Development of a Novel Inhibitor to the Conserved Developmental Regulator, WDR5, for Treatment of Acute Leukemia

By

Elizabeth Christine Townsend

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan

2012

Doctoral Committee:

Associate Professor Yali Dou, Chair
Professor Gregory R. Dressler
Associate Professor David O. Ferguson
Professor Shaomeng Wang
Dedication

To my parents, Katherine and Douglas Townsend,

For love, support and guidance through the years and for fostering my scientific curiosity.
Acknowledgements

Data in this manuscript was generated in collaboration with Dr. Hacer Karatas and Dr. Fang Cao
Table of Contents

Dedication ii

Acknowledgements iii

List of Figures v

Abstract vii

Chapter

I. Introduction 1

II. Development of Potent Peptidomimetic Inhibitors to Block Interaction of MLL1 and WDR5 for Inhibition of MLL1 Complex Activity
 Abstract 26
 Introduction 27
 Results 29
 Discussion 49

III. Disruption of the MLL1:WDR5 Interaction Impairs a Leukemia-Causing Epigenetic Program Acute Leukemia with MLL1 Rearrangement
 Abstract 74
 Introduction 75
 Results 78
 Discussion 89

IV. Discussion 102

Materials and Methods 111

References 117
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Structure of the MLL1 and SET7/9 SET domains to illustrate active site conformation</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Diagram of conserved domain structure and protein-protein interactions in the MLL1 protein</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Optimization of a quantitative assay for MLL1 complex histone methyltransferase activity</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>MLL1 WIN Motif interaction with the WDR5 Arg-binding pocket is essential for MLL1:WDR5 interaction and MLL1 complex activity</td>
<td>58</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>MLL1, but not MLL2, 3 and 4, require WDR5 for mediating association with RbBP5/Ash2L and stimulating catalysis</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Excess WIN Peptide inhibits methylation of H3 by the MLL1 complex</td>
<td>60</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Intramolecular hydrogen bonds establish the 3_{10} helix structure of the WIN and ARA peptides and help adopt optimal conformation for binding to WDR5</td>
<td>61</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>WIN-derived peptides inhibit MLL1 complex activity</td>
<td>62</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Crystal structure of WDR5-MM-102 complex</td>
<td>63</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>MM-102 potently disrupts the association of WDR5 with MLL1</td>
<td>64</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Sequence of WIN peptide and N-terminus of H3 peptide</td>
<td>65</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Binding affinities of truncated MLL peptides to WDR5</td>
<td>65</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Removal of intramolecular hydrogen bonds in Ac-ARA-NH$_2$</td>
<td>66</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>H3 binding to WDR5</td>
<td>66</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Binding affinities of Ac-ARA-NH$_2$ analogues designed to investigate WDR5-ligand interaction through the P1, P2 and P4 sites</td>
<td>67</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Binding affinities of Ac-XRV-NH$_2$ analogues designed to further investigate the P1 pocket</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Binding affinities of Ac-VRX-NH$_2$ analogues designed to further investigate the P4 pocket</td>
<td>69</td>
</tr>
</tbody>
</table>
Table 2.8. Binding affinities of peptidomimetics combining favorable groups at the Ala1 and Ala3 positions

Table 2.9. Binding affinities of ARA peptide analogues with C-terminal amide modifications

Table 2.10. Structures and binding affinities of MM-101 and analogs

Table 2.11. Structure of a cyclic-derivative of MM-101

Figure 3.1. MLL WIN Peptidomimetics, MM-101, MM-102 and MM-401 specifically impair the methyltransferase activity of the MLL1 complex

Figure 3.2. MLL peptidomimetics completely disrupt association of complex with MLL1 but only disrupt the MLL3:WDR5 interaction in the MLL3 complex

Figure 3.3. MLL peptidomimetics, MM-102 and MM-401 prevent association of MLL1 with WDR5 in cells

Figure 3.4. MM-401 specifically impairs growth and viability of MLL-fusion transformed mouse bone marrow

Figure 3.5. Treatment of MLL1-AF9 bone marrow cells with MM-401 specifically induces differentiation in the myeloid lineage

Figure 3.6. MM-401 specifically inhibits growth of acute leukemia cell lines with MLL1 rearrangement

Figure 3.7. Treatment of MLL1-AF9 bone marrow cells with MM-401 downregulates MLL1 target gene expression and H3K4me3 at these loci

Figure 3.8. Treatment of \(MLL1^{wt/wt} \) MEF cells with MM-401 downregulates MLL1 target gene expression and activating histone methylation at these loci
Abstract

A majority of cases of acute leukemia in infants, as well as a subset of secondary acute leukemia in adults is characterized by translocation of the MLL1 gene to generate an oncogenic MLL1 fusion protein. The MLL1 fusion protein acts to abnormally recruit transcription-promoting mechanisms to target gene loci, including HoxA9 and Meis1. Overexpression of MLL1 gene targets through these mechanisms results in transformation. The MLL1 fusion protein has been found to cooperate with wild-type MLL1 to promote gene expression in leukemia. Wild-type MLL1 is a histone methyltransferase with specificity for H3 at lysine 4 (H3K4). Methyltransferase activity of MLL1 is stimulated through direct association with a conserved complex of proteins, WDR5, RbBP5 and ASH2L. As H3K4 methylation is strongly correlated with transcription activation in MLL1 translocation leukemias, we sought to develop inhibitors for MLL1 methyltransferase activity based on our understanding of MLL1 complex regulation by its constituent components. H3K4 methylation by the wild-type MLL1 complex is essential for expression of HoxA9 and Meis1 as well as transformation in leukemia. This activity is dependent on association between MLL1 and its direct interaction partner, WDR5. To exploit the essential function of this interaction in leukemia, we have used rational design to develop cell-permeable, peptidomimetic inhibitors, MM-102 and MM-401, to the MLL1:WDR5 interaction. We demonstrate that both MM-102 and MM-401 specifically inhibit assembly of MLL1 with WDR5, RbBP5 and ASH2L and block methyltransferase activity of the MLL1 complex. We show that mouse and human leukemia cells, transformed with MLL1 fusion
proteins are specifically targeted by MM-401 and treatment with this compound results in differentiation or cell death. We also show that inhibition of the MLL1:WDR5 interaction by MM-401 specifically impairs expression of HoxA9 and Meis1, as well as histone methylation at these loci. These studies show that interaction between MLL1 and WDR5 is essential for expression of HoxA9 and Meis1 in leukemia. This also demonstrates that inhibition of the MLL1:WDR5 interaction has potential utility for treating leukemias with MLL1 rearrangementand our compound MM-401, is a promising lead for future drug development.