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CHAPTER I

Introduction

Much scientific research in the social and health sciences aims to understand

the causal relationship between an intervention or exposure and an outcome, and a

variety of statistical methods have been developed to answer these questions. How-

ever, in many situations, such causal relationships is not readily obtained even in

well-conducted randomized clinical trials. Often, post-randomization variables are

adjusted for or conditioned on at analysis stage to control for the potential con-

founding effects or other reasons such as surrogate endpoint validation. The causal

interpretation for the effect of intervention is easily destroyed when using conven-

tional approaches to adjust for post-randomization variables [45]. Under such cir-

cumstances, statistical models taking account of post-randomization variables while

retaining the causal interpretation of the effect of intervention are highly desirable

and challenging to develop.

This dissertation is motivated in part by the following three examples: 1) when

possibly outcome-dependent non-compliance occurs in a longitudinal study where

compliance can vary over time, evaluation of treatment effects may be confounded

even with adjustment of compliance behavior; 2) when self-selected maximum dosage

tolerances that relate with adverse effects exist and are distributed in an unbalanced

1
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fashion between randomization arms, efficacy evaluation based on the primary end-

point may be confounded by the presence of self-selection; 3) surrogacy evaluation

and validation is traditionally considered through a series of models that evaluate

primary endpoints and putative surrogate markers marginally, as well as evaluate

primary endpoints adjusted for surrogate markers. In all three examples, conven-

tional analyses conditional on post-randomization variables are either problematic

and/or lose causal interpretations of the treatment effect. In this dissertation, we

develop and apply state-of-art causal inference to the above three topics under a

potential outcome framework with a principal stratification approach.

One fundamental concept in causal modeling is the potential outcome, which is

first proposed by Neyman [49] and defined as the value an outcome would take after

assignment to a different treatment arm than the one actual observed [35]. One

goal of causal inference is estimation of the causal effect of treatment, which is de-

fined as the comparison of the potential outcomes under different treatment arms

within an individual, and the average causal effect of treatment, which averages such

comparison over the entire population [17, 50]. Under the potential outcome frame-

work, Frangakis and Rubin proposed principal stratification [17]. Principal strata

are determined by the joint distribution of potential values of the post-randomization

adjustment variable of interest under different treatment arms. Because the potential

outcome itself is considered to exist before treatment assignment, principal strata is

also considered to exist before treatment assignment, and can be conditioned on or

adjusted for without destroying the causal interpretation of a statistical model.

The first two chapters of this dissertation focus on noncompliance and partial

compliance behavior in randomized clinical trials, which is very common in clinical

studies. Often patients themselves choose whether or not to follow the assigned in-
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tervention protocol, and thus noncompliance of treatment assignment is unavoidable

in practice. Traditional statistical methods such as comparing outcomes by random-

ized treatment assignment – “intent-to-treat” (ITT) analysis — provides inference

about the causal effects of the assignment, but not the actual treatment. Another

traditional method compares outcomes among those adhering to the protocol –“per

protocol” (PP) analysis – provides only evidence of association, not a causal inter-

pretation, since treatment taken is a post-randomization variable [45].

To account for noncompliance, two major approaches have been developed with

causal inference. The first approach considers noncompliance as a special case of me-

diation analysis, and focuses on estimating direct effects of treatment assignment and

indirect effects of treatment assignment through the actual treatment taken [44]. This

approach assumes that the treatment assigned and treatment taken can be manipu-

lated independently, and subjects could be forced into compliance or non-compliance.

The other approach estimates the causal effect of treatment by estimating the effect

of treatment within principal strata [17]. In a two-arm randomized clinical trial,

the principal strata consist of compliers (subjects who comply with the assignment

under both treatment arms), always-takers (subjects who always take treatment re-

gardless of assignment), never-takers (subjects who always take control regardless

of assignment), and defiers (subjects who take the treatment opposite of what they

are assigned). They conduct causal inference focusing on the effect of treatment as-

signment among the compliers and defiers, whose treatment taken changes with the

treatment assigned; in the settings that defiers are assumed not to exist, only the

complier stratum provides causal inference for the effect of treatment taken. In con-

trast to Robins and Greenland [44] , Frangakis and Rubin do not assume the ability

to manipulate compliance behavior independently from treatment assignment, in-
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stead they assume that only a subset of the population would be compliant with

treatment, and focus inference on this stratum [17].

In the recent years, estimation of treatment effect in randomized clinical stud-

ies with noncompliance has been extended to longitudinal studies [60, 32, 15]. An

important feature of longitudinal studies is that the outcomes and compliance be-

haviors are measured and recorded repeatedly over time, and thus the longitudinal

data could reveal more information about the reason and mechanism of noncompli-

ance. In Chapter II, we propose a Markov compliance and outcome model under

the potential outcome framework with principal stratification approach. A unique

feature of the proposed model is that we use the nature of the longitudinal study

to assess the impact of the causal effect of treatment on the future compliance, as

well as the causal effect of treatment within each principal stratum. We illustrate

the model with a randomized clinical study designed to assess the effect of cognitive

behavioral therapy for depression among a sample of suicide attempters.

Our work in Chapter III is motivated by the presence of partial compliance in

the Interstitial Cystitis Collaborative Research Network (ICCRN) study. This two-

arm randomized trial is designed to evaluate the efficacy of Amitriptyline for the

treatment of interstitial cystitis. Subjects on both arms are assigned to a dose

escalation schedule and recommended taking up to 75 mg. Primarily due to adverse

events, many subjects opted to stay at or return to ≤ 25 mg or 50 mg. In this

study, the severity of adverse events were reported and recorded in the trial for

all subjects. Since observed adverse event is also a post-randomization variable,

like observed partial compliance, we treat both of them and the clinical outcome

together as potential outcomes in the proposed model. We incorporate adverse effect

information to model the principal strata membership determined by dosage taken,
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using the fact that subjects on the control arm can also change their placebo dosage

to estimate their dosing behavior had they been under treatment .

Chapter IV focuses on causal modeling for surrogacy assessment. Research in

surrogacy assessment has aroused much interests in recent years because clinical tri-

als often encounter difficulties such as long follow-up periods, rare disease outcomes,

or expensive medical costs. Surrogate markers may be able to be measured ear-

lier and/or at lower cost, and may be used in lieu of primary outcomes to evaluate

the effect of treatment if the (causal) effect of treatment is highly correlated with

the (causal) effect of treatment of the ultimate outcome of interest. As in the non-

compliance setting, a common drawback of previous regression-based methods to

evaluate surrogate markers is that the estimated treatment effects lack causal inter-

pretation due to the fact that the surrogate marker is measured after the treatment

assignment [45]. To overcome this, Frangakis and Rubin proposed a principal surro-

gacy evaluation method based on the concept of principal stratification [17]. They

proposed that an intermediate variable is a valid principal surrogate if it satisfies

causal necessity, i.e., the causal effect of treatment on the primary outcome exists

only when the causal effect of treatment on the intermediate variable exists. They

also proposed two types of causal effects, associative and dissociative effects, to eval-

uate principal surrogacy. The associative effect on the outcome is defined as the

comparison between the potential primary outcomes under different treatment arms

when the value of surrogate markers are different under different treatment arms, and

the dissociative effect on the outcome is defined as the comparison between poten-

tial primary outcomes under different treatment arms when the value of surrogate

markers are same under different treatment arms. Current literature on principal

surrogacy assessment has considered either a normally distributed primary outcome
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or a binary primary outcome. For a time-to-event outcome in medical studies, how

to evaluate the principal surrogacy has not been addressed yet. In Chapter IV, we

follow the principal stratification approach, and propose a causal model to evaluate

the principal surrogacy for time-to-event primary outcome. To take account of the

correlation between the potential primary outcomes under different treatment arms,

we introduce a shared-frailty model in conjunction with proportionality assumption

[22]. We illustrate the proposed causal model in a randomized clinical trial designed

to evaluate the efficacy of intensive-course fluorouracil combined with low-dose leu-

covorin as adjuvant therapy in patients with high-risk primary colorectal cancer to

assess the principal surrogacy of 3-year disease free survival for overall survival.

All of the methods discussed above utilize a Bayesian inferential approach, using

Markov chain Monte Carlo algorithms to accommodate complex missing data struc-

tures. Although our approach is Bayesian, we conduct detailed simulation studies in

addition to the specific applications considered to investigate the repeated sampling

properties of the proposed methods. We do this in order to make sure that our

methods are “well calibrated” to assess the impact of differing priors on weakly or

non-identified parameters in the proposed models [34].



CHAPTER II

Joint Modeling Compliance and Outcome for Causal
Analysis in Longitudinal Studies

2.1 Introduction

Because randomized treatment assignment removes both observed and unobserved

confounding, randomized studies provide a means to estimate the causal effect of

treatment. However, since subjects can choose whether or not to comply with their

assigned treatment in many circumstances, noncompliance or partial compliance is

very common in randomized clinical studies. Traditional analysis methods include

intent-to-treat (ITT) analysis, as-treated (AT) analysis and per-protocol (PP) anal-

ysis. ITT analyses provide a causal estimate of the effect of randomization, which

can differ from the causal effect of the treatment in the presence of non-compliance.

AT analyses ignore the randomization assignment, and compare the outcomes by the

actual treatment received. PP analyses compare the outcomes for subjects who com-

ply with the assigned treatment. However, because the latter two analyses methods

condition on the treatment taken, which is a post-randomization variable, selection

bias may exist and affect the AT and PP estimates of the causal effect of treatment

[45].

A large literature has been developed in recent years to estimate effects of treat-

ment via causal modeling under the potential outcome framework, with the goal

7
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to compare the potential outcomes that would have been observed under various

assignments of treatments. In fact, the idea of describing causal effect in terms of

potential outcomes dates back to Neyman [49], and is now becoming widely used in

the fields of economics, social and behavioral sciences, epidemiology and statistics.

In this chapter, we use the principal stratum approach formulated by Frangakis

and Rubin [17]. For noncompliance problems, the principal strata are determined by

the joint distributions of the compliance behaviors under both treatment arms. In the

context of a two-arm randomized trial, principal strata consist of compliers (subjects

who take treatment if and only if assigned to it), always-takers (subjects who take

treatment regardless of assignment), not-takers (subjects who take control regardless

of assignment), and defiers (subjects who take treatment if and only if assigned

to control). Because potential outcomes are considered to exist before treatment

assignment, principal strata are also considered to exist before treatment assignment,

and can be conditioned on or adjusted for in regression without destroying the causal

interpretation of a statistic model. In particular, the effect of treatment within the

complier stratum, termed the complier average causal effect (CACE), is often of

interest to investigators, and can be interpreted as the causal effect of treatment

among the subpopulation who comply with the treatment assignment no matter to

which treatment group they are assigned [25].

Previous research about noncompliance behavior in the randomized clinical stud-

ies with principal stratification has focused on obtaining a valid estimate of the effect

of treatment within principal strata [10, 17, 25], and has been extended to longitu-

dinal studies in recent years. These longitudinal studies vary in several features.

For example, subjects can be randomized once at baseline [33, 32, 60] or multiple

times over time [15]. Treatment can be applied once [60] or repeatedly over time
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[15, 33, 32]. In this chapter, we focus on the longitudinal study when subjects are

randomized once at baseline, treatments are applied repeatedly over time, and sub-

jects’ compliance behavior may change over time.

An important feature of a longitudinal study with this design is that the out-

comes and compliance behaviors are measured and recorded repeatedly over time,

and thus the data may reveal more information about the reason and mechanism

of noncompliance. Possible reasons of noncompliance include forgetting to take the

treatment, side effect or small effect of treatment. With an effective treatment, one

might want to improve the compliance in future studies by means such as education

of compliance or reduction in side effects. Motivated by this, we propose a Markov

compliance and outcome model under the potential outcome framework using a prin-

cipal stratification approach. A unique feature of the proposed model is the ability

to assess the impact of the causal effect of the treatment on the future compliance,

as well as the causal effect of treatment within principal strata. We illustrate the

proposed causal model with a randomized clinical study designed to assess the ef-

fect of cognitive behavioral therapy (CBT) on depression among a sample of suicide

attempters.

The remainder of this manuscript is organized as follows. Section 2.2 introduces

the motivating study – CBT study. Section 2.3 describes our proposed Markov com-

pliance and outcome model and Bayesian estimation method. Section 2.4 applies our

proposed causal model to the CBT study. Section 2.5 studies the repeated sampling

properties of the proposed model with simulation studies, followed by Section 2.6

discussing the implications of our findings and future extensions.
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2.2 The Cognitive Behavioral Therapy (CBT) Study

The CBT study was a randomized longitudinal study designed to test the efficacy

of a specially designed suicide prevention therapy. This study was designed to deter-

mine whether a brief psychosocial intervention could reduce depression severity over

an 18-month follow up interval in a sample of subjects who had attempted suicide.

The psychosocial intervention was built on clinical investigations regarding the psy-

chopathological characteristics of suicide behaviors, and the central feature of this

psychotherapy was identification of proximal thoughts, images, and core beliefs that

were activated prior to the suicide attempt. The study sample consisted of 120 indi-

viduals who were initially identified in the emergency department at the Hospital of

the University of Pennsylvania following a suicide attempt. After the subjects were

medically cleared or stabilized in the emergency department, they were transferred

to the psychiatric emergency department. Then eligible individuals were random-

ized into two groups: the control group, where patients received usual care, and the

treatment group, where patients received the specially designed cognitive therapy

besides the usual care.

The clinical outcome was Beck Depression Inventory (BDI), which means severity

of depression. Subsequent in-person assessments of BDI were conducted at 1, 3, 6,

12, and 18 months following the baseline interview. Among the 120 subjects, 60

subjects were randomly assigned to the cognitive therapy group, and 60 subjects

to the usual care group. We restrict our analysis to the 58 subjects in the treat-

ment group and the 56 subjects in the control group with at least one BDI follow-up

measurement. We summarize subjects’ baseline covariates in Table 2.1. Randomiza-

tion achieved balance across the observed baseline covariates between two treatment
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Table 2.1: Demographic characteristics for the CBT study
Treatment Assignment

Baseline covariates Treatment Control p value
Age, Mean (S.D.) 35 (10.0) 35 (10.3) 0.80
Gender, Female (%) 35(60.3) 34 (60.7) 0.97
Beck Depression Index 33 (12.1) 31 (15.9) 0.53
Beck Hopeless Scale 11 (5.5) 12 (6.3) 0.79
Suicide Ideation 28 (5.7) 29 (4.4) 0.48
Number of Previous Suicide Attempts 4 (5.4) 6 (13.6) 0.47
Self Reported Health Status 2 (1.1) 2 (1.1) 0.60
Positive Problem Orientation 9 (4.3) 9 (5.0) 0.91
Rational Problem Style 9 (5.1) 8 (5.3) 0.73
Impulsive Careless Style 10 (4.8) 9 (5.5) 0.22
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Figure 2.1: Mean of
√
BDI for the CBT study

arms. Subjects’ age ranged from 18 to 66 years, and 61% of them are female. We

apply a square root transformation on BDI to improve the normality approximation

for the clinical outcomes. Subjects randomized to the treatment group developed

less severe depression on average than the subjects randomized to the control group

from month 3 onward. We summarize the observed
√
BDI of the study sample in

Figure 2.1.

Subjects who were assigned to the treatment group and received CBT at least once
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during a given follow up period are defined as having complied with the treatment.

The noncompliance rates of subjects assigned to the treatment group are 7%, 9%,

36%, and 64% in follow up periods of one month, three months, six months and

twelve months respectively. We do not include data for the 18-month follow-up in

the analysis because noncompliance rate is 96%.

2.3 The Markov Compliance and Outcome Model

2.3.1 Notation

For subject i = 1, ..., n, we use Zi to denote the treatment assignment (1 for

treatment and 0 for control) and XXX i to denote the baseline covariates. Compliance

behaviors and outcomes are measured at fixed time points denoted as 1, ..., t, ..., T .

For subject i at follow-up period t, we use Yi,t(zi) to denote the potential clinical out-

come under treatment assignment zi, and Di,t(zi) to denote the potential treatment

received under assignment zi. With the joint distribution of Di,t(1) and Di,t(0), the

principal strata Si,t at time t can be fully determined. As noted in Section 2.1, in

the context of a two-arm randomized trial, the principal strata consist of compliers,

always-takers, not-takers and defiers. The joint distribution of Di,t(1) and Di,t(0)

fully determines the principal strata Si,t at time t. Since only one of Di,t(1) or Di,t(0)

is observed, Si,t is latent for all subjects:

Si,t =



c (complier), Di,t(zi) = zi

n (not-taker), Di,t(zi) = 0

a (always-taker), Di,t(zi) = 1

d (defier), Di,t(zi) = 1− zi

We focus on two-arm randomized trials where subjects assigned to the control



13

group could not access treatment. Therefore principal strata consist of compliers and

not-takers only, and subjects’ principal strata become partially latent. The principal

strata are observed for subjects randomized to the treatment group (compliers if

take treatment and not-takers if take control), and remain latent and unobserved for

subjects randomized to the control group.

2.3.2 Model Assumptions

We make two assumptions in the proposed Markov compliance and outcome

model.

• Ignorable Treatment Assignment Assumption [47].

This assumption means that the treatment assignment is independent of all

(observed and unobserved) baseline variables and potential outcomes. Under

ignorability, we do not need to model the assignment mechanism. It is reason-

able in the CBT study because subjects were randomly assigned to either the

treatment group or the control group.

• Stable Unit Treatment Value Assumption (SUTVA) [48].

It comprises two subassumptions. The first subassumption implies there is no in-

terference between subjects, i.e. the potential compliance and potential clinical

outcome of individual i are independent of potential compliance and potential

clinical outcome j (i 6= j). The first subassumption is reasonable for the CBT

study because depression is not infectious, and subjects visited therapists by in-

dividuals, instead of in groups. The second subassumption assumes that there

is no “hidden” version of the treatment, i.e. there are no systematic differences

of treatments assigned within the treatment categories (CBT vs. usual care).

This assumption is reasonable in the CBT study given that the usual care was
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taken to standardize treatment provided in the CBT study.

• Markov Dependence for Longitudinal Measurements

We assume a Markov relationship among longitudinal potential outcomes and

principal strata memberships at different follow up time. In particular, we

assume the potential outcomes at the end of the follow up period t depend not

only on the principal stratification membership at the current time, but also on

the principal strata in previous k1 follow up periods as well as on the potential

outcomes at the end of previous k2 follow up periods. Similarly, we assume

the principal strata in the follow up period t depend on the principal strata in

previous l1 follow up periods and the potential outcomes at the end of previous

l2 follow up periods.

Note that the ITT effect of the treatment within the not-taker stratum is often

assumed zero in causal models for clinical studies, which is termed the exclusion re-

striction (ER) assumption [3]. This assumption is plausible in many studies, but not

always. For example, in the CBT study, the clinical outcome is a subject’s depression

severity. The not-takers being assigned to receive cognitive therapy may experience

stress as a result of failing to participate in the therapy, and thus become more de-

pressed, but may not be stressed about not participating in the therapy if they were

assigned to receive usual care. Therefore not-takers may develop different level of

depression under different assignments, and ER assumption may not necessarily be

met in this case.

2.3.3 Complete Data Likelihood

Under the potential outcome framework, the “complete” data include YYY = (Y1,1(1),

Y1,1(0), ...,Yn,T (1), Yn,T (0)) and SSS = (S1,1, ..., Sn,T ). LetXXX denote n×p matrix of base-
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line covariates with ith row XXX i. The complete data likelihood can be factored into a

series of conditional likelihoods:

L(YYY ,SSS|XXX,ααα,βββ,θθθ,γγγ, ρ, σ)

=
n∏
i=1

f(Yi,1(1), Yi,1(0), ..., Yi,T (1), Yi,T (0), Si,1, ..., Si,T |XXX i,ααα,βββ,θθθ,γγγ, ρ, σ)

=
n∏
i=1

T∏
t=2

f(Si,1|XXX i,ααα)× f(Yi,1(1), Yi,1(0)|Si,1,βββ, ρ, σ)

× f(Si,t|Si,t−1, ..., Si,t−Kc
c
, Yi,t−1(1), Yi,t−1(0), ...Yi,t−Ky

c
(1), Yi,t−Kc

y
(0), θθθ)

× f(Yi,t(1), Yi,t(0)|Si,t, ..., Si,t−Ky
c
, Yi,t−1(1), Yi,t−1(0), ..., Yi,t−Ky

y
(1), Yi,t−Ky

y
(0), γγγ, ρ, σ)

where ααα and θθθ are used to parameterize the likelihood of principal strata in the

first and the other follow up periods respectively, and βββ, γγγ, ρ and σ are used to

parameterize the likelihood of potential outcomes at the end of the first and the other

follow up periods respectively, with ρ being the correlation between the potential

outcomes under different treatment arms.

Typically, the correlation between the potential outcomes of a subject under dif-

ferent treatment arms is ignored, or a location shift between Yi,t(1) and Yi,t(0) (ρ = 1)

is assumed [12]. In practice, because we could observe the potential outcome only un-

der the arm the subject eventually takes, no information is available to estimate this

within-subject correlation, at least in continuous settings. Viewing ρ as a sensitivity

parameter, we assume a variety of correlations between 0 and 1, and investigate its

sensitivity of the proposed Markov compliance and outcome. This correlation has

little impact when making inference about ITT effects in large finite populations

and no impact on such inference in superpopulations [49]. But in this setting, this

correlation may have considerable impact on the estimates of parameters providing

information about the impact of outcomes on compliance.



16

We propose appropriate parametric models for each conditional likelihood:

1. Principal strata in the first follow up period (Si,1) – Probit regression.

We focus on the situation where principal strata are binary and consist only

compliers and not takers, and we choose probit regression to conditional on the

baseline covariates:

P (Si,1 = c|XXX i,ααα) = Φ(XXX i,ααα) = Φ(α0 +XXX ′iααα1)

2. Potential outcomes at the end of first follow up period (Yi,1(1), Yi,1(0)) – Bivari-

ate normal distribution.

Conditional on the principal strata in the first follow up period, we assume the

potential outcomes at the end of first follow up period follow a bivariate normal

distribution with correlation ρ:

Yi,1(1), Yi,1(0)|Si,1,βββ, ρ, σ ∼MVN(µµµi,1,Σ);

µµµi,1 =

β1 + βc1I(Si,1 = c)

β0 + βc0I(Si,1 = c)

 ,Σ =

 σ2 ρσ2

ρσ2 σ2


3. Principal strata in follow up period t (Si,t) – Probit regression.

For principal strata in follow up period t (t > 1), we assume a single-order

Markov dependence at this stage (l1 = l2 = 1) at this stage. This Markov

dependence allows for interactions between the effects of previous potential out-

comes and principal strata, but is assumed to be independent of time:

P (Si,t = c|Yi,t−1(1), Yi,t−1(0), Si,t−1, θθθ)

=Φ(θt + θ0Yi,t−1(1) + θy(Yi,t−1(0)− Yi,t−1(1)) + θcI(Si,t−1 = c)+

θyc(Yi,t−1(0)− Yi,t−1(1))I(Si,t−1 = c))
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4. Potential outcomes at the end of follow up period t (Yi,t(1), Yi,t(0)) – Bivariate

normal distribution.

For potential outcomes at the end of follow up period t (t > 1), we assume

a bivariate normal distribution with a single-order Markov dependence on the

previous potential outcomes and a zero-order Markov dependence on the princi-

pal strata at this stage, i.e. depending only on the principal strata membership

at time t (k1 = 0, k2 = 1). This Markov relationship is also assumed to be

independent of time:

(Yi,t(1), Yi,t(0))|Yi,t−1(1), Yi,t−1(0), Si,t, γγγ, ρ, σ ∼MVN(µµµi,t,Σ);

µµµi,t =

γ1t + γ0Yi,t−1(1) + γy(Yi,t−1(0)− Yi,t−1(1)) + γc1tI(Si,t = c)

γ0t + γ0Yi,t−1(1) + γy(Yi,t−1(0)− Yi,t−1(1)) + γc0tI(Si,t = c)

 ,

Σ =

 σ2 ρσ2

ρσ2 σ2


2.3.4 Estimates of Interest – Principal Effects

Imbens and Rubin (1997) defined the principal effect as the ITT effect of treatment

within principal strata [25]. With the proposed Markov compliance and outcome

model, we define the estimates of interest – principal effects – conditional on the

current principal stratum membership and the previous potential outcomes:

ITTc,t = E (Yi,t(1)− Yi,t(0)|Si,t = c, Yi,t−1(1), Yi,t−1(0)) = (γ1t − γ0t) + (γc1t − γc0t)

ITTn,t = E (Yi,t(1)− Yi,t(0)|Si,t = n, Yi,t−1(1), Yi,t−1(0)) = (γ1t − γ0t)

Note that the proposed Markov compliance and outcome model allows us to obtain

relatively simple estimates of within-principal-stratum ITT effects. If the dependence

between the t and t-1 potential outcomes were to differ by treatment assignment, then
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we replace γ0 and γ1 with γ0z and γ1z, yielding

ITTc,t = E (Yi,t(1)− Yi,t(0)|Si,t = c, Yi,t−1(1), Yi,t−1(0)) =

(γ1t − γ0t) + (γc1t − γc0t) + (γ01 − γ00)Yi,t−1(0) + (γ11 − γ10)(Yi,t−1(1)− Yi,t−1(0))

ITTn,t = E (Yi,t(1)− Yi,t(0)|Sit = n, Yi,t−1(1), Yi,t−1(0)) =

(γ1t − γ0t) + (γ01 − γ00)Yi,t−1(0) + (γ11 − γ10)(Yi,t−1(1)− Yi,t−1(0))

One could view this model as assuming a sort of second-order failure of the ER,

namely that treatment assignment by itself affects dependence between the t and

t-1 potential outcomes. On the face it seems rather implausible, although in this

situation γc1t−γc0t still encapsulates the difference between the ITTc,t effect and the

ITTn,t effect. A more serious situation would be that the previous principal stratum

membership still carries information about the ITT effect even after conditioning on

the current principal stratum membership and the previous potential outcomes. In

this setting the principal strata at time t would be defined in terms of vectors of

principal strata: for example, ((Si,t−1 = c, Si,t = c), (Si,t−1 = c, Si,t = n), (Si,t−1 =

n, Si,t = c), (Si,t−1 = n, Si,t = n)) if a one-degree Markov relationship with principal

compliance held. Simple causal interpretation of these strata is no longer possible,

although use of a clustering algorithm could allow for relatively interpretable strata

such as high or low compliers [32, 33]. We do not pursue this extension in this

dissertation.

2.3.5 Model Estimation

Because of the complex missing data structure, a Bayesian approach with Markov

chain Monte Carlo (MCMC) algorithms becomes a natural estimation method [19,

55]. We use a Gibbs sampling algorithm to obtain random draws of βββ, γγγ and σ2 from

their posterior distributions, and use Metropolis-Hastings within Gibbs algorithm to
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obtain random draws of ααα and θθθ from their posterior distributions. The Metropolis-

Hastings within Gibbs algorithm is also used to obtain random draws from the full

conditional distributions of the missing potential outcomes and principal strata. The

detailed descriptions of the posterior distributions of the parameters and the full

conditional distributions of missing potential outcomes and principal strata are given

in the Appendix. To check convergence, we calculate a measure of between and

within-chain variance R̂ [19]. R̂ < 1.1 is acceptable, and a R̂ close to 1 indicates the

good convergence of the parameters.

2.3.6 Model Fit Assessment

To assess goodness of fit, we consider the posterior predictive p-values [19]. Since

the principal compliance of subjects randomized to the treatment group are equal to

the observed compliance, we compare the posterior predictive distribution (PPD) of

the principal compliance and assess their fit to the observed principal compliance.

We make posterior predictive checks of the fitted models using the percentage of

compliers in the treatment as the test statistics, and compare the observed percentage

of compliers with their posterior predictive distribution to obtain PPD p values. A

PPD p value close to 0.50 indicates good fit of the model to the data. Similarly,

we make posterior predictive checks of the potential outcomes using the observed

potential outcomes. We use a Chi-square type test of the form T =
∑n

i=1

∑ni
j=1((yi,t−

µi,t)
2 = σ2), where yi,t = zi∗Yi,t(1)+(1−zi)Yi,t(0) and µi,t = zi∗µi,t(1)+(1−zi)µi,t(0).

The distribution of this test statistic should be close to the Chi-square distribution

with
∑
ni degree of freedom. A Q-Q plot of the test statistics and the Chi-square

statistics around the 45 degree line indicates good fit of the model to the data.
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2.4 Application to the CBT Study

2.4.1 High Correlation of Potential Outcomes

We apply the proposed Markov compliance and outcome model to the CBT study.

We assume relatively flat priors because we do not have strong prior knowledge for

the CBT study. Specifically, we let βββ ∼ MVN(000, 10000I), γγγ ∼ MVN(000, 10000I),

θθθ ∼ MVN(000, 10I), σ2 ∼ Inv-χ2(1, 1). Ten is chosen as the variance of prior of θθθ

because it provides a relatively flat prior on the probability scale when the range of

outcomes is take into account. We run two chains of 100,000 after an initial burn-in

of 50,000. The maximum value of R̂ is 1.03 < 1.1, indicating all parameters converge

in distribution. In addition to the missing potential outcome under the arm to which

the subject is not assigned, the CBT study have 19% of subjects having one or more

of their BDI outcomes not measured or recorded. We assume a missing at random

(MAR) mechanism for these missing data, i.e. conditional on the observed outcomes,

compliance behavior and baseline covariates, the missingness mechanism is assumed

to be random. For these missing data, we impute the potential outcomes under both

treatment arms in each iteration of MCMC.

To be consistent with previous research that usually assumes (at least implicitly)

ρ = 1 between the two potential outcomes under treatment and control, we focus first

on the situation where this correlation is high (ρ = 0.9). Table 2.2 summarizes the

estimated ITTc,t and ITTn,t for the cognitive therapy. For compliers, the cognitive

therapy consistently lowers depression severity more effectively than the usual care.

On average among compliers, the cognitive therapy lowers
√
BDI 0.63 (95% CI:

0.05, 1.27) more than that under usual care at 1 month, and this effect increases

to 2.22 (95% CI: 1.02, 3.35) at 12 months. For not-takers, because they would not
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Table 2.2: ITTc,t, ITTn,t, ITT and AT effects for the CBT study (Median with 95% credible interval
in parenthesis)

Month
ρ 1 3 6 12

ITTc,t 0.9 -0.63 (-1.27, -0.05) -0.68 (-1.48, 0) -1.09 (-1.87, -0.34) -2.22 (-3.35, -1.02)
0.5 -0.66 (-1.28, -0.03) -0.74 (-1.52, 0.02) -1.42 (-2.36, -0.50) -2.40 (-3.67, -0.90)
0.1 -0.72 (-1.32, -0.11) -0.80 (-1.54, -0.07) -1.49 (-2.43, -0.59) -2.29 (-3.72, -0.70)

ITTn,t 0.9 1.58 (0.38, 2.90) 1.87 (0.44, 3.29) 0.45 (-0.62, 1.56) 0.16 (-0.82, 1.20)
0.5 1.87 (0.16, 3.62) 1.63 (-0.77, 3.63) 0.56 (-0.85, 1.89) 0.06 (-1.10, 1.25)
0.1 1.85 (0.17, 3.59) 0.77 (-1.44, 2.97) 0.12 (-1.30, 1.58) -0.26 (-1.44, 0.93)

ITT -0.01 (-0.63, 0.60) -0.22 (-0.85, 0.40) -0.66 (-1.29, 0.03) -0.81 (-1.45, -0.17)
AT 0.12 (-0.43, 0.66) 0.09 (-0.64, 0.47) -0.75 (-1.33, -0.17) -1.01 (-1.70, -0.31)

participate in the cognitive therapy regardless the group to which they are assigned,

we can view ITTn,t as the effect of being assigned to receive cognitive therapy. The

results show that subjects who are randomized to the cognitive therapy group but

unwilling or unable to complete treatment during the first month have average
√
BDI

scores 1.58 (95% CI: 0.38, 2.90) higher than that if they had not been assigned to

receive cognitive therapy. The results imply that being assigned to cognitive therapy

– though not cognitive therapy itself – is harmful to not-takers at the beginning of

the study. This effect decreases over time, with the 95% credible interval including

0 from 6 months on.

To compare our proposed model with the traditional analysis methods, we con-

duct ITT analyses and AT analyses on the CBT study, and summarize the results in

Table 2.2. For ITT analyses, we fit a linear mixed model with a random intercept for

each subject and fixed-effect indicators for follow-up periods, treatment assignment

and their interaction. The analyses results show that being assigned to cognitive

therapy lowers depression severity on average in all follow up periods, although these

effects are smaller than the ITTc,t of cognitive therapy, and the CIs do not exclude

0 until 6 months. Note that the effect of treatment assignment is different from the

effect of cognitive therapy in the CBT study because of the large proportion of non-
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Table 2.3: Parameters governing principal strata for follow up period t (t > 1) for the CBT study
(Median with 95% credible interval in parenthesis)

Causal Effect at t− 1 Causal Effect at t− 1 Effect of Compliance
ρ in non-takers (θy) in compliers (θy + θyc) at t− 1 (θc)
0.9 3.19 (1.15, 6.26) 4.59 (1.73, 9.05) -2.03 (-5.22, 0.53)
0.5 1.26 (-0.52, 4.05) 1.43 (-0.65, 3.60) 0.37 (-2.68, 2.96)
0.1 0.41 (-0.74, 2.01) 0.49 (-0.31, 1.75) 1.29 (-0.74, 2.87)

compliance. In AT analysis, we use a model similar to that in the ITT analysis but

replace treatment assigned with treatment taken. The AT analysis shows that cogni-

tive therapy lowers depression severity from 6 months after randomization. However,

because of self-selection, subjects participating in the cognitive therapy and subjects

participating in the usual care might no longer be comparable, and estimates of the

effect of cognitive therapy from AT analysis might be biased.

In Table 2.3, we summarize the estimated parameters modeling principal strata

in the follow up period t (t > 1). The coefficients θy and θy +θyc estimate the impact

of the causal effect of cognitive therapy at the end of follow up period t − 1 on the

principal strata at follow up period t among not-takers and compliers respectively.

The positive 95% credible intervals indicates that the probability of being a complier

at follow up period t increases as the causal effect of cognitive therapy at the end of

follow up period t− 1 increases. The quantity θy + θyc is larger, indicating the effect

is stronger for compliers than not-takers at follow up period t− 1. The parameter θc

shows the effect of principal compliance at t− 1 on that at t among those for whom

the treatment is neither harmful nor beneficial. The results show that the principal

compliance at previous follow up period is not predictive among this group.

The parameters αgender and αbdi measure the impact of baseline covariates on the

principal strata membership in the first follow up period. The 95% credible interval

of αbdi is positive (αBDI = 0.7 (0.47, 0.87)), indicating that subjects have higher
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probability of being compliers in the first follow up period if subjects have more

severe depression at the time of randomization. The parameter αgender is estimated

to be positive with a 95% credible interval covering zero (αgender = 0.62 (-0.30, 0.84)),

indicating that women tend to be marginally more likely to comply in the first follow

up period.

To assess goodness of fit, we check the PPD of subjects’ principal strata and

potential clinical outcomes. The p values of the PPD of principal strata are 0.83, 0.69,

0.53, and 0.47 for follow up periods 1, 3, 6, and 12 months respectively, indicating

a good fit for principal strata. The Q-Q plot in Figure 2.2 (in Appendix) shows the

distribution of the potential clinical outcome test statistics is close to the model-

predicted chi-square distribution with 416 degrees of freedom, indicating that the

normality assumption for the transformed BDI measure is reasonable.

2.4.2 Moderate or Small Correlation of Potential Outcomes

Because there is no data available to assess the correlation of the potential out-

comes, we treat the correlation as a sensitivity parameter and consider its impact

of different values on our estimates of interest. The previous section assumed high

correlation (ρ = 0.9); here we consider moderate (ρ = 0.5) or small correlation

(ρ = 0.1).

The results in Table 2.2 imply that both ITTc,t and ITTn,t are not very sensitive

to the correlation of the potential outcomes. Under both moderate and small corre-

lations, the cognitive therapy consistently has better effects on lowering depression

severity than the usual care for compliers. The magnitudes of the difference are very

similar to those under high correlation of potential outcomes. For not-takers, under

both moderate and small correlations, being assigned to receive cognitive therapy
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makes subjects’ depression more severe than that if being assigned to receive usual

care at the beginning of the study. This effect decreases as time increases, and

disappears at 1 year after randomization.

The parameters modeling the principal strata are summarized in Table 2.3. The

results show that, as the correlation of potential outcomes becomes smaller, the im-

pact of the causal effect of cognitive therapy among not-takers at the previous time

period (θy) and similarly the impact of the causal effect of cognitive therapy among

compliers at the previous time period (θy + θyc) attenuates toward null, while the

impact of being a complier at the previous time period (θc) deviates away from null

simultaneously. These results are to be expected, because as the within-subject cor-

relation increases, there will be less uncertainty in predicting the potential outcomes

under the arm to which the subject is not assigned (the difference is a location shift

when correlation is equal to one). On the contrary, when the within-subject corre-

lation decreases, more random noise is present in the potential outcome difference,

possibly due to the fluctuations in mood and anxiety of patients independent of the

treatment. Thus the impact of the difference of the potential outcomes on future

compliance is attenuated.

2.5 Simulation Studies

Although we utilize a Bayesian framework for our analysis, we are still interested

in the repeated sampling properties of our proposed model. Because of the relatively

long time necessary to fit the model to a single simulated data set, we simulate 50 data

sets of 100 subjects each with 4 follow up periods. To make subjects’ compliance

behaviors and clinical outcomes similar to the CBT study data, each data set is

simulated under ααα = (α0, αgender, αbdi) = (-3.0, 0.6, 0.8), βββ = (β1, β0, βc1, βc0) =
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Table 2.4: ITTt,t and ITTn,t with 50 simulations

Coverage of 95% C.I. Median (True Value)
Month ITTc,t ITTn,t ITTc,t ITTn,t
1 94% 92% -0.6 (-0.7) 1.3 (1.4)
3 92% 90% -0.9 (-0.9) 1.6 (1.5)
6 92% 94% -1.2 (-1.2) 0 (0.1)
12 90% 90% -1.7 (-2.2) -0.2 (-0.1)

Table 2.5: Parameters governing principal strata with 50 simulations
αgender αbdi θy θc θyc

Coverage of 95% C.I. 94% 92% 90% 88% 96%
Median (True Value) 0.8 (0.6) 0.8 (0.8) 2.1 (2.1) -1.1 (-1.2) 1.6 (1.1)

(3.1, 1.7, 1.2, 3.3), γγγ = (γ12, γ13, γ14, γ02, γ03, γ04, γ0, γy, γc12, γc13, γc14, γc02, γc03,

γc04) = (2.5, 1.4, 1.0, 1.0, 1.3, 1.1, 0.6, 1.0, -2.0, -1.9, -1.9, 0.4, -0.6, 0.2), θθθ = (θ2, θ3,

θ4, θ0, θy, θc, θyc) = (0.7, -2.6, -4.7, 0.6, 2.1, -1.2, 1.1), ρ = 0.9, and σ2 = 2.1. We

analyze the simulated data using proposed Markov compliance and outcome model.

We summarize the analysis results of the estimated ITTc,t and ITTn,t in each

follow up period along with other parameters of interest in Table 2.4 and Table 2.5.

Given the modest number of simulations due to the relatively long time necessary

to fit the model to a single simulated data set, very accurate assessments of the

repeated sampling properties of our Bayesian model are not possible; however all

parameters appear to have relatively low amounts of bias and either approximately

correct coverage or modest undercoverage.

2.6 Conclusions and Discussion

Our proposed model is different from previous research in that, in addition to

estimating the causal effect of cognitive therapy, our proposed model allows us to

estimate the impact of causal effect of cognitive therapy and principal strata in the

follow up period t on principal strata in the current follow up period t + 1. In the
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CBT study, the results show that the stronger the cognitive therapy is at the end

of follow up period t, the more likely the subjects will be compliers in the follow up

period t + 1. This association is stronger for compliers than not-takers at time t.

Our finding imply that subjects are sensing whether the treatment is effective for

them, and adapting their compliance behavior accordingly. It is important to note

that this result refers to the unobservable potential effect of the treatment on a given

subject.

Similar to previous work, our proposed model accommodates time-varying latent

principal strata [15, 32, 33]. However, our proposed model is different from their

work in that our proposed model does not have a “super” principal strata, which

summarizes the longitudinal pattern of compliance behaviors. Thus, in addition to

“unpacking” the effect of potential outcomes at time t − 1 on compliance at time

t, our proposed model keeps the advantage of a valid interpretation of causal effect

within each principal stratum at each follow up time t.

The proposed causal model is different from previous work in model assumptions.

First, we relax the ER assumption, which is commonly assumed in causal modeling

[3, 10, 25, 60]. In the CBT study, the main clinical outcome is depression severity.

It is special because even being assigned to receiving treatment may affect it. The

analysis results show that being assigned to receive the cognitive therapy is harmful

for not-takers at the beginning of the study, though this effect eventually disappeared

at the end of one year. Because avoiding enrollment of non-compliant individuals

can be very difficult, especially in a mental health study, these results emphasize

the importance of carefully monitoring non-takers, especially those who are non-

compliant with treatment during the early period of the study. On the other hand,

there might be possibility that failing to comply with one’s assigned treatment status
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is a marker of stress and other conditions that themselves impede the observed

positive outcomes.

The robustness of outcome model assumption deserves further discussion. The

proposed causal model assumes a bivariate normal distribution for the depression

measure outcomes, such that the subjects who assigned to control group consist of

compilers and non-takers that correspond to a mixture of two normal distributions.

In addition, by the definition of randomization, the proportions of principal strata

memberships among subjects assigned to the control group are same as those among

subjects assigned to the treatment arm. As long as the proportions of principal

strata membership are different, the causal effects are identifiable. In practice, the

robustness of the estimation of the proposed causal model depends on the parametric

assumptions; in particular, the results may be sensitive to the presence of skewness,

failing to distinguish between a skewed unimodal distribution (under which the ex-

clusion restriction may hold) and a bivariate normal distribution under which the

exclusion restriction fails. Additional work should be done to explore the robustness

of the proposed causal model under failures of the normality assumption.

Our research also differs in the way of modeling potential outcomes. Previous

research typically assumed a location shift between the potential outcomes under

treatment and control [12]. Such models assume a perfect correlation between the

potential outcomes in all cases. In reality, it is reasonable to consider a correlation

between 0 and 1. Similar to Jin and Rubin [26], we consider the correlation as a

sensitivity parameter, and assess the sensitivity of analysis results to this correlation.

Our results show that the principal effects are relatively insensitive to the choice of

this correlation. There is more sensitivity to the correlation for the prediction of

future compliance behavior. If we assume the within-subject correlation of potential



28

outcomes to be high, the effectiveness of the treatment for a subject is a much more

important predictor for future compliance than previous compliance. If the within-

subject correlation of potential outcomes is assumed to be low, then within-subject

treatment effectiveness has little association, and previous compliance better predicts

future compliance.

We build our Markov compliance class and outcome model assuming a single-order

Markov relationship. This model has the advantage of clear interpretation of model

parameters. The posterior predictive checks for compliance classes and potential

outcomes show that the single order Markov relationship model provides sufficient

fit for the CBT study. However, our proposed model could be extended to a higher-

order Markov relationship when necessary. For example, the compliance class in the

follow up period t may depend on compliance class in the follow up period t − 1

and t − 2, as well as the treatment effect at the end of follow up period t − 1 and

t − 2, and their interactions. With a higher-order Markov relationship, there could

be multiple interaction terms in the model, and interpretation of both the causal

effect of treatment and predictors of compliance becomes more complex.

Other extensions are possible as well. The mixture model for the potential out-

comes is not non-parametrically identified in the absence of the ER assumption [38].

Here we rely on the normality assumption to identify the mixture components as-

sociated with compliers and not-takers in the control group. An alternative to this

approach would be to weaken or eliminate this parametric assumption and rely on

either observed predictors of compliance [46] or prior distributional assumptions to

induce posterior modes.
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Appendix

Gibbs Sampler for Markov Compliance and Outcome Model Estimation

Let YYY i,t denote (Yi,t(Z = 1), Yi,t(Z = 0)) of subject i at the end of follow up period

t. Let Mi,t denote the design matrix of subject i for the potential outcomes at the

end of the follow up period t.

1. Draw of βββ | rest .

The posterior distribution of βββ is

βββ| rest ∼MVN(µ̂µµnβ, Σ̂nβ),

µ̂µµnβ = (Σ−1
β +

n∑
i=1

Mi,1Σ−1M ′
i,1)−1(Σ−1

β µµµβ +
n∑
i=1

Mi,1Σ−1YYY i,1),

Σ̂nβ = (Σ−1
β +

n∑
i=1

Mi,1Σ−1M ′
i,1)−1

2. Draw of γγγ | rest .

The posterior distribution of γγγ is

γ̂γγ| rest ∼MVN(µ̂µµnγ, Σ̂nγ),

µ̂µµnγ = (Σ−1
γ +

n∑
i=1

T∑
t=2

Mi,tΣ
−1M ′

i,t)
−1(Σ−1

γ µµµγ +
n∑
i=1

T∑
t=2

Mi,tΣ
−1YYY i,t),

Σ̂nγ = (Σ−1
γ +

N∑
i=1

T∑
t=2

Mi,tΣ
−1M ′

i,t)
−1

3. Draw of σ2 | rest .

The posterior distribution of σ2 is

σ2| rest ∼ Inv− χ2(νn, ψn),

νn = 2nT + ν

ψn =

{
νψ +

1

1− ρ2

n∑
i=1

T∑
t=1

[
(YYY i,t − µµµi,t)

′
(YYY i,t − µµµi,t)− 2ρ(YYY i,t − µµµi,t)

′
(YYY i,t − µµµi,t)

]} 1

2nT + ν



30

4. Draw of counterfactual compliance.

The distribution of the unobserved compliance conditional on the observed data

and parameters is

P (Si1 = c| rest ) =



f(Yi1(1),Yi1(0),Si1=c)Φ(α
′
0+ααα1xixixi)

f(Yi1(1),Yi1(0)|Si1=c,βββ)Φ(α
′
0+ααα1xixixi)+f(Yi1(1),Yi1(0)|Si1=n,βββ)(1−Φ(α0+ααα

′
1xixixi))

;Zi = 0

1;Zi = 1, Di1(1) = 1

0;Zi = 1, Di1(1) = 0

P (Sit = c| rest ) =



pc
pc+pn

Zi = 0

1, Zi = 1, Dit = 1

0, Zi = 1, Dit = 0,

pc = (Φ(µt+1
θ )I(Si,t+1 = c) + (1− Φ(µt+1

θ ))I(Si,t+1 = n))f(Yit(1), Yit(0)|Sit = c,γγγ)Φ(µtθ),

pn = (Φ(µt+1
θ )I(Si,t+1 = c) + (1− Φ(µt+1

θ ))I(Si,t+1 = n))f(Yit(1), Yit(0)|Sit = n,γγγ)(1− Φ(µtθ)),

µtθ = θt + θ0Yi,t−1(1) + θy(Yi,t−1(0)− Yi,t−1(1)) + θcI(Si,t−1 = c)+

θyc(Yi,t−1(0)− Yi,t−1(1))I(Si,t−1 = c)



31

Q-Q plot of the test statistic with Chi-square distribution
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Figure 2.2: Q-Q plot of the test statistic with Chi-square distribution for the CBT study



CHAPTER III

Assessing the Causal Effect of Treatment in the Presence of

Self-Selection of Dosage

3.1 Introduction

Much scientific research in the social and health sciences aims to understand the

causal relationship between an intervention and outcome. Where ethically and lo-

gistically feasible, randomized assignments of intervention levels provide an effective

means to assess these causal relationships. When subjects fail to follow their ran-

domized intervention protocol, however, comparing results by randomized treatment

arm – “intent to treat” analysis – provides inference about the causal effects of the

assignment, but not the actual intervention. Comparisons among those adhering to

the protocol –“per protocol” analysis – provides only evidence of association, not a

causal interpretation, since treatment taken is a post-randomization variable [45].

Recent research in the field of causal inference is intended to help this gap. One

fundamental concept in causal modeling is the potential outcome, which is defined

as the value an outcome would take after assignment to a different treatment arm

than the one actual observed [49]. A potential outcome is considered to exist before

the action of randomization, and therefore can be considered and modeled as a pre-

32
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randomization variable. The causal effect of the intervention is then defined as the

comparison of the potential outcomes under different intervention arms [17, 25, 35,

50]. For example, the causal effect of taking a pill would be the comparison of one’s

headache now with what would have been if no pill had been taken [35]. One goal of

causal inference is the estimation of the average causal effect of intervention, which

is the comparison of the potential outcomes under different intervention arms within

the individual, averaged over the whole population.

Over the years, two major approaches have been developed for causal inference

in randomized trials with noncompliance. The first approach treats noncompliance

as a special case of mediation analysis, and focuses on estimating direct effects of

treatment assignment and indirect effects of treatment assignment through actual

treatment taken [44]. This approach assumes that intervention assignments and

intervention taken can be manipulated independently, so that, in principle at least, all

subjects could be forced into compliance or non-compliance. Thus the (prescriptive)

direct effect is defined as the expected value of the difference in the potential outcomes

under different treatment assignments when the value of the intermediate variable

(treatment taken) is held constant under different treatment arms, and the associated

(prescriptive) indirect effect as the expected difference in the total effect (effect of

assignment) and the prescriptive direct effect. Focusing on splitting the total effect

into direct effect and indirect effect to understand the causal mechanisms of treatment

assignment and treatment taken, this approach has been applied to many studies in

the recent years [57, 58, 59].

The second major approach assesses the causal effect of intervention by estimat-

ing the causal effect within principal strata, defined by the joint distribution of the

treatments taken under all possible assignments. Because non-compliance behavior
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is a post-randomization variable, it cannot be simply conditioned on without destroy-

ing the causal interpretability of the treatment effect [45]. Consequently, as-treated

(AT) analysis and per-protocol (PP) analysis violates the randomization rule, and

thus bias may exist in the analysis results. Because the principal strata form a “pre-

randomization” variable, it can be conditioned on or adjusted for while retaining a

causal interpretation for the effect of intervention. In a two-arm randomized clini-

cal trial with non-compliance, the principal strata consist of compliers (subjects who

comply with the assignment under both treatment arm), always-takers (subjects who

always take treatment regardless of treatment assignment), never-takers (subjects

who always take control regardless of treatment assignment), and defiers (subjects

who take the treatment opposite of what they are assigned). Causal inference focuses

on the effect of treatment assignment among the compliers and defiers, whose treat-

ment taken changes with the treatment assigned; in the typical settings that defiers

are assumed not to exist, only the complier strata provides causal inference for the

effect of treatment taken, since it is the only stratum in which treatment changes in

parallel with randomized assignment. Thus, in contrast to the direct/indirect effect

setting, principal stratification assumes that only a subset of the population will be

compliant with treatment, and focuses inference on this stratum. This approach

has been widely used in clinical and social studies when noncompliance behavior is

present [26, 37, 42], including randomized studies with partial compliance [12], in

longitudinal studies [32] and survival time analysis [9, 32] with partial compliance

[26], and in surrogacy evaluations [56].

The study motivates our work is Interstitial Cystitis Collaborative Research Net-

work (ICCRN) study, which is a randomized clinical trial designed to evaluate the

efficacy of Amitriptyline for the treatment of interstitial cystitis. In this blinded two-
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arm (treatment and placebo) randomized trial, subjects on both arms are put on a

dose escalation schedule and encouraged to take up to 75 mg. However, primarily

because of adverse events, many subjects opted to stay at or return to ≤ 25 mg or

50 mg. (Note that subjects on a sham drug can experience adverse events, the so-

call “nocebo” effect [28], which can impact compliance behavior [4].) Thus this trial

suffers from partial compliance [26], and traditional analyses that compare difference

between the treated and control groups stratified by dose level, either unadjusted or

adjusted for the observed adverse events, cannot provide a valid estimate of causal

effect of treatment. Our goal is to stratify on the treatment dose tolerance, which we

treat as a pre-randomization variable, observed for subjects assigned to treatment

but not for those assigned to control. Thus treatment dose tolerance forms our prin-

cipal strata, with our inferential target the effect of treatment assignment among

subjects who are able to tolerate a specific maximum treatment dose.

Motivated by the ICCRN study, we develop a causal model following the principal

stratification approach to estimate the causal effect of treatment. One advantage of

the ICCRN study is that adverse events were reported and recorded in the trial for

all subjects. We take advantage of this information by conditioning on them when

modeling the principal strata membership under a “monotonicity” assumption that

subjects experiencing more severe adverse events will be less tolerant of high drug

dosages. However, because observed adverse event is a postrandomization variable,

like observed compliance, it cannot be simply conditioned on as a covariate without

destroying the causal interpretation for the model. Therefore, we include it in the

manner of potential outcomes in our model, using the information about adverse

events on one arm to inform about adverse events on the other arm under the as-

sumption that adverse events will not be diminished by receiving treatment. Note
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that, in contrast to the assumed relationship between adverse events and drug tol-

erance within a treatment arm, the assumed relationship between adverse events on

different treatment arms within a subject cannot be directly assessed by the data,

since subjects are observed to receive only one of the treatment arms, although there

is information in the data to reject this “monotonicity” assumption if it is violated.

There is some precedent for our approach in the literature. The Lipid Research

Clinics Coronary Primary Prevention Trial measured the effect of the drug cholestyra-

mine and this study was analyzed by Efron [12]. The subjects in the study were

measured for compliance (the proportion of the intended dose actually taken) and

for cholesterol decrease. The compliance-response regression for the treatment arm

showed a smooth increasing effect of the drug in cholesterol level with increasing

compliance. Later this study was analyzed by Jin and Rubin [26], who utilized the

principal stratification framework and found that given the compliance under con-

trol, the principal causal effect of treatment increases as compliance under treatment

increases. Our approach differs from previous work in that a) we are presented with

a dichotomous outcome, which makes identification more challenging, and b) we use

adverse events to estimate principal stratification membership.

We introduce the details of ICCRN study in Section 3.2. Section 3.3 describes our

proposed causal model. Section 3.4 applies our proposed model to the ICCRN study.

Section 3.5 explores the repeated sampling properties of our model in a simulation

study. Section 3.6 reviews our findings along with future work and conclusions. In

addition to considering a problem of partial compliance, for which limited research

is available, our work is innovative in that it includes predictors of compliance sta-

tus (adverse events) observed post-randomization in a fashion that retains causal

interpretability.
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3.2 The Interstitial Cystitis Collaborative Research Network (ICCRN )

Study

The ICCRN study is a randomized clinical trial designed to evaluate the efficacy

of Amitriptyline, a tricyclic antidepressant, for the treatment of interstitial cystitis

in newly diagnosed patients. Interstitial cystitis is a long-term (chronic) and painful

inflammation of the bladder wall, and its cause remains unknown. Symptoms include

pelvic pain, urinary discomfort, urinary frequency, urinary urgency, and pain during

intercourse [40].

One of the main goals of this study is to evaluate the effects of Amitriptyline on

interstitial cystitis using a two-arm randomized clinical trial design. There are 271

subjects enrolled and randomized to receive either oral Amitriptyline or a similar

placebo “dose” regime. Dosing begins with 10 mg after randomization, increasing

to 25 mg at 2 weeks, 50 mg at 4 weeks, and 75 mg at 6 weeks. Subjects may fail

to increase or drop doses because of adverse events to a“maximum tolerated” level

below 75 mg.

The outcome is a Global Response Assessment, measured at 12 weeks or study

withdrawal. It measures overall improvement with therapy, and is used frequently

as the primary end point in clinical trials of therapies for interstitial cystitis. The

assessment asks “As compared to when you started the current study, how would

you rate your overall symptoms now?” Subjects who indicate moderately improved

or markedly improved to the assessment are considered responders to the treatment,

and all others are considered non-responders.

Subjects’ baseline demographic data by treatment arm for all patients (n = 271)

are shown in Table 3.1. Approximately 83% of the patients are female and 74%
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are white. The median age is 38 years (range 18 to 80 years). Baseline symptoms

are summarized in terms of pain, urgency, and frequency, and averaged two baseline

scores provides an overall baseline score. There are 40% of subjects with severe

urination pain and 63% with severe urination frequency. There are 61% of subjects

who report at least 11 voids/day at both baseline visits. There were no statistically

significant differences in the distribution of demographic characteristics or any of the

symptom measures at baseline between the two treatment arms.

Overall, 80% of participants report at least one adverse event, which are classified

as minor, moderate or severe (Small number (16) of subjects who described “very

severe” adverse events are classified as severe). A summary of the highest grade of

adverse events by treatment arm is shown in Table 3.2. Frequently reported symp-

toms of adverse events on both treatment arms include constitutional symptoms

(primarily fatigue, malaise), dermatology/skin, pain (primary headache), gastroin-

testinal disturbances (primary try mouth, constipation), musculoskeletal symptoms,

neurological symptoms (primarily dizziness, somnolence), renal/genitourinary symp-

toms, pulmonary, ocular, visual, and infection. Because of adverse events, although

subjects are encouraged to take 75 mg from 6 to 12 weeks, dose is ultimately the

patient’s decision and they may opt to return to or to stay at 25 mg or less (18 in

control group and 46 in treatment group) or 50 mg (16 in control group and 25 in

treatment group). We summarize the dose tolerance in Table 3.3.

3.3 Method

We face several challenges in estimating the causal effect of Amitriptyline dose in

the ICCRN study. First, subjects self-selected dose in both treatment group and con-

trol group. Although subjects in the ICCRN study were encouraged to take a dose
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Table 3.1: Demographic characteristics for the ICCRN study (p-value gives test of null hypothesis
of no difference in means or proportions between treatment and control arms)

Assignment
Treatment Control Total

Number of Subjects 135 136 271

Gender (p = 0.43)
Male 20 (15%) 25 (18%) 45 (17%)
Female 115 (85%) 111 (82%) 226 (83%)

Age (p = 0.30)
Mean ± s.d. 38.0±13.8 39.9±14.0 39.0±13.9
Median (Range) 35.7 (19-67) 39.6 (18-80) 37.7 (18-80)

Race (p = 0.60)
White/Caucasion 96 (72%) 104 (76%) 200 (74%)
Black/African-American 18 (13%) 15 (11%) 33 (12%)
Other 21 (15%) 17 (13%) 38 (24%)

Baseline Pain Severity Score (p = 0.11)
Minor (1-3) 6 (4%) 11 (8%) 17 (6%)
Moderate(4-6) 80 (59%) 64 (47%) 144 (53%)
Severe(7-10) 49 (36%) 60 (44%) 109 (40%)

Baseline Urgency Severity Score (p = 0.64)
None/Minor(0-3) 5 (4%) 7 (5%) 12 (4%)
Moderate(4-6) 51 (38%) 56 (41%) 107 (40%)
Severe(7-10) 79 (59%) 72 (53%) 151 (56%)

Baseline Frequency Severity Score (p = 0.99)
Minor (1-3) 2 (1%) 4 (3%) 6 (2%)
Moderate (4-6) 48 (36%) 47 (35%) 95 (35%)
Severe (7-10) 85 (63%) 84 (62%) 169 (63%)

Patient-Reported 24-hour Frequency (p = 0.79)
<6 times at first visit 7 (5%) 4 (3%) 11 (4%)
7-10 times at both visits 22 (17%) 24 (18%) 46 (17%)
7-10 times, 11+ times 25 (19%) 23 (17%) 48 (18%)
11-14 times at both visits 34 (26%) 39 (29%) 73 (27%)
11-14 times, 15+ times 17 (13%) 21 (16%) 38 (14%)
15+ times at both visits 30 (23%) 24 (18%) 54 (20%)

Table 3.2: Highest grade of adverse events for the ICCRN study
Assignment

Observed Adverse Event Grade Treatment Control Total
None 14 (10%) 36 (26%) 50 (18%)
Minor 51 (38%) 37 (27%) 88 (32%)
Moderate 62 (46%) 55 (40%) 117 (43%)
Severe 8 (6%) 8 (6%) 16 (6%)
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Table 3.3: Observed dose tolerance for the ICCRN study
Assignment

Observed Dose Tolerance Treatment Control Total
≤ 25 mg 46 (34%) 18 (13%) 64 (24%)
50 mg 25 (19%) 16 (12%) 41 (15%)
75 mg 64 (47%) 102 (75%) 166 (61%)

of 75 mg, dose taken was patients’ choice in the end. In this kind of clinical setting,

compliance is not measured as all or none; instead patients take part of the assigned

dose, whether active or placebo, and so even if randomization is binary, treatment

eventually received is not. In addition, subjects assigned to the control group took

a masked placebo. Therefore compliance has a different meaning in the treatment

group and control group. Compliance determines the amount of active drug taken

for subjects assigned to treatment group and also indicates some level of subjects’

psychosomatic status. In the control group, only the psychosomatic component of

compliance applies. The second challenge is the large number of adverse events in

the study. Adjusting for adverse events observed post-randomization via regression

will destroy the causal interpretation of the treatment effect. Therefore, we construct

a potential adverse event variable and model it in the same manner as a potential

outcome. Third, the often assumed exclusion restriction (ER) assumption (no causal

effect of treatment within the principal stratum which takes same value of potential

mediator under different treatment arms) does not apply in the ICCRN study. This

is because nearly all subjects on the treatment arm took treatment, but at vary-

ing doses; hence there is not a potential stratum in which subjects have the same

treatment taken regardless of treatment assignment. Without the ER assumption,

the lack of identification issue faced by most causal models may get worse. Finally,

we have the fundamental problem of causal modeling that we cannot observe all the

potential outcomes for any subject, and therefore large amounts of the “complete”
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data are missing.

3.3.1 Notation

For subject i, i = 1, ..., n, let Zi denote randomization assignment: Zi = 1 for

treatment group, and Zi = 0 for placebo group. We consider three pairs of potential

outcomes including clinical outcome, dose taken and adverse event experience.

• Yi(Zi) is used to denote the clinical outcome under assignment Zi: Yi(Zi) = 1

for responder, Yi(Zi) = 0 for non-responder.

• Ai(Zi) is used to denote the adverse event experience under assignment Zi:

Ai ∈ (0, 1, 2) for none, minor, moderate/severe respectively. Severe adverse

events are combined with moderate ones because there are only 16 severe adverse

events.

• Di(Zi) is used to denote the dose taken under assignment Zi: Di ∈ (1, 2, 3) for

≤ 25 mg, 50 mg, and 75 mg respectively.

3.3.2 Model Assumptions

Key assumptions to assist in the identifiability and estimation of the model include

the ignorable treatment assignment assumption, the stable unit treatment value as-

sumption (SUTVA), the monotonicity assumption, and the ignorable missingness

mechanism assumption.

1. Ignorable treatment assignment assumes that, conditional on the observed base-

line variables, the treatment assignment is independent of all baseline variables

and potential outcomes, Zi ⊥ Yi(Zi), Di(Zi), Ai(Zi),XXX i, ∀i ∈ 1, ..., n [47]. For

the ICCRN study, the ignorable treatment assignment assumption is satisfied

because of the randomized treatment assignment.
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2. SUTVA consists of two subassumptions. The first subassumption assumes

there is no interference between the potential outcomes of different subjects,

Yi(Zi), Di(Zi), Ai(Zi) ⊥ Yj(Zj), Dj(Zj), Aj(Zj), i 6= j [48]. Because the painful

bladder syndrome is not an infectious disease and we do not anticipate that

treatment assignment to subject i will impact the action of subject j in any

other fashion, this subassumption is reasonable for the ICCRN study. The sec-

ond subassumption assumes that there is only one version of the treatment [48]

so that the observed yi = zi ∗ Yi(Zi = zi) + (1 − zi) ∗ Yi(Zi = zi). This sub-

assumption is satisfied in the ICCRN study because the subjects in the study

population were treated with the same form of therapy.

3. The monotonicity assumption assumes monotonicity of the potential outcomes.

Specifically, for ICCRN study, we assume the monotonicity of the adverse events

and monotonicity of dose taken, but not for the actual outcome of interest.

• The ICCRN study used a masked placebo for subjects randomized to the

control group. In the data analysis step, adverse events which are present

at baseline are excluded and only new or worsened events are included. Due

to this, it is reasonable to assume monotonicity for the adverse events, i.e.

the highest grade of the adverse events under control arm is no higher than

that under treatment arm: Ai(0) ≤ Ai(1).

• In the ICCRN study, subjects returned to or stayed at lower doses because

they underwent adverse events. Since we assume Ai(0) ≤ Ai(1), it is reason-

able to assume that the dose tolerance under treatment arm is not higher

than that under control arm: Di(1) ≤ Di(0).

4. In the ICCRN study, whether the potential outcome is observed or missing
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depends on thetreatment arm to which the subject is assigned. With random-

ized assignment, the missingness of the outcomes becomes random, thus the

missingness mechanism of these missing data is missing complete at random

(MCAR) [36]. Besides the missing counterfactual outcomes, there are subjects

who dropped out from the study during the 12 weeks follow up (13% on control

arm and 18% on treatment arm). Most of the withdrawals have the primary

reason as being “lost to follow up”, and the withdrawal rates and reasons pro-

vided are similar for each treatment arm. In the analysis, we assume missing at

random (MAR) [36] mechanism for these missing data.

3.3.3 Complete Data Likelihood

The “complete” data under the potential outcome framework include (Ai(0),

Ai(1), Di(0), Di(1), Yi(0), Yi(1), i = 1, ..., n). We summarize the underlying proba-

bilities associated the “complete” data in Table 3.19 in the Appendix. The complete
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data likelihood can be factored it into a series of conditional likelihoods:

L =
n∏
i=1

f(Yi(0), Yi(1), Di(0), Di(1), Ai(0), Ai(1)|γγγ,θθθ,βββ,ααα)

=
n∏
i=1

[f(Yi(0), Yi(1)|Di(0), Di(1), Ai(0), Ai(1), γγγ)

× f(Di(1)|Di(0), Ai(0), Ai(1), θθθ)

× f(Di(0)|Ai(0), Ai(1),βββ)

× f(Ai(0), Ai(1)|ααα)]

=
n∏
i=1

[f(Yi(0), Yi(1)|Di(0), Di(1), γγγ)

× f(Di(1)|Di(0), Ai(1), θθθ)

× f(Di(0)|Ai(0),βββ)

× f(Ai(0), Ai(1)|ααα)]

where γγγ, θθθ, βββ, and ααα parameterize the conditional likelihoods of clinical outcome

Yi(0), Yi(1), dose taken under treatment Di(1), dose taken under control Di(0), and

the highest grade of adverse events Ai(0), Ai(1). The first equality follows from the

SUTVA. The second equality factors the “complete” data into a series of conditional

likelihoods, and the third equality follows from several model specification assump-

tions:

• Given the dose taken (Di(1), Di(0)), the clinical outcome (Yi(1), Yi(0)) is inde-

pendent of the adverse event (Ai(1), Ai(0)).

• The dose tolerance under treatment (Di(1)) depends only on the dose tolerance

under control (Di(0)) and the adverse event experience under treatment (Ai(1)).

• The dose tolerance under control (Di(0)) depends only on the adverse event

under control (Ai(0)).



45

After choosing suitable parametric models for each conditional likelihood, these

model specification assumptions provide reasonable constraints to assist in identi-

fiability. Overall we have 34 model parameters (5 in conditional likelihood of adverse

event severity, 4 in conditional likelihood of dose tolerance under control, 7 in condi-

tional likelihood of dose tolerance under treatment, and 18 in conditional likelihood

of clinical outcome), while the observed data of ICCRN study provide 35 (36-1=35)

sufficient statistics indicated by Table 3.20. The fact that the number of parameters

in our model less than the sufficient statistics provided by the observed data makes

the proposed model unsaturated. The model specifications for each conditional like-

lihood are as follows:

1. f(Yi(0), Yi(1)|Di(0), Di(1), γγγ): Baseline multinomial logit model.

Letting pi,y0,y1 = P (Yi(0) = y0,Yi(1) = y1| Di(0),Di(1),γγγ) and ln(
pi,y0,y1
pi,0,0

) =

γy0,y1 + γy0,y1d0,d1
I(Di(0) = d0, Di(1) = d1)

2. f(Di(1)|Di(0), Ai(1), θθθ): Multinomial probit model.

Let pd,aij = P (Di(1) = j|Di(0) = d,Ai(1) = a) and πd,aij =
∑j

k=1 p
d,a
ij , with

πd,ai3 ≡ 1. Under monotonicity, we have

P (Di(1)|Di(0) = 1, Ai(1) = a) π1,a
i1 ≡ 1

P (Di(1)|Di(0) = 2, Ai(1) = a) π2,a
i1 = Φ

(
θD12 + I(Ai(1) = a)θAa2

)
π2,a
i2 ≡ 1

P (Di(1)|Di(0) = 3, Ai(1) = a) π3,a
i1 = Φ

(
θD13 + I(Ai(1) = a)θAa3

)
π3,a
i2 ≡ Φ

(
θD23 + I(Ai(1) = a)θAa3

)
3. f(Di(0)|Ai(0),βββ): Multinomial probit model.

Let paij = P (Di(0) = j|Ai(0) = a) and πaij =
∑j

k=1 p
a
ij. Then πaij = Φ(βDj +

I(Ai(0) = a)βAa ), j = 1, 2, πai3 ≡ 1.
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4. f(Ai(0), Ai(1)|ααα): Baseline multinomial logit model.

Letting pi,a0,a1 = P (Ai(0) = a0, Ai(1) = a1|ααα), ln(
pi,a0,a1
pi,0,0

) = αa0,a1

3.3.4 Estimates of Interest – Principal Effects

Our goal is to estimate the causal effect of treatment within the principal strata.

For the ICCRN study, the principal strata consist of the subgroups of population

with a given level of treatment dose tolerance (≤ 25mg, 50 mg, or 75 mg). The

outcome measure, global response assessment, is whether the subject is a responder

or non-responder, therefore the responder rate difference becomes a natural estimate:

P (Y (1) = 1|D(1) = d1)− P (Y (0) = 1|D(1) = d1); d1 ∈ (1, 2, 3)

This responder rate difference is estimated within the subgroup of the population

with treatment dose tolerance of d1 = 1 (≤ 25 mg), d1 = 2 (50 mg), or d1 = 3 (75

mg). Note that the principal stratum Di(1) is not observed for subjects assigned to

control group, thus we impute these subjects’ principal strata membership, and use

adverse events to help identify their principal strata membership.

Note P (Yi(1) = 1|Di(1) = d1)−P (Yi(0) = 1|Di(1) = d1) = P (Yi(1)=1,Di(1)=d1)−P (Yi(0)=1,Di(1)=d1)
P (Di(1)=d1)

,

where

P (Yi(zi) = 1, Di(1) = d1)

=

1∑
y0=0

3∑
d0=1

2∑
a0=0

2∑
a1=0

P (Yi(zi) = 1, Yi(1− zi) = y0|Di(1) = d1, Di(0) = d0, γγγ)×

P (Di(1) = d1|Di(0) = d0, Ai(1) = a1, θθθ)× P (Di(0) = d0|Ai(0) = a0,βββ)×

P (Ai(1) = a1, Ai(0) = a0|ααα);

P (Di(1) = d1)

=

3∑
d0=1

2∑
a0=0

2∑
a1=0

P (Di(1) = d1|Di(0) = d0, Ai(1) = a1, θθθ)×

P (Di(0) = d0|Ai(0) = a0,βββ)× P (Ai(1) = a1, Ai(0) = a0|ααα)
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3.3.5 Model Estimation

The observed data include Zi, Yi(Zi), Di(Zi), Ai(Zi), i ∈ 1, ..., n; and the proba-

bilities associated with observed data are shown in Table 3.20 in the Appendix. To

accommodate the complex missing data structure, we use a Bayesian scheme with a

Markov chain Monte Carlo (MCMC) algorithm. Each iteration of the MCMC algo-

rithm consists of two steps of subiterations. In the first step, we obtain a draw of

each parameter from the posterior distribution conditional on the complete data. In

the second step, we impute the missing potential outcomes conditional on the ob-

served data and the updated parameters from the first step. We repeat the above two

steps until all parameters converge in distribution. For the first step, the posterior

distribution of ααα and γγγ are not of closed form of a known parametric distribution,

therefore we implement Metropolis-Hastings within Gibbs algorithm to obtain ran-

dom draws from their posterior distributions. To obtain the draws of parameter βββ

and θθθ from their posterior distribution, we utilize the Bayesian computation method

proposed by Albert and Chib and add a data augmentation step [1]. With the added

data augmentation step, the posterior distributions of parameters βββ and θθθ become

known distributions and parameters converge with fewer iterations. The priors of

parameters are assumed as π(ααα) ∼ N(0, 10I), π(βββ) ∼ N(0, 10I), π(θθθ) ∼ N(0, 10I),

π(γγγ) ∼ N(0, 10I). These priors are very weakly informative, but bound the model

probabilities away from values extremely close to 0 or 1. In the second step, the miss-

ing outcomes conditional on the observed data and estimated parameters all follow

binomial distribution or multinomial distribution. We include the details of the pos-

terior distribution of parameters and conditional distributions of missing potential
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Table 3.4: Per-protocol analysis for the ICCRN study

Observed Dose Tolerance
≤ 25 mg 50 mg 75 mg

Response in Treatment Group Mean 0.577 0.720 0.683
95% Confidence Interval (0.387, 0.767) (0.544, 0.896) (0.566, 0.801)
n 26 25 60

Response in Control Group Mean 0.545 0.417 0.521
95% Confidence Interval (0.251, 0.840) (0.138, 0.696) (0.421, 0.621)
n 11 12 96

Effect of Treatment Mean 0.031 0.303 0.163
95% Confidence Interval (-0.319, 0.382) (-0.026, 0.633) (-0.008, 0.317)

outcomes in the Appendix.

3.4 Application to the ICCRN Study

3.4.1 Intent-to-Treat Analysis and Per-Protocol Analysis

We conduct a standard intent-to-treat analysis to the study sample. Subjects who

withdrew from the study for any reason, and did not provide data on the primary

endpoint, are excluded from the analysis. The global IC response rate is 0.667 on

treatment and 0.513 on control (p = 0.025). We also conduct per-protocol analysis to

the study sample and summarize the analysis results in Table 3.4. When classifying

participants into subgroups by the maximum tolerance dose as low dose (≤ 25 mg),

medium dose (50 mg), and high dose (75 mg) based on their observed dose taken

(treatment or control), the response rate is 0.577 on treatment and 0.545 on control

(p = 0.852) for the low dose subgroup, 0.720 on treatment and 0.417 on control

(p = 0.156) for the medium dose subgroup, and 0.683 on treatment and 0.521 on

control (p = 0.066) for the high dose subgroup.

Assuming MAR for the missing outcomes of the subjects who dropped out from

the study, we find that the treatment assignment has a marginally significant effect

in reducing IC symptoms compared with placebo (p = 0.06) [36]. Note that the
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Table 3.5: Subjects with missing outcomes for the ICCRN study
Outcome Observed Outcome Missing

Outcome Treatment Control Treatment Control

Responder 74 61
Non-Responder 37 58
Total 111 119 24 17

Table 3.6: Maximum likelihood estimation for the ICCRN study
Treatment Control

Outcome Responder (S.E) 0.332 (0.030) 0.257 (0.024)
Non-Responder (S.E.) 0.166 (0.028) 0.245 (0.027)

MAR and MCAR assumptions correspond for the dose-stratified analyses.

3.4.2 Causal Model Analysis

We apply our proposed causal model to the ICCRN study, and use independent

N(0, 10) priors for the ααα, βββ, θθθ, and γγγ of the multinomial logit and probit model

parameters. To check the convergence of parameters, we run multiple chains with

different starting points, and calculate R̂ [19]. In general, R̂ < 1.1 indicates accept-

able convergence. We run 4 chains, each with 400,000 iterations after 100,000 burn

in but with different initial values of the parameters. The maximum value of R̂ of

all the parameters is 1.02, indicating the parameters converge in distribution.

Table 3.7 and Table 3.8 show the relationship of dose taken with adverse event

experience. There was no evidence of a relationship between tolerated control dose

and adverse event experience in the control arm. On the treatment arm, θA13 is

estimated negative (-1.97, 95% CI (-6.88, 0.83)) indicating subjects who experienced

(or would have experienced) minor adverse events under treatment were more likely

to tolerate higher treatment doses, and θA23 is estimated positive (0.67, 95% CI (-0.47,

2.79)) indicating subjects who experienced (or would have experienced) moderate or

severe adverse events under treatment were less likely to tolerate higher treatment
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doses, although their 95% C.I. cover zero.

The key results of interest – the principal effects, along with the estimated re-

sponse under treatment arm and control arm and principal strata membership – are

summarized in Table 3.9. The analysis results show that the probability of having a

global IC response is 0.564, 0.704 and 0.667 in the treatment arm for subjects with

the treatment dose tolerances of ≤ 25 mg, 50 mg and 75 mg respectively, and 0.467,

0.486 and 0.559 for subjects in the control arm with the treatment dose tolerances of

≤ 25 mg, 50 mg and 75 mg respectively. Compared with response under treatment

arm, the response under control arm has a wider credible interval, mainly due to

the fact that the response is not observed and needs to be imputed in our proposed

causal model. Comparing Table 3.9 with Table 3.4, we see that, while the results are

broadly similar, the treatment effect in the higher treatment dose tolerances strata is

more muted than in the per-protocol analysis, since the global response rate is higher

when subjects on the control arm are assigned their estimated treatment dose toler-

ance, rather than their observed control dose tolerance. In neither the per-protocol

nor the principal stratum analysis are the dose effects monotonic.

To better understand the differences between the AT and the causal principal

stratification analyses, we show the joint distribution of the treatment and control

dose tolerances in Table 3.10, and the global response rates by treatment and control

dose tolerances in Table 3.11. Among treated subjects who can tolerate 75 mg of

the treatment dose, the principal stratification model estimates the global response

rate as 0.667. This corresponds well with the response rate of 0.683 among the

treated subjects under 75 mg, since the principal strata of 75 mg of treatment dose

is observed in the treatment arm (we might expect a slight discrepancy since the

principal stratification estimate is based on a non-saturated model that predicts
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Table 3.7: Parameters in the conditional likelihood of control dose tolerance for the ICCRN study
βDd βAa

βD2 βD3 βA1 βA2
Mean -1.07 -0.63 -0.01 0.06
95% C.I. (-1.55, -0.63) (-1.07, -0.23) (-0.62, 0.61) (-0.45, 0.59)

Table 3.8: Parameters in the conditional likelihood of treatment dose tolerance for the ICCRN study
θDd1d0

θD12 θD13 θD23
Mean 0.84 0.37 -1.51
95% C.I. (0.27, 2.28) (-4.89, 4.99) (-4.13, -0.21)

θAa2 θAa3
θA12 θA22 θA13 θA23

Mean 0.11 -0.94 -1.97 0.67
95% C.I. (-5.57, 6.11) (-6.61, 5.33) (-6.88, 0.83) (-0.47, 2.79)

response as a function of dose tolerance and adverse events, rather than as a direct

estimate from the observed cell). However, the principal stratification approach

compares this response rate with the global response rate among control subjects

who can tolerate 75 mg of the treatment dose, estimated at 0.559, for a principal

effect of 0.107; whereas the AT approach compares this response rate with the global

response rate among control subjects who can tolerate 75 mg of the control dose,

which is a mixture of control subject global response rates of the cells in the last

row of Table 3.11 corresponding to all subjects who could tolerate the highest level

of the control dose, at the 0.105 : 0.127 : 0.491 mixing proportions from the last

row of Table 3.10. The control global response rates for the subjects who could

tolerate 75 mg of control but only 25 or 50 mg of treatment are lower than the global

response rates for those who could tolerate 75 mg of treatment, thereby increasing

the treatment effect in the AT analysis as compared with the principal stratification

analysis.
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Table 3.9: Response rate, principal effect and principal strata membership for the ICCRN study

Treatment Dose Tolerance
≤ 25 mg 50 mg 75 mg

Response under Treatment arm Mean 0.564 0.704 0.667
Median 0.564 0.708 0.668
95% Credible Interval (0.390, 0.736) (0.525, 0.856) (0.546, 0.780)

Response under Control arm Mean 0.467 0.486 0.559
Median 0.467 0.501 0.569
95% Credible Interval (0.212, 0.727) (0.061, 0.888) (0.344, 0.734)

Principal Effect Mean 0.097 0.218 0.107
Median 0.092 0.183 0.090
95% Credible Interval (-0.226, 0.413) (-0.200, 0.690) (-0.061, 0.354)

Principal Strata Membership Mean 0.318 0.191 0.491
Median 0.317 0.189 0.492
95% Credible Interval (0.245, 0.399) (0.131, 0.258) (0.408, 0.571)

Table 3.10: Posterior mean of P (D(1) = d1, D(0) = d0) for the ICCRN study
Di(1)

Di(0) 1 2 3
1 0.153
2 0.060 0.063
3 0.105 0.127 0.491

Table 3.11: Posterior mean of P (Yi(1) = 1|Di(1) = d1, Di(0) = d0) and P (Yi(0) = 1|Di(1) =
d1, Di(0) = d0) for the ICCRN study

Di(1) = 1 Di(1) = 2 Di(1) = 3
Di(0) P (Yi(1) = 1) P (Yi(0) = 1) P (Yi(1) = 1) P (Yi(0) = 1) P (Yi(1) = 1) P (Yi(0) = 1)
1 0.647 0.534
2 0.734 0.342 0.529 0.504
3 0.365 0.455 0.793 0.483 0.667 0.559
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3.4.3 Model Fit Assessment

To assess the fit of the data, we calculate the posterior predictive distribution

(PPD) p-values [19]. Because the adverse event severity Ai(Zi), dose taken Di(Zi),

and clinical outcome Yi(Zi) in subjects randomized to the group Zi are observed,

we compare their PPD with the observed ones to assess the fit to the data. Let Ge

denote the number of subjects having the eth grade of adverse event severity and

let κe be the estimated probability of having the eth grade of adverse event severity.

Let Gd denote the number of subjects having the dth level of dose taken, and let κd

be the estimated probability of having the dth level of dose taken. Similarly, let Gy

denote the number of subjects having the yth of level of clinical outcome, and let κy

be the estimated probability of having the yth level of clinical outcome. We consider

the χ2-type statistics

Sobs
e =

∑
e

(Gobs
e −Nκe)2

Nκe(1− κe)
; and Srep

e =
∑
e

(Grep
e −Nκe)2

Nκe(1− κe)

Sobs
d =

∑
d

(Gobs
d −Nκd)2

Nκd(1− κd)
; and Srep

d =
∑
d

(Grep
d −Nκd)2

Nκd(1− κd)

Sobs
y =

∑
y

(Gobs
y −Nκy)2

Nκy(1− κy)
; and Srep

y =
∑
y

(Grep
y −Nκy)2

Nκy(1− κy)

where Gobs
e , Gobs

d , and Gobs
y are the observed statistics and Grep

e , Gobs
d , and Gobs

y are

the repeated statistics obtained from draws of the parameters from MCMC. The

PPD p value is given by ∑
l I(Sobs

l < Srep
l )∑

l 1

A PPD p value close to .50 indicates good fit of the model the the data [19]. We

summarized the PPD p values in Table 3.12. The results show that PPD p values

range from 0.45 to 0.73, indicating a reasonably good fit of our causal model to the

data.
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Table 3.12: PPD p values of the proposed causal model for the ICCRN study
Treatment Arm

Treatment Control
Adverse Event 0.57 0.68
Dose Tolerance 0.45 0.73
Outcome Response 0.61 0.61

Table 3.13: Distribution of control dose tolerance given control adverse events for simulation studies
D(0) = 1 D(0) = 2 D(0) = 3

A(0) = 0 .16 .12 .72
A(0) = 1 .16 .12 .72
A(0) = 2 .16 .12 .72

3.5 Simulation Study

3.5.1 Data Simulation

Although we utilize a Bayesian approach, we are still interested in the repeated

sampling properties of the proposed model. Given the relatively long computation

time of analysis for each simulated data set, we do moderate number of simula-

tions. We simulate 200 data sets, with 250 subjects in each data set. Data are

simulated using the model in Section 3.3, under the monotonicity assumptions for

the adverse events and dose tolerances. Table 3.13 shows the distribution of the con-

trol dose tolerance given control adverse events, Table 3.14 shows the distribution

of the treatment dose tolerance given control dose tolerance and treatment adverse

events, and Table 3.15 shows the distribution of clinical outcome by treatment arm

given treatment dose tolerance. Similar to the ICCRN study, there is no relationship

between control dose tolerance and control adverse event experience, whereas high

levels of treatment adverse event experience are associated with reduced treatment

dose tolerance. The simulation study parameters are set to yield higher clinical re-

sponse rates under treatment than control, and a modest monotonically increasing

treatment effect as dose level increases.
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Table 3.14: Distribution of treatment dose tolerance given control dose tolerance and treatment
adverse events for simulation studies with the proposed causal model

D(1) = 1 D(1) = 2 D(1) = 3

D(0) = 1 1 0 0
D(0) = 2, A(1) = 0 .71 .29 0
D(0) = 2, A(1) = 1 .65 .35 0
D(0) = 2, A(1) = 2 .86 .14 0
D(0) = 3, A(1) = 0 .05 .20 .74
D(0) = 3, A(1) = 1 .02 .13 .85
D(0) = 3, A(1) = 2 .09 .26 .66

Table 3.15: Distribution of clinical outcome by treatment arm given treatment dose tolerance for
simulation studies with the proposed causal model

Treatment
P (Y (1) = 1) P (Y (0) = 1) Effect

D(1) = 1 .22 .16 .06
D(1) = 2 .31 .23 .08
D(1) = 3 .41 .31 .10

3.5.2 Analysis Results

A summary of the estimated response under each treatment arm and the associ-

ated principal effect within each principal stratum from 200 simulated data sets is

shown in Table 3.16, including point estimates from the posterior mean and median,

as well as the estimated repeated sampling coverage of the 95% credible interval. The

true coverage probability for the 95% credible intervals associated with the response

under each treatment arm and the treatment effect within each principal stratum is

somewhat conservative, ranging from 93.5% to 99.5%. The posterior means of the

response under both treatment and control arms within principal strata and conse-

quently the principlal effects within the principal strata are very close to the true

values, with the modest exception of the control arm response under treatment dose

tolerances of less than 25 mg. Since principal stratum membership for subjects under

control is latent, there is more uncertainty in the control arm response stratified by

principal strata, leading to larger mean square errors and posteriors that are flatter

and more difficult to summarize with a single point estimate such as a posterior
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Table 3.16: Response rate, principal effect and principal strata membership with 200 simulations

Treatment Dose Tolerance
≤ 25 mg 50 mg 75 mg

Response under Treatment Arm 95% Coverage Probability 93.5% 95% 94.5%
Mean (True Value) 0.239 (0.217) 0.317 (0.312) 0.406 (0.410)
Median 0.234 0.312 0.405
MSE 9.02 × 10−3 1.72 × 10−2 6.74 × 10−3

Response under control Arm 95% Coverage Probability 98.5% 99.5% 98.5%
Mean (True Value) 0.196 (0.157) 0.228 (0.233) 0.296 (0.307)
Median 0.180 0.196 0.300
MSE 1.40 × 10−2 3.10 × 10−2 1.13 × 10−2

Principal Effect 95% Coverage Probability 99% 99.5% 97%
Mean (True Value) 0.044 (0.060) 0.089 (0.078) 0.111 (0.103)
Median 0.049 0.010 0.099
MSE 1.86 × 10−2 4.54 × 10−2 1.74 × 10−2

Principal Strata Membership 95% Coverage Probability 92% 96.5% 94%
Mean (True Value) 0.279 (0.297) 0.172 (0.172) 0.543 (0.531)
Median 0.278 0.171 0.544
MSE 3.13 × 10−3 1.85 × 10−3 3.98 × 10−3

mean. This can be seen by comparing, for a single simulation, the posterior distribu-

tions of the response under treatment in Figure 3.1 with the response under control

in Figure 3.2 in the Appendix.

We tested the prior variance sensitivity by enlarging the variance of priors ααα, βββ,

θθθ and γγγ from 10 to 100. The results are very close to those with priors variance of

10, as is shown in Table 3.17.

We apply the traditional per-protocol analysis on the simulated data and summa-

rize the results in Table 3.18. The estimated responses in the treatment group are

close to the true values. However, the results show that the estimated response in the

control group could be far off the true values, which could lead to the biased estimate

of the effect of the treatment. Even though we simulate the data with monotonic

true effects of treatment, the estimated effects are not monotonic. It results from

the fact subjects with the observed control dose tolerance of 50 mg are a mix of

subjects who can tolerate 50 mg and 25 mg on treatment, and this mix leads to

the underestimation of the control response rate among those who can tolerate 50
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Table 3.17: Response rate, principal effect and principal strata membership with 200 simulations
with enlarged variance

Treatment Dose Tolerance
≤ 25 mg 50 mg 75 mg

Response under Treatment Arm 95% Coverage Probability 93.5% 95% 91.5%
Mean (True Value) 0.224 (0.217) 0.308 (0.312) 0.391 (0.410)
Median 0.219 0.301 0.389
MSE 8.43 × 10−3 1.79 × 10−2 7.18 × 10−3

Response under control Arm 95% Coverage Probability 97.5% 99.5% 96%
Mean (True Value) 0.183 (0.157) 0.214 (0.233) 0.313 (0.307)
Median 0.178 0.199 0.319
MSE 1.21 × 10−2 3.12 × 10−2 9.95 × 10−3

Principal Effect 95% Coverage Probability 96.5% 99% 94.5%
Mean (True Value) 0.046 (0.060) 0.104 (0.078) 0.085 (0.103)
Median 0.044 0.097 0.086
MSE 1.56 × 10−2 4.23 × 10−2 1.62 × 10−2

Principal Strata Membership 95% Coverage Probability 92% 95.5% 93.5%
Mean (True Value) 0.277 (0.297) 0.170 (0.172) 0.542 (0.531)
Median 0.279 0.165 0.554
MSE 3.83 × 10−3 1.76 × 10−3 4.75 × 10−3

Table 3.18: Per-protocol analysis with 200 simulations
Observed Dose Tolerance

≤ 25 mg 50 mg 75 mg

Response in Treatment Group Mean (True Value) 0.227 (0.217) 0.316 (0.312) 0.417 (0.410)
S.D. 0.068 0.100 0.061

Response in Control Group Mean (True Value) 0.163 (0.157) 0.143 (0.233) 0.284 (0.307)
S.D. 0.079 0.079 0.047

Effect of Treatment Mean (True Value) 0.064 (0.060) 0.173 (0.078) 0.133 (0.103)
S.D. 0.106 0.132 0.077

mg on treatment, due to the fact that subjects with dose tolerance of 25 mg under

treatment have a lower control response rate.

3.6 Discussion and Conclusion

Subjects are sometimes put on escalating dosages in phase II clinical trials. How-

ever, subjects often choose to go back or stay at lower dosages, typically as a result of

adverse events. When this occurs, estimating the effect of treatment conditional on

the dosage tolerance is not straightforward. The proposed causal model constructs

latent prerandomization principal strata based on the maximum tolerance dose under

treatment to provide a valid estimate of the causal effect of treatment within each
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of the principal strata. The adverse events are included and modeled as potential

outcomes to help identify the subjects’ principal strata membership. The ICCRN

study analysis results show that the Amitriptyline does not significantly reduce inter-

stitial cystitis symptoms when compared with placebo for subjects who can tolerate

treatment of ≤ 25 mg, 50 mg, or 75 mg, although there is some weak evidence for

more effective treatment for subjects with higher dose tolerance.

Our work of course has limitations and thus possible extensions. To deal with drop

outs, we assume a simple MAR missingness mechanism. Potential extensions include

allowing for non-ignorable missingness, such as latent ignorability which assumes

ignorability only within principal strata [16, 42], although their practical effect in this

application is likely to be modest, given the relatively small proportion of subjects

who dropped out. A thorough discussion of a variety of missingness mechanisms in

the principal stratification setting and their associated identification constraints are

provided by Small and Cheng [53]. Identification in our setting, with our need to

consider counterfactuals of adverse events, is also an issue, and is achieved here by

making a variety of assumptions which, though reasonable and not countermanded by

any of the observed data, may not be correct. We could extend this to causal inference

settings when full identification is not possible, either by focusing on bounds of causal

effects [10], or using Bayesian methods that do not require identified likelihoods if

proper priors are utilized [14]. Adapting these approaches to the self-selection dosage

setting remains future work.
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Appendix

Relating Complete Data to Observed Data

Table 3.19: Cell probabilities associated with the complete data
Yi(0), Yi(1)

Ai(0), Ai(1) Di(0), Di(1) (0,0) (0,1) (1,0) (1,1)
(0,0) (1,1) ω111 ω112 ω113 ω114

(0,0) (2,1) ω121 ω122 ω123 ω124

(0,0) (2,2) ω131 ω132 ω133 ω134

(0,0) (3,1) ω141 ω142 ω143 ω144

(0,0) (3,2) ω151 ω152 ω153 ω154

(0,0) (3,3) ω161 ω162 ω163 ω164

(0,1) (1,1) ω211 ω212 ω213 ω214

(0,1) (2,1) ω221 ω222 ω223 ω224

(0,1) (2,2) ω231 ω232 ω233 ω234

(0,1) (3,1) ω241 ω242 ω243 ω244

(0,1) (3,2) ω251 ω252 ω253 ω254

(0,1) (3,3) ω261 ω262 ω263 ω264

(0,2) (1,1) ω311 ω312 ω313 ω314

(0,2) (2,1) ω321 ω322 ω323 ω324

(0,2) (2,2) ω331 ω332 ω333 ω334

(0,2) (3,1) ω341 ω342 ω343 ω344

(0,2) (3,2) ω351 ω352 ω353 ω354

(0,2) (3,3) ω361 ω362 ω363 ω364

(1,1) (1,1) ω411 ω412 ω413 ω414

(1,1) (2,1) ω421 ω422 ω423 ω424

(1,1) (2,2) ω431 ω432 ω433 ω434

(1,1) (3,1) ω441 ω442 ω443 ω444

(1,1) (2,2) ω451 ω452 ω453 ω454

(1,1) (3,3) ω461 ω462 ω463 ω464

(1,2) (1,1) ω511 ω512 ω513 ω514

(1,2) (2,1) ω521 ω522 ω523 ω524

(1,2) (2,1) ω531 ω532 ω533 ω534

(1,2) (3,1) ω541 ω542 ω543 ω544

(1,2) (3,2) ω551 ω552 ω553 ω554

(1,2) (3,3) ω561 ω562 ω563 ω564

(2,2) (1,1) ω611 ω612 ω613 ω614

(2,2) (2,1) ω621 ω622 ω623 ω624

(2,2) (2,1) ω631 ω632 ω633 ω634

(2,2) (3,1) ω641 ω642 ω643 ω644

(2,2) (3,2) ω651 ω652 ω653 ω654

(2,2) (3,3) ω661 ω662 ω663 ω664
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Table 3.20: Cell probabilities associated with the observed data
Yi(Zi)

Zi Ai(Zi) Di(Zi) 0 1
0 0 1 υ0010 υ0011
0 0 2 υ0020 υ0021
0 0 3 υ0030 υ0031
0 1 1 υ0110 υ0111
0 1 2 υ0120 υ0121
0 1 3 υ0130 υ0131
0 2 1 υ0210 υ0211
0 2 2 υ0220 υ0221
0 2 3 υ0230 υ0231
1 0 1 υ1010 υ1011
1 0 2 υ1020 υ1021
1 0 3 υ1030 υ1031
1 1 1 υ1110 υ1111
1 1 2 υ1120 υ1121
1 1 3 υ1130 υ1131
1 2 1 υ1210 υ1211
1 2 2 υ1220 υ1221
1 2 3 υ1230 υ1231

The probabilities associated with complete data (Table 3.19) and the probabilities

associated with the observed data (Table 3.20) can be related as follows:

υ0010 =ω111 + ω112 + ω211 + ω212 + ω311 + ω312

υ0011 =ω113 + ω114 + ω213 + ω214 + ω313 + ω314

υ0020 =ω121 + ω122 + ω131 + ω132 + ω221 + ω222 + ω231 + ω232 + ω321 + ω322 + ω331 + ω332

υ0021 =ω123 + ω124 + ω133 + ω134 + ω223 + ω224 + ω233 + ω234 + ω323 + ω324 + ω333 + ω334

υ0030 =ω141 + ω142 + ω151 + ω152 + ω161 + ω162 + ω241 + ω242 + ω251 + ω252 + ω261 + ω262+

ω341 + ω342 + ω351 + ω352 + ω361 + ω362

υ0031 =ω143 + ω144 + ω153 + ω154 + ω163 + ω164 + ω243 + ω244 + ω253 + ω254 + ω263 + ω264+

ω343 + ω344 + ω353 + ω354 + ω363 + ω364
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υ0110 =ω411 + ω412 + ω511 + ω512

υ0111 =ω413 + ω414 + ω513 + ω514

υ0120 =ω421 + ω422 + ω431 + ω432 + ω521 + ω522 + ω531 + ω532

υ0121 =ω423 + ω424 + ω433 + ω434 + ω523 + ω524 + ω533 + ω534

υ0130 =ω441 + ω442 + ω451 + ω452 + ω461 + ω462 + ω541 + ω542 + ω551 + ω552 + ω561 + ω562+

ω641 + ω642 + ω651 + ω652 + ω661 + ω662

υ0131 =ω443 + ω444 + ω453 + ω454 + ω463 + ω464 + ω543 + ω544 + ω553 + ω554 + ω563 + ω564+

ω643 + ω644 + ω653 + ω654 + ω663 + ω664

υ0210 =ω611 + ω612

υ0211 =ω613 + ω614

υ0220 =ω621 + ω622 + ω631 + ω632

υ0221 =ω623 + ω624 + ω633 + ω634

υ0230 =ω641 + ω642 + ω651 + ω652 + ω661 + ω662

υ0231 =ω643 + ω644 + ω653 + ω654 + ω663 + ω664

υ1010 =ω111 + ω113 + ω121 + ω123 + ω141 + ω143

υ1011 =ω112 + ω114 + ω122 + ω124 + ω142 + ω144

υ1020 =ω131 + ω133 + ω151 + ω153

υ1021 =ω132 + ω134 + ω152 + ω154

υ1030 =ω161 + ω163

υ1031 =ω162 + ω164
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υ1110 =ω211 + ω213 + ω221 + ω213 + ω241 + ω243 + ω411 + ω413 + ω421 + ω413 + ω441 + ω443

υ1111 =ω212 + ω214 + ω222 + ω214 + ω242 + ω244 + ω412 + ω414 + ω422 + ω414 + ω442 + ω444

υ1120 =ω231 + ω233 + ω251 + ω253 + ω431 + ω433 + ω451 + ω453

υ1121 =ω232 + ω234 + ω252 + ω254 + ω432 + ω434 + ω452 + ω454

υ1130 =ω261 + ω263 + ω461 + ω463

υ1131 =ω262 + ω264 + ω462 + ω464

υ1210 =ω311 + ω313 + ω321 + ω323 + ω341 + ω343 + ω511 + ω513 + ω521 + ω523 + ω541 + ω543+

ω611 + ω613 + ω621 + ω623 + ω641 + ω643

υ1211 =ω312 + ω314 + ω322 + ω324 + ω342 + ω344 + ω512 + ω514 + ω522 + ω524 + ω542 + ω544+

ω612 + ω614 + ω622 + ω624 + ω642 + ω644

υ1220 =ω331 + ω333 + ω353 + ω353 + ω531 + ω533 + ω551 + ω553 + ω631 + ω633 + ω651 + ω653

υ1221 =ω332 + ω334 + ω352 + ω354 + ω532 + ω534 + ω552 + ω554 + ω632 + ω634 + ω652 + ω654

υ1230 =ω361 + ω363 + ω561 + ω563 + ω661 + ω663

υ1231 =ω362 + ω364 + ω562 + ω564 + ω662 + ω664

Gibbs Sampler for Principal Stratum Model Estimation

1. Draw of βββ | rest . The placebo dose tolerance Di(0) takes one of three ordered

categories (1 for ≤ 25 mg, 2 for 50 mg, 3 for 75 mg). Letting pij = P (Di(0) =

j), j = 1, 2, 3, we define the cumulative probabilities πij =
∑j

k=1 pij, j = 1, 2.

Then we can model the pij with πij = Φ(βDj −XXXT
i βββ

A
a ), i = 1, ..., N, j = 1, 2,

where XXX i consists of indicator variables for Ai(0) = a for a = 1, 2. We use

the method of Albert and Chib ([1]) to obtain draws of βββ = (βD1 , β
D
2 , β

A
1 , β

A
2 ).
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Assume that there exists a latent continuous random variable Ci distributed

N(XXXT
i βββ

A
a , 1), and we observe Di(0), where Di(0) = j if βDj−1 < Ci < βDj with

βD0 = −∞ and βD3 =∞. Then this probit regression for Di(0) can be modeled

using the latent variable Ci with normal regression.

With the conjugateN(000, V ) prior, the posterior distribution of βββA conditional on

DDD(0),CCC, βD1 , and βD2 is given byN2(β̂ββ
A
, BA) where β̂ββ

A
= ((V )−1+XTX)−1(XTCCC),

and BBBA = ((V )−1 +XTX)−1.

The fully conditional posterior distribution of C1,...,CN are independent with

Ci|βββA, βD1 , βD2 , Di(0) = j ∼ N(XXXAT

i βββA, 1), truncated at the left(right) by βDj−1(βDj )

Finally the fully conditional density of βD1 , β
D
2 |CCC,DDD(0),βββA is uniform on the

interval [max{max{Ci : Di(0) = j},βDj−1}, min{min{Ci, Di(0) = j + 1},βDj+1}].

2. Draw of θθθ | rest . The parameters for the conditional distributions of Di(1) |

Di(0), Ai(1) (treatment dose tolerance given control dose tolerance and treat-

ment adverse events) were obtained using the same data augmentation method

described in 1).

3. Draw of ααα | rest . Use A to denote Ai(1), Ai(0), i = 1, ..., n and π(ααα) to denote

the prior for ααα. The posterior distribution of ααα is

f(ααα| rest ) ∝ exp

(
n∏
i=1

2∑
a1=0

a1∑
a0=0

αa0,a1I(A(1)i = a1, A(0)i = a0)− log

(
2∑

a1=0

a1∑
a0=0

exp(αa0,a1)

))

× π(ααα)

where α0,0 = 0 for identifiability. This is not the closed form of a known distri-

bution; thus we implement a Metroplis random walk algorithm to get random

draws from their posterior distribution.
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4. Draw of γγγ | rest . UseD(0) to denoteDi(0), i = 1, ..., n, D(1) to denoteDi(1), i =

1, ..., n, Y to denote Yi(1), Yi(0), i = 1, ..., n, T to denote D(1), D(0), Y , and to

denote the prior for γγγ. The posterior distribution of γγγ is

f(γγγ| rest ) ∝ exp

(
n∏
i=1

1∑
y0=0

1∑
y1=0

(γy0,y1 + γy0,y1d0,d1
I(Di(0) = d0, Di(1) = d1))I(Yi(0) = y0, Yi(1) = y1)−

log

(
1∑

y0=0

1∑
y1=0

exp(γy0,y1 + γy0,y1d0,d1
I(Di(0) = d0, Di(1) = d1))

))
× π(γγγ)

where γ0,0 = 0 and γ0,0
d0,d1

= 0 for all d0, d1 for identifiability. This is not the

closed form of a known distribution; thus we implement a Metroplis random

walk algorithm to get random draws from their posterior distribution.

5. Draw of counterfactual adverse event Ai(1− zi). The distribution of the unob-

served highest grade of the adverse events conditional on the observed data and

parameters is

f(Ai(1− zi)|ααα,βββ,θθθ,γγγ, T ) = f(Ai(1− zi)|ααα,βββ,θθθ,γγγ,Ai(zi), Di, Yi)

∝ f(Ai, Di, Yi,ααα,βββ,θθθ,γγγ)

∝ f(Ai|ααα)f(Di(0)|Ai(0),βββ)f(Di(1)|Di(0), Ai(1), θθθ)f(Yi|Di, γγγ)

∝ pi,a0,a1 × pi,d0 × pi,d1 × pi,y0,y1

∼ Multinomial(pa0 , pa1 , pa2); zi = 0, azi = 0

∼ Multinomial(
pa1

pa1+pa2
,

pa2
pa1+pa2

); zi = 0, azi = 1

∼ Multinomial(0, 0, 1); zi = 0, azi = 2

∼ Multinomial(1, 0, 0); zi = 1, azi = 0

∼ Multinomial(
pa0

pa0+pa1
,

pa1
pa0+pa1

); zi = 1, azi = 1

∼ Multinomial(pa0 , pa1 , pa2); zi = 1, azi = 2
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pa0 = P (ai(1 − zi) = 0, ai(zi)|ααα) × P (di(0)|ai(0),βββ) × P (di(1)|di(0), ai(1), θθθ)

pa1 = P (ai(1 − zi) = 1, ai(zi)|ααα) × P (di(0)|ai(0),βββ) × P (di(1)|di(0), ai(1), θθθ)

pa2 = P (ai(1− zi) = 2, ai(zi)|ααα)× P (di(0)|ai(0),βββ)× P (di(1)|di(0), ai(1), θθθ)

6. Draw of placebo dose tolerance Di(0). The distribution of the unobserved placebo

dose tolerance among those assigned to the treatment arm conditional on the

observed data and parameters is

f(Di(0)|ααα,βββ,θθθ,γγγ, T ) = f(Di(0)|ααα,βββ,θθθ,γγγ,Ai, Di(1), Yi)

∝ f(Ai, Di, Yi,ααα,βββ,θθθ,γγγ)

∝ f(Di(0)|Ai(0),βββ)f(Di(1)|Di(0), Ai(1), θθθ)f(Yi|Di, γγγ)

∝ pi,d0 × pi,d1 × pi,y0,y1

∼ Multinomial(pd01 , pd02 , pd03); di(1) = 1

∼ Multinomial(
pd02pd02+pd03

,

pd03
pd02+pd03

); di(1) = 2

= 3; di(1) = 3

pd01 = P (di(0) = 1|ai(0),βββ)× P (di(1)|di(0) = 1, ai(1), θθθ)× P (yyyi|di(1), di(0) = 1, γγγ)

pd02 = P (di(0) = 2|ai(0),βββ)× P (di(1)|di(0) = 2, ai(1), θθθ)× P (yyyi|di(1), di(0) = 2, γγγ)

pd03 = P (di(0) = 3|ai(0),βββ)× P (di(1)|di(0) = 3, ai(1), θθθ)× P (yyyi|di(1), di(0) = 3, γγγ)

7. Draw of treatment dose tolerance Di(1). The distribution of the unobserved

treatment dose tolerance among those assigned to control conditional on the
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observed data and parameters is

f(Di(1)|ααα,βββ,θθθ,γγγ, T ) = f(Di(1)|ααα,βββ,θθθ,γγγ,Ai, Di(0), Yi)

∝ f(Ai, Di, Yi,ααα,βββ,θθθ,γγγ)

∝ f(Di(1)|Di(0), Ai(1), θθθ)f(Yi|Di, γγγ)

∝ pi,d1 × pi,y0,y1

= 1; di(0) = 1

∼ Multinomial(
pd11

pd11+pd12
,

pd12
pd11+pd12

); di(0) = 2

∼ Multinomial(pd11 , pd12 , pd13); di(0) = 3

pd11 = P (di(1) = 1|di(0), ai(1), θθθ)× P (yyyi|di(1) = 1, di(0), γγγ)

pd12 = P (di(1) = 2|di(0), ai(1), θθθ)× P (yyyi|di(1) = 2, di(0), γγγ)

pd13 = P (di(1) = 3|di(0), ai(1), θθθ)× P (yyyi|di(1) = 3, di(0), γγγ)

8. Draw of counterfactual clinical outcome Yi(1− zi). The distribution of the un-

observed clinical outcome conditional on the observed data and parameters is

f(Yi(1− zi)|ααα,βββ,θθθ,γγγ, T )

= f(Yi(1− zi)|ααα,βββ,θθθ,γγγ,Ai, Di, Yi(zi))

∝ f(Ai, Di, Yi,ααα,βββ,θθθ,γγγ)

∝ f(Yi|Di, γγγ)

∝ pi,y0,y1

∼ Bern(py1), py1 =
P (yi(1− zi) = 1, yi(zi)|dddi, γγγ)

P (yi(1− zi) = 1, yi(zi)|dddi, γγγ) + P (yi(1− zi) = 0, yi(zi)|dddi, γγγ)
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Figure 3.1: Response under treatment for subjects with dose tolerance of (a). ≤ 25mg; (b). 50mg;

(c). 75mg from one of 200 simulations

(a)

D
en

si
ty

0.1 0.2 0.3 0.4

0
20

0
50

0

(b)

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
40

0

(c)

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7

0
40

0
80

0

Figure 3.2: Response under control for subjects with dose tolerance of (a). ≤ 25mg; (b). 50mg;

(c). 75mg from one of 200 simulations
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Figure 3.3: Principal effect for subjects with dose tolerance of (a). ≤ 25mg; (b). 50mg; (c). 75mg

from one of 200 simulations
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Figure 3.4: Principal strata membership percentage for subjects with dose tolerance of (a). ≤ 25mg;

(b). 50mg; (c). 75mg from one of 200 simulations
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CHAPTER IV

Principal Surrogacy in a Time-to-Event Setting

4.1 Introduction

In many circumstances, medical studies evaluating the effect of treatment en-

counter difficulties, such as long follow-up periods, rare disease outcomes, or high

medical costs. In such settings, surrogate markers that can be measured earlier

and/or at lower medical cost and used in lieu of primary outcomes to evaluate the

effect of treatment are of great interest. Surrogate evaluation methods have been

applied in many clinical areas, such as in preventive human immunodeficiency virus

(HIV) vaccine clinical trials evaluating vaccine-induced immune responses as a sur-

rogate marker for overall survival (OS) among HIV infected patients [21], and in

colorectal cancer clinical trials evaluating disease-free survival (DFS) measured at a

short time after randomization as a surrogate marker for OS [52].

The formal definition of surrogate marker was first proposed by Prentice [43].

He suggested modeling the treatment on the primary outcome adjusting for the

surrogate marker, after confirming marginal associations between the treatment and

outcome, between the surrogate and the outcome, and between the treatment and the

surrogate. A valid surrogate marker requires no association between the treatment

68
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and the primary outcome conditional on the surrogate marker. Freedman et al.

argued Prentice’s criteria is rather stringent and rarely satisfied in practice, since it

requires a surrogate marker to fully capture the effect of treatment on the primary

outcome [18]. When a less than perfect surrogate marker is available, Freedman et al.

suggested measuring the proportion of the treatment effect explained by the surrogate

marker, which compares the coefficients of treatment in the models with or without

adjusting for the surrogate marker [18]. More recently, Buyse and Molenberghs

proposed another set of surrogacy evaluation criteria that compare individual-level

surrogacy (the individual-level association between the surrogate marker and the

primary outcome after adjusting for treatment) and population-level surrogacy (the

treatment effect on the primary outcome relative to that on the surrogate marker)

[6]. These criteria was further studied in the setting of meta-analyses [5, 7].

The surrogacy evaluation concept was revisited by Frangakis and Rubin, and

methods reviewed above are defined as “statistical surrogacy” [17]. A drawback of

these method is that the surrogate marker is measured after the treatment assignment

and cannot be simply adjusted for or conditioned on without destroying the causal

interpretation of treatment effect in regression [45]. One approach that overcomes

such a drawback is through the potential outcome framework. A potential outcome

is defined as an outcome that would be observed under different treatment arms [35].

In causal modeling, we define outcomes under all possible treatments, not only the

treatment actually assigned, and compare the values of the potential outcomes under

different treatment for the same individual. Averaging such comparisons over the

entire study population gives the population-level causal effect of treatment.

Several approaches have been proposed to assess surrogacy under the potential

outcome framework. Taylor et al. studies the proportion of treatment effect ex-
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plained by a binary surrogate marker for a binary primary outcome [56]. Another

approach proposed by Robins and Greenland investigates surrogacy through treat-

ing the surrogate marker as a mediator and considering indirect effects of treatment

(through the surrogate marker) and direct effects of treatment (around the surro-

gate marker) [44]. Assuming that the value of surrogate marker can be manipulated

separately from the treatment assignment, the direct effect is the comparison of the

primary outcome under different treatment arms when the value of the surrogate

marker is held constant, while the indirect effect is the comparison of the primary

outcomes under different treatment arms when the value of the surrogate marker is

changed to that it would have been under treatment and control arms.

Alternatively, Frangakis and Rubin proposed a principal surrogacy evaluation

method based on the concept of principal stratification [17]. A principal stratum is

defined by the joint distribution of the intermediate variable under different treat-

ment arms. They suggested that analysis should focus on the estimation of the

treatment effect within principal strata. Because the potential outcome is consid-

ered to exist before the action of treatment assignment, the principal strata can

also be considered as existing before the action of treatment assignment, and can be

adjusted for or conditioned on in regression without destroying the causal interpreta-

tion of estimated treatment effect. They proposed that an intermediate variable is a

valid principal surrogate if it satisfies causal necessity, i.e., the causal effect of treat-

ment on the primary outcome exists only when the causal effect of treatment on the

surrogate marker exists. They also proposed two types of causal effects, associative

and dissociative effects, to evaluate principal surrogacy. The associative effect on the

outcome is defined as the comparison between the potential primary outcomes under

different treatment arms when the value of surrogate markers are different under
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different treatment arms, and the dissociative effect on the outcome is defined as

the comparison between potential primary outcomes under different treatment arms

when the value of surrogate markers are same under different treatment arms. The

distinction between this approach and the one proposed by Robins and Greenland

[44] is that this approach does not assume the ability to manipulate the value of the

surrogate marker independently from the treatment assignment.

More recently, the concept of principal surrogacy was revisited by Gilbert and

Hudgens [20], in the context of a binary outcome and a continuous principal surro-

gate. They termed the causal necessity proposed by Frangakis and Rubin as average

causal necessity, and defined the average causal sufficiency in terms of a risk differ-

ence when the difference between the surrogate under treatment and the surrogate

under control is large than a given constant. They suggested a refined definition

of principal surrogate as a biomarker satisfying both average causal necessity and

average causal sufficiency.

The current literature on principal surrogacy assessment has thus far considered

either a normally distributed primary outcome [11] or a binary primary outcome

[31]. Here we extend this previous work to evaluate principal surrogacy when the

outcome is a (possibly censored) time-to-event measure, which is a critical formu-

lation for many clinical trials settings, particularly for cancer treatments. In this

article, we propose a model to evaluate the principal surrogacy for a binary surro-

gate marker and a time-to-event primary outcome based on a proportional hazards

modeling assumption. In addition, to take account of the correlation between the

potential primary outcomes under different treatment arms, we introduce a shared-

frailty (random-effect) model in conjunction with proportionality assumption [23, 29].

Like other random-effect models, the variance of frailty terms naturally describes the
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population heterogeneity. However, unlike random effects in some statistical models,

the variance of frailty terms in a proportional hazard (PH) model is identifiable even

for the univariate case under certain conditions [30], as this merely represents a devi-

ation from the proportionality assumption at the marginal model level. We illustrate

the proposed causal model using randomized clinical trial to evaluate the principal

surrogacy. This clinical trial was designed to evaluate the efficacy of intensive-course

fluorouracil (5FU) combined with low-dose leucovorin as postoperative adjuvant ther-

apy in patients with high-risk primary colorectal cancer, and the primary outcome

was the OS. It has been of great interest to find valid surrogate markers that are

available and may be assessed earlier than the primary endpoint in terms of efficacy

in this disease setting. Here, the putative surrogate marker in consideration is cen-

soring status of 3-year DFS, i.e., 1 (no event experienced, “favorable” result) or 0

(event experienced, “unfavorable” result).

The remainder of this manuscript is organized as follows. In Section 4.2, we

propose a causal model under the potential outcome framework using the principal

stratification approach to study principal surrogacy, extending the work of Frangakis

and Rubin, and Gilbert and Hudgens into the time-to-event outcome setting. In

Section 4.3, we illustrate the proposed causal model and estimation method on a

randomized clinical trial for adjuvant colorectal cancer to evaluate 3-year DFS as a

surrogate marker for OS. We carry out simulation studies for the proposed causal

model to investigate its repeated sampling property in Section 4.4. In Section 4.5,

we discuss the implications of our findings and future extensions.



73

4.2 Principal Stratification Model to Assess Surrogacy in a Time-to-

Event Setting

4.2.1 Notation

Consider a binary randomized assignment Z = 1 or Z = 0 for treatment and

control. The binary surrogate marker is denoted by Sz, where Sz = 1 for “favorable”

results, and Sz = 0 for “unfavorable” results under treatment assignment Z = z. The

primary time-to-event outcome is similarly denoted by Tz. In many time to event

settings, there will also be a censoring indicator Cz. Subscripting with i to denote

subject i, let δiz denote the event indicator variable (Tiz < Ciz), taking value 1 if

subject i is observed to fail under arm z and 0 otherwise. Finally, let the observed

outcome Yiz = Tiz ∧Ciz, hence Yiz is a failure time Tiz if δiz = 1 and a censoring time

Ciz otherwise.

4.2.2 Principal Strata

The principal strata membership is determined by the joint distribution of the

surrogate marker Si1 and Si0. For a binary surrogate marker, subjects belong to one

of four possible principal strata: (Si1 = Si0 = 1), (Si1 = Si0 = 0), (Si1 = 1, Si0 = 0),

and (Si1 = 0, Si0 = 1), corresponding to situations in which the treatment has no

impact on the surrogate marker ((Si1 = Si0 = 1), (Si1 = Si0 = 0)), situations in which

the surrogate marker is positively impacted by the treatment (Si1 = 1, Si0 = 0), and

situations in which the surrogate maker is negatively impacted by the treatment

(Si1 = 0, Si0 = 1).
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4.2.3 Model Assumptions

We make several reasonable assumptions to assist with identifiability, including

the ignorable treatment assignment assumption, the stable unit treatment value as-

sumption (SUTVA), monotonicity assumption and the latent noninformative censor-

ing assumption.

1. Treatment assignment is ignorable if conditional on the observed baseline co-

variates, the treatment assignment is independent of all baseline covariates and

potential outcomes, Zi ⊥ Yi1, Yi0, Si1, Si0,XXX i,∀i [47]. Under the ignorability, we

do not need to model the treatment assignment mechanism.

2. SUTVA consists of two subassumptions. The first subassumption assumes

there is no interference between the potential outcomes of different individu-

als, Yi0, Yi1, Si0, Si1 ⊥ Yj0, Yj1, Sj0, Sj1, i 6= j [48]. The second subassumption

assumes that there exists only one form of the treatment, so that the observed

yiz = z ∗ Yiz + (1− z) ∗ Yiz [48].

3. The monotonicity assumption implies monotonicity of the potential outcomes.

Specifically, for the application study, we assume the monotonicity of the puta-

tive surrogate marker, the censoring status of DFS at 3 years. It is satisfied in

the application study due to the fact that it is well accepted that the treatment

based on chemotherapy of 5FU has a better treatment effect than the control

(surgery only).

4. Latent noninformative censoring assumes that conditional on observed baseline

covariates and partially latent principal stratum membership, the event time and

censoring time are independent of each other: Ti0, Ti1 ⊥ Ci0, Ci1 | Si0, Si1,XXX i.

Note that this assumption is slightly different from the conventional noninforma-
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tive censoring assumption, where the independence is conditional on observed

baseline covariates only.

4.2.4 Complete Data Likelihood

To take account of the correlation between the potential primary outcomes un-

der different treatment arms on the same individual, we construct a shared-frailty

(random-effect) survival model in conjunction with proportionality assumption. A

shared-frailty survival model includes a random effect term besides fixed effect terms

to account for the unexplained variability of the model and the correlations among

the survival times of subjects within clusters. Under the potential outcome frame-

work, an individual is considered as a cluster, and the constructed shared-frailty sur-

vival model correlates potential primary outcomes under different treatment arms

on the same individual. Let Wi denote the frailty random effect for subject i and

WWW = (W1,W2, ...,Wn). Let YYY = (Y11, Y10, ..., Yn1, Yn0), δδδ = (δ11, δ10, ..., δn1, δn0),

SSS = (S11, S10, ..., Sn1, Sn0), and ZZZ = (Z1, ..., Zn). Under the potential outcome frame-

work, the “complete” data include YYY ,δδδ, SSS, WWW , and ZZZ. Let XXX denote n× p matrix of

baseline covariates with ith row XXX i. Denote the survival function by S(.) and hazard

function by h(.). We factor the “complete” data likelihood:
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L(YYY ,δδδ,SSS,WWW,ZZZ|XXX,τττ , ζζζ)

=
n∏
i=1

f(Zi)f(Yi1, Yi0, δi1, δi0, Si1, Si0|XXX i,Wi, τττ , ζζζ)f(Wi)

=
n∏
i=1

f(Zi)f(Yi1, Yi0, δi1, δi0|Si1, Si0,XXX i,Wi, τττ)f(Si1, Si0|XXX i, ζζζ)f(Wi)

=
n∏
i=1

f(Zi)
1∏
z=0

f(Yiz, δiz|Si1, Si0,XXX i,Wi, τ)f(Si1, Si0|XXX i, ζζζ)f(Wi)

=
n∏
i=1

f(Zi)
1∏
z=0

f(Yiz|Si1, Si0,XXX i,Wi, τ)δizS(Yiz|Si1, Si0,XXX i,Wi, τ)1−δizf(Si1, Si0|XXX i, ζζζ)f(Wi)

=
n∏
i=1

f(Zi)
1∏
z=0

h(Yiz|Si1, Si0,XXX i,Wi, τ)δizS(Yiz|Si1, Si0,XXX i,Wi, τ)f(Si1, Si0|XXX i, ζζζ)f(Wi)

where τττ parameterizes the conditional distribution of primary outcomes given prin-

cipal strata membership and frailty, and ζζζ parameterizes the marginal distribution

of principal strata membership. The first equality follows from the ignorable treat-

ment value assumption and SUTVA. The second equality factors the complete data

likelihood into the product of the conditional likelihood of primary outcomes given

principal strata membership and frailty, and the marginal likelihood of principal

strata membership. It follows from the marginal independence of frailty, leading to

Wi ⊥ Si1, Si0,XXX i, ζζζ. The third equality follows because the primary outcomes of

one individual under different treatment arms are independent of each other given

the frailty. The fourth equality follows from the relationship between probability

distribution functions, hazard functions, and survival functions.

We model principal strata membership using a baseline multinomial logit model.

Let ps1s0 = P (Si1 = s1, Si0 = s0|XXX i, ζζζ), then log(
ps1s0
p00

) = ζs1s00 + ζζζ
s1s′0
1 XXX i, for s1, s0 =

(1, 0), (0, 1), (1, 1).

For the primary outcome, we model the hazard function of Yiz given principal
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strata Si1, Si0 under the PH assumption:

h(Yiz|Si1, Si0,XXX i,Wi, τττ) = h0(Yiz)Wie
βzs1s0I(Si1=s1,Si0=s0,Zi=z)+βββ

′
XXXXi

where h0(.) is the baseline hazard function common to every subject, Wi is the

random effect that inflates or deflates the baseline hazard function, and β000 = 0

for identifiability. Note that the proportionality assumption not only applies to the

baseline covariates, but also to the principal strata membership.

In practice, the potential surrogate and outcome under the arm to which the

subject is not assigned is unobservable, so there are large amount of missing data.

Given this situation, we choose to model the baseline hazard parametrically, under a

Weibull distribution assumption, so that h0(Yiz) = γY α−1
iz . This will ease estimation,

while still being flexible since it has both shape and scale parameters.

4.2.5 Gamma Frailty and Identifiability

We anticipate some degree of within-subject correlation among the potential out-

comes (as with the surrogate markers). We incorporate this into our model by

assuming a common random effect or “frailty” Wi associated with the baseline haz-

ard. We assume the frailty Wi follows a gamma distribution with a finite mean of

1 for both mathematical tractability and identifiability reasons [22, 29], such that

Wi ∼ G(η, η−1), and η−1 is the variance of the Wi. Small values of η (small values

of 1
η
) imply large amounts of heterogeneity between individuals, and thus high cor-

relation between the potential outcomes of an individual under different treatment

arms. In addition, the introduction of frailty incorporates the deviation from the

proportionality assumption at the marginal model level.

The proposed shared gamma frailty PH causal model is constructed under the po-

tential outcome framework, with “complete” data including the potential outcomes
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under both treatment and control arms. However, in practice, we observe the po-

tential outcome only under the arm to which the subject is assigned. Therefore, the

correlation between the potential outcomes of the same subject cannot be identified

in general. However, note that in the proposed shared gamma frailty PH causal

model, while allowing for correlation between potential outcomes, the variance of

the frailty is identifiable. Because an individual can be assigned to only one arm, we

can consider the “observed” data as consisting of clusters with only one observation

in each cluster. It has been shown that the variance of a frailty can be inferred

from a frailty PH model even in the univariate case, as long as the hazard function

models at least one covariate and the covariate is sufficiently variable [13, 30]. In our

proposed causal model, we model the hazard function with both the principal strata

membership and baseline covariates, which protects us from lack of identifiability

of the frailty variance. We investigate the identifiability of frailty variance of the

proposed shared gamma frailty PH causal model in the application by comparing

prior and posterior distributions for the gamma frailty parameter.

4.2.6 Estimands to Assess Principal Surrogacy

Gilbert and Hudgens [20] define two measures of principal surrogacy in the set-

ting of a binary outcome and continuous surrogate measure: average causal ne-

cessity given by risk1(s1, s0) = risk0(s1, s0) if s1 = s0, and average causal suffi-

ciency given by risk1(s1, s0) 6= risk0(s1, s0) for all |s1 − s0| > C, where C is a con-

stant >0 and riskz(s1, s0) = Pr(Yz = 1|S1 = s1, S0 = s0). They also introduced

the causal effect predictiveness (CEP) surface and the statistic CEPrisk(s1, s0) =

g(risk1(s1, s0), risk0(s1, s0)), where g(·, ·) is a known contrast function satisfying g(x, y) =

0 if and only if x = y. This statistic can be used to assess principal surrogate based on
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the refined definition, since CEPrisk(s, s) = 0 is equivalent to average causal necessity,

and CEPrisk(s1, s0) 6= 0 for all |s1−s0| > C is equivalent to average causal sufficiency.

Based on CEPrisk(s1, s0), they proposed expected associative effect (EAE) and ex-

pected dissociative effect (EDE) to quantify how well the causal effect of treatment

on surrogate marker can predict the causal effect of treatment on primary outcome.

EAE is defined as the weighted average of CEPrisk(s1, s0) when s1 6= s0, and EDE is

defined as the weighted average of CEPrisk(s1, s0) when s1 = s0.

We extend these concepts into the setting of a binary surrogate and time-to-

event outcome as follows. First, let πs1s0(t) denote the principal hazard ratio, which

is the hazard ratio within principal strata (s1, s0) at time t. Because we assume

proportionality conditional on the frailty, we drop t from the notation of hazard

ratios, and the notation of principal hazard ratio within stratum “s1s0” is simplified

to πs1s0 . With the proposed shared frailty PH causal model, πs1s0 = exp(β1s1s0 −

β0s1s0).

Let riskiz(s1, s0) = h(yiz|s1, s0, xi, wi), and CEPrisk(s1, s0) = log(πs1s0),which is

the difference of two intercept terms β1s1s0 − β0s1s0 , simple and recognizable from

the hazard modeling perspective. Note that CEPrisk(s, s) = 0 ∀ s is equivalent to

average causal necessity, and CEPrisk(s1, s0) 6= 0 for all |s1− s0| > C is equivalent to

average causal sufficiency.

We define expected associative effect (EAE) and expected dissociative effect (EDE)
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under the proposed shared gamma frailty PH causal model:

EAE =
E[w(Si1 = s1, Si0 = s0)CEPrisk(s1, s0)|s1 = s0]

E[w(Si1 = s1, Si0 = s0)|s1 = s0]

=
E[w(Si1 = s1, Si0 = s0)log(πs1s0)|s1 = s0]

E[w(Si1 = s1, Si0 = s0)|s1 = s0]

EDE =
E[w(Si1 = s1, Si0 = s0)CEPrisk(s1, s0)|s1 6= s0]

E[w(Si1 = s1, Si0 = s0)|s1 6= s0]

=
E[w(Si1 = s1, Si0 = s0)log(πs1s0)|s1 6= s0]

E[w(Si1 = s1, Si0 = s0)|s1 6= s0]

where w(·, ·) is a nonnegative weight function. In our binary example we consider

w(Si1 = s1, Si0 = s0) = I(Si1 = s1, Si0 = s0).

4.2.7 Model Estimation

We face the usual limitation of causal modeling that we cannot observe Yi,1−z, Si,1−z

∀i. The frailty Wi is also unobserved quantity, thus our model faces a large amount

of missing data. We propose to use Bayesian estimation with a Markov chain Monte

Carlo (MCMC) algorithm for model estimation. To obtain the joint posterior dis-

tribution of parameters γ, α, βββ, ζζζ and η, we use a Gibbs sampler. The posterior

distributions of α, βββ, ζζζ and η are not of closed form of any known parametric dis-

tributions, therefore we implement Metropolis-Hastings within Gibbs algorithms to

obtain random draws from their posterior distributions. In each iteration of MCMC,

we first obtain a random draw of each parameter conditional on the “complete”

data and other parameters; we then impute the missing outcomes conditional on the

observed data and the updated parameters. These two steps are repeated until all

parameters converge in distribution. We run multiple chains with different initial

values of parameters, and calculate a measure of between and within-chain variance

(R̂) to check the convergence of parameters [19]. R̂ < 1.1 is acceptable, and a R̂
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close to 1 indicates the good convergence of the parameters. Details of the condi-

tional posterior distributions of parameters and conditional distributions of missing

outcomes are given in the Appendix.

4.3 Application

Multiple adjuvant chemotherapies based on fluorouracil (5FU) for resected high-

risk colon cancers were studied in 80’s and 90’s [24, 39, 52], and evidence of improved

DFS and OS were robustly observed in a number of randomized phase III clinical

trials with different chemotherapy regimens based on 5FU. A pooled analysis based

on 18 randomized trials by Sargent et al. suggested that, in adjuvant colon cancer

setting, 5-year OS is adequate to serve as a valid primary endpoint, and 3-year DFS

is an appropriate endpoint to replace the primary endpoint for efficacy analysis [52].

We use one of these trials, North Central Cancer Treatment Group (NCCTG)

874651, to illustrate our proposed method [41]. This trial was originally conducted

and led by NCCTG during 1988-1989, and was designed to compare intensive-course

5FU with low-dose leucovorin as postoperative adjuvant chemotherapy versus surgery

only in stage II and III colon cancer patients. The objective of the study was to evalu-

ate the efficacy of proposed chemotherapy regimen in terms of OS. The original study

design was a 3-arm randomized trial with two different experimental chemotherapy

regimens and one control arm (surgery only), and stratified by a number of impor-

tant histological factors. The study was closed early due to the emerging positive

results for 5FU-based adjuvant regimens from a national intergroup trial [39]. For

illustration purposes, we combine the two treatment arms as they have very simi-

lar impacts on DFS and OS, and ignore the stratification variable in our analysis

thereafter. More information about this study can be found by O’Connell et al [41].
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Table 4.1: Demographic characteristics for the NCCTG trial 874651
Treatment Assignment

Variable Treatment Control
Number of Patients 255 153
Age, Mean (S.D.) (p = 0.52) 60.8 (10.7) 61.6 (10.8)
Gender (p = 0.05)

Male 130 (51.0%) 94 (61.4%)
Female 125 (49.0%) 59 (38.6%)

Tumor Stage (p = 0.92)
stage II 47 (18.4%) 28 (18.3%)
stage III 208 (81.6%) 125 (81.7%)

Censoring Status of 3-Year DFS (p = 0.25)
Fail 70 (28.2%) 51 (34.2%)
Disease Free 178 (71.8%) 98 (65.8%)

We summarize subjects’ baseline covariates and 3-year DFS in Table 4.1. Corre-

sponding p values from Chi-square tests and t-tests indicate randomization achieved

baseline balance with respect to demographic characteristics with the possible excep-

tion of gender. Overall there are 178 (71.8%) subjects in the treatment group, and

98 (65.8%) subjects in the control group who survived disease free at 3 years after

randomization. We conduct log-rank test to compare the risk of death in treatment

and control arms. The log-rank test yields Chi-square statistics χ2 = 2.1 with 1

degrees of freedom and p value of 0.15, indicate that the data cannot conclude that

the subjects in the treatment group have significantly lower risk of death compared

to subjects in the control group.

4.3.1 Conventional PH Models Analysis

We first fit the data with semiparametric Cox PH model with and without adjust-

ing for the observed surrogate marker (censoring status of DFS at 3 years). Subjects’

age, gender and tumor stage are included as baseline covariates, where age is normal-

ized with sample mean and standard deviation to have mean 0 and variance 1. We

summarize the multivariate analysis results in Table 4.2. After adjusting for age and

gender, there is a strong effect of tumor stage (hazard ratio = 1.93, p = .02); treat-
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ment reduces the risk of death relative to control (hazard ratio = 0.76, p = 0.12),

although this difference is not statistically significant. To check the Weibull baseline

hazard assumption in the NCCTG trial 874651, we fit the data assuming a Weibull

baseline hazard. The estimated covariate coefficients from the PH model assuming

Weibull baseline hazard are nearly identical to those estimated from Cox PH model,

indicating that the Weibull baseline hazard assumption is reasonable in this NCCTG

trial under proportionality assumption, since Cox PH model leaves the baseline haz-

ard function unspecified and estimates it nonparametrically. To assess the statistical

surrogacy, we include the censoring status of 3-year DFS in the hazard function.

After adjustment, the hazard ratio is closer to 1 than not adjusting for (hazard ratio

= 0.88, p = 0.49), and the observed surrogate marker has a significant effect on the

primary outcome with p < 0.001. Although the lack of a significant treatment effect

invalidates the use of Prentice’s criteria, the substantial reduction in the adjusted ef-

fect of treatment, together with the significant association with the surrogate marker

(hazard ratio = 33.52, p < 0.001), suggests that the putative surrogate marker is a

valid (statistical) surrogate marker for overall survival.

To have a proper comparison with our proposed shared gamma frailty PH causal

model, we further fit the data with univariate gamma frailty Cox PH model assuming

Weibull baseline hazard. The univariate gamma frailty Cox PH model reveals an-

other aspect of this data set, namely the heterogeneity-induced non-proportionality

in terms of OS. The analysis results suggest a slightly more pronounced but insignif-

icant treatment effect (hazard ratio = 0.64, p = 0.13) than the marginal model, and

similar trends for other baseline covariates. This observation is expected as marginal

models tend to provide attenuated results relative to frailty models [2]. In addition,

adjusting for the putative surrogate marker further reduces the treatment effect (haz-
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Table 4.2: Estimates of covariates coefficients and parameters with conventional PH models for the
NCCTG trial 874651

Covariate/Parameter Coef exp(Coef) S.E.(Coef) p value
Cox PH Model
Treatment vs. Control -0.28 0.76 0.18 0.12
Tumor Stage III vs. II 0.66 1.93 0.28 0.02
Gender, Female vs. Male -0.15 0.86 0.18 0.39
Age -.003 1.00 0.01 0.76

Cox PH Model Adjusted For Observed Surrogate Marker
Treatment vs. Control -0.12 0.88 0.18 0.49
Observed Surrogate Marker, “Favorable” vs. “Unfavorable” 3.51 33.52 0.25 <.001
Tumor Stage III vs. II 0.16 1.18 0.28 0.55
Gender, Female vs. Male -0.31 0.73 0.18 0.08
Age 0.02 1.02 0.01 0.06

Gamma Frailty PH Model Assuming Weibull Baseline Hazard
Treatment vs. Control -0.44 0.64 0.29 0.13
Tumor Stage III vs. II 0.87 2.39 0.38 0.02
Gender, Female vs. Male -0.29 0.75 0.28 0.31
Age <.001 1.00 0.01 0.99
Variance of Frailty 1.87

Gamma Frailty PH Model Assuming Weibull Baseline Hazard Adjusted For Observed Surrogate Marker
Treatment vs. Control -0.25 0.78 0.25 0.32
Observed Surrogate Marker, “Favorable” vs. “Unfavorable” 4.11 60.95 0.43 <.001
Tumor Stage III vs. II 0.27 1.31 0.36 0.46
Gender, Female vs. Male -0.48 0.62 0.25 0.06
Age 0.01 1.01 0.01 0.26
Variance of Frailty 0.61

ard ratio = 0.78, p = 0.32), with a very strong association between surrogate marker

and primary endpoint (hazard ratio = 60.95, p < 0.001), similar to marginal model

findings.

4.3.2 Shared Gamma Frailty PH Causal Model Analysis

We apply the proposed shared gamma frailty PH causal model and Bayesian

estimation method on the NCCTG trial to estimate the causal effect of treatment

and assess principal surrogacy of the censoring status of 3-year DFS for OS. The first

two model assumptions we have discussed are satisfied in this randomized clinical

trial. First, the ignorable treatment assignment assumption is satisfied because of the
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randomized treatment assignment. The first subassumption of SUTVA is satisfied

because the colon cancer is not an infectious disease and we do not anticipate that

primary outcomes or surrogate markers of subject i impact any of those of subject j

in any fashion (i 6= j). The second subassumption of SUVTA is also satisfied because

the treatments subjects in the NCCTG trial received were reasonably well controlled.

Next, there is no reason to suspect non-informative censoring assumption is violated,

since the censoring was administrative due to the end of the trial, rather than due

to loss of follow-up. Our third assumption,“monotonicity”for the surrogate marker,

i.e. subjects who would have remission or death within 3 years under treatment but

disease free beyond 3 years under control do not exist, is not testable, but reasonable

for an effective treatment.

To check convergence of distributions of the parameters, we run multiple chains

with different starting points. The priors of parameters are assumed as π(η) ∼

Gamma(2, 2), βββ ∼ N(000, 10I), ζζζ ∼ N(000, 10I), α ∼ Gamma(2, 0.75), and γ ∼

Gamma(1, 1). These priors are very weakly informative, but bound the model prob-

abilities away from values extremely close to 0 or 1. Parameters converge in their

distributions after 300,000 iterations with 100,000 used as burn-in. We calculate the

R̂ based on multiple chains to check the convergence of parameters. The maximum

R̂ is 1.02, indicating that the parameters converge in distribution.

Under the monotonicity assumption, subjects who did not have 3-year DFS event

on the control arm must belong to principal stratum (Si1 = 1, Si0 = 1); similarly

those who had 3-year DFS event on the treatment arm must belong to principal

stratum (Si1 = 0, Si0 = 0). Subjects who did not have a 3-year DFS event under

the treatment arm may belong to (Si1 = 1, Si0 = 1) or (Si1 = 1, Si0 = 0); similarly

subjects who had a 3-year DFS event under the control arm may belong to (Si1 =
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0, Si0 = 0) or (Si1 = 1, Si0 = 0). Based on this and observed covariates used to

predict principal stratum membership, subjects’ principal strata membership are

imputed accordingly in each iteration of MCMC.

The analysis suggests the proportion of the subjects having “favorable” surrogate

markers under both treatment arms (Si1 = Si0 = 1) is 64% (95% CI, 61%-68%), the

proportion of subjects having “unfavorable” surrogate markers under both treatment

arms (Si1 = Si0 = 0) is 28% (95% CI, 26%-29%), and the proportion of subjects hav-

ing “favorable” surrogate marker under treatment arm and “unfavorable” surrogate

marker under control arm (Si1 = 1, Si0 = 0), i.e., those for whom the treatment

changes the surrogate marker, is 8% (95% CI, 4%-12%). The principal hazard ratios

with point estimates of medians and their 95% credible intervals are summarized

in Table 4.3. For subjects who would not benefit from the treatment in terms of

surrogate markers (Si1 = Si0 = 1 or Si1 = Si0 = 0), the principal hazard ratios

of treatment to control is 0.71 and 0.68 respectively. Both of the 95% credible in-

tervals cover 1, indicating the treatment does not have significant effects compared

with the control on primary endpoints. For subjects who would indeed benefit from

the treatment in terms of surrogate markers (Si1 = 1, Si0 = 0), the hazard ratio is

4.42×10−3 with 95% credible interval of (2.25×10−5, 0.15), indicating the treatment

has significant effects compared with the control on primary endpoints. We further

plot the distributions of log principal hazard ratios in Figure 4.1.

We summarize the expected associative effect (EAE) and expected dissociative

effect (EDE) of treatment compared with control in Table 4.4. Because we make

monotonicity assumption for censoring status of 3-year DFS, the EAE is equal to

the log principal hazard ratio for subjects with (Si1 = 1, Si0 = 0). The 95% C.I. does

not cover 0, indicating the putative surrogate marker satisfies the one sided average
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Table 4.3: Principal hazard ratios assuming various hyperpriors for gamma frailty parameter η for
the NCCTG trial 87651 (variance of frailty = 1

η ) (median with 95% credible interval in

parenthesis)
Principal Strata

π(η) Si1 = Si0 = 1 Si1 = Si0 = 0 Si1 = 1, Si0 = 0

Gamma(2, 2) 0.71 (0.30, 1.68) 0.68 (0.36, 1.27) 4.42 × 10−3 (2.25 × 10−5, 0.15)
Gamma(0.1, 10) 0.67 (0.29, 1.60) 0.67 (0.34, 1.28) 5.91 × 10−3 (8.59 × 10−5, 0.13)
Gamma(1, 1) 0.67 (0.28, 1.60) 0.66 (0.33, 1.30) 4.52 × 10−3 (2.55 × 10−5, 0.13)
Gamma(1, 2) 0.67 (0.29, 1.63) 0.67 (0.33, 1.30) 4.58 × 10−3 (2.34 × 10−5, 0.18)
Gamma(5, 1) 0.68 (0.29, 1.62) 0.69 (0.37, 1.26) 4.84 × 10−3 (1.53 × 10−5, 0.18)
Gamma(8, 0.5) 0.69 (0.30, 1.58) 0.69 (0.37, 1.27) 5.86 × 10−3 (3.98 × 10−5, 0.14)

Figure 4.1: Distribution of Log principal hazard ratios for the NCCTG trial 874651
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causal sufficiency that risk1(Si1 = s1, Si0 = s0) < risk0(Si1 = s1, Si0 = s0) when

s1 > s0, i.e. the clinical benefit of treatment on surrogate marker predicts clinical

benefit of treatment on primary outcome. The EDE has median value -0.36 with 95%

C.I. covering 0, indicating the putative surrogate marker satisfies the average causal

necessity that risk1(Si1 = s1, Si0 = s0) = risk0(Si1 = s1, Si0 = s0) when s1 = s0,

i.e. subjects who would not benefit from the treatment on the surrogate marker

will not benefit from the treatment on the primary outcome. Because the censoring

status of 3-year DFS satisfies both the average causal necessity and average causal

sufficiency for OS in NCCTG trial, we conclude that the censoring status of 3-year

DFS is a valid principal surrogate marker for OS in this NCCTG trial. The posterior

distributions of EAE and EDE are presented in Figure 4.2.
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Table 4.4: Expected associative effect and expected dissociative effect for the NCCTG trial 874651
Expected Associative Effect Expected Dissociative Effect

Median -5.42 -0.36
95% C.I. (-10.70, -1.90) (-0.99, 0.29)

Figure 4.2: Distribution of expected associative effect and expected dissociative effect for the NC-
CTG trial 874651
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4.3.3 Identifiability and Sensitivity of Results to the Frailty Variance Prior

To investigate the sensitivity of the proposed model to the assumption about the

prior for the gamma frailty parameter, we analyze NCCTG trial 874651 assuming

prior of gamma frailty parameter η follows gamma distribution with mean and vari-

ance (variance of frailty = 1
η
) differing for µ = 1, and compare the prior distributions

and posterior distributions plotted in Figure 4.3.

When we assume relative uninformative priors of η (Gamma(2, 2) andGamma(0.1, 10)

in Figure 3(a)-(b)), the posterior distributions are both bell shaped with similar pos-

terior means (Mean = 3.33 and Mean = 3.09 respectively). To further investigate

identifiability of η, we assume the prior of η follows a gamma distribution, either with

a mean value smaller than 3 (Gamma(1, 1) and Gamma(1, 2) in Figure 3(c)-(d)) or

larger than 3 (Gamma(5, 1) and Gamma(8, 0.4) in Figure 3(e)-(f)). When the prior

of η has a small mean, the mean of posterior distributions shift right (Mean = 1.82

and Mean = 2.39 for Gamma(1, 1) and Gamma(1, 2) respectively). When the prior
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Figure 4.3: Prior distributions and posterior distributions of gamma frailty parameter for the NC-
CTG trial 874651 (solid line denotes posterior distribution, dashed line denotes prior
distribution)
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Prior: Gamma(0.1,10)
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Prior: Gamma(1,2)
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Prior: Gamma(5,1)
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(f)

Prior: Gamma(8,0.5)

of η with a large mean, the mean of posterior distributions shift left (Mean = 4.10

and Mean = 3.53 for gamma(5, 1) and Gamma(8, 0.5) respectively). Although the

posterior distribution of η is moderately sensitive to the choice of the prior, the main

results of interest, the principal hazard ratios, are quite stable under a wide variety

of prior assumptions, as is shown in Table 4.3.

4.4 Simulation Studies

4.4.1 Data Simulation

We simulate 200 data sets, with 400 subjects in each data set. One half (200)

subjects were assigned at random to treatment and 200 to control. The simula-

tion parameters are based on those estimated from our application. The binary

surrogate marker is simulated with a baseline multinomial logit model adjusted for

baseline covariates, including a continuous variable (X1 ∼ N(0, 1)) and a categorical

variable (X2 ∼ Bernoulli(0.54)), with ζζζ = (ζ10
0 , ζ

11
0 , ζ

10
x1, ζ

10
x2, ζ

11
x1, ζ

11
x2) = (-2.5, -1.6,
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-2.5, -0.5, -0.1, 0.7). Assuming a monotonic surrogate marker, we have P (Si1 =

Si0 = 1) = 0.644, P (Si1 = Si0 = 0) = 0.194, and P (Si1 = 0, Si0 = 1) = 0.162.

Frailty for each subject is assumed to follow a gamma distribution with mean of

1 and variance of 1
3
. Given the surrogate marker and frailty, failure times Ti0 and

Ti1 are independent of each other, and Tiz is simulated with the proposed shared

gamma frailty PH model assuming Weibull baseline hazard (shape = 2.5, scale = 0.1,

βββ = (β010, β011, β100, β110, β111, βx1, βx2) = (0.8, 2.2, 0,−0.8, 2.2, 0.1,−0.5)), so that

the hazard ratio is 1.0 for subjects within strata where the treatment has no impact

on the surrogate marker (Si1 = Si0 = 1) and (Si1 = Si0 = 0), and 0.2 for subjects

within the stratum where the treatment has a positive effect (Si1 = 1, Si0 = 0).

We simulate censoring time to be 5-year administrative censoring. Note that when

generating counterfactual potential primary outcomes, the corresponding censoring

distribution is assumed to be noninformative to the event time, and the inference of

event times should not be influenced by the corresponding censoring. Therefore, to

simplify our computations, we may either assume the counterfactual event times are

always observable, or the counterfactual censoring distribution is exactly same as the

observed censoring distribution. The latter conceptually provides less information

and may be less efficient in computation. Nevertheless, in this simulation study, we

adopt the latter convention and observe satisfactory results. Overall, the outcome is

censored 17.9% of the time on average on the treatment arm and 24.6% of the time

on average on the control arm.

4.4.2 Analysis Results

We analyze each simulated data set with the proposed principal surrogacy model.

The principal hazard ratios are summarized in in Table 4.5, including point estimates
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Table 4.5: Principal hazard ratios with 100 simulations
Principal Strata

Si1 = Si0 = 1 Si1 = Si0 = 0 Si1 = 1, Si0 = 0

95% Coverage Probability 90% 92% 88%
Median (True Value) 0.98 (1.00) 1.13 (1.00) 0.20 (0.20)
Mean Square Error 0.09 0.60 0.07

of median and repeated sampling coverage of 95% credible interval. The 95% credible

intervals associated with the principal hazard ratios undercover slightly, with cover-

age probabilities ranging from 88% to 92%. The posterior medians of the principal

hazard ratios are very close to the true values (we use posterior medians because of

the skewness in the posterior distributions). The parameters modeling the marginal

distribution of subjects’ principal strata membership (ζ), and the parameters model-

ing the conditional distribution of subjects’ primary outcome all have good coverage,

ranging from 92% to 98%, and the posterior means are very close to the true values.

The frailty parameter η has coverage probability of 94% with median 2.8 (S.E. =

3.1, true value = 3), showing that the shared gamma frailty parameter is reasonably

well identified.

4.5 Conclusions and Future Extensions

In the recent years, surrogacy evaluation in medical studies has aroused much

interest, because it can possibly shorten the duration of medical studies and lower

medical costs. One drawback in early research of surrogate evaluation method is

that the surrogate is a post-randomization variable, and when conditioning on a

post-randomization variable, the estimated effect of treatment on the outcome loses

a causal interpretation [45]. In this article, we construct a shared gamma frailty PH

causal model under the potential outcome framework, using principal stratification

approach to evaluate principal surrogacy without destroying the causal interpretation
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of the treatment effect on the outcome.

Previous research on principal surrogacy considers binary primary outcomes or

normally distributed continuous outcomes. We propose a shared frailty Weibull PH

model to evaluate principal surrogacy for time-to-event primary outcomes with a

binary surrogate marker. We model the correlation between the potential primary

outcomes of the same subject under different treatment arms using a shared gamma

frailty, and estimate the model in a Bayesian framework to more easily account for

the complex missing data patterns typical of causal inference settings.

When applying the proposed shared gamma frailty PH causal model to the NC-

CTG trial 874651, we find a strong treatment effect (principal hazard ratio near

zero) for the 8% of subjects estimated to benefit from the treatment on the surro-

gate markers (Si1 = 1, Si0 = 0), and principal hazard ratios not significantly different

from 0 for the 92% of subjects who would not benefit from the treatment on the sur-

rogate markers (Si1 = Si0 = 1 or Si1 = Si0 = 0). The estimated EAE with 95%

C.I. not covering 0 and EDE with 95% C.I. covering 0 imply the censoring status of

3-year DFS is a valid principal surrogate marker for OS. This finding is similar, but

not the same as previous findings by Sargent et al., the 3-year DFS can be used as

a (statistical) surrogate marker for overall survival for efficacy evaluation [52]. Note

that this result provides clear evidence for the surrogate marker values of 3-year DFS,

in contrast to the traditional regression settings, where a somewhat weak treatment

effect signal muddles the assessment of surrogate marker value of 3-year DFS.

We model frailty parameter η with gamma priors. Comparison of posterior dis-

tributions of η assuming different priors indicates the principal hazard ratio is not

sensitive to the choice of the prior for η.

A number of extensions of principal surrogacy for time-to-event outcomes are
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possible. For a binary surrogate marker, the CEPrisk consists of only 4 points. For

continuous or time-to-event surrogate markers, the CEPrisk becomes a real surface ,

with x-axis and y-axis being surrogate marker values under treatment and control

arm respectively (for a two arm randomized clinical trial design), and the z-axis

being CEPrisk.

Another important extension is to extend the current model for a single trial

setting to the multiple trial setting. In this setting, hierarchical models with a

second level of clusters can be used to accommodate heterogeneity between subjects

in different trials.

Our current proposed method may also be extended to accommodate a cured

fraction of patients, i.e., cure rate models [54]. Such model considers survival prob-

abilities consisting of a cured fraction and an uncured fraction, which occur often in

cancer clinical trials and likely in our application study too (5-year survival greater

than 50%). Such a mixture model could thus be developed in conjunction with our

proposed method to simultaneously estimate the proportion of cured patients, and

to evaluate principal surrogacy. Surrogacy evaluation has the potential to be more

accurately estimated by disentangling cured from not-yet-failed patients.

Finally, although it appears to be sufficient for our application of interest, we

model frailty with a gamma distribution primarily because of mathematical conve-

nience. Its simple density leads to relatively straightforward estimation using a Gibbs

sampler. Identifiability is maintained for a Weibull hazard function even without re-

gressors, as long as the frailty distribution has a finite mean. In the future, we

may extend the frailty model to the natural exponential family, such as the inverse

Gaussian distribution or positive stable distribution. We would like to extend of the

current PH model assuming a parametric Weibull baseline hazard to a semiparamet-
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ric Cox PH model where the baseline hazard is estimated nonparametrically. This

will require inference based on the partial likelihood, instead of full likelihood in the

current model. This also opens up the more general topic of estimating partial like-

lihood model with missing data in a Bayesian setting, an area where there is little

existing research [8, 27, 51].

Appendix

Gibbs Sampler for Shared Gamma Frailty PH Causal Model Estimation

Let XXX i denote baseline covariates for subject i, and

θiz = exp(βzs1s0I(Si1 = s1, Si0 = s0, Zi = z) + βββ
′

xXXX i).

1. Draw of η| rest .

Let π(η) denote the distribution of η. The posterior distribution of η is

f(η|rest) ∝

(
n∏
i=1

Wi

)η−1

ηnη
exp (−η

∑n
i=1Wi)

[Γ(η)]n
× π(η)

2. Draw of γ| rest .

We choose the conjugate prior π(γ) ∼ Gamma(ρ1, ρ2). The posterior distribu-

tion of γ is:

γ|rest ∼ Gamma

ρ1 +
n∑
i=1

1∑
z=0

δiz,

(
ρ−1

2 +
1

α

n∑
i=1

1∑
z=0

Y α
iz θizWi

)−1


3. Draw of α| rest .

Let π(α) denote the prior for α. The posterior distribution of α is:

f(α|rest) ∝

(
n∏
i=1

1∏
z=0

Y δiz
iz

)α−1

exp

(
−γ
α

n∑
i=1

1∑
z=0

Y α
iz θizWi

)
× π(α)
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4. Draw of β| rest .

Let π(βββ) denote the prior for βββ. The posterior distribution of βββ is:

f(βββ| rest ) ∝ exp

(
βββ
′

n∑
i=1

1∑
z=0

δizXXX is1s0 −
γ

α

n∑
i=1

1∑
z=0

Y α
iz θizWi

)
× π(βββ)

whereXXX is1s0 denote the hazard function covariates for subject i within principal

strata (s1, s0).

5. Draw of ζ|rest.

Let π(ζζζ) denote the prior for ζζζ. The posterior distribution of ζζζ is

f(ζζζ| rest ) ∝ exp

(
n∏
i=1

1∑
s1=0

s1∑
s0=0

(ζs1,s0 + ζs1,s0x XXX i)− log

(
1∑

s1=0

s1∑
s0=0

exp(ζs1,s0 + ζs1,s0x XXX i)

))

× π(ζζζ)

where ζ0,0 = 0 and ζ0,0
x = 0 for identifiability.

The posterior distributions of η, α, βββ and ζζζ are not the closed form of a known

distribution; thus we implement a Metroplis random walk algorithm within

Gibbs sampler to get random draws from their posterior distributions.

6. Draw of counterfactual surrogate marker Si(1−zi).

Let Si = (Si1, Si0), and Yi = (Yi1, Yi0). The distribution of the unobserved
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surrogate marker conditional on the observed data and parameters is

f(Si(1−zi)|ζζζ,βββ, α, γ, η, T ) = f(Si(1−zi)|ζζζ,βββ, α, γ, η, Si(zi),Wi, Yi)

∝ f(Si,Wi, Yi, ζζζ,βββ, α, γ, η)

∝ f(Si|ζζζ,XXX i)f(Yi|Wi, Si,βββ)

∝ pi,s1,s0 × pi,s1,s0

∼ BERN(ps1 , ps0); zi = 0, szi = 0

= I(Si(1−zi) = 1)or BERN(1); zi = 0, szi = 1

= I(Si(1−zi) = 0)or BERN(0); zi = 1, szi = 0

∼ BERN(ps1 , ps0); zi = 1, szi = 1

ps1 = P (si(1−zi) = 1, si(zi)|XXX i, ζζζ)× P (yi|wi, si,βββ)

ps0 = P (si(1−zi) = 0, si(zi)|XXX i, ζζζ)× P (yi|wi, si,βββ)

7. Draw of counterfactual event time Ti(1−zi)

The distribution of the unobserved event time conditional on the observed data

and parameter is

f(Ti(1−zi)|ζζζ,βββ, α, γ, η, T ) =f(Ti(1−zi)|ζζζ,βββ, α, γ, η,Wi, Si)

=f(Ti(1−zi)|Wi, Si,βββ)

=h(Ti(1−zi)|Wi, Si,βββ)S(Ti(1−zi)|Wi, Si,βββ)

=γTα−1
i(1−zi)Wie

βzs1s0I(Si1=s1,Si0=s0,Zi=1−zi)+βββ
′
XXXXi×

e
− γ
α
Tα
i(1−zi)

Wie
βzs1s0 I(Si1=s1,Si0=s0,Zi=1−zi)+βββ

′
XXXXi



CHAPTER V

Summary and Future Extensions

5.1 Summary of Results

This dissertation focuses on causal modeling under the potential outcome frame-

work using a principal stratification approach to estimate effects of treatment when

there is noncompliance or partial compliance in longitudinal randomized clinical tri-

als, and assess principal surrogacy in the time-to-event setting. Under traditional

analytic approaches, post-randomization variables such as compliance behavior in

randomized clinical trials and dosage tolerance in developmental toxicology studies

may confound the estimation of treatment effects. Similarly, assessment of surrogacy

is challenging because almost by definition the surrogate marker must be observed af-

ter treatment assignment. By framing these problems using the “potential outcome”

paradigm we can finesse the post-randomization variable issue by developing “princi-

pal strata” that can be viewed as pre-randomization variables, and the causal effects

of treatment can be calculated accordingly. Surrogacy can be analogously assessed

in the framework of potential outcomes when problems are formulated in causal

pathways. A major challenge we face in general is the complex missing data struc-

ture, where at least half of the “complete data” are missing. As a result, Bayesian

97
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approaches are employed for estimation and statistical inference.

Chapter II focuses on causal modeling of compliance behavior in longitudinal

studies, where compliance behavior and clinical outcome are both measured longitu-

dinally. The uniqueness of the proposed model lies in the joint modeling of longitu-

dinal compliance and outcomes, and their Markov relationship at consecutive time

points, such that we can estimate not only the causal effect of the treatment, but

also the impact of such causal effects on “future” compliance. We demonstrate the

proposed method with a cognitive behavior treatment study for suicide attempters,

which shows a substantial increased complier average causal treatment effects rel-

ative to an intent-to-treat analysis, and provides evidence that the study subjects

could sense the causal effect of treatment and comply if they sense such efficacy.

Chapter III focuses on partial compliance in medical research with escalating

dosage schedules, when efficacy of intervention and maximum tolerable dose are both

of interest. Such study designs make the actual received dosage a post-randomization

variable, and thus a simple comparison of clinical outcomes between randomization

groups stratified by treatment-versus-control dosage level received may no longer

have a causal interpretation. Within the potential outcome framework, we define

pre-randomization “principal strata” by the potential dosage tolerance under treat-

ment, and estimate the treatment effect within the population of subgroups with

given dosage tolerance under active treatment. In our proposed causal model, we

consider a pair of post-randomization variables, including potential dosage tolerance

under all possible treatment assignments and potential adverse event severity under

all possible treatment assignment. We then subsequently estimate all model parame-

ters using a Bayesian approach to accommodate the complex missing data structure.

The proposed method is applied to an efficacy and safety study for painful bladder
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syndrome. We find that the principal stratification analysis suggests that the stan-

dard per-protocol analysis may overestimate the causal effect of treatment at higher

doses, since the per-protocol analysis includes control subjects who could not tolerate

the higher treatment doses, and whose response under control was lower on average,

making the treatment effect larger in the as-treated analysis.

In many circumstances, medical studies evaluating the efficacy of an intervention

need either long follow-up periods or expensive or invasive procedures to obtain the

primary outcome. This motivates the considerable attention to surrogate evaluation

in recent years, which aims to use alternative measures (“surrogate marker(s)”) in

lieu of the primary outcome to evaluate the efficacy of an intervention. However,

conventional surrogate evaluation methods fail to provide a causal interpretation,

as surrogate markers that are conditioned on in regression are post-randomization

variables. Principal surrogacy, defined based on the concept of principal stratifi-

cation, overcomes such shortcomings. The current literature of principal surrogacy

focuses on normally distributed continuous primary outcomes or binary outcomes. In

Chapter IV, we propose a shared gamma frailty proportional hazard causal model to

study principal surrogacy for time-to-event primary outcomes. The proposed model

is constructed under the potential outcome framework using a principal stratification

approach, and a gamma frailty model is used to correlate the potential outcomes of

an individual under different treatment arms. With the proposed model, we define

the principal hazard ratio, expected associative effect and expected dissociative effect

to evaluate principal surrogacy. We again use a Bayesian approach to accommodate

the complicated missing data structure. We use simulations to study the repeated

sampling properties of the proposed model. We illustrate the proposed model and

estimation method with a randomized clinical trial of colorectal cancer to study the
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censoring status of 3-year disease free survival as the principal surrogate for 5-year

overall survival as the primary outcome. We find that the censoring status of 3-year

disease free survival can serve as a principal surrogate for 5-year overall survival, as

there is little evidence of reduction of risk among subjects whose censoring status of

3-year disease free survival status is estimated not to change as a result of treatment,

but there is strong evidence of risk reduction among subjects with censoring status

of 3-year disease free survival as a result of treatment.

5.2 Proposed Future Extensions

Many assumptions in causal modeling under the potential outcome framework are

untestable in practice, and while are often reasonable based on substantive consid-

erations, may be doubtful in some settings.

• The first subassumption of the SUTVA implies that there is no interference

between subjects. This assumption is standard in randomized clinical trials. It

may not be satisfied in infectious disease setting when the potential outcomes

of different individuals may be dependent on each other.

• The monotonicity assumption adds restriction on the potential outcomes under

different treatment arms, and often eliminates the existing possibility of “defier”

principal strata, and sometimes is a strong assumption about the nature of

the population. When reasonable, this assumption may be replaced with a

weaker version of itself, “stochastic monotonicity assumption”, which may be

implemented through Bayesian estimation method with MCMC algorithms [14].

• The exclusion restriction assumption requires no causal effect of treatment

within the principal strata with same value of potential strata variable under
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different treatment arms, which may not be satisfied in some cases, such as the

CBT study with patients having depression and treated with cognitive therapy.

We do not assume exclusion restriction in Chapter II, and found in the end

that there is indeed a negative effect to be randomized to the treatment group

for not-takers. In surrogate evaluation method, we do not assume exclusion

restriction because one goal of surrogacy assessment is to estimate the degree to

which the effect of treatment on the surrogate impacts the effect of treatment

on the primary outcome.

• The missingness mechanism is assumed to be missing at random through the

three projects in this dissertation. Possible extensions include allowing for non-

ignorable missingness, such as latent ignorability, which assumes ignorability

only within principal strata [42].

The non-identifiability issue is often faced in causal inference due to large amount

of missing data relative to a “complete data” framework and its often complex miss-

ingness structure. In Chapter II, we rely on the normality assumption to identify

the mixture components associated with the complier and not-taker groups in the

control arm. An alternative to this approach would be to weaken or eliminate this

parametric assumption and rely on either observed predictors of compliance or prior

distributional assumptions to induce posterior modes [46]. In Chapter III, identifi-

cation is also an issue, and is achieved by making a variety of assumptions which,

though reasonable and not contradicted by any of the observed data, may not be

correct. We could extend this to causal inference settings when full identification is

not possibly considered, either by focusing on bounds of causal effects [10], or use

of Bayesian methods that do not require identified likelihoods if proper priors are

utilized [14]. In Chapter IV, we investigate the identifiability of variance of frailty of
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the proposed shared gamma frailty PH causal model in the application by comparing

priors for the gamma parameter with posteriors for the gamma parameter. It has

been shown that the variance of a frailty can be inferred from a frailty PH model

even in the univariate case, as long as the hazard function model has at least one

covariate and the covariate is sufficiently variable. In our proposed causal model, we

include both the principal strata membership and baseline covariates in the hazard

function to protect us from the unidentifiability of the frailty variance.

For surrogacy assessment with causal inference under the potential outcome frame-

work using principal stratification approach, a number of extensions for time-to-event

outcomes are desirable, such as extension to continuous or time-to-event surrogate

markers with CEPrisk becoming a real surface, to a multiple trial setting from the

current single trial setting, and to cure models to accommodate a cured fraction

of patients, and to semiparametric Cox PH model with missing data and Bayesian

estimation method.
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