekdays is

shown in Fig. 5.90 for spam lower and in Fig. 5.91 for spam upper. For all the plots,

both hourly and daily, we show the amount of spam sent for all the AP-selection

algorithms, superimposing their results on one another to more easily discern their

differences.

The first thing to notice is that a delay defense works fairly well against both

spam lower and spam upper. Even a delay of only 5 seconds reduces spam lower’s

daily spam by ≈20 thousand and spam upper’s by ≈2 million. Delays of 10 sec-

onds more than double that reduction in spam, while 30-second delays reduce the

daily spam for both spam lower and spam upper by ≈80%. Second, while the Näıve

patched AP-selection algorithm slightly improves upon the performance of Näıve for

spam lower, it has almost no affect on spam upper; since spam lower it must com-

plete the entire SMTP protocol and transfer the message data for each recipient, it

best exemplifies the gains possible from the improved throughput of Näıve patched.

Lastly, from the plots, we find that the more intelligent AP-selection algorithms can

combat delay defenses of 5 and 10 seconds with moderate success. For example, with

a 5-second delay, Weighted Setcover and its patched variant can issue ≈90% as much

spam daily as Näıve with no delay, and with a 10-second delay, they can send ≈90%

as much spam daily as Näıve with a 5-second delay. Interestingly, the benefits of

the improved AP-selection algorithm end at delays of 30 seconds and more. While

still an improvement over the Näıve approaches, it is a case of diminishing returns.

From this data, we can see that even a modest delay could significantly impact the

botnet’s capacity to send spam. While botmasters could reduce this effect through
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more intelligent AP-selection algorithms, their efforts reap little reward for delays of

30-seconds or greater.
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Figure 5.86: Lower-bound number of spam emails issued during weekdays by bus
botnet for various AP-selection algorithms and delays

From our analysis, it appears that a delay defense could successfully disrupt a

WiFi botnet. We have found that a delay of about 30 seconds seems to be ideal for

disrupting the botnet while providing minimal annoyance to legitimate customers.

While longer delays can further disrupt the botnet, their additional effect exhibits

diminishing returns. While a delay defense is only marginally successful against a

WiFi botnet’s C&C channel, it holds more promise as a defensive measure against

DDoS attacks and spam. However, the best defensive strategy, in terms of maximizing

security while minimizing user inconvenience, might be the use of a CAPTCHA,13

which, while easy for humans to decipher, are currently notoriously difficult—if not

impossible—for bots to solve. In this scenario, once users connect to the WiFi AP,

their browsers are presented with a CAPTCHA, which they must pass before being

granted network access. Thus, users are not troubled with having to obtain passwords

13Completely Automated Public Turing test to tell Computers and Humans Apart.
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Figure 5.87: Lower-bound number of spam emails issued on Sunday by bus botnet
for various AP-selection algorithms and delays

or annoyed at being subjected to potentially long delays before being allowed on the

network. Because solving CAPTCHAs is difficult for computers yet easy for humans,

this approach prevents bots from gaining network access while simultaneously posing

minimal nuisance to legitimate users. With easily deployable CAPTCHAs available,

WiFi APs requiring easy access to their networks (e.g., restaurants, cafes) should

deploy this simple defensive measure before they are exploited by future mobile WiFi

botnets.
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Figure 5.88: Upper-bound number of spam emails issued during weekdays by bus
botnet for various AP-selection algorithms and delays
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Figure 5.89: Upper-bound number of spam emails issued on Sunday by bus botnet
for various AP-selection algorithms and delays
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Figure 5.90: Lower-bound number of spam emails issued daily by bus botnet for var-
ious AP-selection algorithms and delays

Figure 5.91: Upper-bound number of spam emails issued daily by bus botnet for
various AP-selection algorithms and delays
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5.7 Conclusion

In this chapter, we simulate the C&C, DDoS and spam capabilities of highly

mobile botnets using only open and unencrypted WiFi networks for their nefarious

actions. Our simulations make use of real-life cab mobility traces, bus routes and

actual open WiFi AP locations for the urban environment of San Francisco. We

discovered that a mobile botnet, whose bots are traveling quickly through an urban

environment in vehicles, is capable of achieving an HTTP-based C&C channel with

a fine level of control. For the cab botnet, commands typically propagate to more

than 75% of the botnet within 2 hours of injection—sometimes, within as little as

30 minutes of injection. Moreover, those bots able to receive commands usually have

an ≈40–50% probability of receiving them within a minute of them being issued.

The bus botnet performed even better, with commands reaching over 80% of the

botnet within an hour being issued, often reaching more than 90%. Like the cab

botnet, bots able to receive commands have an ≈30–40% probability of receiving

them within a minute of them being issued. This is a significant improvement over

the Bluetooth-based C&C in [64], which achieves ≈67% propagation within 24 hours

of injection. Our cab botnet has demonstrated that even a small mobile botnet of 536

devices can successfully mount DDoS attacks against unprotected systems or systems

using default firewall settings. When utilizing intelligent AP-selection algorithms,

our bus botnet could typically issue over 2 million SYN packets per hour (≈555 per

second) and as many as 4 million (≈1,1000 per second) during its peak hour, revealing

that mobile WiFi botnets possess the potential to mount powerful DDoS attacks.

Furthermore, despite being limited to only open and unencrypted WiFi networks, we

found that highly mobile botnets can serve as powerful spamming mechanisms. For

instance, the smaller cab botnet was able to to issue ≈20,000–300,000 spam emails

during peak weekday and weekend hours and between ≈400,000 and 6.4 million emails

daily on weekends; even when limited to only weekday rush hours (i.e., 8 hours a day),
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it could issue between ≈150,000 and 2.3 million emails daily. Similar results were

observed for the bus botnet, which could send between ≈600,000 and 11.7 million

spam emails daily and over 1 million per hour in certain instances. In addition, our

simulations indicated that the C&C, DDoS attack and spam attack traffic were all

sufficiently distributed across numerous open WiFi networks for both the cab and bus

botnets, with no single open AP over utilized at any given moment. These results

affirm the stealthy capabilities achievable with mobile WiFi botnets, making them

especially alluring to botmasters. Finally, we examined the effectiveness of an easily

implemented delay defense. While delays do little to disrupt botnet C&C, our results

evince that a minor 30-second delay can significantly diminish mobile botnet DDoS

and spam capabilities, with further delays providing diminishing returns. We hope our

preemptive analysis of a theoretical mobile WiFi botnet has illustrated the potential

threat that future mobile WiFi botnets will pose and will help foster detection and

mitigation strategies specifically targeted towards this unique and powerful botnet

environment.
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CHAPTER VI

Conclusions

The emergence of botnets has drastically changed the malware landscape into a

profitable black market. Their success, financial and otherwise, can be attributed to 4

primary properties/strategies. First, botnets must remain stealthy during their prop-

agation, infection and occupation. Only through a meticulous adherence to stealth

can botnets retain their numerous resources, allowing them to continue their nefari-

ous activities and generate profits. Second, bots’ modular nature allows botmasters

to update their functionality post deployment, permitting them to alter their behav-

ior to evade detection and promote new scams. Third, their use of a Command and

Control channel provides botmasters the means of issuing commands to implement

new scams, download binary updates or take evasive measures. Lastly, botnets re-

quire content-delivery mechanisms, such as botnet-based hosting service, so that new

victims can reach their nefarious payload. Throughout the dissertation, we studied

this stealthy aspect of botnets and its imposed limitations. In doing so, we explored

botnets’ primary content delivery mechanism—botnet-based hosting services utilizing

FF DNS-advertisement strategies—and the future mobile botnet threatscape emerg-

ing with the increase in mobile devices and wireless connectivity.

In Chapter II, we presented the prototype RB-Seeker detection system for en-

terprise networks. It provides fast and automatic detection of botnet-based hosting
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services utilizing redirection, employing several statistical correlation and classifica-

tion techniques to analyze network traffic and DNS behavior. Two parallel subsystems

(SSS and NAS) act as first line filters, cooperatively detecting redirection domains

from multiple data sources. The SSS analyzes spam emails compiled from online

repositories, local spam mailboxes and a spam honeypot, following embedded links to

identify redirection domains. The NAS utilizes unique temporal/spatial features (e.g.,

inter-flow duration, flow size) of typical redirection activities to identify redirection

domains without the prohibitively expensive inspection of packet payloads. These

two systems feed into a third, the a-DADS, which exploits atypical DNS-query statis-

tics of RBnet/FF domains to distinguish between malicious and legitimate domains.

Evaluating RB-Seeker on real-world traces, we found it detects both Aggressive and

Stealthy RBnets with low false positives. Due to the prevalent role botnets play in

these RBnet/FF infrastructures, their fast and automatic detection can disrupt their

hosting services and other botnet scams in which they participate. Since its data

sources are readily available in most enterprise networks, RB-Seeker can be incre-

mentally deployed and easily incorporated into existing security systems.

In Chapter III, we examined the global IP-usage patterns exhibited by different

types of malicious and benign domains, including single FF (FFx1) and double FF

(FFx2) domains. We deployed DIGGER, a lightweight DNS-probing engine, on 240

PlanetLab nodes spanning 4 continents, collecting DNS data for over 3.5 months

on a plethora of domains. Our unique global vantage point allowed us to deter-

mine distinguishing behavioral features between domain types based on their public

DNS-query results. Quantifying these features, we demonstrated their effectiveness

in differentiation by building a multi-level, multi-week SVM classifier capable of dis-

criminating between five domain types: CDN, non-CDN/MAL, FFx2, FFx1 Arec and

FFx1 NArec. Applying our classifier to the larger dataset, we revealed the relative

distribution of domain types in our source data and the current state of FF do-
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mains, including previously unseen FFx1 NArec domains and an increased presence

and range of implementation for FFx2 domains.

In Chapter IV, we extended our DIGGER detector to 320 nodes spanning 5 con-

tinents. Gathering an additional 4 months of data on new FF and CDN domains,

we examined the current, state-of-art, DNS-based FF detectors, analyzing their effec-

tiveness in detection. We developed accurate models for bot decay, online availability,

DNS advertisement, and performance, which we used to evaluate novel mimicry at-

tacks against these detection systems. Using our models, empirical evidence, and

logical assumptions, we discovered that current botnet resources are sufficient to

support the use of mimicry attacks against such systems. We introduced a novel

spatial-detection system utilizing 5 cooperating monitoring nodes on different conti-

nents. Such a system forces botnet mimicry attacks to replicate the location-aware

DNS-advertisement strategy of CDNs. Modeling the spatial-detection system, we

demonstrated that, as with previous detection systems, current botnet resources can

successfully evade detection at the expense of online availability and performance. We

exploit this relationship by introducing a new detection metric for defending against

mimicry attacks, percent connectivity, that measures the percentage of online IPs

advertised. Incorporating percent connectivity into our models, we found that it

can enhance existing detection systems, making them more resilient to mimicry at-

tacks. We combined percent connectivity with our proposed spatial-detection system

to produce a novel spatial-connectivity detector, discovering that even the largest

botnets currently lack the resources necessary to evade detection continuously within

a 24-hour period.

In Chapter V, we used real-life cab mobility traces, bus routes and actual open

WiFi AP locations to simulate the C&C, DDoS attacks and spam attacks of a mobile

botnet using only open and unencrypted WiFi networks; we additionally explored

the effect intelligent AP selection has on botnet performance when traversing pre-
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dictable routes, such as bus routes. We found that a botnet comprising mobile bots

traveling quickly through an urban environment in vehicles can successfully achieve

an HTTP-based C&C channel with a fine level of control. We discovered that even

small mobile botnets can mount significant DDoS attacks, and when combined with

traditional botnets, provide a stealthy source of additional traffic. Our results also

demonstrate that mobile WiFi botnets can issue sizable amounts of spam both hourly

and daily. Additionally, our simulations indicate that C&C, DDoS attack and spam

attack traffic were all well distributed across open WiFi networks, with no single open

AP over-utilized at any given moment. These results evince the stealthy potential of

mobile WiFi botnets, increasing their appeal to botmasters. We showed that delay

defenses do little to disrupt botnet C&C but can significantly impact DDoS and spam

attacks, expressing diminishing returns with delays greater than 30 seconds. Lastly,

we found that intelligent AP-selection algorithms did little to improve botnet C&C;

however, their incorporation can improve DDoS and spam attacks and can somewhat

counteract smaller delay defenses.

Throughout the dissertation, we have observed the benefits properly managed dis-

tributed systems of compromised devices can afford botmasters. Despite comprising

an eclectic mix of devices with varying capabilities and online availability, botnets can

intelligently leverage their available resources to achieve unprecedented proficiency in

furthering their nefarious actions. Since this success is contingent on retaining con-

trol of these numerous resources, executing botnet activities in a stealthy manner has

become paramount to their success and as important as the activities themselves,

making stealth an intrinsic and fundamental property of botnets. Furthermore, so

long as botnets can remain stealthy and retain their prodigious resources, the easier

it is for them to continue to do so. Thus, it is not sufficient to focus on the currently

discernible symptoms of botnet activities for detection, as these are easily modified

through intelligent management of their vast resources. Rather, only through a bet-
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ter understanding of how botnets attain their requisite stealth can disruption and

detection attempts be improved and made more resilient to botnets’ countermea-

sures. While stealthy operations are fundamental to botnet operations and their

success, they are only made possible through the concerted efforts of their numerous

constituent bots, whose available resources and online connectivity vary considerably

with the diurnal usage patterns of the compromised devices’ owners. Through an

improved representation and greater understanding of these resources’ capabilities,

defenders can better exploit their inherent limitations, forcing a “Sophie’s choice” on

botmasters between stealth and their attack capacity—a reduction in either of which

can greatly hinder botnet activities. Throughout our research, we have determined

that disruption efforts specifically targeting botnet resources’ limitations can signifi-

cantly impact their overall success and ability for stealth. In this dissertation, these

techniques have included exploiting the unreliable connectivity and diurnal usage

patterns of FF botnets and the high mobility of mobile bots traveling in vehicles. In

both instances, these properties are fundamental to botnet operations and cannot be

easily manipulated by botmasters without sacrificing their capabilities or stealth. For

example, if botmasters renounce the use of FF DNS-advertisement strategies to ap-

pear more like benign domains, the unreliable connectivity of their bots will result in

most advertised IPs being offline, reducing the botnets’ hosting capacity and limiting

the amount of victims that reach the malicious content. Likewise, if botmasters use

FF techniques and attempt to mimic the location-aware DNS-advertisement strategy

of CDN domains to evade detection, the diurnal availability of their bots necessitates

the use of fake or offline IPs, again reducing their botnets’ overall hosting capabilities

and the amount of victims they can reach. Lastly, while the high mobility of bots

traveling in vehicles can grant botmasters an unprecedented level of stealth by rapidly

changing which open WiFi networks portions of their attacks are carried out behind,

exploiting this same property through the inclusion of delay defenses can significantly
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reduce botnets’ overall attack capacity. Certainly, botmasters could limit this effect

through the use of other communication mediums, such as 3G/4G; however, doing so

will make their attacks more apparent to cellular providers, ultimately resulting in

their detection and mitigation.

Thus far, botmasters have enjoyed the benefit of knowing defenders’ strategies

and limitations, modifying their malicious activities to exploit weaknesses in detec-

tion efforts and continue their scams unabated. Meanwhile, botnet capabilities and

limitations have remained mostly concealed from defenders, who lack the insider view

necessary to take advantage of their inherent constraints. As a consequence, defend-

ers have been forced to treat botnet symptoms and not the disease, focusing on

observable and differentiating behaviors resulting from botnet activities, which can

be successfully modified by botmasters to avoid detection. In this dissertation, we

have contributed to the collective understanding of current and future botnet capa-

bilities and limitations, pulling back the curtain on botnets and exposing powerful

and intrinsic differentiating features and detection and disruption techniques. Provid-

ing valuable insight into the inner-workings of botnets, this work has demonstrated

the symbiotic relationship between botnet activities and stealth. By exploiting this

relationship and the inherent features and limitations of botnets, it has provided

powerful tools to help defenders combat the botnet threat. As future work, we hope

to continue this approach, further probing the resources, capabilities and limitations

of existing and future botnets. Further research into future mobile botnets’ many

communication mediums and mobility patterns for various environments (i.e., urban

vs. rural, pedestrians vs. bikers, etc.) can provide valuable insight into preemptive

detection, disruption and mitigation strategies. Additionally, we hope to expand on

our distributed spatial-connectivity detector, producing a viable and easily deployable

detection system resilient to advanced mimicry attacks.
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