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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

A long-standing and central question in evolutionary biology is the molecular 

genetic basis of phenotypic evolution (Maynard Smith 1998).  This genotype-phenotype 

map is essential for comprehending evolutionary processes, including evolutionary rates 

and trajectories (Weinreich et al. 2006; Poelwijk et al. 2007).  The genotype-phenotype 

map, however, is complex and has been difficult to discern.   

With more and more genomes sequenced in the last two decades, many genes 

have been identified by sequence analysis to have been under positive Darwinian 

selection.  For example, genes under positive selection in human and chimpanzee 

evolution have been identified by analyzing the two genome with the use of the macaque 

genome as an outgroup (Bakewell et al. 2007).  These positively selected genes 

potentially underlie the morphological, physiological, and behavioral differences between 

human and chimpanzee.  Other studies aimed to estimate the fraction of substitutions that 

are under positive Darwinian selection (Fay et al. 2002; Smith and Eyre-Walker 2002), 

but the selective agents as well as the phenotypes affected are typically unknown.  

To understand the phenotypic effects of the detected positive selection, a number 

of authors introduced mutations individually and tested their functional effects.  For 

example, one study investigated the effects of amino acid substitutions on the catalytic 

activities following the duplication of a digestive ribonuclease gene in colobine monkeys 

(Zhang et al. 2002).  Another study examined the evolutionary paths of an antibiotic 

resistant gene by reconstructing all possible intermediate mutants followed by an 

investigation of their functional effects (Weinreich et al. 2006).  Thornton and colleagues 

analyzed the evolution of vertebrate hormone receptors and examined how the amino 

acid replacements in evolution have impacted the structure and function of the receptors 

(Ortlund et al. 2007).  Several other studies also shed light on the effects of mutations on 



2 

 

protein function, gene expression, or organismal fitness (Patwardhan et al. 2009; Lind et 

al. 2010; Loh et al. 2010; Shultzaberger et al. 2010; Hietpas et al. 2011; Cuevas et al. 

2012; Gruber et al. 2012).  However, these studies are based on one to a few genes and 

thus do not provide a genomic perspective.   

My study aims to understand at the genomic scale how variations at the DNA 

sequence level influence the functions and expressions of genes as well as the phenotype.  

My chief approach is functional genomics (Eisenberg et al. 2000; Lockhart and Winzeler 

2000), which studies gene expression, protein-protein interaction, protein subcellular 

localization, metabolic network, genetic interaction, phenotypic effects upon gene 

deletion, and so on at the genomic scale.  The integration of functional genomics and 

evolution improves our understanding of evolutionary processes by building a bridge 

between the genotype and phenotype and by providing a genomic picture of the genetic 

mechanisms of evolution.    

In my studies, I used the budding yeast Saccharomyces cerevisiae as a model 

organism.  S. cerevisiae is particularly useful for functional evolutionary genomics 

because of (i) the availability of extensive functional genomic data that allow potential 

connections between the genotype and phenotype at many different levels, (ii) the 

availability of genome sequences of multiple strains and related species, and (iii) the 

relative ease of various genetic manipulations including gene deletion and gene 

replacement.   

In Chapter 2, I studied the evolutionary rate of protein-protein interaction.  Protein 

sequence changes may result in protein function changes, which can in turn lead to 

phenotypic changes.  Because many proteins function by interacting with other proteins, 

investigating protein-protein interaction is crucial to fill the gap between protein 

sequence evolution and phenotypic evolution.  Although it is widely assumed that 

orthologous genes of different species have similar functions, this hypothesis has never 

been critically evaluated systematically.  Furthermore, while genome-wide patterns of 

protein sequence evolution have been extensively studied, genome-wide patterns of 

protein function evolution are unclear.  To address these questions, I used experimental 

assays to examine the potential interactions of pairs of Kluyveromyces waltii proteins 

whose S. cerevisiae orthologs are known to interact with each other.  I then calculated the 
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evolutionary rate of protein function using the information that K. waltii and S. cerevisiae 

diverged approximately 150 million years ago.  My results show that protein interactions 

are extremely conserved in evolution when there is no gene duplication and suggest a 

complex relationship between protein function evolution and sequence evolution.  These 

results validate the widely held view that orthologous genes of different species have 

similar functions (at least at the level of protein interaction) and provide a baseline for 

further examination of the evolutionary rate of protein function in duplicate genes.   

In Chapter 3, I studied genetic interactions (i.e. epistasis) in metabolic networks. 

Evolutionary changes often occur at multiple loci and the interaction of these changes is a 

common phenomenon with widespread and profound evolutionary implications.  

Although high-throughput epistasis data from model organisms are being generated and 

used to construct genetic networks, the extent to which epistasis reflects functional 

relationship of involved genes remains unclear.  We addressed this question using 

metabolic network analysis.  We found that negative epistasis in fitness occurs mainly 

between nonessential reactions with overlapping functions, whereas positive epistasis 

usually involves essential reactions, is highly abundant, and surprisingly, often occurs 

between reactions without overlapping functions.  I validated these theoretical results 

experimentally in yeast by introducing yeast partial deletion alleles on a set of selected 

loci, measuring the fitness values of single mutants and double mutants, and calculating 

the epistasis for each allele pair.  Furthermore, we identified the mechanistic basis of our 

observations.  Our findings necessitate the distinction of the concept of genetic 

interaction from non-independent gene effects and call for reevaluation of evolutionary 

theories that depend on prevalent negative epistasis. 

In Chapter 4, I studied the genetic interaction between tRNA and codon usage, 

and how such interaction improves the efficiency of protein translation, which is an 

important fitness determinant in rapidly growing organisms.  It is widely believed that 

synonymous codons are translated with unequal speeds and that translational efficiency is 

maximized by the exclusive use of rapidly translated codons.  Using next-generation-

sequencing-based ribosomal profiling data, we estimated for the first time the in vivo 

translational speeds of all 61 sense codons from the budding yeast S. cerevisiae. 

Surprisingly, preferentially used synonymous codons are not translated faster than 
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unpreferred ones, and no correlation exists between the translational speed of a codon and 

the concentration of its cognate tRNA. We hypothesize that the phenomenon of similar 

translational speeds of different synonymous codons is a result of proportional use of 

synonymous codons according to their cognate tRNA concentrations, the optimal strategy 

in enhancing translational efficiency under tRNA shortage, which is a cellular condition 

that is supported by circumstantial empirical evidence but has not been seriously 

considered in the codon usage literature.  Our hypothesis predicts that, for each amino 

acid, the fractional use of a codon among its synonymous codons equals the fractional 

concentration of its cognate tRNA among all isoaccepting tRNAs, and this is indeed the 

case in all eukaryotic model organisms examined (S. cerevisiae, Schizosaccharomyces 

pombe, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus 

musculus, and Homo sapiens).  We further tested our hypothesis by a manipulative 

experiment in which multiple synonymous versions of a heterologous red florescent 

protein gene were highly expressed to induce different levels of codon-tRNA imbalance 

in yeast.  We measured the expression level of a yellow florescent protein gene, which 

serves as a reporter that indicates the overall cellular translational efficiency.  This 

inducer-reporter experimental system excluded multiple confounding factors such as the 

potentially different translational accuracies of synonymous codons.  Our results 

unambiguously support the hypothesis that codon-tRNA balance, rather than exclusive 

use of preferred codons, optimizes cellular translational efficiency. Our hypothesis also 

applies to amino acid usage, suggesting that it again is shaped by selection for 

translational efficiency.  Together, our study reveals a previously unsuspected mechanism 

by which unequal codon usage increases translational efficiency, demonstrates 

widespread natural selection for translational efficiency, and offers new strategies to 

improve synthetic biology. 

In Chapter 5, I aimed to address a question about gene-environment interactions. 

The fitness effect of deleting a gene tells us how important the gene is, which is crucial 

for understanding the gene’s evolutionary patterns and rates.  However, the genome-wide 

fitness effect data were previously generated by DNA hybridization based methods that 

are known to have a low accuracy and a low dynamic range.  Furthermore, these data 

were generated in artificial conditions rather than in natural environments of yeast.  
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Taking advantage of the high accuracy and large dynamic range of a high-throughput 

sequencing technology (Illumina), I am now digitally counting the numbers of cells of 

different deletion strains in a competition assay that includes all deletion strains.  I am 

also using various conditions, including oak tree exudates and grape juice that may mimic 

the natural environments of yeast.  The much improved fitness measurements in 

biologically relevant environments will allow the test of several important hypotheses 

(e.g., adaptive gene loss) and provide a solid base for understanding the relation between 

DNA sequence evolution and phenotypic evolution. 

In sum, I capitalize on recent developments in molecular genetics and functional 

genomics to study the molecular basis of phenotypic variation, and how such molecular 

basis influences the evolutionary process. By doing so, I am able to test a series of 

important evolutionary hypotheses and offer new perspectives on the mechanisms of 

evolution.   
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CHAPTER 2 

MEASURING THE EVOLUTIONARY RATE OF PROTEIN-

PROTEIN INTERACTION 

 

2.1 Abstract 

Despite our extensive knowledge about the rate of protein sequence evolution for 

thousands of genes in hundreds of species, the corresponding rate of protein function 

evolution is virtually unknown, especially at the genomic scale.  This lack of knowledge 

is primarily due to the huge diversity in protein function and the consequent difficulty in 

gauging and comparing rates of protein function evolution.  Nevertheless, most proteins 

function through interacting with other proteins, and protein-protein interaction (PPI) can 

be tested by standard assays.  Thus, the rate of protein function evolution may be 

measured by the rate of PPI evolution.  Here we experimentally examine 87 potential 

interactions between Kluyveromyces waltii proteins whose one-to-one orthologs in the 

related budding yeast Saccharomyces cerevisiae have been reported to interact.  

Combining our results with available data from other eukaryotes, we estimate that the 

evolutionary rate of protein interaction is (2.6  1.6) × 10
-10

 per PPI per year, three orders 

of magnitude lower than the rate of protein sequence evolution measured by the number 

of amino acid substitutions per protein per year.  The extremely slow evolution of protein 

molecular function may account for the remarkable conservation of life at molecular and 

cellular levels and allow studying the mechanistic basis of human disease in much 

simpler organisms.   
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2.2 Introduction 

The rate of protein sequence evolution has been of enduring interest to 

evolutionary biologists (Zukerkandl and Pauling 1965; Kimura 1968; Li 1997; Nei and 

Kumar 2000; Koonin and Galperin 2003; Drummond and Wilke 2008; Wolf et al. 2009) 

ever since the primary sequences of homologous proteins became available about 50 

years ago (Doolittle 2010).  Estimation and comparison of the rate of protein sequence 

evolution led to several major discoveries, including the establishment of the molecular 

clock concept (Zukerkandl and Pauling 1965) and the application of the concept to 

molecular dating of evolutionary events (Hedges et al. 2006), and the proposal of the 

neutral theory of molecular evolution (Kimura 1968; King and Jukes 1969; Kimura 1983), 

a paradigm-shifting episode in the history of evolutionary biology (Zhang 2010).  In the 

last decade, studies of the rate of protein sequence evolution have exploded, due to the 

availability of hundreds of complete genome sequences from diverse organisms.  Despite 

some controversies, much has been learned from these studies, such as the identification 

of various determinants of the rate of protein sequence evolution (Hirsh and Fraser 2001; 

Pal et al. 2001; Fraser et al. 2002; Jordan et al. 2002; Zhang and He 2005; Liao et al. 

2006; Drummond and Wilke 2008; Wang and Zhang 2009; Liao et al. 2010b; Liao et al. 

2010a; Yang et al. 2010) and the estimation of the fraction of proteins subject to positive 

selection in human and ape evolution (Clark et al. 2003; Nielsen et al. 2005; Bakewell et 

al. 2007; Nozawa et al. 2009).   

Surprisingly, however, very little is known about the rate of protein function 

evolution, despite that such information could be invaluable for answering a number of 

important questions.  For instance, if most amino acid changes are adaptive, one would 

predict a positive correlation between the rate of protein function change and the rate of 

protein sequence change.  By contrast, this correlation is not expected if most amino acid 

changes do not affect protein function and are neutral.  Knowing the rate of protein 

function evolution also helps us understand the speed and frequency with which new 

functions originate in evolution.  While the rate of protein function evolution can be 

calculated anecdotally for a few functionally well characterized proteins such as the 

vertebrate hemoglobin and opsin, there has been no systematic effort to estimate this rate 

from many proteins.  This is probably due to the huge diversity in protein function, which 
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makes functional characterizations of many proteins from multiple species both 

technically challenging and financially costly.  Furthermore, even if such functional data 

are available, it would be difficult to quantify functional differences among homologous 

proteins and compare such differences among nonhomologous proteins.  Thus, it would 

be ideal to have a universal functional measure that can be applied to a large number of 

proteins for estimating and comparing the rates of protein function evolution.  Because 

most proteins function through interacting with other proteins and protein-protein 

interactions (PPIs) can be tested by standard methods such as the yeast two-hybrid (Y2H) 

assay (Fields and Song 1989), we propose to use PPI as one universal measure of protein 

function in estimating the evolutionary rate of protein function.  In this study, we 

experimentally probe PPI evolution between two yeast species using Y2H assays.  

Combining our data with existing PPI data from multiple other eukaryotes, we estimate 

that the evolutionary rate of PPI is three orders of magnitude lower than that of protein 

sequence.  The striking conservation of protein molecular function has important 

implications for evolutionary biology and biomedicine. 

 

2.3 Measuring the rate of PPI evolution in two yeasts  

Because large-scale PPI data are available for a number of model organisms such 

as the budding yeast Saccharomyces cerevisiae (Yu et al. 2008), nematode worm 

Caenorhabditis elegans (Li et al. 2004), fruitfly Drosophila melanogaster (Giot et al. 

2003), and human (Homo sapiens) (Rual et al. 2005), one may think that the rate of PPI 

evolution can be estimated directly from these existing data.  Such estimation, however, 

would be highly unreliable, because these data were generated by high-throughput 

methods that have high false-negative and false-positive rates whose exact values are 

either unknown or not known with any precision (Yu et al. 2008).  Instead, we decided to 

examine individually the interactions between two proteins whose respective one-to-one 

orthologs in another species are known to interact.  The requirement for one-to-one 

orthologs minimizes the influence of gene duplication, which is known to induce changes 

of protein function (Ohno 1970; Zhang 2003; Conant and Wolfe 2008), including PPIs 

(Wagner 2001; He and Zhang 2005).  We chose to compare the budding yeast 

Saccharomyces cerevisiae (Sce), a genetic model organism with abundant PPI data (He 
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and Zhang 2009), with its relative Kluyveromyces waltii (Kwa), which diverged ~150 

million years (MY) ago (Wolfe and Shields 1997).  This intermediate level of divergence 

provides time for potential evolutionary changes in PPI, yet ensures accuracy in 

identifying one-to-one orthologs.   

We started by identifying the subset of Sce proteins that have one-to-one 

orthologs in Kwa (Figure 2.1).  For this subset, we then identified from BioGRID 

(http://thebiogrid.org/) 335 PPIs with at least two Y2H reports and 481 PPIs with only 

one small-scale Y2H report.  We focused on previous Y2H reports because different 

types of PPIs have variable rates of detection by different methods (Braun et al. 2009) 

and Y2H is our method of choice.  We disregarded PPIs with only one large-scale Y2H 

report due to the high false positive rates of high-throughput studies.  We refer to these 

335+481=836 PPIs as putative Sce PPIs.  They should have relatively low probabilities to 

be false positives because they have been reported in either one small-scale experiment or 

at least two experiments (Figure 2.1).  We selected Kwa genes orthologous to the Sce 

genes involved in 115 randomly chosen putative PPIs after setting several criteria to 

lessen the effort for gene cloning (Figure 2.1), and were able to clone 87 pairs of them for 

a standard Y2H assay. 

We found that, among the 87 protein pairs (Table 2.1), one or both members of 11 

pairs showed self-activation (e.g., row II, column B in Figure 2.2; Figure 2.1) and hence 

could not be evaluated for PPI, 33 pairs had no PPI (e.g., column E in Figure 2.2; Figure 

2.1), and the remaining 43 had PPIs (e.g., column C in Figure 2.2; Figure 2.1).  To 

validate that the 33 Kwa non-interactive pairs represent true evolutionary changes 

between Sce and Kwa, we need to confirm that their corresponding Sce proteins interact 

in our Y2H assay.  We were able to clone the Sce genes for 29 of the 33 pairs (Figure 2.1).  

Excluding 2 self-activation cases, we found none of the remaining 27 Sce pairs to interact 

(e.g., column F in Figure 2.2; Figure 2.1), which is owing to either false positive errors in 

the Sce PPI database or the known variation in PPI detection by different variants of Y2H 

(Chen et al. 2010).  Thus, none of the 33 Kwa non-interactive pairs can be confirmed to 

have resulted from true evolutionary changes.   

If two proteins have been reported to interact in Sce and that their orthologs are 

confirmed by us to interact in Kwa, the probability that the reported Sce interaction is not 

http://thebiogrid.org/
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genuine is lower than 0.005 (see 2.8.1).  Thus, for the 43 Kwa PPIs, their corresponding 

Sce PPIs are most likely true.  Indeed, we were able to experimentally validate each of 20 

randomly selected corresponding Sce PPIs (e.g., column D in Figure 2.2; Figure 2.1; 

Table 2.1). 

Taken together, our experiments showed that 43 of the 43 Sce PPIs are conserved 

in Kwa.  Although PPIs detected by Y2H may not be biological, those detected here are 

highly likely to be biological because nonspecific or artificial interactions are not 

expected to be evolutionarily conserved.  Our experiment was designed to identify Sce 

PPIs that are absent in Kwa due to either gains of interactions in Sce or losses of 

interactions in Kwa after the species separation.  Hence, we effectively measured the total 

gains and losses that occurred in one lineage during 150 MY.  With this consideration, 

we estimated that the 95% confidence interval of the total rate of PPI evolution is 

between 0 and 4.6×10
-10

 per PPI per year, with the maximum likelihood estimate being 0 

(Figure 2.3; see 2.8.2).   

 

2.4 A combined estimate of the rate of PPI evolution 

To investigate the generality of our estimate, we analyzed all previously reported 

between-species PPI differences for which false positive and false negative errors can be 

excluded.  One study (Matthews et al. 2001) reported that 6 of the 19 Sce PPIs are 

conserved in C. elegans.  However, the authors did not use one-to-one orthologs and thus 

could not exclude the influence of gene duplication.  If only one-to-one orthologs are 

considered, their data indicate that 2 of 5 Sce PPIs are conserved in C. elegans.  If the two 

species diverged 1300 MY ago, as suggested by molecular dating (Hedges et al. 2006), 

the maximum likelihood estimate of the PPI evolutionary rate is 7.0×10
-10

 and the 95% 

confidence interval is (1.6×10
-10

, 2.0×10
-9

) (Figure 2.3; see 2.8.2).  Another study used a 

high-throughput method to examine the PPIs between transcription factors and found 6 of 

the 23 gold-standard mouse PPIs to be conserved in human (Ravasi et al. 2010).  The 

purpose of using gold-standard PPIs was to avoid false positives.  Because the rate of 

detection of a true PPI in that study (Ravasi et al. 2010) was 0.253, the actual fraction of 

mouse PPIs conserved in human is 6/(23×0.253)  100% (i.e., 6 out of 6).  If human and 

mouse diverged 90 MY ago (Hedges et al. 2006), the maximum likelihood estimate of the 
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PPI evolutionary rate is 0, with the 95% confidence interval being (0, 5.5×10
-9

) (Figure 

2.3; see 2.8.2).   

The confidence intervals of the PPI evolutionary rate estimates from the three 

datasets that encompassing yeasts, worm, and mammals overlap (Figure 2.3), although 

the estimate from our data is most precise, because the size of our data is four times that 

of the previous data combined.  Using the three datasets together, we derived a maximum 

likelihood estimate of the PPI evolutionary rate of 2.6×10
-10

 per function per year, with a 

standard error of 1.6×10
-10

 (see 2.8.2).  Our estimated rate of PPI evolution is extremely 

low.  As a comparison, the rate of sequence evolution for the yeast, C. elegans, mouse, 

and human proteins involved in the calculation of the rate of PPI evolution in this study is 

on average 4.1×10
-7

 amino acid substitutions per protein per year (see 2.8.3).  That is, 

~1558 amino acid substitutions, or ~5.0 per site, will happen in the time required for one 

PPI change in a protein.   

 

2.5 Caveats  

Although our yeast experiment has substantially increased the sample size for 

estimating the rate of PPI evolution, the number of PPIs examined is still small, 

compared to the number of all PPIs in yeast (He and Zhang 2009).  It is thus important to 

ask whether the PPIs we studied are a representative sample of all yeast PPIs.  For this 

purpose, we first plotted the frequency distribution of PPI degrees (i.e., the number of 

BioGRID-recorded Y2H-based PPIs per gene) for all 3152 Sce genes that have one-to-

one Kwa orthologs, and the corresponding distribution for the 74 Sce genes involved in 

the 43 PPIs conserved between Sce and Kwa.  Note that only PPIs among the 3152 genes 

are counted to avoid the complication of PPI changes after gene duplication.  We found 

that both distributions cover similarly large degree variations among genes, although our 

sample of 74 genes tend to have higher degrees than the 3152 genes (P = 5×10
-8

, Mann-

Whitney test; Figure 2.4A).  This disparity, however, is not unexpected, because genes 

with higher degrees are more likely to be chosen when PPIs are randomly picked.  To 

illustrate this point, we randomly sampled 43 PPIs from all the PPIs among the 3152 

genes and calculated the median degree of the genes involved in the sampled PPIs.  We 

repeated this process 1000 times to obtain a frequency distribution of the median degree 
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(Figure 2.4B).  Interestingly, the median degree of the 74 genes studied is even lower 

than that of randomly selected ones, although their difference is not significant (P = 0.06; 

simulation test).     

We also plotted the frequency distribution of gene importance measured by the 

fitness reduction caused by the deletion of the gene, for all 3152 genes and the 74 genes 

we studied, respectively.  The 74 genes cover the whole range of gene importance, 

although they tend to be more important than average genes (P = 0.002; Figure 2.4C).  

This finding is expected, because PPI degree and gene importance are known to correlate 

positively with each other (Jeong et al. 2001; He and Zhang 2006).  Nevertheless, there is 

no significant difference between the median importance of the 74 genes we studied and 

that of the genes involved in the randomly selected PPIs of the above simulation (P = 

0.13, simulation test; Figure 2.4D).  Thus, the apparent bias in the degree and importance 

of the 74 genes we studied (Figure 2.4A & C) is the byproduct of random PPI selection.  

Because the PPIs were randomly selected in our experiment, the above bias in some gene 

properties is unlikely to affect our estimation of the rate of PPI evolution.  Furthermore, 

there is no indication that important genes or genes with higher degrees tend to have PPIs 

that are evolutionarily more conserved.  

We further compared the frequency distributions for the 3152 genes and the 74 

studied genes in terms of protein sequence conservation (Figure 2.4E) and the 

nonsynonymous/synonymous substitution rate ratio (Figure 2.4F), but found no 

significant differences.  If the rate of PPI evolution is primarily determined by the rate of 

protein sequence evolution, our results suggest that our sample is unbiased for estimating 

the rate of PPI evolution. 

Because mRNA and protein expression levels affect the evolution of protein 

structure, stability, and the propensity for nonspecific protein interactions (Drummond 

and Wilke 2008; Vavouri et al. 2009; Yang et al. 2010), we also compared our 74 studied 

genes with the 3152 genes in terms of mRNA expression levels (Figure 2.4G) and protein 

expression levels (Figure 2.4H), but found no significant differences.  

We further examined Gene Ontology (GO) (Ashburner et al. 2000) differences 

between the two groups of genes.  Although one to three functional categories were 

found to be significantly deprived or enriched (at a false discovery rate of 5%) among the 
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74 genes for each of the three aspects of GO (cellular component, molecular function, 

and biological process) (Al-Shahrour et al. 2007), the 74 genes are not limited to a small 

number of GO categories (Figure 2.5).  Furthermore, even for the GO categories with 

significant discrepancies between the 74 genes and the 3152 genes, the discrepancies are 

moderate when the entire distribution of genes across all GO categories is considered and 

are thus unlikely to have a major impact on the estimation of the rate of PPI evolution 

(Figure 2.5). 

We found that at least 27 of the 87 putative PPIs of Sce cannot be confirmed by 

our Y2H assay.  Because we defined putative PPIs relatively rigorously, with the 

requirement that they had been reported by two Y2H experiments or one small-scale 

Y2H experiment, one may wonder why many of them cannot be confirmed in our Y2H 

assay.  One reason is that a PPI may not be detectable by all variants of Y2H (Chen et al. 

2010).  Further, our Y2H assay uses three reporter genes and only when all three genes 

are activated will the PPI be scored.  This stringent design guards against false positives 

caused by spurious gene activation without PPI, which can happen occasionally.  In fact, 

our validation rate is much higher than those reported in the literature (Yu et al. 2008; 

Ravasi et al. 2010), presumably because of the small-scale nature of our experiment.   

Because both Sce PPIs and Kwa PPIs were examined in Sce cells, one wonders 

whether our experimental design would cause an overestimation of the evolutionary rate 

of PPI, due to the possibility that naturally interacting Kwa proteins may not interact well 

in Sce cells.  This concern is unnecessary here, because we found no validated Sce PPIs 

whose Kwa orthologs do not interact in our Y2H assay. 

 

2.6 Implications 

In this work, we estimated the evolutionary rate of protein molecular function by 

measuring the conservation of PPIs between species, and found the rate to be strikingly 

low in the absence of gene duplication.  Our finding has a number of important 

implications.  First, it suggests a high similarity in molecular function between one-to-

one orthologs from even distantly related species.  For instance, based on our estimated 

rate, an interaction between two human proteins is expected to be present between their 

respective one-to-one orthologs in mouse, fish, fly, worm, fungi, and plants with a 
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probability of 98%, 89%, 79%, 77%, 71%, and 66%, respectively (Figure 2.6).  Life is 

fundamentally conserved at molecular and cellular levels, as most biological processes at 

these levels are similar among divergent species (Zhang 2010).  Given the prevalence and 

importance of PPIs in almost all cellular processes, the extreme conservation of PPIs is 

likely one of the bedrocks of the conservative nature of life.  Note, however, that our 

Y2H assay is qualitative rather than quantitative.  Hence, we cannot exclude the 

possibility that the strength of a protein interaction evolves much faster than the 

presence/absence of the interaction.   

Second, although molecular functions of proteins are conserved in evolution, the 

physiological roles of proteins and their contributions to organismal fitness can change 

quickly and substantially, evident from frequent observations of the huge diversity in the 

phenotypic effect of orthologous gene deletions (McGary et al. 2010) and the great 

disparity in the dispensability of orthologous genes in different species (Zhang and He 

2005; Liao and Zhang 2008; Kim et al. 2010).  For instance, some mouse defects in blood 

vessel formation and yeast hypersensitivity to the hypercholesterolemia drug lovastatin 

are caused by mutations of orthologous genes (McGary et al. 2010).  In another example, 

Arabidopsis orthologs of human genes implicated in the Waardenburg syndrome 

(deafness and neutral crest anomalies) are involved in gravitropism (McGary et al. 2010).  

A systematic comparison between phenotypes of human and mouse mutations found that 

over 20% of mouse one-to-one orthologs of human essential genes are nonessential (Liao 

and Zhang 2008).  Yet, if the molecular functions of one-to-one orthologous genes are 

highly conserved in evolution, as suggested by the present study, the molecular 

underpinnings of human disease may be studied in much simpler model organisms that 

do not even have the disease or relevant tissue/organ.   

Third, previous analyses of high-throughput PPI data revealed a substantial 

amount of subfunctionalization and neofunctionalization after gene duplication (Wagner 

2001; He and Zhang 2005).  The contrast between these results with the present finding 

in one-to-one orthologous genes suggests that the majority of molecular function changes 

in protein evolution are associated with gene duplication.  However, due to the 

unreliability of high-throughput PPI data, previous results on duplicate genes (Wagner 

2001; He and Zhang 2005) should be verified in the future.  It would be highly desirable 
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to conduct a study on duplicate genes similar to the present one to quantify the difference 

in the rate of protein function evolution in the presence and absence of gene duplication 

(Studer and Robinson-Rechavi 2009), as has been conducted recently on the rate of 

protein subcellular relocalization (Qian and Zhang 2009).  In this respect, the Sce and 

Kwa comparison will also be appropriate, because Sce retains ~500 pairs of duplicate 

genes generated by a whole genome duplication that occurred since the separation of Sce 

from Kwa (Wolfe and Shields 1997; Kellis et al. 2004).  

 

2.7 Methods 

2.7.1 Identification of putative PPIs for experimental tests 

Gene sequences of S. cerevisiae (Sce) were downloaded from Saccharomyces 

Genome Database (SGD, http://yeastgenome.org/) and those of K. waltii (Kwa) were 

downloaded from the supplementary materials of (Kellis et al. 2004) 

(http://www.nature.com/nature/journal/v428/n6983/extref/nature02424-s1.htm).  To 

identify one-to-one orthologous genes between the two species, we combined the 

genomes of Sce and Kwa, conducted all-against-all BlastP searches with an E-value 

cutoff of 1×10
-20

, and removed self-hits.  If (i) proteins A and B are reciprocal best hits in 

the above search, (ii) they do not belong to the same species, and (iii) the aligned region 

of the two proteins is longer than 80% of the shorter one, we classify them as a pair of 

one-to-one orthologs.   

Protein interaction data in Sce were downloaded from BioGRID 

(http://thebiogrid.org/) at the beginning of our study in 2006 (GRID-ORGANISM-

Saccharomyces_cerevisiae-2.0.20.tab.txt).  Among the Sce proteins that have one-to-one 

Kwa orthologs, we identified 355 PPIs with at least two independent Y2H reports.  

Among the remaining PPIs, we identified 481 that had one small-scale Y2H report (i.e., 

with <30 PPIs per report).  These two sets of PPIs were treated as putative Sce PPIs 

subject to further analysis.  

To test the interaction between the Kwa orthologs of a pair of Sce proteins that are 

known to interact, we need to clone the Kwa orthologs.  To reduce the difficulty in gene 

cloning, we selected Sce PPIs for which the Kwa orthologs have open reading frames 

between 400 and 1600 nucleotides long.  We excluded intron-containing genes so that the 

http://yeastgenome.org/
http://www.nature.com/nature/journal/v428/n6983/extref/nature02424-s1.htm
http://thebiogrid.org/
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full coding region could be amplified from genomic DNA in one piece.  We also 

eliminated genes incompatible with the restriction sites available on plasmids pGADT7 

or pGBKT7.  The majority of Sce PPIs selected had been discovered in at least two 

independent Y2H reports (73%), while a minority of them (27%) had been identified in 

only one small-scale Y2H experiment (Table 2.1). 

 

2.7.2 Yeast two-hybrid assays  

After cloning the Kwa genes, we performed the Y2H assay using the Matchmaker 

GAL4 Two-Hybrid System 3 (Clonetch).  The two PPI partners were cloned into 

pGADT7 and pGBKT7 plasmids, respectively, through the following procedure.  We 

first amplified the genes by polymerase chain reaction (PCR), using PfuUltra high-

fidelity polymerase (Stratagene) to minimize PCR errors during the amplification.  We 

purified the PCR products (Qiagen), digested them with 2 of the 5 restriction enzymes 

(EcoRI, BamHI, NdeI, PstI, and ClaI), and cloned them into pGADT7 and/or pGBKT7 

by T4 DNA ligase (Promega).  We transformed the ligation products into TOP10 

chemically competent cells (Invitrogen), extracted the plasmid (Qiagen) and confirmed 

the clones by DNA sequencing at University of Michigan DNA Sequencing Core.   

We transformed the two plasmids into S. cerevisiae AH109 cells (MATa, trp1-901, 

leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1UAS-GAL1TATA-HIS3, 

GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ, MEL1), which were 

selected on synthetic dextrose plates with leucine and tryptophan dropped out (SD-Leu-

Trp).  The colonies were further pinned onto synthetic dextrose plates with adenine, 

histidine, leucine, and tryptophan dropped out, and with 20 μg/ml X-α-gal added (SD-

Ade-His-Leu-Trp/X-α-gal).  Because MEL1 encodes a secreted enzyme α-galactosidase, 

its presence can be assayed directly on X-α-gal-containing plates without cell lysis.  If the 

transformed yeast can grow on the dropout plates (SD-Ade-His-Leu-Trp/X-α-gal) and 

appears blue, the proteins are considered to be interacting with each other.  For a strain to 

grow on SD-Ade-His-Leu-Trp/X-α-gal and be blue, all three reporter genes (HIS3, ADE2 

and MEL1, under promoters pGAL1, pGAL2 and pMEL1, respectively) must be activated.  

Hence, our Y2H assay is quite stringent.  The high stringency implies that some weak 

PPIs may not be detected by our Y2H assay.  Self-activation was tested by co-
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transformation of a gene-containing plasmid (pGADT7 or pGBKT7) and an empty 

plasmid (pGBKT7 or pGADT7, respectively).  We excluded a gene pair from further 

consideration if either gene showed self-activation.   

We selected 10 random protein pairs and tested their interaction [(Kwa_10129, 

Kwa_23895), (Kwa_12079, Kwa_9492), (Kwa_12518, Kwa_5419), (Kwa_13638, 

Kwa_23894), (Kwa_15314, Kwa_15321), (Kwa_16145, Kwa_18622), (Kwa_1973, 

Kwa_21767), (Kwa_2064, Kwa_10342), (Kwa_2079, Kwa_17326), (Kwa_21273, 

Kwa_23528)] in our Y2H assay, and none of them showed PPI, suggesting a low false 

positive rate in our experiment.  

The potential PPI pairs that did not show positive results in Kwa by our Y2H 

experiment were examined in Sce.  We cloned the corresponding Sce genes into the same 

plasmids (pGBKT7 and pGADT7) and then conducted the Y2H assay as described above.  

We also randomly selected a subset of positive Kwa PPIs and examined whether their Sce 

orthologs interact in our Y2H assay.   

 

2.7.3 Examination of potential biases of the experimentally studied genes 

Sce PPI information was from BioGRID.  Only Y2H PPIs between Sce genes that 

have one-to-one Kwa orthologs were counted in PPI degree calculation.  The fitness 

effect of gene deletion was obtained from (Deutschbauer et al. 2005).  The mRNA 

expression levels were from (Holstege et al. 1998) and the protein expression levels were 

from (Ghaemmaghami et al. 2003).  One-to-one orthologous genes between Sce and Kwa 

were aligned by ClustalW (Larkin et al. 2007) and the nonsynonymous to synonymous 

substitution rate ratios were calculated by Codeml in PAML (Yang 2007).  To examine 

the impact of random sampling of PPIs on the bias of the selected genes, we randomly 

sampled 43 PPIs from all PPIs among the 3152 Sce genes that have one-to-one Kwa 

orthologs, and repeated this process 1000 times.  
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2.8 Appendices 

2.8.1 Probability that a reported Sce PPI is non-genuine provided that its 

corresponding Kwa PPI is true 

Let A be the event that X and Y do not interact in Sce.  Let B be the event that X 

and Y are found to interact in Sce, based on the existing database.  Let C be the event that 

the orthologs of X and Y (X’ and Y’) interact in Kwa.  On average, a protein interacts 

with n proteins.  Let us assume that, in the existing database, an average protein is also 

found to interact with e proteins that are actually false positives.  If we assume that the 

false positive rate in the existing database is P(A|B)=50% (Deane et al. 2002), e=n.  

Empirical data suggest that n+e  5 (He and Zhang 2005).  Thus, e = n  2.5.  Let N = 

6000 be the total number of proteins in yeast and c be the probability that a true Sce PPI 

is conserved in Kwa. 

We want to estimate P(A | [B & C]), the probability that X and Y do not interact 

in Sce, given that they were reported to interact in Sce and that their orthologs are 

confirmed to interact in Kwa.   

P(A) is the probability that a random pair of proteins do not interact in Sce.  We 

have  

( )
N n

P A
N


 . 

P([B & C] | A) is the probability that a random pair of Sce proteins (X and Y) are 

found to interact in the database and that their orthologs (X’ and Y’) interact in Kwa, 

given that X and Y actually do not interact in Sce.  We have  

([ & ] | ) ( )( )
n e

P B C A k
N N n




. 

The first term on the right is the probability that X’ and Y’ interact in Kwa, given 

that X and Y do not interact in Sce (i.e., the probability of origination of the new PPI in 

Kwa).  Because the probability that a random pair of proteins evolve a new PPI after a 

very long time is n/N, the probability that Kwa evolved a new PPI in a limited amount of 

time is k(n/N), where 0<k<<1. 

The second term is the probability that X and Y are found to interact in Sce given 

that they actually do not interact in Sce. 
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P(B & C) is the probability that a random pair of Sce proteins (X and Y) are found 

to interact in the database and that their orthologs (X’ and Y’) interact in Kwa.  We have  

2

( & ) ( ) ([ & ] | ) ( ) ([ & ] | )

( )( )( )
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N n n e n enk cn
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
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where A  means not A.      

Using Bayes’ theorem and above formulae, we have  
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Even if c is as low as 10%, P(A | [B & C]) < 0.005.  In other words, the 

probability that X and Y do not interact in Sce, given that they were reported to interact in 

Sce and that their orthologs are confirmed to interact in Kwa, is very low.   

 

2.8.2 Rate of PPI evolution  

Let the rate of PPI evolution be r per PPI per year.  The probability of no change 

of PPI after t years is p = (1-r)
t
.  Because all 43 Sce PPIs were found in Kwa, there has 

been no gain of PPI in Sce and no loss of PPI in Kwa since the species separation.  This 

observation is equivalent to the lack of gain and loss of PPI in one lineage since the Sce-

Kwa separation.  The maximum likelihood estimate of r is thus 0.  Assuming that the 

probability of observing what we have observed is at least 5%, we have P = p
43 

= [(1-

r)
t
 ]

43 
> 0.05.  Using t = 150×10

6 
years (Wolfe and Shields 1997), we found that r < 

4.6×10
-10

 per PPI per year.  Thus, the 95% confidence interval of r is (0, 4.6×10
-10

).  

Ravasi and colleagues examined the interactions between transcription factors 

(TFs) for 877 mouse and 762 human proteins, based on a high-throughput method 

(Ravasi et al. 2010).  Using a gold-standard set of mouse TF-TF interactions, they 

estimated that the detection rate of their assay is 23/91=0.253.  If all of the 23 mouse PPIs 

that they could detect in their assay are conserved in human, 23×0.253  6 are expected 
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to be detected in human.  In other words, their assay actually examined the conservation 

of 6 mouse PPIs in human.  The observed number of conserved PPIs was 6.  Thus, based 

on the observation that 6 of 6 mouse PPIs are conserved in human, we estimated that the 

95% confidence interval of r is (0, 5.5×10
-9

), using a divergence time of 90×10
6 

years for 

the species pair (Hedges et al. 2006).  In the above estimation, we focused on the use of 

gold-standard PPIs to avoid false-positives. 

Matthews and colleagues examined the conservation of Sce PPIs in C. elegans 

(Matthews et al. 2001).  They observed that 35 of 216 Sce PPIs are conserved in C. 

elegans.  However, most of the Sce PPIs were not confirmed.  For the subset of 19 

confirmed Sce PPIs, 6 were found to be conserved in C. elegans.  But, the authors did not 

use one-to-one orthologs in their study.  When we limited the analysis to one-to-one 

ortholgs in their data, 2 of 5 confirmed Sce PPIs are conserved in C. elegans.  Based on 

this observation, the maximum likelihood estimate of r is 7.0×10
-10

, which was estimated 

by solving p = (1-r)
t
 = 0.4, using t = 1300×10

6 
years (Hedges et al. 2006).  To estimate 

the confidence interval of r, we assumed that both the probability of observing 2 

conserved PPIs and the probability of observing 2 conserved PPIs exceed 5%.  Let p be 

the probability that a PPI is conserved and
trp )1(  .  We have 

     5 5 5 4 5 2 3

0 1 2(1 ) (1 ) (1 ) 0.05p p p p p       and 

       5 2 3 5 3 2 5 4 5 5

2 3 4 5(1 ) (1 ) (1 ) 0.05p p p p p p p       .  By solving the two 

equations, we found that 0.0764 < p < 0.8107, and thus the 95% confidence interval of r 

is (1.6×10
-10

, 2.0×10
-9

). 

Combining the three datasets, we used a likelihood method to estimate r.  The 

likelihood is   3 31 243 6 5 2 3

2{[(1 ) ] }{[(1 ) ] }{ [(1 ) ] [1 (1 ) ] }
t tt tL r r r r      , where t1 = 

150×10
6 

years, t2 = 90×10
6 

years, and t3 = 1300×10
6 

years.  We used the curvature 

method to estimate the standard error of the likelihood estimate.   

Given the rate of PPI evolution r, the probability that a human PPI is present in a 

related species was calculated by (1-r)
t
, where t is the time since the separation of human 

from the species concerned.   
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2.8.3 Rate of protein sequence evolution 

Using ClustalW, we aligned the one-to-one orthologous proteins for those 

proteins involved in the PPIs used for estimating the rate of PPI evolution.  We counted 

the number of amino acid positions with identical amino acids between the two species (n) 

and counted the total aligned amino acid positions (N).  The p-distance was calculated for 

each orthologous pair by 1
n

p
N

  .  The Poisson-corrected distance was calculated by 

)1ln( pd  (Nei and Kumar 2000).  The rate of protein sequence evolution per residue 

was calculated by d/(2t) and the rate of protein sequence evolution per protein was 

(Nd)/(2t), where t is divergence time between the two species concerned.  We then 

calculated the overall rate of protein sequence evolution of a set of proteins by the 

arithmetic mean rate of these proteins. 
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Table 2.1 Yeast two-hybrid (Y2H) assay results in S. cerevisiae and K. waltii. 

 

K. waltii  S. cerevisiae 

Gene cloned 

in pGADT7 

Gene cloned 

in pGBKT7 

Y2H signal 

from 

pGADT7-

gene1 

+pGBKT7-

gene2 

Y2H signal 

from 

pGADT7 

+pGBKT7-

gene2 

Y2H signal 

from 

pGADT7-

gene1 

+pGBKT7 

PPI?  

Gene to be 

cloned in 

pGADT7 

Gene to be 

cloned in 

pGBKT7 

Y2H signal 

from 

pGADT7-

gene1 

+pGBKT7-

gene2 

Y2H signal 

from 

pGADT7 

+pGBKT7-

gene2 

Y2H signal 

from 

pGADT7-

gene1 

+pGBKT7 

PPI? 

Kwa_10129 Kwa_57 - - - No  YIL162W YBR283C - - - No 

Kwa_10785 Kwa_16074 - - - No  YER107C YEL024W - - - No 

Kwa_12536 Kwa_16027 - - - No  YBR088C YJR043C - - - No 

Kwa_12559 Kwa_5419 - - - No  YPR054W YPR191W - - - No 

Kwa_13638 Kwa_24100 - - - No  YCR035C YPL211W - - - No 

Kwa_15314 Kwa_1116 - - - No  YGR172C YFL038C - - - No 

Kwa_15314 Kwa_18303 - - - No  YGR172C YDR468C - - - No 

Kwa_15314 Kwa_22440 - - - No  YGR172C YML001W - - - No 

Kwa_16027 Kwa_15321 - - - No  YJR043C YJR006W     

Kwa_16145 Kwa_22169 - - - No  YEL015W YOL149W - - - No 

Kwa_18083 Kwa_18622 - - - No  YER044C YML008C - - - No 

Kwa_1973 Kwa_10342 - - - No  YER148W YMR270C + - + NA 

Kwa_20310 Kwa_21767 - - - No  YOR294W YKR081C - - - No 

Kwa_21557 Kwa_23528 - - - No  YOR036W YDR100W - - - No 

Kwa_21557 Kwa_6051 - - - No  YOR036W YMR197C - - - No 

Kwa_21557 Kwa_8776 - - - No  YOR036W YPL151C - - - No 

Kwa_23317 Kwa_8279 - - - No  YLR285W YKL056C - - - No 
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Kwa_23344 Kwa_22629 - - - No  YLR288C YOL093W - - - No 

Kwa_23344 Kwa_3047 - - - No  YLR288C YIL139C - - - No 

Kwa_4081 Kwa_22900 - - - No  YKL183W YGR074W - - - No 

Kwa_4672 Kwa_4689 - - - No  YDL216C YJR084W - - - No 

Kwa_5148 Kwa_8925 - - - No  YFR004W YOR261C     

Kwa_5419 Kwa_19854 - - - No  YPR191W YBL045C     

Kwa_7350 Kwa_22375 - - - No  YJL097W YIR038C - - - No 

Kwa_8414 Kwa_19079 - - - No  YOR106W YGL212W - - - No 

Kwa_8628 Kwa_18044 - - - No  YOR212W YFL026W - - - No 

Kwa_8628 Kwa_969 - - - No  YOR212W YHR005C - - - No 

Kwa_8727 Kwa_24100 - - - No  YPL146C YPL211W + + - NA 

Kwa_8727 Kwa_18184 - - - No  YPL146C YHR034C     

Kwa_9345 Kwa_10129 - - - No  YLR378C YIL162W - - - No 

Kwa_9345 Kwa_15180 - - - No  YLR378C YJL002C - - - No 

Kwa_9345 Kwa_15803 - - - No  YLR378C YMR149W - - - No 

Kwa_9345 Kwa_20888 - - - No  YLR378C YEL002C - - - No 

Kwa_11062 Kwa_14964 + - - Yes  YFR008W YMR052W + - - Yes 

Kwa_11410 Kwa_23895 + - - Yes  YGL153W YDR142C     

Kwa_12079 Kwa_20496 + - - Yes  YBR193C YGR104C + - - Yes 

Kwa_12218 Kwa_9492 + - - Yes  YPL101W YMR312W + - - Yes 

Kwa_12518 Kwa_9942 + - - Yes  YBR087W YJR068W + - - Yes 

Kwa_13638 Kwa_18184 + - - Yes  YCR035C YHR034C     

Kwa_13638 Kwa_3969 + - - Yes  YCR035C YGR095C     

Kwa_15314 Kwa_5058 + - - Yes  YGR172C YFL005W + - - Yes 

Kwa_16145 Kwa_16983 + - - Yes  YEL015W YML064C     

Kwa_18470 Kwa_24776 + - - Yes  YDR448W YGR252W     

Kwa_19615 Kwa_23895 + - - Yes  YIL160C YDR142C     
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Kwa_2064 Kwa_5058 + - - Yes  YER136W YFL005W     

Kwa_2079 Kwa_10342 + - - Yes  YBL025W YMR270C     

Kwa_2079 Kwa_16706 + - - Yes  YBL025W YHR200W     

Kwa_20972 Kwa_17326 + - - Yes  YIR005W YGL174W     

Kwa_21273 Kwa_5012 + - - Yes  YOR136W YNL037C     

Kwa_21570 Kwa_21709 + - - Yes  YOR039W YOR061W + - - Yes 

Kwa_21653 Kwa_20450 + - - Yes  YKR068C YBR254C     

Kwa_21691 Kwa_20211 + - - Yes  YOR057W YDR328C     

Kwa_22058 Kwa_14356 + - - Yes  YOL135C YDR308C + - - Yes 

Kwa_22685 Kwa_22905 + - - Yes  YDR489W YDR013W + - - Yes 

Kwa_23242 Kwa_14356 + - - Yes  YOR174W YDR308C + - - Yes 

Kwa_23242 Kwa_22058 + - - Yes  YOR174W YOL135C + - - Yes 

Kwa_23344 Kwa_6791 + - - Yes  YLR288C YOR368W     

Kwa_23407 Kwa_17650 + - - Yes  YDR088C YGR006W + - - Yes 

Kwa_3341 Kwa_4689 + - - Yes  YDR179C YJR084W + - - Yes 

Kwa_3741 Kwa_5124 + - - Yes  YPR066W YPL003W + - - Yes 

Kwa_4224 Kwa_20206 + - - Yes  YDL065C YDR329C     

Kwa_4224 Kwa_22162 + - - Yes  YDL065C YOL147C + - - Yes 

Kwa_4882 Kwa_11481 + - - Yes  YNL056W YNL032W     

Kwa_5148 Kwa_20444 + - - Yes  YFR004W YIR011C + - - Yes 

Kwa_5266 Kwa_22433 + - - Yes  YOL111C YOR007C     

Kwa_5338 Kwa_7510 + - - Yes  YPR173C YMR077C     

Kwa_5338 Kwa_7535 + - - Yes  YPR173C YLR025W + - - Yes 

Kwa_5338 Kwa_13257 + - - Yes  YPR173C YLR181C + - - Yes 

Kwa_5351 Kwa_18249 + - - Yes  YPR178W YDR473C + - - Yes 

Kwa_5638 Kwa_15453 + - - Yes  YDR280W YGR195W + - - Yes 

Kwa_6435 Kwa_8932 + - - Yes  YCR086W YOR264W     
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Kwa_7031 Kwa_8776 + - - Yes  YAL032C YPL151C     

Kwa_8084 Kwa_4106 + - - Yes  YHL011C YKL181W     

Kwa_8394 Kwa_4882 + - - Yes  YNL099C YNL056W     

Kwa_8628 Kwa_13175 + - - Yes  YOR212W YCL032W + - - Yes 

Kwa_9149 Kwa_6435 + - - Yes  YOR281C YCR086W     

Kwa_10450 Kwa_7946 + - + NA  YBR077C YKR007W     

Kwa_10880 Kwa_18748 + + + NA  YER094C YOR157C     

Kwa_11416 Kwa_10167 + - + NA  YGL154C YGL254W     

Kwa_12239 Kwa_17572 + + + NA  YBR175W YAR003W     

Kwa_14654 Kwa_324 + + - NA  YNL151C YNR003C     

Kwa_15294 Kwa_5649 + - + NA  YLR007W YDR288W     

Kwa_17994 Kwa_23894 + + - NA  YLR051C YLR119W     

Kwa_1811 Kwa_6081 + + - NA  YBR217W YNR007C     

Kwa_18795 Kwa_13991 + + - NA  YDR404C YJL140W     

Kwa_6452 Kwa_23884 + + - NA  YNR046W YDR140W     

Kwa_7730 Kwa_20211 + + - NA  YMR094W YDR328C     
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Figure 2.1  Flowchart describing the selection of candidate protein-protein 

interactions (PPIs) for yeast-two-hybrid (Y2H) assays and the experimental results 

of PPI conservation between S. cerevisiae (Sce) and K. waltii (Kwa). 

 

  

Corresponding Sce genes
cloned for Y2H tests: 29

Corresponding Sce genes
cloned for Y2H tests: 20

33 Sce genes chosen for
Y2H tests

20 Sce genes chosen for
Y2H tests

Self-activation: 11 Interaction not detected: 33 Interaction detected: 43

Self-activation: 2
Interaction not detected: 27
Interaction detected: 0

Self-activation: 0
Interaction not detected: 0
Interaction detected: 20

One-to-one orthologous genes between S. cerevisiae and K. waltii: 3152

Sce PPIs with two independent
Y2H reports: 355

Sce PPIs with one small-
scale Y2H report: 481

1. Both genes
<1.6 kb and >0.4 kb
2. Match available
restriction sites
3. No introns

Potential PPIs for examination: 97

Chosen for experiments: 31Chosen for experiments: 84

Kwa gene pairs chosen for Y2H assay: 115

Kwa gene pairs cloned for Y2H assay: 87

Potential PPIs for examination: 109

Yes Yes

The same 3

criteria

as on the left
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Figure 2.2  Examples of yeast two-hybrid (Y2H) experimental results for S. 

cerevisiae (Sce) and K. waltii (Kwa) genes. 

Yeast cells for the Y2H assays were placed to the test plates (adenine, histidine, leucine 

and tryptophan dropout synthetic media with X-α-gal) in regions marked with black dots.  

Plasmids in the yeast cells are indicated.  pGADT7-gene1 and pGBKT7-gene2 are the 

Y2H plasmids with gene 1 and gene 2 inserted, respectively.  pGADT7-null and 

pGBKT7-null are the empty plasmids without gene inserts.  Row III, column A is the 

negative control (pGADT7-null + pGBKT7-null).  Row II, column B shows an example 

of self-activation of Kwa_23884.  Columns C and D show an example of positive Kwa 

PPI whose corresponding Sce PPI is also confirmed.  Column E shows an example of 

negative Kwa PPI, whereas column F shows that the corresponding Sce PPI is also 

negative.  Gene names starting with Kwa are Kwa genes; otherwise, they are Sce genes.  

One-to-one orthologous genes have the same color in gene name and are connected by 

lines. 
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Figure 2.3  Maximum likelihood estimates (dots) and 95% confidence intervals 

(error bars) of the evolutionary rate of protein-protein interaction (PPI). 
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Figure 2.4  Comparisons in various gene properties between all 3152 S. cerevisiae 

genes that have one-to-one K. waltii orthologs (grey bars) and the 74 S. cerevisiae 

genes involved in the 43 PPIs measured for evolutionary conservation (black bars).   

(A) A comparison in PPI degree (i.e., the number of PPIs that a gene has with the rest of 

the 3152 genes).  (B) Frequency distribution of median PPI degrees of genes involved in 

43 randomly sampled PPIs, derived from 1000 simulations.  (C) A comparison in gene 

importance, measured by the fitness reduction caused by gene deletion.  (D) Frequency 

distribution of median importance of the genes involved in 43 randomly sampled PPIs, 

derived from 1000 simulations.  (E) A comparison in protein sequence identity between S. 

cerevisiae and K. waltii.  (F) A comparison in the nonsynonymous/synonymous 

substitution rate ratio measured by comparing S. cerevisiae and K. waltii sequences.  (G) 

A comparison in mRNA expression levels.  (H) A comparison in protein expression 

levels.  All P values are from Mann-Whitney tests, except those in panels B and D, which 

are from simulation tests.  
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Figure 2.5  Comparisons in Gene Ontology (GO) slim distributions between all 3152 

S. cerevisiae genes that have one-to-one K. waltii orthologs (grey bars) and the 74 S. 

cerevisiae genes involved in the 43 PPIs measured for evolutionary conservation 

(black bars).   

Bins with significant discrepancies at the false discovery rate of 5% are marked by stars. 
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Figure 2.6  Fraction of human PPIs expected to be conserved in various widely used 

model organisms, based on previously estimated divergence times (Hedges et al. 

2006) and our estimated rate of PPI evolution. 
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CHAPTER 3 

ON THE BIOLOGICAL BASIS OF EPISTASIS 

3.1 Abstract 

Epistasis is a common genetic phenomenon with widespread and profound 

biological implications.  Although high-throughput epistasis data from model organisms 

are being generated and used to construct genetic networks(Boone et al. 2007; Roguev et 

al. 2008; Tischler et al. 2008), to what extent epistasis reflects functional intimacy of 

involved genes is unclear(Cordell 2002; Moore and Williams 2005; Phillips 2008).  We 

address this question using metabolic networks, where both epistasis and functional 

relationships of biochemical reactions can be evaluated through systemic analysis.  We 

found that negative epistasis in fitness occurs mainly between nonessential reactions with 

overlapping functions, whereas positive epistasis usually involves essential reactions, is 

highly abundant, and surprisingly, often occurs between reactions without overlapping 

functions.  We subsequently validated these results experimentally and identified their 

mechanistic basis.  Our findings necessitate the distinction of the concept of genetic 

interaction from non-independent gene effects and call for reevaluation of evolutionary 

theories that depend on prevalent negative epistasis.  

 

3.2 Introduction 

Epistasis, a term coined by Bateson 100 years ago(Bateson 1909; Phillips 2008), 

refers to the phenomenon that the effect of a gene on a trait is masked or enhanced by one 

or more other genes.  Fisher and other population and quantitative geneticists extended 

the concept to mean non-independent or non-multiplicative effects of genes(Fisher 1918; 

Phillips 2008).  The direction, magnitude, and prevalence of epistasis is important for 

understanding gene function and interaction(Hartman et al. 2001; Boone et al. 2007; 

Phillips 2008), speciation(Coyne 1992), evolution of sex and recombination(Kondrashov 

1988; Barton and Charlesworth 1998), evolution of ploidy(Kondrashov and Crow 1991), 
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mutation load(Crow and Kimura 1979), genetic buffering(Jasnos and Korona 2007), 

human disease(Cordell 2002; Moore and Williams 2005), and drug-drug interaction(Yeh 

et al. 2006). 

Epistasis in fitness between two mutations is commonly defined by

XY X YW W W   , where WX and WY represent the fitness values of two single mutants 

relative to the wild-type and WXY represents the fitness of the corresponding double 

mutant.  Epistasis is said to be positive when ε > 0, and negative when ε < 0.  When 

deleterious mutations are concerned, positive epistasis lessens the fitness reduction 

predicted from individual mutational effects, whereas negative epistasis enhances it.  The 

magnitude of epistasis between different pairs of mutations may be compared using 

scaled epistasis   (Segre et al. 2005), which is transformed from and has the same sign 

as ε, but is normally bounded between -1 and 1. 

In this study, We apply the flux balance analysis (FBA) of metabolic 

networks(Price et al. 2004), a computational systems biology tool, to explore the 

functional association between biochemical reactions that are epistatic to each other.  

Assuming a steady state in metabolism, FBA maximizes the rate of biomass production 

under the stoichiometric matrix of all reactions and a set of flux constraints.  The 

maximized rate in a mutant strain relative to that in the wild-type strain can be regarded 

as the Darwinian fitness of the mutant relative to the wild-type(Segre et al. 2005).  FBA 

can be used to investigate the performance of the metabolic network and the fitness of the 

cell under various environmental and genetic perturbations(Ibarra et al. 2002; Papp et al. 

2004) and has been used to generate the epistasis map of yeast metabolic genes(Segre et 

al. 2005; Deutscher et al. 2006; Harrison et al. 2007). 

 

3.3 Quantifying epistasis by FBA 

We first study the bacterium Escherichia coli, because its reconstructed metabolic 

network is of high quality and its FBA predictions have been empirically verified 

(Edwards et al. 2001; Ibarra et al. 2002).  Using FBA, we identified from the E. coli 

metabolic network 270 reactions whose removal reduces the fitness under the glucose 

minimal medium.  Removing any of the remaining 661 reactions has no such effect, 

primarily because the reaction has zero flux under this medium, or occasionally because 
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the network has another reaction that can fully compensate its loss.  Among the 270 

reactions, 212 are essential, meaning that deleting any one of them results in zero fitness.  

We considered a genetic perturbation in each reaction that constrains its flux to 50% of 

its wild-type optimal value and then computed the fitness of the mutant by FBA.  We 

similarly computed the fitness values of all possible double mutants and obtained ε and  

for all pairs of the 270 reactions, which reveal the global epistasis pattern within the 

metabolic network.  Constraining the flux to 50% instead of zero(Segre et al. 2005; 

Deutscher et al. 2006; Harrison et al. 2007) allows the investigation of essential reactions.  

Consequently, the number of pairwise epistasis values obtained here exceeds 25 times 

that previously obtained(Segre et al. 2005).  Constraining the flux to other non-zero 

levels does not alter our results qualitatively.   

 

3.4 Establishing functional relation among reactions 

To examine whether metabolic reactions with epistatic relationships are 

functionally associated, we need to identify the function of each reaction in generating 

the E. coli biomass, which is composed of 49 constituents.  If a reaction is important for 

producing a set of biomass constituents, the removal of these constituents from the 

biomass function will recover the biomass reduction caused by the deletion of the 

reaction.  Based on this idea, we designed a removal-recovery method to determine the 

functions of 255 of the 270 important reactions in generating biomass constituents 

(Figure 3.1A).  For the remaining 15 reactions, the functions cannot be unambiguously 

determined and thus they are excluded from our analysis.  The majority of the 255 

reactions each contribute to only one biomass constituent, whereas a small number of 

reactions affect many or even all 49 constituents (Figure 3.1B).  Note that the glucose 

minimal medium is again used in determining the function of each reaction, because 

some reactions have variable functions in different media.  Functional assignment by our 

method is generally consistent with the conventional functional annotation(Reed et al. 

2003), but our assignment is expected to be more objective and precise.   
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3.5 Distribution and underlying functional mechanisms of epistasis 

We found 26 (0.08%) reaction pairs that show apparent negative epistasis (  -

0.01).  Among them, 25 pairs each share functions in producing at least one biomass 

constituent (Table 3.1; Figure 3.2 A & B).  The remaining pair is between reactions 

MALS (catalyzed by malate synthase) and PPC (phosphoenolpyruvate carboxylase), 

anaplerotic reactions feeding the Krebs cycle.  The lack of shared biomass constituents 

between them is due to the incomplete identification of MALS and PPC functions caused 

by their mutual functional compensation.  A common interpretation of negative epistasis 

between two genes is that the two genes can individually perform a common function and 

thus each of them is able to compensate the loss of the other.  Our observation that 

virtually every pair of reactions with negative epistasis share at least one function 

strongly support the above interpretation (Figure 3.2B).  Although one might think that 

negative epistasis should occur between two nonessential reactions, this rule is not 

absolute.  For example, two essential reactions (or one essential reaction and one 

nonessential reaction) may share a nonessential function in producing a biomass 

constituent and show negative epistasis by this common function (Table 3.1). 

In contrast to the rare occurrence of negative epistasis, >97% of reaction pairs 

exhibit apparent positive epistasis (  0.01) (Figure 3.2A).  However, only ~26% of 

them occur between reactions that share at least one biomass constituent (Table 3.1; 

Figure 3.2C).  There is also no significant difference in  or   between functionally 

overlapping and non-overlapping reaction pairs with positive epistasis.  It is often 

observed that a reaction is positively epistatic with a large number of apparently 

unrelated reactions.  Use of  instead of   in measuring epistasis does not change this 

pattern.  The lack of functional overlap between most positively epistatic reaction pairs 

challenges the general interpretation of epistasis as functional association between 

involved parties(Szathmary 1993; Hartman et al. 2001; Boone et al. 2007).  

Why does positive epistasis occur so frequently between functionally unrelated 

reactions?  Figure 3.2A shows that virtually every essential reaction exhibits strong 

positive epistasis ( ~ 1) with any other reaction regardless of its function and 

essentiality.  This enigmatic observation has a simple explanation.  A reaction is essential 

because, when its flux is constrained, at least one biomass constituent will have reduced 
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production that cannot be compensated by flux redistribution in the network.  As a result, 

productions of all other biomass constituents must be reduced to maintain the 

composition stoichiometry of the biomass.  In other words, when an essential reaction is 

constrained, almost all other reactions in the network do not work in their full capacity 

(Figure 3.3 A & B).  Consequently, a genetic perturbation in a second reaction that 

reduces its capacity will have a negligible additional effect, causing positive epistasis.  

This is analogous to a barrel constructed of many wooden staves of equal height.  The 

volume of liquid that can be stored in the barrel is reduced when a stave is shortened.  

Subsequent shortening of any other stave will not further reduce the volume as long as 

this stave is not shorter than the first shortened stave.  The “barrel effect” explains why 

an essential reaction is positively epistatic with virtually every reaction, regardless of its 

function and essentiality (Figure 3.2A).  Note that positive epistasis sometimes occurs 

between nonessential genes and in these cases ~80% (288/361) show functional overlaps 

(Figure 3.2B).   

Why is there no barrel effect between nonessential reactions?  There are three 

requirements for a metabolic reaction to be important yet nonessential.  First, it must 

function in producing one or more biomass constituents.  Second, there must be 

alternative reactions that can also make its product.  Third, compared with the alternative 

reactions, it must be more efficient in producing at least one constituent.  When the flux 

of a nonessential reaction is constrained, its less efficient alternative reaction will be 

turned on (Figure 3.3C).  Due to the lower efficiency of the alternative reaction, nutrients 

that previously went through other reactions for making other biomass constituents can 

be redistributed in such a way that the biomass reduction by the flux constraint is 

minimized (Figure 3.3C).  In the barrel analogy, when a stave is cut short, one can now 

take out a small piece of wood (representing redistributed nutrient flux) from each of the 

many other staves and attach it to the shortened stave to make all staves of equal height.  

Apparently, this way, there will be virtually no epistatic effect on the volume of the barrel 

between two cuts.  It can be shown mathematically that when the number of reactions in 

the network is large, perturbations of two functionally unrelated nonessential reactions 

will have a nearly multiplicative effect on biomass production and cause negligibly weak 

positive epistasis(Segre et al. 2005; Jasnos and Korona 2007).   
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3.6 Analysis in yeast 

Yeast (Saccharomyces cerevisiae) is another species whose reconstructed high-

quality metabolic networks have been extensively validated experimentally(Papp et al. 

2004; Harrison et al. 2007).  We repeated the above analysis in yeast and obtained similar 

results (Table 3.1; Figure 3.4).  Specifically, only 0.2% of reaction pairs show   -0.01, 

83% of which have functional overlaps.  By contrast, >95% of reaction pairs show  ≥ 

0.01, but only 20% of which have overlapping functions.   

 

3.7 Experimental validation in yeast 

We further validated these results experimentally, with a focus on yeast, due to 

the difficulty in conducting partial gene deletion in E. coli.  We deleted one allele per 

gene from a diploid cell to achieve partial disruption of a gene.  Haploinsufficient genes 

were used to ensure that partial gene disruption affects fitness.  Only non-metabolic genes 

were examined, because metabolic genes are rarely haploinsufficient(Deutschbauer et al. 

2005).  Non-metabolic genes should also be subject to the barrel effect(Kishony and 

Leibler 2003), as long as the final product is composed of multiple constituents with a 

fixed or preferred composition stoichiometry.  We constructed a reference strain by 

inserting a yellow fluorescent protein gene into the genome of a wild-type strain.  We 

then measured the fitness of each strain (including the wild-type) by competing it with 

the reference strain followed by cell counting using fluorescence activated cell sorting 

(FACS), a method that detects a fitness differential as small as 0.5%.  We then calculated 

the fitness values of all single-deletion strains and all pairwise double-deletion strains 

relative to the wild-type, which allowed the estimation of epistasis between genes (Figure 

3.5A; Table 3.2; Table 3.3).  Six essential and two nonessential genes from seven 

functional categories were examined.  Among the 27 gene pairs that involve at least one 

essential gene, 23 (85%) have significantly positive  (P < 0.05, t test), two have 

significantly negative , and the remaining two do not show significant epistasis.  The 

mean   among the 23 positively epistatic pairs is 0.78, and 11 of them have   not 

significantly smaller than 1.  The epistasis between the two nonessential genes is not 

statistically significant.  These results strongly support our computational findings. 
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Because the above experiment could not examine haplosufficient genes, we 

employed the newly developed DAmP method(Breslow et al. 2008) to mimic partial gene 

deletion, in which a marker gene is inserted into the 3’ untranslated region of a gene such 

that its protein expression may be reduced to <50%.  We studied 9 haplosufficient genes 

belonging to 8 functional categories, including 4 essential genes that are knocked down 

by DAmP and 5 nonessential genes that are knocked out (Table 3.2).  We were able to 

measure the epistasis of 33 of the 36 gene pairs in haploid cells (Figure 3.5B; Table 3.4).  

Of the 23 gene pairs that have epistasis estimates and involve at least one essential gene, 

20 (87%) show significantly positive  (P < 0.05, t test), two show significantly negative 

, and the remaining one does not show significant epistasis (Figure 3.5B).  These results 

further support our computational result of abundant positive epistasis involving essential 

genes, even among functionally unrelated ones. 

 

3.8 Why previous studies did not find prevalent positive epistasis  

Our computational and experimental results appear contradictory to previous 

studies of various model organisms, which did not find a gigantic number of positive 

epistasis cases(Elena and Lenski 1997; Segre et al. 2005; Boone et al. 2007; Jasnos and 

Korona 2007; Roguev et al. 2008; Tischler et al. 2008).  The primary reason is that most 

of these studies used gene-deletion mutations and only estimated epistasis between 

nonessential genes, because essential genes are not amenable to such analysis(Segre et al. 

2005; Jasnos and Korona 2007; Roguev et al. 2008; Tischler et al. 2008).  The second 

reason is related to the sensitivity in detecting epistasis.  Positive , having a maximum of 

1-WXWY, is expected to be small despite the fact that   often approaches 1.  Positive  

between natural mutations would be even smaller because most spontaneous mutations 

are only slightly deleterious.  Such small positive  is usually difficult to detect 

experimentally, unless the sensitivity of fitness measurement is high(Yeh et al. 2006; 

Breslow et al. 2008).  Probably due to this difficulty, most previous studies were 

designed to identify negative epistasis only, even when essential genes were 

studied(Davierwala et al. 2005).  Even in a study intended to detect both negative and 

positive epistasis involving essential genes, the low sensitivity did not allow reliable 

estimation of positive epistasis(Collins et al. 2007).  While one study did observe more 
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positive epistasis than negative epistasis (with a ratio of 1.8 among statistically 

significant epistasis cases), the magnitude of the bias is not comparable to what we found 

here and the cause of the bias must be different because only nonessential genes were 

studied(Jasnos and Korona 2007).  Recently, abundant positive epistasis between 

essential genes was detected upon improvement of the fitness measure, but the study was 

limited to functionally related genes(Breslow et al. 2008).   

 

3.9 Conclusion 

In summary, our systemic analysis of the E. coli and yeast metabolic networks 

and the subsequent experimental validations in yeast reveal a complex biological basis of 

epistasis.  While negative epistasis accurately reflects functional intimacy of the involved 

reactions or genes, positive epistasis does not.  Our results suggest a high prevalence of 

positive epistasis in living systems due to the barrel effect, an intrinsic property of 

essential components.  The proportion of essential genes in the genome is ~7% in E. coli, 

17% in yeast, and 55% in mouse(Liao and Zhang 2007).  Thus, positive epistasis between 

functionally unrelated genes is likely to be even more prevalent in higher eukaryotes than 

is discovered here.  These findings require the distinction of the concept of genetic 

interaction from non-multiplicative (or non-additive) gene effects and caution against the 

use of positive epistasis to infer genetic pathways and gene-gene interactions.  While one 

may argue that, because all metabolic genes share the function in supporting cell growth, 

their epistasis is not surprising, we suggest that, if epistasis corresponds to such crude 

functional relationship, it provides little biological insight and is useless.  Although our 

results are presented primarily with , it is clear that positive epistasis is highly abundant 

and much more prevalent than negative epistasis even when  is used.  This is also the 

case when the majority of mutations are only slightly deleterious.  These observations 

and their theoretical basis call for reevaluation of evolutionary theories that depend on 

overall negative epistasis, such as the mutational deterministic hypothesis of the 

evolution of sexual reproduction(Kondrashov 1988) and the hypothesis of reduction in 

mutational load by truncation selection against deleterious mutations(Crow and Kimura 

1979). 
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3.10 Materials and methods 

3.10.1 Flux balance analysis (FBA) and minimization of metabolic adjustment 

(MOMA) were used to measure epistasis and identifying the functions of each 

reaction. 

Details of FBA and MOMA have been described previously(Segre et al. 2002; 

Price et al. 2004).  We used the optimization package CPLEX on the MATLAB platform 

to solve the programming problems.  The E. coli metabolic model of iJR904 (Reed et al. 

2003) and S. cerevisiae model of iMM904 (Mo et al. 2009) were used. 

We first describe the analysis in E. coli.  To delete reaction i, we set both of its 

upper-bound and lower-bound flux constraints to zero in FBA.  To perturb a reaction, we 

set its upper-bound flux as 50% of its wild-type optimal flux.  Essential reactions 

constitute 212/270 = 78% of all important reactions.  We also studied the effect of 

different degrees of perturbation.  Eleven of the 270 reactions have variable optimal 

fluxes in the wild-type.  For these reactions, we used the minimal optimal fluxes so that 

any constraint in flux would be deleterious, allowing us to measure epistatic effects of 

deleterious mutations.  Note that constraining the flux of a reaction to 50% of its wild-

type level is not equivalent to constraining the enzyme concentration to 50% of its wild-

type level, due to the nonlinear relationship between enzyme concentration and 

flux(Kacser and Burns 1981).   

All pairwise double perturbations of the 270 important reactions were conducted.  

The relative fitness of a mutant is defined as the maximal biomass production rate of the 

mutant, relative to that of the wild-type(Segre et al. 2005).  Epistasis is measured by 

XY X YW W W   , where WX and WY represent the fitness values of two single mutants 

relative to the wild-type and WXY represents the fitness of the corresponding double 

mutant(Segre et al. 2005).  Scaled epistasis(Segre et al. 2005) is defined by 

XY X Y( / ) 1W W W    when ε <0, and XY X Y X Y X Y( ) /[min( , ) ]W W W W W W W     when 

ε >0.  Thus,   is normally between -1 and 1, although it can be >1 if WXY is greater than

X Ymin( , )W W . 

When the fluxes of two reactions are constrained simultaneously, if both reactions 

have variable optimal fluxes, it is possible that their minimal optimal fluxes cannot be 
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simultaneously realized in the wild-type.  In such instances, we actually over-constrained 

one of the two reactions in measuring WXY, rendering  underestimated and our 

conclusion of prevalent positive epistasis conservative.  However, among the 255 

reactions presented in Fig. 2, only 4 reactions have variable optimal fluxes and the 

pairwise  values among them are all non-negative.  Note that our epistasis measurement 

is completely independent from the identification of the function of each reaction.  In 

other words, the observed abundance of positive epistasis is not dependent on the 

assumptions made in identifying the functions of metabolic reactions.  The function of 

each reaction was identified by a removal-recovery method.   

The yeast metabolic network contains 1,412 biochemical reactions, including 538 

dead-end reactions.  Using FBA, we found that 244 reactions have fitness effects upon 

deletion under the glucose minimal medium.  We were able to identify the functions for 

212 (158 essential and 54 nonessential) of these 244 reactions unambiguously, using the 

removal-recovery method.  Epistasis between reactions was measured following the 

method used for the E. coli network.   

 

3.10.2 Yeast experiments.   

Haploid Saccharomyces cerevisiae strain BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 

ura3Δ0) and diploid strain BY4743 (MATa/MATα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 

lys2Δ0/+ met15Δ0/+ ura3Δ0/ura3Δ0), both derived from the laboratorial strain s288c 

(Brachmann et al. 1998), were used in this study.  The strains were grown on rich YPD 

media (1% yeast extract, 2% peptone, 2% glucose) or minimal synthetic dextrose (SD) 

media (0.67% yeast nitrogen base without amino acids, 2% glucose) with appropriate 

dropout (DO) supplements (Clontech, Mountain View, CA).  5-fluoro-orotic acid (5-FOA) 

agar media were made by mixing -Ura DO supplement (Clontech, Mountain View, CA), 

uracil (Sigma, St. Louis, MO, final concentration 50mg/L), and 5-FOA (Research 

Products International, Mount Prospect, IL, final concentration 0.1%) into SD agar media.  

Two strategies were used.  In the first strategy, we used the diploid strain BY4743 

(Brachmann et al. 1998) as the wild-type strain and used either URA3 or LEU2 to replace 

one allele of a chosen gene in BY4743.  Because the YPD media supplies both uracil and 

leucine, the replacement of target genes with a functional URA3 or LEU2 gene is 
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expected to have minimal fitness effect (see below for details).  Note that the LEU2 

marker used in this study excludes the flanking tRNA genes that are commonly included 

in the LEU2 marker.  URA3 was amplified from pRS416 (Stratagene, La Jolla, CA) and 

LEU2 from PRS305 (American Type Culture Collection, Rockville, MD), using gene-

specific primers containing ~60 nucleotides matching the sequences upstream and 

downstream of the open reading frame (ORF) of the gene to be replaced.  The resulting 

cassette was used to replace the target gene using a homologous recombination based 

method(Amberg et al. 2005).  URA3-inserted strains were selected on a uracil dropout 

synthetic media (SD –Ura), while LEU2-inserted strains were selected on a leucine 

dropout synthetic media (SD –Leu).  Each target gene was independently replaced with 

both LEU2 and URA3.  Thus, 16 single gene replacement strains were made.  We 

confirmed the status of heterozygous replacement by polymerase-chain reaction (PCR).  

Because 6 of the 8 genes are essential for growth in YPD, mating-based methods(Tong et 

al. 2001) cannot be used to make double-replacement strains.  Instead, all 28 double-

replacement strains were made by sequential replacement of two target genes with the 

two marker genes in diploid cells. 

In the second strategy, we made DAmP strains following the original 

design(Breslow et al. 2008), except that we used URA3 or LEU2 rather than the Kan
R
 

cassette as markers.  We inserted the marker gene exactly after the stop codon of each 

gene.  For nonessential genes, we deleted the ORF (from start codon to stop codon) by 

either URA3 or LEU2.  We used haploid BY4742 as the wild-type strain in this approach.   

The reference strain was marked with the Venus variant of yellow fluorescent 

protein (vYFP)(Nagai et al. 2002) for fluorescent-activated cell sorting (FACS).  vYFP 

was amplified from pBS7 (Yeast Resource Center, University of Washington, Seattle, 

WA) and introduced into plasmid p426GPD(Mumberg et al. 1995) using EcoRI and 

BamHI sites.  vYFP proteins are expressed from an extremely strong promoter GPD in 

yeast (the promoter of TDH3) and with the CYC1 terminator.  We first replaced the ORF 

of MET15 in BY4742 with URA3 by PCR-based gene replacement method(Amberg et al. 

2005) and selected it on a uracil dropout synthetic media (SD –Ura).  We then replaced 

URA3 with the vYFP gene (together with the GPD promoter and CYC1 terminator) and 

selected it on 5-FOA plates.  Yellow fluorescence was confirmed by live cell 
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fluorescence microscopy.  All gene replacement strains were confirmed by genomic 

DNA extraction and PCR.   

We used a competition assay to measure the fitness of each strain and then 

estimated epistasis and its confidence interval (see 3.11.2).  

The fitness (W) values of the single heterozygous deletion strains estimated from 

our competition assay differ from previous estimates(Steinmetz et al. 2002; Deutschbauer 

et al. 2005).  For two reasons, our results are more reliable than previous results.  First, 

we measured the fitness based on counting hundreds of thousands of cells by flow 

cytometry, which is much more reliable than microarray-based method that was used in 

the previous fitness estimation.  Second, we compared the deletion strains to a wild-type 

strain, which did not exist in previous fitness estimation.   

The overwhelming positive epistasis we observed can potentially be a result of 

epistasis between the two selectable markers used in gene replacement (LEU2 and URA3).  

To exclude this possibility, we used LEU2 and URA3 to each replace one allele of a non-

functional gene (HO) in the diploid strain BY4743 and measured the epistasis between 

LEU2 and URA3.  HO encodes a site-specific endonuclease required for gene conversion 

at the MAT locus (homothallic switching).  We selected HO for the following two reasons.  

First, if we simply insert the two marker genes into an intergenic region, it is possible that 

the marker genes destroy unknown functional elements in the region(Nagalakshmi et al. 

2008) and cause unwanted fitness effects.  Second, the HO gene in BY4743 and its 

ancestor s288c has several severe mutations and is apparently non-functional(Meiron et 

al. 1995; Ekino et al. 1999).  Thus, replacing it with our marker genes will not have any 

unwanted side effect.  We found no significant epistasis between LEU2 and URA3.  The 

fitness of the URA3 insertion strain is WURA3=1.014, the fitness of the LEU2 insertion 

strain is WLEU2=1.003, and the fitness of the URA3 and LEU2 double-insertion strain is 

WURA3-LEU2=1.016.  The epistasis between URA3 and LEU2 is ε=-0.001, P > 0.9, U test).  

Furthermore, the absolute value of ε between the two marker genes is small, compared 

with the majority of the epistasis values observed (Table 3.3).   
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3.11 Appendices 

3.11.1 Selection of genes in the yeast experimental study   

Two strategies are used to mimic partial gene disruption.  The first strategy is to 

delete one allele of a gene from a diploid cell.  Genes shown to be haploinsufficient in the 

YPD medium(Deutschbauer et al. 2005) were used to ensure that partial gene disruption 

affected fitness.  The difference between WXWY and the smaller of WX and WY is 

diminutive when either WX or WY is close to 1, making positive epistasis difficult to 

detect.  We chose genes that have relatively large fitness effects when one allele is 

deleted so that our assay would be sensitive enough when positive epistasis exists.  

Specifically, we required the heterozygous deletion strains to have fitness values no 

greater than 0.9 in each of the four previous measures(Steinmetz et al. 2002; 

Deutschbauer et al. 2005) (see Table 3.2).  If two genes are located on the same 

chromosome, the fitness of the double heterozygous deletion strain may vary depending 

on whether the two null alleles are linked on the same chromosome.  To avoid such 

potential complication, we selected genes located on different chromosomes.  We chose 8 

genes (Table 3.2) that meet all above criteria.  They include 6 essential genes and 2 

nonessential genes.  The 8 genes belong to 7 different functional categories.  Two 

ribosomal protein genes, one essential and one nonessential, share a functional category. 

The second strategy to mimic partial gene deletion of essential genes is to use the 

Decreased Abundance by mRNA Perturbation (DAmP) method(Breslow et al. 2008), in 

which a marker gene is inserted into the 3’ untranslated region of a gene, causing 2.5 

to >10-fold reduction in protein abundance(Breslow et al. 2008).  This experiment was 

conducted in haploid cells.  For nonessential genes, we simply deleted the ORF of the 

genes.  We used an auxotrophic gene (URA3 or LEU2) as selection markers to generate 

perturbation strains.  We chose 8 essential genes with relatively strong fitness reduction 

found in previously constructed DAmP strains(Breslow et al. 2008) and chose 5 

nonessential genes known to have fitness effects when deleted(Deutschbauer et al. 2005).  

Among these genes, 3 essential and 2 nonessential metabolic genes are included.  We 

started with these 8 essential and 5 nonessential genes and measured the fitness of single 

perturbation strains.  Four essential gene mutants showed fitness lower than 0.95 by 

LEU2 and 2 showed fitness lower than 0.95 by URA3; none of these genes are metabolic 
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genes, probably due to the known insensitivity of fitness to enzyme dosage(Kacser and 

Burns 1981; Kondrashov and Koonin 2004).  Deletion of each of the 5 nonessential genes 

had a fitness effect greater than 0.05.  We thus examined epistasis among the above 9 

genes (4 essential and 5 nonessential) in haploid cells by DAmP (for essential genes) and 

gene deletion (for nonessential genes) (Table 3.2).  Except GAA1 and GAS1, which are 

potentially related in function, other genes are not functionally related. 

We caution that our experiments relied on the use of genes with relatively large 

fitness effects upon complete or partial deletion, rather than random genes.  

 

3.11.2 Experimental estimation of epistasis and its confidence interval 

We conducted competition experiments to measure the fitness of each yeast 

mutant strain relative to the vYFP-marked reference strain.  Competitive growth of the 

two strains occurred in YPD at 30C for 24 hours and the fitness for mitotic growth is 

measured.  The detailed experimental procedure is as follows. 

Yeast strains were first grown in YPD for 24 hours to acclimatize them in the 

competition environment.  The strain of interest was then mixed with the vYFP-marked 

reference strain in YPD with a certain ratio.  Different initial cell growth states may affect 

the fitness measurement.  To avoid this problem, we measured the fraction of reference 

cells in the mixture after 6 hours of competition (P0).  We diluted the mixture by 50-fold 

at 18 hours to circumvent saturation and quantified the final fraction of the reference cells 

at 30 hours (P1). 

The fraction of cells in the culture that have yellow fluorescence was determined 

by cell counting using FACSCalibur (BD Biosciences, San Jose, CA) in the Flow 

Cytometry Core Facility at the University of Michigan.  The data were collected from the 

FL1 detector, which has a filter with a 30-nm bandpass centered at 530nm.  We first 

confirmed that our fluorescent strains and non-fluorescent strains can be separated 

successfully by FACS.  For example, among 26,925 negative-control cells (BY4743), no 

cell showed positive signals, and among 38,775 positive-control cells (BY4742-vYFP), 

only 20 (or 0.0516%) were erroneously regarded as negative by FACS.  For real samples, 

100,000 gated events were counted per sample.   



 52 

The number of cell divisions (or generations) during the competition assay was 

calculated by counting yeast cells on YPD plates.  The competition mixture of the wild-

type (BY4743) and reference (BY4742-vYFP) strains at 6 hours and 30 hours were 

diluted and plated on YPD agar media and colony numbers were counted (>300 colonies 

per mixture).  Based on the ratio of the number of fluorescent and non-fluorescent cells, 

we calculated the generation numbers during the competition.  From two replications, we 

found that the wild-type cells had 12.60 and 12.62 generations in 24 hours, respectively, 

and the reference cells had 11.54 and 11.61 generations, respectively.  We used n = 11.58 

generations in subsequent analysis of diploid strains, because the relative fitness of 

mutant strains were always directly measured against the reference strain.  We note that 

the sign and magnitude of epistasis are insensitive to the n value.  For example, use of n = 

10.6 to 12.6 gave quantitatively similar results on epistasis.  For measuring the fitness of 

haploid strains, the competition time was 20 hours and the generation number for the 

reference strain was n = 9.40.  

A mutant strain’s fitness (f’), relative to the reference strain, is calculated by  
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/ (1 )
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' 1
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 
 
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The fitness (f0) of the wild-type, relative to the reference strain, is similarly 

calculated.  From two replications, we found that f0 equals 1.039 and 1.036, respectively, 

for the diploid wild-type strain BY4743.  The mean f0 = 1.038 was used in subsequent 

analysis.  For the haploid wild-type strain BY4742, f0 = 1.010.  A mutant strain’s fitness 

relative to the wild-type is calculated by 0'/W f f .   

There are three potential sources of error that contribute to the estimation of the 

fitness of a strain.  The first source is the sampling error in flow cytometry (i.e., the error 

in estimating P0 and P1).  When counting k cells in flow cytometry, the standard deviation 

of P1 is 1 1(1 ) /P P k  and the coefficient of variation of P1 is 1 1(1 ) / ( )CV P kP  .  

Because we counted at least k =100,000 cells, CV is approximately 0.003.  For ~12 

generations of growth, the fitness estimation error due to the sampling error of P1 is 

approximately 0.003/12, or much lower than 0.001.  Our experimental result is generally 

in agreement with this theoretical prediction.  We measured cell ratios by FACS twice for 
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5 samples and found that the standard deviation of the estimated relative fitness 

contributed by the sampling error of P1 is on average 0.0008 for the 5 samples.  A similar 

level of error is expected in estimating P0. 

The second source of error is from mutations that occurred during the competition 

assay.  At the end of the competition assay, the final cell number in the culture is about 3 

ml × 2 OD × (2.5 × 10
7
 cells/ml/OD) ≈ 10

8
.  That is, there are on the order of 10

8
 cell 

divisions during the competition.  Given the mutation rate of 10
-10

/site/generation(Drake 

et al. 1998; Lang and Murray 2008) and the genome size of 10
7
 nucleotides(Goffeau et al. 

1996), the number of mutations during the competition is on the order of 10
8
×10

7
×10

-10 
= 

10
5
.  It is unclear how many of them are beneficial or deleterious and how large the 

fitness effects of these mutations are.  We estimated the total effect of the first two 

sources of error by the following method.  We measured the fitness of 9 groups of yeast 

cells from a wild-type BY4743 culture by separately competing them with the vYFP-

marked reference strain.  The standard deviation of the fitness of the wild-type strain 

from the 9 cultures is 0.0021.  Thus, mutations during competition may have generated 

some noise for fitness measurement, but the first two sources of error amount to a 

relatively low standard deviation (~0.002) of fitness.  We also confirmed that the initial 

relative cell numbers of the two strains in the mixture do not affect the estimated relative 

fitness values at any appreciable level.  

The third source of error is mutations that occurred during the gene replacement 

procedure, in which the strain went through a single-cell bottleneck.   

To estimate the total error from the three sources, we picked 13 different colonies 

from the same gene replacement experiment and measured the fitness of each of these 

colonies.  We found that the standard deviation of fitness among the colonies is 0.0029.  

We further examined double-deletion strains and found the fitness variation among 

colonies of the same double-deletion strain to be 0.0016.  Combining these data in a 

weighted manner, we estimated that the standard deviation of fitness among different 

colonies of the same strain to be 0.00256.  Because this standard deviation includes all 

three sources of error, it best represents the degree of error in our fitness measurement 

and thus will be used in subsequent analysis. 
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The fitness values are stable between experiments at different times (6 months 

apart).  We measured BY4742-vYFP’s fitness relative to BY4743 (both strains were from 

reactivated glycerol stock strains stored in -80C) twice and found that the fitness values 

were not significantly different. 

The standard deviation of the estimated epistasis was calculated as follows.  The 

variance (V) of each fitness measure is 
2 6

0( ') ( ) (0.00256) 6.55 10fV V f V f      .  

The variance of the relative fitness of a mutant strain to the wild-type is  
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The approximations in the above formula are due to the fact that f0 and f’ are both 

close to 1 and V(f’) << (f’)
2
.  The variance of epistasis is then  
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Because WX and WY are close to 1 and )( XWV  and )( YWV are small relative to 

WX and WY, ( ) 3 ( ) 6 fV V W V   .  Thus, the standard deviation of epistasis is 

( ) ( ) 6 6 0.00256 0.0063fSD V V      .  The 95% confidence interval of ε is 

ε±0.0123. 
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Table 3.1 Numbers of reaction pairs that show epistatic relationships in glucose 

minimal medium. 

    Epistasis in E. coli**   Epistasis in yeast** 

Reaction pairs* Functions Negative Zero Positive   Negative Zero Positive 

E-E With overlap 0 9 4269  1 2 1780 

 Without overlap 0 0 17667  0 3 10617 

 Sum 0 9 21936  1 5 12397 
         

E-N With overlap 3 83 3704  10 67 2153 

 Without overlap 0 34 5626  0 99 6203 

 Sum 3 117 9330  10 166 8356 
         

N-N With overlap 22 267 288  24 137 402 

 Without overlap 1 339 73  7 661 200 

 Sum 23 606 361  31 798 602 
         

All With overlap 25 359 8261  35 206 4335 

 Without overlap 1 373 23366  7 763 17020 

  Sum 26 732 31627   42 969 21355 

* Pairwise relationships among 255 important E. coli reactions and among 212 important 

yeast reactions. E, essential reaction; N, nonessential reaction. 

** Scaled epistasis of ≥0.01 is considered positive, ≤0.01 is considered negative, and 

between 0.01 and 0.01 is considered zero.  
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Table 3.2  Genes used in the yeast experiments. 

Genes used in the first set of yeast experiment 

ORF 
Fitness 

1* 

Fitness 

2* 

Fitness 

3* 

Fitness 

4* 

Essential 

gene? 

Gene 

name 
Gene functions annotated in SGD (www.yeastgenome.org). 

YAR002W 0.88 0.88 0.91 0.89 N NUP60 

Subunit of the nuclear pore complex (NPC), functions to anchor Nup2p to 

the NPC in a process controlled by the nucleoplasmic concentration of 

Gsp1p-GTP; potential Cdc28p substrate; involved in telomere 

maintenance 

YDL193W 0.86 0.75 0.89 0.90 Y NUS1 
Prenyltransferase, required for cell viability; involved in protein 

trafficking 

YFL039C 0.84 0.87 0.83 0.90 Y ACT1 
Actin, structural protein involved in cell polarization, endocytosis, and 

other cytoskeletal functions 

YHR143W-A 0.82 0.84 0.83 0.86 Y RPC10 
RNA polymerase subunit, found in RNA polymerase complexes I, II, and 

III 

YIL142W 0.86 0.88 0.89 0.89 Y CCT2 
Subunit beta of the cytosolic chaperonin Cct ring complex, related to 

Tcp1p, required for the assembly of actin and tubulins in vivo 

YJR123W 0.82 0.77 0.86 0.84 Y RPS5 

Protein component of the small (40S) ribosomal subunit, the least basic of 

the non-acidic ribosomal proteins; phosphorylated in vivo; essential for 

viability; has similarity to E. coli S7 and rat S5 ribosomal proteins 

YKL006W 0.82 0.84 0.89 0.88 N 
RPL14

A 

N-terminally acetylated protein component of the large (60S) ribosomal 

subunit, nearly identical to Rpl14Bp and has similarity to rat L14 

ribosomal protein; rpl14a csh5 double null mutant exhibits synthetic slow 

growth 

YPR181C 0.79 0.85 0.86 0.86 Y SEC23 

GTPase-activating protein; component of the Sec23p-Sec24p 

heterodimeric complex of the COPII vesicle coat, involved in ER to 

Golgi transport and autophagy; stimulates the GDP-bound form of Sar1p 

Genes used in the second set of yeast experiment 
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* Fitness of heterozygous deletion strains in YPD were measured by two groups.  Fitness 1 and Fitness 2 were measured by Steinmetz 

et al (2002), and Fitness 3 and Fitness 4 were measured by Deutschbauer et al (2005). 

ORF 
Fitness 

1** 

Fitness 

2** 
Metabolic gene? 

Essential 

gene? 

Gene 

name 
Gene functions annotated in SGD (www.yeastgenome.org). 

YBR243C 0.775 - N Y ALG7 

UDP-N-acetyl-glucosamine-1-P transferase, transfers Glc-Nac-P from 

UDP-GlcNac to Dol-P in the ER in the first step of the dolichol pathway 

of protein asparagine-linked glycosylation; inhibited by tunicamycin 

YDR454C 0.759 - N Y GUK1 
Guanylate kinase, converts GMP to GDP; required for growth and 

mannose outer chain elongation of cell wall N-linked glycoproteins 

YLR088W 0.710 - N Y GAA1 

Subunit of the GPI (glycosylphosphatidylinositol):protein transamidase 

complex, removes the GPI-anchoring signal and attaches GPI to proteins 

in the ER 

YOL078W 0.734 - N Y AVO1 
Component of a membrane-bound complex containing the Tor2p kinase 

and other proteins, which may have a role in regulation of cell growth 

YJL029C 0.568 0.773 N N VPS53 

Component of the GARP (Golgi-associated retrograde protein) complex, 

Vps51p-Vps52p-Vps53p-Vps54p, which is required for the recycling of 

proteins from endosomes to the late Golgi; required for vacuolar protein 

sorting 

YMR307W 0.706 0.747 N N GAS1 
Beta-1,3-glucanosyltransferase, required for cell wall assembly; localizes 

to the cell surface via a glycosylphosphatidylinositol (GPI) anchor 

YNL080C 0.662 0.762 N N EOS1 

Protein involved in N-glycosylation; deletion mutation confers sensitivity 

to exidative stress and shows synthetic lethality with mutations in the 

spindle checkpoint genes BUB3 and MAD1; YNL080C is not an 

essential gene 

YOL064C 0.787 0.680 Y N MET22 

Bisphosphate-3'-nucleotidase, involved in salt tolerance and methionine 

biogenesis; dephosphorylates 3'-phosphoadenosine-5'-phosphate and 3'-

phosphoadenosine-5'-phosphosulfate, intermediates of the sulfate 

assimilation pathway 

YGR157W 0.523 0.854 Y N CHO2 

Phosphatidylethanolamine methyltransferase (PEMT), catalyzes the first 

step in the conversion of phosphatidylethanolamine to 

phosphatidylcholine during the methylation pathway of 

phosphatidylcholine biosynthesis 
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** Fitness of gene targeting strains in minimal media were measured by two groups.  Fitness 1 were measured by Breslow et al (2008), 

and Fitness 2 were measured by Deutschbauer et al (2005). 
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Table 3.3 Fitness of double-deletion yeast strains and estimates of epistasis in the 

first set of experiment. 

Double-deletion 

strains*  

Fitness of 

double-

deletion 

strains 

Fitness of 

LEU2 

replacement 

strain 

Fitness of 

URA3 

replacement 

strain 

Expected 

multiplicative 

fitness 

Epistasis 

ε** 

Scaled 

epistasis 

  

RPL14A & NUP60 0.886 0.898 0.991 0.889 -0.003 -0.004 

RPL14A & NUS1 0.891 0.898 0.968 0.869 0.023 0.781 

RPL14A & ACT1 0.867 0.898 0.891 0.800 0.068 0.742 

RPL14A & RPC10 0.881 0.898 0.929 0.834 0.047 0.735 

RPL14A & CCT2 0.890 0.898 0.918 0.824 0.066 0.894 

RPL14A & RPS5 0.842 0.898 0.859 0.771 0.071 0.806 

RPL14A & SEC23 0.874 0.898 0.921 0.827 0.047 0.663 

NUP60 & NUS1 0.965 0.952 0.968 0.921 0.044 1.430 

NUP60 & ACT1 0.872 0.952 0.891 0.848 0.024 0.570 

NUP60 & RPC10 0.869 0.952 0.929 0.884 -0.015 -0.017 

NUP60 & CCT2 0.924 0.952 0.918 0.874 0.050 1.140 

NUP60 & RPS5 0.853 0.952 0.859 0.818 0.035 0.851 

NUP60 & SEC23 0.904 0.952 0.921 0.877 0.027 0.604 

NUS1 & ACT1 0.876 0.946 0.891 0.843 0.034 0.702 

NUS1 & RPC10 0.867 0.946 0.929 0.879 -0.012 -0.013 

NUS1 & CCT2 0.923 0.946 0.918 0.868 0.055 1.108 

NUS1 & RPS5 0.852 0.946 0.859 0.813 0.039 0.837 

NUS1 & SEC23 0.899 0.946 0.921 0.872 0.027 0.547 

ACT1 & RPC10 0.856 0.906 0.929 0.842 0.0143 0.222 

ACT1 & CCT2 0.866 0.906 0.918 0.832 0.035 0.464 

ACT1 & RPS5 0.859 0.906 0.859 0.779 0.080 0.992 

ACT1 & SEC23 0.865 0.906 0.921 0.835 0.030 0.420 

RPC10 & CCT2 0.921 0.953 0.918 0.875 0.046 1.080 

RPC10 & RPS5 0.848 0.953 0.859 0.819 0.029 0.716 

RPC10 & SEC23 0.864 0.953 0.921 0.878 -0.014 -0.016 

CCT2 & RPS5 0.850 0.938 0.859 0.806 0.044 0.829 

CCT2 & SEC23 0.870 0.938 0.921 0.865 0.005 0.093 

RPS5 & SEC23 0.867 0.888 0.921 0.818 0.048 0.694 

* The first gene is replaced by LEU2 and second gene is replaced by URA3. 

** Bold epistasis ε values are significantly different from 0 (P<0.05). 
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Table 3.4 Fitness of double-perturbation yeast strains and estimates of epistasis in 

the second set of experiment. 

Double-deletion 

strains*  

Fitness of 

Double 

perturbation 

strains 

Fitness of 

LEU2 

replac./insert. 

strain 

Fitness of 

URA3 

replac./insert. 

strain 

Expected 

multiplicative 

fitness 

Epistasis 

ε** 

Scaled 

epistasis 

  

ALG7 & GAA1 0.858 0.898 0.892 0.801 0.058 0.631 

ALG7 & VPS53 0.814 0.898 0.861 0.773 0.042 0.472 

ALG7 & GAS1 0.698 0.898 0.726 0.652 0.046 0.622 

ALG7 & EOS1 0.883 0.898 0.879 0.789 0.094 1.048 

ALG7 & MET22 0.852 0.898 0.885 0.794 0.058 0.643 

ALG7 & CHO2 0.895 0.898 0.967 0.868 0.027 0.921 

GUK1 & ALG7 0.852 0.903 0.932 0.841 0.011 0.179 

GUK1 & GAA1 0.839 0.903 0.892 0.805 0.034 0.388 

GUK1 & VPS53 0.000 0.903 0.861 0.777 -0.777 -1.000 

GUK1 & GAS1 0.679 0.903 0.726 0.656 0.023 0.332 

GUK1 & EOS1 0.806 0.903 0.879 0.793 0.012 0.144 

GUK1 & MET22 0.681 0.903 0.885 0.798 -0.117 -0.147 

GUK1 & CHO2 0.894 0.903 0.967 0.873 0.021 0.709 

GAA1 & VPS53 0.000 0.831 0.861 0.715 -0.715 -1.000 

GAA1 & GAS1 0.695 0.831 0.726 0.603 0.092 0.748 

GAA1 & EOS1 0.800 0.831 0.879 0.730 0.069 0.690 

GAA1 & MET22 0.783 0.831 0.885 0.735 0.048 0.502 

GAA1 & CHO2 0.825 0.831 0.967 0.804 0.021 0.779 

AVO1 & ALG7 0.925 0.929 0.932 0.865 0.060 0.940 

AVO1 & GAA1 0.887 0.929 0.892 0.829 0.059 0.922 

AVO1 & VPS53 0.814 0.929 0.861 0.799 0.014 0.231 

AVO1 & GAS1 0.721 0.929 0.726 0.675 0.047 0.898 

AVO1 & EOS1 0.000 0.929 0.879 0.816 -0.816 -1.000 

AVO1 & MET22 0.000 0.929 0.885 0.822 -0.822 -1.000 

AVO1 & CHO2 0.769 0.929 0.967 0.898 -0.130 -0.145 

VPS53 & GAS1 0.646 0.901 0.726 0.654 -0.009 -0.013 

VPS53 & EOS1 0.656 0.901 0.879 0.792 -0.136 -0.172 

VPS53 & MET22 0.872 0.901 0.885 0.797 0.075 0.853 

VPS53 & CHO2 0.812 0.901 0.967 0.872 -0.060 -0.068 

GAS1 & EOS1 0.601 0.688 0.879 0.604 -0.004 -0.006 

GAS1 & MET22 0.618 0.688 0.885 0.608 0.010 0.121 

GAS1 & CHO2 0.638 0.688 0.967 0.665 -0.027 -0.041 

EOS1 & MET22 0.699 0.798 0.885 0.706 -0.007 -0.010 

EOS1 & CHO2 0.719 0.798 0.967 0.772 -0.053 -0.069 

MET22 & CHO2 0.858 0.865 0.967 0.837 0.021 0.736 

* The first gene is replaced/inserted with LEU2 and second gene is replaced/inserted with 

URA3. 

** Bold epistasis ε values are significantly different from 0 (P<0.05). 
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Figure 3.1  Functions of E. coli metabolic reactions under the glucose minimal 

medium. 

(A) Functions of 255 important reactions in producing 49 biomass constituents.  Columns 

represent reactions and rows represent biomass constituents.  (B) Distribution of the 

number of biomass constituents affected by a reaction.  

 

  

A

B



 63 

Figure 3.2 Pairwise epistasis and functional association among 255 important 

reactions in E. coli. 

(A) An overview of epistasis and functional association among reactions.  Both rows and 

columns represent reactions.  Scaled epistasis between reactions is shown in the lower-

left triangle by the heat map.  Functional association between reactions is presented in the 

upper-right triangle, where a grey dot is shown when two reactions have overlapping 

functions.  Epistasis and reaction functions are both determined in the glucose minimal 

medium.  (B) Frequency distribution of scaled epistasis between nonessential reactions.  

(C) Frequency distribution of scaled epistasis between two reactions that include at least 

one essential reaction.  E, essential; N, nonessential.  Note the difference in Y-scale 

between panel b and c. 



 64 

  



 65 

Figure 3.3  A simple metabolic network that illustrates the mechanism underlying 

the different consequences on biomass production between constraining an essential 

reaction and constraining a nonessential reaction. 

(A) Metabolic fluxes in the wild-type cell.  Here the biomass is composed of three 

constituents with a 1:1:1 composition stoichiometry.  Reactions #1-#5 contribute to the 

biomass, whereas #6 produces a non-biomass compound.  Reactions #1 and #3 are 

nonessential, due to the presence of alternative reactions #2 and #4, respectively.  

Reaction #5 is essential.  Reactions #2 and #4 are less efficient than #1 and #3, 

respectively, owing to the generation of byproducts that are not biomass constituents.  In 

the wild-type, reactions #2 and #4 are silenced because they are less efficient than #1 and 

#3, respectively.  The rate of biomass production is 10 units per unit time.  (B) Metabolic 

fluxes in a mutant where the flux of the essential reaction #5 is constrained to 50% of its 

wild-type flux.  Composition stoichiometry of the biomass renders the production of all 

biomass constituents halved, causing the fluxes of #1 and #3 also halved.  The biomass 

production rate becomes 5 units per unit time (i.e., the relative fitness = 0.5).  If the 

nutrient uptake rate is the same as in the wild-type, the extra nutrient absorbed is used to 

produce non-biomass compounds (black diamonds).  In this mutant, a second mutation 

that constrains the flux of another reaction (e.g., #1) to 50% of its wild-type flux will 

not cause an additional fitness reduction, generating strong positive epistasis.  This 

“barrel effect” may also occur in non-metabolic systems(Kishony and Leibler 2003).  (C) 

Metabolic fluxes in a mutant where the flux of the nonessential reaction #1 is constrained 

to 50% of its wild-type flux.  Reaction #2 is now turned on because of the constraint of 

#1.  Byproducts (black circle) are produced from #2.  Fluxes can be redistributed in such 

a way that the reduction in biomass production caused by the constraint on #1 is 

minimized.  Consequently, the total flux of #1 and #2 exceeds that in the wild-type.  It 

can be shown mathematically that the fitness reduction is tiny when the number of 

biomass constituents is large.  In this mutant, a second mutation that constrains the flux 

of another nonessential reaction (e.g., #3) to 50% of its wild-type flux will cause an 

additional tiny fitness reduction, generating virtually no epistasis.   
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Figure 3.4  Pairwise epistasis and functional association among 212 important 

reactions in yeast. 

(A) Frequency distribution of scaled epistasis between nonessential reactions.  (B) 

Frequency distribution of scaled epistasis between two reactions that include at least one 

essential reaction.  E, essential; N, nonessential.  Note the difference in Y-scale between 

panel A and B. 
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Figure 3.5 Epistasis (ε) and scaled epistasis ( ) among 17 yeast genes tested. 

Circles in the upper-right half of the figure show ε, whereas squares in the lower-left half 

show  .  Blue and red colors indicate positive and negative epistasis, respectively, 

whereas the areas of the circles and squares are proportional to the absolute values of ε 

and  , respectively, with the scales given on the top and left sides of each panel.  Solid 

symbols indicate statistically significant epistasis (P < 0.05), whereas open symbols 

indicate insignificant epistasis.  The shaded area in the lower-right corner shows 

relationships between nonessential genes.  Fitness values of strains with genes 

replaced/inserted by LEU2, relative to the wild-types, are presented on the X-axis.  (A) 

Epistasis among 8 haploinsufficient genes, measured in diploid cells after deletion of one 

allele per gene.  All genes belong to different functional categories with the exception of 

RPS5 and RPL14A, both of which encode ribosomal proteins.  (B) Epistasis among 9 

haplosufficient genes, measured in haploid cells after reduction of protein expression of 

essential genes and deletion of nonessential genes.  All genes belong to different 

functional categories with the exception of GAA1 and GAS1; the former encodes a 

subunit of the GPI (glycosylphosphatidylinositol):protein transamidase complex, whereas 

the latter requires a GPI anchor for protein subcellular localization.  MET22 and CHO2 

are metabolic genes, with FBA-predicted scaled epistasis equal to 1.  “-”, double-

perturbation cells could not be obtained, likely due to unsuccessful experiments or 

synthetic lethality.  “?”, epistasis could not be measured due to the lack of fitness effect 

of single perturbations.  Negative epistasis appears more abundant than expected between 

nonessential genes, concentrated on CHO2 and VPS53.  An examination of all 

experimentally determined negative epistasis cases to date shows that these two genes 

have more negative epistatic partners than typical yeast genes have.  
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CHAPTER 4 

BALANCED CODON USAGE OPTIMIZES EUKARYOTIC 

TRANSLATIONAL EFFICIENCY 

4.1 Abstract 

Cellular efficiency in protein translation is an important fitness determinant in 

rapidly growing organisms.  It is widely believed that synonymous codons are translated 

with unequal speeds and that translational efficiency is maximized by the exclusive use 

of rapidly translated codons.  Here we estimate the in vivo translational speeds of all 

sense codons from the budding yeast Saccharomyces cerevisiae.  Surprisingly, 

preferentially used codons are not translated faster than unpreferred ones.  We 

hypothesize that this phenomenon is a result of codon usage in proportion to cognate 

tRNA concentrations, the optimal strategy in enhancing translational efficiency under 

tRNA shortage.  Our predicted codon-tRNA balance is indeed observed from all model 

eukaryotes examined, and its impact on translational efficiency is further validated 

experimentally.  Our study reveals a previously unsuspected mechanism by which 

unequal codon usage increases translational efficiency, demonstrates widespread natural 

selection for translational efficiency, and offers new strategies to improve synthetic 

biology. 

 

4.2 Introduction 

Eighteen of the 20 amino acids are each encoded by two or more synonymous 

codons in the standard genetic code, yet the synonymous codons are often used unequally 

in a genome.  Such codon usage bias (CUB) has been extensively documented in all three 

domains of life (Ikemura 1985; Sharp et al. 1988; Hershberg and Petrov 2009).  Within a 

genome, highly expressed genes tend to have stronger CUB than lowly expressed ones 
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(Ikemura 1981), and the codons preferentially used in highly expressed genes of a species 

are referred to as preferred codons.   

Although codon usage is clearly determined by the joint actions of mutation, drift, 

and selection (Bulmer 1991; Hershberg and Petrov 2008), the fitness benefit of CUB is 

less clear.  There are two prevailing, non-mutually exclusive, hypotheses on the selective 

utility of CUB: accuracy and efficiency of protein translation (Hershberg and Petrov 

2008).  The translational accuracy hypothesis asserts that different synonymous codons 

have different probabilities of mistranslation, and that the use of accurately translated 

codons is beneficial because mistranslation reduces the number of functional molecules, 

wastes energy, and/or induces cytotoxic protein misfolding.  Unequivocal evidence for 

this hypothesis exists (Akashi 1994; Stoletzki and Eyre-Walker 2007; Drummond and 

Wilke 2008; Zhou et al. 2009). 

By contrast, the translational efficiency hypothesis lacks direct evidence.  This 

hypothesis holds that different synonymous codons are translated at different speeds, and 

that faster translation is beneficial because it minimizes ribosome sequestering and so 

helps alleviate ribosome shortage (Bulmer 1991; Akashi 2001; Kudla et al. 2009).  The 

relevance of ribosome shortage is evident from the findings that most ribosomes are 

actively engaged in translation during rapid cell growth (Forchhammer and Lindahl 1971; 

Boehlke and Friesen 1975) and that ribosome concentration increases with the rate of cell 

growth (Warner 1999).  An important observation invoked to support the efficiency 

hypothesis is that cognate tRNAs of preferred codons tend to have higher cellular 

concentrations (or more gene copies) than those of unpreferred codons (Ikemura 1981; 

Ikemura 1982), which may allow faster translation of preferred codons than unpreferred 

codons.  While results from several earlier studies are consistent with this hypothesis 

(Carlini and Stephan 2003; Kudla et al. 2009), these studies do not exclude the possibility 

that the observed differences in activity or fitness caused by synonymous mutations are 

entirely due to CUB’s influence on translational accuracy (see4.8.2).  Here we directly 

test the efficiency hypothesis and its presumed underlying mechanism.  
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4.3 Estimating in vivo translational speeds 

The translational efficiency hypothesis assumes that synonymous codons have 

different translational speeds, caused by disparities in codon selection time (CST), the 

time needed for ribosomal A site to find the cognate ternary complex of aminoacylated 

tRNA + eEF-1 + GTP.  To test this proposition, we took advantage of a genome-wide 

ribosome profiling study of Saccharomyces cerevisiae that surveyed ribosome-protected 

mRNA fragments at a nucleotide resolution in a cell population at a given moment by 

Illumina deep sequencing (Ingolia et al. 2009).  Because the probability that a codon is 

docked at the A site is proportional to its CST, we estimated the relative CSTs of all 61 

sense codons (Figure 4.1A) by the ratio of the observed codon frequencies at the A site in 

the ribosome profiling data and the expected codon frequencies estimated from mRNA-

Seq data generated under the same condition in the same experiment.  The standard errors 

of the CST estimates, measured by bootstrapping genes from the original datasets, are on 

average 12% of the CST estimates (Figure 4.1A), indicating that our CST estimates are 

overall quite precise.  

CUB is commonly measured by the relative synonymous codon usage (RSCU), 

defined by the frequency of a codon relative to the average frequency of all of its 

synonymous codons in a set of highly expressed genes (Sharp et al. 1986).  To compare 

the usage of all 61 sense codons, we also use RSCU’, which is the proportion of use of a 

given codon among synonymous choices in a set of highly expressed genes.  Another 

commonly used measure of CUB is the codon adaptation index (CAI) (Sharp and Li 

1987), which is calculated for a gene, and measures its usage of high-RSCU codons.  The 

greater the CAI, the more prevalent are preferred codons in the gene.  

Contrary to the widely held presumption that preferred codons are translated 

faster than unpreferred codons, no significant negative correlation between RSCU’ and 

CST was observed among the 61 sense codons (Figure 4.1B).  It is also believed that 

codons with abundant cognate tRNAs tend to have low CSTs.  Because tRNA gene copy 

number and tRNA concentration are highly positively correlated (Percudani et al. 1997; 

Tuller et al. 2010a), the former is often used as a proxy of the latter.  However, neither 

tRNA gene copy number (Figure 4.1C) nor tRNA concentration (Figure 4.1D) correlates 

negatively with CST.  Because codons and tRNAs do not have one-to-one 
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correspondence, in the foregoing analysis, we considered the best-matching tRNA 

species for each codon.  This codon-tRNA relationship has been shown to be more 

accurate than the wobble rule, at least in yeast (Percudani et al. 1997).   

We also examined each amino acid separately.  Among the 18 amino acids with at 

least two codons, 12 (Ala, Asn, Cys, Gln, Glu, Gly, Ile, Lys, Ser, Thr, Tyr, and Val) 

showed a negative correlation between RSCU’ and CST, while 6 (Arg, Asp, His, Leu Phe, 

and Pro) showed a positive correlation, when statistical significance of the correlation 

was not required (Figure 4.1A).  The number of negative correlations is not significantly 

more than the chance expectation of 9 (P = 0.12, one-tail sign test).   

Using the standard errors of the CST estimates for the foregoing 18 amino acids 

(Figure 4.1A), we tested whether the CSTs are significantly different between the 

synonymous codon with the highest RSCU’ and that with the lowest RSCU’.  After the 

control for multiple testing by the Bonferroni correction, only two amino acids showed 

significant differences.  The highest-RSCU’ codon has a lower CST than the lowest-

RSCU’ codon for glycine (nominal P = 0.002), while the opposite is true for arginine 

(nominal P < 0.001).  Our results are robust to different multiple-testing corrections, as 

no other amino acids show a nominal P < 0.01.  Furthermore, when RSCU’ is not 

considered, arginine is the only amino acid for which synonymous codons show 

significant heterogeneity in CST at the 5% significance level after the correction for 

multiple testing.  Following an earlier study (Hershberg and Petrov 2009), we also tried 

defining preferred codons without using gene expression data, but the results are not 

different.  The overall lack of a significant negative correlation between CST and 

synonymous codon usage is real rather than an artifact of imprecise CST estimation, 

because the standard errors of CSTs are quite small (Figure 4.1A) and CSTs of several 

nonsynonymous codons differ significantly from one another (see below).   

To validate the above findings, we also directly compared RSCU’ values of 

individual codon positions of Illumina reads from the ribosome profiling data, without 

estimating CSTs.  If unpreferred codons are translated more slowly and therefore stay at 

the ribosomal A site longer than preferred codons, codons at the A site should have a 

lower RSCU’ on average than its neighboring sites of the same read, after the correction 

of sequencing bias by mRNA-Seq data.  However, we observed no dip in RSCU’ at the A 
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site (Figure 4.1E).  We further calculated, within each gene, the ratio between the 

frequency of preferred codons and that of unpreferred codons at the ribosome A site of 

Illumina reads from the ribosome profiling data, after correction by mRNA-Seq.  This 

ratio is expected to be 1 if preferred and unpreferred codons are translated equally fast.  

Indeed, after combining the ratio for all amino acids and all genes using the Mantel-

Haenszel procedure (Sokal and Rohlf 1995), we found the overall ratio to be 0.984, not 

significantly different from 1 (P = 0.21, two-tail 
2
 test). 

 

4.4 Optimal codon usage under tRNA shortage  

The above findings are puzzling, because the first step in the interaction between 

tRNA and mRNA is non-specific (Ogle and Ramakrishnan 2005) and the relative waiting 

time for the cognate tRNA to arrive at the ribosome A site is expected to be inversely 

proportional to the relative concentration of the cognate tRNA.  It was also reported that 

CST is the rate-limiting step in translational elongation (Varenne et al. 1984).  The only 

plausible explanation of similar CSTs among synonymous codons is that, in wild-type 

yeast cells for which the ribosome profiling was conducted, available cognate tRNAs for 

translating synonymous codons have effectively the same concentration.   

In rapidly growing yeast, ~80% of total RNA is rRNA and ~15% is tRNA(Warner 

1999).  The mean length of yeast tRNAs is ~72 nucleotides and the total length of rRNAs 

per ribosome is 5469 nucleotides (Warner 1999).  Thus, the number of tRNA molecules 

per cell is approximately (15%/72)/(80%/5469) = 14.2 times the number of ribosomes per 

cell, substantially exceeding the expected ratio of two tRNAs per active ribosome (at A 

and P sites, respectively) if tRNA recharging and diffusion is instantaneous.   

In reality, however, tRNA recycling takes time and thus cannot be ignored.  Each 

tRNA, after completing its job of transferring an amino acid to the elongating peptide and 

then exiting the ribosomal E site, needs to be recharged with the cognate amino acid and 

then with eEF-1 + GTP to form a ternary complex before it can be reused in translation.  

It has been estimated that each ribosome translates ~32.6 codons per second in yeast (von 

der Haar 2008).  This implies that on average a tRNA molecule needs to be used 

32.6/14.2 = 2.3 times per second, or once every 0.44 second.  It is possible that the time 

for ternary complexes to form and diffuse to ribosomal A site is a substantial fraction of 
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0.44 second, so that the local concentration of ternary complexes is much lower than the 

total tRNA concentration.  A recent study reported that consecutive synonymous codons 

in an mRNA tend to use the same tRNA and proposed that this codon choice is beneficial 

because a tRNA does not diffuse far from the ribosome after exiting its E site and is 

reused for translating the next synonymous codon when the ternary complex is formed 

again (Cannarozzi et al. 2010).  This observation and its explanation strongly implies that 

the local concentration of ternary complexes is low; otherwise, the addition of one 

cognate tRNA molecule among on average 20 tRNAs (because identical amino acids are 

expected to be on average 20 residues apart) cannot significantly increase the relative 

concentration of the cognate tRNA around the ribosome.  Based on available information 

in E. coli, we calculated that the physiological concentration of ternary complexes is only 

~4.3% of the total concentration of tRNAs and ~22% of the concentration of ribosomes.  

These observations strongly support our hypothesis that available tRNA is in shortage 

during translation.  Consistent with our hypothesis, total tRNA concentrations increase 

with the rate of cell growth in E. coli (Dong et al. 1996) and tRNA gene copy number 

increases with the shortening of the minimal generation time across species (Rocha 2004).  

Under tRNA shortage, the optimal usage of synonymous codons in minimizing 

the total CST (i.e., maximizing translational efficiency) is to use isoaccepting tRNAs in 

proportion to their concentrations.  That is, pi = qi, where pi is the relative usage of the ith 

synonymous codon of an amino acid (pi = 1) and qi is the relative concentration of the 

corresponding tRNA (qi = 1).  Under this codon usage, available cognate tRNAs of 

synonymous codons have equal concentrations and synonymous codon selection times 

become identical.  We will refer to this theoretical optimal codon usage under tRNA 

shortage as the proportional rule.  The proportional rule is not predicted by other models.  

For example, without tRNA shortage, two optimal solutions in minimizing the total CST 

exist.  When codon usage is fixed, isoaccepting tRNA concentrations should follow 

2 2/ /i j i jq q p p , which is referred to as the square rule (Liljenstrom et al. 1985; Bulmer 

1987).  When tRNA concentrations are fixed, only the codon corresponding to the most 

abundant tRNA species should be used (Bulmer 1987), which is referred to as the 

truncation rule.  



 78 

To test if the actual codon usage of yeast follows the proportional rule, we 

examined the 12 amino acids that are each translated by at least two tRNA species in 

yeast.  For each amino acid, the relative transcriptomic usage of a codon among 

synonymous codons (i.e., pi) is quite close to the relative gene copy number of its cognate 

tRNA among isoaccepting tRNAs (i.e., qi), as predicted by the proportional rule (Figure 

4.2A).  We measured the Euclidian (Figure 4.2B) and Manhattan (Figure 4.2C) distances 

in synonymous codon usage from the observed values to those predicted by the 

proportional rule, and found these distances significantly shorter than expected by chance 

(Figure 4.2 B-D).  Not surprisingly, genomic codon usage fits the proportional rule less 

well than the transcriptomic codon usage (Figure 4.2A), reflected by greater distances 

from the predicted values (Figure 4.2 B & C). 

The better fitting of the transcriptomic codon usage to the proportional rule than 

to the square rule and truncation rule can be seen from a comparison of the distances 

under these three models (Figure 4.2D).  We also compared the likelihood of the three 

models, given the observed codon usage (Figure 4.2D).  The proportional model has a 

much higher log10(likelihood) than the square model.  Because the likelihood of the 

truncation model is 0, this model is much worse than the other two models.  The same 

conclusions are reached for the transcriptomic codon usage of all other model eukaryotes 

we examined (Figure 4.2 A & D).  

In the above analysis, we combined synonymous codons that are recognized by 

the same tRNA species (referred to as iso-synonymous codons).  Because the relative 

usage of such iso-synonymous codons does not affect the relative usage of isoaccepting 

tRNAs, it presumably does not affect translational efficiency.  Nonetheless, iso-

synonymous codons are not used equally, and factors other than translational efficiency 

(e.g., translational accuracy) may be at work. 

 

4.5 Codon-tRNA imbalance reduces translational efficiency 

The observation of similar CSTs among synonymous codons and the empirical 

validation of the proportional rule strongly support the following model that includes 

three elements: (1) available tRNAs are in shortage during translation, (2) translational 

efficiency is optimized in nature by balanced codon usage according to tRNA 
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concentrations, and (3) synonymous codons are translated with similar speeds under the 

codon-tRNA balance.  Our model predicts reduced translational efficiency due to 

ribosome sequestering when the codon-tRNA balance is broken.  It further predicts lower 

efficiency under exclusive use of preferred codons than balanced use of preferred and 

unpreferred codons.  

We experimentally tested the above predictions by quantifying the cellular 

efficiency in translation, represented by the protein expression of a reporter gene, under 

different levels of codon-tRNA imbalance induced by the expression of another gene.  

Unlike previous studies (Carlini and Stephan 2003; Kudla et al. 2009), our separation of 

the inducer and reporter allows the distinction among several potential mechanisms of 

CUB’s impact on protein expression.  We inserted our reporter gene, the Venus yellow 

fluorescent protein (vYFP) gene controlled by the GPD promoter, into Chromosome XII 

of a haploid strain of S. cerevisiae (Figure 4.3A).  We then designed four synonymous 

sequences encoding another fluorescent protein, mCherry, as our inducer.  The four 

mCherry sequences, named mCherry-1, 2, 3, and 4, cover the entire range of CAI of 

native yeast genes (Figure 4.3B).  We developed an index, distance to native codon usage 

(Dncu), to measure the difference between the codon usage of a (heterologous) gene and 

the overall codon usage of the host cell, which is proportional to tRNA concentrations 

(see Materials and Methods).  The four mCherry versions also span a large range of Dncu 

(Figure 4.3C) and show different degrees of codon-tRNA imbalance for individual amino 

acids.  Other than synonymous codon usage, the four mCherry versions are nearly 

identical: they encode the same protein sequence, have similar G+C content (42-44%), 

and have identical sequences in the first 56 nucleotides of the coding region, because this 

region may affect the level of protein expression (Kudla et al. 2009; Gu et al. 2010; 

Tuller et al. 2010b).  Each mCherry gene is expressed from a constitutive and strong 

promoter on a high-copy-number plasmid.  The four plasmids were separately 

transformed to yeast cells carrying the vYFP reporter gene (Figure 4.3A).  Our model 

predicts that the higher the Dncu of mCherry, the lower the vYFP expression.   

The four yeast strains were grown in rich media to the log phase, and the 

expression levels of vYFP and mCherry proteins were inferred from their fluorescent 

signals, which were simultaneously measured for each cell by fluorescence-activated cell 
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scanning of at least 300,000 cells.  We found mCherry expression levels to be 

significantly different among the four strains.  Within each strain, expression levels of 

mCherry and vYFP are negatively correlated among cells.  Hence, the expressions of 

vYFP cannot be directly compared among strains.  Instead, we separated the cells of each 

strain into three bins on the basis of mCherry expression and then compared vYFP 

expressions among the four strains for cells with similar mCherry expressions (Figure 

4.3D).  We found that, across the range of mCherry expressions shared by the four strains, 

the higher the Dncu of mCherry, the lower the expression of vYFP (Figure 4.3D).  

Furthermore, the vYFP expression-level difference among the strains increases with the 

mCherry expression level (Figure 4.3D).  Of special interest is the comparison between 

mCherry-3 and mCherry-4, which clearly shows that it is a low Dncu rather than a high 

CAI that enhances translational efficiency (Figure 4.3D).  A multivariate regression 

analysis of all cells from the four strains further demonstrated that Dncu is significantly 

more important than CAI in explaining the variation of the vYFP signal (P < 0.001).  

The above results were not due to different random mutations fixed in the 

genomes of the four strains during our experiments, because the vYFP signals were not 

significantly different among the strains upon removal of the plasmids (Figure 4.3E).  We 

also sequenced the entire plasmid DNA from each strain and found no mutation.  Using 

quantitative polymerase chain reaction, we further verified that the vYFP mRNA 

abundance is not different among the four strains (Figure 4.3F).  Thus, the among-strain 

variation in vYFP signal must be due to a variation in translation.  We also confirmed our 

results by a finer control of mCherry expression and ruled out the possibility that our 

observation is a byproduct of potential differences in translational accuracy among 

different mCherry versions.  Furthermore, because the accuracy hypothesis is based on 

CAI and thus predicts a higher vYFP expression in the strain carrying mCherry-4 than 

that carrying mCherry-3, our results (Figure 4.3D) are inexplicable by this hypothesis.  

Similarly, mechanisms resulting from translational errors, such as protein misfolding or 

aggregation, cannot explain our observation either. 

In the experiment, we used vYFP to represent native genes in the yeast genome.  

However, because vYFP and mCherry have 71/220 = 32% of protein sequence identity, 

one might ask whether our observation can be generalized.  Specifically, could the 
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negative influence of mCherry expression on vYFP expression be caused entirely by the 

similarity in codon usage between mCherry and vYFP?  We measured the codon usage 

dissimilarity between a pair of genes by a Euclidian distance and examined the 

distribution of this distance between each mCherry version and all yeast genes.  The 

distribution is approximately bell shaped and the distance between mCherry and vYFP 

falls in the central part of the bell, suggesting that mCherry is no more similar to vYFP in 

overall codon usage than to average yeast genes.  Furthermore, our results cannot be 

explained by amino acid similarity between mCherry and vYFP, because all mCherry 

versions have the same amino acid sequence and should not differentially affect vYFP 

expression through amino acid usage.  Thus, our observation from vYFP can be 

extrapolated to native genes in the yeast genome.   

 

4.6 Why more highly expressed genes have stronger CUB 

If translational efficiency is maximized when the cellular codon usage follows the 

proportional rule, why do highly expressed genes necessarily prefer codons with highly 

abundant cognate tRNAs and have stronger CUB than lowly expressed genes?  We 

hypothesize that these phenomena are due to differential selective coefficients associated 

with synonymous mutations occurring in highly expressed and lowly expressed genes in 

the regain of the codon-tRNA balance upon a genetic perturbation.  Let us imagine an 

amino acid with two synonymous codons (codon1 and codon2) that each uses a distinct 

tRNA species (tRNA1 and tRNA2) and assume that the present codon usage follows the 

proportional rule.  Now, if the proportion of tRNA1 rises due to a mutation, natural 

selection will promote the fixations of synonymous mutations from codon2 to codon1 to 

reestablish the codon-tRNA balance.  Such advantageous mutations occurring in highly 

expressed genes affect tRNA usage more than those occurring in lowly expressed genes 

and hence have a greater selective advantage and are fixed faster.  This difference 

becomes even bigger when clonal interference (Gerrish and Lenski 1998) is considered.  

As a result, highly expressed genes use more codon1 and fewer codon2 than before and 

show stronger CUB.  The contrasting scenario, in which the tRNA usage is rebalanced by 

frequent use of codon1 in lowly expressed genes, requires many synonymous 

substitutions in many lowly expressed genes, which will not happen because it takes 
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much longer than rebalancing the tRNA usage by increasing codon1 frequency in highly 

expressed genes.  Indeed, in a computer simulation of codon usage evolution that starts 

from the equal usage of 4 synonymous codons whose cognate tRNAs have different 

concentrations, the final usage of the codons, after 500 generations of random mutation, 

genetic drift, and natural selection for translational efficiency, follows the proportional 

rule (Figure 4.4A).  More importantly, the preferential use of high-concentration tRNA 

species and strong CUB in highly expressed genes are seen from both the average of 

1000 simulation replications (Figure 4.4B) and any one replication (Figure 4.4C).  The 

standard deviations presented in Figure 4.4B indicate an extremely low probability for 

CUB to be stronger or a preferred codon to be used more frequently in lowly expressed 

genes than highly expressed genes.  As expected, the phenomena in Figure 4.4 disappear 

when the natural selection for translational efficiency is removed in the simulation.  

These observations support our model that the high CAI of highly expressed genes is a 

byproduct of natural selection for an overall cellular efficiency in translation, rather than 

the direct product of stronger selection for translation efficiency in more highly expressed 

genes (Hershberg and Petrov 2008). 

 

4.7 Optimal amino acid usage under tRNA shortage 

Analogous to synonymous codon usage, we predict that the optimal amino acid 

(or nonsynonymous codon) usage in speeding up translation is in proportion to the 

corresponding tRNA concentrations.  Indeed, amino acid frequencies inferred from 

transcriptome data were reported to correlate positively with the corresponding tRNA 

gene copy numbers in yeast (Akashi 2003) and C. elegans (Duret 2000).  More 

importantly, actual amino acid usage is significantly closer than random usage to our 

predicted optimal (i.e., the diagonal line in Figure 4.5A; P < 10
-6

, simulation test).  This 

phenomenon is also true in all other model eukaryotes examined, although the level of 

match between the observation and prediction varies among species (Figure 4.5A).  

Transcriptomic amino acid usages instead of proteomic amino acid usages are plotted 

here because the latter are unavailable for most species.  Nevertheless, S. cerevisiae data 

showed an almost perfect correlation between transcriptomic and proteomic amino acid 

usages, indicating that the former is a good proxy for the latter.  We also predict a 
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positive correlation between aminoacyl tRNA synthetase concentration and 

corresponding tRNA concentration to enhance the efficiency of amino acid charging.  

Such a correlation is indeed found in S. cerevisiae (r = 0.45, P = 0.03). 

If amino acid frequencies are in perfect proportion to tRNA concentrations, the 

mean CST for an amino acid should not vary among amino acids.  This uniformity, 

however, is not observed in yeast, suggesting that amino acid usage is only roughly 

proportional to tRNA concentrations (Figure 4.5A), which may be due to mutational bias 

(Gu et al. 1998) or antagonistic selective pressures from factors such as physiochemical 

properties (Zhang 2000) and synthetic costs (Akashi and Gojobori 2002) of various 

amino acids.  Our model predicts that the average CST of an amino acid increases with 

the decrease of the relative availability of tRNAs for the amino acid.  Indeed, a negative 

correlation exists between the tRNA availability and CST for the 20 amino acids 

(Pearson’s r = -0.40, P = 0.03, permutation test; Figure 4.5B).  This finding reconfirms 

tRNA shortage in translation, explains in part why CSTs of nonsynonymous codons vary, 

and indicates compromised translational efficiency due to other fitness effects of amino 

acid usage. 

 

4.8 Discussion 

4.8.1 The translational efficiency hypothesis of CUB  

Results from several earlier experiments are consistent with the role of CUB in 

enhancing translational efficiency or reducing ribosome sequestering (Carlini and 

Stephan 2003; Kudla et al. 2009).  For example, when expressing many synonymous 

versions of a green fluorescent protein (GFP) gene in E. coli, Kudla and colleagues 

reported that strains harboring high-CAI GFP genes tend to grow faster than those 

harboring low-CAI GFP genes, despite the lack of a correlation between the GFP protein 

expression level and its CAI (Kudla et al. 2009).  Although these authors found no 

correlation between CAI and protein misfolding, their experiment was unlikely to be 

sensitive enough for quantifying GFP misfolding (Kudla et al. 2009).  Thus, it could not 

rule out the possibility that the observed variation in fitness was entirely caused by 

CUB’s influence on translational accuracy.  By contrast, we were able to demonstrate 
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CUB’s impact on translational efficiency after excluding its impact on translational 

accuracy.   

A recent study in E. coli showed that the ribosome shortage induced by over-

expression of unneeded proteins can be alleviated by physiological adaptation in 30 to 40 

generations, owing to the manufacture of additional ribosomes (Shachrai et al. 2010).  

This finding suggests that the disadvantage of suboptimal codon usage may also be 

mitigated by physiological adaptation.  Nevertheless, physiological adaptation takes time.  

If the growth rate fluctuates rapidly due to frequent environmental changes, the fitness of 

the individual with suboptimal codon usage is expected to be much lower than the 

individual with balanced codon usage.  

We hypothesized and demonstrated that translational efficiency is optimized by 

codon-tRNA balance.  This new model of translational efficiency by unequal codon 

usage differs substantially from the prevailing model (Table 4.1).  One critical piece of 

evidence for our model is similar CSTs of synonymous codons in wild-type yeast.  Our 

CST estimation is based on the assumption that the time a codon occupies the ribosomal 

A site equals the waiting time for the cognate tRNA.  Our estimates of all CSTs would be 

biased upward to a similar level if downstream “traffic jams” happen during translational 

elongation.  However, a recent study suggested that downstream traffic jams are unlikely, 

due to slow “ramps” at the beginning of an mRNA (Tuller et al. 2010a).  Furthermore, 

even if downstream traffic jams occur, it should affect synonymous codons as well as 

nonsynonymous codons and thus cannot explain why only synonymous codons but not 

nonsynonymous codons have similar CSTs.  

Over two decades ago, Curran and Yarus indirectly estimated relative CSTs for 29 

sense codons in E. coli, under the assumption that the probability of a frame shift in the 

translation of a codon is proportional to the CST of the codon (Curran and Yarus 1989).  

They reported that only codons of very low CSTs tend to be preferentially used (Curran 

and Yarus 1989).  However, because their fundamental assumption about the frame-shift 

rate is incorrect (Vimaladithan and Farabaugh 1994), their CST estimates are unlikely to 

be correct.  It is also possible that prokaryotes and eukaryotes have some differences in 

using CUB to regulate translational efficiency (e.g., translational attenuation in 

prokaryotes).  In another E. coli study, Sorensen and colleagues reported faster 
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translation of a multicopy-plasmid-borne lacZ gene when a segment of the gene 

comprises mainly preferred codons than when it comprises mainly unpreferred codons 

(Sorensen et al. 1989).  This result cannot be used to infer relative CSTs of synonymous 

codons in wild-type cells, because the extremely high expression of synonymous versions 

of the endogenous lacZ gene from plasmids potentially breaks the codon-tRNA balance 

and alters CSTs.  Nevertheless, their observation is fully compatible with our finding of 

different levels of translational efficiency induced by the expressions of different 

synonymous versions of mCherry.  Several other studies reported similar findings 

(Robinson et al. 1984; Varenne et al. 1984).  Recently, some authors calculated CSTs by 

assuming that the CST of a codon is determined by the relative concentrations of its 

cognate, nearly cognate, and non-cognate tRNAs without considering tRNA shortage or 

using ribosome profiling data (Siwiak and Zielenkiewicz 2010).  Because of the violation 

of the fundamental assumption they made, their estimates are likely to be incorrect.  

Indeed, their estimated CSTs would predict a slower translation of mCherry version 3 

than 4, contradictory to our experimental result (Figure 4.3D).  While the present work 

was under review, Ingolia and colleagues reported estimates of translational elongation 

speeds in mouse embryonic stem cells using a pulse-chase strategy that does not involve 

expressions of heterologous genes (Ingolia et al. 2011).  Although their method is 

different from ours, their finding of similar elongation speeds among synonymous codons 

is highly consistent with our results from yeast. 

Our discoveries require reinterpretation of several earlier observations.  For 

example, higher prevalence of codons with abundant cognate tRNAs in genes with higher 

expressions is often interpreted as a result of a stronger demand for fast translation of 

more abundant proteins (Sharp et al. 1986; Sharp and Li 1987).  This interpretation is not 

supported by our results.  Rather, we suggested and demonstrated by simulation that, the 

selection coefficient for synonymous mutations that help achieve the codon-tRNA 

balance is greater in highly expressed genes than in lowly expressed genes, leading to 

quicker and more acquisitions of codons with abundant cognate tRNAs in the former than 

in the latter.  In this regard, our results support that CUB serves as a global strategy to 

enhance the efficiency of the translation system (Andersson and Kurland 1990; Kudla et 

al. 2009). 
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Within an organism, the transcriptome can vary among cell cycle stages, 

developmental stages, and tissues.  How do such variations affect the codon-tRNA 

balance?  We found pairwise Pearson’s correlations in transcriptomic usage of all 61 

sense codons to be nearly 1 among different time points in the S. cerevisiae mitotic cell 

cycle (Figure 4.6).  We further analyzed the transcriptomic usage of all 61 codons across 

tissues and/or developmental stages in the worm, fruit fly, and human.  If multiple 

replications of the same cell type exist in a dataset, we randomly chose one replication in 

our analysis.  Similarly high correlations were observed among different cell types within 

species (Figure 4.6).  By contrast, the correlation is generally below 0.5 between any pair 

of the four species examined here.  The high correlation in codon usage across cell cycle 

stages, developmental stages, and tissues of the same species is likely due to house-

keeping genes, which are always highly expressed.  Thus, within-organism gene 

expression variations have little impact on the maintenance of the codon-tRNA balance.  

Further, tRNA concentrations may covary with the transcriptomic codon usage to 

maintain the codon-tRNA balance across tissues (Dittmar et al. 2006). 

A byproduct of our CST estimation is the translational initiation rate of each gene.  

We found that the translational initiation rate is significantly positively correlated with 

the mRNA concentration (ρ = 0.34, P = 6×10
-81

), suggesting a coordinated regulation of 

gene expression at the transcriptional and translational levels.  We also observed a strong 

positive correlation between the translational initiation rate and CAI (ρ = 0.51, P < 10
-196

), 

suggesting that CAI provides a moderate amount of information about the translational 

initiation rate.  This may explain why the protein concentration correlates with the 

product of mRNA concentration and CAI better than with the mRNA concentration alone 

(Brockmann et al. 2007).  Several studies revealed reduced mRNA stability near the 

translation initiation site, suggesting that the reduced stability may enhance the 

translational initiation rate (Kudla et al. 2009; Gu et al. 2010; Tuller et al. 2010b).  Indeed, 

we found a weak but significant positive correlation between the reduction in mRNA 

stability (Gu et al. 2010) and our estimated translational initiation rate ( = 0.08, P = 

1×10
-5

).  
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4.8.2 Translational efficiency and accuracy are two separable benefits of CUB 

Given that CUB improves both translational efficiency and accuracy, one 

wonders whether one of these effects is a side-effect of the other.  For instance, it was 

previously suggested that the variation in translational accuracy among synonymous 

codons may be a byproduct of the variation in translational efficiency, because (i) most 

translational errors are believed to occur during codon selection, (ii) codon selection has 

been assumed to be faster for preferred codons than unpreferred codons, and (iii) faster 

codon selection is thought to result in fewer errors (Powell and Moriyama 1997).  

Because our result invalidates assumption (ii) for wild-type cells, the above argument no 

longer holds.  Thus, even though translational accuracy may be affected by relative 

concentrations of tRNAs in engineered yeast cells with grossly imbalanced codon-tRNA 

usage (Kramer et al. 2010), this impact is not expected in wild-type cells because our 

results strongly suggest that isoaccepting tRNA species have effectively the same 

concentrations in wild-type cells.  In addition, the enrichment of preferred codons at 

evolutionarily conserved amino acid residues cannot be explained by the translational 

efficiency hypothesis (Akashi 1994; Stoletzki and Eyre-Walker 2007; Drummond and 

Wilke 2008; Zhou et al. 2009).  Furthermore, experimental data showed that translational 

accuracies of iso-synonymous codons vary (Precup and Parker 1987), suggesting that the 

variation in accuracy cannot be entirely caused by the variation in cognate tRNA 

concentration, because iso-synonymous codons use the same cognate tRNA.  Rather, 

comparative genomic analyses strongly suggest that translational accuracy is likely to be 

intrinsically different among synonymous codons (Rocha and Danchin 2004; Hershberg 

and Petrov 2009).  Further, we were able to establish CUB’s impact on translational 

efficiency even after we controlled its impact on translational accuracy (Figure 4.3).  In 

addition, because translational accuracy is not entirely determined by translational 

efficiency (Akashi 1994; Stoletzki and Eyre-Walker 2007; Drummond and Wilke 2008; 

Zhou et al. 2009), the proportional rule, which is predicted from selection for efficiency, 

is not predicted from selection for accuracy, especially because translational errors at 

different residues have different fitness effects.  Thus, the impact on efficiency cannot be 

a byproduct of the impact on accuracy.  Taken together, we conclude that translational 

accuracy and efficiency are two separable benefits of CUB.   
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4.8.3 Evolutionary models of codon usage bias 

Let us compare three evolutionary models of CUB that differ in the roles of 

translational accuracy and efficiency as the selecting agent.  We also consider mutational 

bias and genetic drift, two known factors in the evolution of CUB, in these models.  In 

model I, translational efficiency is the sole selecting force (Figure 4.7).  This model 

predicts co-evolution of codon usage and cognate tRNA concentrations and a codon-

tRNA balance at which the relative frequency of a synonymous codon (pi) equals the 

relative abundance of its cognate tRNA (qi).  The expected values of pi = qi are 

determined by the mutational bias, which directly affects codon usage and indirectly 

affects tRNA concentrations.  However, this model cannot explain the observation that, 

although preferred codons of an amino acid vary among species, this variation decreases 

substantially (but does not disappear) after the control of genomic GC content (Hershberg 

and Petrov 2009).  For example, GTT and GTA both code for valine and have the same 

GC content, but GTT is frequently used as the preferred codon when the genomic 

intergenic GC content is below 50% (Hershberg and Petrov 2009).  When the GC content 

exceeds 50%, GTG rather than GTC is often used as the preferred codon for valine 

(Hershberg and Petrov 2009).  This observation suggests that, in addition to translational 

efficiency, there is a separate selecting force with a relatively constant direction. 

In model II, translational accuracy is the sole selecting agent on CUB (Figure 4.7).  

The demand for translational accuracy, coupled with the mutational bias, determines the 

expected CUB, whereas selection for translational efficiency determines tRNA 

concentrations based on codon frequencies.  The phenomenon of stronger CUB in more 

highly expressed genes is explainable by the protein-misfolding-avoidance hypothesis 

which predicts that highly expressed genes are translated more accurately by using 

accurate codons more frequently (Drummond and Wilke 2008; Yang et al. 2010).  Model 

II predicts that, after the control for the mutational bias, accurate codons are always the 

preferred codons in a species.  If the translational accuracy of a codon is an intrinsic 

property of the codon and does not vary among species (Rocha 2004), we should observe 

no variation in the choice of preferred codons, after the control of mutational bias.  This 

prediction, however, is incorrect, because preferred codons are not always the same in 
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different species with the same mutational bias (Rocha 2004; Hershberg and Petrov 2009).  

A more rigorous test of this model is to compare the accurate and preferred codons of 

each amino acid in a species, because model II predicts a complete match between them.  

For each codon, we calculated an odds ratio by the relative use of the codon over other 

synonymous codons at conserved amino acid positions divided by that at non-conserved 

amino acid positions; the synonymous codon with the highest odds ratio is regarded as 

the most accurate codon because it is most preferentially used at important amino acid 

positions (Akashi 1994; Stoletzki and Eyre-Walker 2007; Drummond and Wilke 2008; 

Zhou et al. 2009).  By comparing S. cerevisiae with its relative S. bayanus, we identified 

conserved and non-conserved amino acid positions.  We calculated the odds ratio for 

each codon in each gene and then combined the odds ratios from all genes using the 

Mantel-Haenszel procedure (Sokal and Rohlf 1995).  By definition, the preferred codon 

of an amino acid is the one with the highest RSCU’.  We found that, in 6 (Ala, Asp, Gly, 

His, Thr, and Val) of the 18 amino acids that have at least two synonymous codons, the 

codon with the highest odds ratio is different from the codon with the highest RSCU’ 

(Figure 4.8).  Furthermore, for three amino acids (Asp, His, and Thr), the codon with the 

highest RSCU’ has an odds ratio significantly lower than 1 (Figure 4.8).  We also used 

the 10% most highly expressed genes to calculate odd ratios; 8 (Ala, Arg, Asp, Cys, Ile, 

Leu, Thr, and Val) of the 18 amino acids show mismatches between the codon with the 

highest RSCU’ and the codon with the highest odds ratio (Figure 4.8).  These results 

provide unambiguous evidence for the inadequacy of model II.   

In model III, selections for translational accuracy and efficiency jointly determine 

CUB (Figure 4.7).  Let us consider three types of synonymous mutations with regard to 

their impacts on translational accuracy and efficiency.  First, a synonymous mutation is 

likely to be fixed when it enhances both translational accuracy and efficiency, but is 

likely to be lost when it decreases both.  Second, a synonymous mutation may increase 

the accuracy but reduce the efficiency.  One possible outcome is that selection for higher 

accuracy will gradually alter the codon usage, which is followed by tRNA concentration 

changes that recover the loss of efficiency.  Eventually, accurate codons will be the 

preferred codons.  Alternatively, selection for higher accuracy may not be able to alter the 

codon usage permanently if the loss of efficiency is either too large or cannot be 
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recovered by a corresponding tRNA change as quickly as the switch back of the codon 

usage.  Consequently, accurate codons cannot become the preferred codons and the 

system is trapped in a local fitness peak that is the maximum for efficiency but not 

accuracy.  For example, while codon CCA is more accurate than CCT for proline (Figure 

4.8), there are still about a quarter of bacterial species with GC% < 40 that use CCT as 

their preferred proline codon (Hershberg and Petrov 2009), suggesting that it is not rare 

for codon usage to be trapped in a local fitness peak.  Third, a synonymous mutation may 

increase the efficiency but reduce the accuracy when the system is at a codon-tRNA 

imbalance.  Although the fate of this mutation is determined by the relative strengths of 

the two forces, changes of tRNA concentrations could resolve the conflict better because 

they can increase efficiency without reducing accuracy.  So, the final codon usage pattern 

will also depend on the rate of mutations that alter tRNA concentrations.  While the 

quantitative aspects of model III require further exploration, it is clear that the model is 

able to explain, at least qualitatively, both the matches and mismatches between the 

accurate and preferred codons (Figure 4.8).  It is also able to explain the codon-tRNA 

balance and the phenomenon of stronger CUB in genes with higher expressions.  Thus, 

model III is most compatible with and best supported by available data.  In addition to 

translational accuracy and efficiency, synonymous codon usage of individual genes may 

also be shaped by other forces, for example, those related to RNA splicing and stability 

(Chamary et al. 2006).  But these forces are gene-specific and do not create genomic 

patterns of CUB.  

 

4.8.4 Implications for synthetic biology 

Synthetic biology designs and constructs novel biological functions not found in 

nature.  It has long been known that, in many but not all cases, increasing the CAI of a 

transgene boosts its protein expression (Gustafsson et al. 2004; Kudla et al. 2009; Welch 

et al. 2009).  Different protein expression levels of synonymous transgenes are likely 

caused by CST differences created by various degrees of codon-tRNA imbalance induced 

by transgene expressions.  Consistent with this idea, overexpression of rare tRNAs of E. 

coli (the bio-reactor) can rescue the tRNA depletion when heterologous human genes are 

expressed in E. coli (Gustafsson et al. 2004).  When an artificially designed gene is added 
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to a host cell, the potential imbalance between the overall cellular codon usage and the 

tRNA pool also affects the expressions of native genes and hence the growth of the host 

cell.  We showed that Dncu, a newly devised index measuring the distance in codon usage 

between the transgene and the host cell, is an accurate indicator of the impact of per 

transgene protein molecule production on the expressions of native genes.  We 

demonstrated that it is the Dncu rather than CAI of the transgene that predicts its impact on 

the host protein expression.  Therefore, Dncu should be considered in synthetic biology 

when the impact of transgene expression on host gene expressions is a concern.  Further, 

when genes from multiple species are assembled into a synthetic genome, designing 

tRNA gene numbers in proportion to the usage of their cognate codons will likely make 

protein expressions in the entire cell most efficient. 

 

4.9 Materials and Methods 

4.9.1 Genomic data  

The yeast ribosome profiling data (Ingolia et al. 2009) were downloaded from 

Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE13750.  Gene expression and protein expression levels were from 

http://web.wi.mit.edu/young/expression/ (Holstege et al. 1998), http://www.imb-

jena.de/tsb/yeast_proteome/ (Beyer et al. 2004), and the supplementary data of a previous 

study (Ghaemmaghami et al. 2003).  Transcriptomic data for the yeast mitotic cell cycle 

were from a previous study (Cho et al. 1998).  Gene sequences and reading frames were 

downloaded from Saccharomyces Genome Database (SGD, www.yeastgenome.org).  

Numbers of tRNA gene copies were retrieved from an earlier study (Percudani et al. 

1997).   

Gene expression levels in A. thaliana, D. melanogaster, M. musculus, and H. 

sapiens were downloaded from Gene Expression Omnibus (GDS416, GDS2784, 

GDS592 and GDS596, respectively).  Gene expression levels in S. pombe and C. elegans 

were retrieved from two earlier studies (Wilhelm et al. 2008; Hillier et al. 2009), 

respectively.  Peptide and cDNA sequences of S. pombe, A. thaliana, C. elegans, D. 

melanogaster, M. musculus, and H. sapiens were from Ensembl (www.ensembl.org/).  

http://www.ncbi.nlm.nih.gov/geo/
http://web.wi.mit.edu/young/expression/
http://www.imb-jena.de/tsb/yeast_proteome/
http://www.imb-jena.de/tsb/yeast_proteome/
http://www.yeastgenome.org/
http://www.ensembl.org/
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Numbers of tRNA gene copies in the above species were obtained from the genomic 

tRNA database (http://lowelab.ucsc.edu/GtRNAdb/).   

 

4.9.2 Estimation of codon selection time (CST) 

Using the S. cerevisiae ribosome profiling data (Ingolia et al. 2009), we identified 

codons docked at the ribosomal A site, from the Illumina Genome Analyzer sequencing 

reads.  By comparing the observed codon frequencies in the ribosome profiling data with 

the expected codon frequencies estimated from mRNA-Seq data generated under the 

same condition in the same experiment, we calculated the relative CSTs of all 61 sense 

codons.  Although Illumina sequencing may be biased toward certain sequences or 

nucleotides (Dohm et al. 2008), this bias affects the mRNA-Seq and ribosome profiling 

data equally and thus will not affect our estimation of CST.  For a sequencing read from 

the ribosome profiling data, nucleotide positions 16-18 were considered to be at the 

ribosomal A site where codon selection occurs (Ingolia et al. 2009).  Only those reads 

with exactly 28 nucleotides and 0 ambiguous sites were used to ensure the accurate 

determination of positions 16-18.  We calculated the fraction of in-frame codons by 

comparing the read sequences with annotated yeast coding sequences.  Consistent with 

what was previously reported (Ingolia et al. 2009), the majority of codons at positions 16-

18 were in-frame in the ribosome profiling data.  In the mRNA-Seq data, the fraction of 

each phase was close to one third, as expected.  All out-of-frame codons were excluded.  

The probability of incorrect codon assignment was low, because only codons misaligned 

by at least 3 nucleotides may be assigned incorrectly.  Transposons and uncharacterized 

genes were removed.  Our CST estimation procedure is as follows. 

We first calculated fi, the observed frequency of codon i, in the ribosome profiling 

data by  
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where cij is the count of codon i in mRNA j positioned at the ribosomal A site 

measured by ribosome profiling and N is the number of genes with ribosome profiling 

http://lowelab.ucsc.edu/GtRNAdb/
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data (N > 3000 for both rich and starvation conditions).  The expected ribosome footprint 

frequencies of codon i (Fi) when all codons have equal CST can be calculated based on 

the frequency of the codon in the mRNA-Seq data using   
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where Rj is the translational initiation rate of mRNA j and Cij is the count of 

codon i in mRNA j measured by mRNA-Seq.  Then, the relative codon selection time for 

codon i is calculated by 

/i i iCST f F .          

We used an iterative approach to estimate the translational initiation rates that 

appear in Equation for Fi.  We first used Rj = 1 for all j.  After the CST is calculated for 

each codon, the elongation rate ej of mRNA j (i.e., the number of codons translated per 

unit time) is calculated by  
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where Lj is the number of codons in each molecule of mRNA j and Dij is the 

number of codon i in each molecule of mRNA j.  The translational initiation rate Rj can 

be estimated from  

j j jR e d ,          

where dj is the ribosome density on mRNA j (i.e., the number of ribosomes per 

codon) and can be estimated by  
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We then used the newly estimated translational initiation rates to calculate CSTs.  

After 10 iterations, CST estimates converge and are considered as our final estimates.  

Because our estimates of CSTs are relative values, we rescaled them by setting the 

maximal observed value at 1.   
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CST estimates from different experimental replicates were highly correlated (r = 

0.79, P = 6×10
-14

) and were thus pooled for the rest of the analysis.  Three different sets 

of initial values of translational initiation rates (uniform, proportional to CAI of each gene, 

inversely proportional to CAI) were used in CST estimation and they resulted in identical 

estimates of CSTs.  Thus, CST estimation does not depend on the initial values of R.  The 

standard errors of the CST estimates were estimated by bootstrapping genes present in the 

ribosomal profiling data 1000 times.  The CST estimates from two different media (rich 

and starvation) are also very similar.  To ensure no mistake in the estimation of CST, the 

first two authors of this paper independently derived the formulas, wrote the computer 

programs, and estimated the CSTs, and their results were virtually identical.   

 

4.9.3 Estimation of synonymous codon usage bias in yeast 

There are two commonly used measures of synonymous codon usage bias.  The 

first is the relative synonymous codon usage (RSCU), defined by the frequency of a 

codon relative to the average frequency of all of its synonymous codons in a set of highly 

expressed genes (Sharp et al. 1986).  Codons with RSCU >1 are preferred and those with 

RSCU <1 are unpreferred.  To compare the usage of all 61 sense codons, we also used 

RSCU’ = RSCU/n, where n is the number of synonymous codons of an amino acid.  

RSCU’ of a codon is the proportion of use of a given codon among synonymous choices 

in a set of highly expressed genes.  The second commonly used measure of synonymous 

codon usage bias is the codon adaptation index (CAI), which is calculated for a gene, and 

measures its usage of high-RSCU codons (Sharp and Li 1987).  Briefly, CAI of a gene is 

the geometric mean of RSCU divided by the highest possible geometric mean of RSCU 

given the same amino acid sequence.  CAI is a positive number no greater than 1.  The 

greater the CAI, the more prevalent are preferred codons in the gene.  

We first selected 200 most highly expressed genes based on a previous study 

(Beyer et al. 2004).  Sixteen of these genes did not have expression information in 

another study (Holstege et al. 1998) and 4 had expression levels lower than 4 times the 

genomic average, that is 2.7 mRNA/cell reported in an earlier study (Holstege et al. 

1998).  The remaining 180 highly expressed genes were used to calculate RSCU and 

RSCU’ for each codon.  Our RSCU estimates were highly correlated with those 
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previously reported (Sharp and Li 1987) (r = 0.995, P < 0.001, permutation test).  CAI 

was calculated for each yeast gene and for each version of mCherry based on the RSCU 

values obtained above, following a previous study (Sharp and Li 1987).   

We also estimated the effective number of codons (Ncp) for each gene, after 

controlling the GC content of the gene (Wright 1990; Novembre 2002).  We separately 

estimated the frequency (f) of each of the 61 sense codons in each gene.  We then 

estimated Spearman’s rank correlation () between Ncp and f among all genes for each 

codon.  Among synonymous codons, those with more negative  values are considered to 

be more preferred (Hershberg and Petrov 2009).  

 

4.9.4 Empirical test of the proportional rule 

We measured the Euclidian distance and Manhattan distance in synonymous 

codon usage from the observed values to the values predicted from the observed tRNA 

fractions using the proportional rule.  To evaluate whether the observed distances are 

shorter than expected by chance, we conducted a computer simulation with 10
6
 

replications under random codon usage.  That is, the frequency of a synonymous codon is 

uniformly distributed between 0 and 1 with the constraint of the total frequency of all 

synonymous codons being 1.  We then obtained the distribution of the distance between a 

random codon usage and the codon usage predicted from the observed tRNA fractions.  

We also conducted a second simulation with 10
6
 replications, in which tRNA factions 

vary randomly according to the above uniform distribution.  We then obtained the 

distribution of the distance between the observed codon usage and that predicted from 

random tRNA fractions.  This way, the potential confounding effect of genomic GC 

content on the assumed null distribution of codon usage becomes irrelevant to the test.  

We similarly tested the square rule and the truncation rule.   

 

4.9.5 Distance to native codon usage 

We developed an index, distance to native codon usage (Dncu), to measure how 

different the codon usage of a (heterologous) gene is from the overall codon usage of the 

host cell, which is presumably balanced with tRNA concentrations.  First, the Euclidean 
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distance in synonymous codon usage between the heterologous gene and the host is 

calculated for each of the 18 amino acids with at least two synonymous codons by 

2

1

( )
in

i ij ij

j

D Y X


  ,         

where Yij is the fraction of codon j among the synonymous codons of amino acid i 

for the heterologous gene and Xij is the fraction of codon j among the synonymous 

codons in the host transcriptome, ni is the number of synonymous codons for amino acid i.  

Dncu of the gene is defined as the weighted geometric mean of Di, or 
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where k  18 is the number of amino acid types encoded by the gene excluding 

Met and Trp, which have no synonymous codons, mi is the number of amino acid i found 

in the protein, and l is the protein length excluding Met and Trp residues.  By definition, 

Dncu is between 0 and 1. 

 

4.9.6 Yeast experiments  

The mCherry gene sequence was obtained from a previous study (Shaner et al. 

2004).  We designed four synonymous DNA sequences encoding the same mCherry 

peptide.  The first 56 nucleotides were the same for all four sequences to avoid potential 

effects on the mRNA secondary structure, which affects protein translation (Kudla et al. 

2009; Gu et al. 2010; Tuller et al. 2010b).  The GC contents of the four sequences (42-

44%) were also made similar to each other and to the average value in yeast coding 

sequences (40%).  In all sequences, synonymous codons were randomized in order and 

thus were unlikely to cause differences in order-related effects (Cannarozzi et al. 2010).  

The different versions of mCherry DNA sequences were synthesized by Blue Heron 

Biotechnology.  They were cloned into p426GPD (Mumberg et al. 1995) at SpeI and 

XhoI (New England Biolabs; Promega) and are under the control of the GPD promoter.  

The plasmids were subsequently transformed individually into a haploid yeast cell 

(BY4742) with vYFP (Nagai et al. 2002) inserted into Chr XII (He et al. 2010).  The 

genotype of the cell is MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 hoΔ0::PGPD-Venus. 
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We measured the expressions of mCherry and vYFP in log growth phase in Yeast 

extract/Peptone/Dextrose (YPD) media by florescence-activated cell scanning 

(FACSCalibur, BD).  Fluorescence of mCherry was measured from FL4 with a 670 nm 

pass filter and fluorescence of vYFP was measure from FL1 with a filter having a 30 nm 

bandpass centered on 530 nm.  Yeast cells with mCherry fluorescence signals greater 

than the BY4742 negative control cells (i.e., mCherry fluorescence signals >10) were 

gated.  We retrieved the forward scatter (FSC, which is proportional to cell size) and 

mCherry and vYFP fluorescence signals for all gated cells.  The expression levels of 

fluorescent proteins were defined as their fluorescence signals divided by FSC.  The 

mean mCherry expression level is 3.3880.002, 6.4680.007, 14.0030.032, and 

14.5440.022 for the strains carrying mCherry-1, 2, 3, and 4, respectively.  Expression 

levels of mCherry and vYFP were negatively correlated for each strain (mCherry-1: r = -

0.22; mCherry-2: r = -0.57; mCherry-3: r = -0.60; mCherry-4: r = -0.62; P < 2.2×10
-16

 in 

all cases).  All gated cells were then grouped into 3 (Figure 4.3D) bins with equal 

mCherry expression ranges.  For each genotype, multiple independently transformed 

strains were examined on different days, but the results were highly similar.  We thus 

combined all results obtained from different strains of the same genotype.  The total 

numbers of cells measured were 456333, 648792, 352863, and 793832, respectively, for 

the strains carrying mCherry-1, 2, 3 and 4 (Figure 4.3B).  To confirm that our results 

were not due to random secondary mutations, we removed the plasmids from each strain 

by using 5’-FOA media to select against the plasmids, and then measured the vYFP 

fluorescence intensities.  We also sequenced the entire plasmid DNA from each of the 

four strains. 

To compare the vYFP mRNA levels among strains, we extracted the total RNA 

(RiboPure-Yeast Kit, Ambion) from three independently transformed strains of each 

genotype.  The total RNA was reversely transcribed into cDNA (Moloney Murine 

Leukemia Virus Reverse Transcriptase, Invitrogen) with random hexamer primers.  The 

vYFP mRNA level was measured by quantitative polymerase chain reaction (7300 Real-

Time PCR System, Applied Biosystems) with ACT1 as an internal control.  The primers 

for vYFP are 5’ – CATGGCCAACACTTGTCACT– 3’ and 5’ –
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TACATAACCTTCGGGCATGG– 3, while the primers for ACT1 are 5’ - 

CTGCCGGTATTGACCAAACT - 3’ and 5’ – CGGTGATTTCCTTTTGCATT – 3’. 

 

4.9.7 Multivariate regression analysis 

The software package RELAIMPO (http://cran.r-

project.org/web/packages/relaimpo/) was used for a multivariate regression analysis of 

the yeast experimental data from all cells of the four strains.  We compared the relative 

importance of Dncu and CAI in explaining the among-cell variation in vYFP signal by the 

LMG method and used 1000 bootstrap replications to determine the statistical 

significance.  Use of other methods (LAST, FIRST, and PRATT) implemented in 

RELAIMPO gave similar results.  

 

4.9.8 Computer simulation of the evolution of synonymous codon usage bias 

We simulated the evolution of synonymous codon usage in an asexual haploid 

unicellular digital organism.  In this organism, we focused on a single amino acid with 

four synonymous codons (codon1 to codon4) that are respectively recognized by four 

distinct tRNA species (tRNA1 to tRNA4).  We assume that the relative concentrations of 

the four tRNA species are 2
0
, 2

1
, 2

2
, and 2

3
, respectively.  The digital organism has ten 

genes with relative (mRNA and protein) expression levels from 2
0
 to 2

9
, respectively.  

These genes each have 12 codons that are sampled from the four synonymous codons.  

We started the simulation with exactly the same usage of the four synonymous codons in 

each gene.  Synonymous mutations among codons all have the same rates and the total 

mutation rate per genome is assumed to be one synonymous change per generation.  The 

relative CST for a codon is assumed to equal the number of times the codon is used in 

translation divided by the number of corresponding tRNA molecules.  The total time (T) 

required for translating all the proteins can be considered as the generation time.  T can 

be calculated by summing up the CSTs of all codons in all transcripts if there is only one 

ribosome in the cell.  If there are m ribosomes in the cell, the time required would simply 

be m times shorter.  Thus, without loss of generality, we assume m = 1.  A strain with a 

shorter generation has a higher fitness and will spread in the population.  Genetic drift is 

simulated by random sampling of cells for the next generation.  The population size is 10
4
 

http://cran.r-project.org/web/packages/relaimpo/index.html
http://cran.r-project.org/web/packages/relaimpo/index.html
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individuals and the simulation lasts for 500 generations.  We repeated the simulation 

1000 times.  Our results did not change when we simulated the evolution for more 

generations.  By contrast, when we removed the natural selection for translational 

efficiency in simulation, the phenomena observed in Figure 4.4 disappeared.  

Note that, in the simulation, we allow codon usage to evolve while fixing tRNA 

concentrations.  If tRNA concentrations evolve while the codon usage is fixed, we also 

expect to observe the rebalance of codon-tRNA usage, but the correlation (or the lack of) 

between CUB and gene expression level will not change during this evolutionary process.  

In reality, tRNA concentrations and synonymous codon usage likely co-evolve to regain 

the balance.  As long as codon usage is allowed to evolve, we expect stronger CUB to 

appear in more highly expressed genes, as demonstrated in Figure 4.4.  

 

4.10 Appendices 

4.10.1 Mathematical proof that proportional codon usage maximizes translational 

efficiency 

Without loss of generality, we assume that an amino acid is encoded by 

synonymous codons 1 and 2, which are respectively recognized by isoaccepting tRNAs 1 

and 2.  Let the relative usage of the two codons be p1 and p2 = 1-p1 and the relative 

concentrations of the two tRNAs be q1 and q2 = 1-q1, respectively.  Let the codon 

selection time for the two synonymous codons be t1 and t2, respectively.  Thus, the 

expected codon selection time for the amino acid concerned is t = p1t1 + p2t2.  When 

tRNAs are in shortage, the local concentrations of tRNA 1 and 2 are aq1/p1 and aq2/p2, 

where a is a constant.  Because codon selection time is proportional to the inverse of the 

local tRNA concentration, we have 1 2

1 1 2 2/ /

p b p b
t

aq p aq p
  , where b is another constant.  

The above formula can be simplified to 

2 2 2

1 1 2 2 1 1 1 2( / / ) / ( / )[1 ( ) / ( )]t b p q p q a b a p q q q     .  It is easy to find that t reaches 

its minimal value of b/a when 1 1p q and 2 2p q .  In other words, the expected codon 

selection time is minimized and thus translational efficiency is maximized when relative 

synonymous codon frequencies equal relative tRNA concentrations.  Under this condition, 

codon selection time equals b/a for both codons and local tRNA concentration equals a 
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for both tRNAs.  A full treatment considering tRNA cycle and kinetics gave the same 

result (Liljenstrom et al. 1985). 

 

4.10.2 Concentrations of ternary complexes in E. coli 

It has been reported that the physiological concentration of the ternary complex is 

~200 nM for Phe tRNA and Lys tRNAs in E. coli (Uemura et al. 2010).  Because the 

number of Phe tRNA and Lys tRNA molecules per cell is 1830 and 4300, respectively 

(Jakubowski and Goldman 1984), we calculated that the Phe tRNA concentration is 

1830/(6.02×10
23

)/(1.1×10
-15

) = 2.8×10
-6

 M = 2800 nM, where 6.02×10
23

 is the number of 

molecules per mole and 1.1×10
-15

 liter is the average volume of an E. coli cell.  Similarly, 

Lys tRNA concentration is estimated to be 6500 nM.  Thus, about 200/[(2800+6500)/2] = 

4.3% of tRNAs are in ternary complexes.  Because there are ~1.2×10
4
 ribosomes per E. 

coli cell (Jakubowski and Goldman 1984), ribosome concentration is ~18,000 nM.  Thus, 

the ratio in the concentration of ternary complexes to that of ribosomes is expected to be 

200×20/18000 = 0.22, if Lys and Phe can represent all 20 amino acids in ternary complex 

concentration.  

 

4.10.3 Impact of potential errors in translation on our experiments  

Proponents of the translational accuracy hypothesis might argue that, because 

different synonymous codons have different mistranslation rates (Precup and Parker 1987; 

Rodnina and Wintermeyer 2001) and preferred codons are considered to be more 

accurately translated than unpreferred codons (Drummond and Wilke 2008), the mCherry 

with a low CAI is expected to produce fewer functional protein molecules than the 

mCherry with a high CAI even when the same numbers of protein molecules are 

produced.  In other words, using red florescent signals may have led to a more severe 

underestimation of protein expression for the mCherry with a low CAI than for that with 

a high CAI.  The average mistranslation rate has been estimated to be ~5×10
-4

 per codon, 

and unpreferred codons have been posited to undergo mistranslation five times as often 

as preferred codons (Drummond and Wilke 2008).  Based on these numbers and the CAIs 

of the four mCherry versions (Figure 4.3B), we assume that the mistranslation rate is 

10×10
-4

, 8×10
-4

, 5×10
-4

, and 2×10
-4 

per codon for mCherry-1 to mCherry-4, respectively.  
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Let us further assume that no mistranslated protein fluoresces.  Given the length of 

mCherry (236 amino acids), we expect that 11.8%, 9.44%, 5.9%, and 2.36% of mCherry-

1 to mCherry-4 proteins respectively fail to fluoresce due to mistranslation.  On this 

assumption, we corrected mCherry expression levels from the observed florescent signals.  

We also conducted a better control of mCherry expression among strains by dividing 

cells of each strain into 15 bins based on the above corrected mCherry expression.  Again, 

we observed a lower vYFP expression when the Dncu of the mCherry gene is higher, 

across the range of mCherry expressions shared by the three strains.  This result is 

conservative, because only a minority of mistranslations are expected to prevent 

fluorescence, and it is likely that we have overcorrected the effect of mistranslation.  
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Table 4.1 Comparison between the old and new models of translational efficiency by 

unequal codon usage. 

Comparisons  Old model  New model 

Ternary 

complexes of 

aminoacylated tRNA 

+ eEF-1α + GTP 

 In excess.  In shortage. 

Translational 

speeds of synonymous 

codons in wild-type 

cells 

 

Faster for 

those with higher 

cognate tRNA 

concentrations. 

 

Equal, because codon 

usage has been optimized to be 

proportional to cognate tRNA 

concentrations. 

Translational 

speeds of synonymous 

codons in mutant cells 

 

Faster for 

those with higher 

cognate tRNA 

concentrations. 

 

Unequal when the 

codon-tRNA balance is broken. 

Slower for codons with higher 

ratios between the codon 

fraction and the cognate tRNA 

fraction. 

Why is the 

codon usage bias 

stronger in more 

highly expressed 

genes? 

 

Fast 

translation of highly 

expressed genes is 

favored over fast 

translation of lowly 

expressed genes. 

 

Synonymous mutations 

in highly expressed genes have 

larger effects than those in 

lowly expressed genes in 

regaining the codon-tRNA 

balance, which increases the 

overall translational efficiency 

of the cell. 

Why is the 

codon usage 

proportional to 

cognate tRNA 

concentration? 

 
No 

explanation. 
 

It maximizes the 

overall cellular translational 

efficiency when ternary 

complexes are in shortage. 

How to reach 

the highest cellular 

translational efficiency 

in making a synthetic 

cell? 

 
Exclusive use 

of preferred codons. 
 

Codon usage in 

proportion to cognate tRNA 

concentrations. 
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Figure 4.1  Relative codon selection times (CSTs) in wild-type yeast cells in rich 

media. 

(A) CST (grey bars) and RSCU’ (orange dots) of each sense codon.  CSTs are rescaled 

such that the maximal observed value is 1.  Error bars show one standard error, estimated 

by the bootstrap method.  No significant negative correlation between CST and (B) 

RSCU’, (C) tRNA gene copy number, or (D) tRNA concentration.  Spearman’s rank 

correlation coefficients () and associated P values are presented above each panel.  The 

P value in (B) is calculated by a permutation test because of the non-independence 

among RSCU’ values of synonymous codons.  (E) No dip in RSCU’ at the ribosomal A 

site, compared to P, E, and other neighboring sites.  Geometric means of RSCU’ is 

calculated at each codon position (as in the calculation of CAI) for ribosome profiling 

sequencing reads and mRNA sequencing reads, respectively; the ratio at each position is 

presented.  Error bars show one standard error estimated by bootstrapping sequencing 

reads 1000 times.   
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Figure 4.2  Synonymous codons are used in proportion to cognate tRNA 

concentrations. 

(A) Relative uses of synonymous codons in the transcriptomes of seven model eukaryotes 

are compared to the relative concentrations of cognate tRNAs measured from gene copy 

numbers, for the 12 amino acids that have at least two isoaccepting tRNA species.  For 

comparison, genomic synonymous codon usage in S. cerevisiae is also presented.  The 

diagonal line shows the predicted proportional relationship between tRNA concentrations 

and cognate codon uses that maximizes translational efficiency under tRNA shortage.  (B) 

Euclidian and (C) Manhattan distances between the observed synonymous codon usage 

in S. cerevisiae and the prediction by the proportional rule are significantly smaller than 

chance expectations.  Euclidian and Manhattan distances are defined by 2

1

( )
k

i i

i

p q


  

and 
1

| |
k

i i

i

p q


 , respectively, where pi and qi are codon and cognate tRNA fractions, 

respectively, and k is the number of different tRNA species for the amino acid concerned.  

The chance expectations are shown by the frequency distributions of the distances under 

uniformly random codon usage, determined from 10
6
 simulations.  (D) Euclidian and 

Manhattan distances between the observed synonymous codon usage and the predictions 

under the proportional rule, square rule, and truncation rule, respectively.  P values 

indicate the probability that a distance generated by random codon usage is smaller than 

the observed distance, determined by 10
6
 simulations.  Log10(likelihood ratio) measures 

the likelihood of the proportional rule, relative to the square rule, given the actual codon 

usage.  
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Figure 4.3  Experimental evidence for the impact of codon usage imbalance on 

translational efficiency. 

(A) Experimental design for examining the impact of mCherry expression on the 

expression of the reporter vYFP.  An mCherry gene is constitutively expressed from a 2-

micron plasmid in S. cerevisiae, whereas vYFP is constitutively expressed from 

Chromosome XII.  Four different synonymous versions of mCherry are compared.  (B) 

The codon adaptation indices (CAIs) of the four synonymous mCherry sequences (circled 

numbers), in comparison to CAIs of all S. cerevisiae genes.  (C) Values of distance to 

native codon usage of yeast (Dncu) for the four mCherry sequences, in comparison to that 

of all S. cerevisiae genes.  (D) Relationship between vYFP expression and the CAI or 

Dncu of mCherry, when the mCherry expression is controlled for.  Error bars, which are 

barely seen, show one standard error.  (E) vYFP expressions in the four strains after the 

removal of the plasmids that carry mCherry.  Error bars show one standard error.  (F) 

vYFP mRNA levels of the four strains relative to that of the wild-type strain, which does 

not carry mCherry.  The mean expressions from three biological replications and the 

standard errors are presented.   
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Figure 4.4  Computer simulation demonstrates that selection for translational 

efficiency results in the preferential use of codons with abundant cognate tRNAs in 

highly expressed genes. 

Ten genes with different expression levels are considered for a haploid organism.  Four 

synonymous codons of an amino acid are each recognized by its cognate tRNA.  

Concentrations of the four tRNAs differ, but the initial codon frequencies are equal.  

Synonymous mutations, genetic drift, and natural selection for translational efficiency are 

considered (see Materials and Methods).  (A) Overall changes of transcriptomic codon 

usage averaged from 1000 simulation replications.  Error bars show one standard 

deviation.  (B) Highly expressed genes evolved stronger codon usage biases than lowly 

expressed genes.  The averages from 1000 simulation replications are presented.  Error 

bars show one standard deviation.  (C) Evolutionary changes in the usage of codon4, the 

codon recognized by the most abundant tRNA, in a randomly chosen simulation 

replication.   
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Figure 4.5  Amino acids are used approximately in proportion to cognate tRNA 

concentrations. 

(A) Relative uses of amino acids estimated from the transcriptomic data of 7 model 

eukaryotes are compared to the relative concentrations of their cognate tRNAs measured 

from gene copy numbers.  The diagonal line shows the predicted proportional 

relationship between tRNA concentrations and cognate amino acid frequencies that 

maximizes translational efficiency under tRNA shortage.  PE (or PM) is the probability 

that the Euclidian (or Manhattan) distance between the amino acid usage randomly 

generated under a uniform distribution and that predicted by the proportional rule is 

smaller than the observed distance, and is estimated from 10
6
 simulations.  The distance 

definitions are the same as those in the legend of Fig. 2, except that i is an amino acid 

instead of a codon.  (B) The average CST of an amino acid in S. cerevisiae is negatively 

correlated with the availability of its cognate tRNAs, which is measured by the fraction 

of cognate tRNA genes among all tRNA genes divided by the frequency of the amino 

acid estimated from the transcriptome.  The P-value is determined from 1000 

permutations of CSTs. 



 109 

  

A
v
e

ra
g

e
C

S
T

tRNA/amino acid

tRNA fractions

A
m

in
o

a
c
id

fr
a

c
ti
o

n
sA

B

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ala

Arg

Asn

Asp

Cys

Gln

Glu

Gly

His

Ile

Leu

Lys

Met

Phe

Pro

Ser

Thr

Trp

Tyr

Val

0.00 0.07 0.14

0.00

0.07

0.14

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.07 0.14

0.00

0.07

0.14

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

S. cerevisiae S. pombe

A. thaliana C. elegans

D. melanogaster

H. sapiens

M. musculus

PE < 1×10

PM < 1×10
-6

-6

PE = 2×10

PM = 3×10-3

-2

PE = 4×10

PM = 6×10
-4

-2

PE = 2×10

PM = 2×10
-4

-4

PE < 1×10

PM < 1×10
-6

-6

PE < 1×10

PM = 3×10
-6

-6

r = -0.40

P = 3.1×10
-2

PE = 3×10

PM = 4×10
-6

-6



 110 

Figure 4.6  Similarity in transcriptomic codon usage across cell cycle stages, 

developmental stages, and tissues. 

Distributions of pairwise Pearson’s correlations of codon usage among (A) mitotic cell 

cycle stages in S. cerevisiae, (B) developmental stages in C. elegans, (C) tissues and 

developmental stages in D. melanogaster, and (D) among tissues in H. sapiens.   
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Figure 4.7  Evolutionary models of synonymous codon usage bias. 

Three models that differ in the involvement of natural selection for translational accuracy 

and efficiency in the evolution of codon usage bias.  Models I and II can be rejected by 

the existing data, whereas model III is supported by available data.   
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Figure 4.8  Matches and mismatches between preferred codons and accurate codons 

in S. cerevisiae. 

Odds ratio (bars) measures the enrichment of a synonymous codon at evolutionarily 

conserved amino acid residues relative to that at non-conserved residues and is used as a 

proxy for translational accuracy.  RSCU’ (orange dots) measures the preference in codon 

usage.  Odds ratios are estimated from either all genes (black) or the 10% most highly 

expressed genes (grey) of S. cerevisiae.  Asterisks indicate 5% significance in the 

deviation of an odds ratio from 1 (uncorrected for multiple testing).    
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CHAPTER 5 

THE GENOMIC LANDSCAPE OF ANTAGONISTIC PLEIOTROPY 

IN YEAST  

5.1 Abstract 

Antagonistic pleiotropy (AP) or genetic tradeoff is an important concept invoked 

frequently in theories of aging, cancer, genetic disease, and other common phenomena.  

But, it is unclear how prevalent AP is, which genes are subject to AP, and to what extent 

and how AP may be resolved.  By measuring the fitness difference between the wild-type 

and null alleles of ~5000 nonessential genes in yeast, we find that, in any given 

environment, yeast expresses hundreds of genes that harm rather than benefit the 

organism, demonstrating widespread AP.  Nonetheless, under sufficient selection, AP is 

often resolvable through regulatory evolution, primarily by trans-acting changes, 

although in one case we also detect a cis-acting change and localize its causal mutation.  

AP resolution, however, is slower in smaller populations, predicting more unresolved AP 

in multicellular organisms than in yeast.  These findings provide the empirical foundation 

for AP-dependent theories and have broad biomedical and evolutionary implications.  

 

5.2 Introduction 

Antagonistic pleiotropy (AP) is a form of pleiotropy (Wagner and Zhang 2011) in 

which the relative advantage of two alleles of a gene is reversed in different components 

of fitness such as different sexes, developmental stages, and external environments.  Note 

that, by definition, AP among environments is also a type of genotype by environment 

(GE) interaction, which describes different phenotypic effects of a genetic change in 

different environments. The only distinction is that AP among environments is a special 

and strong type of GE interaction where the effects of a genetic change in two 

environments are opposite. 
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AP is commonly invoked in explanations and models of senescence (Williams 

1957), cancer (Rodier et al. 2007), genetic disease (Carter and Nguyen 2011), sexual 

conflict (Rice 1992; Innocenti and Morrow 2010), cooperation (Foster et al. 2004), 

evolutionary constraint (He and Zhang 2006), adaptation (Fisher 1930; Orr 2000; Wang 

et al. 2011), neofunctionalization (Hughes 1994), and speciation (Berlocher and Feder 

2002).  For instance, a prevailing theory of aging asserts that mutations accumulated 

during evolution due to their benefits to development and reproduction in early stages of 

life tend to be deleterious later in life and cause senescence (Williams 1957).  AP dictates 

that a mutation is unlikely to be advantageous to multiple traits or in multiple 

environments, leading to compromises among adaptations of different traits or in 

different environments (Fisher 1930).  This fundamental property limits the extent and 

rate of adaptation (Orr 2000) and guarantees that no species would outperform all others 

in all environments (Levins 1968).   

In contrast to the prominent roles of AP in many theories, our empirical 

knowledge of AP is limited.  Early artificial selection experiments showed that improving 

one trait often worsens another, suggesting that AP is not uncommon (Mather and 

Harrison 1949; Rice 1992; Cooper and Lenski 2000; Ostrowski et al. 2005).  Consistently, 

a Drosophila study proposed over 1000 candidate genes that are subject to sexual 

antagonism, based on correlations between gene expression levels and organismal fitness 

across 15 genotypes and two sexes (Innocenti and Morrow 2010).  However, because 

correlation does not imply causation, the actual AP genes remain elusive.  As such, 

neither the prevalence of AP nor the identity of AP genes is known at the whole-genome 

scale, although individual cases of AP genes have been reported in recent years (Lang et 

al. 2009; Magwire et al. 2010; Wenger et al. 2011).  It is also unclear to what extent AP 

may be resolved evolutionarily, which genetic mechanisms are mainly responsible for AP 

resolution, and what population genetic parameters are conducive to AP resolution.  We 

here address these fundamental questions by a combination of genomics, genetics, and 

modeling, on the basis that, if a gene is subject to AP between two environments, deleting 

the gene would lower the organismal fitness in one of the environments but improve it in 

the other.  
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5.3 Identification of AP genes 

To quantify AP at the genomic scale, we took advantage of the yeast gene 

deletion collection (Giaever et al. 2002), which was constructed by individually knocking 

out each of the 4642 nonessential genes and 11 pseudogenes from a laboratory strain of 

Saccharomyces cerevisiae and by placing in each deletion strain a 20-nucleotide unique 

barcode that can be amplified by universal primers.  We grew all homozygous deletion 

strains together and quantified their relative frequencies at multiple time points by 

amplifying and then sequencing the barcodes using the Illumina-based Bar-seq method 

(Smith et al. 2009), which provides a large dynamic range and low background noise 

(Smith et al. 2009) (Figure 5.1A).  Bar-seq digitally counts every strain, while the 

previous microarray-based method (Giaever et al. 2002) does not provide a signal that is 

linear with the frequency of a strain.  Although amplification biases from polymerase-

chain-reaction (PCR) may exist in library preparation for Illumina sequencing, the biases 

would not affect our fitness measurement, because fitness is estimated by comparing the 

frequency of a strain between two samples obtained at different time points and the PCR 

biases are cancelled out from between-sample comparisons.  Similarly, Illumina 

sequencing biases (Dohm et al. 2008) do not affect our fitness measurement because the 

effects are cancelled out when two samples obtained from two time points are compared.  

It has been reported that Illumina sequencing has a relative high sequencing error (1%, 

http://www.illumina.com).  However, the sequencing errors do not affect our results 

because any two barcodes differ from each other by at least 5 nucleotides (Shoemaker et 

al. 1996), beyond what sequencing errors can do.  We discarded all sequencing reads that 

differ from the known barcodes by more than 1 nucleotide.   

Fitness was measured in six distinct media that represent a subset of the diverse 

environments that wild, domesticated, and laboratory yeast strains have experienced, 

including the rich medium (YPD), glycerol medium (YPG), ethanol medium (YPE), 

synthetic complete medium (SC), synthetic oak exudate medium (OAK), and rich 

medium with 6% ethanol (ETH).  We estimated the fitness of each deletion strain relative 

to the wild-type by using the 11 pseudogene deletion strains as 11 biological replicates of 

the wild-type.  By contrast, previous high-throughput fitness quantifications lacked wild-

type references and effectively used the weighted average strain in the whole population 

http://www.illumina.com/
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as the reference (Giaever et al. 2002; Steinmetz et al. 2002; Deutschbauer et al. 2005; 

Dudley et al. 2005; Hillenmeyer et al. 2008), which would be problematic for identifying 

beneficial null alleles, for two reasons.  First, because the frequencies of low-fitness 

strains decrease in competition, the fitness of the weighted average strain increases 

during competition, which makes fitness estimation unreliable.  Second, because there are 

many low-fitness strains in the population, the average fitness of the population is lower 

than the fitness of the wild-type.  Thus, a strain found to be fitter than the population 

average in these earlier studies may not be fitter than the wild-type.  In our study, we 

used the 11 pseudogene deletion strains to estimate the standard deviation of our fitness 

measurement, which allowed us to estimate the probability (P-value) that the fitness of a 

deletion strain equals the wild-type and the corresponding Q-value after considering 

multiple testing.   

Under YPD, 62.2% of the nonessential gene deletion strains are not significantly 

different from the wild-type in fitness (Q > 0.01), while 32.6% are significantly less fit (Q 

< 0.01) and 5.1% are significantly fitter (Q < 0.01) (Figure 5.1B).  Qualitatively similar 

observations were made in each of the other five media.  The number of deletion strains 

that are significantly fitter than the wild-type varies from 147 to 643 in the six media 

(Figure 5.1C), with decreasing numbers of strains that are fitter than the wide-type in 

more media (Figure 5.1C).   

The reliability of our fitness estimation is reflected by the high Pearson’s 

correlation between two biological replicates (r = 0.94, Figure 5.2A), low false negative 

rate (only one of 11 previously identified beneficial null alleles (Sliwa and Korona 2005) 

was not rediscovered here), and small fitness variation among the 11 pseudogene deletion 

strains in most media (Figure 5.2B).  It is also important to estimate the false positive rate, 

because a number of secondary mutations are known in the yeast gene deletion collection 

(Hughes et al. 2000) and because beneficial secondary mutations are more likely than 

deleterious ones to be included in the collection.  To gauge the false positive rate, we 

randomly chose 24 genes whose null alleles are fitter than the wild-type in Bar-seq, 

independently deleted these genes, and re-measured their fitness by a more accurate low-

throughput method (He et al. 2010).  We found that 46% of them can be confirmed 

(Figure 5.2C).  Several lines of evidence suggest that most false positives arose from 
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secondary mutations accumulated in the gene deletion collection rather than Bar-seq 

errors.   

Strictly speaking, AP is inferred when the null allele of a gene is (i) fitter than the 

wild-type in at least one condition and (ii) less fit than the wild-type in at least one 

condition.  We dropped the second criterion here because it should have been met by all 

the genes examined; otherwise, the null allele would have been fixed in the species.  

Indeed, compared with null alleles having similar fitness as the wild-type (Q > 0.01) in a 

medium, those significantly fitter than the wide-type (Q < 0.01) in the medium tend to be 

less fit than the wide-type in other media (Figure 5.2D).  Under the first criterion, 1249 

AP genes were identified. After considering the false negative and false positive rates, we 

estimated that 1249(11/24)(11/10) = 630 genes, or 13.6% of all nonessential genes 

examined, are subject to AP.  For three reasons, this is likely to be a conservative 

estimate.  First, while AP can potentially occur between any two alleles at a locus, only 

two specific alleles per locus are compared here.  Second, because the number of 

identified AP genes increases with the number of media examined (Figure 5.2E) and 

because yeast experiences more than six environments in nature, the actual number of 

genes subject to AP should be much greater than estimated here.  Third, although our 

fitness measure is more sensitive than all other high-throughput methods, its sensitivity 

(~0.01) is still lower than that of natural selection, which can detect a fitness differential 

as small as the inverse of the effective population size (Ne), which is ~10
7 
in yeast 

(Wagner 2005).  Thus, there are likely many more genes than detected here that are 

subject to milder AP. 

 

5.4 Properties of AP genes 

The identified AP genes differ in several aspects from “neutral genes”, which 

have similar fitness between null and wild-type alleles (Q > 0.01) in all six media.  First, 

AP genes are less likely to be lost than neutral genes when a diverse panel of 64 strains 

sampled from different environments are examined (Figure 5.3A), suggesting that overall 

AP genes are more important and less dispensable than neutral genes.  Second, natural 

selection acting on the coding sequence of a gene can be quantified by the ratio of the 

number of nonsynonymous substitutions per nonsynonymous site (dN) to the number of 



 122 

synonymous substitutions per synonymous site (dS).  We found dN/dS to be lower for AP 

genes than neutral genes when S. cerevisiae is compared with its sister species S. 

paradoxus (Figure 5.3B), suggesting stronger purifying selection on the coding sequences 

of AP genes than those of neutral genes.  Third, AP genes show lower expression 

divergences than neutral genes when the microarray gene expression data from several 

yeast species (S. cerevisiae, S. paradoxus, S. mikatae , and S. kudriavzevii) (Tirosh et al. 

2006) are compared (Figure 5.3C).  This difference could be due to (i) smaller mutational 

target sizes and/or (ii) stronger purifying selection on the expressions of AP genes than 

neutral genes.  We found that AP genes have lower expression divergences than neutral 

genes in a set of mutation accumulation lines (MA) of yeast (Landry et al. 2007) (Figure 

5.3D).  Because MA lines are subject to virtually no natural selection, the above finding 

indicates that AP genes have smaller mutational targets for expression changes than 

neutral genes.  Stochastic expression variation among isogenic cells (expression noise) 

(Newman et al. 2006) reflects the strength of purifying selection (Batada and Hurst 2007; 

Lehner 2008; Wang and Zhang 2011) and is not influenced by mutation target size.  We 

found that AP genes have smaller expression noise than neutral genes (Figure 5.3E), 

suggesting stronger purifying selection on expression level in AP genes than neutral 

genes.  Therefore, both smaller mutation target sizes and stronger purifying selection 

contribute to the lower expression divergences of AP genes than neutral genes.  Note that 

the above observations are valid not only for all AP genes as a whole (black bars in 

Figure 5.3), but also for AP genes identified in each environment (grey bras in Figure 

5.3).   

By definition, the expression of an AP gene reduces fitness in some environments.  

What are the underlying molecular mechanisms of these adverse effects?  We found that 

AP genes are enriched or deprived in a number of Gene Ontology categories.  For 

instance, compared to all the genes in the genome, genes with a null allele fitter than the 

wild-type allele under ETH are enriched in six GO categories, after controlling for 

multiple hypothesis-testing.  These six GO categories can be further divided into three 

groups: phospholipid transport, ER-associated protein catabolic process, and 

heterochromatin (Figure 5.4), which appear to be related to the known cellular effects of 

ethanol.  For example, ethanol influences cell membrane integrity (Ingram and Buttke 
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1984), and ethanol tolerance relies on the phospholipid composition of the cell membrane 

(Mishra and Prasad 1988).  Phospholipid transporters enable directed movements of 

phospholipids and thus may be harmful under high ethanol concentrations.  In addition, 

ethanol induces the production of endogenous DNA-damaging molecules (Brooks 1997) 

and interferes with chromatin condensation (Talebi et al. 2011).  Thus, expressions of 

genes related to heterochromatin could be deleterious in the presence of ethanol.  Because 

ethanol metabolism disrupts protein catabolism (Donohue 2009), expressions of genes 

involved in protein catabolism could be harmful in ETH.  While the exact molecular 

mechanisms of specific AP await future detailed studies, the enriched and deprived GO 

categories offer insights for such studies.  Complementary to most previous studies that 

provided lists of genes that are vital to specific traits or biological processes, our study 

provides lists of genes that are detrimental to these traits or processes.  Such information 

is important for a complete understanding of the mechanisms underlying these traits or 

processes.  

 

5.5 Evolutionary resolution of AP 

In theory, AP between a functional allele and a null allele of a gene can be 

resolved by lowering the expression of the functional allele in the environment where it is 

harmful.  Two hypotheses may explain the unresolved AP in the laboratory yeast we 

studied: (i) paucity of regulatory mutations that could resolve AP and (ii) paucity of 

selection for the fixation of such mutations if the environment concerned is rarely 

encountered.  To distinguish between these hypotheses, we examined four yeast strains 

that are adapted to their respective ecological niches.  The second hypothesis is supported 

if AP involving the native environment of a strain has been largely resolved; otherwise, 

the first hypothesis is supported.   

We began by confirming our prior knowledge (Warringer et al. 2011) about the 

adaptations of the four strains to their respective environments (Figure 5.5A) through 

measuring their relative fitness in four media that approximate the four environments 

(Figure 5.5B).  For instance, the sake strain K12 is expected to have and indeed has the 

highest fitness in the rich medium with 6% ethanol (ETH) among the four media tested.  

If AP is resolvable by sufficient natural selection, we can make three predictions about a 
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gene whose expression is beneficial in environment A but harmful in environment B.  

First, the expression level of the gene in B should be lower for a strain more adapted to B 

than for a strain less adapted to B.  Second, for a strain adapted to both environments, the 

expression of the gene should be lower in B than in A.  Third, a strain that has adapted to 

both A and B should have a greater expression difference between these two 

environments than a strain that is adapted to only one of the environments.   

We tested these predictions by quantifying the expression levels of the validated 

AP genes in Figure 5.2C.  For example, PDR17 encodes a phosphatidylinositol transfer 

protein that participates in phospholipid synthesis and transport and is involved in 

resistance to multiple drugs.  Its null allele is fitter than the functional allele in YPG but 

the opposite is true in ETH (Figure 5.5C).  We measured the mRNA concentrations of 

PDR17 from two strains (M22 and K12) in two media (YPG and ETH).  We observed 

that (i) in YPG, PDR17 expression is lower for the strain better adapted to YPG (M22) 

than for the strain less adapted to YPG (K12) (Figure 5.5D); (ii) for M22, PDR17 

expression is lower in YPG than in ETH (Figure 5.5E); and (iii) the expression difference 

between the two media is greater for the strain adapted to both environments (M22) than 

the strain adapted to only one environment (K12) (Figure 5.5F).  In total, the three 

predictions are respectively supported by 31 of 35 (Figure 5.5G), 22 of 25 (Figure 5.5H) 

and 4 of 5 (Figure 5.5I) cases examined.   

In addition to transcriptional regulation, we observed protein subcellular 

relocalization (Komeili and O'Shea 2000) in AP resolution.  MIG1 encodes a 

transcription factor that works exclusively inside the nucleus in glucose repression 

(Schuller 2003).  Its functional allele is fitter than the null allele in YPD, but the opposite 

is true in OAK (Figure 5.5J).  In the wild strain YPS1000 that is adapted to an 

environment mimicked by the OAK medium, MIG1 is localized to the nucleus under 

YPD.  But under OAK where MIG1 would be deleterious, MIG1 is localized to the 

cytoplasm and hence imposes no harm (Figure 5.5K).  Together, the findings of many 

AP-mitigating regulations at the transcriptional or posttranscriptional levels strongly 

suggest that the unresolved AP in the laboratory strain is largely attributable to a paucity 

of selection rather than a paucity of mutation, consistent with the recent report that the 

mutational target size for expression alterations of a gene is substantial (Gruber et al. 



 125 

2012).  Also consistent with this conclusion is the observation that, in the laboratory 

strain that is adapted to YPD (Figure 5.5A), relatively few null alleles are fitter than the 

wild-type allele under YPD, compared to other media (Figure 5.1C; 5.10.2).  

 

5.6 Genetic mechanisms of AP resolution 

To understand the genetic basis of environment-specific transcriptional regulation 

that mitigates AP, we investigated whether it occurs by cis-acting changes, which act 

through the same DNA molecule that encodes the focal gene, or trans-acting changes that 

operate via diffusible molecules.  We crossed two parental diploid strains (M22 and K12) 

to make a hybrid strain (M22×K12) and used pyrosequencing to measure allele-specific 

expressions in the hybrid as well as in mixed parents.  The expression difference between 

the two alleles in the hybrid is caused by cis-acting changes, while the difference in 

allele-specific expression ratio (M22/K12) between the hybrid and mixed parents is 

caused by trans-acting changes (Wittkopp et al. 2004).   

We examined three AP genes with large environment-specific expression 

regulation.  For PDR17, the M22/K12 expression ratio in the hybrid is not significantly 

different from 1, under either YPG or ETH (Figure 5.6A, P = 0.50 and P = 0.70, 

respectively, two-tailed t test), suggesting the lack of cis-acting differences between the 

two strains.  Consistent with the results in Figure 5.5F, the M22/K12 expression ratio is 

significantly below 1 in mixed parents under YPG (P = 0.01) but not under ETH (P = 

0.44, Figure 5.6A).  Thus, the YPG-specific PDR17 expression divergence between M22 

and K12 is primarily caused by trans-acting changes.  A similar conclusion can be made 

for the second examined gene, APQ12 (Figure 5.6B).   

The third gene studied (STP4) showed a different mechanism.  STP4 encodes a 

transcription factor involved in multiple cellular processes and drug resistance.  The null 

allele is fitter than the functional allele in YPG, but this relation is reversed in ETH 

(Figure 5.6C).  We found the M22/K12 expression ratio of STP4 in YPG to be lower than 

1 by a similar amount in mixed parents and the hybrid (P = 0.97, two-tailed t test, Figure 

5.6D), indicating that the STP4 expression divergence between M22 and K12 in YPG is 

mainly caused by cis-acting changes.  We suspected that a 250-nucleotide promoter 

region of STP4 that harbors four single nucleotide differences between the two strains is 
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responsible for the expression divergence between them in YPD.  To test this hypothesis, 

we swapped this region between the two strains in haploid cells.  Indeed, STP4 

expression in K12 is reduced to the M22 level when its promoter is replaced with that of 

M22 (Figure 5.6E), suggesting that one or more of the four nucleotide mutations caused 

the expression difference between M22 and K12.  Interestingly, STP4 expression in M22 

is not enhanced by using the K12 promoter (P = 0.84, Figure 5.6E), demonstrating a 

genetic background-specific effect of these regulatory changes.       

The above regulatory mutations that are beneficial to M22 under YPG may be 

harmful under ETH, because cis-acting changes tend to affect gene expression in multiple 

conditions (Smith and Kruglyak 2008).  Indeed, the M22 allele has a lower expression 

compared to the K12 allele in the hybrid under ETH (P = 0.001, Figure 5.6D), and 

replacing the native promoter with the M22 promoter in K12 lowers STP4 expression in 

ETH as in YPG (P = 0.05, Figure 5.6E).  Nevertheless, this deleterious cis effect in ETH 

is compensated by trans-acting changes, evident from the comparison of the M22/K12 

expression ratio in mixed parents and the hybrid (P = 0.0003, Figure 5.6D).  Together, 

trans-acting changes were found in all three examined cases of AP resolution, while only 

one case involves an additional cis-acting change.  

 

5.7 Population genetics of AP resolution 

Our observation that most AP is resolvable at least partially yet AP is still present 

in many genes in the laboratory strain prompts us to investigate the population genetic 

parameters conducive to AP resolution.  Specifically, we formulated the expected waiting 

time for an AP-alleviating mutation destined for fixation to appear in a population (i.e., 

time to mutation Tm) and the expected time from the appearance to the fixation of this 

mutation (i.e., time to fixation Tf).  The expected total waiting time for the appearance 

and fixation of the first AP-alleviating mutation is T = Tm + Tf.  We assume that, relative 

to the wild-type, the mutant has a selective advantage of s in environment B but 0 is 

environment A and that the population spends a fraction (f) of its time in B and the rest of 

time in A.  It can be shown that the equivalent selection coefficient se = sf (5.10.5).  We 

considered two additional parameters: Ne and the equivalent number of nucleotide sites at 

which all point mutations alleviate AP (i.e., mutation target size L).  Mutation rate per 
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site per generation (u) is relatively constant among cellular organisms and the estimate 

from yeast (3×10
-10

) is used here (Lynch et al. 2008).  A larger u has the same effect as a 

larger L, as uL is what matters.  For yeast, Tm/Tf  <1 when L >2.5 (Figure 5.7A), 

indicating that, when the mutation target size is not very small, time to AP resolution is 

primarily determined by the time to fixation rather than time to mutation.  But in species 

with smaller Ne, the situation is easily reversed (Figure 5.7A).  While Tm/Tf  is 

independent of se, T decreases with rising se (Figure 5.7B).  For yeast, depending on its 

generation time g in nature, time to AP resolution (gT) varies from 1 to 10,000 years 

(Figure 5.7C).  For example, when sf = 0.001, L = 4 nucleotides, and g =16 hours, gT is 

~100 years.  It is possible that non-repetitive environmental changes are so frequent that a 

yeast population has yet to fix an AP-resolving allele before the specific environment 

vanishes.  AP would be hard to resolve under this scenario.   

 

5.8 Discussion 

By measuring the fitness effects of null mutations in almost all yeast nonessential 

genes under six different environments, we offered the first whole-genome-scale 

quantification of AP in any species.  Although our AP quantification was performed in a 

laboratory strain of yeast, we believe that the conclusion extends to wild strains, because 

the laboratory strain, similar to many wild strains, experiences multiple different 

environments and because the six media under which AP was surveyed are routine 

laboratorial media.  This view is supported by the observation that, even in YPD, the 

most frequently used medium for culturing the laboratory strain, there are over 200 AP 

genes (114 after correcting for false negatives and false positives), and this number is 

likely a gross underestimate, as mentioned earlier.  Although the specific genes subject to 

AP may vary among strains due to the different environments that different strains 

encounter, AP is probably more frequent in wild strains than in laboratory strains, 

because the number of environmental variables in the wild is likely greater than that 

commonly applied in the laboratory.  Our finding that AP is often resolvable in strains 

well adapted to certain environmental factors (e.g., a high ethanol concentration) only 

means that AP related to this factor is resolved in these strains.  But, they can and will 

have unresolved AP related to other environmental factors to which the strains are not 
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well adapted (e.g., ambient temperature that varies both deterministically and 

stochastically).  As long as the environment is not constant, AP is expected to exist.  Our 

finding that at any condition yeast expresses hundreds of genes that are harmful rather 

than advantageous to the organism demonstrates the prevalence of AP and the importance 

of considering AP in understanding biology.   

For two reasons, AP is expected to be even more abundant in multicellular 

organisms than in yeast.  First, while our yeast study focuses exclusively on AP among 

different external environments, multicellular organisms are subject to additional types of 

AP.  For example, some alleles advantageous to one sex are known to be harmful to the 

other sex in Drosophila (Innocenti and Morrow 2010).  In humans, mutations causing 

Huntington’s disease, a neurodegenerative disorder in which symptoms typically 

manifest after the reproductive age, is known to i30-45ncrease fecundity (Carter and 

Nguyen 2011).  The existence of sexes, tissues, and life stages in complex multicellular 

organisms creates a greater potential for AP.  Second, our population genetic analysis 

showed that it takes longer to resolve AP when the effective population size is smaller or 

when the generation time is longer.  Because multicellular organisms have much smaller 

effective population sizes and much longer generation times than yeast (Lynch 2007), the 

fraction of AP that is unresolved is expected to be much greater in the former than the 

latter. 

Because AP is invoked in current explanations and models of senescence 

(Williams 1957), cancer (Rodier et al. 2007), genetic disease (Carter and Nguyen 2011), 

sexual conflict (Rice 1992; Innocenti and Morrow 2010), cooperation (Foster et al. 2004), 

evolutionary constraint (He and Zhang 2006), adaptation (Fisher 1930; Orr 2000; Wang 

et al. 2011), neofunctionalization (Hughes 1994), and speciation (Berlocher and Feder 

2002), our finding of prevent AP provides an empirical foundation for these theories and 

has profound implications for many areas of biology.  In particular, if many disease-

causing mutations are kept in the population because of their unexpected benefits in other 

aspects of life (e.g., development, fecundity, and host defense), as has been suggested in 

Huntington’s disease, cystic fibrosis, sickle-cell anemia, glucose-6-phosphate 

dehydrogenase deficiency, cancer, and many others (Carter and Nguyen 2011), special 

cautions would be needed in treating these diseases, because a treatment may lead to 



 129 

adverse effects in other aspects of life.  On the other hand, discerning the underlying 

mechanisms of AP in such diseases could lead to improvement of certain traits such as 

host defense.  This so-called positive biology (Farrelly 2012) complements the common 

practice of focusing exclusively on diseases in biomedical research.  The identified 

natural solutions to AP may also guide designs of synthetic genomes and organisms 

(Gibson et al. 2010) that need to perform well in multiple environments.  That is, when 

introducing a gene into a host genome, one should examine the effect of the introduction 

in multiple environments, sexes, tissues, and life stages, because a gene beneficial in one 

condition can be deleterious in another.  To optimize the function of the synthetic 

organism, a well-designed expression regulation network is required to suppress the 

expression when it is harmful and to activate the expression when it is advantageous.  We 

hope that our first genome-scale quantification of AP will stimulate further studies in this 

area of universally recognized importance that has thus far been largely untouched by 

systematic empirical analysis. 

 

5.9 Experimental procedures 

5.9.1 Fitness measurement by Bar-seq 

The yeast single gene deletion collection (Giaever et al. 2002) was purchased 

from Invitrogen (Cat. No. 95401.H1Pool).  The strains are diploid, with a homozygous 

deletion of a nonessential gene per strain.  In the process of gene deletion, a unique 20-

nucleotide DNA sequence (barcode) was inserted into each strain.  The yeast strains were 

competed in six media, including YPD (1% yeast extract, 2% peptone, and 2% glucose), 

YPG (1% yeast extract, 2% peptone, and 5% glycerol), YPE (1% yeast extract, 2% 

peptone, and 2% ethanol), SC (0.17% yeast nitrogen base without amino acid and 

ammonia sulfate, 0.5% ammonia sulfate, 2% glucose, and 0.2% dropout mix), OAK (0.1% 

yeast extract, 0.15% peptone, 0.5% glucose, 0.5% fructose, and 1% sucrose) (Murphy et 

al. 2006) and ETH (1% yeast extract, 2% peptone, 2% glucose, and 6% ethanol).   

The mixed strains from the deletion collection were first cultured for two 

generations.  The resultant sample was named generation 0.  We used a fraction of the 

sample from generation 0 to seed a 25 ml competition culture, which was grown at 30℃ 

with shaking at the speed of 250 revolutions per minute.  To reduce the impact of genetic 
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drift, we maintained a relatively large population.  The competition culture was diluted 

10 fold with fresh medium every 3-4 generations.  The frequency of each strain was 

measured at generation 0, generation 3, and generation 26 by the barcode sequencing 

(Bar-seq) method (Smith et al. 2009).  To perform Bar-seq, we extracted the genomic 

DNAs from each yeast population, amplified the barcodes by polymerase chain reaction 

(PCR), and PCR-added sequences recognizable by Illumina sequencing primers.  By 

design, each deletion strain has an upstream barcode and a downstream barcode (Giaever 

et al. 2002).  We used only the upstream barcode, because the downstream barcode is 

known to be missing in some strains (Deutschbauer et al. 2005).  We sequenced 40 

nucleotides from one end of each PCR amplicon using one lane on an Illumina Genome 

Analyzer IIx at the University of Michigan DNA Sequencing Core.  The Illumina 

Pipeline software version 1.5 was used for base calling from the image data.  Because all 

the sequences started with the same 18 base pairs of the PCR primer region and this 

uniformity adversely affected base calling, we removed the first 18 sequencing cycles 

before base calling.  The sequencing reads have been submitted to NCBI. 

To estimate strain frequencies, we need to know which gene deletion strain uses 

which barcode (i.e., the gene-barcode map).  We retrieved two different versions of the 

map from Deutschbauer et al. (Deutschbauer et al. 2005) and Smith et al. (Smith et al. 

2009), respectively.  We found that 4894 gene-barcode relations are consistent between 

the two maps.  However, for 1226 genes, different barcode sequences were shown in the 

two maps.  We decided which map is correct for each of these genes, using the actual 

read sequences we acquired from the generation 0 population (allowing one sequencing 

error).  Although barcodes were designed to be different from one another by at least 5 

nucleotides (Shoemaker et al. 1996), because of DNA synthesis errors, some barcodes are 

no longer distinguishable after allowing one sequencing error.  For this reason, 

YKL137W and YGL140C were removed from the gene-barcode map.  Based on our 

gene-barcode map, we mapped sequencing reads to gene deletion strains, allowing one 

sequencing error per read.  

The fitness of a strain, relative to the wild-type, is calculated by
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where P, P’, PWT, and P’WT are the frequencies of the strain at the beginning of the 
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competition, the strain at the end of the competition, wild-type at the beginning of the 

competition, and wild-type at the end of the competition, respectively, and t is the 

number of generations in the competition.  To guarantee high accuracy of fitness 

measurement, strains with fewer than 100 reads in generation 0 were not considered.  We 

quantified the frequency of each strain at the 0
th

, 3
rd

, and 26
th

 generation.  Thus, for each 

strain, we could calculate fitness based on frequency changes between generation 0 and 3 

or between generation 0 and 26.  The fitness is measured more accurately with more 

generations of competition.  However, if the fitness of a strain was so low that the stain 

disappeared in the 26
th

 generation, we calculated the fitness based on the frequency 

change between generation 0 and 3; otherwise, the frequency change between generation 

0 and 26 was used.  Note that sequencing bias does not affect our results.   

To estimate the fitness of a gene deletion strain relative of the wild-type, we have 

to define a wild-type strain that has the same genetic background as the deletion strains, 

including containing a barcode and the same marker gene as in the deletion strains.  HO, 

a site-specific endonuclease gene necessary for mating type conversion, suffers from 

several severe mutations and is nonfunctional in the strain used for constructing the gene 

deletion collection (Meiron et al. 1995; Ekino et al. 1999).  Thus, the HO deletion strain 

is an ideal wild-type reference.  In the deletion collection, there are 10 additional strains 

in which a pseudogene that lacks an intact open reading frame (ORF) is deleted.  We first 

used the HO deletion strain as the wild-type reference to estimate the relative fitness of 

the 10 additional pseudogene deletion strains.  We then calculated the mean fitness of the 

11 strains.  As expected, the mean fitness is not significantly different from 1 in any 

medium.  We thus merged the reads of all 11 strains and considered them collectively as 

the wild-type reference.  Using this reference, we calculated the fitness of every deletion 

strain, including the 11 pseudogene deletion strains.  To determine whether the fitness of 

a deletion strain differs significantly from 1, we conducted a Z-test using the fitness 

values of the 11 pseudogene deletion strains as the null distribution.  The P-values from 

the Z-test were further converted to Q-values after the consideration of multiple testing 

(Storey 2002).   
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5.9.2 Identification of AP genes 

We first used the HO deletion strain as the wild-type reference (Meiron et al. 

1995; Ekino et al. 1999) to estimate the relative fitness of the 10 additional pseudogene 

deletion strains.  We then calculated the mean fitness of the 11 strains.  As expected, the 

mean fitness is not significantly different from 1 in any medium.  We thus merged the 

reads of all 11 strains and considered them collectively as the wild-type reference.  Using 

this reference, we calculated the fitness of every deletion strain, including the 11 

pseudogene deletion strains.  To determine whether the fitness of a deletion strain differs 

significantly from 1, we conducted a Z-test using the fitness values of the 11 pseudogene 

deletion strains as the null distribution.  The P-values from the Z-test were further 

converted to Q-values after the consideration of multiple testing (Storey 2002).   

 

5.9.3 Analysis of the properties of AP genes 

Gene loss rates were estimated from 64 strains previously genotyped (Schacherer 

et al. 2009) (ftp://gen-ftp.princeton.edu/yeast_snps/schacherer2008/all_del.gff).  DNA 

sequences of ORFs in S. cerevisiae and S. paradoxus were downloaded from (Kellis et al. 

2003) (http://www.broadinstitute.org/annotation/fungi/comp_yeasts/downloads.html), 

and dN/dS ratios were calculated using PAML (Yang 2007).  We obtained gene 

expression divergences among species from (Tirosh et al. 2006), expression divergence 

among mutation accumulation lines from (Landry et al. 2007), and expression noise in S. 

cerevisiae from (Newman et al. 2006).  Expression noise is measured by DM, which 

allows the comparison of noise levels among genes with different mean expression levels 

(Newman et al. 2006).  We used GOstats (version 2.20.0) (Falcon and Gentleman 2007) 

in Bioconductor (http://www.bioconductor.org/) for GO analysis.  The GO category 

enrichment was illustrated with Cytoscape (Shannon et al. 2003). 

 

5.9.4 Relative fitness of four yeast strains in four media 

The non-laboratory strains used in our study were described previously (Liti et al. 

2009; Schacherer et al. 2009).  By competition with a yellow-fluorescent-protein (YFP)-

marked reference strain followed with cell counting using flow cytometry (He et al. 

2010), we measured the relative fitness (fi,j) of each of four strains (i = 1 to 4) in each of 

ftp://gen-ftp.princeton.edu/yeast_snps/schacherer2008/
ftp://gen-ftp.princeton.edu/yeast_snps/schacherer2008/
http://www.broadinstitute.org/annotation/fungi/comp_yeasts/downloads.html
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four media (j = 1 to 4).  We then calculated the mean fitness of each strain in the four 

media (gi) and the mean fitness of the four strains in each medium (hj).  The relative 

fitness of each strain in each medium was estimated by fi,j/gi/hj.    

 

5.9.5 Strain constructions 

To validate the Bar-seq results, we independently deleted 24 genes in BY4742 

(MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) (Brachmann et al. 1998), which originated from 

the lab strain S288C (MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6, 

Saccharomyces Genome Database, SGD, www.yeastgenome.org).  The strains were 

constructed by replacing the ORF of each gene by the auxotroph marker URA3, following 

our previous paper (He et al. 2010).  We also constructed 10 HO deletion strains by 

replacing HO with URA3; these strains have the same genetic background as the 24 gene 

deletion strains and were regarded as the wild-type in the low-throughput fitness 

measurement of the 24 deletion strains.  The fitness of these 24 strains was measured 

using a previously published method that can detect a fitness differential of 0.5% (He et 

al. 2010).  Briefly, the fitness of a strain was measured through competition with an YFP-

marked strain, followed by cell counting using flow cytometry.    

To tag MIG1 with GFP in the wild strain YPS1000, we PCR-amplified the GFP 

coding region together with kanMX6 from plasmid pFA6a-GFP(S65T)-kanMX6 (Wach 

et al. 1997) (TaKaRa Ex Taq Polymerase).  The PCR products were transformed into 

YPS1000 a cells.  After overnight growth in YPD liquid medium, the transformants were 

spread on YPD plates supplemented with 200 μg/ml geneticin (Invitrogen).  We picked 

single colonies, cultivated them in YPD liquid medium, and extracted genomic DNA 

(Phenol/Chloroform/Isoamyl Alcohol 25:24:1 Mixture, pH 6.7).  We confirmed GFP 

tagging by PCR  

The non-lab strains used in our study were described previously (Liti et al. 2009; 

Schacherer et al. 2009).  For strains K12 and M22, we sporulated the diploid cells, 

dissected the tetrads, and replaced the HO locus by kanMX and hygMX in α and a 

haploid cells, respectively, to avoid mating-type switch.  To obtain the hybrid strain 

M22×K12, we crossed M22 a cells with K12 α cells by mixing them on YPD plates for 

24 hours.  The cells were further streaked on YPD plates supplemented with 200 μg/ml 

http://www.yeastgenome.org/


 134 

geneticin and 300 μg/ml hygromycin B (Invitrogen).  We picked single colonies and used 

PCR amplification to confirm the existence of both MATa and MATα (Huxley et al. 1990).   

To obtain STP4 promoter (PSTP4) swapped strains in K12 and M22 backgrounds, 

we first replaced PSTP4 (600 bp upstream of the start codon) of both strains with KanMX4, 

which was amplified from pFA6a-kanMX4 (Wach et al. 1997).  Single colonies were 

picked from YPD plates supplemented with 200 μg/ml geneticin.  Strains K12 

PSTP4::kanMX and M22 PSTP4::kanMX were confirmed by PCR.  The 250 bp upstream of 

the start codon of STP4 were amplified from K12 and M22 and named K12_12 and 

M22_12, respectively.  The 251-600 bp upstream of the start codon of STP4 were 

amplified from K12 and M22 and named K12_34 and M22_34, respectively.  NatMX4 

was PCR amplified from pAG25 (Goldstein and McCusker 1999) and named nat_56.  

We PCR fused K12_34 with nat_56 and obtained K12_78.  We similarly fused M22_34 

with nat_56 to get M22_78.  We further PCR fused K12_12 or M22_12 with K12_78 or 

M22_ to obtain fusion_KK, fusion_KM, fusion_MK, and fusion_MM, respectively.  The 

first letter (K or M) in these names represents the template K12_12 or M22_12, and the 

second letter (K or M) represents the template K12_78 or M22_78.  Fusion_KK and 

fusion_MK was transformed into K12 PSTP4::kanMX to obtain strains pK-K12 and pM-

K12, respectively.  Fusion_KM and fusion_MM were transformed into M12 

PSTP4::kanMX to obtain strains pK-M22 and pM-M22, respectively.  Single colonies were 

picked from YPD plates supplemented with 100 μg/ml nourseothricin.  After PCR 

confirmation, the strains were further verified by DNA sequencing. 

 

5.9.6 Microscopy 

Yeast cells were grown in YPD or OAK overnight at 30℃ to the stationary phase.  

Optical density (OD) of yeast culture was measured at 660 nm with spectrophotometer 

(GENESYS 5, Thermo Scientific).  The yeast culture was diluted to OD660 = 0.1 by fresh 

medium supplemented with 1μg/ml 4’,6-diamidino-2-phenylindole (DAPI, Sigma) and 

was harvested when OD660 reached 0.5 (mid-log phase).  Yeast cells were washed, 

condensed, and examined under fluorescence microscopy (DeltaVision Spectris 

microscope, Applied Precision). 

 



 135 

5.9.7 Expression measurement by quantitative PCR (qPCR) 

Yeast cells were grown overnight at 30℃ to the stationary phase.  The culture 

was then diluted to OD660 = 0.1 and re-grown until OD660 = 0.5 (mid-log phase).  We 

extracted the total RNA (RiboPure-Yeast Kit, Ambion) from three independently grown 

cultures of each genotype.  The total RNA was quantified by nanodrop (Thermo 

Scientific), and 1μg total RNA was reversely transcribed into complimentary DNA 

(Moloney Murine Leukemia Virus Reverse Transcriptase, Invitrogen) with random 

hexamer primers.  The mRNA levels were measured by qPCR (Power SYBR green PCR 

mater mix and 7300 Real-Time PCR System, Applied Biosystems) with ACT1 as an 

internal control.   

 

5.9.8 Determination of allele-specific gene expression by pyrosequencing 

Diploid K12, M22, and M22×K12 strains were individually cultivated in YPG 

and ETH to mid-log phase.  We mixed K12 and M22 in an approximate 1:1 ratio based 

on optical density.  The mixed sample was separated equally into two tubes after 

vortexing.  One was used for RNA extraction and the other DNA extraction.  RNA 

samples were further reversely transcribed.  We then performed pyrosequencing 

following published protocols (Wittkopp et al. 2004).  Briefly, appropriate single 

nucleotide polymorphisms (SNPs) between K12 and M22 were selected, DNA regions 

surrounding the SNPs were PCR amplified, single strand DNA was isolated by 

streptavidin sepharose (GE Healthcare), and DNA was sequenced by synthesis 

(PyroMark Q96 ID System, Qiagen).  The expression ratio of a gene from K12 and M22 

in the mixed sample was calculated by the pyrosequencing signal ratio from the RNA 

sample divided by that from the DNA sample.  The expression ratio between the K12 and 

M22 alleles in the hybrid was similarly determined, except that the K12+M22 mixture 

was replaced with the M22×K12 hybrid.   

 

5.10 Appendices 

5.10.1 Precision of fitness measurement by Bar-seq 

On average, 22 million reads per sample were mapped, which is equivalent to a 

mean sequencing depth of 4400 reads per strain.  The coefficient of variation in 
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frequency estimation is 
4400

4400
=1.5% on average.  For all deletion strains fitter than the 

wild-type, the fitness was estimated from a 26-generation competition.  We can estimate 

the standard deviation of the fitness measurement by computer simulation, based on the 

assumption that the expected number of reads mapped to a wild-type strain is 4400.  We 

randomly generated read numbers for a wild-type strain and a deletion strain with a 

relative fitness of 1, following a binomial distribution.  We then calculated the fitness of 

the deletion strain, relative to the wild-type, based on the number of reads observed in the 

simulation.  Based on 1000 simulation replications, the standard deviation of the fitness 

estimate of the deletion strain is 0.001.  Thus, in theory, a fitness differential as small as 

0.0026 can be detected with 99% confidence.  We discarded strains with initial 

frequencies lower than 100 reads, because fitness cannot be accurately estimated for 

these strains.  The standard deviation of fitness for a strain with 100 reads at the 

beginning of the competition could be as high as 0.005 (detectable fitness differential is 

0.013 with 99% confidence). 

 

5.10.2 Number of AP genes in each medium  

The number of AP genes is the smallest in the OAK medium.  This is likely due 

to the small number of Illumina reads obtained for the generation-26 sample from OAK, 

which reduces the statistical power for detecting AP genes.  For instance, the 11 

pseudogene deletion strains show substantially greater fitness variation in OAK than in 

any other medium (Figure 5.2B).  When OAK is disregarded, the number of AP genes in 

YPD is smaller than that in any other medium and is only 47 percent the average number 

in the other media.  

 

5.10.3 Sources of false positive errors in identifying AP genes by Bar-seq 

To estimate the false positive rate, we randomly selected 24 genes with null allele 

showing significantly higher fitness than the wild-type in an environment.  We 

independently deleted these genes and measured the fitness of the deletion strains in the 

same environment using a previously established low-throughput method (FACS) (He et 

al. 2010).  We found that 46% (11/24) of the AP genes identified from Bar-seq can be 
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confirmed (Figure 5.2C).  False positives can be from either (i) secondary mutations 

accumulated in the gene deletion collection or (ii) fitness measurement errors in Bar-seq.  

For three reasons, (i) is more likely than (ii).  First, a number of secondary mutations 

have been reported in the yeast gene deletion collection.  For example, it has been 

reported that 8% of the collection exhibit aneuploidy (Hughes et al. 2000).  Second, a 

strong positive correlation exists between Bar-seq based fitness and FACS based fitness 

for the confirmed AP genes (Figure 5.2C), while such a correlation is lacking for 

unconfirmed AP genes (Figure 5.2C).  Third, under (ii), high fitness strains in Bar-seq 

should have higher probabilities to be confirmed.  However, we found that the confirmed 

AP genes and unconfirmed AP genes have similar Bar-seq fitness (two-tailed t test, P = 

0.85, two-tailed Mann-Whitney U test, P = 0.49).   

 

5.10.4 Probability of existence of an open reading frame (ORF) under no selection  

The average ORF length is 450 codons in yeast (SGD, 

http://www.yeastgenome.org/).  The probability that a random DNA sequence of this 

length is an ORF is (61/64)
450

 = 4.1×10
-10

.  The yeast genome has ~1.2×10
6
 nucleotides 

and there are two strands.  Thus, the probability of having an average-length ORF in the 

yeast genome simply by chance is 4.1×10
-10

×1.2×10
6
×2 = 0.001.  In other words, ORFs 

found in genome sequences are most likely maintained by purifying selection in at least 

one environment.  Otherwise, the null allele would be fixed and the functional gene 

would get lost.  When a null allele is fitter than the functional allele in at least one 

environment and is as fit as the functional allele in the rest of the six examined 

environments, there is a small probability that the functional allele is not fitter than the 

null allele in any environment.  In such a case, the null allele will quickly replace the 

functional allele, known as adaptive gene loss (Wang et al. 2006).  Because the 

probability of observing such an event is low, we here ignore this possibility (Wang et al. 

2006).  This consideration allows the removal of the criterion (ii) in defining AP and is 

supported by several lines of evidence presented in the main text.   

 

http://www.yeastgenome.org/
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5.10.5 Effective selection coefficient 

When the selection coefficient of a mutant, relative to the wild-type, varies among 

environments, it can be shown that the effective selection coefficient (se) is 

  
1

( )
E

e i i

i

s f s


 ,       [1] 

where si is the selection coefficient in environment i, fi is the fraction of time the 

organism lives in environment i, and E is the total number of environments of the 

organism.  We first prove it in haploid organisms and then prove it in diploid sexual 

organisms.   

 In haploid organisms, selection coefficient s is defined by  

  1

1

(1 )T T

T T

q q
s

p p





   ,      [2] 

where pT is the frequency of the wild-type allele A in generation T, qT =1-pT is the 

frequency of the beneficial mutant allele B in generation T, and s is the selection 

coefficient of allele B relative to allele A.  If the environment is constant, we have 

  0

0

(1 )TT

T

q q
s

p p
   ,      [3] 

or 

  0

0

ln( ) ln(1 )T

T

q q
T s

p p
  .     [4] 

When s << 1, ss  )1ln( .  Therefore, we have  

  0

0

ln( )T

T

q q
Ts

p p
 .      [5]  

It can be easily seen from [3] that, when there are multiple environments,  

  0

0

(1 ) i

E
TfT

i

iT

q q
s

p p
   .     [6] 

When s <<1, [6] can be rewritten as 

  0

10

ln( ) ( )
E

T
i i

iT

q q
T f s

p p 

  .     [7]  

By comparing [5] and [7], one can see that the effective selection coefficient 

when there are multiple environments is indeed described by [1].  
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In diploid sexual organisms under genic selection, the fitness values are 1, 1+s, 

and 1+2s for homozygous wild-type (AA), heterozygote (AB), and homozygous mutant 

(BB), respectively.  When s << 1, the fitness of BB is approximately (1+s)
2
.  We have 
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Thus,  

  1 1 1

1 1 1

1
[1 ] / ( ) (1 )

1 1

T T T T T
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q p p p q
s

p p sq sq p
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It can be seen that [9] has the same form as [2].  Hence, the formulae for haploid 

organisms apply to diploid sexual organisms. 

 

5.10.6 Fixation of AP-alleviating alleles 

Let Ne be the effective population size of a diploid population.  It is known 

(Kimura 1983) that a newly arisen AP-alleviating allele has a fixation probability (P) of 

~2se, when Nese >1.  The time to fixation (Tf) in a diploid population under strong 

selection (Nese >>1) is  

  
2 1 1

ln( )
1 2 1
e

f e

e

N
T s

N





,     [10] 

because the allele initially has one copy and can be considered to be fixed when it 

has 2Ne-1 copies.  From [10], we can see that, when Ne >>1, 

  
2ln(2 )e

f

e

N
T

s
       [11] 

In other words, Tf is proportional to ln(2Ne), and increases by ~2.3 fold when Ne 

increases by 10 fold. 

The total waiting time (T) for the fixation of the first AP-alleviating allele is the 

sum of the waiting time (Tm) for the occurrence of the beneficial mutation that is destined 
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for fixation and the time required for this mutation to be fixed (Tf).  The expected value 

of Tm is 

  
1 1

2 4
m

e e e

T
N LuP N uLs

  ,     [12] 

where L is the equivalent target size in nucleotides for beneficial regulatory 

mutations that alleviate AP and u is the DNA point mutation rate per nucleotide per 

generation.  Because Tf can be calculated by equation [11], we have 

  
1 2ln(2 )

4

e
m f

e e e

N
T T T

N uLs s
        [13] 

and   
1

/
8 ln(2 )

m f

e e

T T
uLN N

 .     [14] 

In yeast, Ne ~ 10
7
 and u ~ 3×10

-10 
per site per generation (Lynch et al. 2008).  

Thus, / 2.48 /m fT T L .  In other words, as long as L >>2.5, which should not be rare, T 

is mainly determined by Tf rather than Tm.  

Under weak selection (i.e., Nese is similar to or smaller than 1), due to drift, Tf will 

be greater than that given by [11] and will eventually approaches 4Ne when Nese << 1.  In 

such cases, Tm given by [6] tends to be much greater than Tf.  Thus, using [13] 

underestimates T only slightly.  We thus continue to use [13] to estimate T even when 

Nese is similar to or smaller than 1.  It can be seen from [13] that T decreases with rising 

se, L, and u.  It can be shown that when 8NeuL<1, which is almost always true except 

when L is very large, T decreases with rising Ne.  
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Figure 5.1 Genome-wide identification of yeast genes subject to antagonistic 

pleiotropy (AP) among six environments. 

(A) High-throughput fitness estimation.  All ~5000 nonessential gene deletion strains 

were grown together in one of six different media.  Fitness was estimated from strain 

frequencies quantified by Bar-seq at the beginning (0th generation) and end (3rd or 26th 

generation) of each competition.  Each color depicts one yeast genotype.  (B) The fitness 

spectrum of gene deletion strains, relative to the wild-type (WT), in YPD.  “>”, 

significantly fitter; “<”, significantly less fit; “”, fitness not significantly different.  

(C) Genes with null allele fitter than WT allele in at least one medium.  Each row 

represents a gene and each column represents a medium.  The color scheme is the same 

as in (B).  The number of genes whose null alleles are significantly fitter than WT in each 

of the six media is shown in the parentheses following the medium.  The numbers of 

genes whose null alleles are significantly fitter than WT in N = 1, 2, …, and 6 media are 

indicated in the parentheses below the N values. 

  Y
P

D
(2

2
7

)

Y
P

G
(5

2
4

)

Y
P

E
(6

4
3

)

S
C

(3
8

9
)

O
A

K
(1

4
7
)

E
T

H
(3

8
0

)

A C
0 3 26

Bar-seq by Illumina

C
o

m
p

e
ti

ti
o

n

Fitness estimation

Generation

........

........
........
........

........

........

0.4 0.6 0.8 1.0

0

400

800

1200

Fitness in YPD

N
u
m

b
e
r

o
f
g
e
n
e
s

Null allele > WT allele
Null allele < WT allele
Null allele ≈ WT allele

B

N
u
m

b
e
r

o
f
m

e
d
ia

in
w

h
ic

h
a

n
u
ll

a
lle

le
is

fitte
r

th
a
n

th
e

W
T

(N
)

N=1

(621)

N=2

(352)

N=3
(181)

N=4
(52)

N=5
(23)

N=6
(20)



 142 

Figure 5.2  Validations of the Bar-seq results. 

(A) Fitness estimates in YPD are highly correlated between two biological repeats.  

Pearson’s correlation coefficient r = 0.94 (P < 10
-4899

).  (B) The fitness of 11 pseudogene 

deletion strains in six media.  The unusually high variation under OAK is caused by a 

low number of sequencing reads obtained.  (C) Fitness values of 24 randomly chosen AP 

gene deletion strains estimated by Bar-seq and those of their corresponding 

independently generated deletion strains measured by a more accurate low-throughput 

method (FACS).  Those confirmed by FACS to be subject to AP (blue dots) show highly 

correlated fitness estimates by two methods (y = 1.0819 x - 0.0863, r = 0.95, P = 6.6×10
-

6
), while the unconfirmed (red triangles) show no correlation (y = 0.0003 x + 1.0004, r = 

0.002, P =0.97).  Error bars represent one standard error.  (D) Compared with gene 

deletion strains equally fit as the WT in a medium (open bar), those significantly fitter 

(grey bar) are more likely to be less fit than the WT in other media.  Error bars show one 

standard error.  Statistical significance (P-value) is estimated by chi-square test.  (E) 

Number of observed AP genes (Q < 0.01) increases with the number of media tested.  
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Figure 5.3  Properties of AP genes, compared with neutral genes. 

AP genes are those whose null alleles are significantly fitter than the wild-type (WT) in at 

least one of the six media.  Neutral genes are those whose null alleles are not significantly 

different in fitness from the WT under all six media.  (A) Gene loss rates (per gene per 

strain) in 64 strains of diverse origins are lower among the entire set of 1249 AP genes 

(black bar) or AP genes identified from individual media (grey bars) than 1344 neutral 

genes (open bar).  In all panels, P-values are from Mann-Whitney U test (*, P<0.05; **, 

P<0.01; ***, P<0.001; ****, P<0.0001; *****, P<0.00001) or t test (
+
, P<0.05; 

++
, 

P<0.01;
 +++

, P<0.001;
 ++++

, P<0.0001;
 +++++

, P<0.00001).  Error bars indicate one standard 

error.  (B) Ratios of the number of nonsynonymous substitutions per nonsynonymous site 

(dN) and the number of synonymous substitutions per synonymous site (dS) between S. 

cerevisiae and S. paradoxus are lower for AP genes than neutral genes.  (C) Gene 

expression divergences among four Saccharomyces species are lower in AP genes than 

neutral genes.  (D) Gene expression divergences among yeast mutation accumulation 

(MA) lines are lower in AP genes than neutral genes.  (E) Gene expression noise is lower 

for AP genes than neutral genes. 
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Figure 5.4  Significantly overrepresented Gene Ontology (GO) categories for genes 

whose null allele are fitter than the wild-type in ETH. 

GO categories and their “parents” in the GO hierarchical architecture are connected by 

arrows.  Blue arrows represent the “is a” relation and green arrows represent the “part of” 

relation.  Node colors represent P-values of overrepresentation, while the cyan circle 

around a node indicates a significantly overrepresented GO category (FDR < 0.05).  

Node size reflects the number of genes in the GO category.   
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Figure 5.5  AP is resolved at least partially by gene regulation in the presence of 

sufficient selection. 

(A) Prior knowledge about the native environments of various yeast strains.  Respir., 

respiration.  (B) Relative fitness of four yeast strains in four media.  The values are 

directly comparable across rows and across columns.  See Experimental Procedures for 

the estimation of relative fitness.  Due to severe flocculation of YPS1000 in ETH, its 

fitness could not be measured.  (C) The null allele of PDR17 is fitter than the wild-type 

(WT) in YPG (P = 2×10
-5

), but less fit than the WT in ETH (P = 6×10
-8

).  In panels C-F 

and J, error bars show one standard error.  (D) PDR17 expression under YPG is lower in 

M22 than in K12 (P = 2×10
-4

).  (E) PDR17 expression of M22 is lower under YPG than 

under ETH (P = 3×10
-3

).  (F) Expression-level difference between YPG and ETH is 

greater for M22 than for K12 (P = 0.004).  (G-I) Numbers of examined genes in which 

AP is at least partially resolved (green) or unresolved (yellow) by transcriptional 

regulation, based on the same three tests shown for PDR17 in panels d-f, respectively.  (J) 

The null allele of MIG1 is less fit than the WT in YPD (P = 0.05), but fitter than the WT 

in OAK (P = 3×10
-48

).  (K) In the wild strain YPS1000, MIG1 is localized in the nucleus 

under YPD but in the cytoplasm under OAK.  MIG1-GFP (green fluorescent protein) 

fusion protein allows the visualization of MIG1’s subcellular localization.  DAPI (4'-6-

Diamidino-2-phenylindole) stains the nucleus in blue.  DIC, differential interference 

contrast microscopy.   
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Figure 5.6  Genetic mechanisms of AP-alleviating environment-specific expression 

regulations. 

(A) PDR17 expression ratios between M22 (purple) and K12 (blue) alleles in mixed 

diploid parents and in hybrids.  (B) APQ12 expression ratios between M22 (purple) and 

K12 (blue) alleles in mixed diploid parents and in hybrids.  (C) The null allele of STP4 is 

fitter than the WT in YPG (P = 5×10
-4

), but less fit than the WT in ETH (P = 5×10
-21

).  

(D) STP4 expression ratios between M22 and K12 alleles in mixed diploid parents and in 

hybrids.  (E) Localization of causal mutation(s) responsible for the lowered STP4 

expression of M22, compared to K12, under YPG.  Nucleotide differences between the 

two strains in the region between 442 nucleotides upstream and 238 nucleotides 

downstream of the translation starting site are presented, together with their positions 

relative to the translation starting site.  We swapped between haploid strains of M22 (pM-

M22) and K12 (pK-K12) a 250-nucleotide proximate promoter region that contains four 

single nucleotide differences to create two mosaic strains (pM-K12 and pK-M22).  The 

expression levels of STP4 in the four strains under YPG and ETH are depicted.  In all 

panels, error bars show one standard error.  One red star stands for significantly different 

expression levels at P < 0.05 between two genotypes connected by a grey line, while 

double stars indicate P < 0.01.   



 150 

 

  



 151 

Figure 5.7  Expected fixation times of AP-alleviating alleles. 

(A) The ratio between the expected waiting time for the appearance of the first AP-

alleviating allele that is destined for fixation (Tm) and the expected time required for this 

allele to get fixed from its first appearance (Tf) decreases with rising effective population 

size (Ne) and mutation target size (L).  Yeast has an effective population size of ~10
7
, as 

indicated by the box.  (B) Expected total number of generations (T = Tm+Tf) required for 

the appearance and fixation of the first AP-alleviating allele decreases with rising L and 

effective selection coefficient (se).  In almost all cases, T also decreases with rising Ne.  

(C) Expected number of years (gT) required for the appearance and fixation of the first 

AP-alleviating allele in yeast under different L, se, and generation time (g).  
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CHAPTER 6 

CONCLUSIONS 

6.1 Concluding remarks 

6.1.1 Summary 

Functional genomics originated at the turn of the century (Eisenberg et al. 2000; 

Lockhart and Winzeler 2000).  At the time, although a number of genome had been 

sequenced, it was unclear how to interpret the sequences.  Thus, the focus of research 

started to switch from sequencing genomes to studying the function of genes in a genome, 

including their temporal and spatial expression patterns (Spellman et al. 1998), 

subcellular localizations (Huh et al. 2003), interactions with other molecules in the cell 

(Uetz et al. 2000; Ito et al. 2001; Gavin et al. 2002; Ho et al. 2002; Gavin et al. 2006; 

Krogan et al. 2006), fitness effects upon deletion (Giaever et al. 2002), and genetic 

interactions with each other (Tong et al. 2001; Tong et al. 2004; Costanzo et al. 2010).  

This wave of functional genomics has had a significant impact on evolutionary genetics.  

First, traditional evolutionary genomics focused on identifying nucleotide sites in a 

genome that are under natural selection, including negative selection and positive 

selection.  However, the selective agent as well as the phenotypic consequence of the 

selection is often unclear.  For example, it is unknown if evolution is repeatable and 

reversible.  Second, traditional functional evolutionary genetics has provided interesting 

results in a small number of genes.  However, the relative importance of various 

evolutionary mechanisms identified from a handful of genes remains unclear at the 

genomic scale.  Functional evolutionary genomics combines the strengths of functional 

genomics and evolutionary genomics and promises to offer deep and grand insights into 

evolutionary processes. 

The past few years has seen a series of studies in evolutionary functional 

genomics.  For example, DNA polymorphisms were associated with phenotypic 

variations among wild strains of yeast or plant (Steinmetz et al. 2002; Atwell et al. 2010; 
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Ehrenreich et al. 2010).  In addition, gene expression evolution has been extensively 

studied at the genomic scale (Wittkopp et al. 2008; Tirosh et al. 2009; Emerson et al. 

2010; McManus et al. 2010).  Many interesting results were also obtained from 

evolutionary analyses of protein-protein interaction data (Wagner 2001; He and Zhang 

2005b; He and Zhang 2006c) and datasets of fitness effects of gene deletions (Gu et al. 

2003; He and Zhang 2005a; He and Zhang 2006a; He and Zhang 2006b; He and Zhang 

2006c; Liao and Zhang 2007; Liao and Zhang 2008).   

My studies were built on these and other studies.  I focused on understanding 

evolutionary processes through both large-scale functional genomic analysis and small-

scale experimental validation.  I studied the evolutionary rate of protein-protein 

interaction, the distribution as well as the underlying mechanisms of genetic interactions, 

and the prevalence and evolutionary resolution of antagonistic pleiotropy. 

My studies suggest that one should be cautious in using various functional 

genomic data.  For example, in Chapter 2, I found high false negative and false positive 

rates in high-throughput protein interaction data.  These errors make such data produced 

by different teams or for different species incomparable.  To avoid such problems, I used 

high-quality protein interaction data from S. cerevisiae and experimentally examined the 

corresponding interaction in a related yeast species.  Further, I examined the protein 

interaction data of S. cerevisiae experimentally to confirm any apparent difference 

between the two species.  Such caution is absolutely required for an accurate measure of 

the evolutionary rate of protein interaction. 

I combined genome-wide patterns revealed by computational analysis or high-

through-put experiments with small-scale experimental validation.  For example, in 

Chapter 3, I experimentally validated our theoretical and computational predictions of 

epistasis.  In Chapter 4, to test our model of translational efficiency by unequal codon 

usage, I constructed four synonymous versions of mCherry and measured their impacts 

on the cellular translational efficiency.  In Chapter 5, I tested two competing hypotheses 

about the presence of antagonistic pleiotropy by measuring expression levels of the 

relevant genes in multiple wild yeast strains that have been adapted to different 

environments.  I also studied the detailed genetic mechanisms of evolutionary resolution 
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of antagonistic pleiotropy in a few genes.  Such experiments strengthened my 

conclusions. 

Many of my studies have been further confirmed by other studies. In Chapter 3, I 

studied the genome-wide distribution of epistasis, and my result was echoed by a recent 

experimental study (Jakubowska and Korona 2012).  In Chapter 4, I found that 

synonymous codons have similar translational elongation rates.  Recent studies in mouse 

and E. coli also discovered this phenomenon (Ingolia et al. 2011; Li et al. 2012).  It is 

interesting to note that mouse study was based on a different experimental strategy 

(Ingolia et al. 2011). 

 

6.1.2 Implications 

My findings have multiple implications in evolutionary genetics.  First, my results 

illustrate the importance of understanding the genetic basis of evolutionary phenomena 

such as antagonistic pleiotropy.   

Second, my research emphasizes the importance of understanding the molecular 

functions of genes in order to understanding their evolution.  For instance, the 

evolutionary rates of protein sequences have been studied extensively in the past 50 years 

and many theories have been proposed (Zukerkandl and Pauling 1965; Kimura 1968; Li 

1997; Nei and Kumar 2000; Koonin and Galperin 2003; Drummond and Wilke 2008; 

Wolf et al. 2009; Doolittle 2010).  However, it is still mysteries how protein sequence 

changes give rise to morphological, physiological, or behavioral evolution that we 

observe.  Because the connection between protein sequence and phenotype is often hard 

to investigate, it is interesting to study this question at an intermediate level of protein 

function.  In Chapter 2, I aimed to connect between protein sequence evolution and 

protein function evolution.  I found that protein interaction evolution is extremely slow, 

and no correlation with protein sequence evolution was observed.   

Third, my research showcases the power of functional genomics.  It had been 

known that both positive or negative epistasis exist among genes (Tong et al. 2001; Tong 

et al. 2004; Costanzo et al. 2010).  The overall sign of epistasis is important for various 

evolutionary theories (Crow and Kimura 1979; Kondrashov 1988; Kondrashov and Crow 

1991; Coyne 1992; Barton and Charlesworth 1998; Jasnos and Korona 2007).  The 
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overall pattern cannot be summarized from individual studies, because of various biases 

in data collection.  Measuring all pairwise epistasis, however, is extremely time-

consuming.  In Chapter 3, an in silico prediction of epistasis based on metabolomics 

offered a strategy to study epistasis at the genomic scale.   

Fourth, my research emphasizes the importance of studying evolution from a 

systems perspective.  For example, the phenomenon of codon usage bias has been studied 

for decades.  It was noticed that highly expressed genes preferentially use a set of 

synonymous codons (Ikemura 1981).  Furthermore, such codons are recognized by a set 

of high concentration tRNAs.  It was then natural to assume that the preferred 

synonymous codons are more efficient.  However, those tRNAs are not necessarily more 

efficient than the others when an equilibrium between tRNA and codon usage is achieved.  

In Chapter 4, I provided multiple lines of evidence that natural selection has acted on the 

balance between codon usage and tRNA concentration and all synonymous codons have 

similar translation efficiency. 

Fifth, my research has potential implications for synthetic biology.  

Understanding the basis of evolutionary interesting traits can help design new traits in an 

organism, which is the aim of synthetic biology.  For example, in Chapter 4, by 

understanding how nature has selected synonymous codons, we can design synthetic cells 

or genomes following the same rule.  In Chapter 5, I investigated how the expression 

regulation of a gene in different environments evolved.  The same strategy could be used 

to introduce a new gene into the genome that has antagonistic effects in multiple 

environments. 

 

6.1.3 Future directions 

My research covers a few interesting questions on functional evolutionary 

genomics; more questions can be addressed in the future. 

First, numerous other types of functional genomic data can potentially be 

integrated into the current study of functional evolutionary genomics.  In my thesis, I 

used a broad range of functional genomic data, including gene expression levels, protein 

levels, protein-protein interactions, genetic interactions, gene-environment interactions 

and growth rates.  Several other functional genomic data also became available in recent 
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years, e.g., nucleosome binding (Lee et al. 2007), mRNA folding (Kertesz et al. 2010), 

chromosome territory (Duan et al. 2010), and transcription factor binding (Lee et al. 

2002).  It would be interesting and important to understand the evolution of such 

molecular traits and how the molecular traits influence the evolution process.   

It is worth noting that such studies are essential for understanding the evolution 

with extensive pleiotropy.  A single mutation in the coding sequence of a gene can have 

multiple effects.  It may change the protein sequence, codon usage, mRNA secondary 

structure, post-translational modification, and nucleosome binding, among other things.  

These changes may influence the dynamics of gene expression, e.g., transcription 

elongation rate, translation initiation rate, translation elongation rate, and translational 

accuracy.  Such dynamic parameters of gene expression could further impact the amount, 

variation, and timing of gene expression.  All aforementioned aspects of gene expression 

are potentially important to fitness.  Such pleiotropic effects of a mutation on different 

aspects of gene expression are poorly understood.  Because of the tremendous functional 

genomic data that are available in yeast, yeast serves as an excellent model eukaryote for 

studying the genetic architecture of gene expression. 

Second, the effects of point mutations need to be emphasized in the future.  

Whereas epistasis and pleiotropy of loss-of-function mutations have been studied recently 

at the genomic scale (Tong et al. 2001; Tong et al. 2004; Costanzo et al. 2010), epistasis 

and pleiotropy of point mutations have not been accurately measured in a systematic way, 

despite that point mutations are more prevalent and important than null mutations in 

nature.  This deficiency is mainly due to the difficulty in generating and quantifying the 

fitness of a large number of mutants.  Some recent studies circumvented the hurdle and 

provided some interesting results (Weinreich et al. 2006; Shultzaberger et al. 2010).  

However, epistasis and pleiotropy of point mutations deserve more efforts. 

Third, it is important to validate if the conclusions obtained in unicellular 

organisms are correct in multicellular organisms.  Unicellular organisms may be different 

from multicellular organisms in several aspects.  For example, the growth rate of 

unicellular organisms may be limited mainly by the environment, whereas the growth 

rate of multicellular organisms is more constrained by the development process that is 

genetically determined.  Such differences may make our conclusion in yeast less 
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applicable to multicellular organisms.  It is thus interesting to study how our conclusions 

in yeast can be expanded to multicellular organisms.   
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