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 	Chapter	1

Introduction	

1.1 Motivation	

There was a time when astronomers could only study space objects from Earth’s surface, 

a time when communication between two people living on opposite sides of the Earth 

could take months or even years. Spacecraft now enable us to watch videos from Mars 

rovers and to almost instantly communicate worldwide. While space missions have vastly 

improved our exploration and communication capabilities, they have also introduced a 

need to manage new challenges that arise due to the harsh nature of the space 

environment. Hazards in the space environment include solar and galactic radiation 

[101][9][98][5], space debris and meteoroids [9], extreme temperature changes [101], and 

differential charging [83][42]. These hazards can damage spacecraft components or even 

subsystems causing failures and inability to complete the mission or interruptions in 

mission operation.  

   There are numerous examples where space missions suffered from failures due to the 

harsh space environment [9]. In 1994, Telsat, Canada’s Anik E-1 communications 

satellite, suddenly began to spin out of control. Two hours later its sister satellite, Anik E-

2, also without warning, began to spin out of control [54][9]. Telsat engineers quickly 

determined that the gyroscopic guidance system on both satellites had failed causing an 

interruption of cable TV, telephone, newswire, and data transfer services throughout 
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Canada. By activating a backup guidance system, engineers restored Anik E-1 to service 

in about eight hours. Anik E-2’s backup system, however, failed to activate, leaving 

Telsat with the unpleasant prospect of losing a $228 million asset and revenues of an 

estimated $3 billion [9][1]. Telsat engineers restored Anik E-2 to service in August 1994 

[50]. The Earth sensors were still operating normally [18], and the onboard attitude 

control computers were also fully operational, but not reprogrammable. Therefore, 

special Earth observation stations were constructed at each end of Canada to monitor the 

satellite's position, using its functional control jets to finely position the satellite.  

   The Far Ultraviolet Spectroscopic Explorer (FUSE) mission [65] suffered multiple 

reaction wheel and gyro failures [56][11][91]. Each time a new reaction wheel or set of 

gyroscopes was lost, a new control scheme was manually developed by engineers on the 

ground and uploaded to the spacecraft. Each new failure caused interruption in mission 

operation and loss of valuable mission time. In the end, FUSE kept operating with only 

one reaction wheel and magnetic torque bars [91]. Tracking and Data Relay Satellite 

(TDRS)-1 had 37 reported single event upsets during the major part of its solar activities 

[9][103]. The most serious incidents for the TDRS spacecraft were those related to the 

attitude control system processor electronics. Rapid manual intervention was required to 

prevent loss of control of the satellites. Several studies concluded that these anomalies 

were due to surface charging [41]. 

   Due to the high cost associated with space missions, successful completion of mission 

goals and uninterrupted operation are highly desirable. One way to deal with most 

anomalous situations arising during the mission is to provide the spacecraft with a 

comprehensive plan for mission completion that includes post-failure recovery strategies. 
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This approach can increase the likelihood of uninterrupted mission operation through 

high-speed onboard reconfiguration as compared to the traditional approach of activating 

safe mode and waiting for the ground station to upload a new response for a faulty 

situation. Another advantage of a software-based reconfiguration approach is reduced 

cost compared to methods that involve carrying thus launching redundant hardware. 

Onboard planning for space missions has been achieved in the past 

[68][107][22][66][67][85]. There are also missions where some tolerance for faults has 

been incorporated [68][95]. Scientists have developed algorithms for onboard planning 

using Iterative Refinement Search [22][85] and similar methods based on constraint 

satisfaction [66][67][95] to build plans that can automatically adapt activity schedules to 

changes in mission goals or sensor measurements. While these methods are fast and 

reactive (i.e., suitable for implementing online), the resulting plans may not be optimal 

with respect to scientific data that is collected in the presence of uncertainties.  

   To deal with planning with autonomous fault management, additional capabilities of 

fault detection and reconfiguration are required. The combination of fault detection and 

reconfiguration provides fault tolerance. Researchers from the control systems and 

artificial intelligence communities have developed methods for achieving fault tolerance 

[111][104][68]. The fault tolerance methods developed by control system engineers are 

based on dynamics models [111], whereas the methods developed by engineers in the 

artificial intelligence community are based on compositional models [68]. Since a 

spacecraft is a system that has dynamics and compositional behaviors, comprehensive 

fault tolerance requires models of both. To the best of our knowledge, there is no 

planning framework for spacecraft to-date that implements comprehensive fault 
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tolerance. This fact motivated us to develop such a capability. Although the models 

formulated in this thesis are focused on optimal attitude maneuvers, our methods can be 

generalized. 

   This thesis introduces the Comprehensive Fault Tolerant Science-Optimal Attitude 

Planning (CFT-SOAP) framework. To implement this framework, we have used the 

theory of Markov Decision Processes (MDPs) also known as Stochastic Dynamic 

Programming (SDP) [15][84][58]. Both the MDP and SDP refer to a mathematical 

framework that relies on algorithms such as value iteration and policy iteration [89][58] 

for the purpose of generating optimal decisions under uncertainty for systems that exhibit 

the Markov property [84]. CFT-SOAP does not implement dynamics-based fault 

detection.  Instead it connects with an external dynamics-based fault detector enabling 

CFT-SOAP to generate optimal mission plans with comprehensive fault tolerance. 

1.2 Major	Challenges			

One of the most important challenges in developing CFT-SOAP is the integration of 

compositional-model fault tolerance with dynamics-model fault tolerance. Reasoning 

with compositional models is accomplished via a discrete-time finite state space 

governed by logical inference. Reasoning with dynamics models requires a continuous-

time state space governed by differential equations. Rather than combining compositional 

and dynamics models we achieve comprehensive fault tolerance through information 

sharing. In this way, we keep the dynamics and compositional models in their original 

form. Also, we can use the well-developed reasoning methods based on dynamics and 

logic augmented by shared information. CFT-SOAP therefore must compute optimal 

mission-related actions under given fault and configuration information, draw 
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conclusions about the faults, resolve conflicts between the dynamics-based and logic-

based fault decisions, and make optimal reconfiguration decisions.   

   Since CFT-SOAP is a comprehensive framework, it inherits the complexities of both 

compositional and dynamics models. For example, an attitude maneuvering plan must be 

optimal with respect to fuel/energy consumption and reward obtained from scientific data 

collected. Fault tolerance for attitude maneuvering requires knowledge of probabilities of 

false alarms and missed detections based on both logic and observer (dynamics) fault 

detection models. This integration requires numerous design parameters in the MDP 

which in turn introduces a high level of model complexity. Additionally, all models 

handled by an MDP are applicable only when obeying the Markov property. Per the 

Markov property, future state probabilities must depend only on the present state and any 

choice(s) made for the present state. System states therefore must be defined such that 

transitions to any future are determined from the present state and are independent of all 

past states.   

   Complex models are difficult to manage due to the curse of dimensionality associated 

with MDPs [80][79]. Although computing technology continues to advance, space-grade 

processors lag state-of-the-art. Therefore, models and algorithms must be developed to fit 

computations into the available resources if the MDP policies are to be computed online. 

In this thesis, we manage complexity by decomposition of the CFT-SOAP MDP into 

three separate MDPs for planning, fault detection, and reconfiguration thereby reducing 

the computational effort required to generate the policies and the memory space required 

to store them. We also present approximate dynamic programming (ADP) approaches for 

managing the decomposed MDPs as will be described below. Regardless of the 
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decomposition and the ADP approaches, it might be more feasible (as we suggest in this 

thesis) to compute a set of optimal policies offline and upload them to the spacecraft 

when required. 

1.3 Technical	Approach	

Our approach is to use a multi agent architecture where goal-based task planning, fault 

detection, and reconfiguration are divided into separate MDP formulations that interact 

and share information with each other. As shown in Figure 1.1, our approach integrates 

four software agents [89]. Three of the agents on the left are based on MDPs whereas the 

fourth agent is a non-MDP-based interface agent. The interface agent interprets 

observations from the composition and dynamics-based control and configuration models 

in the form of states for the three MDP-based agents. The states for each of the MDP-

based agents contain information from both the compositional and dynamics models. In 

response to the states provided by the interface agent, the MDP-based agents transmit the 

corresponding optimal policies. These policies are interpreted and distributed by the 

interface agent as commands for the control architectures within the dynamics and 

composition-based models. MDPs were selected because they support complex decision 

making in the presence of uncertainties.  
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Figure 1.1: MDP based multi-agent approach 

1.4 Original	Contributions	and	Innovations	

The contributions of this thesis are in formulations of MDPs and approximate dynamic 

programming approaches for spacecraft planning, fault detection, and reconfiguration. 

Innovations involve the application of techniques to share information between 

compositional and dynamics models, and in decomposing the problem to reduce 

complexity.  Specific contributions and innovations are listed below. 

1.4.1 Contributions	

The following are the original contributions of the work presented in this thesis: 

 An integrated Comprehensive Fault Tolerant Science-optimal Attitude Planning 

(CFT-SOAP) MDP has been formulated for spacecraft missions (Chapter 3). This 

MDP can produce optimal policies for actions related to planning, fault detection, 

and reconfiguration simultaneously. Computational complexity of the integrated 

MDP has been analyzed for a spacecraft attitude maneuvering case study. CFT-
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SOAP is the first planning framework with integrated comprehensive fault 

tolerance.   

 To reduce computational complexity, a decomposition strategy for the CFT-

SOAP MDP based on interdependencies of states (Chapter 3) has been developed. 

As a result of the decomposition, the problem is split into manageable sub-

problems, several of which are static. 

 An MDP-based framework for science-optimal attitude planning with 

consideration of failure probability (Chapter 4) has been developed. Tradeoffs 

between selections of various design parameters have been explored through 

spacecraft maneuvering examples. 

 An approximate dynamic programming (ADP) algorithm for science-optimal 

attitude planning with consideration of failure probability has been developed 

based on decomposition of science goals (Chapter 4). A case study for ADP 

shows near-optimal performance. 

 An MDP-based comprehensive fault detection and diagnostic framework has been 

developed. The framework has the ability to integrate with external dynamics-

based fault detectors to enable use of general detection algorithms (Chapter 5) 

including but not limited to MDPs.  

 An approximate dynamic programming algorithm for comprehensive fault 

detection has been developed based on a task based decomposition of states 

(Chapter 5). 

 A comprehensive MDP-based optimal fault reconfiguration framework has been 

developed for a spacecraft attitude maneuvering system (Chapter 6). 
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 A detailed case study based on the failures that occurred in the Far Ultraviolet 

Spectroscopic Explorer (FUSE) mission has been presented. In this case study, a 

CFT-SOAP solution to automatically reconfigure in the presence of faults 

relevant to FUSE is compared with an alternative planning framework known as 

ASPEN [85] and a fault tolerance framework known as Livingstone [104]. 

1.4.2 Innovations	

The following are the innovations of this work that together enable comprehensive fault 

tolerance and science-optimal planning. 

 We have incorporated science rewards, dynamics-dependent maneuver costs, and 

failure probability into a unified spacecraft mission planning algorithm. This 

enables task-level planners to incorporate the effects of physics-based control 

schemes. 

 We have developed conflict resolution schemes for co-existing fault detectors. 

These schemes improve fault detection quality over the one which is possible to 

achieve with separate dynamics-based and compositional models due to the 

ability to incorporate shared information. 

 We have developed an integrated value function that incorporates terms related to 

mission accomplishment with fault management value formulated in terms of 

safety. This formulation is distinct from traditional fault-configuration mapping 

where reconfiguration decisions only depend upon the nature and location of 

faults. Our framework enables the spacecraft to respond to the failures in a way 

that depends upon mission context as well as location and severity of faults. This 

ability is especially useful for space missions with objectives to record or observe 
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events that occur infrequently. In such missions, if the spacecraft fails to collect 

important data, the mission will fail. 

 We have demonstrated the application of the CFT-SOAP on a case study of a real 

space mission, i.e. FUSE, where MDP decompositions and additional variables in 

the state space specific to the requirements of the FUSE mission have been 

included. This provides insight into how the work presented in this dissertation 

can be applied in practice. 

1.5 Thesis	Outline	

The thesis is divided into seven chapters. In Chapter 2, we present pertinent background 

and discuss related literature.  Chapter 3 presents the integrated MDP-based framework 

that forms the basis of CFT-SOAP. This framework encompasses planning, fault 

detection, and reconfiguration, all in one MDP. The computational complexity of this 

framework has been illustrated through a simple example, providing motivation for the 

ADP formulations that reduce computational overhead via decomposition of the MDP 

into multiple smaller MDPs. Chapter 4 presents our implementation of science optimal 

attitude planning with consideration of failure probabilities using an MDP formulation. 

Spacecraft case studies included in the chapter illustrate the tradeoffs in parameter 

selection for the planning MDP associated with discounting the future rewards. Case 

studies to show the comparison of the MDP-based trajectories under high-risk versus 

low-risk environment are also described. The approximate dynamic programming 

algorithm used to mitigate complexity is also described in Chapter 4 along with case 

study to show the performance of the ADP. Chapter 5 presents conflict resolution 

algorithms for fault detection and diagnosis. It also presents a collaborative fault 
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detection and diagnosis algorithm based on an MDP formulation. An approximate 

dynamic programming algorithm approach is also used to mitigate complexity in the 

Chapter 5 MDP formulation. Chapter 6 presents an MDP based comprehensive 

reconfiguration framework. Chapter 7 includes FUSE case study and the comparison of 

CFT-SOAP with an ASPEN-Livingstone framework.  Chapter 8 presents conclusions and 

future work.  
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 	Chapter	2

Background	

 

This chapter provides a review of technical literature relevant for this thesis. Section 2.1 

presents an overview of planning and scheduling for space missions without considering 

fault tolerance. Section 2.2 presents a review of constraint satisfaction problems 

including techniques that are primary alternatives of our approach for solving fault 

tolerant attitude planning problem. Section 2.3 presents some references and methods in 

hybrid systems or switched control systems that are extensively used for fault tolerant 

control. Section 2.4 describes existing frameworks for fault tolerant attitude planning. In 

Section 2.5, spacecraft attitude kinematics and dynamics models are presented. A review 

of the literature on spacecraft attitude estimation and control is presented in Sections 2.6 

and 2.7 respectively. Section 2.8 presents a review of Bayes nets that is used in this thesis 

to model interdependence of probabilities of failures for spacecraft components. A review 

of Markov Decision Processes is presented in Section 2.9 and the Approximate Dynamic 

Programming literature is discussed in Section 2.10. A brief introduction to some basic 

Astrodynamics concepts useful in understanding the planning formulations of this thesis 

is presented in Section 2.11. 
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2.1 Spacecraft	Mission	Planning	and	Scheduling	

There are five main ingredients of the classical artificial intelligence (AI) planning 

problem. A finite set of discrete states, a set of state-dependent actions, the specification 

of desirable or goal states, the specification of an initial state, and a search method to 

determine an optimal sequence of actions (i.e. the solution) that leads from initial state(s) 

to goal state(s). For a given size of the state and action spaces, the computational 

complexity of finding the solution depends upon the search method used. All the 

planning methods are centered on the method of search that they use to find a solution. 

Typical real-time schedulers, on the other hand, see the world as a set of resources and a 

set of resource-consuming tasks, requiring up to a known worst-case utilization of each 

computational resource (e.g., processor or communication). Schedulers allocate resources 

to tasks, assigning each a start time and resource set that guarantee all deadlines are 

satisfied, making tradeoffs as needed to degrade best-effort tasks given resource 

constraints [24][77]. One of the basic algorithms used for scheduling is earliest-deadline-

first scheduling [106][57] where tasks are placed in a priority queue and whenever a 

scheduling event occurs (task finishes, new task released, etc.) the queue is searched for 

the task closest to its deadline. Another basic algorithm for scheduling is rate-monotonic 

(RM) scheduling [7][109] where priority is given to the tasks with shortest period. 

   Autonomous spacecraft task planning and scheduling have been achieved for a limited 

set of science missions [22][43][67]. Algorithms such as iterative repair [22] have been 

selected due to their ability to adapt existing plans without prohibitive computational 

overhead. Iterative repair supports continuous modification and updating of a current 

working plan in light of changing operational context. Iterative repair adapts an existing 
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plan by using search-based algorithms such as backtracking [68]. This results in plan 

improvement but optimality in general is not guaranteed by iterative repair due to the 

local nature of search in iterative algorithms. Reference [22] discusses the use of iterative 

repair techniques to support a continuous planning process as is appropriate for 

autonomous spacecraft control. This allows the plan to incorporate execution feedback 

such as early or late completion of activities and over- or under-utilization of resources. 

Another reference on integrated planning and scheduling is [66] that presents a Heuristic 

Scheduling Testbed System (HSTS). HSTS is a representation and problem solving 

framework that provides an integrated view of planning and scheduling. HSTS 

emphasizes the decomposition of a domain into state variables evolving over continuous 

time. This allows the description and manipulation of resources more complex than are 

modeled in classical task scheduling. The inclusion of time and resource capacity into the 

description of causal justifications allows a fine-grain integration of planning and 

scheduling and a better adaptation to problem and domain structure. HSTS puts special 

emphasis on leaving in as much temporal flexibility as possible during the 

planning/scheduling process to generate better plans/schedules with less computation 

effort. Schedules developed in HSTS implicitly identify a set of legal system behaviors. 

This is an important distinction with respect to classical approaches which, instead, 

specify all aspects of a single, nominal system behavior. In [107], a multi-agent planning 

system (MAPS), which is used to produce applicable action sequence under complex 

constraints, is built for autonomous planning. The planning model is capable of 

describing simultaneous activities with continuous time. The model can also handle 

resource and temporal constraints. The architecture of MAPS includes planning agents 
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(PAs) and a planning manager agent (PMA). Each subsystem in the spacecraft can be 

considered an agent, with the agents combined to complete the given goals. PMA 

manages the mission planning system and functions as a communication medium 

between PAs. All PAs must register with PMA before they can have any interactions 

with the others in the system. 

2.2 Constraint	Satisfaction	Problems	

Constraint Satisfaction Problems (CSPs) represent a class of AI planning problems where 

states belong to specific domains of values and there are constraints over allowable 

combinations of values for subsets of state variables. CSPs can be solved with algorithms 

that take advantage of the specific state-space formulation. A constraint satisfaction 

problem (CSP) requires a value, selected from a given finite domain, to be assigned to 

each variable in the problem, so that all constraints relating the variables are satisfied. A 

sequence of actions is then selected that allow the plan to satisfy goals and which allow 

constraints, numerical and symbolic, to be satisfied.  Many combinatorial problems in 

operational research, such as scheduling and timetabling, can be formulated as CSPs. In 

[45], the authors explore the number of tree search operations required to solve binary 

constraint satisfaction problems. They show analytically and experimentally that the two 

principles of first trying the places most likely to fail and remembering what has been 

done to avoid repeating the same mistake twice improve backtracking search 

performance. In [34], Dechter identifies classes of problems that lend themselves to easy 

solutions, and develops algorithms that solve these problems optimally. Other useful 

references on CSPs by the same author include [33][35]. Brailsford et al. describe CSPs 

and solution techniques in [17], and also show how various combinatorial optimization 
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problems are solved using a constraint satisfaction approach. Constraint satisfaction 

approaches are compared with well-known operational research (OR) techniques such as 

integer programming, branch and bound, and simulated annealing. The constraint 

Processing (CP) approach in [17] is unlikely to be competitive with the best local search 

methods, such as simulated annealing, tabu search and genetic algorithms, if it is used in 

a pure form, since large regions of the solution space are often unexplored. However, if 

ideas from local search are incorporated, such as randomization and restart procedures, 

then CP becomes a serious competitor to local search for obtaining approximate 

solutions. 

2.3 Hybrid	Systems	

The hybrid systems of interest to this work contain two distinct types of components, 

subsystems with continuous dynamics and subsystems with discrete dynamics that 

interact with each other. Note that CFT-SOAP has fault-tolerant control as part of the 

architecture which qualifies as a hybrid system in some sense although we did not use the 

theory of hybrid systems, strictly speaking, for developing CFT-SOAP. Hybrid systems 

arise in varied contexts for applications in manufacturing, communication networks, 

autopilot design, automotive engine control, computer synchronization, and chemical 

processes, among others. Hybrid systems have a central role in embedded control systems 

that interact with the physical world. They also arise from the hierarchical organization of 

complex systems and from the interaction of discrete planning algorithms and continuous 

control algorithms in autonomous, intelligent systems. A survey on modeling and control 

of hybrid systems is presented in [60]. This survey highlights certain characteristics of 

hybrid systems. A simple three fluid-filled tank system is used to illustrate some 
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modeling approaches. Variations to this example are used to further explore hybrid model 

characteristics. An expository discussion is also presented in [60] on analysis and control 

techniques for hybrid systems. Work on model-predictive control of discrete-time hybrid 

systems is presented in [78]. The algorithm abstracts the behavior of the hybrid system by 

building a ‘‘tree of evolution.’’ The nodes of the tree represent the reachable states of a 

process, and the branches connect two nodes if a transition exists between the 

corresponding states. A cost-function value is associated with each node, and based on 

this value the exploration of the tree is driven. Other references on hybrid systems 

include [3][6]. In [6], a brief introduction to the theory and applications of hybrid systems 

is presented and an outline of the papers in the associated special issue is given. In [3], 

output feedback control of a class of stochastic hybrid systems is discussed. 

2.4 Architectures	for	Fault	Tolerance	and	Mission	Planning	

Researchers in the artificial intelligence (AI) community have proposed a variety of 

architectures for planning/scheduling and plan execution [68][115][107][89].  Most 

represent state as a list of symbolic (discrete) feature/value pairs, enabling search-based 

algorithms to decompose, select, and sequence activities appropriate for the designated 

task-level goal and the observed system state.  For spacecraft for which operations 

involve nontrivial uncertainty, reasoning is typically based on Bayesian and/or Markov 

Decision Process (MDP) models [15].  The MDP builds optimal policies that allow an 

agent to act with incomplete or uncertain information about itself or its environment. 

Note that MDP solves slightly more general form of the AI planning problem where state 

transitions involve uncertainties and possess Markov property. Although common in the 

literature, few AI systems have successfully been deployed in space systems due to their 
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computationally-intensive deliberative and often difficult-to-validate nature.  Rather than 

extensively trade the nontrivial set of AI architectures, we primarily reference Remote 

Agent [68][46][76] due to its emphasis on fault detection and reconfiguration and its 

focus on space applications.  Below, we describe this architecture in more detail since, 

although 15 years old, it represents one of the most successful multi-layer AI 

architectures implemented and deployed on a spacecraft. Following our description of 

Remote Agent as a representative AI architecture focusing on fault management, we 

describe fault-tolerant control [74][111][13].  Fault-tolerant control represents more 

traditional guidance, navigation, and control (GNC) models in which physical 

continuous-valued state and control input vectors are related through physics-based 

models to describe the motion of a system through its environment.  As described below, 

fault tolerance is then achieved through a mode-based supervisor and control law 

adaptation. 

2.4.1 The	Remote	Agent	

 Researchers from the Jet Propulsion Laboratory (JPL) and NASA Ames developed the 

Remote Agent AI architecture to enable autonomous onboard mission management 

[68][46]. Remote Agent was tested on the Deep Space One (DS-1) spacecraft and 

consisted of five main components including: 1) Planning Experts (PE), 2) Mission 

Manager (MM), 3) Planner and Scheduler (PS), 4) Smart Executive (EXEC), and 5) 

Mode Identification and Reconfiguration (MIR).  Planning Experts (PE) are on-board 

software modules that assist a task planner/scheduler either by computing solutions or by 

requesting new goals. For example, a navigation PE might request updates to main 
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engine thrust goals based on its determination of the spacecraft orbit, and the attitude PE 

might provide estimated duration of specified turns and resulting resource consumption.  

 

Figure 2.1: The original Remote Agent architecture [68] 
    The Mission Manager (MM) initiates planning/scheduling activities based on the long-

term mission profile and execution status updates. The [smart] executive (EXEC) 

provides spacecraft status data and requests plans from the mission manager.  The 

mission profile is provided at launch and can be updated from the ground. MM 

determines the goals to achieve during the next mission phase, and combines them with 

current spacecraft status. By adding constraints to the plan request, MM restricts PS to 

generate only plans that are coherent with the overall mission. This decomposition of 

planning into long-term mission planning and short-term task planning enables RA to 

undertake an extended mission with minimal human intervention.  Such multi-resolution 

planning architectures have previously been used for applications such as telescope 

science scheduling.  

    The planner/scheduler performs Iterative Refinement Search (IRS) [67] and 

chronological backtracking to define a task set that extends the existing partial plan. A 
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plan database input to the Heuristic Scheduling Testbed System (HSTS) [115] described 

above records the consequences of each problem-solving step and performs consistency 

maintenance and propagation.  Domain constraints are specified in the Domain 

Description Language (DDL) [32] within HSTS. Throughout, system state is described as 

a finite set of symbolic state variables with tokens used to describe both action and state 

literals. PS uses classical search-based planning and scheduling and is efficiently 

implemented with persistent parallel threads.  PS is able to handle non-classical goal 

types such as periodic goals, accumulation goals, and default goals. 

    EXEC is a robust event-driven and multi-threaded plan execution system. It provides a 

framework in which specific mission goals and spacecraft state can be used to customize 

control, diagnosis, and reconfiguration capabilities autonomously. It can request and 

execute plans involving concurrent and interdependent activities potentially with 

uncertain timing and outcomes. EXEC decomposes planned tasks into primitive 

commands executed closed loop (i.e., as a function of state). This enables the planner to 

reason at a higher level of abstraction.  EXEC’s design also supports close integration 

between activity decomposition and fault response. EXEC is built on the Execution 

Support Language (ESL) [43] providing parallel execution, synchronization, error 

handling, and property locks [32]. EXEC loads and executes each plan while monitoring 

task execution and spacecraft status through Mode Identification (MI). When a plan is 

completed successfully, EXEC provides current status to MM and asks for a new plan. If 

task execution fails, EXEC puts the spacecraft into safe mode but autonomously asks 

MM rather than a ground operator for an alternate plan (unless MM can no longer resolve 

the problem in which case ground operators must be involved).  EXEC achieves 
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robustness by exploiting flexibility to create and modify plans based on goals and 

observations and by handling execution failures using deductive plan repair (Mode 

Reconfiguration (MR)).  

    Livingstone [104] provided the Mode Identification and Reconfiguration (MIR) 

functionality of Remote Agent. Livingstone is a discrete model-based controller inserted 

between high-level feed-forward reasoning and low level feedback control layers in a 

physical system. MIR proposes activities to migrate a system (spacecraft) to a 

configuration that achieves a configuration goal. It has a sensing component, Mode 

Identification (MI), and a commanding component, Mode Reconfiguration (MR). Its 

model is declarative, compositional, and stochastic with concurrency support.  Mode 

Identification tracks changes in spacecraft status using input from EXEC as well as a 

spacecraft system model. It predicts state values and compares them with monitored 

values.  In case of discrepancy, it predicts the malfunction or fault most likely to explain 

the discrepancy. Mode Reconfiguration (MR) assists EXEC in generating recovery 

procedures. On the occurrence of a fault, EXEC invokes MR with current fault 

information from MI. EXEC also provides MR with global constraints and goals. MR 

performs deduction and search in a reactive loop using fast propositional reasoning 

through unit propagation along with conflict directed best-first search. Figure 2.2 shows 

the architecture of Livingstone. 
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Figure 2.2: Livingstone architecture [68] 

2.4.2 Fault	Tolerant	Control	Systems	

 While the MIR capability of RA can identify and respond to faults via discrete event 

state (mode) models, MIR does not itself regulate continuous force/torque commands, 

nor does it adapt to properties of physics-based models except by switching between pre-

specified modes.  The control systems community has studied fault management 

primarily in the context of adapting physical models and control commands. A class of 

architectures known as Fault Tolerant Control System (FTCS) has emerged. A typical 

FTCS has three layers [114][74][13]. The lowest layer is a reconfigurable feedback 

control law with state estimator. The middle layer is a fault detection and diagnosis 

(FDD) [111] scheme. At the top level is a supervisor that manages reconfiguration of the 

FDD and control layers. Figure 2.3 shows an example fault tolerant control system 

architecture. In this figure, x is the state vector for dynamic system, u is the control input 

vector, y is the output vector, F is the vector of fault flags, and M is a scalar indicating 

configuration mode of the reconfigurable controller. 
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Figure 2.3: Fault tolerant control architecture  

    FTCS have adopted numerous control law formulations.  In this manuscript we focus 

on a scheme applicable to spacecraft attitude control. Two types of fault tolerant 

controllers exist: passive strategies (robust control) [74] and active strategies (controllers 

for which reconfiguration is based on projection or on-line controller adaptation).  

Passive fault-tolerant control for a spacecraft uses a robust controller, providing a 

baseline upon which an active fault tolerant scheme could be implemented. Since the 

robustness of a controller has an effect on fault detection efficiency, a tradeoff between 

the two must be established.  An active control approach can be implemented using 

projection (i.e. controller selection from predesigned alternatives) or adaptive feedback 

control approaches (i.e. online controller redesign) [13]. The main purpose of this FTCS 

layer is to adapt to anomalous situations and either to restore nominal performance, if 

possible, or to gracefully degrade [113].  

    Fault Detection and Diagnosis (FDD) predicts faults (F) from residual signals [21] that 

indicate the deviation of actual behavior (x) of the dynamics from the nominal behavior 

(f(x, u)) based on sensor measurements (y) and fault effect models. When the system is 
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fault-free, all residuals should be driven to zero by the controller.  An FDD scheme could 

be based on state or parameter estimation or a mixture of both. FDD can be classified into 

two groups: model-based approaches and data-based approaches. A fault detection and 

diagnosis scheme should be robust, especially when model-based [112]. With sound but 

imperfect FDD models or incoming data, missed detections or a false alarm can occur. 

The decision-making in FDD can be made robust using methods such as statistical data 

processing, averaging, fuzzy decision-making, and adaptive thresholds [112][48]. 

Another issue is to distinguish between disturbances (unwanted forces/torques exerted by 

the environment), noise (distortion in sensor output signal), and faults (malfunctioning of 

sensors or actuators). Disturbance decoupling methods can also be applied.  For a 

complex system such as a spacecraft, decoupling of residuals from a set of integrated 

disturbances sometimes makes the residual completely or partially insensitive to some 

faults. From the point of view of a spacecraft, an FDD scheme should be able to detect 

multiple simultaneous faults, both abrupt and incipient. 

    Supervision is the top FTCS layer and is responsible for reconfiguration decisions (M) 

based on information from FDD and its own reasoning algorithms. Supervision schemes 

have been developed to manage diagnostic information and on-line controller 

restructuring. Supervision modules have been implemented with methods [13][74] 

including Failure Mode Effect Analysis (FMEA) [13], Intelligent Computing, Fuzzy 

Logic, Neuro-Computing, Genetic algorithms, and Probabilistic reasoning. FMEA 

models the effect of faults on observable system parameters by providing data on how 

each fault impacts these parameters.  The supervisor can be implemented using extended 
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state machine or parallel state machine logic with transition probabilities based on 

knowledge of the system. 

2.4.3 			Representational	Gaps	

Remote Agent models a spacecraft as a concurrent transition system with multiple 

components and operating modes, while FTCS models the spacecraft as a rigid or flexible 

body with associated kinematics and dynamics.  Both rely on sensor data fused into state 

estimates and translated to control output, where “control” is defined for Remote Agent 

as general action primitives and for a FTCS as a vector of physical servo/motor 

commands.  RA reasons about spacecraft components and their interactions but typically 

does not manipulate physical dynamics/kinematics parameters. On the other hand, FTCS 

can reason on the basis of equations of motion but is unable to reason about component 

interactions and task-level algorithm or software implementation properties. These 

differences define representational gaps in both architectures. One might be tempted to 

bridge these gaps by extending the capabilities of either RA or FTCS. Incorporating 

dynamics and kinematics reasoning in symbolic models is possible but difficult due to the 

tradeoff in [discrete model] resolution versus search-space tractability. On the other hand, 

incorporating qualitative component and interconnection details in FTCS not only 

requires a state-based supervision architecture that can reason about system-wide 

interactions but also the ability to reconfigure (re-plan) based on component failures and 

events associated with components  such as communication channels, processing 

elements, the payload, etc.  This thesis therefore proposes the use of both classes of fault 

management algorithms with an appropriate set of interfaces to facilitate conflict 

resolution.	
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2.5 	Spacecraft	Modeling:	Kinematics	and	Dynamics	

There are multiple ways of representing spacecraft attitude kinematics [93].  Equations 

(2.3.1a), (2.3.1b), and (2.3.1c) represent alternate ways to model the kinematics of the 

spacecraft as a rigid body. 
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  In (2.3.1a), q is a 3 × 1 vector of the first three elements of spacecraft attitude quaternion 

with respect to an inertial reference frame; q4 is a scalar representing the fourth element 

of the quaternion. Ω is a 3 × 1 vector of spacecraft angular velocities in a body-fixed 

frame. In (2.3.1b), R is the 3 × 3 rotation matrix for the spacecraft whereas ω1, ω2, and ω3 

represent components of Ω. In (2.3.1c),  1 2 3

T   represent angular velocities in the 

body-fixed frame and  1 2 3

T   represent Euler angles roll, pitch, and yaw, 

respectively, with respect to the inertial frame. There are other ways to represent the 

attitude, e.g. Euler-Rodriguez parameters [93] [51], but other forms are not used in this 

thesis. The quaternion representation is common for spacecraft as it has no singularities 

and requires only four continuous-valued quantities in its representation.  Euler angles do 
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have singularities, while rotation matrices have no singularities but must be represented 

with nine values. 

   The attitude dynamics of a rigid spacecraft can be represented as 
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     (2.3.1d) 

In (2.3.1d), (J1, J2, J3) are diagonal components of 3 × 3 inertia matrix in a body-fixed 

frame (we assume the inertia matrix to be diagonal) and (u1, u2, u3) represent control 

inputs. There are a number of ways to control spacecraft attitude [102] even with two 

control inputs instead of three [55].  In [55] a discontinuous feedback control strategy has 

been constructed which stabilizes the spacecraft to any equilibrium attitude in finite time. 

The results of the paper show that although standard nonlinear control techniques do not 

apply, it is possible to construct a stabilizing control law by performing a sequence of 

maneuvers. Also, for attitude determination, a number of ways have been developed to 

estimate the attitude from the sensor readings which may or may not provide accurate 

measurements, e.g. [61] where Kalman filtering has been used to estimate the attitude 

with gyroscopes that have both drift and bias errors. 

2.6 Spacecraft	Attitude	Estimation	

Robust spacecraft attitude estimation is required for most missions and requires fault 

tolerance. Most dynamics-based fault detectors are based on output estimation. One of 

the most useful resources in the literature of spacecraft attitude estimation is a survey 
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paper by Lefferts et al [61]. This work presents a summary of experience in the Kalman 

filtering of spacecraft attitude and offers two possible implementations of the Kalman 

filter for systems with attitude sensors and gyros with noise terms describable by a first-

order Markov process. The difference in the two schemes is only in the choice of frame 

for the update, for example using the complete four-component quaternion versus using 

the truncated quaternion where one component has been eliminated. Crassidis and 

Markley [25] present a minimum model error approach for attitude estimation. The 

approach is developed for three-axis stabilized spacecraft. Based on the implementation 

example included in [25], their algorithm is shown to be robust and accurate, able to 

estimate attitude with or without gyro measurements. The functional form of the optimal 

estimation approach involves a gradient search and a linearization technique with a linear 

Riccati transformation. This algorithm is shown to be computationally efficient and 

accurate for generating state estimates based on an implementation example. Results 

using this algorithm indicate that an MME-based approach accurately estimates the 

attitude of an actual spacecraft with the use of only magnetometer sensor measurements. 

Crassidis and Markley have also published their work on an unscented Kalman filter for 

spacecraft attitude estimation [27] and attitude estimation using modified Rodriguez 

parameters [26]. Both these authors along with Cheng have published a survey on 

modern attitude estimation methods [28]. This survey presents a quaternion estimation 

filter (QUEST), extended QUEST and the backwards-smoothing extended Kalman filter. 

Filters that propagate and update a discrete set of sigma points rather than using 

linearized equations for the mean and covariance are also reviewed. A two-step approach 

is discussed with a first-step state that linearizes the measurement model and an iterative 
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second step to recover the desired attitude states. These approaches are all based on the 

Gaussian assumption that the probability density function is adequately specified by its 

mean and covariance. Other approaches that do not require this assumption are also 

reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-

parameter probability density function on SO(3). Finally, the predictive filter, nonlinear 

observers and adaptive approaches are shown. 

2.7 Spacecraft	Attitude	Control	

Attitude control is fundamental for ensuring spacecraft stability thus requires fault 

tolerance. Multiple attitude control schemes are often required for implementing full 

reconfigurable control. A careful presentation of spacecraft attitude control methods is 

given by Bong Wie [102]. This book treats the basics of dynamic systems modeling and 

control. The attitude control and stabilization problems of rigid spacecraft under the 

influence of reaction jet firings, internal energy dissipation, or momentum transfer via 

reaction wheels or control moment gyros (CMGs) are discussed in this book. These 

techniques can provide a good support for our proposed framework especially when 

different types of redundant actuators are used in the spacecraft for fault tolerance. A 

variety of control problems of spinning as well as three-axis stabilized spacecraft are also 

treated in [102]. Emphasis is placed on large-angle reorientation maneuvers in which a 

spacecraft is required to maneuver about an inertially fixed axis as fast as possible, but 

within the saturation limits of rate gyros and reaction wheels. Such maneuvers are 

fundamental for science data collection missions where targets of interest can only be 

observed by slewing the spacecraft through a sequence of large-magnitude motions. The 

attitude control and momentum management problem of a large space vehicle in low 
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Earth orbit such as the International Space Station is also treated in the book. Advanced 

spacecraft control problems of developing CMG steering logic and optimal jet selection 

logic are also treated.   

   There has also been some interesting work done on magnetic control of spacecraft 

attitude in [29][62][82][94][110]. For example, in [29], a formulation for reconfiguring 

the control based on magnetic dipole moment modulation for the attitude control of 

Earth-pointing satellite is presented. Spacecraft control with two torques has also been 

extensively studied e.g. in [55]. Spacecraft control with two-torques is very useful for 

implementing fault tolerance. 

2.8 Spacecraft	Modeling	with	Bayes	Networks	

The Bayes network [89] is a way of representing dependence relations between random 

variables and is used for efficient computation of joint and conditional probabilities. We 

use Bayes nets for modeling the internal composition of a spacecraft by realizing that 

failure of any component is a random event and failures of components within the 

spacecraft depend upon each other in a way that can be determined from the 

interconnection and interaction of components with one another. Hence, a Bayes net can 

be constructed to succinctly represent conditional probability tables (CPTs).  This thesis 

studies the use of Bayes nets to intuitively represent CPTs associated with spacecraft 

fault diagnosis.  For example, consider a one degree of freedom (1DOF) reaction wheel 

system where a battery supplies power to two electronics boards (one of which is 

redundant for fault tolerance) that can drive the reaction wheel. A simple Bayes net 

model for failure probabilities of this system is shown in Figure 2.4. 
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Figure 2.4: Bayes net example 
From above figure, notice that the failure of the battery (Batt) affects the failure of the 

electronics boards (EB1 and EB2), and the failure of the boards affects the failure of the 

reaction wheel (RW). Furthermore, failure of the reaction wheel is conditionally 

independent of the failure of battery given definitive knowledge of whether the 

electronics boards have failed. This type of model can be used to solve for the 

probabilities of failure of any components or subsystems given failure information about 

any other component(s) or even when no information is given. There are quite a few 

methods for deriving probabilities from Bayes nets [89] including enumeration, variable 

elimination, and local propagation. The computational and memory requirements for 

some of the methods are shown in Table 2-1. In this table, n is the number of nodes in the 

Bayes Net, and all nodes are assumed to be binary, e.g. fail/not-fail. Also note that the 

local propagation method has the lowest computational complexity but it is only 

applicable on Bayes nets that have a poly tree structure (i.e. no cycles or multiple paths 

connecting one node to another).  
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Table 2-1: Computational complexity of methods for solving Bayes Nets [89] 

Method Applicability Memory 
Requirement 

Computational 
Cost 

Enumeration general O(n) O(n2n) 
Variable 

Elimination 
general O(2n) O(2n) 

Local Propagation polytrees O(n) O(n) 
Clustering general O(2n) O(2n) 

Conditioning general O(n) O(2n) 
   

2.9 Markov	Decision	Processes	(MDPs)	

An MDP is a controlled Markov chain [58] that is solved using a discrete stochastic 

dynamic programming (SDP) algorithm, e.g. value iteration or policy iteration [84][89]. 

Value iterations are applied to the optimal control problem to maximize an expected 

discounted reward function of the form 

0
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   Here, st represents state after t actions, and µt is the action applied in state st according 

to a policy Pol (st is a random variable). V is the expected discounted reward function of 

states of the Markov chain (also called the value function of the state). The discount 

factor γ (γ ϵ (0, 1)), indicates that the future rewards have lower value. We assume that R 

is bounded from above and below. The policy that selects the optimal action may be 

found as 
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   There is a direct relationship between the value of a state and the values of all the states 

that can be reached from that state in a single optimal action. This relationship can be 

expressed using the Bellman equation [89]:  

1( ) ( ) max ( | , ) ( )t i i j k i t j
k

j S

V s R s T s s V s 


 
   

 
        (2.3.3-3) 

where Vt+1(si) is the value of state si at iteration t+1. R(si) is the immediate reward of state 

si. T (sj |μk, si) is the probability of transitioning from state si to sj by executing action μk.  

   Value iterations converge and one can bind the number of iterations (Itr) to reach an 

error bound of ε as: 

        max2 1
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Here ε is the required tolerance of the solution satisfying  

1( ) ( ) , .t i iV V i           (2.3.3-5) 

The inequality (2.3.3-5) is ensured by [89] 
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   Note that the computational complexity of value iteration is of the order O(N2k) where 

N is the number of states and k is the number of actions in the MDP. As described in [58], 

Equation (2.3.3-3) converges to a unique solution. The solution of Equation (2.3.3-3) 

achieves its maximum value of the right hand side in Equation (2.3.3-1). If the policy is 
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calculated using (2.3.3-2) with solution of (2.3.3-3), it will be optimal with respect to 

(2.3.3-1). 

   The value iteration algorithm used to solve (2.3.3-3) and find an optimal policy from 

(2.3.3-2) is shown in Figure 2.5. 

 

Figure 2.5: Value Iteration algorithm 

2.10 Approximate	Dynamic	Programming	

Approximate Dynamic Programming (ADP) can be used to reduce the computational 

complexity of MDPs. There are three important books dedicated to this topic, each 

representing different communities.  Bertsekas and Tsitsiklis [10] provide a primarily 

theoretical treatment of the field using the language of control theory.  This text [10] uses 

neural network approximations to overcome the "curse of dimensionality" and the "curse 

of modeling" that have been bottlenecks to the practical application of dynamic 

Step 0. Initialization: 
 Set V0(s) = 0 for all s ϵ S 
 Fix a tolerance parameter ε > 0 
 Set t = 1. 

Step 1. For each s ϵ S compute:

 

Step 2. If: 

  

calculate: 

 
 else, set t = t + 1 and go to Step 1. 
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programming and stochastic control to complex problems. This methodology allows 

systems to learn about their behavior through simulation, and to improve their 

performance through iterative reinforcement [learning]. Sutton and Barto [97] describe 

the field from the perspective of artificial intelligence/computer science [97], starting 

with intuitive examples and a definition of reinforcement learning. They then present 

three fundamental approaches to reinforcement learning: Dynamic Programming, Monte 

Carlo, and Temporal Difference methods. Subsequent chapters build on these methods to 

generalize to a spectrum of solutions and algorithms. Powell [79] uses the language of 

operations research, with more emphasis on the high-dimensional problems that typically 

characterize the problems in this community. In [53], the authors present an algorithm 

that dynamically performs hierarchical decomposition of factored MDPs. Their algorithm 

is based on determination of causal relationship between states. Communication-based 

decomposition methods for decentralized MDPs are presented in [44]. A goal-based 

decomposition approach (similar to the approach adopted in this thesis) is presented in 

[16]. In [16], the decomposition is based on the additive terms in the reward function that 

correspond to different sub-goals. Decomposed MDPs are assigned sub-goals based on 

decomposition of the reward function. Optimal policies are computed for each sub-goal 

and finally merged together using a value function heuristic and best-first search to 

generate an approximate policy for the original task. 

2.11 Astrodynamics	

Since this thesis deals with spacecraft missions, fundamentals of two-body orbital motion 

play a key role when discussing the data collection windows for science observation 

targets. There are six major parameters of a spacecraft orbit, as described below.  . 
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2.11.1 	Orbital	Elements 

The six classical orbital elements [8] are shown in Figure 2.5: 

 

Figure 2.6: Orbital elements [8] 
1. Semi major axis (a): A constant defining the size of the conic orbit. 

2. Eccentricity (e): A constant defining the shape of the conic orbit. 

3. Inclination (i): The angle between the K unit vector and the angular momentum 

vector (Figure 2.6). 

4. Longitude of the ascending node (Ω): The angle in the fundamental plane, 

between the I unit vector and the point where the satellite crosses through the 

fundamental plane in the northward direction (ascending node) measured 

counterclockwise when viewed from the north side of the fundamental plane. 
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5. Argument of periapsis (ω): The angle in the plane of the satellite’s orbit, between 

the ascending node and the periapsis point, measured in the direction of the 

satellite’s motion. 

6. True Anomaly (v): Angle between the line joining the satellite’s center of mass 

with the center of mass of the central body and the line of periapsis measured in 

the direction of motion of the satellite.  

In ideal two-body motion, five of the six orbital elements remain constant, while the 

sixth, true anomaly , precesses over a range from 0 to 2 radians as the spacecraft 

revolves around the central body.  We exploit the periodic nature of true anomaly in our 

MDP formulations to enable a cyclic and finite state-space despite a potentially infinite 

time horizon. 
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 	Chapter	3

An	Integrated	Markov	Decision	Process	Modeling	Framework	

 

We present a Markov Decision Process (MDP) based framework to automatically 

compute optimal strategies for integrated Comprehensive Fault Tolerant Science-Optimal 

Attitude Planning (CFT-SOAP). Because CFT-SOAP combines a broad suite of 

compositional models into a single framework, deliberation in CFT-SOAP is 

computationally expensive. This chapter presents an integrated spacecraft decision-

making model for CFT-SOAP to introduce the baseline capability.  This chapter then 

investigates decomposition of the full decision process into multiple decision-making 

units, each with lower computational complexity, that together provide the capabilities in 

the full integrated architecture but for which conflicts in decisions must be carefully 

resolved.   

   The goal of the full CFT-SOAP architecture is to provide an integrated goal-based 

planning solution that also incorporates fault detection, conflict resolution, and 

comprehensive reconfiguration in one framework. In addition to describing the decision-

making modules, we assess the interdependence of various components of the state 

feature vector. Based on the interdependences, we propose a decomposition approach 

which is based on task reformulation. As a result we obtain three separate MDPs: one for 

planning, one for fault detection with conflict resolution, and one for comprehensive 
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reconfiguration.  Throughout, we assume the spacecraft always follows a stable drift orbit 

such that attitude control is the only activity requiring physical actuation.  We also 

assume the policies can either be developed offline and uploaded or else that sufficient 

onboard resources are available.  Although we introduce a means to decompose CFT-

SOAP into the three modules listed above, we focus on model development in the MDP, 

not on real-time policy execution within a specific spacecraft onboard computing 

environment.  While our cost functions may penalize energy consumption for actions 

such as pointing or communicating (see Chapter 4), we typically also assume the 

spacecraft has sufficient stored energy to execute planned action sequences, although a 

simple energy model is included for the FUSE spacecraft case study in Chapter 7. 

3.1 Problem	Formulation	

3.1.1 Goals	

The major goals of CFT-SOAP are to: 

 Calculate optimal attitude maneuvers and data collection actions that maximize 

science reward and minimize the probability of possible failures.  

 Detect failures in a manner that minimizes probabilities of missed detection and 

false alarms using fault information from an observer-based dynamic fault 

detector and conflict resolution actions. 

 Reconfigure spacecraft components and control laws to maximize expected 

performance with respect to resource consumption and probability of successful 

mission completion. 
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3.1.2 Problem	Statement	

We seek to develop an MDP-based framework for computing optimal policies for fault 

tolerant attitude management of a spacecraft. We assume that the spacecraft is on a 

mission to collect scientific data from fixed targets. Because the spacecraft follows a 

fixed two-body orbit (with negligible drift due to perturbations), we assume the targets 

are visible to the spacecraft data collection sensors for pre-specified windows of 

visibility, and that these windows repeat as a function of orbit true anomaly .  Note that 

periodic observation windows are not always available, particularly when Earth-

observing spacecraft are not synchronized with Earth’s rotation period, but for spacecraft 

observing distant celestial bodies this is a reasonable approximation. 

   Per Figure 1.1 in Chapter 1, we propose an MDP framework for autonomous onboard 

decision-making that contains planning, fault detection, and reconfiguration agents, as 

shown in Figure 3.1 below. 

 

Figure 3.1: MDP-based integrated CFT-SOAP implementation. 
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3.2 MDP	Formulation	

The Markov Decision Process (MDP) supports decision-making under uncertainty.  

Optimal sequences of actions form a policy that allows an autonomous system to react 

appropriately to a wide range of observed situations, even those not on a “nominal” 

[deterministic or most likely] execution path.  The MDP as used in CFT-SOAP is 

formally defined in this section. 

3.2.1 States	

MDP states for the science-optimal fault tolerant planner CFT-SOAP can be represented 

as follows: 
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  (3.2.1) 

   As shown above, each state consists of eleven types of information, including: 

1. Flags for Active Mission Related Actions Ai: There are n1 binary flags indicating 

which of the mission-related actions are active (in progress) for the given state. In 
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our formulation, mission related actions include attitude maneuvering, data 

collection, and no-operation (NOOP) actions.  

2. Data collection flags Bi: There are n2 binary flags indicating whether or not 

science data have been collected from the corresponding science target. 

3. Attitude pointing zi: This is a scalar having n2+1 values presuming one value for 

each of the n2 science targets and one additional value for pointing towards the 

visible ground station (or data relay satellite). Note that we do not consider all 

possible attitude pointings since in that case the state-space will become infinite.  

Also, we abstract above the specifics of pointing to the visible communication 

node, although this pointing angle would need to be tracked in real-time. 

4. True Anomaly vi: The true anomaly of the spacecraft is assigned d discrete 

partitions encompassing the 0 to 360 degree range. Again, a tradeoff between 

precision of the framework and size of the state-space is present. 

5. Logic-based fault flags Bli: There are m1 binary flags indicating presence or 

absence of various faults based on observations and knowledge about the 

configuration and composition of the spacecraft. Examples of faults that may be 

included in Bli are failure of electronics, switches, valves, sensors, actuators etc. 

6. Observer-based fault flags Boi: There are m2 binary flags indicating the presence 

or absence of modeled faults based on real-time observations and a priori 

knowledge about the dynamics of the spacecraft. Note that the sets of faults 

corresponding to the flags in Bli and Boi could be overlapping. 
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7. Diagnostic Actions Ui: There are m3 actions that can be used to collect additional 

data from the spacecraft.  These data might be expensive to collect under normal 

circumstances thus not built into the default periodic schedule of operations. Each 

of these actions can be active or inactive (d1 in Equation (3.2.1) = 2). 

8. Diagnostic Observations Oi: These represent m4 processed observations that 

indicate status of various components of the spacecraft. Note that processed 

observations are not sensor outputs, rather these are logic based inferences based 

on control commands, sensor outputs, and logical clauses that represent the 

compositional model of spacecraft components and subsystems. 

9. The threshold vector Vi: This vector contains m5 thresholds that effect the fault 

flags Boi generated by an observer-based fault detection scheme. Here we assume 

that each threshold can affect one and only one fault flag in Boi whereas each flag 

in Boi can be affected by more than one threshold. 

10. Switching configuration swi: This is a discrete-valued variable that represents the 

index of the current compositional configuration of the spacecraft. We assume 

there are d4 possible switching configurations. 

11. Control law configuration ci: This is a discrete-valued variable that represents the 

index of the currently-active attitude control law of the spacecraft. We assume 

that there are d5 possible attitude control law configurations.  We do not model an 

orbital maneuvering capability in this thesis. 

3.2.2 Actions	

The following expressions represent the set of actions available in CFT-SOAP: 
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   (3.2.2) 

There are seven types of actions. First is the attitude maneuvering/data collection action 

set MB. For actions of this type, we define a set of true anomaly windows for each of n2 

targets in which the targets are visible to data collecting equipment: 

 1 1 2 2 2 2, , , ,..., ,n n
l u l u l uW v v v v v v                (3.2.3) 

Here, vl
k is the lower limit of the window of visibility of target k, while, vu

k is the upper 

limit of the window of visibility of target k. Besides window of visibility, every target has 

another attribute that indicates whether the data from the target is to be collected only 

once in the mission or once per orbit around the central body: 

   1 2 2, ,..., : 0,1n ip p p p p      (3.2.4) 

Here, n2 is the number of targets and pk is a binary variable indicating whether target k 

requires periodic data acquisition (pk = 1) or not (pk = 0). An action μk in MB could be 

either a data collection action or an attitude maneuver action. Data can only be collected 
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if the spacecraft is pointed toward and is within the window of visibility of the target 

from which data is to be collected. 

   Next are logic-based fault flag switching actions MBl. These actions can switch the fault 

flags for various components of the spacecraft on or off.  As such they are “virtual 

actions” that set the internal state of the CFT-SOAP diagnosis engine. 

   Diagnostic input actions MU are also available. These actions initiate diagnostic data 

collection activities. Note that the actions of type MU set the diagnostic actions to 1. 

These actions are aperiodic; they become dormant automatically once executed, until an 

event or decision reactivates them. 

   Next are the threshold variation actions (or conflict resolution actions) MV. These 

actions are used to vary the thresholds of the observer-based fault detector to tune fault 

decisions that conflict with the logic-based fault decisions. Each of these actions 

increases or decreases a false alarm/missed detection threshold by a fixed amount. 

   The fifth action type is the compositional configuration switching action MSW used to 

change the current switching configuration of the spacecraft that may effectively stop the 

usage of faulty components and/or bring alternate healthy components into use. Also 

included are control law reconfiguration actions, MC, used to change the law governing 

attitude control based on health status of the actuators and sensors involved. 

   Finally, the seventh type of actions is the no-operation action MNOOP. This action results 

in the spacecraft doing nothing for any particular window (change) in true anomaly. 
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3.2.3 Reward	Function	

The reward function can be defined as 

        cswBoBlBARVOUBoBlRBoBlvzBRcswVOUBoBlvzBAsR ,,,,,,,,,,,,,,,,,,,,,,, 321    

           (3.2.5) 

We define the reward function as a sum of three functions. We now discuss what should 

be reflected in each reward functions for the spacecraft domain. 

The first term R1 in the above reward function represents science mission rewards and 

penalties and incorporates: 

 Reward of collecting data from a science target. This type of reward is useful for 

emphasizing important targets versus less important ones. 

 Reward of pointing towards a science target from which data has not yet been 

collected. This type of reward is useful for motivating the spacecraft to point 

towards a target in advance, if possible, rather than pointing towards the target 

just-in-time. 

 Reward for completing a science mission. This type of reward motivates the 

spacecraft to complete the mission rather than just collecting as much data as 

possible with minimum risk. 

 Penalty of being in a state which has no path of positive probability to any of the 

goal states. Goal states are the states in which all the scientific data have been 

collected. 

A specific equation for R1 is provided in Section 4.3 (Equation (4.3.1)). 
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   The second term in the reward function represents fault-detection-related rewards and 

cost penalties. It should incorporate: 

 Penalty on conflict(s) in fault detection between logic-based and observer-based 

fault flags. This term motivates the two fault detection schemes to consider each 

other’s fault calls before (in case of logic-based fault detector) or after (in case of 

observer-based fault detector) making their own fault calls.  

 Reward of correct detection based on probabilities of false alarms and missed 

detections. Correct detection reward will trade off with the penalty on any 

conflict(s) in fault detection to encourage false fault calls to be resolved or 

avoided. 

 Reward of information available to the fault detection algorithm. This term 

motivates execution of information gathering actions that are helpful in obtaining 

useful information about the health status of the spacecraft especially in situations 

when there is persistent conflict between fault detectors. Examples of information 

gathering actions include short-term firing of thrusters to monitor the resulting 

accelerations, and switching from a primary sensor to a backup sensor to 

reconcile differences in readings, etc. 

   It is important note that in order to avoid negative rewards resulting from the penalties, 

all the penalties are defined as negative exponentials throughout this thesis.  A specific 

equation for R2 is provided in Section 5.9 (Equation (5.9.1)). 

The third term in the reward function represents rewards related to fault-based 

reconfiguration including: 
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 Penalty on being in the states where an ongoing mission-related action is 

inapplicable or undesirable. This term demotivates reconfigurations that may 

cause problems for an on-going mission-related action. The reconfiguration 

strategy is encouraged to opt for other choice(s) if possible. 

 Penalty on the states which have no path of positive probability connecting them 

with one of the goal states (goal states are states in which all mission objectives 

are achieved). This term motivates the reconfiguration strategy to keep spacecraft 

in a position to complete the mission even if other choices of reconfiguration are 

safer. 

 Penalty on the unsafe or sub-optimal configuration of the spacecraft hardware 

and/or control law for a given fault and mission state. This term will trade off with 

the above term that motivates mission completion in situations where the safest 

possible reconfiguration action results in a state that has no path of positive 

probability connecting it with one of the goal states. 

A specific equation for R3 is provided in Section 6.2.2 (Equation (6.2.1)). 

3.2.4 Action	Costs	

We assume that the costs associated with actions of type MBl, MV, MSW, MC and MNOOP 

are zero as these are simple computational or placeholder (NOOP) actions that do not 

require the spacecraft to consume extra energy to sense or apply physical forces or 

torques. The cost associated with actions of type MB and MU can be defined such that the 

energy, time, and fuel consumption required to complete these actions is penalized. A 

specific equation for the cost related to MB is provided in Section 4.3 (Equation (4.3.7)). 
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3.2.5 Transition	Probabilities	

Transitions between MDP states are of two types. The first type of transitions models the 

effects of applied actions.  For example, if we apply a data collection action, the action-

dependent transitions reflect that either data are collected successfully or they are not 

collected. The second type of transitions model underlying uncertainties in different 

parameters of the states.  For example, if we apply a data collection action, a reaction 

wheel or gyroscope can fail that does not affect data collection but results in a state that 

was not intended or dictated by the applied action. For some actions such as those 

involving flipping a switch or a flag, it can be assumed that nothing happens during the 

execution of actions i.e. none of the state variables change other than those intended to 

change by the action that is executed. For actions that are not instantaneous e.g. mission 

related actions, all possible transitions have to be modeled. This in general is a very 

difficult task. Therefore, it is desirable to use approximations. For example, instead of 

modeling probabilities of all possible failures that can happen during an action, one can 

model the probability that at least one failure will occur. 

3.2.6 Bayes	Net	Structure	(Compositional	Model)	

The MDP defined above requires an underlying Bayes Net where all the probabilistic 

dependencies between switches, fault flags (both logic-based and observer-based), 

control law configurations, diagnostic observations, diagnostic inputs, and threshold 

values are represented. The initial conditional probability tables must be at least 

approximated to form the basis from which the joint distribution can be computed in real-

time from the more compact Bayes net representation. For finite horizon cases such as 
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what we experience with a day-to-day spacecraft activity planner, we can use a dynamic 

Bayes net [31] where conditional probabilities can depend upon time.   

3.2.7 Dynamics	Model	

An underlying model of dynamics corresponding to each fault configuration is also 

presumed to be known a priori. This assumption is reasonable for consideration of the 

faults related to the attitude control sensors and actuators. This allows the MDP to switch 

between existing control law configurations rather than adapting numerical control law 

parameters in real-time.  A spacecraft has a finite set of possible failure situations, each 

modeled in our state vector, thus capturing a suite of controllers to handle them all is 

realistic. 

3.3 Closed	loop	execution	of	the	MDP	policy	

A flow chart of the CFT-SOAP MDP formulation and uplink is shown in Figure 3.2, 

whereas closed loop onboard execution for the MDP is shown in Figure 3.3. Note that in 

Figure 3.2, the need for the new policy is determined based on the system-level failure or 

a combination of faults that can not be handled by the fault tolerance capabilities of the 

current MDP. This is different from today’s execution sequences that do not have the 

ability to reconfigure in the presence of faults. In case of CFT-SOAP, the original MDP 

policy has a number of reconfiguration options built-in.  Figure 3.2 depicts the unlikely 

case where none of the reconfiguration actions built into the executing MDP policy are 

applicable.  
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Figure 3.2: MDP modeling, uplink, and execution flowchart 

   In Figure 3.3, OBFDD stands for Observer Based Fault Detection and Diagnosis. y 

denotes the output vector from the dynamics, estimated in real-time by an inertial 

measurement unit (gyroscopes, accelerometers, and magnetometers) supplemented by 

star trackers, etc. to improve attitude computation accuracy. Yl is the output from current, 

voltage, temperature, and pressure sensors. The real-time executive gathers information 

from system-wide modules and forms a state vector S. This state vector is sent to the 

MDP policy module which returns the corresponding optimal action. This action is 

interpreted as a full set of specific system level activities by the executive and these 

activities are then performed in a closed loop manner. 
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Figure 3.3: Real time closed loop execution of MDP 

 

   Figure 3.4 shows a detailed diagram of the operation of the executive. In Figure 3.4, the 

diamond-shaped nodes represent decisions. MDATA and MATT are context-dependent 

representations of MB indicating attitude maneuvering and data collection actions, 

respectively. Once the executive receives the next optimal action from the MDP policy 

module, it recognizes the action as related to fault detection (MFDD), related to the 

spacecraft mission (MB), or related to reconfiguration (MRC). If an action µ(S) is 

recognized as MFDD, it is further identified as either a threshold-changing action (MV) or a 

diagnostic action (MU), or a logic based fault flag switching action (MBl). In each case, 

the action is carried out by the appropriate modules. If the action µ(S) is recognized as 
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MB, it is further identified as either an attitude maneuvering action (MATT) or a data 

collection action (MDATA). In either case, the identified action is executed in a closed-loop 

manner. If the action µ(S) is recognized as a member of set MRC, it is further identified as 

either a switching reconfiguration action (MSW) or a control law reconfiguration action 

(MC). In either case, the identified action is executed appropriately. 

   For sending a new state to the MDP policy and receiving a new action to execute, there 

is a condition X in the oval-shaped block in Figure 3.4. Condition X can be defined in 

multiple ways depending upon preferences of the designer. An example of a condition or 

test X is “Return true if/when the previous action has been completed or the values in Bo 

or O have changed since the last time state information was processed.”  

 

Figure 3.4: Detailed diagram of the MDP executive 
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3.4 Interdependencies	and	State	Decomposition	

This section studies model interdependencies and possible decomposition of various 

components of the MDP formulation in Section 3.2. There are some state parameters that 

are required explicitly by planning or fault detection or reconfiguration whereas some 

parameters are required by more than one of these activities. Figure 3.5 illustrates this 

concept.  The following sections (3.4.1-3.4.3) propose a set of decompositions for 

planning, fault detection, and reconfiguration based on Figure 3.5 that each are more 

computationally tractable than the fully-integrated CFT-SOAP model but that together 

provide an approximation of the fully-integrated optimal CFT-SOAP solution. 

 

Figure 3.5: Concept of MDP decomposition 

3.4.1 Planning	

Recall that there are eleven major parameters in each MDP state (Section 3.2.1). Among 

these parameters, some are exclusively related to fault detection and reconfiguration.  

Examples include the set of diagnostic actions U, vector of processed observations O, and 

vector of thresholds V. Planning depends upon the following state parameters: 
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     (3.4.1-1) 

Several parameters have been excluded in (3.4.1-1) to promote simplicity thus lowered 

computational complexity.  Perhaps most debatable is the elimination of Ai that indicates 

status of the ongoing mission-related actions in state si. The exclusion of this vector is 

justified when actions are executed in a sequential order. In this way, an action from a 

plan is executed only when no other action is being executed. Other information that is 

excluded from (3.4.1-1) is needed purely for fault detection and diagnosis purposes. We 

can further simplify the state space for planning by generating separate plans for each 

switching and control configuration and each fault flag configuration. This will result in 

the following state formulation: 

 

 

1 2, ,...,

,

, , .

N

i i

S s s s

where

s B z v





      (3.4.1-2) 

The set of actions related to planning are MB and MNOOP. Rewards and transition 

probabilities can be extracted from descriptions above in Section 3.2 (for specific details, 

see Sections 4.3.3 and 4.3.4). 

3.4.2 Fault	Detection	

Fault detection requires information about fault flags, processed measurements, 

diagnostic actions, and ongoing mission-related actions since these actions can affect the 

probabilities of failures. Due to characteristics of the space environment (e.g., magnetic 

field, ability to communicate with other spacecraft or ground-based radios), fault 
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probabilities may also depend upon the position of spacecraft in its orbit and its pointing. 

Therefore, we also need information of true anomaly and current pointing of the 

spacecraft for the fault detection MDP. The resulting state space used for fault detection 

is: 

 
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, , , , , , , .
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i i i i i i i
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
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    (3.4.2-1) 

The only state information excluded in (3.4.2-1) is spacecraft hardware configuration, 

control law configuration, and status of mission objectives. In some cases, true anomaly 

and attitude pointing can also be excluded by using failure probabilities with worst case 

values. Also, vector Ai can be excluded using the same strategy. This will yield the 

following simplified states: 
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     (3.4.2-2) 

   Actions related to fault detection are MBl, MU, and MV. Also included is an 

instantaneous no-operation action MNOOP to represent an option of not changing any 

detection flag, threshold, etc. Rewards and transition probabilities can be extracted from 

Section 3.2 (for specific details, see Sections 5.9.3 and 5.9.4). Note that, to avoid 

executing inappropriate goal-seeking actions, output of this fault detection agent should 

be used in selecting the appropriate planning policy. 
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3.4.3 Reconfiguration	

For making reconfiguration decisions given error or fault conditions, information is 

required about current logic (switch) and control configuration, current faults, ongoing 

mission-related actions, and mission status. Therefore, the states for reconfiguration may 

include: 

 
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    (3.4.3-1) 

Here again, information related specifically to fault detection and diagnosis has been 

removed. The actions involved in reconfiguration are MSW and MC. Introduction of an 

instantaneous no-operation action MNOOP is again useful. Transition probabilities and 

rewards can be extracted from the discussion in Section 3.2 (for specific details, see 

Sections 6.2.2). To avoid inappropriate reconfiguration actions, output from fault 

detection and planning should be used to update the state vector in (3.4.3-1). Also, the 

latest configuration and control law selection should be applied along with latest fault 

information to select the appropriate planning policy. 

3.5 Computational	Complexity	and	Real	time	Implementation	

The computational complexity of MDPs grows exponentially with the size of the state 

space. In particular, if the value iteration algorithm is used to solve an MDP, the 

complexity is of the order O(N2M) where N is the size of the state space and M is the size 

of the action space. To provide intuition for complexity of the proposed formulation in 

Section 3.2, assume that there are 2 mission related actions, 3 mission related tasks, 4 

spacecraft pointing orientations, 50 values of true anomaly (each possible separated by 
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approximately 7 degrees given true anomaly range 0-360 degrees), 5 logic-based fault 

flags, 3 observer-based fault flags, 2 diagnostic actions, 5 processed observations with 

fail/normal type (binary) values, 2 switching configurations, 2 control configurations, and 

2 observer-based thresholds each with 5 possible values. Despite the fact that most 

features have few values, the resulting size of this example state space is  

2 2 5 3 2 5 22 3 4 50 2 2 2 2 2 2 5

6,039,797,760,000

N

N

          
 

   (3.5.1) 

Equation (3.5.1) shows 6 tera-states and the resulting complexity (assuming only 10 

actions) will become of the order 1025. For a comprehensively-modeled space mission, 

the complexity could easily increase to 1050 or 1075. Since our computational capabilities 

are still of the order of 109 instructions per second, the integrated MDP could take years 

to compute. We therefore need to either build faster computers or reduce the 

computational complexity of the MDP, a primary objective of this thesis. The first step of 

reducing complexity has been presented in Section 3.4. Subsequent chapters represent 

how MDPs related to planning and fault detection can be further decomposed by using 

additional approximations.  

3.6 Chapter	Summary	

We have presented an MDP-based integrated formulation (CFT-SOAP) for implementing 

spacecraft goal-based mission planning, fault detection, and fault reconfiguration that 

takes into account both logic-based compositional and continuous-valued models. We 

have also analyzed the complexity of a simple integrated model demonstrating the need 

for abstractions and decompositions to simplify the MDP so that it can be executed on 

spacecraft. 
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 	Chapter	4

Science‐optimal	Spacecraft	Attitude	Planning	with	consideration	of	

Failure	Probabilities	

In this chapter, we present a framework to generate an optimal sequence of actions for 

spacecraft missions. Our generated sequences are optimal in a sense that the expected 

reward of science data collected in the presence of the possible failures is maximized. To 

deal with issues such as changing reward functions and/or transition probabilities, we 

show how to implement our approach using a receding horizon optimization formulation. 

We also provide an algorithm for approximate dynamic programming (ADP) that can be 

used to reduce algorithm computational complexity to tractable levels with the possibility 

of increased solution cost. Examples are also included to illustrate the implementation of 

the framework. 

4.1 Motivation		

Spacecraft are used in a variety of missions involving data collection from one or more 

celestial objects or from locations on the Earth.  An onboard capability to autonomously 

plan and re-plan spacecraft missions to maximize data collection, conserve on-board 

energy and fuel, and account for potential or actual failures can greatly increase the 

autonomy and value of spacecraft missions. This capability can also reduce requirements 

for human intervention, which increases mission operations cost and introduces delays to 

the mission, following anomaly or  failure events.   
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   Related work on autonomous planning of spacecraft missions includes [68] where 

iterative refinement search combined with simple heuristics is used to generate sequences 

of actions for complex missions. These algorithms are capable of generating plans that 

involve concurrent actions, tight constraints, limited resources, and close deadlines.  

However, most of this work does not include models of spacecraft attitude or orbital 

motion, except for treating pre-defined set of constraints over observation windows. 

Other frameworks include the SPIKE scheduler for Hubble Space Telescope [52] that 

uses both rule-based and neural network approaches to schedule science observations 

while satisfying observation window, instrument, and onboard resource constraints. The 

Jet Propulsion Lab (JPL) has developed two architectures, ASPEN [85] and CASPER 

[22], for use in a variety of spacecraft missions requiring planning, scheduling, and 

iterative repair of the executing plan. 

   In this chapter, we focus on modeling maneuvers in the context of symbolic task-level 

planning as a first step toward integrating science and motion-centric planning processes. 

Specifically, we present a planner and associated models for optimal sequential decision-

making in the presence of uncertainty, where actions can either change the attitude of the 

spacecraft or collect science data from a celestial object.  

   To build optimal plans for spacecraft missions, the planner must minimize energy use 

and maximize scientific rewards in the presence of failures.  In this chapter, we present a 

framework based on an MDP [15], [89] adapted to spacecraft mission planning.   We 

apply this framework to a specific class of missions which involve spacecraft pointing at 

specific targets. The system state reflects the current pointing direction, current true 

anomaly, and the status of target visit states (visited/not visited).   Actions direct the 
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spacecraft through the set of pointing states; we presume a target will be viewed if the 

spacecraft is pointed at that target. Probabilities of successfully executing an action or 

alternatively entering a failure mode are encoded in an MDP transition probability 

matrix. Immediate rewards of states depend on the number of targets from which the 

scientific data has been collected in that state and on attitude pointing for that state. We 

also incorporate costs of attitude maneuvering actions in terms of the slew magnitude 

involved and costs of data collection actions in terms of energy consumed. 

    Given the computational complexity of the MDP, optimal policy generation is best to 

conduct offboard, with the output being a comprehensive policy which is then executed 

onboard the spacecraft. Note that this off-board computation and upload of the optimal 

policy requires onboard memory space on the order of the number of states in the MDP, 

unless more efficient tests are developed, e.g., through construction of a decision tree 

[89] that matches abbreviated feature tests to policy actions.  Also there is cost associated 

with uploading of the policy.  However, the MDP policy offers a level of robustness 

through fault detection and reconfigurability that can offset these additional complexity 

costs. To potentially mitigate the costs associated with computing the MDP, receding 

horizon policies (e.g., [72]) can be computed more quickly.  In a receding horizon 

formulation the value function of the generated MDP policy is used as a terminal cost. 

   For a potential onboard implementation of the MDP, a finite horizon approach may also 

be used, where policies are generated for a short time horizon and assume a finite set of 

scenarios. This approach is useful when the reward function and the transition 

probabilities change with time. To deal with the computational complexity, an 

approximate dynamic programming approach to compute near-optimal policies is 
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applied. In this chapter, we propose an approximate dynamic programming approach for 

decomposition of the MDP based on mission objectives.   

4.2 Problem	Formulation	

Assumptions: We make the following technical assumptions: 

A1. The window of true anomaly for data collection from each target and the required 

attitude pointing remain fixed.  This assumption is practical for viewing distant 

celestial objects over a limited horizon for which the Earth-spacecraft system does 

not appreciably process along Earth’s one-year Solar orbit. 

A2. Time required to collect data from each target in terms of corresponding change 

in the true anomaly of the spacecraft is known but not necessarily constant for all 

targets. 

A3. All critical failures are collapsed into a single failure state. Once in this failure 

state, the spacecraft can no longer complete its mission. 

A4. The probabilities of transitioning to the failure state from any nominal state with 

execution of any action are known, i.e., the MDP transition probability matrix is 

known. 

A5. Scientific reward associated with fully observing each target is known but not 

necessarily constant for all targets. 

A6. Energy/fuel consumption due to attitude maneuvering or data collection actions is 

known.  Energy consumption is computed based on a pre-specified slewing 

maneuver profile (see section 4.3.3); data collection energy use is presumed 

available in tabular form. 
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Problem	 Statement: Given a set of n targets, our objective is to generate an optimal 

sequence of attitude slewing maneuvers that enable data collection from observation 

targets in such a way that a cost function which reflects the expected science reward is 

maximized while fuel/energy costs are minimized.  

Figure 4.1 shows snapshots of a spacecraft orbiting a planet while collecting data from 

three targets. The triangles represent field of view of the spacecraft while the small solid 

circles represent distant observation targets. The spacecraft is represented by small 

rectangles in an elliptical orbit. The pointing of the illustrative observation cone/triangle 

indicates the attitude of the spacecraft at each true anomaly station along its orbit.   

    The MDP outputs a policy applicable to any initial state. The policy prescribes the set 

of actions that yield the highest possible science reward. 

 

 

Figure 4.1: Spacecraft at various positions in its orbit collecting data 

4.3 MDP	Formulation	

4.3.1 States	

For the attitude planning problem, the states must specify the pointing attitude of the 

spacecraft, the current true anomaly, and the amount of science data collected as follows: 
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    (4.3.1) 

In (4.3.1), the binary variable bi
j indicates whether the data have been collected or not 

from the jth target in state si. The integer zi represents the pointing of the spacecraft. zi = j 

means the spacecraft is pointed towards target j in state si or si is an initial pointing state 

(if zi = 0). Variable vi represents the true anomaly angle of the spacecraft in state si. We 

have discretized true anomaly (0 to 360) into m non-overlapping partitions of size τ (m = 

360/τ), selecting τ so that m is an integer. There is a tradeoff between the value of τ (and 

hence precision of true anomaly) and the size of state space. State sF indicates that one or 

more components of the spacecraft have failed in such a manner that the plan can no 

longer be executed.  Multiple failures with partial loss of spacecraft functionality can be 

treated similarly by introducing additional states reflecting these failure states. The total 

number of states is N = 2n (n+1)m, where n is the number of science targets.   

4.3.2 Actions	

Before we define actions, we present a set of true anomaly windows for each of n targets 

in which the targets are within the range of data collecting equipment: 

 1 1 2 2, , , ,..., ,n n
l u l u l uW v v v v v v                 (4.3.2) 

Here, vl
k is the lower limit of the window of visibility of target k, while vu

k is the upper 

limit of the window of visibility of target k. Besides window of visibility, every target has 

another attribute that indicates whether the data from the target is to be collected only 

once in the mission: 
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   1,0:,...,, 21  in ppppp       (4.3.3) 

Here, n is the number of targets and pk is a binary variable indicating whether target k 

requires periodic data acquisition (pk = 1) or not (pk = 0). Actions can then be defined as: 
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           (4.3.4) 

where μk indicates an action that, when taken from state si, results either in state sj or in 

state sq. These states have true anomaly equal to the sum (modulo 360 deg) of the true 

anomaly of state si and the change in true anomaly incurred during the action μk. Further, 

the attitude pointing of state sj and sq is k and number of targets visited in state sj remains 

the same as the number of targets visited in state si unless attitude pointing in state si is 

already k and true anomaly of state si is within the window of visibility of target k. For 

transitioning to sq, the number of visited targets is reset to zero except for those targets 

which require only a single visitation. There is one other action denoted as NOOP (no 

operation) which can be defined as: 
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     (4.3.5)

 

NOOP does not have to be a single action; one can define multiple NOOP actions over 

different changes in true anomaly as will be described in the examples presented later in 

this chapter. 

   To clarify this formulation of actions, we consider an example linear plan described by 

a sequence of actions that ultimately enable Target 2 to be observed. 

Example: Action μ2 from (000, 0, 0)  (000, 2, 35), Action μ2 from (000, 2, 35) (000, 

2, 42), Action μ2 from (000, 2, 42)  (010, 2, 49)  Action NOOP from (010, 2, 49)  

(010, 2, 56) 

   In the above example we assume there are three targets and the change in true anomaly 

during a slew maneuver from the initial state to Target 2 is 35 deg, while the change in 

true anomaly during the collection of data from Target 2 is 7 deg. Action 2 can result in a 

change of true anomaly equal to 35 deg or 7 deg depending upon the state from which it 

is executed. Also, selecting Action 2 at a true anomaly of 35 deg does not result in 

immediate collection of data from Target 2 whereas the same action at true anomaly of 

42 degrees does result in collection of data due to the fact that the time window for 

collection of data from Target 2 starts after true anomaly of 35 deg and before or at true 

anomaly of 42 deg. Finally, NOOP results in true anomaly change only. 
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4.3.3 Immediate	Rewards	and	Costs	

The immediate reward for state si is given by: 

1 1

1
( ) (1 ) : {1,2,..., }

2 i i

nn

i ki k z z ki
k k

R s b r r b b i N
 

         
   
     (4.3.6) 

where bi (for all i), N, and n are defined in Equation (4.3.1), α is the weighting factor for 

the reward of collecting all science data, and rk: k ϵ {1,2…,n} is the reward for the 

science data expected from target k.  Equation (4.3.6) computes immediate rewards for 

the states based on given rewards for science data at each target. The immediate reward

( )iR s  depends upon how much data has been collected on reaching si and on the target 

which the spacecraft is pointed at in si. The third factor in Equation (4.3.6) represents the 

additional reward if the spacecraft succeeds in collecting the data from all the targets (α > 

0). This term is added to emphasize upon completion of mission that is to collect the data 

from all the targets. We assume that the immediate reward for failure state, sF, is zero. 

   The set of action costs can be represented as: 
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k i i
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c s z k n
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         (4.3.7) 

where  ,iz k is the angle by which the spacecraft (as a rigid body) has to rotate about the 

axis of rotation. The axis of rotation is typically off-axis (not a pure yaw, pitch, or roll)r 

to attain the attitude change demanded by action μk executed from state si. The δk in 

(4.3.7) represents the cost of collecting data from target k. Equation (4.3.7) is an indirect 

measure of fuel/energy consumed by executing an action. Here, an assumption is made 
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that energy consumption is proportional to the angle by which the orientation is changed 

but the cost can be assumed to be constant for each maneuver. 

4.3.4 Transition	Probabilities	

 The transition probabilities are defined using the following equation: 
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  

     (4.3.8) 

where ρ1 and ρ2 are given parameters selected so that the inequality constraints on the 

second line of Equation (4.3.8) are satisfied in general. In our formulation, every action in 

every state has two possible outcomes:  it could either result in its corresponding desired 

state (Equation (4.3.4)) or in the failure state. The possibility of ending up in the desired 

state is given by Equation (4.3.8) while the possibility of failure is 1- T(si, μk, sj). Figure 

4.2 illustrates this definition. 

 

Figure 4.2: State transition map 
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4.4 Solution	Approaches	

4.4.1 Infinite	Horizon	

For computing the optimal policy with respect to an infinite horizon expected discounted 

reward, 

0

0

( , ) | ,t t t

t

E R s Pol s s 




 
 

 


, 

the Value Iteration algorithm (Chapter 2) can be used. The advantage of an infinite 

horizon solution is that the optimal policy can be computed once for the entire mission or 

for the interval over which science goals and other MDP parameters remain valid. The 

resulting optimal policy is stationary and assumes fixed reward function and transition 

probability values. 

4.4.2 Finite	Horizon	

Finite horizon solutions can be produced using a backward induction algorithm. In this 

case, the function that is optimized is, 

0

0

( , ) | ,t t t

t

E R s Pol s s


 
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 
 

 


.
 

The backward induction algorithm is shown in Figure 4.3. 
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Figure 4.3: Backward Induction algorithm [84] 

 

In this case, the resulting optimal policy is time-varying and the reward function and 

transition probabilities can also be time varying. Length of horizon κ must be selected 

carefully to allow completion of mission or to ensure a new policy can be uploaded and 

prepared for execution before the executing MDP’s finite horizon is reached. 

4.5 MDP	Decomposition‐based	ADP	Approach	

To manage computational complexity of the MDP, we present a goal-based approximate 

dynamic programming algorithm that is inspired by Boutilier’s algorithm [14]. The ADP 

decomposes the full MDP into smaller MDPs, finds the solutions for smaller MDPs, and 

recombines the resulting optimal value functions of the smaller MDPs to create an 

estimate of the value function for states of the original MDP. While the approach in [14] 

is general, our approach is customized for our application with three novel features. First, 

we do not form decomposed MDPs based on a reward function, rather we decompose the 

states which allows us to separate out sets of variables required to make decisions related 

Step 0. Initialization: 
Initialize the terminal contribution Vκ (sκ) 
Set t = κ - 1  

Step 1. Calculate 

 for all st ϵ S 

Step 2. If t > 0, decrement t and return to step 1,  

else, calculate: 

 for all t
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to data collection from subgroups of science targets as in step 1 of the algorithm below. 

Second, we do not assume the initial state is known, so our estimated policy is applicable 

from any initial state (see step 5 below).  This is important given uncertainties in launch, 

deployment, and other disturbances imposed on the spacecraft. Third, we do not perform 

a search algorithm to merge policies after solving smaller MDPs.  Instead, we merge 

value functions using an addition heuristic and calculate an aggregate policy for the 

overall MDP using the same equation that is used in the Value Iteration algorithm (see 

step 4 below). Now, we present our algorithm step-by-step. 

Step	0 Define the main MDP with states (S), actions (M), reward function (R), 

and transition probabilities (T). 

Step	1 Create sub-groups of targets based on an appropriate heuristic. For 

example a reasonable heuristic for creating sub-groups is to group the 

targets that have data collection windows with-in a particular range of true 

anomaly intervals. 

Step	2  Create smaller MDP’s from the main MDP based on the heuristic 

subgrouping. Assign each of the smaller MDP a sub-group of targets. The 

following steps can be used for decomposition: 

i. The states of each smaller MDP contain only the subset of data 

collection flags corresponding to the sub-group of targets assigned to 

that MDP. Attitude pointing and true anomaly variables do not change. 
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ii. The actions of each smaller MDP should include only the subset of 

actions corresponding to the attitude pointing and data collection from 

the sub-group of targets assigned to that MDP.  

iii. The reward function and transition probabilities are extracted for each 

smaller MDP from the main MDP based on the specific states and 

actions included in that MDP.  In the baseline case values remain the 

same as in the aggregate MDP. 

Step	3 Solve each of the smaller MDP’s (all with a common finite or infinite 

horizon) and compute optimal values for the states. 

Step	4 Merge the values calculated in step 2 to generate estimates of the optimal 

values for the main MDP using an addition heuristic as follows: 

* * *
1 2

1 2

1 2

( ) 1 ( 1 ) 2 ( 2 ) ... ( )

... ,

... .

est
i j j jk

j j jk i

j j jk i

V s V s V s Vk sk

where

z z z z

v v v v

   

   

     

Note that in combining the values it is important to ensure the true 

anomaly intervals and attitude pointing values for all states of interest 

match. 

Step	5  Calculate the optimal policy estimate using the equation: 

'

( ) max ( ) ( , , ') ( ')est est
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P s C T s s V s
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
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  


 

for all st ϵ S  
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The following sub-sections discuss the application of this decomposition and 

recombination strategy using an illustrative example.  

4.5.1 MDP	Decomposition	

Consider an example of six science targets. The states for this example can be written 

using (4.3.1) as, 

 
 
     

1 2 3 32256

1 2 6

, , ,..., ,
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i i i

S s s s s s

s b b b z i

b z d d
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        (4.5.1) 

Note that the above equation indicates 32,256 normal states due to six binary flags, a 

pointing variable z with seven possible values, and the true anomaly variable v with 72 

possible values (each value of v separated by five degrees from the next value). In our 

decomposition approach, we decompose the state space based on sub-grouping of targets. 

In this example, we form two sub-groups. The first group consists of targets 1, 2, and 3. 

The states for this group can be written as, 

 
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1 1 , 1 , 1 ,..., 1 , ,
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i i i i i i

j
i i i

S s s s s s

s b b b z i

b z d d



 



 

    .    (4.5.2) 

Note that, in decomposing the states, we kept the same values for variables z and v and 

since we have only three binary flags for indication of collected data, the state space size 

reduces to 4032. This is because we wish to recombine the value functions later. States 

for the second group of targets i.e. 4, 5, and 6 can be written in a similar way as in 

(4.5.2). 
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 
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The set of actions in the first group are 

 0 1 2 31 , , , ,M NOOP          (4.5.4) 

Similarly, the set of actions for the second group are 

 0 4 5 62 , , , ,M NOOP    .      (4.5.5) 

Note that µ0 appears in both sets. The actions represent slewing or data collection 

activities where data is collected only if the spacecraft is already pointed towards the 

corresponding target and is within the data collection window. On the other hand, an 

attitude maneuver is executed only if the spacecraft is not already pointed towards the 

corresponding target as described previously in Section 4.3.2. 

   Reward and cost functions and transition probabilities for both groups of targets can be 

extracted from definitions in Sections 4.3.3 and 4.3.4. Subsequently, we refer to the MDP 

formed by target group {1, 2, 3} as MDP1 and the MDP formed by target group {4, 5, 6} 

as MDP2.  

4.5.2 Recombination	of	Value	Functions	

Once the original MDP has been decomposed, the next step is to solve the two smaller 

MDPs. This will yield optimal value functions V1* and V2* for the states of MDP1 and 

MDP2 respectively. The estimate for the state of the original MDP can be calculated as 
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Finally, the estimated policy is calculated using 
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4.6 Simulation‐based	Case	Studies	

4.6.1 General	Framework	Example	

In this section, we consider a spacecraft pointing problem for the case of three targets 

(n=3). We present three examples to elaborate different tradeoffs in the selection of 

parameters.  

4.6.1.1 Example	1:	Effects	of	Failure	Probability	Parameters	

The states for this example are defined in Equation (4.6.1) where there are 2305 states 

comprised of one failure state and 2304 normal execution states with all possible 

combinations of three binary flags for indicating collected science data, the attitude 

pointing variable z with four possible values and the true anomaly variable v with 72 

possible values.  
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    (4.6.1) 

The set of actions is given by 
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},,,,{ 3210 NOOPM        (4.6.2) 

The true anomaly windows for the targets were taken as: 

      250,180,330,280,120,70W       (4.6.3) 

The periodic data acquisition indicator set is given by  

}0,0,0{p       (4.6.4) 

This requires only one data collection activity for each target. Changes in true anomaly 

incurred during various actions are specified as follows: 
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020100
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      (4.6.5) 

In (4.6.5), Δvij represents change in true anomaly incurred during change in pointing from 

target i to j which is same as the change in pointing from target j to i. We have seven 

different NOOP actions each incorporating changes in true anomaly given by 

135

,105,20,90

,70,50,5

7

654

321


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NOOP

NOOPNOOPNOOP

NOOPNOOPNOOP






    (4.6.6) 

   We can use the above data and Equation (4.3.4) to compute possible outcomes of 

executing each action in each state. We assumed rewards given by Equation (4.3.6) with 

70,50,30 321  rrr       (4.6.7) 

For calculating costs using Equation (4.3.7), we assumed the following angles, 
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135,50

,105,90,70,50

1323

12030201







     (4.6.8)
 

where kj is the orientation angle required for slewing from target k to target j. Also, we 

set δk = 1 for all targets k ϵ {1,2,…,n}.  We selected ρ1 = 0.001 and ρ2 = 10-4 for 

calculating transition probabilities in Equation (4.3.8). Also, we assumed δk =  kk . 

   Using the above information and the value iteration algorithm from Chapter 2, we 

generated an optimal policy after 1395 iterations with discount factor γ = 0.99. Table 4-1 

presents the first ten actions of an optimal trajectory starting from the state (000,0,0). The 

trajectory in Table 4-1 is unique because each action has only two possible transitions as 

shown in Figure 4.2. 

Table 4-1: Optimal trajectory for example 1. 

State Policy Outcome Probability 
of failure 

(000,0,0) μ1 (000,1,50) 0.05 
(000,1,50) NOOP50 (000,1,100) 0 
(000,1,100) μ1 (100,1,110) 0.0001 
(100,1,110) μ2 (100,2,215) 0.105 
(100,2,215) NOOP70 (100,2,285) 0 
(100,2,285) μ2 (110,2,295) 0.0001 
(110,2,295) μ3 (110,3,345) 0.05 
(110,3,345) NOOP105 (110,3,90) 0 
(110,3,90) NOOP90 (110,3,180) 0 
(110,3,180) μ3 (111,3,190) 0.0001 

 

   To illustrate the importance of the selection of design parameters, we present results 

where we change ρ1 and ρ2 thereby changing the transition probabilities. Keeping all 

other information the same as above, we changed ρ1 to 0.005 and ρ2 to 0.01 to represent a 

more risky system. Table 4-2 shows the first ten actions associated with the optimal 

policy/trajectory from initial state (000,0,0). 
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Table 4-2: Optimal trajectory with high risk 

State Policy Outcome Probability 
of failure 

(000,0,0) μ1 (000,1,50) 0.25 
(000,1,50) NOOP20 (000,1,70) 0 
(000,1,70) μ1 (100,1,80) 0.01 
(100,1,80) NOOP90 (100,1,170) 0 
(100,1,170) μ0 (100,0,220) 0.25 
(100,0,220) μ2 (100,2,290) 0.35 
(100,2,290) μ2 (110,2,300) 0.01 
(110,2,300) NOOP105 (110,2,45) 0 
(110,2,45) NOOP90 (110,2,135) 0 
(110,2,135) μ3 (110,3,185) 0.25 
(110,3,185) μ3 (111,3,195) 0.01 

 

The distinguishing move for the trajectory in Table 4-2 is taking μ0 from (100,1,170). 

This move decomposes a high-risk single action μ2 into μ0 and μ2 with just 15 degrees 

extra rotation (50+70 as opposed to 105). The probability of failure when executing μ2 

directly from (100,1,90) is 0.525.  In Table 4-2, the two actions executed instead have 

0.25 and 0.35 probability of failure, respectively. In Figure 4.4 and Table 4-3, we present 

a comparison between risk taken by the trajectories generated using aggressive and 

conservative policies from the above cases. In this comparison, the initial states for the 

trajectories are chosen at random (same initial state for both trajectories in each 

simulation run). The trajectories run until all science data has been collected. The risk is 

calculated using the following equation for each simulation run with ρ1 = 0.005 and ρ2 = 

0.01. 

 



traj

Trisk


 ',,1
      (4.6.9)

 

Figure 4.4 shows the cumulative distribution of the difference in risk taken by the two 

policies for 250 simulations. Table 4-3 shows minimum, maximum, and mean values of 
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the difference in risks taken by both trajectories over 25, 250 and 2500 simulation runs. 

Results show that the policy generated for low values of ρ1 and ρ2 takes more risk as 

compared to the policy generated for high values of ρ1 and ρ2.  This is expected since the 

policy generated for high risk environment should be more cautious in selecting attitude 

maneuvers. 

 

Figure 4.4: Cumulative distribution of the difference in the risk taken by aggressive 
and conservative trajectories 

Table 4-3: Risk comparison (J = riskagg - riskcons) 

# of 
Sim. 

min(J) max(J) mean(J) 

25 0 0.0788 0.0199 
250 0 0.0788 0.0146 
2500 0 0.0788 0.0157 

4.6.1.2 Example	2:	Effects	of	Selection	of	Discount	Factor	(γ)	

This section presents a case where there is a conflict between time windows of the targets 

so that the spacecraft can collect data from only one out of two conflicting targets. We 

keep all the data as before except ρ1 =0.001 and ρ2 = 10-4. The time windows are also 

changed to: 
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      130,40,330,170,150,50W .     (4.6.10) 

Table 4-4 shows first ten actions of an optimal trajectory from initial state (000,0,0). The 

simulation required 1395 iterations with γ = 0.99. 

Table 4-4: Optimal trajectory for γ = 0.99 

State Policy Outcome Probability 
of failure 

(000,0,0) μ1 (000,1,50) 0.05 
(000,1,50) μ1 (100,1,60) 0.0001 
(100,1,60) μ2 (100,2,165) 0.105 
(100,2,165) NOOP70 (100,2,235) 0 
(100,2,235) μ2 (110,2,245) 0.0001 
(110,2,245) μ3 (110,3,295) 0.05 
(110,3,295) NOOP105 (110,3,40) 0 
(110,3,40) μ3 (111,3,50) 0.0001 
(111,3,50) NOOP5 (111,3,55) 0 
(111,3,55) NOOP5 (111,3,60) 0 

 

The trajectory with the same parameters and conditions is computed except with γ set to 

0.8. This resulted in the optimal policy after only 64 iterations which yielded the 

following trajectory from initial state (000,0,0). 

Table 4-5: Optimal trajectory for γ = 0.8 

State Policy Outcome Probability 
of failure 

(000,0,0) μ3 (000,3,90) 0.09 
(000,3,90) μ3 (001,3,100) 0.0001 
(001,3,100) NOOP20 (001,3,120) 0 
(001,3,120) μ2 (001,2,170) 0.05 
(001,2,170) μ2 (011,2,180) 0.0001 
(011,2,180) NOOP135 (011,2,315) 0 
(011,2,315) μ1 (011,1,60) 0.105 
(011,1,60) μ1 (111,1,70) 0.0001 
(111,3,70) NOOP5 (111,3,75) 0 
(111,3,75) NOOP5 (111,3,80) 0 
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In Figure 4.5 and Table 4-6, we present a comparison between the risk incurred by data 

collection trajectories generated from far sighted (γ = 0.99) and short sighted (γ = 0.80) 

policies from above. In this comparison, the initial states for the trajectories are chosen at 

random (same initial state for both trajectories in each simulation run). The trajectories 

run until all science data has been collected. The risk is calculated using Equation (4.6.9). 

Table 4-6: Risk comparison (J = riskSS – riskFS) 

# of 
Sim. 

min(J) max(J) mean(J) 

25 0 0.0875 0.0084 
250 0 0.1627 0.0070 
2500 0 0.1627 0.0077 

 

These results show that short-sighted trajectories are more risky than far-sighted 

trajectories. Selection of γ therefore maps to a tradeoff between conserving the life of the 

spacecraft and trying to complete the mission as soon as possible. Since γ is a general 

parameter of the MDP formulation, this tradeoff should hold for general cases. 

 

Figure 4.5: Cumulative distribution of the difference is the risk taken by far sighted 
and short sighted trajectories over 250 simulations. 
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4.6.1.3 Example	3:	Effects	of	Repeated	Targets	

We now cast Target 3 as offering reward from repeated data acquisitions i.e. we set p3 = 

1 for this example. The time windows for the targets were selected as: 

      250,180,330,280,120,70W      (4.6.11) 

   We first computed an optimal policy for the case γ = 0.99 with 1486 value function 

iterations. With this policy the trajectory from (000,0,0) had the same first 10 actions as 

in Table 4-1. Then the trajectory kept on choosing NOOP5 until it reached (111,3,355). 

From there, the trajectory had the actions listed in Table 4-7 to enter the cycle. 

Table 4-7: Optimal trajectory for γ = 0.99 

State Policy Outcome Probability 
of failure 

(111,3,355) NOOP50 (110,3,45) 0 
(110,3,45) NOOP135 (110,3,180) 0 
(110,3,180) μ3 (111,3,190) 0.0001 

 

   Since this example simulates a low-risk scenario, the policy tends to minimize the 

number of actions required to collect data. Note that the data from all the targets to be 

visited one-time were collected in the first revolution and then the spacecraft remained 

pointed towards the target requiring repeated data acquisition. With γ = 0.8, the effective 

planning horizon is reduced. The resulting policy had the following trajectory leading to a 

cycle. 

   Figure 4.6 and Table 4-9 show a comparison between risks taken by the trajectories 

generated using periodic and aperiodic trajectories with γ = 0.99. In this comparison, the 

initial states for the trajectories are chosen at random (same initial state for both 
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trajectories in each simulation run). The trajectories run until all science data has been 

collected. The risk is calculated using Equation (4.6.9). 

Table 4-8: Optimal trajectory for γ = 0.8 

State Policy Outcome Probability 
of failure 

(000,0,0) μ1 (000,1,50) 0.05 
(000,1,50) NOOP20 (000,1,70) 0 
(000,1,70) μ1 (100,1,80) 0.0001 
(100,1,80) μ3 (100,3,215) 0.135 
(100,3,215) μ3 (101,3,225) 0.0001 
(101,3,225) NOOP5 (101,3,230) 0 
(101,3,230) μ2 (101,2,280) 0.05 
(101,2,280) μ2 (111,2,290) 0.0001 

NOOP5 until (111,2,355) 
(111,2,355) μ3 (110,3,45) 0.05 
(110,3,45) NOOP135 (110,3,180) 0 
(111,3,180) μ3 (111,3,190) 0.0001 

NOOP5 until (111,3,355) 
 

    

 

Figure 4.6: Cumulative distribution of the difference is the risk taken by periodic 
and aperiodic trajectories over 250 simulations. 
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Table 4-9: Risk comparison (J = riskPeriodic – riskAperiodic) 

# of 
Sim. 

min(J) max(J) mean(J) 

25 0 0.1215 0.0412 
250 0 0.1359 0.0348 
2500 0 0.1359 0.0339 

 

   It is interesting to note that in this case periodic trajectories take more risk as compared 

to aperiodic trajectories. This result should be true for general cases since periodic targets 

may require additional attitude maneuvers since multiple time data collection is required 

for such targets. 

4.6.2 Approximate	Dynamic	Programming	Example	

In this section we present simulation results for the example introduced in Section 4.5. 

We used same NOOP actions as in (4.6.6). The true anomaly windows for the six targets 

are given by: 

     
     








350,300,300,250,250,200

,200,150,150,100,100,50
W

    
(4.6.12) 

All targets are aperiodic (i.e. require only one-time data collection). Changes in true 

anomaly incorporated during various actions were specified as follows: 
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   (4.6.13) 
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In (4.6.13), Δvij represents change in true anomaly incurred during change in pointing 

from target i to j which is same as from target j to i. Rewards are given by Equation 

(4.3.6) with the following parameter values: 

80,60,40,70,50,30 654321  rrrrrr    (4.6.14) 

For calculating costs using Equation (4.3.7), we assume the following angles, 

30

,80,50,90,70
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56
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04030201
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


    

(4.6.15) 

Here, kj is the slew maneuver (angle) required for changing pointing from target k to 

target j. Also, we set δk = 1 for all targets k ϵ {1,2,…,n}.  We select ρ1 = 0.001 and ρ2 = 

10-4 for calculating transition probabilities based on (4.3.8), and we assume δk = Δvkk. 

   Optimal values were generated for the states of both MDPs using an infinite horizon 

value iteration algorithm with γ = 0.99. The values were merged using the ADP addition 

heuristic from Equation (4.5.6) i.e., 

* *
1 1 2 2( ) ( ) ( )estV s V s V s  ,     (4.6.16) 

where s1 and s2 are states in the decomposed MDPs that combine to form state s in the 

original MDP. For example, the state (010, 5, 255) (in group 1) and state (100, 5, 255) (in 

group 2) combine to form the state (010100, 5, 255) in the main MDP. Finally, we 

compute the estimated policy Pest using (4.5.7) with estimated values. We also solve the 

main MDP and compute policy P* from optimal values.  
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   To compare the two policies, we carried out simulations in which trajectories were 

computed using random initial state for both policies. The stopping criterion for a 

trajectory was an execution of 200 actions after acquisition of data from all six targets by 

both policies and five additional actions (to incorporate steady state behavior and account 

for the fact that optimization is over infinite trajectories). Results are shown in Figure 4.7 

and Table 4-10. The normalized expected values shown in Figure 4.7 and their difference 

as shown in Table 4-10 for all simulations were calculated according to the following 

equations:  
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(4.6.17) 

Table 4-10: Comparison of P* and Pest 

No. of 
Simulations

∆EVmax ∆EVmin ∆EVmean 

25 0.0459 0 0.0150 
250 0.0750 0 0.0182 
2500 0.1203 0 0.0189 

 

   The results show that the ADP-based policy attains on average 98% of the optimal 

reward attained by the optimal policy. The computational complexity of the original 

MDP is of the order 1010, whereas the computational complexity of the ADP-based MDP 

is of the order 108, two orders of magnitude less. Figure 4.7 shows that for most states the 

percentage difference in the expected values obtained by the optimal and the estimated 
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policies is quite low. In fact the maximum percentage difference for all possible states 

(32,256) is 13.6. This verifies the results presented in Table 4-10. 

 

Figure 4.7: Cumulative distribution of the percentage difference in expected values 
obtained by trajectories of P* and Pest 

4.6.3 Further	Analysis	of	the	Approximate	Dynamic	Programming	Example	

In this section, we present the performance results of the approximate dynamic 

programming example from Section 4.6.2. To be precise, we change the values for 

different parameters in the planning MDP and record the performance of the ADP-based 

MDP. The expected reward for simulated trajectories with each possible initial state is 

then compared for ADP-based MDP against the original MDP. Table 4-11 shows the 

results for variations in the epoch (horizon length), discount factor (γ), weighting factor 

for goal state reward (α), risk factor (ρ1), and level of overlap for the data collection 

windows of the targets. Note that the level of overlap ranges between 1 and 10 where 

level 10 is the least overlap. Data collection windows for level 10 are the same as in 
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data collection windows for targets 4, 5, and 6 are [65,115], [115,165], and [165,215] 

respectively. Recall that the data collection windows for targets 1, 2, and 3 are [50,100], 

[100,150], and [150,200] respectively. 

Table 4-11: Performance results for the ADP-based MDP 

Variable 
Factor 

Constant 
Factors 

Best Average 
performance 

Worst Average 
Performance 

Worst case 
Performance 

Epoch: 3-50 γ = 0.99 
α = 1000 
ρ1 = 0.001 
Level of 
overlap = 1 

99.9% for 
Epoch = 3 

93.5% for 
Epoch = 8 

34% for Epoch 
= 10 

γ = 
0.29:0.1:0.99 

α = 1000 
ρ1 = 0.001 
Epoch = 50 
Level of 
overlap = 1 

99.9% for γ = 
0.29 

96.7% for γ = 
0.79 

54% for γ = 
0.79 

α = 
100:500:5000 

γ = 0.99 
Epoch = 50 
ρ1 = 0.001 
Level of 
overlap = 1 

99.3% for α = 
600 

98.9% for α = 
100 

88% for α = 
100 

ρ1 = 
0.001:0.01:0.1 

γ = 0.99 
Epoch = 50 
α = 600 
Level of 
overlap = 1 

99.3% for ρ1 = 
0.001 

62.1% for ρ1 = 
0.021 

9.6% for ρ1 = 
0.071 

ρ1 = 
0.001:0.01:0.1 

γ = 0.99 
Epoch = 11 
α = 1000 
Level of 
overlap = 1 

95.2% for ρ1 = 
0.001 

87.6% for ρ1 = 
0.021 

31.5% for ρ1 = 
0.051 

Level of 
Overlap = 1-10 

γ = 0.99 
Epoch = 11 
α = 1000 
ρ1 = 0.07 

92.4% for 
Level of 
overlap = 1  

90.5% for Level 
of overlap = 10 

28.7% for Level 
of overlap = 10 

Level of 
Overlap = 1-10 

γ = 0.99 
Epoch = 50 
α = 1000 
ρ1 = 0.001 

99.3% for 
Level of 
overlap = 1  

94.4% for Level 
of overlap = 9 

60.3% for Level 
of overlap = 9 
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The worst-case results in Table 4-11 are for Epoch = 10 where the variable factor is 

Epoch and for ρ1 = 0.071 where the variable factor is ρ1. Upon further analysis of these 

cases, we found that Epoch = 10 has bad performance because the policy generated using 

the original MDP is able to complete the mission in 10 steps and hence collects additional 

reward corresponding to mission completion (see Equation (4.3.6)) whereas the policy 

generated using the ADP-based MDP is unable to complete the mission. For lower or 

higher values of the Epoch, either both MDP policies are able to complete the mission or 

both are unable to complete the mission and hence the performance of the policy 

generated using the ADP-based MDP is reasonable for those values of the Epoch. In the 

case of ρ1 = 0.071, a similar situation arises. In this case, the policy generated using the 

ADP-based MDP is unable to complete the mission because the value of risk factor is too 

high to enable a sufficient set of attitude maneuvers to complete the mission whereas the 

same value of ρ1 does not prevent the original MDP from completing the mission. This 

suggests that the policy generated using our proposed ADP approach is conservative (at 

least in case of our case study) as compared to the original optimal policy. Also for 

higher or lower values of ρ1, where either both MDP policies complete the mission or 

both MDP policies do not complete the mission due to high risk, the performance of the 

ADP-based MDP policy is reasonable. 

4.7 Alternate	Formulations	and	Complexity	

This chapter presents one of many possible MDP formulations for spacecraft mission 

planning. Every mission has its own specific requirements and specifications that likely 

result in complexities in the state-space beyond decomposing the mission into a set of 

independent objectives. For example, some missions may require management of energy 
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resources while others might require the decision about when to communicate with the 

ground station. There also might be factors such as pointing towards or away from the 

sun under certain circumstances, variable costs of the mission-related actions, 

occurrences of exogenous events that might change the mission objectives and/or their 

relative importance e.g. science rewards etc.  Regardless of additional model attributes, 

the MDP remains a general-purpose tool for spacecraft activity planning.  The ADP, 

potentially with analogous decomposition over true anomaly observation windows, is still 

a viable approach to reducing complexity to manageable levels. 

   Once the problem is formulated as an MDP, it can be solved for finite-horizon optimal 

policies using backward induction [84]. Backward induction allows the reward and cost 

functions and the transition probabilities to be time-varying. When using backward 

induction, it is important to select an optimal horizon length that allows for the 

completion of the mission even in the presence of certain faults. Another important issue 

is the selection of the state space. A careless selection may lead to unnecessarily large 

state space size making it difficult to compute the solution. Often there are weak links 

between the decisions and the information required to make those decisions that create a 

chance to decompose a large MDP into smaller MDPs without losing much optimality. 

Such situations of reducing the computational complexity should be considered. Defining 

the actions to be context-dependent sometimes also reduces state-space size. For 

example, in our formulation, we used only one action for both data collection and attitude 

maneuvering. Options like this should be explored based on the structure of the problem 

at hand. 
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4.8 Conclusions	

We have modeled the problem of autonomous planning of spacecraft pointing sequences 

based on the theory of Markov Decision Processes. Our objectives were to maximize the 

science reward, account for action cost (such as energy consumption) and treat emerging 

failure states. We have also presented a method to implement our framework in a finite 

receding horizon scenario and an approximate dynamic programming formulation to 

reduce complexity for large-scale problems.  

   The presented framework accounts for one-time and repeat-visit targets and 

incorporates observation time window constraints. Our case studies demonstrate that 

changing the risk probability strongly influences the control policy from maximizing 

more immediate rewards to reducing risks. We also demonstrate that the policy generated 

by using our framework can deal with conflicts in target observation windows while 

maximizing science rewards. In the case of sufficiently long planning horizon, the 

optimal policy resulting from our models and cost assumptions is to collect data from 

one-time targets first before collecting data from repeat-visit targets. However, if the 

effective planning horizon is reduced by decreasing the discount factor then the optimal 

policy equally emphasizes collecting data from repeated targets as from single visit 

targets. 

   In this chapter we also presented an example of approximate dynamic programming 

which indicated that the policy calculated using approximate value functions using our 

proposed ADP algorithm can perform almost as well as the policy calculated from 

optimal integrated value functions.           
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   In future work we will develop a formulation that incorporates re-planning and 

contingency planning based on observed failures that cause the current planner to halt its 

executing plan (i.e., safe the spacecraft). Also we anticipate that in future spacecraft 

missions, the spacecraft can be made more robust by learning over time the values of 

rewards, risks, and even transition probabilities.  



 

93 
 

 	Chapter	5

Conflict	Resolution	Algorithms	and	Collaborative	Fault	Detection	

 

This chapter first describes two algorithms for conflict resolution between two fault 

detection schemes then uses these algorithms for collaborative fault detection. In our first 

conflict resolution method, we assume initially that there is no conflict and optimize 

detection thresholds of both fault detection schemes with respect to a partial cost function 

that penalizes false alarms and missed detections. Then we continuously update 

thresholds based on a comprehensive cost function that penalizes conflicts in addition to 

false alarms and missed detections. Our updates are bounded and managed in such a way 

that the cost function always assumes the lowest possible cost as a function of thresholds. 

We make use of residual signals to minimize computational complexity.  

In our second conflict resolution method, we present a different solution to the conflict 

resolution problem using a Markov Decision Process framework that generates an 

optimal policy for adjusting the fault detection thresholds. This method is 

computationally more complex but it is more general, does not require knowledge of 

residuals, and does not require initial optimization of the thresholds.  We introduce an 

error signal that indicates failure in resolving the conflict using threshold updating in 

which case, a supervisor (human or computer) can be alerted and prompted to take a 

corrective action. We illustrate our methods on a spacecraft attitude control thruster-valve 
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system simulation with high noise. Our results show good performance and substantial 

reduction in conflicts under highly uncertain conditions. 

 In the second part of this chapter (sections 5.8 through 5.14), we present a framework 

based on MDP for facilitating the implementation of collaborative fault detection through 

conflict resolution. The conflict arises when two fault detectors make opposite decisions 

about the presence of a fault. Transition probabilities for various modes of the 

components within the system are represented by a Bayes Network. The transition 

probabilities for some fault flags given applied changes in thresholds are assumed to be 

pre-calculated using Monte Carlo simulations or other similar methods. Since MDP 

suffers from the curse of dimensionality, we also present an approximate dynamic 

programming (ADP) approach for our framework based on decomposition and 

recombination of states. A comprehensive example is included to demonstrate the 

implementation of the proposed framework and corresponding ADP approach.  

5.1 Conflict	Resolution	Algorithms	

Autonomous aerospace systems require increasingly sophisticated fault protection 

systems that maximize their ability to maintain a safe operational state in the presence of 

onboard system failures or environmental anomalies that pose risk or degrade 

performance. Several strategies have been proposed [99][75][111] to detect, diagnose, 

and reconfigure in the presence of faults. The Markov Decision Process (MDP) and 

variants have been considered to manage discrete system models [75][104], while signal 

filtering, system identification, and adaptive control algorithms have been developed to 

manage physics-based (continuous) system models [111]. While many of the decisions 
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made by discrete versus physics-based deliberation engines are distinct, many decisions 

or conclusions can also impact or overlap with the others [70]. 

   Considering the cost of space missions, their associated communication constraints, and 

the amount of risk involved due to hostile and uncertain deep space environment, it is 

desirable for space missions to have multiple fault detection schemes. In this situation, 

two or more detection schemes may occasionally render inconsistent decisions about the 

occurrence of a fault. Therefore, a conflict resolution algorithm is desirable. 

   This chapter presents a formal language and protocol by which symbolic and physics-

based fault management systems can share information to negotiate consistent decisions 

with respect to fault detection. Specifically, we present two methods of conflict resolution 

that minimize or eliminate discrepancies between the fault information obtained from two 

separate fault detection algorithms. Our methods apply to any pair of detection 

algorithms that satisfy corresponding assumptions.  Our first method is based on initial 

threshold optimization with respect to a partial objective function and subsequent 

threshold updating that is optimal with respect to a specified cost function. While 

optimizing the thresholds, we make use of residual signals to minimize computational 

complexity. If the resulting minimum value of the objective function allows a persistent 

unresolved conflict, an error flag is generated that can be used to alert a human 

supervisor. The updating equations for thresholds attempt to keep the thresholds as close 

to the optimal values as possible without causing a conflict, with changes optimized 

within bounds imposed to achieve minimum acceptable performance criteria.  

   Our second conflict resolution method is based on a Markov Decision Process (MDP). 

This approach makes use of the reward function and discount factor to optimize changes 
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in fault detection thresholds. This method does not require knowledge of residual signals 

but it is also more computationally-intensive. 

   In this chapter we apply our conflict resolution strategy to a spacecraft example in 

which we model continuous time dynamics of the spacecraft and associated faults, as 

well as a limited number of discrete parameters (e.g., instrument on/off, valve open/shut). 

Our first fault detection scheme is based on an Interacting Multiple Model (IMM) 

framework that uses multiple models for the spacecraft to represent dynamics associated 

with certain specific fault conditions. With this strategy a bank of observers use the 

sensor data to compute the residuals for each fault models. The model with the lowest 

residual is assumed to be the true model and the fault condition that it relates to is 

considered to be the true condition of the spacecraft. Our second fault detection scheme is 

based on state transition system [104] with Markov assumption. Fault detection is based 

on the likelihood of reaching failure states given the transition probability table.  

   In the next sections, we define the problem and present the two fault detection schemes 

in the context of a limited spacecraft fault detection model. In Section 5.5, we present our 

threshold optimization and updating methods. Section 5.6 shows simulation results. 

5.2 Basic	Threshold	Adjustment	Approach	to	Conflict	Resolution	

To motivate subsequent developments, we consider a system that uses two schemes to 

detect a particular fault. We assume that the performance of each scheme is represented 

by the probabilities of missed detection P(MD) and false alarm P(FA), which are 

functions of adjustable parameters or thresholds associated with each scheme.  Let 

1 2( , )J v v  be a risk-based cost function which determines the combined performance of 
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two fault detection schemes (denoted 1 and 2) as a function of two scalar fault parameters 

v1 and v2, one parameter for each scheme, 

       1 2 1 1 1 1 1 1 2 2 2 2 2 2( , ) | | | |J v v a P FA v a P MD v a P FA v a P MD v      
 
 (5.2.1) 

Here 2211 ,,,  aaaa are positive weights that can be adjusted to emphasize missed detection 

and false alarms of either scheme. Note that 1 2( , )J v v  is a separable function of its 

arguments, i.e., it can be represented as 1 2 1 2
1 2( , ) ( ) ( )J v v J v J v  .   

   Suppose now the two schemes make calls regarding the presence or absence of a 

particular fault given the vector of current inputs and operating conditions, U. The fault 

flags of the two schemes are denoted by 1 1 1 2 2 2( , ), ( , )b v U b v U .  The fault flag functions 

take binary values, either 0 or 1, depending on the inferred absence or presence of a fault.   

   The existence of a conflict corresponds to a situation in which 1 1 1 2 2 2( , ) ( , )b v U b v U , 

i.e., one of the schemes indicates a fault and the other does not. To resolve an apparent 

conflict, a fault or no fault decision needs to be made.  Such a call can be made by 

adjusting 1v  and 2v so that 1 1 1 2 2 2( , ) ( , )b v U b v U  and J is minimized.  

1 2

1 2

,

1 1 1 2 2 2

( , ) min

. .

( , ) ( , ) 0

v v
J v v

s t

b v U b v U



 
     (5.2.2)

 

Due to the discontinuous nature of the fault flags, 1 1 1( , )b v U  and 2 2 2( , )b v U , which take 

binary values, the above optimization problem as stated can only be solved by a 

systematic grid search. 
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   The case in which an easier solution strategy can be defined is when the parameter iv  is 

an additive threshold, i.e., the fault flags satisfy 

1,2)(i   0)(h iff 0),( i  iiii vUUVb     (5.2.3) 

Here, ( )i ih U are outputs (smooth functions) that we compare against the thresholds, and 

( )i i ih U v  are residuals. In case of multiple thresholds, where vi and hi(Ui) are vectors, 

the inequalities in (5.2.3) are understood in a component-wise sense.  In this case, given 

that the objective function 1 2( , )J v v  is separable, the original optimization problem 

reduces to a finite number of smooth optimization problems that can be solved 

numerically.  Modifications of these ideas will be used in the subsequent sections to 

define and illustrate two conflict resolution schemes. 

5.3 Problem	Formulation	

We now discuss specific assumptions about the two fault detection schemes for which 

conflicts are to be resolved. 

A1. Both detection schemes use numerical thresholds that determine the values of 

fault flags based on the information available and the inputs to the detection 

schemes. 

A2. The residual signal which is the difference between an output and a threshold, 

based on which the fault flag is set, is known. 

A3. The probabilities of false alarm (FA) and missed detection (MD) for each 

overlapping fault in both detection schemes are known (not necessarily 

analytically) and are monotonic functions of thresholds. 
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A4. The communication of the information between the conflict resolution and fault 

detection schemes, and computations, are instantaneous.  

These assumptions are justified for many practical detection schemes. Problem 

Statement:  Under the assumptions stated above, devise an algorithm for conflict 

resolution between two fault detection schemes to reach consensus with minimum 

probabilities of false alarms and missed detections.  

Below, we first present fault detection algorithms for a spacecraft.  We then describe 

conflict resolution methods and apply them to the spacecraft case study. 

5.4 Example	Fault	Detection	Schemes:		A	Spacecraft	Case	Study	

We now present a spacecraft case study to illustrate the use of two fault detection 

schemes and associated need for a conflict resolution strategy.  One of the fault detection 

schemes makes use of the physics-based dynamics model and the other makes use of a 

qualitative, logic-based model.  

   Consider a 1 DOF satellite attitude control system with two thrusters as shown in 

Figure 5.1. The dashed line shows the axis of rotation. Two thrusters are mounted in such 

a way that they produce equal and opposite forces resulting in torque about the axis of 

rotation.    

 

Figure 5.1: 1 DOF satellite schematic 
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The equations of motion for this system in normal (no-fault) mode can be written as 

( 1) ( ) ( ) ( ),

( ) ( ) ( ).
cx k Dx k Eu k G k

y k Lx k N k




   

 
     (5.4.1) 

Here, state vector x represents orientation and angular velocity of the spacecraft, uc ϵ {0, 

1} represents an impulsive thrust value of off (0) or on (1); y represents sensor readings, ε 

represents system disturbances, and η represents sensor noise. Matrices D, E, G, L, and N 

are assumed to be of appropriate dimensions. We assume disturbance and noise are 

normally distributed with zero mean values and known variances. Our physics-based 

fault detection technique relies on the Interacting Multiple Model (IMM) approach [112]. 

In this approach, we make use of the fact that, under certain faults (or combination of 

faults), the system has a specific and known dynamic model. Transitions between the set 

of possible dynamics models can be treated as discrete jumps. In this chapter we consider 

only one fault case, i.e. thrust failure. This leads to a discrete state m(k) taking values in 

state set S = 0,1.  At each decision step k, transition probability ( )ij k  of the model can be 

defined by 

( ) { ( ) | ( 1) } ,

( ) 1 0,1

ij

ij
j S

k P m k j m k i i j S

k i






     

 
    (5.4.2) 

Now, consider a system model representing the fault states plus a nominal operation state 

(0). 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0,1

j j c j j

j j j

x k D k x k E k u k G k k

y k L k x k N k k

j





   

 



   (5.4.3) 

With the following values for disturbance and noise covariance:  
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Each cycle of IMM-based fault detection consists of four steps:  mixing of estimates, 

model-conditional filtering, mode probability update and fault detection and diagnostics 

(FDD) logic, and combination of estimates [112]. Details of these steps for n-fault case 

are presented in [112]. Fault flag b is set based on whether or not the likelihood of a 

mode has crossed corresponding threshold v1. 

1

1

1 : { ( ) 1}
( )

0 : { ( ) 1}

if P m k v
b k

if P m k v

  
 

 
    (5.4.5) 

For our spacecraft, we define candidate probability functions for missed detection (MD) 

and false alarm (FA) for IMM. As mentioned earlier, we assume that these functions are 

monotonic with the value of v1 (see Figure 5.2).  

1

1

10( 0.4)

10( 0.6)

1
( | )

1
1

( | )
1

v

v

P FA v
e

P MD v
e



 







     (5.4.6) 

 

Figure 5.2: Example MD and FA probabilities versus threshold for IMM 
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   Our second fault detection scheme for the same 1 DOF spacecraft is based on a 

qualitative model of the system that models components, their composition, and possible 

discrete value sets. As shown above in Figure 5.1, the main spacecraft components of 

interest are valves and thrusters. For fault detection purposes, we define the following 

logical clauses to describe the healthy system: 

1 1 2

1 2 1

1 2

1 2

( ) ,

( ) ,

( ) ,

( ) .

i V T T

ii T T V

iii T T

iv T T

 
 

 


     (5.4.7) 

Here, V1 represents that the corresponding valve is open and its complement  V1 

represents a closed valve. Similarly Ti represents that thruster i is on and its complement

Ti represents an off thruster. In this model, we make use of the facts that the valve must 

be open for the thrusters to be on and the thrusters operate as a pair. This model can 

detect faults based on sensor readings. To identify faults, we may use the scheme 

presented by Williams et al [104]. We define  the system by triplet   ,,S  for 

valve V1 where  denotes the set of possible state features,  is the set of possible feature 

value sets, and  is a finite set of transitions between states. In our example, we have 

 

 1 2 (2 3 3) (2 3 3)

, , ,

{{ , },{ , , },{ , , }},

, ,..., .

status cmdin senout

normal failed open close none open close none

       

 

 

 

  (5.4.8) 

Each transition is characterized by transforming the state variables from one set of values 

to the same set or any other set reachable through a transition in . Thruster states are a 

function of valve states; therefore we do not model thrusters with separate transitions. For 

each given state configuration, there is a set of possible transitions with associated 
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probabilities, where the sum of all probabilities is equal to 1. This leads to the transition 

probability table of size 18×18 which we assume to be known.  

   If we represent Ot as the set of observations at time t and µt as the set of possible 

commands or actions, we can obtain the set of feasible states at time t+1 as 

 1 1.t j t t Ot
j

S S S S 

 
  
 
         (5.4.9) 

Once, St+1 is computed, we can determine the most likely trajectories using Bayes rule, 

( | ) ( )
( | ) .

( )
t

t
t

P O P
P O

P O

        (5.4.10) 

In Equation (5.4.10), if τ(St-1) and Ot are disjoint sets then clearly P(Ot| τ) = 0. Similarly, 

if τ (St-1) is a proper subset of Ot then Ot is entailed and P(Ot| τ) = 1, and hence the 

posterior probability of τ is proportional to the prior. If neither of the above two situations 

arises then P(Ot| τ) < 1. Estimating this probability is intricate and requires more research 

[104]. Finally, the best estimate of current state is found using conflict-directed best first 

search. Once the conclusion is made about the current state of the valve, fault flag b for 

the fault is set (1) if a valve has status = failed and is cleared (0) otherwise.  Failure status 

is computed from observation O and hence the thresholds since the observed values 

depend upon comparisons of sensor values against the thresholds. 

2

2

: ,

: ,

: .

open if SensedVoltage v

senout close if SensedVoltage v

none if SensorFailed

 
 



    (5.4.11) 

This scheme can detect thruster failures based on valve failures. For example, let us 

consider the case where valve V1 is used to supply fuel to thrusters. If cmdin = open but 

senout = close after an appropriate delay from initiation of the open instruction then the 
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valve is failed in close mode; note that in this simplified model we assume a failed sensor 

will reliably give a SensorFailed status. The probabilities in Figure 5.3 depend upon the 

threshold, control command, and the previous state of the valve itself. For conditions 

when probabilities change with threshold i.e. trying to open a closed valve or close an 

open valve, we can model the probabilities as functions of threshold in a similar way as 

we did for the IMM-based detection scheme. In Figure 5.3 we present example relations 

between probabilities and threshold for the case when a closed valve is commanded to 

open (corresponding fault is stuck shut or failed in close mode). 

 

Figure 5.3: Performance probabilities vs. threshold for the knowledge-based 
detection scheme  

The above curves are based on 5 volt fuel pressure sensor readings (horizontal axis) 

where the fault output is either 0 or 1 indicating the valve as close or open, respectively. 

Note that, as we increase the threshold, the probability of false alarm (FA) increases 

because there is greater chance of sensor reading 0 when it actually might be 1 and hence 

producing an incorrect detection of the valve as close when it actually is open. Analogous 

behavior is exhibited in probability of missed detection (MD). Note that the chosen 
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2( 3)

2( 2)

1
( | ) ,

1
1

( | ) .
1

v

v

P FA v
e

P MD v
e

 









    (5.4.12) 

   Although the two fault detection schemes presented above are based on different 

models, they share key properties that can be utilized. Specifically, we can manage their 

thresholds to resolve conflicts at the expense of decreased performance in terms of MD 

and FA probabilities. Below we introduce a framework to recursively optimize thresholds 

so that the conflicts are minimized while maximizing performance in terms of MD and 

FA probabilities.  

5.5 Conflict	Resolution	

Consider the following conflict resolution cost function Jc. 

        
 2,1:0,0,0

,,|| 222111








iiqaa

UvbUvbqvMDPavFAPaJ

ii

i

iiiiii
c

  (5.5.1) 

In this equation, superscript i represents the detection scheme, ia , ia , q  are penalty 

factors or weights, v1 and v2 are thresholds, and U1 and U2 are inputs to the detection 

schemes.  

   Objective function (5.5.1) has two main terms. The first term can be interpreted as a 

measure of risk incurred by changing the thresholds. The second term penalizes conflicts 

between the specific faults detected by the two schemes. Note that the second term 

depends on Ui which represents the command and sensor signals available to the 

detection scheme i.   
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5.5.1 Threshold	Optimization	

Define the first term of (5.5.1) as  

    
 2,1

||



 

i

vMDPavFAPaJ
i

iiiiii

     (5.5.2) 

Note that 

 2,1
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



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



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






i

v

MDP

MDP

J

v

FAP

FAP

J

v

J
i

i

ii

i

ii    (5.5.3) 

We assume nominal threshold values iv  are chosen to minimize J so that 

 2,1

0









i
v

J
vv

i
ii

     (5.5.4) 

We denote 1 2( , )J v v by J*. Note that J is a separable function i.e. we can optimize FA 

and MD probabilities for each fault detection scheme separately. The following result 

then emerges. 

Theorem 	 1: Based on the assumptions in Section 5.3, the minimum of Jc is achieved at 

thresholds 1v  and 2v such that either 1 1v v  or 2 2v v  or both. 

Proof: The proof follows from the observation that the fault flag changes if there is a 

change in the threshold exceeding the residual, monotonicity of P(FAi|vi), P(MDi|vi) as 

functions of vi and positivity of the weights. 

5.5.2 Residual‐based	Conflict	Resolution	

We now present our first method of conflict resolution that uses knowledge of residuals 

for threshold variation when the two fault detection schemes produce inconsistent 

decisions regarding the presence of a particular fault. Underlying this method is a 
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mathematical formulation of the threshold update equations for both fault detection 

schemes. With threshold updating, we are able to resolve fault decision conflicts in 

situations where the disagreement is not strong. By strong disagreement, we mean the 

cases for which the required change in thresholds causes the cost function increase 

beyond a given bound. We define the upper bound of cost function based the penalty 

weight on the conflict. For the cases where disagreement is strong, the thresholds are kept 

at their optimal values while an error signal is generated to alert a higher level supervisor 

that the conflict was not resolved. 

   The upper bound on cost function is defined as 

*
maxJ J q        (5.5.5) 

   The cost of resolving the conflict based on the knowledge of the residual signal for each 

scheme is given by 

 
( , )

, 1, 2 ,

i i i jJ J v v v

i j i j

  

 
     (5.5.6) 

Here, Δvi is the change in threshold for the ith scheme required to resolve the conflict 

without changing the threshold for the other scheme. 

   The threshold for each scheme is updated based on the following equation 

 

 2,1
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21
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
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   (5.5.7) 

5.5.3 Conflict	Resolution	based	on	the	Markov	Decision	Process		

In this subsection, we present a different solution to the conflict resolution problem based 

on a Markov Decision Process (MDP) framework. In this case we eliminate assumption 
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A.2 of Section 5.3 which states that we have knowledge of residual signals. Hence we 

solve the problem of conflict resolution for any two schemes with independent fault 

detection such that each fault flag depends upon the value of a scalar parameter. Even 

though this parameter is not necessarily a threshold, we will refer to it as a threshold for 

consistency. The optimal MDP policy is then generated for adjusting the threshold(s) of 

the schemes to reach consensus between the fault flags. 

   The MDP framework uses a set of MDP states s1, s2, s3… and leads to an optimal 

policy that can maximize the time-discounted utility of states i.e.  

0

* arg max ( ) | .t
t

t

Val E R s


 




 
  

 
     (5.5.8) 

The states of an MDP-based conflict resolution algorithm for a fault detected by two 

schemes can be defined as: 

 

 
 

1 2 3

1 2 1 2

, , ,...,

,

, , , ,

1, 2,..., .

N

i i i i i

S s s s s

where

s b b v v

i N







     (5.5.9) 

Here, S contains states with all possible values of fault flags and thresholds related to the 

fault. We represent the threshold value set with a finite number of equally-spaced discrete 

values k
iv . Number of states N depends upon the size of Δv and the range of v. In 

particular, if the number of possible values of each threshold is z, then N = 4z2. 

The actions are represented as 

 1 1 2 2, , , ,M NOOP           (5.5.10) 
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and correspond to the following possible actions: 1) increasing ( 1
 ) or decreasing ( 1

 ) 

the threshold of the first detection scheme by Δv1; 2) increasing ( 2
 ) or decreasing ( 2

 ) 

the threshold of the second detection scheme by Δv2; 3) no change (NOOP). Note that 

each action can result in four possible states. This is because we can change the threshold 

but cannot guarantee a specific transition in fault flags as the latter is determined by other 

signals the flags depend upon. Note that NOOP results in states with the same thresholds 

and same values of fault flags. 

   Rewards for each state can be represented as 

 
  0,,,,...,2,1

)|()|()|()|(exp)( 21222222111111












kk

iiiiiii

Ni

bbvFAPvMDPvFAPvMDPsR

 

         

(5.5.11) 

Reward depends upon MD and FA probabilities as well as conflicts in each state. 

To find the transition probabilities, statistical information about the fault detectors used 

should be collected. This can be done by using Monte Carlo simulations, in particular by 

observing the transitions of the fault flags in response to increment and decrement in each 

instantiation of the thresholds. From the obtained information, probabilities of fault flag 

transition can be calculated: 

     
( , , )

1, 2 , , , , 1, 2,...,

k
i r pT T s s

k r i p N



    
    (5.5.12) 

   In the MDP, an optimal policy can be calculated using the value iteration algorithm. 

The policy that selects the optimal action may be found as 

*

,
( ) arg max ( , , ) ( )

p

k
i i r p p

k r s S

P s T s s Val s


 
   

 


   (5.5.13) 



 

110 
 

There is a direct relationship between the utility of a state and the utilities of all the states 

that can be reached from that state in a single optimal action. This relationship can be 

expressed using the Bellman equation:  

   

1
,

( ) ( ) max ( , , ) ( )

, , 1, 2

k
t i i i r p t p

k r
p i

Val s R s T s s Val s

r k

 


 
   

 
   



   (5.5.14) 

where Valt+1(si) is the utility of state si at iteration t+1, R(si) is the immediate reward of 

state si, and T (si , μr
k, sp) is the probability of transitioning from state si to sp by executing 

action µr
k.  With this structure, the MDP computes the best available threshold setting 

(action) for each state. The computational complexity of the value iteration algorithm is 

5N2 or O(N2) per iteration of Equation (5.5.14). The number of iterations required for 

convergence within a specified error tolerance depends upon the tolerance itself and the 

discount factor γ. 

5.5.4 The	Supervisor	Alert	

Since neither of our conflict resolution schemes guarantee 100% resolution of conflicts, it 

is important to have a supervisor (human or software) that can handle strong conflicts. A 

detailed algorithm for such a supervisor is beyond the scope of this chapter.  However, 

one approach to generating an alert flag for a supervisor can be based on the following 

equation: 
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          (5.5.15) 
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Equation (5.5.15) has two interesting properties. First, it has a moving window that 

indicates a persistent conflict. The moving window is important to avoid intermittent 

anomalous situations that may be due to short-term external or internal disturbances. The 

second feature is the use of an oscillation flag that avoids the generation of an error flag 

for the case of non-persistent fault flags causing a persistent conflict. The oscillation flag 

can also be used to detect particular failures such as power system failures causing 

fluctuations in voltages, etc. The information about unresolved faults can be used to make 

adjustments in system models and/or in the fault detection schemes to account for a 

change in the environment or the system itself. 

5.6 Simulation	Results	

5.6.1 Residual‐based	Conflict	Resolution	

We tested our threshold adjustment conflict resolution strategies for the case study of 

Section 5.4. Recall that for IMM-based fault detection the residual is the difference 

between the threshold v1 and the probability of fault mode, and for logic based fault 

detection the residual is the difference between the threshold v2 and the voltage output of 

the fuel pressure sensor. Based on our assumptions, the fault flag switches when the 

residual changes sign. For these simulations, we command the thruster on/off periodically 

with time period of 20 time steps and incorporate zero mean Gaussian noise in the 

residuals with variance of 60% of their maximum value i.e. variance of 3 for the 5 volt 

sensor output in logic based fault detection and variance of 0.6 for the probability of fault 

mode in IMM based fault detection. We did not inject the fault in our simulations. 

Therefore the conflict resolution is equivalent to mitigating a false alarm in one of the 

two schemes. 
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   We selected the cost function as 

),(),()|(7)|(5)|(7)|(5 22211122221111 UvbUvbvFAPvMDPvFAPvMDPJ    

(5.6.1) 

The value of J* is 6.3129 and Jmax = 7.3129 from (5.5.5) and (5.6.1). We measure the 

performance gain for our conflict resolution scheme as 

1 2
max

max

( , )
100

J J v v
PG

J


       (5.6.2) 

Table 5-1 shows simulation results for the conflict resolution algorithm based on the 

knowledge of residuals. Note that the conflict is resolved 100% of the time and the 

average performance gain is about 54%. 

Table 5-1: Simulation results for residual-based conflict resolution 
No. of Simulations No. of conflicts 

incurred 
No. of Conflicts 

Resolved 
Average 

Performance Gain  
50 5 5 54.15% 
500 52 52 54.% 
5000 554 554 54.05% 

25,000 2463 2463 54.08% 

 

Figure 5.4: Cost as a function of thresholds 
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5.6.2 MDP	Based	Conflict	Resolution	Method	

We next consider the use of the MDP conflict resolution algorithm. Also, in these 

simulations, the thruster is commanded on and off at the same period as above. We used 

the following parameter values for our simulations. 

     

1 2 1 1 2 2

1 2

0.25, 0.05, 5, 7, 5, 7, 100

21, 1764, 0,5 , 0,1 , 0.9, 0,0,2.25,0.55initial

v v

z N v v s

    


           

     
 

   Our numerical experiment consisted of executing the optimal policy on fault flags 

generated from both schemes based on similar residual signals as for simulations with the 

residual-based algorithm. The difference here is that the MDP does not make use of the 

residual signals and hence the number of optimal actions required to resolve a given 

conflict is unknown.  

Table 5-2: Simulation results for MDP-based conflict resolution with 2 actions per 
conflict 

Simulation Time 
steps 

No. of conflicts 
incurred 

No. of Conflicts 
Resolved 

Average 
Performance Gain  

50 8 6 53.2% 
500 41 34 53.1% 
5000 413 312 52.97% 

25,000 2215 1698 52.99% 

Table 5-2 shows the simulation results where we allowed a maximum of two actions per 

conflict. The performance gain is evaluated based on (5.6.2). Note that the MDP is unable 

to resolve all the conflicts within 2 changes in the thresholds. But if we allow more 

changes, more conflicts can be resolved as shown in Table 5-3 where we allowed the 

MDP to execute up to 5 actions per conflict. 

   From the comparison of results in Table 5-2 and Table 5-3, we might conclude that if 

we allow a sufficient number of actions for an MDP based resolution scheme, we can get 

100% conflict resolution. It is important to understand, however, that this is not always 
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the case. For example, when the conflict is strong, the required change in thresholds will 

be so large that the reward obtained for resolving the conflict will be less than the loss of 

reward due to use of a sub-optimal threshold. Also, in a real time implementation, there 

can only be so many updates allowed within each time step depending upon the length of 

each step and time taken by each update. 

Table 5-3: Simulation results for MDP-Based conflict resolution with 5 actions per 
conflict 

Simulations Time 
Steps 

No. of conflicts 
incurred 

No. of Conflicts 
Resolved 

Average 
Performance Gain  

50 3 3 54.04% 
500 39 39 54.04% 
5000 386 386 54.04% 

25,000 2052 2052 54.04% 

5.7 Possible	Extensions	in	Proposed	Methods	

The ideas of conflict resolution presented above can be extended in two possible ways. 

One way is to allow variable step size in the change in thresholds and the other way is to 

impose a time constraint on conflict resolution in terms of the number of allowable 

threshold changes for the resolution of the conflict(s) in the given state. Both of these 

changes can be exercised simultaneously. The variable step size of the change in 

thresholds would require additional actions without necessarily requiring a larger state 

space. On the other hand, the time constraint on the conflict resolution would require an 

additional variable in the state space to represent the count of the changes in the 

thresholds exercised for the resolution of the conflict(s) at hand. 

   The possible advantages of allowing variable changes in the threshold are the reduction 

in the fluctuation of the thresholds, added precision in the selection of optimal conflict 

resolving thresholds, and reduction in the number of changes required to resolve the 

conflict. The fluctuations in the thresholds can be reduced by allowing smaller step sizes 
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for the threshold change so that the chances of encountering a case where one threshold 

value is too high and the other threshold value is too low are reduced. On the other hand, 

reduction in the number of changes required to resolve a conflict is facilitated by large 

step sizes. 

   The constraint on the number of changes in thresholds allowed for the resolution of the 

conflicts can better represent some practical situations where the spacecraft has a hard 

deadline for the fault detection framework to make a definite fault call. Adding a variable 

for counting the number of threshold changes also requires modification in the reward 

function. This is to reflect the importance of resolving the conflict within the allowed 

number of threshold changes. One could formulate the problem such that if the conflict is 

not resolved within the allowed attempts of changes in the thresholds, the MDP will 

transition to a state that will indicate a failure to resolve the conflict. In such situations, 

maximum likelihood or statistics-based methods can be used to resolve the conflicts that 

are not resolved by the MDP policy.  

5.8 Collaborative	Fault	Detection	

Fault detection and diagnosis has been an area of active research for over four decades. 

Many fault detection schemes have been proposed that are either based on the dynamics 

of the system [75][111][112][40] or on a compositional (symbolic) knowledge-based 

model of the system such as in [75] and [104]. In addition to the development and 

improvement of specific fault detection and isolation algorithms, integration of these 

algorithms into an overall diagnostic and fault management (DFM) system is required 

[70][71].  Such a system must be capable of optimally scheduling an execution monitor 

(considering priorities and conflicts) to decide if a fault is present, to coordinate between 
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passive and active diagnostics and control strategies, and to reconfigure the system to a 

safe/degraded functionality state in the event of fault occurrence in a manner that 

maximizes system availability.   An advanced DFM system is clearly an enabling 

technology for the autonomous spacecraft and other autonomous aerospace systems. 

   To improve the quality of fault detection decisions, it is advantageous to have more 

than one independent detector. But multiple detectors can result in conflicting fault calls. 

While majority voting can be used in systems with triple or greater redundancy, it does 

not always work for systems with an even number of fault detectors.  Additionally, voting 

is only robust in cases where data sources and processing algorithms are independent.  

   Depending upon how fault detection is implemented, there are certain factors that affect 

the switching of fault flags. Most algorithms require numerical thresholds. In fault 

detection, a threshold can be defined as an upper or lower bound on the deviation of a 

signal from its nominal or expected behavior. More generally, a threshold can be any 

parameter that effects the operation of a fault detector. Almost all fault detection schemes 

are based on thresholds either explicitly or implicitly. Two fault detectors deployed 

within the same system, utilizing independent or at least partially independent sources of 

information, can share fault detection decisions to improve the speed and reliability of 

fault decisions.  This chapter studies how such shared information can improve fault 

detection decisions, specifically in the context of a system with both compositional and 

dynamics-based fault detection models. 

   To facilitate the coexistence of fault detectors, a framework is desired that can not only 

affect the fault decisions of both detectors, but that can also serve as a platform for 
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information sharing and improvement of decision quality. The framework needs to take 

into its account the probabilities of missed detections and false alarms based on the 

knowledge of the system and the transition probabilities of fault flags given the 

thresholds of the flags. 

   The focus of this part is on the development of one element of the full DFM system, 

specifically a fault detection and diagnosis framework with the ability to resolve conflicts 

between itself and an external fault detector.  In a situation when the fault detectors 

disagree, the conflict must be resolved to yield a consistent final decision. 

   In this work, we assume that the external fault detector has fault decision logic that 

depends on a set of thresholds. We also assume that the thresholds and fault decisions of 

this external detector are available to our proposed detection and diagnosis framework. 

We consider the problem of reaching consensus through either adjusting these thresholds 

in the external detector, or through changing the fault calls made by our detection and 

diagnosis framework.  Note that by changing a threshold, the external detector may or 

may not change its fault call, depending on the inputs. Consequently, the change in the 

fault flag can be interpreted as a random event.  

   To illustrate our approach, we consider attitude control of a single degree-of-freedom 

(1DOF) spacecraft maneuvered by a battery-powered (electric) reaction wheel system.  

The external detector in our example is an observer-based fault detector. This detector 

indicates a fault if the dynamic behavior of the spacecraft is off-nominal. Detection logic 

for this detector is assumed to be based on two thresholds. Simulation results are 

presented which highlight the capability of our approach to resolve conflicts. 
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   To mitigate computational complexity, we present an approximate dynamic 

programming (ADP) approach that can be used to generate near-optimal policies at a 

reduced computational cost. The proposed ADP approach is based on task-based 

decomposition of the original state space to create smaller MDPs, solution of smaller 

MDPs to obtain corresponding optimal value functions, and recombination of these value 

functions to obtain heuristic estimate for the optimal values of original states. 

   In the next section, we present our MDP-based collaborative fault detection framework. 

Sections 5.10 and 5.11 describe ADP decomposition and recombination, respectively, 

applied to collaborative fault detection.   Section 5.12 describes a spacecraft example 

with simulation results presented in Section 5.13. 

5.9 Main	Framework	

The Markov Decision Process (MDP) or stochastic dynamic programming (SDP) 

framework outputs optimal decisions for problems involving complex decision making in 

the presence of uncertainties. An MDP is composed of four basic elements i.e. set of 

states, set of actions, a state dependent reward function, and action and state dependent 

transition probabilities. Below we describe each of these four elements for our proposed 

framework. Figure 5.5 shows interconnection and signal flow between our proposed 

framework, external observer-based fault detector, and the system to be diagnosed. 
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Figure 5.5: Signal flow diagram. 

In Figure 5.5, Oo represents the vector of sensor outputs related to the dynamic observer, 

and OL represents the vector of observed values of logic-based operating modes of system 

components. Vector U represents diagnostic or data gathering commands. Vector V 

represents thresholds used in observer-based fault detection. Vector Bo contains binary 

fault flags for faults detected by the observer-based fault detector. Vector Bl contains 

binary fault flags generated by logic based fault detector built within our framework. 

Note that in Figure 5.5, thresholds for the observer-based detector are dictated by the 

MDP based framework so that they can be varied for conflict resolution. Also, Bo 

provides information that is used for both fault detection and conflict resolution in the 

MDP-based framework. The combined information of all faults [Bo Bl] can be used as 

the final fault decision set if the conflicts are resolved, or for generating alarms if MDP 

fails to resolve the conflicts in a specified number of time steps. Data gathering 

commands U are used to obtain updated OL in response to predefined diagnosis actions. 

This is useful when the available OL does not provide enough information to resolve a 

conflict or to detect a fault.  
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5.9.1 States	

The state space is defined as 
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   (5.9.1) 

A state contains five types of information. In a state si, vector Bli contains values of m1 

logic-based fault flags, vector Boi contains values of m2 observer-based fault flags, vector 

Ui contains values of m3 diagnostic commands, vector Oi contains observed values of m4 

logic-based component modes, and vector Vi contains values of m5 thresholds for the m2 

observer-based fault flags. Note that vector O in (5.9.1) is same as OL in Figure 5.5. 

Subscript L has been removed because there are only logic-based observations in the 

proposed MDP formulation. 

5.9.2 Actions	

Actions can be defined using the following equation: 

 1 3 5 51 1 1 1,..., , ,..., , , ,..., , ,bl blm u um v v vm vmM NOOP                   (5.9.2) 

There are m1 actions of the form µbli that are used to set the logic based fault flag i (from 

1 to 0 and vice versa), m3 actions of the form µui that are used to issue data gathering (or 

diagnostic) commands, 2m5 actions of the form µvi+ and µvi- that are used to increment 

and decrement, respectively, the value of threshold i that affects an observer-based fault 

flag. The amount by which the thresholds are incremented or decremented is assumed to 
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be pre-specified and fixed. Finally, there is a NOOP (no operation) action to complete the 

set. 

5.9.3 Reward	Function	

The reward function can be defined using the following equation 
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        (5.9.3) 

In (5.9.3), ai
j and qi,j for all i, j are constants. P(FAj|Ui, Oi) and P(MDj|Ui, Oi) represent 

probabilities of false alarm and missed detection, respectively, in state i for the fault 

represented by flag blj, given diagnostic commands and observations in state i. P(FAj|Vi) 

and P(MDj|Vi) represent probabilities of false alarm and missed detection, respectively, in 

state i for fault represented by flag boj, given threshold values in state i. H quantifies the 

amount of information available in each state. The reward function is an inverse 

exponential of a cost function which is a sum of four distinct terms. The first term 

represents the weighted sum of the probabilities of false alarms (FA) and missed 

detections (MD) for the logic-based fault detector. These probabilities are assumed to be 

dependent upon diagnostic inputs and observations. We assume that the corresponding 

conditional distribution can be represented in the form of a Bayes Net so that a Bayesian 

inference algorithm can be used to compute these probabilities for each state. The second 

term in the cost function represents the weighted sum of the probabilities of false alarm 

and missed detection for the observer-based fault detector. Here, we assume that these 
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probabilities have been computed using Monte Carlo simulations or other similar 

statistical methods. The third term in the cost function represents penalty weights on the 

possible conflicts. Here, Cn is the set of faults which are detected by both detectors. Each 

member of the set Cn is a pair (k1, k2) where k1 is the index of the fault in Bl and k2 is 

the index of the same fault in Bo. The fourth term in the cost function quantifies the 

amount of information available about the system. This term is negative because more 

information improves the solution thus reduces cost. 

5.9.4 Transition	Probabilities	

When an action µk is executed from a state si, the transition probability T(si ,µk, sj) 

indicates the probability of transition to state sj. In our formulation, there are three types 

of actions (besides NOOP). The first type consists of deterministic actions that switch the 

logic-based fault flags. Transition probabilities for these actions can be represented as 
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    (5.9.4) 

We use the \ operator to indicate set difference. The second type of actions are diagnostic 

command actions which are also deterministic since a command can be either issued (uj
k 

= 1) or not issued (uj
k = 0). 
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    (5.9.5) 
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Although Equation (5.9.5) indicates deterministic transitions, there may be some 

transitions that are not directly caused by actions.  For example, once a diagnostic 

observation is received, the state changes. This change is not deterministic because 

observations are affected by random noise and other factors. The third type of action is 

threshold changes (or conflict resolution actions). These actions change the thresholds 

deterministically but the changes in corresponding observer-based fault flags are 

represented as random events. 

Equation (5.9.6) is based on the assumption that each threshold cannot affect more than 

one observer-based fault flag whereas each flag may be affected by multiple thresholds 

(i.e. m5 ≥ m2). Equation (5.9.6) also represents actions to increase thresholds. A similar 

equation can be used to define actions that decrease thresholds. Variable p is the 

probability of fault flag switching and is dependent upon values of threshold and the 

corresponding change ∆ in the threshold.  In general, p could be a function of time and 

control inputs, but here we assume p to be a function of thresholds only. Finally, kv

represents the upper bound on the value of kth threshold and k̂ represents the index of the 

fault flag affected by threshold k. 
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   (5.9.6) 

5.9.5 Solving	the	MDP:	Value	Iteration	

There are three major ways of solving MDPs:  Policy Iteration, Value Iteration, and 

Linear Programming. All these methods calculate stationary optimal policies over an 

infinite horizon. We use value iteration as presented in Chapter 2. The MDP can also be 

solved using a backward induction algorithm [84] for obtaining a finite-horizon time-

varying optimal policy. 

5.10 ADP	Decomposition	Approach		

Section 5.9 provides an optimal decision making framework that is computationally 

intensive.  This section proposes a strategy to mitigate complexity by decomposing the 

full MDP into three sub-problems (MDP 1 – MDP 3), each of which is described below.  
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5.10.1 MDP	1:	Logic	Based	Fault	Detection	

This MDP is dedicated to the switching of logic-based fault flags based on information 

about diagnostic inputs and observations along with the information of fault flags from an 

observer-based detector. 

States—The set of states is defined as: 

 

 
   
   

1 2

3 4

1 2 1

1 1

1 1

1 , ,...,

,

, , , :

,..., , ,..., ,

,..., , ,..., .

N

i i i i i

m m
i i i i i i

m m
i i i i i i

S s s s

where each state is represented as

s Bl Bo U O

Bl bl bl Bo bo bo

U u u O o o





 

 

    (5.10.1) 

Only the last component of the state in Equation (5.9.1) has been dropped in (5.10.1).  

However, this nontrivially reduces MDP complexity since m5 is typically large. Also 

values in Bo do not change in MDP1. 

Actions—The set of actions is defined as: 

 111 ,..., , .bl blmM NOOP       (5.10.2) 

The only actions here are those of switching logic-based fault flags (refer to (5.9.2)). 

Reward	Function—The reward function is defined as: 
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 (5.10.3) 
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This reward function is similar to (5.9.3) except for the absence of terms related to 

information and performance probabilities for the observer-based detector.  Note that we 

use the term performance probabilities to represent the probabilities of false alarms and 

missed detections. 

Transition	 Probabilities—Transition probabilities can be represented using Equation 

(5.9.4). 

5.10.2 MDP	2:	Conflict	Resolution	

This MDP is dedicated to the resolution of conflicts by adjusting the thresholds for the 

observer-based detector. The specifics are as follows. 

States—States can be defined as: 
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Diagnostic inputs and observations are not required because we assume there is already a 

separate observer-based detector in the system that generates Bo using any input and/or 

observation data that it needs along with the model of the dynamics of the system. Also, 

analogous to MDP1, in MDP2, flag values for Bl do not change. 

Actions—Actions are the following subset of actions from (5.9.2): 

 5 51 12 , ,..., , ,v v vm vmM NOOP           (5.10.5) 

Reward	Function—The reward function can be defined as: 
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 (5.10.6) 

This reward function is similar to (5.9.3) except for the absence of terms related to 

information and performance probabilities for the flags in Bl. 

Transition	Probabilities—Transition Probabilities can be defined using (5.9.6). 

5.10.3 MDP	3:	Information	Gathering/Diagnostics	

This MDP is dedicated to the task of information gathering or diagnostics. 

States—States can be defined using (5.10.1). The set of states in MDP3 are the same as 

those in MDP1. 

Actions— Actions are the following subset of actions from (5.9.2): 

 313 ,..., ,u umM NOOP      (5.10.7) 

Reward	Function—The reward function can be defined as: 
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Transition	Probabilities—Transition Probabilities can be defined using (5.9.5). 

5.10.4 Integration	

We integrate the three MDPs as shown in Figure 5.6, and refer to this as the split MDP 

solution approach. Recall that OL in Figure 5.6 corresponds to O in the original MDP 
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formulation. Also, some of the information generated by one MDP is used by the others 

e.g. vector Bl generated by MDP1 is used by MDP2 and MDP3 etc. 

 

Figure 5.6: Signal flow with the split MDP framework. 

5.11 ADP	Recombination	Algorithm		

In this section we present a recombination algorithm that can be used to generate a policy 

for the states in the framework of Section 5.9 by integrating policies generated by the 

three decomposed MDPs in Section 5.10. Figure 5.7 shows the recombination steps. 
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Figure 5.7: ADP recombination algorithm for MDP-based framework. 

5.12 Implementation	Example		

To illustrate our framework, we consider a spacecraft reaction wheel fault management 

example. The reaction wheel (RW) is connected to two electronics driver boards (EB1 

and EB2) with corresponding mode monitors (OEB1 and OEB2), and a battery, as shown in 

Figure 5.8. We consider detection of six logic-based faults:  a fault in the battery, faults in 

each of the two electronics boards, faults in each of two monitors for the electronics 

boards, and a fault in the reaction wheel. We also include an observer-detected fault in 

the reaction wheel (anomalous torque) with detection logic that depends upon two 

thresholds v1 and v2. A Bayes net that represents the joint distribution of the operational 

Step 1. Solve each of the smaller MDP’s and compute 

optimal values for all states. 

Step 2. Merge the values calculated in step 1 to estimate the 

optimal values for the recombined MDP as follows: 

 

Step3. Calculate the ADP estimate of an optimal policy 

using the equation: 

 

for all s ϵ S 
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modes (normal/failed) of the components is shown in Figure 5.9. The Bayes net also 

includes fault flag bRW and its corresponding thresholds v1 and v2. Variables SW1 and 

SW2 correspond to the activation switches for the electronics boards. Initial conditional 

distributions corresponding to the Bayes Net are shown in Table 5-4 for fixed values of 

thresholds v1 and v2. The symbol “-” before a variable in Table 5-4 indicates faulty mode 

except for SW1 and SW2 where it indicates that the corresponding switch is turned off. 

Note that all probabilities in Table 5-4 are probabilities of components being in normal 

mode given available evidence. The corresponding probabilities of components being in 

faulty modes are calculated by subtracting the probability of the component fault from 1. 

Using these distributions, the probabilities of failure (given any evidence) for any of the 

components can be calculated using Bayesian inference. 

 

Figure 5.8: Simulation example system. 
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Figure 5.9: Bayes net for the simulation example. 

Table 5-4: Conditional probabilities (v1 = 0.5, v2 = 0.5) 
P(B) 0.995 
P(SW1) 0.5 
P(SW2) 0.5 
P(EB1|B,SW1) 0.998 
P(EB1|-SW1,B) 0.999 
P(EB1|SW1,-B) 0.4 
P(EB1|-B,-SW1) 0.7 
P(EB2|B,SW2) 0.998 
P(EB2|-SW2,B) 0.999 
P(EB2|SW2,-B) 0.4 
P(EB2|-B,-SW2) 0.7 
P(OEB1|EB1) 0.95 
P(OEB1|-EB1) 0.15 
P(OEB2|EB2) 0.95 
P(OEB2|-EB2) 0.15 
P(RW|EB1,EB2) 0.999 
P(RW|EB1,-EB2) 0.999 
P(RW|-EB1,EB2) 0.999 
P(RW|-EB1,-EB2) 0.2 
P(bRW|RW,v1,v2) P(FA|v1,v2) 
P(bRW|-RW,v1,v2) 1-P(MD| 

v1,v2) 

The dynamics of the system are represented by: 

RW
f

RW RW

I M d u

H M

 





  

 







              (5.12.1) 
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bRW
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SW1 SW
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In (5.12.1), d is assumed to be a zero mean Gaussian disturbance with variance 10-4. 

Also, θ represents angular displacement of the spacecraft in the inertial frame, ω 

represents angular velocity of the spacecraft represented in a body fixed frame, whereas, 

HRW represents angular momentum of the reaction wheel in the spacecraft’s body fixed 

frame. We assume full state feedback with perfect sensors.   

For the detection of faults, we used a scheme based on the comparison of nominal and 

actual dynamics. The nominal dynamics can be represented by similar equation as 

(5.12.1) except for the disturbance d and fault input uf that would be zero in the nominal 

model, specifically: 

1

2

1 1 2 2

,

1 : 0, , 0

0

n

n

RW

v
r V

v

if v r or v r
b

otherwise

 
 
   

       
   

 


   (5.12.2) 

Here, bRW is the fault where the reaction wheel turns off and its angular velocity decays to 

zero at a constant rate, i.e. 

 0, , 0RW RW
fu M H         (5.12.3) 

It is easy to show that r converges to [0 0]T whenever MRW = K(xdes - x) is selected such 

that the closed loop system has eigenvalues with negative real parts since there are no 

disturbances or faults. 

To implement our full MDP framework on the spacecraft reaction wheel system, we 

define the following states: 
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







     

  (5.12.4) 

In (5.12.4), Bl includes 6 fault flags for faults in components shown in Figure 5.8. O 

includes monitored status of the two electronics boards. U is a scalar where U = 1 

indicates that SW1 is turned on and SW2 is turned off whereas U = 2 indicates that SW1 is 

turned off and SW2 is turned on. V includes the two thresholds that effect observer-based 

fault flag bo. For this domain the total number of states in S is 185,856 which is less than 

all possible combinations of the values of state-components i.e. 26 × 2 × 32 × 2 × 112 = 

278,784. This is due to the constraint that if a circuit board is in use, its status cannot be 

unknown. Switching between electronics boards can yield additional information about 

component failures in cases of anomalous spacecraft behaviors when status of the board 

not in use is unknown.  For example, in an anomalous situation, the MDP can command a 

switch between the electronics boards in order to determine if both electronics boards are 

providing the same functionality. If changing the board does not change the spacecraft 

condition, the reaction wheel is more likely faulty.  If, on the other hand, changing the 

board restores nominal or improved operation, then there is an increased likelihood of 

failure in the original board. 

The actions for this domain can be represented as 
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       (5.12.5) 

All actions in (5.12.5) are similar to the ones defined in (5.9.2) except for µSW1 and µSW2 

that correspond to tuning U = 1 and U = 2, respectively.  

The reward function can be obtained using Equation (5.9.3) where we define H as 

follows: 

 

1
1

( )

2 ( )

:
( , , , )

0

i

i

i i

EB U
i i i i EB U

h bl bo
if O unknown

H Bl bo O U h O

otherwise



 
   



  (5.12.6) 

In (5.12.6), bli
1 is the logic-based fault flag for a fault in the reaction wheel. This 

information has positive reward if the status of the electronics board not in use is 

unknown. The value of the reward depends on if there is a conflict between the two 

detectors, if the in-use electronics board is ruled out as faulty, or both. 

The parameter values used for the reward function, adapted from Equation (5.9.3), are 

 1 2

3 4

5
1 2 1 2 3
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a a
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   
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 

     



       (5.12.7) 

Note that the parameter q (the penalty weighting parameter for the conflict) has no 

subscript because there is only one possible conflict. The transition probabilities were 

specified using Equations (5.9.4), (5.9.5), and (5.9.6). We selected p in Equation (5.9.6) 

to be a piecewise constant function of bo and changes in v1 and v2. For bo = 0 and an 

increment in v1 or v2, p = 0; for bo = 1 and an increment in v1 or v2, p = 0.1; for bo = 0 
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and a decrement in v1 or v2, p = 0.1; for bo = 1 and a decrement in v1 or v2, p = 0; for no 

changes in v1 and v2 i.e. when the intended increment or decrement is not possible 

because thresholds are already on their boundary values, p = 0.02. To implement the 

decomposed MDPs on the reaction wheel system, equations from Section 5.10 can be 

used with the same information used in the integrated MDP model.  

Remark	 on	 Computational	 Complexity: The decomposed MDP1 and MDP3 each 

have 1536 states, and MDP 2 has 484 states. The full MDP had 185,856 states, 

illustrating the ability of decomposition to enable computational savings. Recall that the 

computational complexity of value iteration is proportional to the square of the size of the 

state space times the size of the action space which means that the original MDP has 

computational complexity  O(1011) whereas the three split MDPs have combined 

computational complexity O(106). However, this computational savings comes at the cost 

of loss in performance. Examples of this loss are presented in the next section. 

5.13 Simulation	Results		

In this section, we explain two simulation cases and report the results.  Most of the results 

are generated by the comparison between main, split, and recombined MDP formulations.  

5.13.1 Simulation	Setup	1	

Using the example described in Section 5.12, we implemented the main MDP, the split 

MDPs, and the ADP-based recombined MDP using value iteration and ADP algorithms 

described previously. The simulation setup for the main MDP and the ADP-based 

solution are given in Figure 5.10. As shown in the figure, in the simulation we feed the 

MDP policy current state per (5.12.4). The MDP policy then executes the optimal action 
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and state is partially updated. Then we use random number generators to set monitored 

modes for the electronics boards (OEB1 and OEB2) and residuals for the observer-based 

detector (r1 and r2). The state is updated using this new information and is fed into the 

MDP policy to complete the cycle of one time step. 

 

Figure 5.10: Setup for main and ADP-based MDPs. 

For the split MDPs, there were quite a few options for implementing a series of 

combinations. Figure 5.11 shows the particular combination that we used. The cycle of 

MDP execution begins with the conflict resolution MDP which executes an optimal 

action and causes changes in some parameters of the state S. Note that only a subset of 

the information in S is required to determine the optimal action for the conflict resolution 

MDP policy (see (5.9.1) and (5.10.4)). The state is updated after the optimal action is 

complete. The same procedure is repeated for the logic-based fault detection MDP and 

diagnostic MDP. Here again, only part of the information in S is required to determine 

optimal policies for logic-based detection and diagnostic MDPs. The final updated state 
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is transferred to the output block after which external updates similar to those in Figure 

5.10 are performed before the updated state is fed back into the split MDP block and the 

cycle is completed.  

 

Figure 5.11: Evoluation of System State S for split MDPs. 

For case 1, false alarm and missed detection probabilities were generated by a similar 

function as in [71]. For the next case, these probabilities were generated using Monte 

Carlo simulations on the dynamic model and fault detection scheme presented in 
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Equations (5.12.1) and (5.12.2) respectively. In the results for case 1, we present 

percentages of conflicts resolved for two cases with difference in the value of parameter 

q. 

5.13.2 Simulation	Results	for	Setup	1		

Case	 1	 (q	 =	 5)—Figure 5.12 shows the results from simulation setup 1. The trajectories 

were recorded for 25, 250, and 2500 time steps where each time step corresponds to a 

complete cycle per Figure 5.10 and Figure 5.11. 

 

Figure 5.12: Percentage of conflicts resolved by MDPs in setup 1 (with q = 5). 

Our result indicates that all conflicts were resolved by all MDPs. This is due to the high 

penalty factor (q = 5) on conflicts in the reward function of the MDPs. Note that, 

although resolution of conflicts is a desirable property, this alone cannot determine the 

optimality of the MDP policy since the reward function is composed of four factors (see 

(5.9.3)) among which resolution of conflicts is one. 

Case	2	(q	=	0.5)—Figure 5.13 presents the results for this case.  
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Figure 5.13: Percentage of conflicts resolved by MDPs in setup 1 (with q = 0.5). 

Note that the percentage of conflicts resolved is dropped significantly for the split MDP 

whereas it has also dropped slightly in main MDP. This points to the high sensitivity of 

the split MDP to the change in q. 

5.13.3 Simulation	Setup	2	

In setup 2, we used the dynamics model (5.12.1) and detection scheme (5.12.2) to 

generate residuals r1 and r2 instead of a random number generator in Figure 5.10 and 

Figure 5.11. Parameter values used in this setup were from (5.12.7) with q = 5. We 

carried out four experiments with rest-to-rest maneuvers of the 1DOF spacecraft slewing 

from 0 to π radians. We selected control gain vector K = [1 1]T and τ = 2 for all 

experiments. The fault in all four experiments corresponds to a nonzero value of uf in 

(5.12.3). The initial state for all MDPs in all experiments was the state where all fault 

flags were turned off.  Monitor OEB1 of the circuit board EB1 showed normal as its status 

whereas the monitor OEB2 for the circuit board EB2 showed unknown as its status. The 

switch of circuit board EB1 was set to 1 whereas the switch of board 2 was set to 0, and 

the thresholds (v1, v2) were set to be (0.6, 0.1). Below, we present a brief description of 
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the behavior of the dynamics and MDP for each experiment. We also present plots of the 

dynamics and MDP for our fourth experiment as an example. A performance comparison 

of the ADP-based approach with the main MDP is shown at the end. 

5.13.4 Simulation	Results	for	Setup	2	

Experiment	 1—In our first experiment, to assess the nominal behavior of the dynamics 

and MDPs, we did not introduce the fault. In this case, the nominal dynamics and the 

actual dynamics differ only slightly. This difference is due to disturbance d injected into 

the simulated system. MDP policies for the main and recombined MDPs yield constant 

trajectories whereas the split MDP yields some variations in thresholds. This was a 

conflict-preventive behavior since the logic-based fault flag for the reaction wheel was 

set to 0. Recall that in the split MDP the logic-based fault flags are fixed from the point 

of view of the conflict resolution MDP. The main and split MDPs performed a diagnostic 

action, and once information about EB2 was obtained, no further diagnostic action was 

performed.  

Experiment	 2—In the second experiment, we introduced the fault at t = 1 sec. The 

resulting actual dynamics showed a significant deviation from the actual dynamics. On 

the other hand, all the MDPs resolved the conflict by switching the logic-based fault flag 

for the reaction wheel to 1 after switching of bo to 1 at t = 1 sec due to crossing of 

thresholds by residuals r1 and r2. In this experiment, the recombined MDP made valiant 

efforts to switch the flag bo back to zero but did not succeed since the residuals were very 

high due to significant deviation of the dynamics from their nominal behavior. 
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Experiment	 3—In our third experiment, we introduce the same fault but at t = 13 sec. In 

this case the fault is almost undetectable by the observer since the satellite has almost 

completed its maneuver. For this case, the MDP behaviors are similar to the no-fault 

case.  

Experiment	 4—In our fourth experiment, we introduced the same fault at t = 1 sec and 

then we removed the fault at t = 2 sec. The resulting dynamics are shown in Figure 5.14 

where, x1 represents θ, x2 represents ω, and x3 represents HRW. All the MDPs resolved 

the conflict by switching the logic-based fault flag for the reaction wheel to 1 as before, 

but after the fault was removed this flag was also switched back to zero.  

 

Figure 5.14: Dynamics for the reaction wheel fault at t = 1 sec and recovery 
initiation at t = 2 sec. 
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Figure 5.15: Behavior of MDPs for fault at t = 1 sec and recovery at t = 2 sec case. 

Figure 5.15 shows the behavior of the diagnostic input U, and the thresholds v1 and v2 for 

MDPs in this experiment. For this case the split and recombined MDPs both performed 

aggressive threshold changes. This behavior is due to our selection of parameters (5.12.7) 

where penalty on conflict is ten times larger than the penalty on probabilities of false 

alarms and missed detections that are based on the threshold values. On the other hand, 

the main MDP did not try to change the thresholds since the representation of fault flag 

transition probabilities and hence possibility of conflict generation is accurately 

represented in the main MDP as opposed to the split and recombined MDPs, where the 

conflict resolution MDP assumes fixed Bl whereas the fault detection MDP assumes 

fixed Bo. 

Performance	of	ADP	Algorithm—Finally, we present a performance comparison of the 

main, split, and recombined MDPs (Figure 5.16) based on total expected reward given by 

Equation (5.13.1). 
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Figure 5.16 shows that the recombined MDP performs well in experiments 1, 3, and 4, 

but poorly in experiment 2. Overall, considering the computational savings (of the order 

of 105), our proposed ADP based approach appears promising. 

 

Figure 5.16: Performance comparison for MDPs in all 4 cases. 

5.14 Further	Analysis	of	the	ADP‐based	Policy	

In this section, we present some results that are analogous to the results presented in 

Section 4.6.3 in Chapter 4 regarding the mission planning MDP. We use the original and 

ADP-based MDP formulations in the fault detection case study presented above and 

simulate the trajectories over finite horizon lengths using the policies calculated for both 

the original and the ADP-based MDPs. The results of changes in the epoch, the discount 

factor, the weights of the performance (ai
j’s in Equation (5.9.3)), and the weights on the 

conflict ((qk1, k2’s in Equation (5.9.3))) are shown in Table 5-5. 
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Table 5-5: Performance results for the ADP-based MDP policy 

Variable 
Factor 

Constant 
Factors 

Best Average 
performance 

Worst Average 
Performance 

Worst case 
Performance 

Epoch: 3-10 γ = 0.9 
Performance 
Weights = 0.5 
Conflict 
Weights = 5 

98.9% for 
Epoch = 3 

96.4% for 
Epoch = 10 

67.8% for 
Epoch = 3 

γ: 0.29:0.1:0.99 Epoch = 3 
Performance 
Weights = 0.5 
Conflict 
Weights = 5 

99.8% for γ = 
0.29 

98.9% for γ = 
0.99 

70.3% for γ = 
0.99 

Performance 
Weights: 1-5 
(Conflict 
Weights = 6 – 
Performance 
Weights) 

γ = 0.5 
Epoch = 3 

99.52% for 
Performance 
Weights = 5 

99.45% for 
Performance 
Weights = 1 

68.3% for 
Performance 
Weights = 5 

   

5.15 Conclusions	and	Future	Work	

In the first part of this chapter, we presented two conflict resolution algorithms capable of 

resolving differences in faults detected by diverse fault detection schemes. Both our 

conflict resolution schemes share a common resolution strategy: they change missed 

detection vs. false alarm thresholds for one or both fault detection algorithms as a method 

of converging on a common fault set. In the first conflict resolution method, we 

optimized the changes in thresholds with respect to a cost function that takes into account 

not only the conflicts but also the probabilities of missed detection and false alarms for 

both schemes and that uses residuals to update threshold values. In our second strategy, 

we optimize the change in thresholds using a Markov Decision Process based on rewards, 

transition probabilities of fault flags, and a discount factor, but without knowledge of 

residuals. We have demonstrated the ability of both conflict resolution algorithms to 
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resolve conflicts using a simple example of spacecraft thruster failure. Simulation results 

show that our approaches are able to resolve conflicts, with the residuals method offering 

a faster solution and the MDP method offering a more general resolution method not 

dependent on knowledge of residuals. In future work we plan to extend our models to 

accommodate more than two fault detection schemes and to handle multiple faults, 

initially with independent thresholds then ultimately with interdependencies. 

   In the second part of this chapter, we have presented a Markov Decision Process 

framework for detecting faults, executing diagnostic actions, and resolving conflicts. We 

presented task-based decomposition and recombination approaches, with recombination 

cast as approximate dynamic programming to reduce the computational complexity. To 

compare the three MDP formulations, we demonstrated a 1DOF spacecraft case study in 

which the spacecraft must diagnose reaction wheel system faults. Simulations indicate the 

conflict is always resolved when penalty weight is sufficiently high, but this is not 

necessarily the case with low penalty weight. Failure to resolve the conflict typically 

happens when the dynamics-based observer is in strong disagreement with the 

compositional model. Accurate resolution of the conflict is highly dependent upon the 

consistency of the Bayes net model as well as appropriate selection of reward function 

parameters. Although decomposition significantly reduces computational overhead, some 

drawbacks of the decomposition approach were also revealed in simulation results in the 

form of aggressive changes in thresholds. Otherwise, the performance of the ADP-based 

approach showed close comparison with the main MDP in terms of total obtained 

expected reward along the trajectories under the different fault cases. 
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 	Chapter	6

Mission‐Based	Fault	Reconfiguration	Framework	

 

We present a Markov Decision Process (MDP) framework for computing post-fault 

reconfiguration policies that are optimal with respect to a discounted cost. Our cost 

function penalizes states that are unsuitable to achieve the remaining objectives of the 

given mission. The cost function also penalizes states where the necessary goal 

achievement actions cannot be executed. We incorporate probabilities of missed 

detections and false alarms for a given fault condition into our cost function to encourage 

the selection of policies that minimize the likelihood of incorrect reconfiguration. To 

illustrate the implementation of our proposed framework, we present an example of a 

1DOF spacecraft with a reaction wheel system that is on a mission to collect scientific 

data from three targets, as a baseline test case. We also show that there is a design 

tradeoff between safe operations versus mission completion. Simulation results are 

presented to indicate this tradeoff in the selection of design parameters for the proposed 

framework.  

6.1 Motivation	

Today’s space missions are increasingly sophisticated in part due to improvements in 

onboard sensing and computing capabilities.  One of the critical challenges for 

autonomous or semi-autonomous space missions is reliable, fault tolerant mission 
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execution. This requires a combination of fault detection and subsequent reconfiguration. 

Because fault detection and reconfiguration are inherently coupled, the system must 

additionally decide when it is better to reconfigure versus maintain the current 

configuration in a possibly degraded capacity. It is also important to determine what type 

of reconfiguration is optimal given the estimated likelihood that the fault detection report 

is accurate. 

   Previously in fault reconfiguration, researchers have taken into account the uncertainty 

of fault detection. For example Rago et. al. [87] have proposed a fault tolerant control 

scheme where the post-detection control law is a weighted sum of the stabilizing 

controllers for different failure modes where weight on each control law depends upon 

the probability of that failure as predicted by the detection scheme.  Also, Abu Bakar and 

Veres [4] have proposed a multi-agent fault tolerant planning architecture where the 

reconfiguration agent iterates on various reconfiguration actions while learning from 

iterations until the response of the system is satisfactory.  

   Our goal in this chapter is to devise a reconfiguration scheme that not only takes into 

account the uncertainty in fault detection and the possibility of failure of a 

reconfiguration action, but also incorporates the mission objectives and current policy 

execution state into the decision-making process. The unique features of our approach, as 

compared to the existing approaches, are formulation of the reconfiguration problem as a 

Markov Decision Process (MDP) and the introduction of an explicit tradeoff between 

spacecraft safety and importance of mission completion. Each state of the MDP contains 

information about detected faults, current status of the mission in terms of its remaining 

objectives, probabilities of correctness of fault detection, status of the mission-related 
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actions in terms of in-progress versus not-in-progress, and the current status of all 

reconfiguration options. We use the value iteration approach [89] to compute an optimal 

reconfiguration policy that maximizes the expected discounted performance reward 

which is a function of our MDP state. The resulting policy provides an optimal 

reconfiguration action for each state of the MDP. Specifically, the policy prescribes the 

reconfiguration action as a function of state that contains information about fault 

decisions, probability of correctness of the fault decisions, status of the mission and each 

ongoing mission-related action, and status of reconfiguration options. Given that MDP-

based deliberation is computationally-intensive and the complexity grows exponentially 

with the size of the state space, we must assume that the probability distribution of fault 

decisions can be represented with a tractable set of reachable states for time horizons 

under consideration. For example, consider a 1DOF spacecraft with a reaction wheel and 

associated electronics. For this system, we can construct a Bayes Network [89] for the 

fault probabilities of the electronics and the reaction wheel based on abstracted sensor 

readings that contain information about the possible failure modes for the wheel and 

electronics. For every possible value of the evidence, corresponding failure probabilities 

are computed based on the Bayes Net. Since the evidence contains information about the 

failure modes, there is a finite set of possible values for the evidence and hence there are 

finitely many values for the probabilities of failures computed from this evidence. Since 

probabilities of correctness of fault decisions are computed from probabilities of failures 

and the value of the fault decision flags, this implies that the probability distribution of 

fault decisions can be represented by a finite set of discrete or symbolic values. This 
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guarantees a finite state-space for the MDP in which state contains information about 

probabilities of correctness of fault decisions. 

   Below, we present the problem statement, our assumptions, and our MDP formulation 

for fault reconfiguration. In Section 6.3 we present an implementation example of a 

1DOF spacecraft attitude control system with a reaction wheel and associated electronics 

boards. In Section 6.4 we present simulation results and discuss the tradeoff between safe 

operations versus emphasis upon mission completion.  Finally, we present conclusions 

and future work related to fault reconfiguration in Section 6.5. 

6.2 Problem	Formulation	and	Solution	Approach	

6.2.1 Problem	Statement	

We develop a framework for constructing a reconfiguration strategy that is optimal with 

respect to minimizing the possibility of incorrect reconfiguration, maximizing the 

possibility of achieving the remaining mission objectives, and maximizing the possibility 

of completion of in-progress mission related actions while accounting for the possibility 

of failure of the reconfiguration action.  Our assumptions are stated below: 

 

A1. The spacecraft is on a mission that can be decomposed into a set of mission 

objectives. 

A2. A status vector for mission objectives, assigned achieved and not-achieved values, 

is available as an input to the reconfiguration algorithm. 

A3.  A status vector for mission-related actions, assigned in-progress and not-in-

progress values, is available as an input to the reconfiguration algorithm. 
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A4.  The system has an on-board fault detector that provides fault information. 

A5.  Status of the fault detection decisions from the fault detector is available as an 

input to the reconfiguration algorithm. 

A6. Either the probabilities of correctness of fault decisions are available to the 

reconfiguration algorithm, or the abstracted sensor readings are available from 

which the probabilities of correctness can be calculated using a joint failure 

probability distribution model, i.e. a Bayes net.  

 A7.    Reconfiguration actions are executed instantaneously.  This allows the assumption 

that ault decisions, status of the mission objectives, status of mission-related 

actions, and probabilities of correctness of fault decisions do not change during 

the execution of a reconfiguration action. 

6.2.2 MDP	Formulation	

We present two possible formulations for the states of the fault reconfiguration MDP. 

One of the formulations includes probabilities of correctness of fault decision flags as 

part of MDP states whereas the other formulation includes abstracted sensor readings 

from which the probabilities of correctness of fault flags are calculated using a Bayes net 

as will be further described in the context of the spacecraft case study presented in 

Section 6.3. 

   The first formulation incorporates probabilities of fault flag correctness into the MDP 

state as given by:   
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     (6.2.1) 

Here, Bi is a vector of mission objective flags representing whether or not a certain 

objective has been achieved. Ai is a vector of mission-related action flags indicating 

which of the actions are active or inactive at the moment. F is a vector of resolved fault 

flags generated by the fault detection process described in Chapter 5. P is a vector of 

probabilities of correctness of the fault flags in F. Note that there is one-to-one relation 

between the probabilities of false alarms/missed detections and the probabilities of 

correctness of fault decisions e.g. for a fault j in state i, P(FAj
i) = (1 – pj

i)f 
j
i and P(MDj

i) 

= (1 – pj
i)(1 – f j

i). The discrete variable sw represents the current switch configuration 

and c is a discrete variable representing the currently active control law for the system. 

Note that based on assumption A6 probabilities of correctness of the fault detection are 

known. Further implication of A6 is that there are finitely many values for the elements 

of P as explained above.  

The second state formulation replaces detection correctness probability vector P with 

abstracted sensor-based observation vector O and has the following form, 
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The actions in this formulation are represented as 

 1 2 3 1 2 4, ,..., , , ,..., ,m mM sw sw sw c c c NOOP
,
    (6.2.3) 

where swi represents the selection of a particular switching configuration (i) among m3 

possible switching configurations and cj represents selection of a particular control law (j) 

among m4 possible control laws. We also have an option of doing no reconfiguration, 

designated by NOOP in (6.2.3).  

   The reward function is defined as a negative exponential of the corresponding cost 

function and is given by 
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where αk, βk, and λ are positive constants for all k, I is an indicator function (I(x) = 1 when 

x is true and 0 otherwise), Ak
critical is a subset of the state space for which activation of a 

certain mission related action (ak) is critical or undesired, Bk
critical is a subset of the state 



 

153 
 

space containing those states that can lead to an inability to achieve mission objective k. 

Also, G is a semi-positive-definite function of fault flags, their corresponding correctness 

probabilities, and current switching and control configuration. G should be chosen so that 

it is zero if for the current fault flags and current probabilities of correct detection, the 

switching and control configuration is optimal in some sense, e.g. enables safe operation 

of the spacecraft,.  G is positive otherwise with highest value at the worst possible 

configuration, e.g., the least safe operational state. Note that the reward function is an 

exponential of the cost function which has three main terms. The first term penalizes all 

the states where the active mission-related action is undesirable, where undesirable states 

are states to avoid when a particular mission related action is active. The second term 

penalizes being in states which could be undesirable for all or some of the unachieved 

objectives. The third and final term penalizes being in states where given the current fault 

flags and their probabilities of correctness the current configuration is suboptimal. The 

reward function is chosen as an exponential so that the reward takes non negative values. 

   The reward function for states with sensor observations (O) instead of pre-computed 

probabilities for the values of the fault flags being correct (P) can be represented as, 
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where Oi
k is the subset of Oi that is used to calculate pi

k.    

To specify transition probabilities, there are two possible cases for each of our alternate 

state formulations. In the first case, we assume that the actions are instantaneous with 
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respect to the changing fault flags and other conditions (Assumption A7). Therefore, each 

action could simply result either in the desired state (i.e. state with the desired 

configuration with everything else being the same) or the same state from which it is 

executed depending upon the probability of failure of the reconfiguration action. Hence 

the transition probability function can be represented as 
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where θ1 and θ2 are probabilities of success over the switching and control law 

reconfiguration actions respectively. Also, x \ y for y ϵ x implies elements of set x not also 

in y. 

   In the second case, we allow other transitions to happen during the execution of a 

reconfiguration action i.e. we discard assumption A7. The resulting transition probability 

function is presented in Equation (6.2.7). Although the probabilities of each transition 

type are shown separately, any combination of the transitions can happen at a particular 

time. For example, given a reconfiguration action in progress, the reconfiguration may 

fail, but on the other hand, one of the unachieved mission objectives may still be 

achieved, or the sensor output could change hence changing the fault flag correctness 

probabilities.  Alternatively the fault detection scheme may decide to change fault flags 

based on new sensor information, etc. Note that values of the fault flags and the 

probability of reconfiguration action failure depend upon sensor readings but sensor 

readings are considered independent of the values of fault flags. Also, the probabilities of 
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failures are conditionally independent of the values of the fault flags given the sensor 

readings.  
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         (6.2.7) 

The transition function for the state formulation with O instead of P can be written 

similarly. Below, we assume the case of instantaneous reconfiguration actions is true 

(that Assumption A7 holds) and also we will assume that the states are represented with 

vector O instead of P. Representation with P is similar. We do not present an example for 

the model with transition probabilities as in Equation (6.2.7) because it requires further 

assumptions about the knowledge of corresponding transition probabilities e.g. φ1, φ2, φ3 

etc which is beyond the scope of this chapter. Nevertheless, this could be a desirable 

future directionof study. 

6.3 Baseline	Spacecraft	Case	Study	

Consider a 1DOF spacecraft with reaction wheel where the reaction wheel has two 

associated electronics boards, and each electronics board has current and voltage sensors 

to detect failure of the electronics board. There is also an inertial measurement unit 
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(IMU) that can be used to detect faulty operation of the reaction wheel based on rotation 

rate of the spacecraft. We assume that the spacecraft is on a mission to collect scientific 

data from three targets. At each point, we have the information of the collected data so 

far. The mission-related actions are attitude maneuvering and data collection. For 

simplicity, we assume that the data collection equipment does not fail. Figure 6.1 shows 

the system under consideration. 

 

Figure 6.1: 1-DOF reaction wheel (RW) system 

Note that we can generate a Bayes net for this example using the interconnection of 

components and information about how they work together. Figure 6.2 shows the Bayes 

net for this example. In Figure 6.2, nodes Batt, EB1, EB2, and RW represent 

faulty/normal mode of these components. Nodes OEB1 and OEB2 represent abstracted 

sensor readings in terms of faulty/normal for EB1 and EB2, respectively. Node SWEB has 

values {1, 2} indicating which of the boards is in use. Node C represents the active 

control law. We assume three control laws one of which (c1) works best when the wheel 

is normal, the second law (c2) works best when the wheel is faulty, and the third law (c3) 

is the safe mode control where the reaction wheel is turned off. We also assume that the 

control law appropriate for a faulty wheel (c2) yields lower performance than c1 if the 



 

157 
 

wheel is operating normally. Node aatt indicates whether or not the attitude maneuvering 

action is active. Node IMU represents the normal/faulty status of the wheel abstracted 

from IMU measurements. The initial conditional distributions corresponding to the Bayes 

Net are shown in  

 

Table 6-1. The symbol “-” before a variable in  

 

Table 6-1 indicates a faulty mode except for SW1 and SW2 where it indicates that the 

corresponding switch is turned off. Note that all probabilities in  

 

Table 6-1 are probabilities of components being in normal mode given evidence from 

parent nodes. The corresponding probabilities of components being in faulty modes are 

calculated by subtracting probability of normal operation from 1. Using these 

distributions, the probabilities of failure (given any evidence) for any of the components 

can be calculated using Bayesian inference. We assume that the probability of failure of 

RW is 0 when no attitude maneuvering action is under execution. Also we assume that the 

failure/normal mode of RW does not change when control law c2 or c3 is in effect. 
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Figure 6.2: Bayes net for 1-DOF reaction wheel system  

 
 

Table 6-1: Conditional probabilities for the Bayes net 
P(Batt) 0.995

P(SW1) 0.5

P(SW2) 0.5

P(EB1|B,SW1) 0.998

P(EB1|-SW1,B) 0.999

P(EB1|SW1,-B) 0.4

P(EB1|-B,-SW1) 0.7

P(EB2|B,SW2) 0.998

P(EB2|-SW2,B) 0.999

P(EB2|SW2,-B) 0.4

P(EB2|-B,-SW2) 0.7

P(OEB1|EB1) 0.95

P(OEB1|-EB1) 0.15

P(OEB2|EB2) 0.95

P(OEB2|-EB2) 0.15
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P(RW|EB1,EB2,c1,aatt) 0.999

P(RW|EB1,-EB2,c1,aatt) 0.999

P(RW|-EB1,EB2,c1,aatt) 0.999

P(RW|-EB1,-EB2,c1,aatt) 0.2

P(IMU|RW) 0.99

P(IMU|-RW) 0.02

 

Now we present the MDP formulation for this example. The states of the system are 

represented as 
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Given the information in a baseline state, we can solve the Bayes net in Figure 6.2 to 

obtain probabilities of failures for RW, EB1, EB2, and Batt. Then we can compare 

probabilities of failure with values of fault flags in the MDP states to determine 

probabilities of false alarms and missed detections. The total number of states in above 

equation amounts to 12,228. Since we have 6 actions, the computational complexity of 

this example will be of the order of 108 which is manageable with a modern computer.  

   Available actions are to flip a switch and to flip the control law. Doing nothing (NOOP) 

is also among available options in action set M given by 

 1 2 1 2 3, , , , ,M sw sw c c c NOOP
     (6.3.2)

 

   The reward function requires specification of critical sets and a G function that 

represents the penalty on incorrect reconfiguration. We assume the attitude maneuvering 
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action is not desirable in states where the control law is c2 or c3 and fRW is 0 (indicating no 

fault in the RW). Furthermore, an attitude maneuver can be executed with either c1 or c2 

as the control law whereas, with c3, attitude maneuvering is not possible. Also we assume 

that states with c2 or c3 as the active control law are critical for achieving objective b3 (i.e. 

collecting data from asteroid 3). This may be due to pointing stability requirements for 

this objective. For the other two objectives, the critical states are when the control law is 

equal to c3. We define the G function for our example as 
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In the above equation, P(FAj
i) and P(MDj

i) represent probabilities of false alarm and 

missed detection respectively for component j in state i. These probabilities are 

conditioned upon the information given in state si and are calculated from the Bayes net 

in Figure 6.2 as described earlier. Also λ1, λ2, λ3, λ4, λ5, and λ6 are positive weighting 

factors. Note that, function G has six main terms.  The first two terms in G penalize usage 

of a faulty electronics board. λ1 and λ2 are different because the two boards in general 

may not be exact copies of each other. The next two terms in G penalize usage of 

degraded control laws when the reaction wheel is still healthy. The fifth term penalizes 

the usage of the normal control law c1 when the wheel is faulty. The sixth term in G 

penalizes not using safe mode control in case of battery failure.  
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   Now, we can write the reward function for our example as 
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Finally, transition probabilities for the example are computed using Equation (6.2.6) with 

θ1 = 0.9 and θ2 = 1.  

Note that there are no constraints in the specified reconfiguration options and no 

uncertainties in state transitions.  Therefore, there is no need to compute the solution for 

infinite horizon or even finite horizon of length greater than 2 for our case study. This 

would have not been possible in the presence of constraints on reconfiguration such as 

one-time on-off switches, non-instantaneous reconfiguration actions, temporarily 

irreversible reconfiguration options, and uncertainties in state transitions such as those 

presented in Equation (6.2.7) etc. Since we have simplified the problem, this allows us to 

avoid value iteration and calculate the optimal policy for both MDPs simply by 

computing the following for each of the states. 

   arg max ( )i jPol s R s


       (18) 

6.4 Simulation	Results	

In this section we present simulation results that emphasize the importance of selecting 

design parameters and the tradeoff between safe operations versus mission completion. 

We present two case studies. In the first case, parameters are selected to emphasize 

mission completion and in the second case, parameter selection favors safe operation. 
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6.4.1 Case	1:	Emphasizing	Mission	Completion	

For this case, we selected α = 2, β1, β2, and β3 equal to 9, λ = 105, λ 1, λ 2, and λ 3 equal to 

3, λ4 and λ6 equal to 4, and λ5 = 5. Also we selected discount factor γ = 0.8. In our 

simulation we started with an initial state where the spacecraft was in safe mode. Table 

6-2 shows the response of the MDP policy to various events. Note that each state in Table 

6-2 has the format  1 2 3 1 2 1 2, , , , , , , , , , , ,att Batt RW EB EB EB EB IMU
i i i i i i i i i i i i i is a b b b f f f f o o o sw c where the 

values of fault flags are 1 when the component is faulty whereas the values of abstracted 

observation flags are 1 when the component is observed as healthy. 

Table 6-2: State trajectory emphasizing mission completion. 
Simulation 

Step # 
State Policy Exogenous event 

1 [0 0 0 0 0 0 0 0 1 1 1 1 3] c1 attitude maneuver begins 
2 [1 0 0 0 0 0 0 0 1 1 1 1 1] NOOP OEB1 indicates failure 
3 [1 0 0 0 0 0 1 0 0 1 1 1 1] sw2 attitude maneuver ends 
4 [0 0 0 0 0 0 1 0 0 1 1 2 1] NOOP mission objective 1 completes 
5 [0 1 0 0 0 0 1 0 0 1 1 2 1] NOOP attitude maneuver begins 
6 [1 1 0 0 0 0 1 0 0 1 1 2 1] NOOP OEB2 indicates failure 
7 [1 1 0 0 0 0 1 0 0 0 1 2 1] NOOP IMU indicates failure 
8 [1 1 0 0 0 0 1 0 0 0 0 2 1] NOOP attitude maneuver ends 
9 [0 1 0 0 0 0 1 0 0 0 0 2 1] NOOP mission objective 3 completes 
10 [0 1 0 1 0 0 1 0 0 0 0 2 1] c2 attitude maneuver begins 
11 [1 1 0 1 0 0 1 0 0 0 0 2 1] NOOP attitude maneuver ends 
12 [0 1 0 1 0 0 1 0 0 0 0 2 1] NOOP mission objective 2 completes 
13 [0 1 1 1 0 0 1 0 0 0 0 2 1] c3 --- 

 

Several observations are worthy of note. First, in step 7, although both electronics boards 

have been diagnosed as failed, the policy insists on keeping control law c1 to avoid 

entering critical states for any of the remaining objectives. In step 10, the control law is 

changed to c2.  This is because c2 is the safest controller among the ones that are feasible 

for the remaining mission objective. In step 11, the policy switches to the state that is 



 

163 
 

infeasible for the attitude maneuver since fRW is 0 and c2 is activated; this is because a low 

value of α is selected as compared to safety-related parameters. After all the objectives 

are completed, the reconfiguration policy opts for the safest control law i.e. c3. This 

example raises the question of spacecraft safety.  What if the calls made by OEB2 and IMU 

were correct? In that case, the spacecraft would not have completed its objectives and the 

control law would have stayed at c1 forever. This fact points towards a need for an 

external safing mechanism to avoid consequences of a mission emphasizing 

policymission completion to the extent that the mission can actually be jeopardized 

(unsafe). On the other hand, the response of the policy is justified because the user has 

defined his preferences through design parameters which indicate that mission objectives 

are more important than safety.   

6.4.2 Case	2:	Emphasizing	safety	

For this case, we selected α = 2, β1, β2, and β3 equal to 3, λ = 105, λ 1, λ 2, and λ 3 equal to 

3, λ4 and λ6 equal to 4, and λ5 = 5. Also we selected discount factor γ = 0.8. We started 

with an initial state where the spacecraft was in safe mode. Table 6-3 shows the response 

of the MDP policy to various events. 

Table 6-3: State trajectory with safety emphasizing policy 
Simulation 

Step # 
State Policy Exogenous event 

1 [0 0 0 0 0 0 0 0 1 1 1 1 3] c1 attitude maneuver begins 
2 [1 0 0 0 0 0 0 0 1 1 1 1 1] NOOP OEB1 indicates failure 
3 [1 0 0 0 0 0 1 0 0 1 1 1 1] sw2 attitude maneuver ends 
4 [0 0 0 0 0 0 1 0 0 1 1 2 1] NOOP mission objective 1 completes 
5 [0 1 0 0 0 0 1 0 0 1 1 2 1] NOOP attitude maneuver begins 
6 [1 1 0 0 0 0 1 0 0 1 1 2 1] NOOP OEB2 indicates failure 
7 [1 1 0 0 0 0 1 0 0 0 1 2 1] NOOP IMU indicates failure 
8 [1 1 0 0 0 0 1 0 0 0 0 2 1] c3 attitude maneuver ends 

(unsuccessful) 
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Note that, as opposed to the Table 6-2 trajectory, the trajectory in Table 6-3 goes into the 

safe controller even though the mission objectives have not yet been achieved. At step 7, 

although there was an indication both electronics boards have failed, the policy waited for 

the signal from the IMU and when sufficient evidence of failure was received, the 

spacecraft control law was changed to a safe one.  

From the above two cases, there is a clear tradeoff between emphases upon mission 

completion versus safe operation. It is important to point out here that having high values 

for parameters related to both safety and mission-critical states is not the answer to this 

problem because what really matters is their relative weighting given that tradeoffs are 

ultimately required.  

6.5 Complexity	Analysis	and	ADP	

An ADP method similar to the methods presented in chapters 4 and 5 can be used to 

reduce the computational complexity of the problem, although we reserve specifics of 

ADP application to spacecraft fault reconfiguration for future work. Usually, there are 

cases where certain components (or subsystems) can be reconfigured independently of 

the other components (or subsystems). There may also be hierarchical relationships in 

reconfiguration that can be used to separate lower level reconfiguration from 

reconfiguration at higher layers of abstraction. Also, as in our case study in this chapter, 

the reconfiguration problem may often be static which allows the use of greedy search 

which is computationally less expensive than value iteration.  
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6.6 Conclusions	and	Future	Work	

We have presented a framework for calculating an optimal policy for mission-based post-

fault reconfiguration. Our framework is robust in a sense that while calculating an 

optimal policy, we take into account not only the uncertainty in the detection of faults, 

but also the currently active mission-related actions and remaining objectives of the 

mission. We have also shown a way to implement our framework and have indicated 

some important mission completion versus safe operation tradeoffs through 1DOF case 

study and simulation results. The primary drawback of our framework is its potential for 

high computational complexity. In the future, we would like to develop approximate 

dynamic programming techniques for this framework to reduce the computational 

overhead. For example, with ADP applied to the case of a 3-DOF spacecraft with three 

reaction wheels, the electronics board switching reconfiguration policy can be 

implemented for each wheel separately whereas the control law reconfiguration policy 

can be implemented at a higher level when the switching is not feasible or applicable. 
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 	Chapter	7

Far	Ultraviolet	Spectroscopic	Explorer	Case	Study	

In this chapter, we present a case study that is inspired by the Far Ultraviolet 

Spectroscopic Explorer (FUSE) mission. This mission consisted of a low earth orbit 

spacecraft that suffered from multiple failures related to the attitude control system. As a 

result useful mission time was wasted while engineers and scientists on the ground 

station were determining appropriate reconfiguration strategies to handle the failures. Our 

purpose for presenting this case study is to elaborate how technologies such as CFT-

SOAP and alternative architectures ASPEN and Livingstone summarized previously in 

Chapter 2 could have modeled and managed reconfiguration options for attitude control 

such that mission downtime would have been minimized through automatic response to 

the encountered spacecraft hardware failures. This of course would have required 

anticipation of these failures, including onboard software to detect hardware problems as 

well as alternate control laws capable of adequately controlling FUSE spacecraft attitude 

when encountering any subset of the anticipated failures. CFT-SOAP application to 

FUSE fault management is followed by an example application of ASPEN and 

Livingstone for this purpose, enabling comparison of the three architectures for a real-

world spacecraft application.  To our knowledge attitude fault tolerance has not been 

modeled previously for any of the three architectures. 
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7.1 FUSE	Mission	Review	

The FUSE satellite was launched in June 1995 [65] in a low earth near-circular orbit 

(eccentricity = 0.001) with altitude of approximately 762 kilometers and an inclination of 

25 degrees. The primary objective of this satellite was to observe light in the far-

ultraviolet spectral region, 905-1187 Å, with a high spectral resolution. Science 

instrumentation consisted of four co-aligned prime-focus telescopes and Rowland 

spectrographs with micro-channel plate detectors. Two of the telescope channels used Al 

: LiF coatings for optimum reflectivity between approximately 1000 and 1187 Å, and the 

other two channels used SiC coatings for optimized throughput between 905 and 1105 Å. 

Details of the design and early performance of FUSE can be found in [91], [90]. 

   The FUSE Attitude Control System (ACS) consisted of two sets of three ring-laser 

gyroscopes (Inertial Reference Units, or IRUs) for attitude estimate propagation. 

Redundant three-axis magnetometers and coarse sun sensors provided coarse attitude 

information to ±2°. The required attitude resolution for fine pointing was achieved by 

using a signal from a Fine Error Sensor [59] (FES) in the science instrument which 

images a region of the sky around the spectrograph apertures. Four Reaction Wheel 

Assemblies (RWAs) were used to control the attitude of the satellite and manage angular 

momentum. Three wheels were arranged along the primary roll, pitch, and yaw axes of 

the satellite and a fourth skew wheel was oriented equidistant from the others. The skew 

wheel was biased to minimize zero-speed crossings on the other wheels and could serve 

as a substitute in case of failure of one of the other RWAs. Three magnetic torqueing bars 

(MTBs) were mounted along the primary axes and were used to control the momentum 

load on the wheels by inducing torque on the spacecraft from the Earth’s magnetic field. 
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A more detailed description of the design of the ACS, along with a description of its 

performance early in the mission and in two-wheel mode is available in [56], [65]. 

Beginning in late 2001, the failure of spacecraft components began to affect satellite 

operations. While two out of the four reaction wheels failed by the end of 2001, the flight 

software was modified to employ the torqueing bars in conjunction with the two 

remaining wheels to provide fine pointing control. This upgrade in the software required 

engineers and scientists to work round the clock for about 54 days. At this point, 

additional software was also being developed for the cases where gyroscopes might fail. 

In December 2004, the third reaction wheel also failed rendering the spacecraft into the 

safe mode once again and requiring major changes in the FUSE mission planning and 

attitude control. Regular scientific operations resumed in November 2005. By mid-2006, 

the satellite was operating with only one of its four reaction wheels and two of its six 

gyroscopes [91]. Loss of these hardware components required a significant redesign of 

the ACS, but with software revisions manually computed by engineers on the ground, 

FUSE was restored to operation, making observations with an efficiency approaching that 

of its earlier days, albeit over a smaller portion of the sky. 

7.2 Reliability	Prediction	(The	Probabilities	of	Failures)	

Application of CFT-SOAP for fault-tolerant attitude control in the FUSE mission 

requires specification of a priori failure probabilities for relevant spacecraft components 

and systems. These probabilities can be estimated from available failure databases 

compiled over previous spacecraft missions, as well as through component-level testing 

by the manufacturers. Failures observed during spacecraft missions have been compiled 

in [96], [20], and [19]. In [96], a survey on serviceable spacecraft failures is presented 
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with a failure database including 854 failure records spanning the years 1957 to 2000. 

This paper also presents a list of 242 partial and total failures out of 2431 space missions 

between years 1981 and 2000. In [47] 3000 anomalous incidents are analyzed to predict 

spacecraft reliability. In 80% of these incidents further analysis was possible to determine 

the cause of the failure. Data was obtained from over 300 satellites launched between the 

early 1960s through January of 1984. In [20] the authors have presented a reliability 

analysis for 1584 earth-orbiting satellites launched between January 1990 and October 

2008. Since its data is most recent and is obtained from Earth-orbiting spacecraft 

missions, the data presented in [20] is used in this chapter to estimate the probability of 

failures for gyroscopes and reaction wheels in the FUSE spacecraft. According to [20] the 

reliability of gyroscopes and reaction wheels is approximately 99.5% after 4 years on-

orbit. Therefore, prior probability of failure within the first 4 years is 0.005 [100]. The 

contribution of each sub-system to spacecraft failure in terms of pie-charts for different 

durations spent on orbit is presented in [19]. According to these pie charts, gyroscope and 

reaction wheel failures contribute about 11% to the total failures after 5 years of launch. 

This is consistent with [47] where the percentage of failures due to guidance and 

navigation is determined to be approximately 12% for science missions. Also, in [96], the 

total number of guidance and navigation failures is 10% of the total number of cases 

considered.  If we assume that 10% of these failures are due to gyroscope and reaction 

wheels then we can conclude that the reliability of gyroscopes and reaction wheels is 

99% which is reasonably close to 99.5% as depicted in [19].  Note that while FUSE 

components had a much higher probability of failing, mission engineers did not know 

these components would have a high failure rate before launch, so failure probability 
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models embedded in a system such as CFT-SOAP would have initially been derived from 

historical data as is described in this chapter. 

7.3 Fuse	Modeling	with	CFT‐SOAP	

To model the FUSE satellite mission using CFT-SOAP, we assume there is a multiple-

model fault detection framework such as that described in [112] (also see section 5.4) 

onboard the FUSE spacecraft. This fault detection module must be able to detect failures 

in any of the reaction wheels as a minimum. The accuracy of this fault detection 

framework depends upon the selection of appropriate detection thresholds. The 

probabilities of false alarms and missed detections are assumed to be known functions of 

these thresholds. We also assume that there are temperature and current/voltage sensors 

in the electronics associated with the reaction wheels and the gyroscopes that can provide 

health status data for these components. We also assume that there are 15 control laws 

on-board the FUSE spacecraft, including the nominal (no-failure) control law, four 

control laws using combinations of three out of the available four reaction wheels, six 

control laws using combinations of two reaction wheels and magnetic torque bars, and 

four control laws relying on only one of the four reaction wheels and the magnetic torque 

bars.  This is the minimal set of attitude control laws required to cover the suite of zero to 

three reaction wheel failure cases. 

   Under the above assumptions, the state space for the FUSE CFT-SOAP MDP is defined 

follows: 
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 (7.3.1) 

In the above equation, variable A represents the status of in-progress mission activities 

where A = 1 if an attitude maneuver is in progress, A = 2 if data collection from a target 

region is in progress, and A = 0 if no mission-related action is in progress. Vector variable 

B represents the status of the mission objectives where each component is a binary flag 

corresponding to a particular mission objective. For FUSE, mission objectives are 

defined as far ultraviolet radiation observations obtained from particular celestial objects 

or regions. We model five specific observing targets or objectives in this case study.  

   In Equation 7.3.1, variable v represents spacecraft true anomaly assuming the 

remaining orbital elements are constant. We have discretized true anomaly into 10 degree 

regions yielding a 36-value set. The variable z represents attitude pointing of the 

spacecraft in terms of the five target regions of the sky. Vector Bl contains logic-based 

fault flags for the six gyroscopes and four reaction wheels that are generated using 

available information about the observed (using current/voltage sensors) operational 

mode of these components in vector O and fault information generated using dynamics-

based fault flags for the four reaction wheels in vector Bo. Vector variable V contains 
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thresholds for fault models in the multiple-model dynamics-based fault detector. Each 

threshold corresponds to one of the 14 possible failures configurations for the four 

reaction wheels. In our case study, each threshold can have three possible values low, 

medium, and high where high corresponds to vi
j = 3. These thresholds affect the values of 

fault flags in Bo where each flag may be affected by multiple thresholds depending upon 

number of fault scenarios in which that fault flag is involved e.g. fault flag for reaction 

wheel 1 is involved in all (one-wheel, two-wheel, three-wheel, and four-wheel) fault 

scenarios where failure of reaction wheel 1 is included. Vector sw represents which of the 

gyroscopes are in use along each axis of rotation. The three binary flags in sw represent 

the active gyroscope along the relevant axis (e.g. roll axis) from one (e.g. swroll = 1) or the 

other (e.g. swroll = 2) set of onboard gyroscopes. The active control law is represented by 

c where each value of c corresponds to one of the 15 possible combinations of the four 

reaction wheels chosen at the most three and at least one at a time. Variable SE represents 

a combination of eclipse and sun-pointing flags. SE = 1 means that the spacecraft is in 

eclipse, SE = 2 means that the spacecraft is not in eclipse but the telescopes are pointed 

towards the sun, and SE = 3 means that the spacecraft is not in eclipse and the telescopes 

are not pointed toward the sun. This variable is used to maintain safety of the 

instrumentation which might be damaged if open (in use) and pointed toward the sun. We 

plugged in the parameters of the FUSE orbit in the Satellite Tool Kit (STK) software and 

calculated that FUSE remained in eclipse during 33% of its orbital rotation. Later in our 

simulation trajectory, we assume that the eclipse starts at 230 degrees of true anomaly 

and ends at 350 degrees of true anomaly. Note that our CFT-SOAP formulation can deal 

with any location of the eclipse. Finally, variable EL represents energy in terms of the 
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charge level available in the spacecraft batteries over 5 levels where EL = 5 means fully 

charged and EL = 1 means lowest acceptable charge level. 

   With the above definition of the state-space, the total number of MDP states is 

approximately 1.5 × 1023. This state-space size is too large to be considered by an 

integrated MDP. Therefore, we decompose the CFT-SOAP MDP into smaller MDPs 

dedicated to mission planning, fault detection, and reconfigurable control in the manner 

described in previous chapters e.g. Sections 3.4, 4.5, 5.10, and 5.11. Figure 7.1 shows the 

process of decomposing with CFT-SOAP for the FUSE case study. We start with the 

integrated approach and then decopose the larger MDPs into smaller MDPs step by step. 

This way, it is easier to understand the tradeoff between computational complexity and 

optimality of the solution since the integrated approach incorporates all the dependencies 

between the planning, fault detection, and reconfiguration subproblems. Figure 7.2 shows 

the specific map of MDPs generated by decomposing the larger MDPs in planning, fault 

detection and reconfiguration. The details of decomposition and the corresponding effects 

on the solution are discussed in the subsequent sections. 

Remark: Note that the symbol for true anomaly () and the components of the threshold 

vector V look the same but these can be differentiated from each other since components 

of the threshold vector V have additional index representing their identification within V. 

 

Figure 7.1: The process of decomposition using the CFT-SOAP  framework 
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Figure 7.2: MDP decomposition map for the FUSE case study 

7.3.1 The	Planning	MDPs	

The planning MDP is tasked with sequencing observations in a manner that is feasible 

given the detected fault state and reconfigurable control strategy determined by the 

complementary fault detection and reconfiguration MDPs. For planning, we must 

consider the available sensors/actuators and the probabilities of failures. This may require 

a planning MDP for each of the failure cases, yielding a total 15 MDPs considering only 

reaction wheels to be the important components for mission completion since gyroscopes 

only help in the determination of the angular velocities that can be determined 

alternatively from the attitude measurements provided by the three-axis magnetometers, 

the course sun sensors, and the fine error sensor. We simplify our case by considering 
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mainly to contain the size of this chapter and to demonstrate the concept of CFT-SOAP 
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implementation with minimum space occupation. With this simplification, we need two 

classes of planning MDPs, one class of MDPs for the cases with full control availability 

where at least two of the four reaction wheels are functional and the second class of 

MDPs for partial control availability where only one out of the four reaction wheels is 

functional. Note that, in this chapter, we do not consider the case where all four reaction 

wheels have failed and the control authority is provided by only magnetic torque bars. 

The only reason for excluding this case is that it adds complexity and is not required to 

demonstrate CFT-SOAP in the context of the FUSE case study.  

   In this chapter we focus on the planning MDPs with full control authority since the 

planning MDP with partial control authority can be developed using a similar formulation 

with additional information in the state space regarding which actions are possible and 

when they can be achieved (e.g., slewing may require that the magnetic torqueing bars 

pass through a specific part of the magnetosphere). Available actions given partial control 

availability will depend upon which of the reaction wheels remain healthy or if only the 

magnetic torqueing bars are available for control authority. 

   The states for the planning MDP with full control availability are defined as follows. 
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Note that the size of the state space for this MDP is 86,400 which is manageable with 

currently-available computational resources. State sF represents the failure state which 

represents the conditions under which the spacecraft no longer possesses full control 

availability indicating a switch to a policy applicable for cases of partial control 

availability is required.  

   The actions for the planning MDP with full control availability are 

 1 2 5 10 20 50, ,..., , , ,M NOOP NOOP NOOP      (7.3.3) 

These actions are defined such that there is one action corresponding to each of the five 

target regions. Every action has an associated change in true anomaly that represents the 

time required to complete that action (Table 7-1). This change in true anomaly and the 

result of executing an action µi corresponding to the target i depends upon the state from 

which the action is executed. If the action is executed from a state where the spacecraft is 

not already pointing towards the target i, then the action results in the attitude maneuver 

from the current pointing towards the pointing i. If on the other hand, the spacecraft is 

already pointed towards the target i and the true anomaly of the spacecraft is within the 

window of visibility of the target (see chapter 4), then the action results in the collection 

of data from the target if the data flag for that target is set to 0 in the current state. In all 

other cases, the action simply results in the change in true anomaly associated with it. 

There are three actions of type NOOP with associated changes in true anomaly of 10, 20, 

and 50 degrees. These values were selected for NOOP of short, medium and long 

durations respectively since 10 degrees is the smallest possible change in true anomaly 

for the MDP formulation and 50 degrees is comparable to one of the largest maneuvers in 
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Table 7-1. Table 7-1 provides information about change in true anomalies associated with 

the actions and the energy required in terms of the number of charge levels of the 

batteries. The energy required for each attitude maneuver is 2 units and for each data 

collection action is 1 unit. The changes in true anomaly incurred by the attitude 

maneuvers are calculated from the magnitude of the maneuvers. The magnitudes of the 

maneuvers are calculated from the locations of the science targets in the sky with respect 

to an inertial frame of reference that has the origin in terms of roll, pitch, and yaw angles 

placed such that the spacecraft is pointed towards Target 1 at the origin. Target 2 is 

placed at positive (counterclockwise) 20 degrees roll rotation with respect to Target 1. 

Target 3 is placed at positive 40 degrees pitch rotation with respect to Target 1. Target 4 

is placed at positive 30 degrees yaw rotation with respect to Target 1. Target 5 is at a 

location that is at positive 20 degrees roll rotation with respect to Target 4. The 

magnitude of the maneuver between any two targets is calculated from cos-1(k/2) where k 

is one less than the trace of the rotation matrix [51] involved in the rotation between the 

two targets. Note that the changes in true anomaly are the same no matter where in the 

orbit the action is applied. This is the result of the fact that we model the FUSE orbit as 

circular (in real-world deployment the orbit had eccentricity = 0.001).   

Table 7-1: True anomaly changes and data collection windows 

For 
current 
Attitude 
pointing 

Associated change in true anomaly (deg) for attitude 
maneuvering/data collection and (energy required) 

Data 
collection 
window 

(deg) 
µ1 µ2 µ3 µ4 µ5 

1 10 (1) 20 (2) 40 (2) 30 (2) 40 (2) 50-100 
2 20 (2) 10 (1) 50 (2) 40 (2) 30 (2) 100-150 
3 40 (2) 50 (2) 10 (1) 50 (2) 50 (2) 150-200 
4 30 (2) 40 (2) 50 (2) 10 (1) 20 (2) 200-250 
5 40 (2) 30 (2) 50 (2) 20 (2) 10 (1) 250-300 
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The diagonal entries in columns 2 through 6 of Table 7-1 indicate changes in true 

anomalies associated with data collection. All other entries in these columns are 

associated with attitude maneuvers between the targets. The numbers in parentheses 

indicate the energy required for each of the attitude maneuver/data collection actions. 

Note that we assume here that energy is consumed by an action only if the spacecraft is in 

eclipse. This means that the rate of energy consumption is equal to the rate of energy 

production when the spacecraft is executing a mission related action while not in eclipse. 

Also, if no mission-related action is being performed, energy is produced at the rate of 1 

unit per 10 degrees change in true anomaly. The last column of Table 7-1 represents data 

collection windows for targets 1 through 5 in descending order. 

   The reward function for the planning MDP with full control authority is defined as 
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  (7.3.4)
 

The costs of the actions are defined to be proportional to the associated changes in the 

true anomalies and have values equal to one-half of the entries in Table 7-1. 

   Transition probabilities are calculated from the failure probabilities of the components 

using [19], [20] (per Section 7.2) along with the change in true anomaly associated with 

each action. The failure probabilities are calculated by using the assumption of 

independence i.e. failure probability of each component is independent of the failure 
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probability of any other component. Also, for NOOP actions, failure probabilities are 

assumed to be zero. Since control authority is associated with the reaction wheels in our 

case study, and since at least three out of four wheels have to fail to reach a partial 

control availability state ( state sF in Equation 7.3.2), the probability of reaching sF 

becomes 1.25 × 10-7. We multiply this number with the associated change in true 

anomaly and a safety factor of 100 yielding 1.25× 10-5 times the change in true anomaly 

incorporated by the given mission-related action. The safety factor is used to compensate 

for the fact that we have aggregated failure cases to enable separation of the planning 

MDP from details of fault detection and control reconfiguration. 

7.3.2 The	Fault	Detection	MDPs	

In our FUSE case study, we only consider the faults in the reaction wheels and 

gyroscopes. Therefore, there are 10 independent fault flags, six for gyroscopes and four 

for the reaction wheels. In our formulation, we assume that reaction wheel faults are 

detectable by both dynamics-based and logic-based methods whereas ring laser 

gyroscope faults are detectable only by the logic-based method. This assumption is made 

for two reasons; first, sensor fault detection using the dynamics-based model is not 

straightforward and second, the laser gyroscopes are easier to diagnose by sensing the 

laser light intensity than by comparing the output angular velocity with a dynamic model. 

Therefore, the MDP state-space for fault detection is defined as follows 
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Recall that vector Bl contains logic-based fault flags, vector Bo includes observer-based 

fault flags, vector O includes processed observation flags (or observed component 

modes), and vector V is the set of thresholds for the observer-based fault detector. With 

the above definition, the size of the state-space becomes approximately 8 × 1013. Since 

this size is still formidable, we decompose the fault detection MDP into two MDPs. The 

first MDP is responsible for generating an optimal policy for logic-based fault detection 

of the reaction wheels and the gyroscopes. The second MDP is responsible for conflict 

resolution between logic-based and dynamics-based fault flags for the reaction wheels by 

controlling the thresholds for the dynamics-based fault detector.  We assume the 

existence of an observer module capable of providing dynamics-based fault information 

to our conflict resolution MDP. 

7.3.2.1 Logic‐based	Fault	Detection	MDP	

This MDP is defined using the assumptions that all four reaction wheels have identical 

chances of failure and at any given time, at most three out of four wheels are in use. 

Similarly, we assume that all six gyroscopes have identical chances of failure and at any 

given time, at most 3 out of 6 gyroscopes are in use. Therefore, we need to detect the 

faults for only in-use reaction wheels and gyroscopes. Note that the fault flags exist for 

all four reaction wheels and all six gyroscopes (total 10 flags) but at any given time, only 
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six of these fault flags are used by the fault detection MDPs based on which of the 

components are in use versus not in use. This implies the existence of onboard logic to 

map the three reaction wheels in-use to the three flags in the MDP policy. The 

assumption of identical chances of failures for all four wheels and for all six gyroscopes 

is important for this formulation. The states for the resulting logic-based fault detection 

MDP are defined as 
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The size of the state space with above definition is 32,768. The actions for this MDP are 

defined as 

 1 2 6, ,..., ,M NOOP       (7.3.7) 

where six of the actions correspond to the switching (on/off) of logic-based fault flags 

where the first three actions are for gyroscopes and the next three actions are for reaction 

wheels. The axis order for both gyroscopes and reaction wheels is yaw, pitch, and roll. In 

case the slew axis reaction wheel is in-use, its corresponding action is always µ6 and the 

remaining wheels are assingned µ index according to the yaw, pitch, and roll precidence. 

The last action is for no-operation. The reward function for this MDP is similar to the one 

presented in Section 5.10.1 and is represented as 
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where q1 = q2 = 1, and the probabilities of missed detections and false alarms are 

calculated from Table 7-2. The probabilities in the table are multiplied by blk and (1- blk) 

to indicate that the probability of false alarm is nonzero only when the corresponding 

fault is identified as present. Similarly, the probability of missed detection is nonzero 

only when the corresponding fault is determined to not exist.  

Table 7-2: False alarm and missed detection probabilities for the logic-based fault 
detection 

Value of 
bok 

Value of ok For the Reaction Wheels For the Gyroscopes 
P(FAk|bok,ok) P(MDk|bok,ok) P(FAk|bok,ok) P(MDk|bok,ok)

0 0 0.083blk 0.917(1- blk) 0.01 blk 0.99(1- blk) 
0 1 0.999blk 0.001(1- blk) 0.99 blk 0.01(1- blk) 
1 0 0.001blk 0.999(1- blk) 0.01 blk 0.99(1- blk) 
1 1 0.917blk 0.083(1- blk) 0.99 blk 0.01(1- blk) 
 

   All actions in this MDP are deterministic therefore there is no transition probability 

matrix involved. Also, since all the actions in this MDP are instantaneous and available 

from every state, the optimal policy for this MDP can be calculated using greedy search 

instead of value iteration to reduce computational overhead. 

7.3.2.2 Conflict	Resolution	MDP	

For this MDP, we make the same assumptions that all four reaction wheels have identical 

chances of failure and that reaction wheels can fail at any time (any true anomaly).  We 



 

183 
 

also assume as described above that at most three out of four reaction wheels are in 

operation. Also recall that the gyroscope failures are only determined by the logic-based 

fault detection scheme. Therefore, conflict resolution has to be performed for only in-use 

reaction wheels. The resulting state space is represented as 
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  (7.3.9) 

The thresholds in Equation (7.3.9) are arranged according to the following table. Note 

that there is no threshold corresponding to the no-fault scenario because it isn’t modeled. 

Table 7-3: Threshold variables and their relevant fault scenarios 

Threshold Variable Relevant Fault Scenario 
v1 [1 0 0]: Failure of reaction wheel 1 
v2 [0 1 0]: Failure of reaction wheel 2 
v3 [0 0 1]: Failure of reaction wheel 3 
v4 [1 1 0]: Failure of reaction wheels 1 and 2 
v5 [0 1 1] : Failure of reaction wheels 2 and 3 
v6 [1 0 1] : Failure of reaction wheels 1 and 3 
v7 [1 1 1] : Failure of all three reaction wheels 
 

The size of the state space for this MDP is 139,968 which is manageable. As shown there 

are seven thresholds corresponding to the seven possible fault cases, i.e. three single 

wheel failure cases, three dual-wheel failure cases, and one failure case where all 3 

remaining wheels fail. 

The actions for this MDP are defined as, 
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 1 1 7 7, ,..., , ,M NOOP           (7.3.10) 

where each of the first 14 actions is used to increase or decrease the associated conflict 

resolution threshold and the last action is for no operation. As was described in Section 

5.10.2 the reward function for this conflict resolution MDP is defined as 
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Again, q1 = q2 = 1 and the probabilities of false alarms and missed detection are 

calculated based on the following formula: 
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Here, Vk is the set of thresholds related to fault k. Note that the above formula calculates 

the probability of false alarm if the corresponding fault flag is set to 1. Otherwise, the 

formula calculates the probability of missed detection.  

   To understand the transition probabilities, we summarize the process of observer-based 

fault detection.  First each fault scenario is assigned a transition threshold (except for the 

no-fault scenario assumed to be the initial state). When the estimated states from the 
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actual system are compared with the predicted states corresponding to a particular fault 

scenario, a residual signal is generated. This residual signal estimates the difference 

between the actual states and the states for the corresponding fault scenario. If the 

difference/residual is smaller than the threshold for that fault scenario, the fault is 

identified as present. For cases where more than one scenario is likely, the tie can be 

broken with a default preference.  

   The conflict resolution MDP transition probabilities are calculated based on whether or 

not the state from which the threshold-change is applied has a relevant fault scenario for 

the changed threshold (see Table 7-3). If the scenario is relevant, increasing the threshold 

always results in no change and decreasing the threshold may result in either no change 

(with probability 0.5) or may result in a fault status change to a different state of the  

seven  possible scenarios (with equal probabilities of 0.5/7). If on the other hand, the 

scenario is irrelevant, decreasing the threshold always results in no change while 

increasing the threshold may result in either no change (with probability 0.5) or a new 

fault scenario corresponding to the threshold that is increased (with probability 0.5).  

7.3.3 Control	Reconfiguration	MDP	

The states of the MDP for the FUSE spacecraft attitude control reconfiguration can be 

defined as 
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In the above equation, F represents conflict-resolved fault flags generated by the fault 

detection schemes for the six gyroscopes and four reaction wheels. Note that we have 

used a set of unified fault flags here instead of separate flags i.e. Bl and Bo. If there are 

any conflicts in Bl and Bo that are not resolved by the conflict resolution MDP (since the 

conflict resolution MDP does not always guarantee the resolution of every conflict, see 

Section 5.13), maximum likelihood with default preference of one flag type over the 

other for tie breaking is used to generate the set of fault flags in F. O represents processed 

sensor data that represents fail/not fail status of the gyroscopes and the reaction wheels. 

This data is used to calculate the probabilities of false alarms and missed detections for 

the flags in F. Note that the fault flag for the reaction wheel that is not in use is stored 

from the last time when it was in use. Also, if a reaction wheel has never been used, it is 

assumed to be healthy and its fault flag has value zero. 

With the above definition of state, the total number of states for the MDP is 

11,274,289,152 which is too large to handle easily in an integrated MDP. Consequently, 

we simplify our problem by observing that the selection of gyroscopes can be separated 

from mission objectives and mission-related actions. This is rationalized on the basis that 

the angular velocities can be estimated using the dynamic model of the spacecraft and 

information about its attitude although the pointing accuracy may be reduced. Also we 
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assume that the control law uses gyroscope readings only when the fault flags for 

gyroscopes are turned off. The reconfiguration of gyroscopes can therefore be separated 

from the reconfiguration of the control laws. The subsystem for control law 

reconfiguration then becomes 
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where A and B are the same as in Equation (7.3.1). Vector F contains fault flags for the 

four reaction wheels with axis order yaw, pitch, roll, and skew. Vector O contains the 

sensor-based values of the operational modes for the four wheels in the same order as in 

F. Variable c represents the active control law for the 14 possible fault scenarios. Note 

that the scenario where all four reaction wheels fail is not considered here. The size of 

this state space is 344,064 which is manageable. The states for gyroscope reconfiguration 

are then defined as 
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The flags in vectors F and O in Equation (7.3.15) are arranged such that the first three 

flags correspond to the gyroscopes in the IRU-A set and the next three flags correspond 
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to the gyroscopes in the IRU-B set. The axes are in the order yaw, pitch, and roll. The 

size of the state-space in Equation (7.3.15) is 32,768 which is easily manageable. 

Variable sw represents the current selection of gyroscopes among IRU-A and IRU-B 

along each axis. Note that we assume here that along any axis, the gyroscope can be 

selected from any of the two sets. The actions of each system are related to selection of a 

control law for the control law reconfiguration MDP, and selection of a gyroscope for the 

gyroscope reconfiguration MDP.  Initially, we assume these selections are deterministic; 

therefore, there are no transition probabilities involved. The reward function for the 

control law reconfiguration MDP is defined as 
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In the above equation, the IsMissionCritical function determines the penalty of using a 

less capable control law for each of the mission objectives. In our case study, we base this 

function on the number of reaction wheels in-use for the active control law. Precisely, we 

set βk = 1 for all k except for β3 = 5 to indicate that the third objective has more 

importance than the other objectives. We set the IsMissionCritical function to return 0 if 
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c uses 3 wheels, 1 if c uses two wheels, and 2 if c uses 1 wheel. Similarly, we set α = 2 

and define IsActionCritical to return 0 if either A = 0 or c uses 3 wheels, 1 if A > 0 and c 

uses two wheels, and 2 if A > 0 and c uses 1 wheel. G penalizes control laws such that 

there is a penalty of 2.5 for each in-use wheel with the fault flag in F activated. There 

also is a penalty of 2.5 for each not-in-use wheel with the fault flag in F deactivated. 

These penalties are summed along with the additional penalties of value 1 corresponding 

to flags in O. For example, if the flags in F indicate failure of reaction wheel 2 (i.e. F = 

{0 1 0 0}) and the flags in O indicate failure of reaction wheels 1 and 3 (i.e. O = {0 1 0 

1}), the value returned by G for control law using wheels 1, 2, and 3 would be 8. 

However, if c uses three wheels and all of them are deemed healthy by both F and O, 

then there is no penalty for not using the fourth wheel. Details of the G function for each 

control law is presented in Table 7-4. 

Table 7-4: Calculation of G(F, O, c) function 

In use 
Control law 

Function for calculating value of G 
F(i) = 1 if ith wheel is faulty 
O(i) = 0 if ith wheel is faulty 

c = 1, 
wheel(s) in 

use {1, 2, 3} 

(2.5*(F(1)+F(2)+F(3)) + (~O(1)+~O(2)+~O(3)) + 
(F(1)||F(2)||F(3)||~O(1)||~O(2)||~O(3))*(~F(4)*2.5 

+ O(4))) 
c = 2, 

wheel(s) in 
use {1, 2, 4} 

(2.5*(F(1)+F(2)+F(4)) + (~O(1)+~O(2)+~O(4)) + 
(F(1)||F(2)||F(4)||~O(1)||~O(2)||~O(4))*(~F(3)*2.5 

+ O(3))) 
c = 3, 

wheel(s) in 
use {1, 3, 4} 

(2.5*(F(1)+F(3)+F(4)) + (~O(1)+~O(3)+~O(4)) + 
(F(1)||F(4)||F(3)||~O(1)||~O(4)||~O(3))*(~F(2)*2.5 

+ O(2))) 
c = 4, 

wheel(s) in 
use {2, 3, 4} 

(2.5*(F(2)+F(3)+F(4)) + (~O(2)+~O(3)+~O(4)) + 
(F(4)||F(2)||F(3)||~O(4)||~O(2)||~O(3))*(~F(1)*2.5 

+ O(1))) 
c = 5, 

wheel(s) in 
use {1, 2} 

(2.5*(F(1)+F(2)) + (~O(1)+~O(2)) + 
(~F(3)*2.5+~F(4)*2.5) + (O(3)+O(4))) 

c = 6, 
wheel(s) in 

(2.5*(F(1)+F(3)) + (~O(1)+~O(3)) + 
(~F(2)*2.5+~F(4)*2.5) + (O(2)+O(4))) 
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use {1, 3} 
c = 7, 

wheel(s) in 
use {1, 4} 

(2.5*(F(1)+F(4)) + (~O(1)+~O(4)) + 
(~F(3)*2.5+~F(2)*2.5) + (O(3)+O(2))) 

c = 8, 
wheel(s) in 
use {2, 3} 

(2.5*(F(2)+F(3)) + (~O(2)+~O(3)) + 
(~F(1)*2.5+~F(4)*2.5) + (O(1)+O(4))) 

c = 9, 
wheel(s) in 
use {2, 4} 

(2.5*(F(2)+F(4)) + (~O(2)+~O(4)) + 
(~F(3)*2.5+~F(1)*2.5) + (O(3)+O(1))) 

c = 10, 
wheel(s) in 
use {3, 4} 

(2.5*(F(3)+F(4)) + (~O(3)+~O(4)) + 
(~F(1)*2.5+~F(2)*2.5) + (O(1)+O(2))) 

c = 11, 
wheel(s) in 

use {1} 

(2.5*(F(1)) + (~O(1)) + 
(~F(3)*2.5+~F(4)*2.5+~F(2)*2.5) + 

(O(3)+O(4)+O(2))) 
c = 12, 

wheel(s) in 
use {2} 

(2.5*(F(2)) + (~O(2)) + 
(~F(3)*2.5+~F(4)*2.5+~F(1)*2.5) + 

(O(3)+O(4)+O(1))) 
c = 13, 

wheel(s) in 
use {3} 

(2.5*(F(3)) + (~O(3)) + 
(~F(1)*2.5+~F(4)*2.5+~F(2)*2.5) + 

(O(1)+O(4)+O(2))) 
c = 14, 

wheel(s) in 
use {4} 

(2.5*(F(4)) + (~O(4)) + 
(~F(3)*2.5+~F(1)*2.5+~F(2)*2.5) + 

(O(3)+O(1)+O(2))) 
 

The reward function for the reconfiguration of gyroscopes can be defined with only the G 

term similar to the reward function for the control law reconfiguration. Note that in this 

model there are no constraints in the reconfiguration options and no uncertainties in the 

state transitions.  Therefore, the policy for this MDP is also calculated using greedy 

search instead of value iteration. 

7.3.4 CFT‐SOAP	Execution	

After having formulated all the MDPs related to planning, fault detection, and 

reconfiguration, in this section we describe the real-time execution of all the MDP 

policies onboard the spacecraft. Figure 7.3 represents the block diagram for CFT-SOAP 
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execution for the FUSE mission. This figure is similar to Figure 3.3 except for the fact 

that instead of one integrated MDP policy, we have separate policies. In Figure 7.3, all of 

the information from the spacecraft sensors, observer-based fault detector, system 

dynamics, and system configuration is obtained by the real-time executive. The current 

state for each of the MDPs on the left side of the figure is extracted from this information. 

Note that extracting the current state for the logic-based fault detection MDP involves 

determining which of the wheels and gyroscopes are currently in use. This can be easily 

done using the current gyroscope switching and control law configuration. Also the 

execution of the current state for reconfiguration MDPs involves generation of the F 

vector that may require resolving the unresolved fault conflicts from the previous time 

step using the maximum likelihood method. Once the state information for all the MDPs 

is generated, the corresponding updated actions are extracted from the MDP policies. 

These actions are then converted into commands and are sent to the system configuration 

manager, reconfigurable controller, and observer-based fault detector. The interpretation 

of the actions here includes the selection of the actions among µP-1 and µP-2 based on the 

fault information. If the fault information indicates full control availability, µP-1 is 

executed; otherwise µP-2 is executed. 
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Figure 7.3: Online execution of CFT-SOAP for the FUSE mission 

7.4 FUSE	Modeling	with	ASPEN	and	Livingstone	

ASPEN and Livingstone formulations generate plans and post-fault sequences of 

activities, respectively. An ASPEN model [85] has seven basic components:  1) 

Parameters, 2) Parameter dependencies, 3) Temporal constraints, 4) Resources, 5) State 

variables, 6) Activities, 7) Activity reservations. Once a planning problem is modeled in 

the ASPEN framework, the solution (plan) is computed by using iterative repair search 

that may be guided by appropriate heuristics [22]. Conceptually, iterative repair search 

starts with an approximate plan supplied by the user that may have conflicts and that may 
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not be complete. The conflicts in the initial plan are resolved one by one by adding, 

deleting, and adjusting activities. Sometimes larger activities may be decomposed into 

primitive actions while at other instances, actions may be aggregated. The ASPEN model 

can be changed online as a result of faults. For example new constraints might be 

imposed on the activities. Under such situations, the plan is repaired online using the 

updated model and iterative repair search.  

   Livingstone [104], on the other hand, is an online reactive deduction system that serves 

the purposes of fault detection and reconfiguration. The basic modeling entity in 

Livingstone is a state transition system. A state transition system is composed of three 

components: 1) State variables, 2) The domain space for state variables, 3) The set of 

possible state transitions. Each component of the spacecraft can be represented as a state 

transition system. Together all state transition system layers form the plant transition 

system. The problem of fault detection is addressed by using combinatorial optimization 

over design variables X, constraints Y, and objective function W. Each variable in X 

represents a component in the plant whose values are the possible component transitions. 

Each possible plant transition corresponds to assignment of values to the variables in X. Y 

is the constraint that all state transitions should belong to the set of allowable transitions. 

The objective function is the probability of each plant transition. For FUSE, a transition 

might include any number of components transitioning from normal to a faulty state and 

hence the objective function would be the probability of occurrence of the corresponding 

faults given the sensor observations. Specifics of ASPEN and Livingstone models for 

application to the FUSE case study are provided below. 
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7.4.1 The	ASPEN	Model	

The ASPEN model translation for the FUSE mission is represented in Table 7-5. There 

are a total of 15 activities, five of which include data collection activities while the 

remaining 10 are attitude maneuver activities. Each activity has associated constraints 

and parameters. Although there are five types of constraints listed in Table 7-5, not all 

activities have all five constraints active. For example the constraint of the data collection 

window is active only for activities of type data collection.  

Table 7-5: ASPEN model 

Model Attribute Description Remarks 
Activities Five data collection 

activities, one for each 
science target 
 
Ten attitude-maneuver 
activities, one maneuver 
between any two different 
target pointings. 

Each activity has its own 
parameters such as energy 
required, sun avoidance, 
instruments required, 
feasible true anomaly 
window, etc  

Constraints Data collection window 
Sun exposure 
Energy Depletion 
Attitude Pointing 
Instrument Health 

Constraints are matched 
with the activity parameters 
to make sure that the 
activity is feasible. 

States True Anomaly 
Orbit count 
Attitude Pointing 
Data Collection Flags 
Available Energy 
Eclipse-Sun Flag 
Available Instruments 

States are obtained from 
various sensors and fault 
detection schemes in the 
system. 

Activity Parameters Feasible True anomaly 
Window 
Sun Avoidance flag 
Energy Required 
Attitude Pointing Required 
Instruments Required 
Change in True Anomaly 
Incurred  

Attitude pointing activities 
do not have a true anomaly 
window requirement or sun 
avoidance requirement 
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The state information reflects the situation of the spacecraft related to its mission. Note 

that the state variables are the same as for the planning MDP in the CFT-SOAP 

formulation of FUSE. Symbolically, the above model can be represented as: 
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Each activity in ASPEN can be assigned a true anomaly range and an orbit count number. 

No two activities are allowed to overlap. There are five possible constraints for each 

activity assignment. Each binary element of the constraint set ci,j represents the presence 

or absence of constraint j in activity i. There are seven state variables each with a 

respective domain. For example, the domain of true anomaly state variable ranges from 0 

to 360 degrees in discrete intervals. The domain of orbit count is the set of natural 

numbers up to a predefined maximum limit. The domain of the attitude pointing variable 

is the set of the first five natural numbers. Note that the domains of the state variable 

should be finite; otherwise there is a possibility of never being able to find a feasible 

plan. The goal state in our case study is any state where the data collection flag variable 

indicates all of the required data has been collected.   

   The ASPEN planning process starts with an initial state and a set of randomly-assigned 

activities. If there are no constraints and the goal state is reached at the end of the last 

activity, the solution is found. Otherwise, activities are added, deleted, or 
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adjusted/reassigned until all constraints are satisfied and the goal state is depicted to be 

achieved by the end of the last activity in the plan. 

7.4.2 Livingstone	Model	

For the Livingstone model, each of the four reaction wheels and six gyroscopes is 

represented as a state transition system where state represents the health status in terms of 

failed/normal. There are four possible transitions for each of the state transition systems 

i.e. normal to failed, normal to normal, failed to normal, and failed to failed. Therefore, 

the overall spacecraft health transition is a collection of transitions of each of the ten 

components of interest for our case study. The combinatorial optimization problem 

therefore, is presented as: 
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The above equation is based on the assumption of the independence of faults. Therefore, 

failure detection of the ith component can be optimized with respect to objective function 

wi.  wi is a function of xi and has maximum value for the most consistent value of xi given 

yi, where the most consistent refers to the value of xi which is most likely based on the 

available information. Binary flag xi represents the normal/faulty mode of the ith 

component. Binary flag yi represents the observed mode of the ith component. There are 

no constraints in mode transitions of the components, i.e., all four possible transitions are 

allowed. 
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   For reconfiguration, the combinatorial optimization problem selects among available 

reconfiguration options such that the current plan is executable. The objective function is 

set to Equation (7.3.16) to maximize consistency between the Livingstone and CFT-

SOAP models. Variables in X are possible reconfigurations, Y includes flags for 

infeasible reconfigurations, and W is a function of X and Y whose value can be 

maximized with the selection of the best among the feasible values of variables in X. 
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In the above equation, x1 is used to select a combination of gyroscopes and x2 is used to 

select a combination of reaction wheels. Variables in Y indicate feasible/infeasible status 

for each combination of the reaction wheels. This status is calculated based on the 

Instruments Required parameter of the remaining plan activities e.g. if any of the 

remaining activities of the current plan generated by ASPEN require three reaction 

wheels, all the combinations of the reaction wheels where less than three wheels are in 

use are marked infeasible. Variables in W calculate the cost of using a particular 

configuration that is similar to the G function in Equation (7.3.16). 

7.4.3 Execution	of	ASPEN‐Livingstone	

In this section we present an online execution scheme for the ASPEN-Livingstone 

framework. Figure 7.4 shows the online execution scheme where the real-time execution 

module collects the system health and system output (angular velocities and attitude) 



 

198 
 

information from the system monitors and the real-time control scheme respectively. This 

information is used to generate the initial state for ASPEN to request a new plan if there 

is no in-progress plan or the in-progress plan is no longer applicable due to a fault. Once 

the plan is acquired, the real-time executive executes the plan activities one by one by 

issuing real-time control commands. Meanwhile the real-time executive also monitors the 

health of the system using information from the system monitors that use information 

from the sensors to generate operational modes for the components that represent 

component health. The observed modes for the components are sent to the mode 

identification module that uses the Livingstone fault detection scheme to determine the 

fault flags for the reaction wheels and gyroscopes. If there is a new fault, the 

reconfiguration request is sent to the Livingstone-based reconfiguration module along 

with fault information and information about the current plan. The reconfiguration 

module either sends a corresponding reconfiguration command if possible; otherwise a 

new plan request must be sent to the ASPEN by the real-time executive. 

 

Figure 7.4: ASPEN-Livingstone execution for the FUSE mission 
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7.5 Simulation	Results	

In this section, we simulate the sequence of failures from the actual FUSE mission and 

report the responses from CFT-SOAP and ASPEN-Livingstone models. Table 7-6 lists 

the gyroscope and reaction wheel failure cases actually encountered during the FUSE 

mission (as of 2006) [91].   

Table 7-6: Status of the FUSE gyroscopes and reaction wheels as of 2006 

Axis IRU-A IRU-B Reaction Wheel 
Assemblies 

Yaw 1/6/00 Warning flag 
tripped 

Operational 

12/10/02 Warning flag 
tripped 

7/31/03 Failed 

2/16/01 Stopped; 
restarted in 11 days 

11/25/01 Failed 
Pitch 1/18/00 Warning flag 

tripped 
Operational 

8/31/01 Warning flag 
tripped 

9/28/04 Noisy / Turned 
off 

8/04/00 Stopped; 
restarted in 40 days 

12/10/01 Failed 

Roll 4/19/00 Warning flag 
tripped 

5/30/01 Failed 

10/06/01 Warning flag 
tripped 

5/17/05 Failed 

12/17/03 Stopped; 
restarted in 2 hrs 
12/27/04 Failed 

Skew ---------------- ------------------- Operational 
 

Although the failures were separated from each other by months or in some cases years, 

we compress the failures into the course of a few orbits to facilitate their integration into 

the case study. This is a worst-case scenario, and supports comparison of the capabilities 

of CFT-SOAP, ASPEN, and Livingstone to support reactive mission configuration 

without assistance from the ground station. 
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7.5.1 Simulation	with	CFT‐SOAP	

7.5.1.1 Trajectory	Analysis	

MDP policies for planning (with full control availability) as well as fault detection and 

control reconfiguration were calculated using MATLAB software with an Intel core i5 

processor. Table 7-7 shows the computation times for the MDPs. Note that all MDPs 

have been solved using a finite horizon. The discount factor (γ) and epoch for the 

planning MDP have higher values. The discount factor has a high value because a plan 

needs to consider values of future rewards. The epoch has value 20 to make sure that the 

mission is completed. The discount factors and epochs for the fault detection and 

reconfiguration MDPs are low because these MDPs require emphasis of more immediate 

actions to resolve the fault scenario. 

Table 7-7: MDP computation times 

MDP type Computation time 
(sec) 

Discount factor 
(γ) 

Epoch 

Planning (full control authority) 103.72 0.99 20 
Logic-based fault detection 5.9 0.5 3 

Conflict resolution 33.85 0.5 3 
Control law reconfiguration 88.44 0.5 3 
Gyroscope reconfiguration 5.9 0.5 3 

 

Online execution is performed as depicted in Chapter 3 (Figures 3.3. and 3.4). Policies 

generated for FUSE are shown in Table 7-8. The fault flags in Bl, Bo, and F as well as the 

flags in O are arranged such that the first three flags correspond to the IRU-A set of 

gyroscopes in the order of yaw, pitch and roll axes. The next three flags correspond to the 

IRU-B set of gyroscopes in the same order of axes, and the final four flags correspond to 

the reaction wheel assemblies in the order of yaw, pitch, roll, and skew axes. The 
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thresholds and control laws are ordered as in Table 7-4 where wheel 1 corresponds to the 

yaw axis, wheel 2 corresponds to the pitch axis, wheel 3 corresponds to the roll axis, and 

wheel 4 corresponds to the skew axis. 

   We start with a normal state in step 1 with attitude pointing at Target 1 and true 

anomaly value of 1. In the response, there is no reconfiguration required from the control 

law or gyroscope reconfiguration policy. The fault detection policy does not detect any 

fault and the planning MDP suggests NOOP50. Before the start of step 2, the spacecraft 

moves by 50 degrees of true anomaly and meanwhile the observation flags for the yaw 

and pitch axes gyroscopes in IR-A unit turn off indicating potential failures. In step 2, the 

spacecraft is pointed towards Target 1 and is within the window of visibility therefore the 

planning MDP suggests µ1 i.e. to collect data from Target 1. The reconfiguration policy is 

to switch the yaw and pitch axis gyroscopes from IRU-A to IRU-B. No more failures 

occur at this point. Before step 3, data is collected from Target 1 and the spacecraft 

advances by 10 degrees of true anomaly. Also, the reconfiguration of gyroscopes 

commanded by the reconfiguration policy is carried out while two more observation flags 

turn off, one for the roll axis gyroscope in IRU-A and one for Reaction Wheel 2. In step 

3, the reconfiguration policies change the control law and gyroscope configurations to 

avoid usage of potentially faulty components. Similarly, in the remaining steps, the 

response of the MDP policies to the sequence of failures is presented.  By the end of step 

11, all scientific data is collected, the spacecraft has advanced to the true anomaly value 

of 261, the spacecraft is in an eclipse condition that started at the end of step 11, and the 

energy left in the batteries is 2 units. By the end of step 13, only one of the four reaction 

wheels is working, and only two of the six gyroscopes are operational.    



 

202 
 

Table 7-8: Simulation case study for CFT-SOAP with FUSE 

Sim 
Step 

# 

State of the FUSE 
Spacecraft 

MDP Policies Exogenous and Policy-
related Events 

1 A = 0, B = {0, 0, 0, 0, 0} 
v = 1, z = 1, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,0,0,0,0} 
Bo = {0,0,0,0,0,0,0,0,0,0} 
F = {0,0,0,0,0,0,0,0,0,0} 
O = {1,1,1,1,1,1,1,1,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 1}, c = 1; wheels 
{1, 2, 3} 

πPlan, full = NOOP50 
πPlan, partial = Not in 
use 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 
NOOP 

v = 51 
O = {0,0,1,1,1,1,1,1,1,1} 

2 A = 0, B = {0, 0, 0, 0, 0} 
v = 51, z = 1, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,0,0,0,0} 
Bo = {0,0,0,0,0,0,0,0,0,0} 
F = {0,0,0,0,0,0,0,0,0,0} 
O = {0,0,1,1,1,1,1,1,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 1}, c = 1; wheels 
{1, 2, 3} 

πPlan, full = µ1 
πPlan, partial = Not in 
use 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = {2,2,1} 
πReconfig, Control = 
NOOP 

A = 2, A = 0 
B = {1, 0, 0, 0, 0}, v = 61 
O = {0,0,0,1,1,1,1,0,1,1} 
sw = {2,2,1} 

3 A = 0, B = {1, 0, 0, 0, 0} 
v = 61, z = 1, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,0,0,0,0} 
Bo = {0,0,0,0,0,0,0,0,0,0} 
F = {0,0,0,0,0,0,0,0,0,0} 
O = {0,0,0,1,1,1,1,0,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {2, 2, 1}, c = 1; wheels 
{1, 2, 3} 

πPlan, full = µ2 
πPlan, partial = Not in 
use 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = {2,2,2} 
πReconfig, Control = 3 

A = 1, A = 0 
v = 81, z = 2 
c = 3; wheels {1, 3, 4} 
sw = {2,2,2} 
O = {0,0,0,1,0,0,0,0,1,1} 

4 A = 0, B = {1, 0, 0, 0, 0} 
v = 81, z = 2, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,0,0,0,0} 
Bo = {0,0,0,0,0,0,0,0,0,0} 
F = {0,0,0,0,0,0,0,0,0,0} 
O = {0,0,0,1,0,0,0,0,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {2, 2, 2}, c = 3; wheels 
{1, 3, 4} 

πPlan, full = NOOP20 
πPlan, partial = Not in 
use 
πFDD, Logic = Bl(7) 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 
NOOP 

v = 101 
Bl = {0,0,0,0,0,0,1,0,0,0} 
Bo = Bl = F 

5 A = 0, B = {1, 0, 0, 0, 0} πPlan, full = µ2 A = 2, A = 0 
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v = 101, z = 2, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,1,0,0,0} 
Bo = {0,0,0,0,0,0,1,0,0,0} 
F = {0,0,0,0,0,0,1,0,0,0} 
O = {0,0,0,1,0,0,0,0,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {2, 2, 2}, c = 3; wheels 
{1, 3, 4} 

πPlan, partial = Not in 
use 
πFDD, Logic = Bl(8) 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 4 

v = 111 
B = {1, 1, 0, 0, 0} 
Bl = {0,0,0,0,0,0,1,1,0,0} 
Bo = Bl = F 
c = 4; wheels {2, 3, 4}  

6 A = 0, B = {1, 1, 0, 0, 0} 
v = 111, z = 2, SE = 3, EL = 5 
Bl = {0,0,0,0,0,0,1,1,0,0} 
Bo = {0,0,0,0,0,0,1,1,0,0} 
F = {0,0,0,0,0,0,1,1,0,0} 
O = {0,0,0,1,0,0,0,0,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {2, 2, 2}, c = 3; wheels 
{2, 3, 4} 

πPlan, full = µ3 
πPlan, partial = Not in 
use 
πFDD, Logic = Bl(4) 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 10 

A = 1, A = 0 
v = 161, z = 3 
O = {0,0,0,0,0,0,0,0,1,1} 
Bl = {0,0,0,1,0,0,1,1,0,0} 
Bo = Bl = F 
c = 10; wheels {3, 4} 

7 A = 0, B = {1, 1, 0, 0, 0} 
v = 161, z = 3, SE = 3, EL = 5 
Bl = {0,0,0,1,0,0,1,1,0,0} 
Bo = {0,0,0,1,0,0,1,1,0,0} 
F = {0,0,0,1,0,0,1,1,0,0} 
O = {0,0,0,0,0,0,0,0,1,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {2, 2, 2}, c = 10; wheels 
{3, 4} 

πPlan, full = µ3 
πPlan, partial = Not in 
use 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = {1,2,2} 
πReconfig, Control = 
NOOP 

A = 2, A = 0 
v = 171 
B = {1, 1, 1, 0, 0} 
O = {0,0,0,0,0,0,0,0,0,1} 
sw = {1,2,2} 

8 A = 0, B = {1, 1, 1, 0, 0} 
v = 171, z = 3, SE = 3, EL = 5 
Bl = {0,0,0,1,0,0,1,1,0,0} 
Bo = {0,0,0,1,0,0,1,1,0,0} 
F = {0,0,0,1,0,0,1,1,0,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 2, 2}, c = 10; wheels 
{3, 4} 

πPlan, full = µ4 
πPlan, partial = Not in 
use 
πFDD, Logic = Bl(5) 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 
NOOP 

A = 1, A = 0 
v = 221, z = 4 
Bl = {0,0,0,1,1,0,1,1,0,0} 
Bo = Bl = F 
 

9 A = 0, B = {1, 1, 1, 0, 0} 
v = 221, z = 4, SE = 3, EL = 5 
Bl = {0,0,0,1,1,0,1,1,0,0} 
Bo = {0,0,0,1,1,0,1,1,0,0} 
F = {0,0,0,1,1,0,1,1,0,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 

πPlan, full = µ4 
πPlan, partial = Not in 
use 
πFDD, Logic = Bl(9) 
πFDD, Conflict = NOOP 
πReconfig, gyro = {1,1,2} 
πReconfig, Control = 

A = 2, A = 0 
v = 231 
B = {1, 1, 1, 1, 0} 
SE = 1 
Bl = {0,0,0,1,1,0,1,1,1,0} 
Bo = Bl = F 
sw = {1,1,2} 
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{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 2, 2}, c = 10; wheels 
{3, 4} 

NOOP 

10 A = 0, B = {1, 1, 1, 0, 0} 
v = 231, z = 4, SE = 1, EL = 5 
Bl = {0,0,0,1,1,0,1,1,1,0} 
Bo = {0,0,0,1,1,0,1,1,1,0} 
F = {0,0,0,1,1,0,1,1,1,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 2}, c = 10; wheels 
{3, 4} 

πPlan, full = µ5 
πPlan, partial = Not in 
use 
πFDD, Logic = Bl(6) 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 14 

A = 1, A = 0 
v = 251, z = 5, EL = 3 
Bl = {0,0,0,1,1,1,1,1,1,0} 
Bo = Bl = F 
c = 14; wheels {4} 

11 A = 0, B = {1, 1, 1, 1, 0} 
v = 251, z = 5, SE = 1, EL = 3 
Bl = {0,0,0,1,1,1,1,1,1,0} 
Bo = {0,0,0,1,1,1,1,1,1,0} 
F = {0,0,0,1,1,1,1,1,1,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 2}, c = 14; wheels 
{4} 

πPlan, full = Not in use 
πPlan, partial = µ5 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = {1,1,1} 
πReconfig, Control = 
NOOP 

A = 2, A = 0 
v = 261, EL = 2 
B = {1, 1, 1, 1, 1} 
sw = {1,1,1} 

12 A = 0, B = {1, 1, 1, 1, 1} 
v = 261, z = 5, SE = 1, EL = 2 
Bl = {0,0,0,1,1,1,1,1,1,0} 
Bo = {0,0,0,1,1,1,1,1,1,0} 
F = {0,0,0,1,1,1,1,1,1,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 1}, c = 14; wheels 
{4} 

πPlan, full = Not in use 
πPlan, partial = NOOP10 
πFDD, Logic = Bl(3) 
πFDD, Conflict = NOOP 
πReconfig, gyro = {1,1,1} 
πReconfig, Control = 
NOOP 

v = 271 
Bl = {0,0,1,1,1,1,1,1,1,0} 
Bo = Bl = F 
 

13 A = 0, B = {1, 1, 1, 1, 1} 
v = 271, z = 5, SE = 1, EL = 2 
Bl = {0,0,1,1,1,1,1,1,1,0} 
Bo = {0,0,1,1,1,1,1,1,1,0} 
F = {0,0,1,1,1,1,1,1,1,0} 
O = {0,0,0,0,0,0,0,0,0,1} 
V = 
{2,2,2,2,2,2,2,2,2,2,2,2,2,2} 
sw = {1, 1, 1}, c = 14; wheels 
{4} 

πPlan, full = Not in use 
πPlan, partial = NOOP10 
πFDD, Logic = NOOP 
πFDD, Conflict = NOOP 
πReconfig, gyro = NOOP 
πReconfig, Control = 
NOOP 

v = 281 
 

 



 

205 
 

7.5.1.2 Robustness	Analysis	

In this section, we present some results from the variation of the a priori probabilities of 

failures of the reaction wheels and gyroscopes. Recall that, in Section 7.3, we used the a 

priori failure probability values for all the reaction wheels and gyroscopes to be 0.05 and 

calculated the probability of transition to the failure state for the planning MDP with full 

control authority to be 1.25 × 10-5 times the change in true anomaly incorporated in the 

attitude maneuver. This value was based on a safety factor that was selected based on 

engineering judgement. Since engineering judgement is not always accurate, we present 

in this section the results of selecting inaccurate failure probabilities. In particular, we 

solved 10 MDPs for planning with full control availability each with a different failure 

probability value. Then we simulated the trajectories for each of the 10 MDPs in all of 

the 10 possible failure probability environments. This required 100 MDP trajectory 

simulations. Each of the 100 trajectory simulations was simulated for each possible initial 

state. Since there are 86,400 normal states (and one failure state) in each MDP (see 

equation 7.3.2), this amounts to 8,640,000 trajectories. To compute an average over 

several cases, we run each of the 8,640,000 trajectories 250 times. The total time taken by 

all simulation runs on Intel core i5 laptop computer was 40 hours. From all these 

simulations, we computed the average survival time and average expected discounted 

reward for each of the 10 MDPs in each of the 10 failure probability environments. The 

average was taken over all of the 86,400 initial states that were run 250 times. 

   Table 7-9 shows the indexing map for the failure probability environments used in our 

simulations. Table 7-10 shows the results from the simulation in the form of average 

survival times and average expected discounted rewards. Note that the survival time is 
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out of 20 steps (or a sequence of 20 actions) because the epoch (or finite horizon) of the 

MDP policies generated was selected to be 20 steps as shown in Table 7-7. The results 

indicate that the policies generated for higher probabilities of failure have a better 

survival rate in the environment with the highest probability of failure (environment with 

index 10). Also note that due to the conservative nature of the policies with higher 

probabilities of failure, the expected reward obtained by these policies is also lower. 

These results indicate a clear tradeoff between spacecraft safety and expected science 

reward obtained by the policy. In general, if the probabilities of failure are 

underestimated, the resulting policy might consist of bold decisions to collect science 

data that may introduce risk of failure to the spacecraft. On the other hand, if the 

probability of failure is overestimated, the science reward obtained from the mission may 

not be high. This study also suggests that if spacecraft mission planning does not take 

into account the probabilities of failure, the resulting plan may jeopardize spacecraft 

safety. 

Table 7-9: Index of the MDPs with respect to the selected failure probabilities 

MDP Index / Environment Index Failure Probability 
1 1.25 × 10-5 
2 2. 88 × 10-4 
3 5.65 × 10-4 
4 8.41 × 10-4 
5 1.1 × 10-3 
6 1.4 × 10-3 
7 1.7 × 10-3 
8 1.9 × 10-3 
9 2.2 × 10-3 
10 2.5 × 10-3 
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Table 7-10: Robustness analysis results 

MDP 
Index 

Expected 
reward (own 
environment) 

Worst 
case 

expected 
reward 

Environment 
index for 

worst case 
expected 
reward 

Survival 
time (out of 
20 steps) in 

own 
environment

Worst 
case 

survival 
time 

Environment 
index for 

worst case 
survival 

time 
1 20,720 5,909 10 19.92 12.28 10 
2 16,560 6,302 10 19.19 14.19 10 
3 13,780 6,662 10 19.18 17.03 10 
4 11,790 6,853 10 19.35 18.46 10 
5 10,360 6,955 10 19.49 19.07 10 
6 9,305 7,015 10 19.56 19.33 10 
7 8,503 7,047 10 19.60 19.48 10 
8 7,896 7,078 10 19.68 19.63 10 
9 7,452 7,108 10 19.73 19.71 10 
10 7,169 7,169 10 19.75 19.75 10 

 

7.5.2 Simulation	with	ASPEN‐Livingstone	

The following table shows the initial plan that we assume ASPEN could have generated 

given the initial conditions as in Table 5. The eclipse is assumed to be from 230-350 

degrees of true anomaly. Note that we did not generate this plan using the actual ASPEN 

software but in theory, this is one of the plans that ASPEN could have generated since it 

is complete and satisfies all activity constraints. 

Table 7-11: ASPEN plan for FUSE case study 

Step Number Plan Activity (true anomaly, orbit) 
1 Data Collection 1 (50-60, 1) 
2 Pointing 1-2 (70-90, 1) 
3 Data Collection 2 (100-110, 1) 
4 Pointing 2-3 (120-170, 1) 
5 Data Collection 3 (170-180, 1) 
6 Pointing 3-4 (180-230, 1) 
7 Data Collection 4 (230-240, 1) 
8 Pointing 4-5 (240-260, 1) 
9 Data Collection 5 (260-270, 1) 
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Livingstone assumes the same fault sequence as in Table 5 and we also assume that all 

faults are correctly diagnosed. Reconfiguration decisions for Livingstone are 

straightforward since there is no tradeoff between mission objectives and safety of the 

spacecraft.  All faulty components are taken out and healthy components are selected for 

use. In the case of partial control availability, online re-planning is required using 

ASPEN based on remaining available attitude maneuver activities. In short the response 

of ASPEN-Livingstone is similar to that of CFT-SOAP for the FUSE case study. Note 

that this does not mean that these two technologies are equivalent. The next section 

presents a comparison between the two technologies on the basis of their model 

expressiveness, computational complexity, and robustness of generated solutions.     

7.6 Comparison	between	CFT‐SOAP	and	ASPEN‐Livingstone	

Approaches	

In this section, we compare the CFT-SOAP and ASPEN-Livingstone approaches for fault 

tolerant planning on three bases:  expressiveness of the modeling, computational 

complexity of the solution, and robustness to failures. Table 7-12 presents a comparison 

on the basis of model expressiveness. The major difference is in the expression of 

uncertainties. CFT-SOAP incorporates uncertainties in all three identified aspects of fault 

tolerant planning whereas the ASPEN-Livingstone system incorporates only the 

uncertainty in fault detection. The last row in Table 7-12 indicates the difference in the 

representation of time. Here CFT-SOAP may have a disadvantage of having discrete time 

but ASPEN’s state-space will grow increasingly complex as temporal resolution is 

increased. Note that in our case study, time is represented in terms of the true anomaly in 

CFT-SOAP and in terms of the combination of true anomaly and orbit count in ASPEN. 
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Table 7-12: Comparison of model-expressiveness between CFT-SOAP and ASPEN-
Livingstone modeling methods 

Expressiveness 
Quality 

CFT-SOAP ASPEN-
Livingstone 

State Information Yes Yes 
Available Decisions Yes Yes 
Optimality Criterion Yes Yes: only in the 

Livingstone 
Science-optimal 

Planning 
Yes No 

Comprehensive Fault 
Tolerance 

Yes No 

Transition 
Constraints 

Yes: Implicit Yes: Explicit 

Uncertainties Yes: Both in 
planning and fault 

tolerance 

Yes: Only in Fault 
Detection 

time Yes: Variable 
length discrete time 

horizons 

Yes: Constant 
length discrete time 

horizons 
 

Table 7-13 presents a comparison of online and offline computational complexities. Note 

that the majority of computations for CFT-SOAP are performed offline. This is important 

because the cost of computing is much less offline (on the ground) as compared to online 

(onboard the spacecraft) for space missions. Also, although we have presented a nice case 

for ASPEN in our case study, it may not always be easy to plan and re-plan during the 

real missions since the time to find the plan that is sufficient for the mission is highly 

dependent upon amount of repairing that needs to be done and also upon the heuristics 

for guiding the search. In general, the search space for ASPEN is as large as all possible 

repair methods (Q) to all possible conflicts (C) in all possible orders. On the other hand, 

for fault tolerance, the online computations required by the Livingstone for our case study 

are quite low but in general, the size of the search problem is all possible state 

instantiations (Z) of the fault detection and reconfiguration problem states. If the calls to 
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fault detection and reconfiguration routines are frequent for an extended mission time, 

then Livingstone will lose the computational advantage over the fault tolerance in CFT-

SOAP. Finally, although the computational complexity of value iteration is the square of 

the number of states (N) times the number of actions (M), in CFT-SOAP, not all states 

transition to all other states and in fact there are two possible results for each action in 

almost all the MDPs involved hence reducing the computational complexity to two times 

the number of states times the number of actions. Also, the online computational 

complexity is a function of MDP state-space size. 

Table 7-13: Comparison of computational complexity 

 

As for the robustness of the solution, the CFT-SOAP has an advantage over ASPEN-

Livingstone since an MDP policy has a response for every possible state whereas the plan 

generated by ASPEN may only be responsive to part of the state-space, and a state 

outside this space may be encountered due to an anomalous event. Also, since the 

planning policy in CFT-SOAP considers fault probabilities, CFT-SOAP generates 

activities that reduce the chances of failure through explicit fault detection and 

reconfiguration capability. This feature is not available in the ASPEN model. 

Solution Type CFT-SOAP ASPEN-Livingstone 
Planning offline: ~O(2NM)) 

online: ~O(n) 
offline: None 

online: ~O(QC!) 
Fault Detection offline: ~O(2NM)) 

online: ~O(n) 
offline: None 
online: ~O(Z) 

Reconfiguration offline: ~O(2NM) 
online: ~O(n) 

offline: None 
online: ~O(Z) 



 

211 
 

7.7 Concluding	Remarks	

The FUSE case study presented in this chapter provides an illustration of how to model 

and decompose a CFT-SOAP model for the real-world space missions such that the 

computation of the solution becomes tractable. Also presented in this chapter is a 

comparison between CFT-SOAP and alternate technologies i.e. ASPEN-Livingstone. 

There are three major differences in the alternate technologies. The first difference is that 

the planning in CFT-SOAP framework accounts for the probabilities of failures and the 

rewards obtained from the science data whereas the planning in ASPEN does not take 

into account these factors. The second major difference is that the fault tolerance in the 

CFT-SOAP is comprehensive i.e. accounts for the fault information obtained from both 

logic-based and dynamics-based fault detection whereas the formulation in Livingstone 

does not take into account the dynamics-based fault information. The third difference is 

that CFT-SOAP produces policies that include an optimal action for every possible 

situation whereas, in ASPEN and Livingstone, every new fault event requires online 

calculation of the new plan and new system configuration. Although CFT-SOAP is more 

computationally-complex than ASPEN or Livingstone, we propose the CFT-SOAP MDP 

policies be developed offline, or worst-case (MDP failure state reached) built on the 

ground while the spacecraft is safed. The computations for ASPEN and Livingstone can 

be performed online, on the spacecraft, but may require additional support from the 

ground as any failure state the CFT-SOAP policy doesn’t cover will also not likely be 

covered by onboard ASPEN and Livingstone models. 
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 	Chapter	8

Conclusions	and	Future	Directions	

 

In the dissertation, a Markov Decision Process (MDP)-based approach to comprehensive 

fault tolerance and science optimal attitude planning for spacecraft applications has been 

presented. To reduce the computational complexity involved in solving each MDP, we 

demonstrated that our problem can be decomposed into multiple smaller MDPs. These 

MDPs included planning MDPs for different fault scenarios, a fault detection MDP for 

detecting faults based on a logic-based model of the spacecraft, a conflict resolution MDP 

for resolving the conflicts between fault information from the logic-based model and the 

dynamics-based model of the spacecraft, and a reconfiguration MDP that incorporates the 

relative importance of the mission objectives versus the safety of the spacecraft. 

Approximate Dynamic Programming (ADP) methods for the decomposition of the 

planning and fault detection MDPs have also been presented. 

   To illustrate the performance of the MDP-based frameworks and ADP methods, several 

case studies were presented. These case studies have revealed the important features of 

the CFT-SOAP framework and the behavior of the resulting optimal policies in response 

to the changes in the design parameters. A major case study based on the Far Ultraviolet 

Spectroscopic Explorer (FUSE) mission was presented. Our approach was also compared 
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with existing alternate approaches for planning and fault tolerance in the context of 

FUSE.  

Below, specific conclusions are summarized from the work presented in the thesis. 

Related future research directions are also discussed. 

8.1 Conclusions	

8.1.1 Fault	Tolerant	Mission	Planning	

Fault-tolerant mission planning can minimize disruptions and extend the life of space 

missions with nominal additional effort mostly incurred during the mission design and 

development phase. Since a policy, generated in our formulation with an MDP, is capable 

of reacting to off-nominal or anomalous situations (depending upon MDP formulation 

used), the operational cost of space missions can be reduced. This is useful for missions 

where contact with the ground station is expensive, unreliable, or infrequent. 

   The incorporation of science reward along with costs and failure probabilities 

associated with mission-related actions enables the plan to be more comprehensive and 

robust than if manually specified as a sequence augmented by a “safing” capability that 

ceases mission execution in off-nominal situations. Also, since the plan includes 

responses under various failure scenarios, re-planning is only required when scenarios, 

failures, or new tasks not considered in the original planning phase are encountered. 

Additional capabilities of fault reconfiguration and dual fault detection by logic-based 

and physics-based modules ensure that the policy is executed with the best spacecraft 

control and compositional configuration possible given specified cost, reward, and 

threshold parameters. 
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   The selection of MDP states and design parameters in reward and cost functions is a 

crucial step that requires understanding of the specific mission requirements, and the 

spacecraft used in the mission. 

8.1.2 Computational	Issues	

A serious concern with using MDP formulation is its computational complexity which 

can be significant even for an off-board implementation. To reduce the computational 

complexity, decomposition of the MDP into smaller problems has been pursued along 

with the application of Approximate Dynamic Programming (ADP) algorithms. 

Specifically, one can make use of the structure of the mission tasks and constraints on 

their execution to reduce the state-space of associated MDPs. Some methods that exploit 

these properties were introduced in chapters 4 and 6, for example capitalizing on the 

separation of tasks when their observation windows do not overlap. Also by defining 

actions to be context-dependent, the action space is reduced significantly. Our proposed 

ADP algorithms have shown good performance with a significant reduction in 

computational complexity. With the rapidly growing computing power, the capability to 

generate MDP policies for large state dimensions is improving.  This facilitates the 

implementation of the MDP-based presented approach in this thesis.   

8.1.3 Implementation	Issues	

Although real-time execution can be more robust, potentially requiring less operational 

support once deployed, implementation of the presented MDP framework presented in 

this thesis will likely require more capable computational hardware on the spacecraft and 

also additional engineers in the design team to carefully build the models on which the 

MDPs are based.   On the ground, computational resources will be required to build 
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policies from MDPs with large state-space sizes.  On the spacecraft, policies covering 

large state-space sets must be executed.  Communication resources must also support 

uploading new policies to the spacecraft as needed.  The overview of the full CFT-SOAP 

implementation presented in Chapter 3 can be used as a guide to understand the 

complexity of programming and deploying the full implementation. In terms of 

engineering design team, additional experts will be necessary who will  be responsible for 

analyzing the mission environment, durability and life expectancy of spacecraft 

components, mission costs in terms of fuel and energy given the control laws designed 

for various failure situations, reconfiguration options and effects of using each 

reconfiguration, probabilities of false alarms and missed detections for the fault detection 

and diagnosis algorithms used, computational complexity, and pertinent interactions 

within the decomposed systems that must be considered prior to building a trusted set of 

policies. 

8.2 Future	Directions	

8.2.1 ADP	Algorithms:	Reduction	of	Computational	Complexity	

Further use of Approximate Dynamic Programming (ADP) techniques to reduce the 

computational complexity deserves further attention as it may lead to more efficient 

algorithms for implementing fault tolerant planning for real-world space missions. 

Researchers have made good progress in the field of Approximate Dynamic 

Programming, but most results are either for general use or for applications different from 

spacecraft, thus do not consider the challenges associated with a space mission. 

Developing ADP for specific spacecraft applications or mission types can ultimately 

contribute to a reusable (mission-independent) infrastructure to facilitiate future fault-



 

216 
 

tolerant spacecraft deployments without the development costs that will be incurred for 

the first such mission. For example, the proposed ADP schemes in Chapters 4 and 5 

already make use of the specific structure of the state space typically found in spacecraft 

mission operations to obtain a reasonable decomposition. Further matured schemes and 

methods could be developed that will enable comprehensive fault tolerance planning for 

space missions at substantially lower cost. 

8.2.2 Receding	Horizon	Implementation	and	Online	Learning	

Another promising direction includes the development of onboard learning mechanisms 

for design parameters involved in the proposed algorithms. There are quite a few design 

parameters involved in the proposed MDPs. Finding good values for these parameters is a 

very difficult task; one can only find good approximations in most cases. Therefore it will 

be desirable to have an adaptive learning mechanism that can improve the parameters 

online based on observed data to enable adjustment or recalculation of optimal policies 

(in a receding horizon sense) based on improved parameters.  If such updates occur 

onboard, this obviously will require more computational power that is currently available 

onboard spacecraft. 

8.2.3 Developing	MDP	Frameworks	for	more	Complex	Space	Missions	

In this thesis, a specific mission type has been considered to convey the main ideas 

associated with CFT-SOAP in a clear fashion. In general, the MDP formulations can be 

modified for different types of space missions. For example, collaborative fault detection 

and comprehensive reconfiguration can be performed using the MDP formulations for 

missions involving interplanetary orbital maneuvers, reentry, rover deployment, etc. 

From the Aerospace Engineering perspective, the deterministic and predictable nature of 
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decisions and behaviors offered by CFT-SOAP can be an advantage for implementation. 

NASA’s now decade-old demonstration of Remote Agent (RA) illustrated both the power 

and challenges of onboard deliberation. 

8.2.4 Extending	the	Approach	towards	Non‐Aerospace	Applications	

The ideas of fault tolerant planning, collaborative fault detection, conflict resolution, and 

comprehensive reconfiguration are extendable to other important applications especially 

in the automation and robotics industries. Even in newer smart cars, automated fault 

detection and reconfiguration can add vital value. Industrial and commercial robots, 

unmanned aircraft systems (UAS), and even toys can be developed with built-in optimal 

responses for a number of situations (states). 

   CFT-SOAP can be generalized for other types of missions with appropriate changes in 

the formulation. The problem of validation and verification (V&V) becomes ever more 

difficult as model and architecture complexity increases.  Even when software 

implementing algorithms internal to each layer completes a V&V process, the new 

communications, including arbitration between potentially-disparate conclusions, 

introduces a new challenge.  From a practical implementation standpoint, while the 

integration of deliberative compositional and dynamics-based algorithms enables capture 

and management of a more comprehensive fault set, increased complexity also increases 

risk of unanticipated execution sequences due to unpredicted interactions.  A formidable 

but surmountable challenge is then to ensure the integrated system is validated. 

    As a multidisciplinary architecture, CFT-SOAP will require team-based adaptation to 

any domain, with composition of experts in both symbolic inference and adaptation (AI) 
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and physics-based control systems.  This may be a negative for small projects, although 

the author argues that any goal-based system with nontrivial dynamics requires 

participation from both communities today, just in segregated modules presumed to work 

with little to no knowledge of the other.   
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