

Comprehensive	Fault	Tolerance	and	Science‐Optimal	Attitude	
Planning	for	Spacecraft	Applications	

by	

Ali	Nasir	

A	dissertation	submitted	in	partial	fulfillment	
of	the	requirements	for	the	degree	of	

Doctor	of	Philosophy	
(Aerospace	Engineering)	

in	The	University	of	Michigan	
2012	

Doctoral	Committee:	

Associate	Professor	Ella	M.	Atkins,	Co‐Chair	
Professor	Ilya	V.	Kolmanovsky,	Co‐Chair	
Professor	Jessy	W.	Grizzle		
Professor	Pierre	T.	Kabamba	
Professor	N.	Harris	McClamroch

ii

To James William Fulbright and Richard Ernest Bellman

iii

Acknowledgements	

First of all, I would like to thank the Fulbright Program in Pakistan. Specifically, United

States Education Foundation in Pakistan (USEFP), Higher Education Commission (HEC)

of Pakistan, and the Institute of International Education (IIE) for their financial and

administrative support. I would also like to thank Pakistan Space and Upper Atmosphere

Research Commission (SUPARCO) for letting me avail this opportunity to persue higher

studies. Then of course, I would like to thank my advisors Professor Ella M. Atkins and

Professor Ilya V. Kolmanovsky for their enormous support and guidance through the

course of my degree. It has been a true honor working with them. Both offer different

flavors in terms of research and academic approach. I have had a great experience

working with them academically and knowing them personally. I would also like to

thank Professor Jessy W. Grizzle for guiding me through the initial phase when I was

looking for a research advisor, helping me understand the non liniear control systems,

and also being there at the end as one of my thesis committee members. Further, I would

like to thank Professor N. Harris McClamroch for his guidance in various phases during

my PhD and helping me understand the spacecraft dynamics and control. Last but not the

least, I would like to acknowledge the guidance and education that I received from

Professor Pierre T. Kabamba, Professor Semyon M. Meerkov, Professor Demos

Teneketzis, and my colleagues Shinung Ching, Mike Hafner, Ryan Eubank, and

Catherine Mcghan. Oh and how could I forget to mention my adorable wife Zahra for her

support and sporadic feedback on my approach towards the academics and general life.

iv

Table	of	Contents

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ... x

LIST OF TABLES .. xii

 INTRODUCTION .. 1 CHAPTER 1

1.1 MOTIVATION .. 1

1.2 MAJOR CHALLENGES .. 4

1.3 TECHNICAL APPROACH .. 6

1.4 ORIGINAL CONTRIBUTIONS AND INNOVATIONS .. 7

1.4.1 Contributions ... 7

1.4.2 Innovations .. 9

1.5 THESIS OUTLINE ... 10

 BACKGROUND ... 12 CHAPTER 2

2.1 SPACECRAFT MISSION PLANNING AND SCHEDULING ... 13

2.2 CONSTRAINT SATISFACTION PROBLEMS .. 15

2.3 HYBRID SYSTEMS ... 16

2.4 ARCHITECTURES FOR FAULT TOLERANCE AND MISSION PLANNING ... 17

2.4.1 The Remote Agent ... 18

2.4.2 Fault Tolerant Control Systems .. 22

2.4.3 Representational Gaps .. 25

2.5 SPACECRAFT MODELING: KINEMATICS AND DYNAMICS .. 26

2.6 SPACECRAFT ATTITUDE ESTIMATION .. 27

student
Typewritten Text

student
Typewritten Text

v

2.7 SPACECRAFT ATTITUDE CONTROL .. 29

2.8 SPACECRAFT MODELING WITH BAYES NETWORKS .. 30

2.9 MARKOV DECISION PROCESSES (MDPS) .. 32

2.10 APPROXIMATE DYNAMIC PROGRAMMING .. 34

2.11 ASTRODYNAMICS .. 35

2.11.1 Orbital Elements ... 36

 AN INTEGRATED MARKOV DECISION PROCESS MODELING FRAMEWORK 38 CHAPTER 3

3.1 PROBLEM FORMULATION .. 39

3.1.1 Goals .. 39

3.1.2 Problem Statement .. 40

3.2 MDP FORMULATION .. 41

3.2.1 States ... 41

3.2.2 Actions ... 43

3.2.3 Reward Function .. 46

3.2.4 Action Costs ... 48

3.2.5 Transition Probabilities .. 49

3.2.6 Bayes Net Structure (Compositional Model).. 49

3.2.7 Dynamics Model .. 50

3.3 CLOSED LOOP EXECUTION OF THE MDP POLICY .. 50

3.4 INTERDEPENDENCIES AND STATE DECOMPOSITION ... 54

3.4.1 Planning ... 54

3.4.2 Fault Detection .. 55

3.4.3 Reconfiguration ... 57

3.5 COMPUTATIONAL COMPLEXITY AND REAL TIME IMPLEMENTATION .. 57

3.6 CHAPTER SUMMARY ... 58

vi

 SCIENCE‐OPTIMAL SPACECRAFT ATTITUDE PLANNING WITH CONSIDERATION OF FAILURE CHAPTER 4

PROBABILITIES ... 59

4.1 MOTIVATION .. 59

4.2 PROBLEM FORMULATION .. 62

Assumptions ... 62

Problem Statement .. 63

4.3 MDP FORMULATION .. 63

4.3.1 States ... 63

4.3.2 Actions ... 64

4.3.3 Immediate Rewards and Costs .. 67

4.3.4 Transition Probabilities .. 68

4.4 SOLUTION APPROACHES .. 69

4.4.1 Infinite Horizon .. 69

4.4.2 Finite Horizon ... 69

4.5 MDP DECOMPOSITION‐BASED ADP APPROACH .. 70

4.5.1 MDP Decomposition .. 73

4.5.2 Recombination of Value Functions .. 74

4.6 SIMULATION‐BASED CASE STUDIES .. 75

4.6.1 General Framework Example .. 75

4.6.2 Approximate Dynamic Programming Example.. 84

4.6.3 Further Analysis of the Approximate Dynamic Programming Example 87

4.7 ALTERNATE FORMULATIONS AND COMPLEXITY .. 89

4.8 CONCLUSIONS ... 91

 CONFLICT RESOLUTION ALGORITHMS AND COLLABORATIVE FAULT DETECTION 93 CHAPTER 5

5.1 CONFLICT RESOLUTION ALGORITHMS ... 94

5.2 BASIC THRESHOLD ADJUSTMENT APPROACH TO CONFLICT RESOLUTION ... 96

vii

5.3 PROBLEM FORMULATION .. 98

5.4 EXAMPLE FAULT DETECTION SCHEMES: A SPACECRAFT CASE STUDY ... 99

5.5 CONFLICT RESOLUTION ... 105

5.5.1 Threshold Optimization ... 106

5.5.2 Residual‐based Conflict Resolution .. 106

5.5.3 Conflict Resolution based on the Markov Decision Process ... 107

5.5.4 The Supervisor Alert ... 110

5.6 SIMULATION RESULTS ... 111

5.6.1 Residual‐based Conflict Resolution .. 111

5.6.2 MDP Based Conflict Resolution Method .. 113

5.7 POSSIBLE EXTENSIONS IN PROPOSED METHODS ... 114

5.8 COLLABORATIVE FAULT DETECTION ... 115

5.9 MAIN FRAMEWORK .. 118

5.9.1 States ... 120

5.9.2 Actions ... 120

5.9.3 Reward Function .. 121

5.9.4 Transition Probabilities .. 122

5.9.5 Solving the MDP: Value Iteration .. 124

5.10 ADP DECOMPOSITION APPROACH ... 124

5.10.1 MDP 1: Logic Based Fault Detection ... 125

5.10.2 MDP 2: Conflict Resolution ... 126

5.10.3 MDP 3: Information Gathering/Diagnostics ... 127

5.10.4 Integration .. 127

5.11 ADP RECOMBINATION ALGORITHM .. 128

5.12 IMPLEMENTATION EXAMPLE .. 129

5.13 SIMULATION RESULTS .. 135

5.13.1 Simulation Setup 1 .. 135

viii

5.13.2 Simulation Results for Setup 1 .. 138

5.13.3 Simulation Setup 2 .. 139

5.13.4 Simulation Results for Setup 2 .. 140

5.14 FURTHER ANALYSIS OF THE ADP‐BASED POLICY .. 143

5.15 CONCLUSIONS AND FUTURE WORK ... 144

 MISSION‐BASED FAULT RECONFIGURATION FRAMEWORK ... 146 CHAPTER 6

6.1 MOTIVATION .. 146

6.2 PROBLEM FORMULATION AND SOLUTION APPROACH .. 149

6.2.1 Problem Statement .. 149

6.2.2 MDP Formulation .. 150

6.3 BASELINE SPACECRAFT CASE STUDY ... 155

6.4 SIMULATION RESULTS ... 161

6.4.1 Case 1: Emphasizing Mission Completion .. 162

6.4.2 Case 2: Emphasizing safety.. 163

6.5 COMPLEXITY ANALYSIS AND ADP .. 164

6.6 CONCLUSIONS AND FUTURE WORK ... 165

 FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER CASE STUDY ... 166 CHAPTER 7

7.1 FUSE MISSION REVIEW .. 167

7.2 RELIABILITY PREDICTION (THE PROBABILITIES OF FAILURES) .. 168

7.3 FUSE MODELING WITH CFT‐SOAP ... 170

7.3.1 The Planning MDPs .. 174

7.3.2 The Fault Detection MDPs ... 179

7.3.3 Control Reconfiguration MDP .. 185

7.3.4 CFT‐SOAP Execution ... 190

7.4 FUSE MODELING WITH ASPEN AND LIVINGSTONE .. 192

7.4.1 The ASPEN Model .. 194

ix

7.4.2 Livingstone Model ... 196

7.4.3 Execution of ASPEN‐Livingstone .. 197

7.5 SIMULATION RESULTS ... 199

7.5.1 Simulation with CFT‐SOAP ... 200

7.5.2 Simulation with ASPEN‐Livingstone ... 207

7.6 COMPARISON BETWEEN CFT‐SOAP AND ASPEN‐LIVINGSTONE APPROACHES .. 208

7.7 CONCLUDING REMARKS .. 211

 CONCLUSIONS AND FUTURE DIRECTIONS... 212 CHAPTER 8

8.1 CONCLUSIONS ... 213

8.1.1 Fault Tolerant Mission Planning .. 213

8.1.2 Computational Issues .. 214

8.1.3 Implementation Issues ... 214

8.2 FUTURE DIRECTIONS ... 215

8.2.1 ADP Algorithms: Reduction of Computational Complexity .. 215

8.2.2 Receding Horizon Implementation and Online Learning ... 216

8.2.3 Developing MDP Frameworks for more Complex Space Missions 216

8.2.4 Extending the Approach towards Non‐Aerospace Applications .. 217

REFERENCES .. 219

x

List	of	Figures	

FIGURE 1.1: MDP BASED MULTI‐AGENT APPROACH .. 7

FIGURE 2.1: THE ORIGINAL REMOTE AGENT ARCHITECTURE [68] .. 19

FIGURE 2.2: LIVINGSTONE ARCHITECTURE [68] .. 22

FIGURE 2.3: FAULT TOLERANT CONTROL ARCHITECTURE ... 23

FIGURE 2.4: BAYES NET EXAMPLE .. 31

FIGURE 2.5: VALUE ITERATION ALGORITHM ... 34

FIGURE 2.6: ORBITAL ELEMENTS [8] .. 36

FIGURE 3.1: MDP‐BASED INTEGRATED CFT‐SOAP IMPLEMENTATION. .. 40

FIGURE 3.2: MDP MODELING, UPLINK, AND EXECUTION FLOWCHART .. 51

FIGURE 3.3: REAL TIME CLOSED LOOP EXECUTION OF MDP .. 52

FIGURE 3.4: DETAILED DIAGRAM OF THE MDP EXECUTIVE ... 53

FIGURE 3.5: CONCEPT OF MDP DECOMPOSITION .. 54

FIGURE 4.1: SPACECRAFT AT VARIOUS POSITIONS IN ITS ORBIT COLLECTING DATA .. 63

FIGURE 4.2: STATE TRANSITION MAP ... 68

FIGURE 4.3: BACKWARD INDUCTION ALGORITHM [84] .. 70

FIGURE 4.4: CUMULATIVE DISTRIBUTION OF THE DIFFERENCE IN THE RISK TAKEN BY AGGRESSIVE AND CONSERVATIVE

TRAJECTORIES ... 79

FIGURE 4.5: CUMULATIVE DISTRIBUTION OF THE DIFFERENCE IS THE RISK TAKEN BY FAR SIGHTED AND SHORT SIGHTED

TRAJECTORIES OVER 250 SIMULATIONS. .. 81

FIGURE 4.6: CUMULATIVE DISTRIBUTION OF THE DIFFERENCE IS THE RISK TAKEN BY PERIODIC AND APERIODIC TRAJECTORIES OVER

250 SIMULATIONS. ... 83

xi

FIGURE 4.7: CUMULATIVE DISTRIBUTION OF THE PERCENTAGE DIFFERENCE IN EXPECTED VALUES OBTAINED BY TRAJECTORIES OF

P* AND PEST .. 87

FIGURE 5.1: 1 DOF SATELLITE SCHEMATIC .. 99

FIGURE 5.2: EXAMPLE MD AND FA PROBABILITIES VERSUS THRESHOLD FOR IMM ... 101

FIGURE 5.3: PERFORMANCE PROBABILITIES VS. THRESHOLD FOR THE KNOWLEDGE‐BASED DETECTION SCHEME 104

FIGURE 5.4: COST AS A FUNCTION OF THRESHOLDS ... 112

FIGURE 5.5: SIGNAL FLOW DIAGRAM. .. 119

FIGURE 5.6: SIGNAL FLOW WITH THE SPLIT MDP FRAMEWORK. .. 128

FIGURE 5.7: ADP RECOMBINATION ALGORITHM FOR MDP‐BASED FRAMEWORK. ... 129

FIGURE 5.8: SIMULATION EXAMPLE SYSTEM. ... 130

FIGURE 5.9: BAYES NET FOR THE SIMULATION EXAMPLE. .. 131

FIGURE 5.10: SETUP FOR MAIN AND ADP‐BASED MDPS. .. 136

FIGURE 5.11: EVOLUATION OF SYSTEM STATE S FOR SPLIT MDPS. .. 137

FIGURE 5.12: PERCENTAGE OF CONFLICTS RESOLVED BY MDPS IN SETUP 1 (WITH Q = 5)... 138

FIGURE 5.13: PERCENTAGE OF CONFLICTS RESOLVED BY MDPS IN SETUP 1 (WITH Q = 0.5). .. 139

FIGURE 5.14: DYNAMICS FOR THE REACTION WHEEL FAULT AT T = 1 SEC AND RECOVERY INITIATION AT T = 2 SEC................ 141

FIGURE 5.15: BEHAVIOR OF MDPS FOR FAULT AT T = 1 SEC AND RECOVERY AT T = 2 SEC CASE. 142

FIGURE 5.16: PERFORMANCE COMPARISON FOR MDPS IN ALL 4 CASES. ... 143

FIGURE 6.1: 1‐DOF REACTION WHEEL (RW) SYSTEM ... 156

FIGURE 6.2: BAYES NET FOR 1‐DOF REACTION WHEEL SYSTEM ... 158

FIGURE 7.1: THE PROCESS OF DECOMPOSITION USING THE CFT‐SOAP FRAMEWORK ... 173

FIGURE 7.2: MDP DECOMPOSITION MAP FOR THE FUSE CASE STUDY .. 174

FIGURE 7.3: ONLINE EXECUTION OF CFT‐SOAP FOR THE FUSE MISSION ... 192

FIGURE 7.4: ASPEN‐LIVINGSTONE EXECUTION FOR THE FUSE MISSION ... 198

xii

List	of	Tables	

TABLE 2‐1: COMPUTATIONAL COMPLEXITY OF METHODS FOR SOLVING BAYES NETS [89] ... 32

TABLE 4‐1: OPTIMAL TRAJECTORY FOR EXAMPLE 1. .. 77

TABLE 4‐2: OPTIMAL TRAJECTORY WITH HIGH RISK ... 78

TABLE 4‐3: RISK COMPARISON (J = RISKAGG ‐ RISKCONS) .. 79

TABLE 4‐4: OPTIMAL TRAJECTORY FOR Γ = 0.99 ... 80

TABLE 4‐5: OPTIMAL TRAJECTORY FOR Γ = 0.8 ... 80

TABLE 4‐6: RISK COMPARISON (J = RISKSS – RISKFS) .. 81

TABLE 4‐7: OPTIMAL TRAJECTORY FOR Γ = 0.99 ... 82

TABLE 4‐8: OPTIMAL TRAJECTORY FOR Γ = 0.8 ... 83

TABLE 4‐9: RISK COMPARISON (J = RISKPERIODIC – RISKAPERIODIC) .. 84

TABLE 4‐10: COMPARISON OF P* AND PEST ... 86

TABLE 4‐11: PERFORMANCE RESULTS FOR THE ADP‐BASED MDP ... 88

TABLE 5‐1: SIMULATION RESULTS FOR RESIDUAL‐BASED CONFLICT RESOLUTION .. 112

TABLE 5‐2: SIMULATION RESULTS FOR MDP‐BASED CONFLICT RESOLUTION WITH 2 ACTIONS PER CONFLICT 113

TABLE 5‐3: SIMULATION RESULTS FOR MDP‐BASED CONFLICT RESOLUTION WITH 5 ACTIONS PER CONFLICT 114

TABLE 5‐4: CONDITIONAL PROBABILITIES (V1 = 0.5, V2 = 0.5) .. 131

TABLE 5‐5: PERFORMANCE RESULTS FOR THE ADP‐BASED MDP POLICY ... 144

TABLE 6‐1: CONDITIONAL PROBABILITIES FOR THE BAYES NET ... 158

TABLE 6‐2: STATE TRAJECTORY EMPHASIZING MISSION COMPLETION. ... 162

TABLE 6‐3: STATE TRAJECTORY WITH SAFETY EMPHASIZING POLICY .. 163

TABLE 7‐1: TRUE ANOMALY CHANGES AND DATA COLLECTION WINDOWS .. 177

TABLE 7‐2: FALSE ALARM AND MISSED DETECTION PROBABILITIES FOR THE LOGIC‐BASED FAULT DETECTION 182

xiii

TABLE 7‐3: THRESHOLD VARIABLES AND THEIR RELEVANT FAULT SCENARIOS .. 183

TABLE 7‐4: CALCULATION OF G(F, O, C) FUNCTION .. 189

TABLE 7‐5: ASPEN MODEL.. 194

TABLE 7‐6: STATUS OF THE FUSE GYROSCOPES AND REACTION WHEELS AS OF 2006 .. 199

TABLE 7‐7: MDP COMPUTATION TIMES ... 200

TABLE 7‐8: SIMULATION CASE STUDY FOR CFT‐SOAP WITH FUSE .. 202

TABLE 7‐9: INDEX OF THE MDPS WITH RESPECT TO THE SELECTED FAILURE PROBABILITIES .. 206

TABLE 7‐10: ROBUSTNESS ANALYSIS RESULTS .. 207

TABLE 7‐11: ASPEN PLAN FOR FUSE CASE STUDY ... 207

TABLE 7‐12: COMPARISON OF MODEL‐EXPRESSIVENESS BETWEEN CFT‐SOAP AND ASPEN‐LIVINGSTONE MODELING METHODS

 ... 209

TABLE 7‐13: COMPARISON OF COMPUTATIONAL COMPLEXITY .. 210

1

 	Chapter	1

Introduction	

1.1 Motivation	

There was a time when astronomers could only study space objects from Earth’s surface,

a time when communication between two people living on opposite sides of the Earth

could take months or even years. Spacecraft now enable us to watch videos from Mars

rovers and to almost instantly communicate worldwide. While space missions have vastly

improved our exploration and communication capabilities, they have also introduced a

need to manage new challenges that arise due to the harsh nature of the space

environment. Hazards in the space environment include solar and galactic radiation

[101][9][98][5], space debris and meteoroids [9], extreme temperature changes [101], and

differential charging [83][42]. These hazards can damage spacecraft components or even

subsystems causing failures and inability to complete the mission or interruptions in

mission operation.

 There are numerous examples where space missions suffered from failures due to the

harsh space environment [9]. In 1994, Telsat, Canada’s Anik E-1 communications

satellite, suddenly began to spin out of control. Two hours later its sister satellite, Anik E-

2, also without warning, began to spin out of control [54][9]. Telsat engineers quickly

determined that the gyroscopic guidance system on both satellites had failed causing an

interruption of cable TV, telephone, newswire, and data transfer services throughout

2

Canada. By activating a backup guidance system, engineers restored Anik E-1 to service

in about eight hours. Anik E-2’s backup system, however, failed to activate, leaving

Telsat with the unpleasant prospect of losing a $228 million asset and revenues of an

estimated $3 billion [9][1]. Telsat engineers restored Anik E-2 to service in August 1994

[50]. The Earth sensors were still operating normally [18], and the onboard attitude

control computers were also fully operational, but not reprogrammable. Therefore,

special Earth observation stations were constructed at each end of Canada to monitor the

satellite's position, using its functional control jets to finely position the satellite.

 The Far Ultraviolet Spectroscopic Explorer (FUSE) mission [65] suffered multiple

reaction wheel and gyro failures [56][11][91]. Each time a new reaction wheel or set of

gyroscopes was lost, a new control scheme was manually developed by engineers on the

ground and uploaded to the spacecraft. Each new failure caused interruption in mission

operation and loss of valuable mission time. In the end, FUSE kept operating with only

one reaction wheel and magnetic torque bars [91]. Tracking and Data Relay Satellite

(TDRS)-1 had 37 reported single event upsets during the major part of its solar activities

[9][103]. The most serious incidents for the TDRS spacecraft were those related to the

attitude control system processor electronics. Rapid manual intervention was required to

prevent loss of control of the satellites. Several studies concluded that these anomalies

were due to surface charging [41].

 Due to the high cost associated with space missions, successful completion of mission

goals and uninterrupted operation are highly desirable. One way to deal with most

anomalous situations arising during the mission is to provide the spacecraft with a

comprehensive plan for mission completion that includes post-failure recovery strategies.

3

This approach can increase the likelihood of uninterrupted mission operation through

high-speed onboard reconfiguration as compared to the traditional approach of activating

safe mode and waiting for the ground station to upload a new response for a faulty

situation. Another advantage of a software-based reconfiguration approach is reduced

cost compared to methods that involve carrying thus launching redundant hardware.

Onboard planning for space missions has been achieved in the past

[68][107][22][66][67][85]. There are also missions where some tolerance for faults has

been incorporated [68][95]. Scientists have developed algorithms for onboard planning

using Iterative Refinement Search [22][85] and similar methods based on constraint

satisfaction [66][67][95] to build plans that can automatically adapt activity schedules to

changes in mission goals or sensor measurements. While these methods are fast and

reactive (i.e., suitable for implementing online), the resulting plans may not be optimal

with respect to scientific data that is collected in the presence of uncertainties.

 To deal with planning with autonomous fault management, additional capabilities of

fault detection and reconfiguration are required. The combination of fault detection and

reconfiguration provides fault tolerance. Researchers from the control systems and

artificial intelligence communities have developed methods for achieving fault tolerance

[111][104][68]. The fault tolerance methods developed by control system engineers are

based on dynamics models [111], whereas the methods developed by engineers in the

artificial intelligence community are based on compositional models [68]. Since a

spacecraft is a system that has dynamics and compositional behaviors, comprehensive

fault tolerance requires models of both. To the best of our knowledge, there is no

planning framework for spacecraft to-date that implements comprehensive fault

4

tolerance. This fact motivated us to develop such a capability. Although the models

formulated in this thesis are focused on optimal attitude maneuvers, our methods can be

generalized.

 This thesis introduces the Comprehensive Fault Tolerant Science-Optimal Attitude

Planning (CFT-SOAP) framework. To implement this framework, we have used the

theory of Markov Decision Processes (MDPs) also known as Stochastic Dynamic

Programming (SDP) [15][84][58]. Both the MDP and SDP refer to a mathematical

framework that relies on algorithms such as value iteration and policy iteration [89][58]

for the purpose of generating optimal decisions under uncertainty for systems that exhibit

the Markov property [84]. CFT-SOAP does not implement dynamics-based fault

detection. Instead it connects with an external dynamics-based fault detector enabling

CFT-SOAP to generate optimal mission plans with comprehensive fault tolerance.

1.2 Major	Challenges			

One of the most important challenges in developing CFT-SOAP is the integration of

compositional-model fault tolerance with dynamics-model fault tolerance. Reasoning

with compositional models is accomplished via a discrete-time finite state space

governed by logical inference. Reasoning with dynamics models requires a continuous-

time state space governed by differential equations. Rather than combining compositional

and dynamics models we achieve comprehensive fault tolerance through information

sharing. In this way, we keep the dynamics and compositional models in their original

form. Also, we can use the well-developed reasoning methods based on dynamics and

logic augmented by shared information. CFT-SOAP therefore must compute optimal

mission-related actions under given fault and configuration information, draw

5

conclusions about the faults, resolve conflicts between the dynamics-based and logic-

based fault decisions, and make optimal reconfiguration decisions.

 Since CFT-SOAP is a comprehensive framework, it inherits the complexities of both

compositional and dynamics models. For example, an attitude maneuvering plan must be

optimal with respect to fuel/energy consumption and reward obtained from scientific data

collected. Fault tolerance for attitude maneuvering requires knowledge of probabilities of

false alarms and missed detections based on both logic and observer (dynamics) fault

detection models. This integration requires numerous design parameters in the MDP

which in turn introduces a high level of model complexity. Additionally, all models

handled by an MDP are applicable only when obeying the Markov property. Per the

Markov property, future state probabilities must depend only on the present state and any

choice(s) made for the present state. System states therefore must be defined such that

transitions to any future are determined from the present state and are independent of all

past states.

 Complex models are difficult to manage due to the curse of dimensionality associated

with MDPs [80][79]. Although computing technology continues to advance, space-grade

processors lag state-of-the-art. Therefore, models and algorithms must be developed to fit

computations into the available resources if the MDP policies are to be computed online.

In this thesis, we manage complexity by decomposition of the CFT-SOAP MDP into

three separate MDPs for planning, fault detection, and reconfiguration thereby reducing

the computational effort required to generate the policies and the memory space required

to store them. We also present approximate dynamic programming (ADP) approaches for

managing the decomposed MDPs as will be described below. Regardless of the

6

decomposition and the ADP approaches, it might be more feasible (as we suggest in this

thesis) to compute a set of optimal policies offline and upload them to the spacecraft

when required.

1.3 Technical	Approach	

Our approach is to use a multi agent architecture where goal-based task planning, fault

detection, and reconfiguration are divided into separate MDP formulations that interact

and share information with each other. As shown in Figure 1.1, our approach integrates

four software agents [89]. Three of the agents on the left are based on MDPs whereas the

fourth agent is a non-MDP-based interface agent. The interface agent interprets

observations from the composition and dynamics-based control and configuration models

in the form of states for the three MDP-based agents. The states for each of the MDP-

based agents contain information from both the compositional and dynamics models. In

response to the states provided by the interface agent, the MDP-based agents transmit the

corresponding optimal policies. These policies are interpreted and distributed by the

interface agent as commands for the control architectures within the dynamics and

composition-based models. MDPs were selected because they support complex decision

making in the presence of uncertainties.

7

Figure 1.1: MDP based multi-agent approach

1.4 Original	Contributions	and	Innovations	

The contributions of this thesis are in formulations of MDPs and approximate dynamic

programming approaches for spacecraft planning, fault detection, and reconfiguration.

Innovations involve the application of techniques to share information between

compositional and dynamics models, and in decomposing the problem to reduce

complexity. Specific contributions and innovations are listed below.

1.4.1 Contributions	

The following are the original contributions of the work presented in this thesis:

 An integrated Comprehensive Fault Tolerant Science-optimal Attitude Planning

(CFT-SOAP) MDP has been formulated for spacecraft missions (Chapter 3). This

MDP can produce optimal policies for actions related to planning, fault detection,

and reconfiguration simultaneously. Computational complexity of the integrated

MDP has been analyzed for a spacecraft attitude maneuvering case study. CFT-

8

SOAP is the first planning framework with integrated comprehensive fault

tolerance.

 To reduce computational complexity, a decomposition strategy for the CFT-

SOAP MDP based on interdependencies of states (Chapter 3) has been developed.

As a result of the decomposition, the problem is split into manageable sub-

problems, several of which are static.

 An MDP-based framework for science-optimal attitude planning with

consideration of failure probability (Chapter 4) has been developed. Tradeoffs

between selections of various design parameters have been explored through

spacecraft maneuvering examples.

 An approximate dynamic programming (ADP) algorithm for science-optimal

attitude planning with consideration of failure probability has been developed

based on decomposition of science goals (Chapter 4). A case study for ADP

shows near-optimal performance.

 An MDP-based comprehensive fault detection and diagnostic framework has been

developed. The framework has the ability to integrate with external dynamics-

based fault detectors to enable use of general detection algorithms (Chapter 5)

including but not limited to MDPs.

 An approximate dynamic programming algorithm for comprehensive fault

detection has been developed based on a task based decomposition of states

(Chapter 5).

 A comprehensive MDP-based optimal fault reconfiguration framework has been

developed for a spacecraft attitude maneuvering system (Chapter 6).

9

 A detailed case study based on the failures that occurred in the Far Ultraviolet

Spectroscopic Explorer (FUSE) mission has been presented. In this case study, a

CFT-SOAP solution to automatically reconfigure in the presence of faults

relevant to FUSE is compared with an alternative planning framework known as

ASPEN [85] and a fault tolerance framework known as Livingstone [104].

1.4.2 Innovations	

The following are the innovations of this work that together enable comprehensive fault

tolerance and science-optimal planning.

 We have incorporated science rewards, dynamics-dependent maneuver costs, and

failure probability into a unified spacecraft mission planning algorithm. This

enables task-level planners to incorporate the effects of physics-based control

schemes.

 We have developed conflict resolution schemes for co-existing fault detectors.

These schemes improve fault detection quality over the one which is possible to

achieve with separate dynamics-based and compositional models due to the

ability to incorporate shared information.

 We have developed an integrated value function that incorporates terms related to

mission accomplishment with fault management value formulated in terms of

safety. This formulation is distinct from traditional fault-configuration mapping

where reconfiguration decisions only depend upon the nature and location of

faults. Our framework enables the spacecraft to respond to the failures in a way

that depends upon mission context as well as location and severity of faults. This

ability is especially useful for space missions with objectives to record or observe

10

events that occur infrequently. In such missions, if the spacecraft fails to collect

important data, the mission will fail.

 We have demonstrated the application of the CFT-SOAP on a case study of a real

space mission, i.e. FUSE, where MDP decompositions and additional variables in

the state space specific to the requirements of the FUSE mission have been

included. This provides insight into how the work presented in this dissertation

can be applied in practice.

1.5 Thesis	Outline	

The thesis is divided into seven chapters. In Chapter 2, we present pertinent background

and discuss related literature. Chapter 3 presents the integrated MDP-based framework

that forms the basis of CFT-SOAP. This framework encompasses planning, fault

detection, and reconfiguration, all in one MDP. The computational complexity of this

framework has been illustrated through a simple example, providing motivation for the

ADP formulations that reduce computational overhead via decomposition of the MDP

into multiple smaller MDPs. Chapter 4 presents our implementation of science optimal

attitude planning with consideration of failure probabilities using an MDP formulation.

Spacecraft case studies included in the chapter illustrate the tradeoffs in parameter

selection for the planning MDP associated with discounting the future rewards. Case

studies to show the comparison of the MDP-based trajectories under high-risk versus

low-risk environment are also described. The approximate dynamic programming

algorithm used to mitigate complexity is also described in Chapter 4 along with case

study to show the performance of the ADP. Chapter 5 presents conflict resolution

algorithms for fault detection and diagnosis. It also presents a collaborative fault

11

detection and diagnosis algorithm based on an MDP formulation. An approximate

dynamic programming algorithm approach is also used to mitigate complexity in the

Chapter 5 MDP formulation. Chapter 6 presents an MDP based comprehensive

reconfiguration framework. Chapter 7 includes FUSE case study and the comparison of

CFT-SOAP with an ASPEN-Livingstone framework. Chapter 8 presents conclusions and

future work.

12

 	Chapter	2

Background	

This chapter provides a review of technical literature relevant for this thesis. Section 2.1

presents an overview of planning and scheduling for space missions without considering

fault tolerance. Section 2.2 presents a review of constraint satisfaction problems

including techniques that are primary alternatives of our approach for solving fault

tolerant attitude planning problem. Section 2.3 presents some references and methods in

hybrid systems or switched control systems that are extensively used for fault tolerant

control. Section 2.4 describes existing frameworks for fault tolerant attitude planning. In

Section 2.5, spacecraft attitude kinematics and dynamics models are presented. A review

of the literature on spacecraft attitude estimation and control is presented in Sections 2.6

and 2.7 respectively. Section 2.8 presents a review of Bayes nets that is used in this thesis

to model interdependence of probabilities of failures for spacecraft components. A review

of Markov Decision Processes is presented in Section 2.9 and the Approximate Dynamic

Programming literature is discussed in Section 2.10. A brief introduction to some basic

Astrodynamics concepts useful in understanding the planning formulations of this thesis

is presented in Section 2.11.

13

2.1 Spacecraft	Mission	Planning	and	Scheduling	

There are five main ingredients of the classical artificial intelligence (AI) planning

problem. A finite set of discrete states, a set of state-dependent actions, the specification

of desirable or goal states, the specification of an initial state, and a search method to

determine an optimal sequence of actions (i.e. the solution) that leads from initial state(s)

to goal state(s). For a given size of the state and action spaces, the computational

complexity of finding the solution depends upon the search method used. All the

planning methods are centered on the method of search that they use to find a solution.

Typical real-time schedulers, on the other hand, see the world as a set of resources and a

set of resource-consuming tasks, requiring up to a known worst-case utilization of each

computational resource (e.g., processor or communication). Schedulers allocate resources

to tasks, assigning each a start time and resource set that guarantee all deadlines are

satisfied, making tradeoffs as needed to degrade best-effort tasks given resource

constraints [24][77]. One of the basic algorithms used for scheduling is earliest-deadline-

first scheduling [106][57] where tasks are placed in a priority queue and whenever a

scheduling event occurs (task finishes, new task released, etc.) the queue is searched for

the task closest to its deadline. Another basic algorithm for scheduling is rate-monotonic

(RM) scheduling [7][109] where priority is given to the tasks with shortest period.

 Autonomous spacecraft task planning and scheduling have been achieved for a limited

set of science missions [22][43][67]. Algorithms such as iterative repair [22] have been

selected due to their ability to adapt existing plans without prohibitive computational

overhead. Iterative repair supports continuous modification and updating of a current

working plan in light of changing operational context. Iterative repair adapts an existing

14

plan by using search-based algorithms such as backtracking [68]. This results in plan

improvement but optimality in general is not guaranteed by iterative repair due to the

local nature of search in iterative algorithms. Reference [22] discusses the use of iterative

repair techniques to support a continuous planning process as is appropriate for

autonomous spacecraft control. This allows the plan to incorporate execution feedback

such as early or late completion of activities and over- or under-utilization of resources.

Another reference on integrated planning and scheduling is [66] that presents a Heuristic

Scheduling Testbed System (HSTS). HSTS is a representation and problem solving

framework that provides an integrated view of planning and scheduling. HSTS

emphasizes the decomposition of a domain into state variables evolving over continuous

time. This allows the description and manipulation of resources more complex than are

modeled in classical task scheduling. The inclusion of time and resource capacity into the

description of causal justifications allows a fine-grain integration of planning and

scheduling and a better adaptation to problem and domain structure. HSTS puts special

emphasis on leaving in as much temporal flexibility as possible during the

planning/scheduling process to generate better plans/schedules with less computation

effort. Schedules developed in HSTS implicitly identify a set of legal system behaviors.

This is an important distinction with respect to classical approaches which, instead,

specify all aspects of a single, nominal system behavior. In [107], a multi-agent planning

system (MAPS), which is used to produce applicable action sequence under complex

constraints, is built for autonomous planning. The planning model is capable of

describing simultaneous activities with continuous time. The model can also handle

resource and temporal constraints. The architecture of MAPS includes planning agents

15

(PAs) and a planning manager agent (PMA). Each subsystem in the spacecraft can be

considered an agent, with the agents combined to complete the given goals. PMA

manages the mission planning system and functions as a communication medium

between PAs. All PAs must register with PMA before they can have any interactions

with the others in the system.

2.2 Constraint	Satisfaction	Problems	

Constraint Satisfaction Problems (CSPs) represent a class of AI planning problems where

states belong to specific domains of values and there are constraints over allowable

combinations of values for subsets of state variables. CSPs can be solved with algorithms

that take advantage of the specific state-space formulation. A constraint satisfaction

problem (CSP) requires a value, selected from a given finite domain, to be assigned to

each variable in the problem, so that all constraints relating the variables are satisfied. A

sequence of actions is then selected that allow the plan to satisfy goals and which allow

constraints, numerical and symbolic, to be satisfied. Many combinatorial problems in

operational research, such as scheduling and timetabling, can be formulated as CSPs. In

[45], the authors explore the number of tree search operations required to solve binary

constraint satisfaction problems. They show analytically and experimentally that the two

principles of first trying the places most likely to fail and remembering what has been

done to avoid repeating the same mistake twice improve backtracking search

performance. In [34], Dechter identifies classes of problems that lend themselves to easy

solutions, and develops algorithms that solve these problems optimally. Other useful

references on CSPs by the same author include [33][35]. Brailsford et al. describe CSPs

and solution techniques in [17], and also show how various combinatorial optimization

16

problems are solved using a constraint satisfaction approach. Constraint satisfaction

approaches are compared with well-known operational research (OR) techniques such as

integer programming, branch and bound, and simulated annealing. The constraint

Processing (CP) approach in [17] is unlikely to be competitive with the best local search

methods, such as simulated annealing, tabu search and genetic algorithms, if it is used in

a pure form, since large regions of the solution space are often unexplored. However, if

ideas from local search are incorporated, such as randomization and restart procedures,

then CP becomes a serious competitor to local search for obtaining approximate

solutions.

2.3 Hybrid	Systems	

The hybrid systems of interest to this work contain two distinct types of components,

subsystems with continuous dynamics and subsystems with discrete dynamics that

interact with each other. Note that CFT-SOAP has fault-tolerant control as part of the

architecture which qualifies as a hybrid system in some sense although we did not use the

theory of hybrid systems, strictly speaking, for developing CFT-SOAP. Hybrid systems

arise in varied contexts for applications in manufacturing, communication networks,

autopilot design, automotive engine control, computer synchronization, and chemical

processes, among others. Hybrid systems have a central role in embedded control systems

that interact with the physical world. They also arise from the hierarchical organization of

complex systems and from the interaction of discrete planning algorithms and continuous

control algorithms in autonomous, intelligent systems. A survey on modeling and control

of hybrid systems is presented in [60]. This survey highlights certain characteristics of

hybrid systems. A simple three fluid-filled tank system is used to illustrate some

17

modeling approaches. Variations to this example are used to further explore hybrid model

characteristics. An expository discussion is also presented in [60] on analysis and control

techniques for hybrid systems. Work on model-predictive control of discrete-time hybrid

systems is presented in [78]. The algorithm abstracts the behavior of the hybrid system by

building a ‘‘tree of evolution.’’ The nodes of the tree represent the reachable states of a

process, and the branches connect two nodes if a transition exists between the

corresponding states. A cost-function value is associated with each node, and based on

this value the exploration of the tree is driven. Other references on hybrid systems

include [3][6]. In [6], a brief introduction to the theory and applications of hybrid systems

is presented and an outline of the papers in the associated special issue is given. In [3],

output feedback control of a class of stochastic hybrid systems is discussed.

2.4 Architectures	for	Fault	Tolerance	and	Mission	Planning	

Researchers in the artificial intelligence (AI) community have proposed a variety of

architectures for planning/scheduling and plan execution [68][115][107][89]. Most

represent state as a list of symbolic (discrete) feature/value pairs, enabling search-based

algorithms to decompose, select, and sequence activities appropriate for the designated

task-level goal and the observed system state. For spacecraft for which operations

involve nontrivial uncertainty, reasoning is typically based on Bayesian and/or Markov

Decision Process (MDP) models [15]. The MDP builds optimal policies that allow an

agent to act with incomplete or uncertain information about itself or its environment.

Note that MDP solves slightly more general form of the AI planning problem where state

transitions involve uncertainties and possess Markov property. Although common in the

literature, few AI systems have successfully been deployed in space systems due to their

18

computationally-intensive deliberative and often difficult-to-validate nature. Rather than

extensively trade the nontrivial set of AI architectures, we primarily reference Remote

Agent [68][46][76] due to its emphasis on fault detection and reconfiguration and its

focus on space applications. Below, we describe this architecture in more detail since,

although 15 years old, it represents one of the most successful multi-layer AI

architectures implemented and deployed on a spacecraft. Following our description of

Remote Agent as a representative AI architecture focusing on fault management, we

describe fault-tolerant control [74][111][13]. Fault-tolerant control represents more

traditional guidance, navigation, and control (GNC) models in which physical

continuous-valued state and control input vectors are related through physics-based

models to describe the motion of a system through its environment. As described below,

fault tolerance is then achieved through a mode-based supervisor and control law

adaptation.

2.4.1 The	Remote	Agent	

 Researchers from the Jet Propulsion Laboratory (JPL) and NASA Ames developed the

Remote Agent AI architecture to enable autonomous onboard mission management

[68][46]. Remote Agent was tested on the Deep Space One (DS-1) spacecraft and

consisted of five main components including: 1) Planning Experts (PE), 2) Mission

Manager (MM), 3) Planner and Scheduler (PS), 4) Smart Executive (EXEC), and 5)

Mode Identification and Reconfiguration (MIR). Planning Experts (PE) are on-board

software modules that assist a task planner/scheduler either by computing solutions or by

requesting new goals. For example, a navigation PE might request updates to main

19

engine thrust goals based on its determination of the spacecraft orbit, and the attitude PE

might provide estimated duration of specified turns and resulting resource consumption.

Figure 2.1: The original Remote Agent architecture [68]
 The Mission Manager (MM) initiates planning/scheduling activities based on the long-

term mission profile and execution status updates. The [smart] executive (EXEC)

provides spacecraft status data and requests plans from the mission manager. The

mission profile is provided at launch and can be updated from the ground. MM

determines the goals to achieve during the next mission phase, and combines them with

current spacecraft status. By adding constraints to the plan request, MM restricts PS to

generate only plans that are coherent with the overall mission. This decomposition of

planning into long-term mission planning and short-term task planning enables RA to

undertake an extended mission with minimal human intervention. Such multi-resolution

planning architectures have previously been used for applications such as telescope

science scheduling.

 The planner/scheduler performs Iterative Refinement Search (IRS) [67] and

chronological backtracking to define a task set that extends the existing partial plan. A

20

plan database input to the Heuristic Scheduling Testbed System (HSTS) [115] described

above records the consequences of each problem-solving step and performs consistency

maintenance and propagation. Domain constraints are specified in the Domain

Description Language (DDL) [32] within HSTS. Throughout, system state is described as

a finite set of symbolic state variables with tokens used to describe both action and state

literals. PS uses classical search-based planning and scheduling and is efficiently

implemented with persistent parallel threads. PS is able to handle non-classical goal

types such as periodic goals, accumulation goals, and default goals.

 EXEC is a robust event-driven and multi-threaded plan execution system. It provides a

framework in which specific mission goals and spacecraft state can be used to customize

control, diagnosis, and reconfiguration capabilities autonomously. It can request and

execute plans involving concurrent and interdependent activities potentially with

uncertain timing and outcomes. EXEC decomposes planned tasks into primitive

commands executed closed loop (i.e., as a function of state). This enables the planner to

reason at a higher level of abstraction. EXEC’s design also supports close integration

between activity decomposition and fault response. EXEC is built on the Execution

Support Language (ESL) [43] providing parallel execution, synchronization, error

handling, and property locks [32]. EXEC loads and executes each plan while monitoring

task execution and spacecraft status through Mode Identification (MI). When a plan is

completed successfully, EXEC provides current status to MM and asks for a new plan. If

task execution fails, EXEC puts the spacecraft into safe mode but autonomously asks

MM rather than a ground operator for an alternate plan (unless MM can no longer resolve

the problem in which case ground operators must be involved). EXEC achieves

21

robustness by exploiting flexibility to create and modify plans based on goals and

observations and by handling execution failures using deductive plan repair (Mode

Reconfiguration (MR)).

 Livingstone [104] provided the Mode Identification and Reconfiguration (MIR)

functionality of Remote Agent. Livingstone is a discrete model-based controller inserted

between high-level feed-forward reasoning and low level feedback control layers in a

physical system. MIR proposes activities to migrate a system (spacecraft) to a

configuration that achieves a configuration goal. It has a sensing component, Mode

Identification (MI), and a commanding component, Mode Reconfiguration (MR). Its

model is declarative, compositional, and stochastic with concurrency support. Mode

Identification tracks changes in spacecraft status using input from EXEC as well as a

spacecraft system model. It predicts state values and compares them with monitored

values. In case of discrepancy, it predicts the malfunction or fault most likely to explain

the discrepancy. Mode Reconfiguration (MR) assists EXEC in generating recovery

procedures. On the occurrence of a fault, EXEC invokes MR with current fault

information from MI. EXEC also provides MR with global constraints and goals. MR

performs deduction and search in a reactive loop using fast propositional reasoning

through unit propagation along with conflict directed best-first search. Figure 2.2 shows

the architecture of Livingstone.

22

Figure 2.2: Livingstone architecture [68]

2.4.2 Fault	Tolerant	Control	Systems	

 While the MIR capability of RA can identify and respond to faults via discrete event

state (mode) models, MIR does not itself regulate continuous force/torque commands,

nor does it adapt to properties of physics-based models except by switching between pre-

specified modes. The control systems community has studied fault management

primarily in the context of adapting physical models and control commands. A class of

architectures known as Fault Tolerant Control System (FTCS) has emerged. A typical

FTCS has three layers [114][74][13]. The lowest layer is a reconfigurable feedback

control law with state estimator. The middle layer is a fault detection and diagnosis

(FDD) [111] scheme. At the top level is a supervisor that manages reconfiguration of the

FDD and control layers. Figure 2.3 shows an example fault tolerant control system

architecture. In this figure, x is the state vector for dynamic system, u is the control input

vector, y is the output vector, F is the vector of fault flags, and M is a scalar indicating

configuration mode of the reconfigurable controller.

23

Figure 2.3: Fault tolerant control architecture

 FTCS have adopted numerous control law formulations. In this manuscript we focus

on a scheme applicable to spacecraft attitude control. Two types of fault tolerant

controllers exist: passive strategies (robust control) [74] and active strategies (controllers

for which reconfiguration is based on projection or on-line controller adaptation).

Passive fault-tolerant control for a spacecraft uses a robust controller, providing a

baseline upon which an active fault tolerant scheme could be implemented. Since the

robustness of a controller has an effect on fault detection efficiency, a tradeoff between

the two must be established. An active control approach can be implemented using

projection (i.e. controller selection from predesigned alternatives) or adaptive feedback

control approaches (i.e. online controller redesign) [13]. The main purpose of this FTCS

layer is to adapt to anomalous situations and either to restore nominal performance, if

possible, or to gracefully degrade [113].

 Fault Detection and Diagnosis (FDD) predicts faults (F) from residual signals [21] that

indicate the deviation of actual behavior (x) of the dynamics from the nominal behavior

(f(x, u)) based on sensor measurements (y) and fault effect models. When the system is

24

fault-free, all residuals should be driven to zero by the controller. An FDD scheme could

be based on state or parameter estimation or a mixture of both. FDD can be classified into

two groups: model-based approaches and data-based approaches. A fault detection and

diagnosis scheme should be robust, especially when model-based [112]. With sound but

imperfect FDD models or incoming data, missed detections or a false alarm can occur.

The decision-making in FDD can be made robust using methods such as statistical data

processing, averaging, fuzzy decision-making, and adaptive thresholds [112][48].

Another issue is to distinguish between disturbances (unwanted forces/torques exerted by

the environment), noise (distortion in sensor output signal), and faults (malfunctioning of

sensors or actuators). Disturbance decoupling methods can also be applied. For a

complex system such as a spacecraft, decoupling of residuals from a set of integrated

disturbances sometimes makes the residual completely or partially insensitive to some

faults. From the point of view of a spacecraft, an FDD scheme should be able to detect

multiple simultaneous faults, both abrupt and incipient.

 Supervision is the top FTCS layer and is responsible for reconfiguration decisions (M)

based on information from FDD and its own reasoning algorithms. Supervision schemes

have been developed to manage diagnostic information and on-line controller

restructuring. Supervision modules have been implemented with methods [13][74]

including Failure Mode Effect Analysis (FMEA) [13], Intelligent Computing, Fuzzy

Logic, Neuro-Computing, Genetic algorithms, and Probabilistic reasoning. FMEA

models the effect of faults on observable system parameters by providing data on how

each fault impacts these parameters. The supervisor can be implemented using extended

25

state machine or parallel state machine logic with transition probabilities based on

knowledge of the system.

2.4.3 			Representational	Gaps	

Remote Agent models a spacecraft as a concurrent transition system with multiple

components and operating modes, while FTCS models the spacecraft as a rigid or flexible

body with associated kinematics and dynamics. Both rely on sensor data fused into state

estimates and translated to control output, where “control” is defined for Remote Agent

as general action primitives and for a FTCS as a vector of physical servo/motor

commands. RA reasons about spacecraft components and their interactions but typically

does not manipulate physical dynamics/kinematics parameters. On the other hand, FTCS

can reason on the basis of equations of motion but is unable to reason about component

interactions and task-level algorithm or software implementation properties. These

differences define representational gaps in both architectures. One might be tempted to

bridge these gaps by extending the capabilities of either RA or FTCS. Incorporating

dynamics and kinematics reasoning in symbolic models is possible but difficult due to the

tradeoff in [discrete model] resolution versus search-space tractability. On the other hand,

incorporating qualitative component and interconnection details in FTCS not only

requires a state-based supervision architecture that can reason about system-wide

interactions but also the ability to reconfigure (re-plan) based on component failures and

events associated with components such as communication channels, processing

elements, the payload, etc. This thesis therefore proposes the use of both classes of fault

management algorithms with an appropriate set of interfaces to facilitate conflict

resolution.	

26

2.5 	Spacecraft	Modeling:	Kinematics	and	Dynamics	

There are multiple ways of representing spacecraft attitude kinematics [93]. Equations

(2.3.1a), (2.3.1b), and (2.3.1c) represent alternate ways to model the kinematics of the

spacecraft as a rigid body.

  

 qq

qqq

T



2

1
2

1

4

4





 (2.3.1a)

 R

0

0

0

R

12

13

23





























 (2.3.1b)

1 2 1 2 1 2 1

2 1 2 2 1 2

3 1 1 3

cos sin sin cos sin

0 cos cos cos sin .

0 sin cos

      
     
   

     
           
         






 (2.3.1c)

 In (2.3.1a), q is a 3 × 1 vector of the first three elements of spacecraft attitude quaternion

with respect to an inertial reference frame; q4 is a scalar representing the fourth element

of the quaternion. Ω is a 3 × 1 vector of spacecraft angular velocities in a body-fixed

frame. In (2.3.1b), R is the 3 × 3 rotation matrix for the spacecraft whereas ω1, ω2, and ω3

represent components of Ω. In (2.3.1c),  1 2 3

T   represent angular velocities in the

body-fixed frame and  1 2 3

T   represent Euler angles roll, pitch, and yaw,

respectively, with respect to the inertial frame. There are other ways to represent the

attitude, e.g. Euler-Rodriguez parameters [93] [51], but other forms are not used in this

thesis. The quaternion representation is common for spacecraft as it has no singularities

and requires only four continuous-valued quantities in its representation. Euler angles do

27

have singularities, while rotation matrices have no singularities but must be represented

with nine values.

 The attitude dynamics of a rigid spacecraft can be represented as

 

 

 

1 2 3 2 3 1
1

2 3 1 1 3 2
2

3 1 2 2 1 3
3

1
,

1
,

1
.

J J u
J

J J u
J

J J u
J

  

 

  

    

    

    







 (2.3.1d)

In (2.3.1d), (J1, J2, J3) are diagonal components of 3 × 3 inertia matrix in a body-fixed

frame (we assume the inertia matrix to be diagonal) and (u1, u2, u3) represent control

inputs. There are a number of ways to control spacecraft attitude [102] even with two

control inputs instead of three [55]. In [55] a discontinuous feedback control strategy has

been constructed which stabilizes the spacecraft to any equilibrium attitude in finite time.

The results of the paper show that although standard nonlinear control techniques do not

apply, it is possible to construct a stabilizing control law by performing a sequence of

maneuvers. Also, for attitude determination, a number of ways have been developed to

estimate the attitude from the sensor readings which may or may not provide accurate

measurements, e.g. [61] where Kalman filtering has been used to estimate the attitude

with gyroscopes that have both drift and bias errors.

2.6 Spacecraft	Attitude	Estimation	

Robust spacecraft attitude estimation is required for most missions and requires fault

tolerance. Most dynamics-based fault detectors are based on output estimation. One of

the most useful resources in the literature of spacecraft attitude estimation is a survey

28

paper by Lefferts et al [61]. This work presents a summary of experience in the Kalman

filtering of spacecraft attitude and offers two possible implementations of the Kalman

filter for systems with attitude sensors and gyros with noise terms describable by a first-

order Markov process. The difference in the two schemes is only in the choice of frame

for the update, for example using the complete four-component quaternion versus using

the truncated quaternion where one component has been eliminated. Crassidis and

Markley [25] present a minimum model error approach for attitude estimation. The

approach is developed for three-axis stabilized spacecraft. Based on the implementation

example included in [25], their algorithm is shown to be robust and accurate, able to

estimate attitude with or without gyro measurements. The functional form of the optimal

estimation approach involves a gradient search and a linearization technique with a linear

Riccati transformation. This algorithm is shown to be computationally efficient and

accurate for generating state estimates based on an implementation example. Results

using this algorithm indicate that an MME-based approach accurately estimates the

attitude of an actual spacecraft with the use of only magnetometer sensor measurements.

Crassidis and Markley have also published their work on an unscented Kalman filter for

spacecraft attitude estimation [27] and attitude estimation using modified Rodriguez

parameters [26]. Both these authors along with Cheng have published a survey on

modern attitude estimation methods [28]. This survey presents a quaternion estimation

filter (QUEST), extended QUEST and the backwards-smoothing extended Kalman filter.

Filters that propagate and update a discrete set of sigma points rather than using

linearized equations for the mean and covariance are also reviewed. A two-step approach

is discussed with a first-step state that linearizes the measurement model and an iterative

29

second step to recover the desired attitude states. These approaches are all based on the

Gaussian assumption that the probability density function is adequately specified by its

mean and covariance. Other approaches that do not require this assumption are also

reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-

parameter probability density function on SO(3). Finally, the predictive filter, nonlinear

observers and adaptive approaches are shown.

2.7 Spacecraft	Attitude	Control	

Attitude control is fundamental for ensuring spacecraft stability thus requires fault

tolerance. Multiple attitude control schemes are often required for implementing full

reconfigurable control. A careful presentation of spacecraft attitude control methods is

given by Bong Wie [102]. This book treats the basics of dynamic systems modeling and

control. The attitude control and stabilization problems of rigid spacecraft under the

influence of reaction jet firings, internal energy dissipation, or momentum transfer via

reaction wheels or control moment gyros (CMGs) are discussed in this book. These

techniques can provide a good support for our proposed framework especially when

different types of redundant actuators are used in the spacecraft for fault tolerance. A

variety of control problems of spinning as well as three-axis stabilized spacecraft are also

treated in [102]. Emphasis is placed on large-angle reorientation maneuvers in which a

spacecraft is required to maneuver about an inertially fixed axis as fast as possible, but

within the saturation limits of rate gyros and reaction wheels. Such maneuvers are

fundamental for science data collection missions where targets of interest can only be

observed by slewing the spacecraft through a sequence of large-magnitude motions. The

attitude control and momentum management problem of a large space vehicle in low

30

Earth orbit such as the International Space Station is also treated in the book. Advanced

spacecraft control problems of developing CMG steering logic and optimal jet selection

logic are also treated.

 There has also been some interesting work done on magnetic control of spacecraft

attitude in [29][62][82][94][110]. For example, in [29], a formulation for reconfiguring

the control based on magnetic dipole moment modulation for the attitude control of

Earth-pointing satellite is presented. Spacecraft control with two torques has also been

extensively studied e.g. in [55]. Spacecraft control with two-torques is very useful for

implementing fault tolerance.

2.8 Spacecraft	Modeling	with	Bayes	Networks	

The Bayes network [89] is a way of representing dependence relations between random

variables and is used for efficient computation of joint and conditional probabilities. We

use Bayes nets for modeling the internal composition of a spacecraft by realizing that

failure of any component is a random event and failures of components within the

spacecraft depend upon each other in a way that can be determined from the

interconnection and interaction of components with one another. Hence, a Bayes net can

be constructed to succinctly represent conditional probability tables (CPTs). This thesis

studies the use of Bayes nets to intuitively represent CPTs associated with spacecraft

fault diagnosis. For example, consider a one degree of freedom (1DOF) reaction wheel

system where a battery supplies power to two electronics boards (one of which is

redundant for fault tolerance) that can drive the reaction wheel. A simple Bayes net

model for failure probabilities of this system is shown in Figure 2.4.

31

Figure 2.4: Bayes net example
From above figure, notice that the failure of the battery (Batt) affects the failure of the

electronics boards (EB1 and EB2), and the failure of the boards affects the failure of the

reaction wheel (RW). Furthermore, failure of the reaction wheel is conditionally

independent of the failure of battery given definitive knowledge of whether the

electronics boards have failed. This type of model can be used to solve for the

probabilities of failure of any components or subsystems given failure information about

any other component(s) or even when no information is given. There are quite a few

methods for deriving probabilities from Bayes nets [89] including enumeration, variable

elimination, and local propagation. The computational and memory requirements for

some of the methods are shown in Table 2-1. In this table, n is the number of nodes in the

Bayes Net, and all nodes are assumed to be binary, e.g. fail/not-fail. Also note that the

local propagation method has the lowest computational complexity but it is only

applicable on Bayes nets that have a poly tree structure (i.e. no cycles or multiple paths

connecting one node to another).

32

Table 2-1: Computational complexity of methods for solving Bayes Nets [89]

Method Applicability Memory
Requirement

Computational
Cost

Enumeration general O(n) O(n2n)
Variable

Elimination
general O(2n) O(2n)

Local Propagation polytrees O(n) O(n)
Clustering general O(2n) O(2n)

Conditioning general O(n) O(2n)

2.9 Markov	Decision	Processes	(MDPs)	

An MDP is a controlled Markov chain [58] that is solved using a discrete stochastic

dynamic programming (SDP) algorithm, e.g. value iteration or policy iteration [84][89].

Value iterations are applied to the optimal control problem to maximize an expected

discounted reward function of the form

0

0

() (,) | , .Pol t t t

t

V s E R s Pol s s 




 
  

 
 (2.3.3-1)

 Here, st represents state after t actions, and µt is the action applied in state st according

to a policy Pol (st is a random variable). V is the expected discounted reward function of

states of the Markov chain (also called the value function of the state). The discount

factor γ (γ ϵ (0, 1)), indicates that the future rewards have lower value. We assume that R

is bounded from above and below. The policy that selects the optimal action may be

found as

 * () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V s  


 
  

 
 (2.3.3-2)

33

 There is a direct relationship between the value of a state and the values of all the states

that can be reached from that state in a single optimal action. This relationship can be

expressed using the Bellman equation [89]:

1() () max (| ,) ()t i i j k i t j
k

j S

V s R s T s s V s 


 
   

 
 (2.3.3-3)

where Vt+1(si) is the value of state si at iteration t+1. R(si) is the immediate reward of state

si. T (sj |μk, si) is the probability of transitioning from state si to sj by executing action μk.

 Value iterations converge and one can bind the number of iterations (Itr) to reach an

error bound of ε as:

 max2 1
log / log .

(1)

R
Itr

  
    

         
 (2.3.3-4)

Here ε is the required tolerance of the solution satisfying

1() () , .t i iV V i      (2.3.3-5)

The inequality (2.3.3-5) is ensured by [89]

1

1
() () .t i t iV V

  


 
   

 
 (2.3.3-6)

 Note that the computational complexity of value iteration is of the order O(N2k) where

N is the number of states and k is the number of actions in the MDP. As described in [58],

Equation (2.3.3-3) converges to a unique solution. The solution of Equation (2.3.3-3)

achieves its maximum value of the right hand side in Equation (2.3.3-1). If the policy is

34

calculated using (2.3.3-2) with solution of (2.3.3-3), it will be optimal with respect to

(2.3.3-1).

 The value iteration algorithm used to solve (2.3.3-3) and find an optimal policy from

(2.3.3-2) is shown in Figure 2.5.

Figure 2.5: Value Iteration algorithm

2.10 Approximate	Dynamic	Programming	

Approximate Dynamic Programming (ADP) can be used to reduce the computational

complexity of MDPs. There are three important books dedicated to this topic, each

representing different communities. Bertsekas and Tsitsiklis [10] provide a primarily

theoretical treatment of the field using the language of control theory. This text [10] uses

neural network approximations to overcome the "curse of dimensionality" and the "curse

of modeling" that have been bottlenecks to the practical application of dynamic

Step 0. Initialization:
 Set V0(s) = 0 for all s ϵ S
 Fix a tolerance parameter ε > 0
 Set t = 1.

Step 1. For each s ϵ S compute:

Step 2. If:

calculate:

 else, set t = t + 1 and go to Step 1.

35

programming and stochastic control to complex problems. This methodology allows

systems to learn about their behavior through simulation, and to improve their

performance through iterative reinforcement [learning]. Sutton and Barto [97] describe

the field from the perspective of artificial intelligence/computer science [97], starting

with intuitive examples and a definition of reinforcement learning. They then present

three fundamental approaches to reinforcement learning: Dynamic Programming, Monte

Carlo, and Temporal Difference methods. Subsequent chapters build on these methods to

generalize to a spectrum of solutions and algorithms. Powell [79] uses the language of

operations research, with more emphasis on the high-dimensional problems that typically

characterize the problems in this community. In [53], the authors present an algorithm

that dynamically performs hierarchical decomposition of factored MDPs. Their algorithm

is based on determination of causal relationship between states. Communication-based

decomposition methods for decentralized MDPs are presented in [44]. A goal-based

decomposition approach (similar to the approach adopted in this thesis) is presented in

[16]. In [16], the decomposition is based on the additive terms in the reward function that

correspond to different sub-goals. Decomposed MDPs are assigned sub-goals based on

decomposition of the reward function. Optimal policies are computed for each sub-goal

and finally merged together using a value function heuristic and best-first search to

generate an approximate policy for the original task.

2.11 Astrodynamics	

Since this thesis deals with spacecraft missions, fundamentals of two-body orbital motion

play a key role when discussing the data collection windows for science observation

targets. There are six major parameters of a spacecraft orbit, as described below. .

36

2.11.1 	Orbital	Elements

The six classical orbital elements [8] are shown in Figure 2.5:

Figure 2.6: Orbital elements [8]
1. Semi major axis (a): A constant defining the size of the conic orbit.

2. Eccentricity (e): A constant defining the shape of the conic orbit.

3. Inclination (i): The angle between the K unit vector and the angular momentum

vector (Figure 2.6).

4. Longitude of the ascending node (Ω): The angle in the fundamental plane,

between the I unit vector and the point where the satellite crosses through the

fundamental plane in the northward direction (ascending node) measured

counterclockwise when viewed from the north side of the fundamental plane.

37

5. Argument of periapsis (ω): The angle in the plane of the satellite’s orbit, between

the ascending node and the periapsis point, measured in the direction of the

satellite’s motion.

6. True Anomaly (v): Angle between the line joining the satellite’s center of mass

with the center of mass of the central body and the line of periapsis measured in

the direction of motion of the satellite.

In ideal two-body motion, five of the six orbital elements remain constant, while the

sixth, true anomaly , precesses over a range from 0 to 2 radians as the spacecraft

revolves around the central body. We exploit the periodic nature of true anomaly in our

MDP formulations to enable a cyclic and finite state-space despite a potentially infinite

time horizon.

38

 	Chapter	3

An	Integrated	Markov	Decision	Process	Modeling	Framework	

We present a Markov Decision Process (MDP) based framework to automatically

compute optimal strategies for integrated Comprehensive Fault Tolerant Science-Optimal

Attitude Planning (CFT-SOAP). Because CFT-SOAP combines a broad suite of

compositional models into a single framework, deliberation in CFT-SOAP is

computationally expensive. This chapter presents an integrated spacecraft decision-

making model for CFT-SOAP to introduce the baseline capability. This chapter then

investigates decomposition of the full decision process into multiple decision-making

units, each with lower computational complexity, that together provide the capabilities in

the full integrated architecture but for which conflicts in decisions must be carefully

resolved.

 The goal of the full CFT-SOAP architecture is to provide an integrated goal-based

planning solution that also incorporates fault detection, conflict resolution, and

comprehensive reconfiguration in one framework. In addition to describing the decision-

making modules, we assess the interdependence of various components of the state

feature vector. Based on the interdependences, we propose a decomposition approach

which is based on task reformulation. As a result we obtain three separate MDPs: one for

planning, one for fault detection with conflict resolution, and one for comprehensive

39

reconfiguration. Throughout, we assume the spacecraft always follows a stable drift orbit

such that attitude control is the only activity requiring physical actuation. We also

assume the policies can either be developed offline and uploaded or else that sufficient

onboard resources are available. Although we introduce a means to decompose CFT-

SOAP into the three modules listed above, we focus on model development in the MDP,

not on real-time policy execution within a specific spacecraft onboard computing

environment. While our cost functions may penalize energy consumption for actions

such as pointing or communicating (see Chapter 4), we typically also assume the

spacecraft has sufficient stored energy to execute planned action sequences, although a

simple energy model is included for the FUSE spacecraft case study in Chapter 7.

3.1 Problem	Formulation	

3.1.1 Goals	

The major goals of CFT-SOAP are to:

 Calculate optimal attitude maneuvers and data collection actions that maximize

science reward and minimize the probability of possible failures.

 Detect failures in a manner that minimizes probabilities of missed detection and

false alarms using fault information from an observer-based dynamic fault

detector and conflict resolution actions.

 Reconfigure spacecraft components and control laws to maximize expected

performance with respect to resource consumption and probability of successful

mission completion.

40

3.1.2 Problem	Statement	

We seek to develop an MDP-based framework for computing optimal policies for fault

tolerant attitude management of a spacecraft. We assume that the spacecraft is on a

mission to collect scientific data from fixed targets. Because the spacecraft follows a

fixed two-body orbit (with negligible drift due to perturbations), we assume the targets

are visible to the spacecraft data collection sensors for pre-specified windows of

visibility, and that these windows repeat as a function of orbit true anomaly . Note that

periodic observation windows are not always available, particularly when Earth-

observing spacecraft are not synchronized with Earth’s rotation period, but for spacecraft

observing distant celestial bodies this is a reasonable approximation.

 Per Figure 1.1 in Chapter 1, we propose an MDP framework for autonomous onboard

decision-making that contains planning, fault detection, and reconfiguration agents, as

shown in Figure 3.1 below.

Figure 3.1: MDP-based integrated CFT-SOAP implementation.

MDP-based
CFT-SOAP

Interface
Agent

Dynamics-
based Control

and
Configuration

Composition-
based Control

and
Configuration

Policy

State

Commands

Observations

Observations

Commands

41

3.2 MDP	Formulation	

The Markov Decision Process (MDP) supports decision-making under uncertainty.

Optimal sequences of actions form a policy that allows an autonomous system to react

appropriately to a wide range of observed situations, even those not on a “nominal”

[deterministic or most likely] execution path. The MDP as used in CFT-SOAP is

formally defined in this section.

3.2.1 States	

MDP states for the science-optimal fault tolerant planner CFT-SOAP can be represented

as follows:

 

 
 
 
 
 
 
 
 

1 2

1 2 1

1 2 2

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

, ,...,

,

, , , , , , , , ,

, ,...,

, ,...,

, ,...,

, ,...,

, ,...,

, ,...,

, ,...,

2

N

i i i i i i i i i i

n
i i i i

n
i i i i

m
i i i i

m
i i i i

m
i i i i

m
i i i i

m
i i i i

n

S s s s

where

s A B z v Bl Bo U O V sw c

A a a a

B b b b

Bl bl bl bl

Bo bo bo bo

U u u u

O o o o

V v v v

N



















 1 2 1 2 3 4 5(2 1) 1 2 3 4 5n m m m m mn d d d d d d          

 (3.2.1)

 As shown above, each state consists of eleven types of information, including:

1. Flags for Active Mission Related Actions Ai: There are n1 binary flags indicating

which of the mission-related actions are active (in progress) for the given state. In

42

our formulation, mission related actions include attitude maneuvering, data

collection, and no-operation (NOOP) actions.

2. Data collection flags Bi: There are n2 binary flags indicating whether or not

science data have been collected from the corresponding science target.

3. Attitude pointing zi: This is a scalar having n2+1 values presuming one value for

each of the n2 science targets and one additional value for pointing towards the

visible ground station (or data relay satellite). Note that we do not consider all

possible attitude pointings since in that case the state-space will become infinite.

Also, we abstract above the specifics of pointing to the visible communication

node, although this pointing angle would need to be tracked in real-time.

4. True Anomaly vi: The true anomaly of the spacecraft is assigned d discrete

partitions encompassing the 0 to 360 degree range. Again, a tradeoff between

precision of the framework and size of the state-space is present.

5. Logic-based fault flags Bli: There are m1 binary flags indicating presence or

absence of various faults based on observations and knowledge about the

configuration and composition of the spacecraft. Examples of faults that may be

included in Bli are failure of electronics, switches, valves, sensors, actuators etc.

6. Observer-based fault flags Boi: There are m2 binary flags indicating the presence

or absence of modeled faults based on real-time observations and a priori

knowledge about the dynamics of the spacecraft. Note that the sets of faults

corresponding to the flags in Bli and Boi could be overlapping.

43

7. Diagnostic Actions Ui: There are m3 actions that can be used to collect additional

data from the spacecraft. These data might be expensive to collect under normal

circumstances thus not built into the default periodic schedule of operations. Each

of these actions can be active or inactive (d1 in Equation (3.2.1) = 2).

8. Diagnostic Observations Oi: These represent m4 processed observations that

indicate status of various components of the spacecraft. Note that processed

observations are not sensor outputs, rather these are logic based inferences based

on control commands, sensor outputs, and logical clauses that represent the

compositional model of spacecraft components and subsystems.

9. The threshold vector Vi: This vector contains m5 thresholds that effect the fault

flags Boi generated by an observer-based fault detection scheme. Here we assume

that each threshold can affect one and only one fault flag in Boi whereas each flag

in Boi can be affected by more than one threshold.

10. Switching configuration swi: This is a discrete-valued variable that represents the

index of the current compositional configuration of the spacecraft. We assume

there are d4 possible switching configurations.

11. Control law configuration ci: This is a discrete-valued variable that represents the

index of the currently-active attitude control law of the spacecraft. We assume

that there are d5 possible attitude control law configurations. We do not model an

orbital maneuvering capability in this thesis.

3.2.2 Actions	

The following expressions represent the set of actions available in CFT-SOAP:

44

 

 

0 1 2 1 1 1 3 1 1 5

5 1 4 1 5 1 3

0 1 2

1 2

, ,..., , ,..., , ,..., , , ,...,

, , ,..., , ,..., , ,...,

, , , , , ,

, ,...,

, ,...,

b b bn bl blm u um v v vm

vm sw swd c cd v vn

B Bl U V SW C NOOP

n
B b b b

Bl bl bl b

M
NOOP NOOP

OR

M M M M M M M M

where

M

M

         
    

  

  

  

  

 
  
 





  
 
 
 
 

 

1

1 2 3

1 1 2 2 5 5

1 2 4

1 2 5

1 2

, ,...,

, , , ,..., ,

, ,...,

, ,...,

, ,...,

m

m
U u u u

m m
V v v v v v v

d
SW sw sw sw

d
C c c c

d
NOOP v v v

M

M

M

M

M

  

     

  

  

  

     

  











 (3.2.2)

There are seven types of actions. First is the attitude maneuvering/data collection action

set MB. For actions of this type, we define a set of true anomaly windows for each of n2

targets in which the targets are visible to data collecting equipment:

 1 1 2 2 2 2, , , ,..., ,n n
l u l u l uW v v v v v v            (3.2.3)

Here, vl
k is the lower limit of the window of visibility of target k, while, vu

k is the upper

limit of the window of visibility of target k. Besides window of visibility, every target has

another attribute that indicates whether the data from the target is to be collected only

once in the mission or once per orbit around the central body:

   1 2 2, ,..., : 0,1n ip p p p p  (3.2.4)

Here, n2 is the number of targets and pk is a binary variable indicating whether target k

requires periodic data acquisition (pk = 1) or not (pk = 0). An action μk in MB could be

either a data collection action or an attitude maneuver action. Data can only be collected

45

if the spacecraft is pointed toward and is within the window of visibility of the target

from which data is to be collected.

 Next are logic-based fault flag switching actions MBl. These actions can switch the fault

flags for various components of the spacecraft on or off. As such they are “virtual

actions” that set the internal state of the CFT-SOAP diagnosis engine.

 Diagnostic input actions MU are also available. These actions initiate diagnostic data

collection activities. Note that the actions of type MU set the diagnostic actions to 1.

These actions are aperiodic; they become dormant automatically once executed, until an

event or decision reactivates them.

 Next are the threshold variation actions (or conflict resolution actions) MV. These

actions are used to vary the thresholds of the observer-based fault detector to tune fault

decisions that conflict with the logic-based fault decisions. Each of these actions

increases or decreases a false alarm/missed detection threshold by a fixed amount.

 The fifth action type is the compositional configuration switching action MSW used to

change the current switching configuration of the spacecraft that may effectively stop the

usage of faulty components and/or bring alternate healthy components into use. Also

included are control law reconfiguration actions, MC, used to change the law governing

attitude control based on health status of the actuators and sensors involved.

 Finally, the seventh type of actions is the no-operation action MNOOP. This action results

in the spacecraft doing nothing for any particular window (change) in true anomaly.

46

3.2.3 Reward	Function	

The reward function can be defined as

        cswBoBlBARVOUBoBlRBoBlvzBRcswVOUBoBlvzBAsR ,,,,,,,,,,,,,,,,,,,,,,, 321 

 (3.2.5)

We define the reward function as a sum of three functions. We now discuss what should

be reflected in each reward functions for the spacecraft domain.

The first term R1 in the above reward function represents science mission rewards and

penalties and incorporates:

 Reward of collecting data from a science target. This type of reward is useful for

emphasizing important targets versus less important ones.

 Reward of pointing towards a science target from which data has not yet been

collected. This type of reward is useful for motivating the spacecraft to point

towards a target in advance, if possible, rather than pointing towards the target

just-in-time.

 Reward for completing a science mission. This type of reward motivates the

spacecraft to complete the mission rather than just collecting as much data as

possible with minimum risk.

 Penalty of being in a state which has no path of positive probability to any of the

goal states. Goal states are the states in which all the scientific data have been

collected.

A specific equation for R1 is provided in Section 4.3 (Equation (4.3.1)).

47

 The second term in the reward function represents fault-detection-related rewards and

cost penalties. It should incorporate:

 Penalty on conflict(s) in fault detection between logic-based and observer-based

fault flags. This term motivates the two fault detection schemes to consider each

other’s fault calls before (in case of logic-based fault detector) or after (in case of

observer-based fault detector) making their own fault calls.

 Reward of correct detection based on probabilities of false alarms and missed

detections. Correct detection reward will trade off with the penalty on any

conflict(s) in fault detection to encourage false fault calls to be resolved or

avoided.

 Reward of information available to the fault detection algorithm. This term

motivates execution of information gathering actions that are helpful in obtaining

useful information about the health status of the spacecraft especially in situations

when there is persistent conflict between fault detectors. Examples of information

gathering actions include short-term firing of thrusters to monitor the resulting

accelerations, and switching from a primary sensor to a backup sensor to

reconcile differences in readings, etc.

 It is important note that in order to avoid negative rewards resulting from the penalties,

all the penalties are defined as negative exponentials throughout this thesis. A specific

equation for R2 is provided in Section 5.9 (Equation (5.9.1)).

The third term in the reward function represents rewards related to fault-based

reconfiguration including:

48

 Penalty on being in the states where an ongoing mission-related action is

inapplicable or undesirable. This term demotivates reconfigurations that may

cause problems for an on-going mission-related action. The reconfiguration

strategy is encouraged to opt for other choice(s) if possible.

 Penalty on the states which have no path of positive probability connecting them

with one of the goal states (goal states are states in which all mission objectives

are achieved). This term motivates the reconfiguration strategy to keep spacecraft

in a position to complete the mission even if other choices of reconfiguration are

safer.

 Penalty on the unsafe or sub-optimal configuration of the spacecraft hardware

and/or control law for a given fault and mission state. This term will trade off with

the above term that motivates mission completion in situations where the safest

possible reconfiguration action results in a state that has no path of positive

probability connecting it with one of the goal states.

A specific equation for R3 is provided in Section 6.2.2 (Equation (6.2.1)).

3.2.4 Action	Costs	

We assume that the costs associated with actions of type MBl, MV, MSW, MC and MNOOP

are zero as these are simple computational or placeholder (NOOP) actions that do not

require the spacecraft to consume extra energy to sense or apply physical forces or

torques. The cost associated with actions of type MB and MU can be defined such that the

energy, time, and fuel consumption required to complete these actions is penalized. A

specific equation for the cost related to MB is provided in Section 4.3 (Equation (4.3.7)).

49

3.2.5 Transition	Probabilities	

Transitions between MDP states are of two types. The first type of transitions models the

effects of applied actions. For example, if we apply a data collection action, the action-

dependent transitions reflect that either data are collected successfully or they are not

collected. The second type of transitions model underlying uncertainties in different

parameters of the states. For example, if we apply a data collection action, a reaction

wheel or gyroscope can fail that does not affect data collection but results in a state that

was not intended or dictated by the applied action. For some actions such as those

involving flipping a switch or a flag, it can be assumed that nothing happens during the

execution of actions i.e. none of the state variables change other than those intended to

change by the action that is executed. For actions that are not instantaneous e.g. mission

related actions, all possible transitions have to be modeled. This in general is a very

difficult task. Therefore, it is desirable to use approximations. For example, instead of

modeling probabilities of all possible failures that can happen during an action, one can

model the probability that at least one failure will occur.

3.2.6 Bayes	Net	Structure	(Compositional	Model)	

The MDP defined above requires an underlying Bayes Net where all the probabilistic

dependencies between switches, fault flags (both logic-based and observer-based),

control law configurations, diagnostic observations, diagnostic inputs, and threshold

values are represented. The initial conditional probability tables must be at least

approximated to form the basis from which the joint distribution can be computed in real-

time from the more compact Bayes net representation. For finite horizon cases such as

50

what we experience with a day-to-day spacecraft activity planner, we can use a dynamic

Bayes net [31] where conditional probabilities can depend upon time.

3.2.7 Dynamics	Model	

An underlying model of dynamics corresponding to each fault configuration is also

presumed to be known a priori. This assumption is reasonable for consideration of the

faults related to the attitude control sensors and actuators. This allows the MDP to switch

between existing control law configurations rather than adapting numerical control law

parameters in real-time. A spacecraft has a finite set of possible failure situations, each

modeled in our state vector, thus capturing a suite of controllers to handle them all is

realistic.

3.3 Closed	loop	execution	of	the	MDP	policy	

A flow chart of the CFT-SOAP MDP formulation and uplink is shown in Figure 3.2,

whereas closed loop onboard execution for the MDP is shown in Figure 3.3. Note that in

Figure 3.2, the need for the new policy is determined based on the system-level failure or

a combination of faults that can not be handled by the fault tolerance capabilities of the

current MDP. This is different from today’s execution sequences that do not have the

ability to reconfigure in the presence of faults. In case of CFT-SOAP, the original MDP

policy has a number of reconfiguration options built-in. Figure 3.2 depicts the unlikely

case where none of the reconfiguration actions built into the executing MDP policy are

applicable.

51

Figure 3.2: MDP modeling, uplink, and execution flowchart

 In Figure 3.3, OBFDD stands for Observer Based Fault Detection and Diagnosis. y

denotes the output vector from the dynamics, estimated in real-time by an inertial

measurement unit (gyroscopes, accelerometers, and magnetometers) supplemented by

star trackers, etc. to improve attitude computation accuracy. Yl is the output from current,

voltage, temperature, and pressure sensors. The real-time executive gathers information

from system-wide modules and forms a state vector S. This state vector is sent to the

MDP policy module which returns the corresponding optimal action. This action is

interpreted as a full set of specific system level activities by the executive and these

activities are then performed in a closed loop manner.

Yes

Start

Collect Model
Parameters, goals,

Define MDP

Compute Optimal Policy

Uplink to Spacecraft

Execute in Closed Loop
Need
new

MDP?

No

52

Figure 3.3: Real time closed loop execution of MDP

 Figure 3.4 shows a detailed diagram of the operation of the executive. In Figure 3.4, the

diamond-shaped nodes represent decisions. MDATA and MATT are context-dependent

representations of MB indicating attitude maneuvering and data collection actions,

respectively. Once the executive receives the next optimal action from the MDP policy

module, it recognizes the action as related to fault detection (MFDD), related to the

spacecraft mission (MB), or related to reconfiguration (MRC). If an action µ(S) is

recognized as MFDD, it is further identified as either a threshold-changing action (MV) or a

diagnostic action (MU), or a logic based fault flag switching action (MBl). In each case,

the action is carried out by the appropriate modules. If the action µ(S) is recognized as

µ(S)

Msw

Status cmds

MDP
Policy

Interface
Agent (Real

time
Executive)

System
Monitors

System
Sensors

Observer-Based
Fault Detector

System
Dynamics

System
Configuration

Manager

Ground Station

Updated
Policy

S

sw
Uref , MC

C

v, z

y

yu

V

Bo

O
Yl

Reconfigurable
Controller

53

MB, it is further identified as either an attitude maneuvering action (MATT) or a data

collection action (MDATA). In either case, the identified action is executed in a closed-loop

manner. If the action µ(S) is recognized as a member of set MRC, it is further identified as

either a switching reconfiguration action (MSW) or a control law reconfiguration action

(MC). In either case, the identified action is executed appropriately.

 For sending a new state to the MDP policy and receiving a new action to execute, there

is a condition X in the oval-shaped block in Figure 3.4. Condition X can be defined in

multiple ways depending upon preferences of the designer. An example of a condition or

test X is “Return true if/when the previous action has been completed or the values in Bo

or O have changed since the last time state information was processed.”

Figure 3.4: Detailed diagram of the MDP executive

54

3.4 Interdependencies	and	State	Decomposition	

This section studies model interdependencies and possible decomposition of various

components of the MDP formulation in Section 3.2. There are some state parameters that

are required explicitly by planning or fault detection or reconfiguration whereas some

parameters are required by more than one of these activities. Figure 3.5 illustrates this

concept. The following sections (3.4.1-3.4.3) propose a set of decompositions for

planning, fault detection, and reconfiguration based on Figure 3.5 that each are more

computationally tractable than the fully-integrated CFT-SOAP model but that together

provide an approximation of the fully-integrated optimal CFT-SOAP solution.

Figure 3.5: Concept of MDP decomposition

3.4.1 Planning	

Recall that there are eleven major parameters in each MDP state (Section 3.2.1). Among

these parameters, some are exclusively related to fault detection and reconfiguration.

Examples include the set of diagnostic actions U, vector of processed observations O, and

vector of thresholds V. Planning depends upon the following state parameters:

55

 

 

1 2, ,...,

,

, , , , , , .

N

i i i i i i

S s s s

where

s B z v Bl Bo sw c





 (3.4.1-1)

Several parameters have been excluded in (3.4.1-1) to promote simplicity thus lowered

computational complexity. Perhaps most debatable is the elimination of Ai that indicates

status of the ongoing mission-related actions in state si. The exclusion of this vector is

justified when actions are executed in a sequential order. In this way, an action from a

plan is executed only when no other action is being executed. Other information that is

excluded from (3.4.1-1) is needed purely for fault detection and diagnosis purposes. We

can further simplify the state space for planning by generating separate plans for each

switching and control configuration and each fault flag configuration. This will result in

the following state formulation:

 

 

1 2, ,...,

,

, , .

N

i i

S s s s

where

s B z v





 (3.4.1-2)

The set of actions related to planning are MB and MNOOP. Rewards and transition

probabilities can be extracted from descriptions above in Section 3.2 (for specific details,

see Sections 4.3.3 and 4.3.4).

3.4.2 Fault	Detection	

Fault detection requires information about fault flags, processed measurements,

diagnostic actions, and ongoing mission-related actions since these actions can affect the

probabilities of failures. Due to characteristics of the space environment (e.g., magnetic

field, ability to communicate with other spacecraft or ground-based radios), fault

56

probabilities may also depend upon the position of spacecraft in its orbit and its pointing.

Therefore, we also need information of true anomaly and current pointing of the

spacecraft for the fault detection MDP. The resulting state space used for fault detection

is:

 

 

1 2, ,...,

,

, , , , , , , .

N

i i i i i i i

S s s s

where

s A v z Bl Bo U O V





 (3.4.2-1)

The only state information excluded in (3.4.2-1) is spacecraft hardware configuration,

control law configuration, and status of mission objectives. In some cases, true anomaly

and attitude pointing can also be excluded by using failure probabilities with worst case

values. Also, vector Ai can be excluded using the same strategy. This will yield the

following simplified states:

 

 

1 2, ,...,

,

, , , , .

N

i i i i i i

S s s s

where

s Bl Bo U O V





 (3.4.2-2)

 Actions related to fault detection are MBl, MU, and MV. Also included is an

instantaneous no-operation action MNOOP to represent an option of not changing any

detection flag, threshold, etc. Rewards and transition probabilities can be extracted from

Section 3.2 (for specific details, see Sections 5.9.3 and 5.9.4). Note that, to avoid

executing inappropriate goal-seeking actions, output of this fault detection agent should

be used in selecting the appropriate planning policy.

57

3.4.3 Reconfiguration	

For making reconfiguration decisions given error or fault conditions, information is

required about current logic (switch) and control configuration, current faults, ongoing

mission-related actions, and mission status. Therefore, the states for reconfiguration may

include:

 

 

1 2, ,...,

,

, , , , , .

N

i i i i i i i i

S s s s

where

s A B Bl Bo O sw c





 (3.4.3-1)

Here again, information related specifically to fault detection and diagnosis has been

removed. The actions involved in reconfiguration are MSW and MC. Introduction of an

instantaneous no-operation action MNOOP is again useful. Transition probabilities and

rewards can be extracted from the discussion in Section 3.2 (for specific details, see

Sections 6.2.2). To avoid inappropriate reconfiguration actions, output from fault

detection and planning should be used to update the state vector in (3.4.3-1). Also, the

latest configuration and control law selection should be applied along with latest fault

information to select the appropriate planning policy.

3.5 Computational	Complexity	and	Real	time	Implementation	

The computational complexity of MDPs grows exponentially with the size of the state

space. In particular, if the value iteration algorithm is used to solve an MDP, the

complexity is of the order O(N2M) where N is the size of the state space and M is the size

of the action space. To provide intuition for complexity of the proposed formulation in

Section 3.2, assume that there are 2 mission related actions, 3 mission related tasks, 4

spacecraft pointing orientations, 50 values of true anomaly (each possible separated by

58

approximately 7 degrees given true anomaly range 0-360 degrees), 5 logic-based fault

flags, 3 observer-based fault flags, 2 diagnostic actions, 5 processed observations with

fail/normal type (binary) values, 2 switching configurations, 2 control configurations, and

2 observer-based thresholds each with 5 possible values. Despite the fact that most

features have few values, the resulting size of this example state space is

2 2 5 3 2 5 22 3 4 50 2 2 2 2 2 2 5

6,039,797,760,000

N

N

          
 

 (3.5.1)

Equation (3.5.1) shows 6 tera-states and the resulting complexity (assuming only 10

actions) will become of the order 1025. For a comprehensively-modeled space mission,

the complexity could easily increase to 1050 or 1075. Since our computational capabilities

are still of the order of 109 instructions per second, the integrated MDP could take years

to compute. We therefore need to either build faster computers or reduce the

computational complexity of the MDP, a primary objective of this thesis. The first step of

reducing complexity has been presented in Section 3.4. Subsequent chapters represent

how MDPs related to planning and fault detection can be further decomposed by using

additional approximations.

3.6 Chapter	Summary	

We have presented an MDP-based integrated formulation (CFT-SOAP) for implementing

spacecraft goal-based mission planning, fault detection, and fault reconfiguration that

takes into account both logic-based compositional and continuous-valued models. We

have also analyzed the complexity of a simple integrated model demonstrating the need

for abstractions and decompositions to simplify the MDP so that it can be executed on

spacecraft.

59

 	Chapter	4

Science‐optimal	Spacecraft	Attitude	Planning	with	consideration	of	

Failure	Probabilities	

In this chapter, we present a framework to generate an optimal sequence of actions for

spacecraft missions. Our generated sequences are optimal in a sense that the expected

reward of science data collected in the presence of the possible failures is maximized. To

deal with issues such as changing reward functions and/or transition probabilities, we

show how to implement our approach using a receding horizon optimization formulation.

We also provide an algorithm for approximate dynamic programming (ADP) that can be

used to reduce algorithm computational complexity to tractable levels with the possibility

of increased solution cost. Examples are also included to illustrate the implementation of

the framework.

4.1 Motivation		

Spacecraft are used in a variety of missions involving data collection from one or more

celestial objects or from locations on the Earth. An onboard capability to autonomously

plan and re-plan spacecraft missions to maximize data collection, conserve on-board

energy and fuel, and account for potential or actual failures can greatly increase the

autonomy and value of spacecraft missions. This capability can also reduce requirements

for human intervention, which increases mission operations cost and introduces delays to

the mission, following anomaly or failure events.

60

 Related work on autonomous planning of spacecraft missions includes [68] where

iterative refinement search combined with simple heuristics is used to generate sequences

of actions for complex missions. These algorithms are capable of generating plans that

involve concurrent actions, tight constraints, limited resources, and close deadlines.

However, most of this work does not include models of spacecraft attitude or orbital

motion, except for treating pre-defined set of constraints over observation windows.

Other frameworks include the SPIKE scheduler for Hubble Space Telescope [52] that

uses both rule-based and neural network approaches to schedule science observations

while satisfying observation window, instrument, and onboard resource constraints. The

Jet Propulsion Lab (JPL) has developed two architectures, ASPEN [85] and CASPER

[22], for use in a variety of spacecraft missions requiring planning, scheduling, and

iterative repair of the executing plan.

 In this chapter, we focus on modeling maneuvers in the context of symbolic task-level

planning as a first step toward integrating science and motion-centric planning processes.

Specifically, we present a planner and associated models for optimal sequential decision-

making in the presence of uncertainty, where actions can either change the attitude of the

spacecraft or collect science data from a celestial object.

 To build optimal plans for spacecraft missions, the planner must minimize energy use

and maximize scientific rewards in the presence of failures. In this chapter, we present a

framework based on an MDP [15], [89] adapted to spacecraft mission planning. We

apply this framework to a specific class of missions which involve spacecraft pointing at

specific targets. The system state reflects the current pointing direction, current true

anomaly, and the status of target visit states (visited/not visited). Actions direct the

61

spacecraft through the set of pointing states; we presume a target will be viewed if the

spacecraft is pointed at that target. Probabilities of successfully executing an action or

alternatively entering a failure mode are encoded in an MDP transition probability

matrix. Immediate rewards of states depend on the number of targets from which the

scientific data has been collected in that state and on attitude pointing for that state. We

also incorporate costs of attitude maneuvering actions in terms of the slew magnitude

involved and costs of data collection actions in terms of energy consumed.

 Given the computational complexity of the MDP, optimal policy generation is best to

conduct offboard, with the output being a comprehensive policy which is then executed

onboard the spacecraft. Note that this off-board computation and upload of the optimal

policy requires onboard memory space on the order of the number of states in the MDP,

unless more efficient tests are developed, e.g., through construction of a decision tree

[89] that matches abbreviated feature tests to policy actions. Also there is cost associated

with uploading of the policy. However, the MDP policy offers a level of robustness

through fault detection and reconfigurability that can offset these additional complexity

costs. To potentially mitigate the costs associated with computing the MDP, receding

horizon policies (e.g., [72]) can be computed more quickly. In a receding horizon

formulation the value function of the generated MDP policy is used as a terminal cost.

 For a potential onboard implementation of the MDP, a finite horizon approach may also

be used, where policies are generated for a short time horizon and assume a finite set of

scenarios. This approach is useful when the reward function and the transition

probabilities change with time. To deal with the computational complexity, an

approximate dynamic programming approach to compute near-optimal policies is

62

applied. In this chapter, we propose an approximate dynamic programming approach for

decomposition of the MDP based on mission objectives.

4.2 Problem	Formulation	

Assumptions: We make the following technical assumptions:

A1. The window of true anomaly for data collection from each target and the required

attitude pointing remain fixed. This assumption is practical for viewing distant

celestial objects over a limited horizon for which the Earth-spacecraft system does

not appreciably process along Earth’s one-year Solar orbit.

A2. Time required to collect data from each target in terms of corresponding change

in the true anomaly of the spacecraft is known but not necessarily constant for all

targets.

A3. All critical failures are collapsed into a single failure state. Once in this failure

state, the spacecraft can no longer complete its mission.

A4. The probabilities of transitioning to the failure state from any nominal state with

execution of any action are known, i.e., the MDP transition probability matrix is

known.

A5. Scientific reward associated with fully observing each target is known but not

necessarily constant for all targets.

A6. Energy/fuel consumption due to attitude maneuvering or data collection actions is

known. Energy consumption is computed based on a pre-specified slewing

maneuver profile (see section 4.3.3); data collection energy use is presumed

available in tabular form.

63

Problem	 Statement: Given a set of n targets, our objective is to generate an optimal

sequence of attitude slewing maneuvers that enable data collection from observation

targets in such a way that a cost function which reflects the expected science reward is

maximized while fuel/energy costs are minimized.

Figure 4.1 shows snapshots of a spacecraft orbiting a planet while collecting data from

three targets. The triangles represent field of view of the spacecraft while the small solid

circles represent distant observation targets. The spacecraft is represented by small

rectangles in an elliptical orbit. The pointing of the illustrative observation cone/triangle

indicates the attitude of the spacecraft at each true anomaly station along its orbit.

 The MDP outputs a policy applicable to any initial state. The policy prescribes the set

of actions that yield the highest possible science reward.

Figure 4.1: Spacecraft at various positions in its orbit collecting data

4.3 MDP	Formulation	

4.3.1 States	

For the attitude planning problem, the states must specify the pointing attitude of the

spacecraft, the current true anomaly, and the amount of science data collected as follows:

64

 
 
     

1 2 3

1 2

, , ,..., ,

, ,..., , , : {1, 2..., }

0,1 , 0,1, 2,..., , , 1, 2,...

N F

n
i i i i i i

j
i i i

S s s s s s

s b b b z i N

b z n d d m



 



 

   

 (4.3.1)

In (4.3.1), the binary variable bi
j indicates whether the data have been collected or not

from the jth target in state si. The integer zi represents the pointing of the spacecraft. zi = j

means the spacecraft is pointed towards target j in state si or si is an initial pointing state

(if zi = 0). Variable vi represents the true anomaly angle of the spacecraft in state si. We

have discretized true anomaly (0 to 360) into m non-overlapping partitions of size τ (m =

360/τ), selecting τ so that m is an integer. There is a tradeoff between the value of τ (and

hence precision of true anomaly) and the size of state space. State sF indicates that one or

more components of the spacecraft have failed in such a manner that the plan can no

longer be executed. Multiple failures with partial loss of spacecraft functionality can be

treated similarly by introducing additional states reflecting these failure states. The total

number of states is N = 2n (n+1)m, where n is the number of science targets.

4.3.2 Actions	

Before we define actions, we present a set of true anomaly windows for each of n targets

in which the targets are within the range of data collecting equipment:

 1 1 2 2, , , ,..., ,n n
l u l u l uW v v v v v v            (4.3.2)

Here, vl
k is the lower limit of the window of visibility of target k, while vu

k is the upper

limit of the window of visibility of target k. Besides window of visibility, every target has

another attribute that indicates whether the data from the target is to be collected only

once in the mission:

65

   1,0:,...,, 21  in ppppp (4.3.3)

Here, n is the number of targets and pk is a binary variable indicating whether target k

requires periodic data acquisition (pk = 1) or not (pk = 0). Actions can then be defined as:

 
 

 

0 1, ,..., , :

: 360
() :

, 360

, , {1, 2,..., }, ,

,

1 0

: 0
:

0

i

i

n

j i kz

k i

q

j i kz q i kz

j q

xj xi

k k
i l i u kz

kj

ki

xi x
xq

M NOOP

s if
s

s otherwise

i
i j q N z z k

b b x k

z k v v
ib

b otherwise

b if p
b

otherwise

  

 


     

 



    


      

  

  

        



 


1 0 k k
i l i u kz

kq

ki

x k

z k v v
ib

b otherwise

 



        


 (4.3.4)

where μk indicates an action that, when taken from state si, results either in state sj or in

state sq. These states have true anomaly equal to the sum (modulo 360 deg) of the true

anomaly of state si and the change in true anomaly incurred during the action μk. Further,

the attitude pointing of state sj and sq is k and number of targets visited in state sj remains

the same as the number of targets visited in state si unless attitude pointing in state si is

already k and true anomaly of state si is within the window of visibility of target k. For

transitioning to sq, the number of visited targets is reset to zero except for those targets

which require only a single visitation. There is one other action denoted as NOOP (no

operation) which can be defined as:

66

 

 

 

: 360
() :

, , 1,2,...,

, 360

{1, 2,..., }

: 0

0 : 1, , {1, 2,..., }

x i
i

y

x y i

x i y i

kx ki

ay ai a

ty t

s if
NOOP s

s otherwise

i x y N

z z z

b b k n

b b a p

b t p a t n

 

     

   




 

    

  
  

   
 (4.3.5)

NOOP does not have to be a single action; one can define multiple NOOP actions over

different changes in true anomaly as will be described in the examples presented later in

this chapter.

 To clarify this formulation of actions, we consider an example linear plan described by

a sequence of actions that ultimately enable Target 2 to be observed.

Example: Action μ2 from (000, 0, 0)  (000, 2, 35), Action μ2 from (000, 2, 35) (000,

2, 42), Action μ2 from (000, 2, 42)  (010, 2, 49)  Action NOOP from (010, 2, 49) 

(010, 2, 56)

 In the above example we assume there are three targets and the change in true anomaly

during a slew maneuver from the initial state to Target 2 is 35 deg, while the change in

true anomaly during the collection of data from Target 2 is 7 deg. Action 2 can result in a

change of true anomaly equal to 35 deg or 7 deg depending upon the state from which it

is executed. Also, selecting Action 2 at a true anomaly of 35 deg does not result in

immediate collection of data from Target 2 whereas the same action at true anomaly of

42 degrees does result in collection of data due to the fact that the time window for

collection of data from Target 2 starts after true anomaly of 35 deg and before or at true

anomaly of 42 deg. Finally, NOOP results in true anomaly change only.

67

4.3.3 Immediate	Rewards	and	Costs	

The immediate reward for state si is given by:

1 1

1
() (1) : {1,2,..., }

2 i i

nn

i ki k z z ki
k k

R s b r r b b i N
 

         
   
  (4.3.6)

where bi (for all i), N, and n are defined in Equation (4.3.1), α is the weighting factor for

the reward of collecting all science data, and rk: k ϵ {1,2…,n} is the reward for the

science data expected from target k. Equation (4.3.6) computes immediate rewards for

the states based on given rewards for science data at each target. The immediate reward

()iR s depends upon how much data has been collected on reaching si and on the target

which the spacecraft is pointed at in si. The third factor in Equation (4.3.6) represents the

additional reward if the spacecraft succeeds in collecting the data from all the targets (α >

0). This term is added to emphasize upon completion of mission that is to collect the data

from all the targets. We assume that the immediate reward for failure state, sF, is zero.

 The set of action costs can be represented as:

 ,
(,) : , {0,1,..., }i i

k i i
k

z k z k
c s z k n

otherwise





  


 (4.3.7)

where  ,iz k is the angle by which the spacecraft (as a rigid body) has to rotate about the

axis of rotation. The axis of rotation is typically off-axis (not a pure yaw, pitch, or roll)r

to attain the attitude change demanded by action μk executed from state si. The δk in

(4.3.7) represents the cost of collecting data from target k. Equation (4.3.7) is an indirect

measure of fuel/energy consumed by executing an action. Here, an assumption is made

68

that energy consumption is proportional to the angle by which the orientation is changed

but the cost can be assumed to be constant for each maneuver.

4.3.4 Transition	Probabilities	

 The transition probabilities are defined using the following equation:

    
 

  

1

2

1 2

1 , :
(, ,)

1

, 1, 1, , {1, 2,..., }

i i j

i k j

k

i k

z k if z z
T s s

otherwise

z k i j N

 


 

   

   


  

 (4.3.8)

where ρ1 and ρ2 are given parameters selected so that the inequality constraints on the

second line of Equation (4.3.8) are satisfied in general. In our formulation, every action in

every state has two possible outcomes: it could either result in its corresponding desired

state (Equation (4.3.4)) or in the failure state. The possibility of ending up in the desired

state is given by Equation (4.3.8) while the possibility of failure is 1- T(si, μk, sj). Figure

4.2 illustrates this definition.

Figure 4.2: State transition map

69

4.4 Solution	Approaches	

4.4.1 Infinite	Horizon	

For computing the optimal policy with respect to an infinite horizon expected discounted

reward,

0

0

(,) | ,t t t

t

E R s Pol s s 




 
 

 


,

the Value Iteration algorithm (Chapter 2) can be used. The advantage of an infinite

horizon solution is that the optimal policy can be computed once for the entire mission or

for the interval over which science goals and other MDP parameters remain valid. The

resulting optimal policy is stationary and assumes fixed reward function and transition

probability values.

4.4.2 Finite	Horizon	

Finite horizon solutions can be produced using a backward induction algorithm. In this

case, the function that is optimized is,

0

0

(,) | ,t t t

t

E R s Pol s s


 


 
 

 


.

The backward induction algorithm is shown in Figure 4.3.

70

Figure 4.3: Backward Induction algorithm [84]

In this case, the resulting optimal policy is time-varying and the reward function and

transition probabilities can also be time varying. Length of horizon κ must be selected

carefully to allow completion of mission or to ensure a new policy can be uploaded and

prepared for execution before the executing MDP’s finite horizon is reached.

4.5 MDP	Decomposition‐based	ADP	Approach	

To manage computational complexity of the MDP, we present a goal-based approximate

dynamic programming algorithm that is inspired by Boutilier’s algorithm [14]. The ADP

decomposes the full MDP into smaller MDPs, finds the solutions for smaller MDPs, and

recombines the resulting optimal value functions of the smaller MDPs to create an

estimate of the value function for states of the original MDP. While the approach in [14]

is general, our approach is customized for our application with three novel features. First,

we do not form decomposed MDPs based on a reward function, rather we decompose the

states which allows us to separate out sets of variables required to make decisions related

Step 0. Initialization:
Initialize the terminal contribution Vκ (sκ)
Set t = κ - 1

Step 1. Calculate

 for all st ϵ S

Step 2. If t > 0, decrement t and return to step 1,

else, calculate:

 for all t

71

to data collection from subgroups of science targets as in step 1 of the algorithm below.

Second, we do not assume the initial state is known, so our estimated policy is applicable

from any initial state (see step 5 below). This is important given uncertainties in launch,

deployment, and other disturbances imposed on the spacecraft. Third, we do not perform

a search algorithm to merge policies after solving smaller MDPs. Instead, we merge

value functions using an addition heuristic and calculate an aggregate policy for the

overall MDP using the same equation that is used in the Value Iteration algorithm (see

step 4 below). Now, we present our algorithm step-by-step.

Step	0 Define the main MDP with states (S), actions (M), reward function (R),

and transition probabilities (T).

Step	1 Create sub-groups of targets based on an appropriate heuristic. For

example a reasonable heuristic for creating sub-groups is to group the

targets that have data collection windows with-in a particular range of true

anomaly intervals.

Step	2 Create smaller MDP’s from the main MDP based on the heuristic

subgrouping. Assign each of the smaller MDP a sub-group of targets. The

following steps can be used for decomposition:

i. The states of each smaller MDP contain only the subset of data

collection flags corresponding to the sub-group of targets assigned to

that MDP. Attitude pointing and true anomaly variables do not change.

72

ii. The actions of each smaller MDP should include only the subset of

actions corresponding to the attitude pointing and data collection from

the sub-group of targets assigned to that MDP.

iii. The reward function and transition probabilities are extracted for each

smaller MDP from the main MDP based on the specific states and

actions included in that MDP. In the baseline case values remain the

same as in the aggregate MDP.

Step	3 Solve each of the smaller MDP’s (all with a common finite or infinite

horizon) and compute optimal values for the states.

Step	4 Merge the values calculated in step 2 to generate estimates of the optimal

values for the main MDP using an addition heuristic as follows:

* * *
1 2

1 2

1 2

() 1 (1) 2 (2) ... ()

... ,

... .

est
i j j jk

j j jk i

j j jk i

V s V s V s Vk sk

where

z z z z

v v v v

   

   

   

Note that in combining the values it is important to ensure the true

anomaly intervals and attitude pointing values for all states of interest

match.

Step	5 Calculate the optimal policy estimate using the equation:

'

() max () (, , ') (')est est

s S

P s C T s s V s


  


     
  



for all st ϵ S

73

The following sub-sections discuss the application of this decomposition and

recombination strategy using an illustrative example.

4.5.1 MDP	Decomposition	

Consider an example of six science targets. The states for this example can be written

using (4.3.1) as,

 
 
     

1 2 3 32256

1 2 6

, , ,..., ,

, ,..., , , : {1, 2...,32256}

0,1 , 0,1,2,...,6 , , 1, 2,...72

F

i i i i i i

j
i i i

S s s s s s

s b b b z i

b z d d



 



 

    (4.5.1)

Note that the above equation indicates 32,256 normal states due to six binary flags, a

pointing variable z with seven possible values, and the true anomaly variable v with 72

possible values (each value of v separated by five degrees from the next value). In our

decomposition approach, we decompose the state space based on sub-grouping of targets.

In this example, we form two sub-groups. The first group consists of targets 1, 2, and 3.

The states for this group can be written as,

 
 
     

1 2 3 4032

1 2 3

1 1 , 1 , 1 ,..., 1 , ,

1 , , , , : {1, 2..., 4032},

0,1 , 0,1,2,...,6 , , 1, 2,...72

F

i i i i i i

j
i i i

S s s s s s

s b b b z i

b z d d



 



 

    . (4.5.2)

Note that, in decomposing the states, we kept the same values for variables z and v and

since we have only three binary flags for indication of collected data, the state space size

reduces to 4032. This is because we wish to recombine the value functions later. States

for the second group of targets i.e. 4, 5, and 6 can be written in a similar way as in

(4.5.2).

74

 
 
     

1 2 3 4032

4 5 6

2 2 , 2 , 2 ,..., 2 ,

2 , , , , : {1, 2..., 4032}

0,1 , 0,1, 2,...,6 , , 1, 2,...72

F

i i i i i i

j
i i i

S s s s s s

s b b b z i

b z d d



 



 

    (4.5.3)

The set of actions in the first group are

 0 1 2 31 , , , ,M NOOP    (4.5.4)

Similarly, the set of actions for the second group are

 0 4 5 62 , , , ,M NOOP    . (4.5.5)

Note that µ0 appears in both sets. The actions represent slewing or data collection

activities where data is collected only if the spacecraft is already pointed towards the

corresponding target and is within the data collection window. On the other hand, an

attitude maneuver is executed only if the spacecraft is not already pointed towards the

corresponding target as described previously in Section 4.3.2.

 Reward and cost functions and transition probabilities for both groups of targets can be

extracted from definitions in Sections 4.3.3 and 4.3.4. Subsequently, we refer to the MDP

formed by target group {1, 2, 3} as MDP1 and the MDP formed by target group {4, 5, 6}

as MDP2.

4.5.2 Recombination	of	Value	Functions	

Once the original MDP has been decomposed, the next step is to solve the two smaller

MDPs. This will yield optimal value functions V1* and V2* for the states of MDP1 and

MDP2 respectively. The estimate for the state of the original MDP can be calculated as

75

   

* *() 1 (1) 2 (2)

, ,

, 1, 2,..., 4032 , 1, 2,...,32256

est
i j k

j k i i j k

V s V s V s

where

z z z v v v

j k i

 

   

 

 (4.5.6)

Finally, the estimated policy is calculated using

'

() max () (, , ') (')est est

s S

P s C T s s V s


  


     
  


 (4.5.7)

4.6 Simulation‐based	Case	Studies	

4.6.1 General	Framework	Example	

In this section, we consider a spacecraft pointing problem for the case of three targets

(n=3). We present three examples to elaborate different tradeoffs in the selection of

parameters.

4.6.1.1 Example	1:	Effects	of	Failure	Probability	Parameters	

The states for this example are defined in Equation (4.6.1) where there are 2305 states

comprised of one failure state and 2304 normal execution states with all possible

combinations of three binary flags for indicating collected science data, the attitude

pointing variable z with four possible values and the true anomaly variable v with 72

possible values.

 
 
     

1 2 3 2304

1 2 3

, , ,..., ,

1 , , , , : {1, 2..., 2304}

0,1 , 0,1, 2,3 , , 1, 2,...72

F

i i i i i i

j
i i i

S s s s s s

s b b b z i

b z d d



 



 

   
 (4.6.1)

The set of actions is given by

76

},,,,{ 3210 NOOPM  (4.6.2)

The true anomaly windows for the targets were taken as:

      250,180,330,280,120,70W (4.6.3)

The periodic data acquisition indicator set is given by

}0,0,0{p (4.6.4)

This requires only one data collection activity for each target. Changes in true anomaly

incurred during various actions are specified as follows:

}3,2,1,0{

10,50

135,105,90

70,50,5

33221132

131203

020100







ijjiij 





 (4.6.5)

In (4.6.5), Δvij represents change in true anomaly incurred during change in pointing from

target i to j which is same as the change in pointing from target j to i. We have seven

different NOOP actions each incorporating changes in true anomaly given by

135

,105,20,90

,70,50,5

7

654

321






NOOP

NOOPNOOPNOOP

NOOPNOOPNOOP






 (4.6.6)

 We can use the above data and Equation (4.3.4) to compute possible outcomes of

executing each action in each state. We assumed rewards given by Equation (4.3.6) with

70,50,30 321  rrr (4.6.7)

For calculating costs using Equation (4.3.7), we assumed the following angles,

77

135,50

,105,90,70,50

1323

12030201







 (4.6.8)

where kj is the orientation angle required for slewing from target k to target j. Also, we

set δk = 1 for all targets k ϵ {1,2,…,n}. We selected ρ1 = 0.001 and ρ2 = 10-4 for

calculating transition probabilities in Equation (4.3.8). Also, we assumed δk = kk .

 Using the above information and the value iteration algorithm from Chapter 2, we

generated an optimal policy after 1395 iterations with discount factor γ = 0.99. Table 4-1

presents the first ten actions of an optimal trajectory starting from the state (000,0,0). The

trajectory in Table 4-1 is unique because each action has only two possible transitions as

shown in Figure 4.2.

Table 4-1: Optimal trajectory for example 1.

State Policy Outcome Probability
of failure

(000,0,0) μ1 (000,1,50) 0.05
(000,1,50) NOOP50 (000,1,100) 0
(000,1,100) μ1 (100,1,110) 0.0001
(100,1,110) μ2 (100,2,215) 0.105
(100,2,215) NOOP70 (100,2,285) 0
(100,2,285) μ2 (110,2,295) 0.0001
(110,2,295) μ3 (110,3,345) 0.05
(110,3,345) NOOP105 (110,3,90) 0
(110,3,90) NOOP90 (110,3,180) 0
(110,3,180) μ3 (111,3,190) 0.0001

 To illustrate the importance of the selection of design parameters, we present results

where we change ρ1 and ρ2 thereby changing the transition probabilities. Keeping all

other information the same as above, we changed ρ1 to 0.005 and ρ2 to 0.01 to represent a

more risky system. Table 4-2 shows the first ten actions associated with the optimal

policy/trajectory from initial state (000,0,0).

78

Table 4-2: Optimal trajectory with high risk

State Policy Outcome Probability
of failure

(000,0,0) μ1 (000,1,50) 0.25
(000,1,50) NOOP20 (000,1,70) 0
(000,1,70) μ1 (100,1,80) 0.01
(100,1,80) NOOP90 (100,1,170) 0
(100,1,170) μ0 (100,0,220) 0.25
(100,0,220) μ2 (100,2,290) 0.35
(100,2,290) μ2 (110,2,300) 0.01
(110,2,300) NOOP105 (110,2,45) 0
(110,2,45) NOOP90 (110,2,135) 0
(110,2,135) μ3 (110,3,185) 0.25
(110,3,185) μ3 (111,3,195) 0.01

The distinguishing move for the trajectory in Table 4-2 is taking μ0 from (100,1,170).

This move decomposes a high-risk single action μ2 into μ0 and μ2 with just 15 degrees

extra rotation (50+70 as opposed to 105). The probability of failure when executing μ2

directly from (100,1,90) is 0.525. In Table 4-2, the two actions executed instead have

0.25 and 0.35 probability of failure, respectively. In Figure 4.4 and Table 4-3, we present

a comparison between risk taken by the trajectories generated using aggressive and

conservative policies from the above cases. In this comparison, the initial states for the

trajectories are chosen at random (same initial state for both trajectories in each

simulation run). The trajectories run until all science data has been collected. The risk is

calculated using the following equation for each simulation run with ρ1 = 0.005 and ρ2 =

0.01.

 



traj

Trisk


 ',,1
 (4.6.9)

Figure 4.4 shows the cumulative distribution of the difference in risk taken by the two

policies for 250 simulations. Table 4-3 shows minimum, maximum, and mean values of

79

the difference in risks taken by both trajectories over 25, 250 and 2500 simulation runs.

Results show that the policy generated for low values of ρ1 and ρ2 takes more risk as

compared to the policy generated for high values of ρ1 and ρ2. This is expected since the

policy generated for high risk environment should be more cautious in selecting attitude

maneuvers.

Figure 4.4: Cumulative distribution of the difference in the risk taken by aggressive
and conservative trajectories

Table 4-3: Risk comparison (J = riskagg - riskcons)

of
Sim.

min(J) max(J) mean(J)

25 0 0.0788 0.0199
250 0 0.0788 0.0146
2500 0 0.0788 0.0157

4.6.1.2 Example	2:	Effects	of	Selection	of	Discount	Factor	(γ)	

This section presents a case where there is a conflict between time windows of the targets

so that the spacecraft can collect data from only one out of two conflicting targets. We

keep all the data as before except ρ1 =0.001 and ρ2 = 10-4. The time windows are also

changed to:

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

50

100

150

200

250
Cummulative Distribution of the Difference in the risk

Range

N
um

be
r

of
 c

as
es

 (
ou

t
of

 2
50

)

80

      130,40,330,170,150,50W . (4.6.10)

Table 4-4 shows first ten actions of an optimal trajectory from initial state (000,0,0). The

simulation required 1395 iterations with γ = 0.99.

Table 4-4: Optimal trajectory for γ = 0.99

State Policy Outcome Probability
of failure

(000,0,0) μ1 (000,1,50) 0.05
(000,1,50) μ1 (100,1,60) 0.0001
(100,1,60) μ2 (100,2,165) 0.105
(100,2,165) NOOP70 (100,2,235) 0
(100,2,235) μ2 (110,2,245) 0.0001
(110,2,245) μ3 (110,3,295) 0.05
(110,3,295) NOOP105 (110,3,40) 0
(110,3,40) μ3 (111,3,50) 0.0001
(111,3,50) NOOP5 (111,3,55) 0
(111,3,55) NOOP5 (111,3,60) 0

The trajectory with the same parameters and conditions is computed except with γ set to

0.8. This resulted in the optimal policy after only 64 iterations which yielded the

following trajectory from initial state (000,0,0).

Table 4-5: Optimal trajectory for γ = 0.8

State Policy Outcome Probability
of failure

(000,0,0) μ3 (000,3,90) 0.09
(000,3,90) μ3 (001,3,100) 0.0001
(001,3,100) NOOP20 (001,3,120) 0
(001,3,120) μ2 (001,2,170) 0.05
(001,2,170) μ2 (011,2,180) 0.0001
(011,2,180) NOOP135 (011,2,315) 0
(011,2,315) μ1 (011,1,60) 0.105
(011,1,60) μ1 (111,1,70) 0.0001
(111,3,70) NOOP5 (111,3,75) 0
(111,3,75) NOOP5 (111,3,80) 0

81

In Figure 4.5 and Table 4-6, we present a comparison between the risk incurred by data

collection trajectories generated from far sighted (γ = 0.99) and short sighted (γ = 0.80)

policies from above. In this comparison, the initial states for the trajectories are chosen at

random (same initial state for both trajectories in each simulation run). The trajectories

run until all science data has been collected. The risk is calculated using Equation (4.6.9).

Table 4-6: Risk comparison (J = riskSS – riskFS)

of
Sim.

min(J) max(J) mean(J)

25 0 0.0875 0.0084
250 0 0.1627 0.0070
2500 0 0.1627 0.0077

These results show that short-sighted trajectories are more risky than far-sighted

trajectories. Selection of γ therefore maps to a tradeoff between conserving the life of the

spacecraft and trying to complete the mission as soon as possible. Since γ is a general

parameter of the MDP formulation, this tradeoff should hold for general cases.

Figure 4.5: Cumulative distribution of the difference is the risk taken by far sighted
and short sighted trajectories over 250 simulations.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

50

100

150

200

250
Cummulative Distribution of the Difference in the risk

Range

N
um

be
r

of
 c

as
es

 (
ou

t
of

 2
50

)

82

4.6.1.3 Example	3:	Effects	of	Repeated	Targets	

We now cast Target 3 as offering reward from repeated data acquisitions i.e. we set p3 =

1 for this example. The time windows for the targets were selected as:

      250,180,330,280,120,70W (4.6.11)

 We first computed an optimal policy for the case γ = 0.99 with 1486 value function

iterations. With this policy the trajectory from (000,0,0) had the same first 10 actions as

in Table 4-1. Then the trajectory kept on choosing NOOP5 until it reached (111,3,355).

From there, the trajectory had the actions listed in Table 4-7 to enter the cycle.

Table 4-7: Optimal trajectory for γ = 0.99

State Policy Outcome Probability
of failure

(111,3,355) NOOP50 (110,3,45) 0
(110,3,45) NOOP135 (110,3,180) 0
(110,3,180) μ3 (111,3,190) 0.0001

 Since this example simulates a low-risk scenario, the policy tends to minimize the

number of actions required to collect data. Note that the data from all the targets to be

visited one-time were collected in the first revolution and then the spacecraft remained

pointed towards the target requiring repeated data acquisition. With γ = 0.8, the effective

planning horizon is reduced. The resulting policy had the following trajectory leading to a

cycle.

 Figure 4.6 and Table 4-9 show a comparison between risks taken by the trajectories

generated using periodic and aperiodic trajectories with γ = 0.99. In this comparison, the

initial states for the trajectories are chosen at random (same initial state for both

83

trajectories in each simulation run). The trajectories run until all science data has been

collected. The risk is calculated using Equation (4.6.9).

Table 4-8: Optimal trajectory for γ = 0.8

State Policy Outcome Probability
of failure

(000,0,0) μ1 (000,1,50) 0.05
(000,1,50) NOOP20 (000,1,70) 0
(000,1,70) μ1 (100,1,80) 0.0001
(100,1,80) μ3 (100,3,215) 0.135
(100,3,215) μ3 (101,3,225) 0.0001
(101,3,225) NOOP5 (101,3,230) 0
(101,3,230) μ2 (101,2,280) 0.05
(101,2,280) μ2 (111,2,290) 0.0001

NOOP5 until (111,2,355)
(111,2,355) μ3 (110,3,45) 0.05
(110,3,45) NOOP135 (110,3,180) 0
(111,3,180) μ3 (111,3,190) 0.0001

NOOP5 until (111,3,355)

Figure 4.6: Cumulative distribution of the difference is the risk taken by periodic
and aperiodic trajectories over 250 simulations.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

50

100

150

200

250
Cummulative Distribution of the Difference in the risk

Range

N
um

be
r

of
 c

as
es

 (
ou

t
of

 2
50

)

84

Table 4-9: Risk comparison (J = riskPeriodic – riskAperiodic)

of
Sim.

min(J) max(J) mean(J)

25 0 0.1215 0.0412
250 0 0.1359 0.0348
2500 0 0.1359 0.0339

 It is interesting to note that in this case periodic trajectories take more risk as compared

to aperiodic trajectories. This result should be true for general cases since periodic targets

may require additional attitude maneuvers since multiple time data collection is required

for such targets.

4.6.2 Approximate	Dynamic	Programming	Example	

In this section we present simulation results for the example introduced in Section 4.5.

We used same NOOP actions as in (4.6.6). The true anomaly windows for the six targets

are given by:

     
     








350,300,300,250,250,200

,200,150,150,100,100,50
W

(4.6.12)

All targets are aperiodic (i.e. require only one-time data collection). Changes in true

anomaly incorporated during various actions were specified as follows:

}6,5,4,3,2,1,0{

10

,30,80

,50,90,70,40

,130,100,70,50

,80,120,150,135

,105,60,40,80

,90,70,50,5

665544332211

5646

45363534

26252423

16151413

12060504

03020100












ijjiij 










 (4.6.13)

85

In (4.6.13), Δvij represents change in true anomaly incurred during change in pointing

from target i to j which is same as from target j to i. Rewards are given by Equation

(4.3.6) with the following parameter values:

80,60,40,70,50,30 654321  rrrrrr (4.6.14)

For calculating costs using Equation (4.3.7), we assume the following angles,

30

,80,50,90,70

,40,130,100,70

,50,80,120,150

,135,105,60,40

,80,90,70,50

56

46453635

34262524

23161514

13120605

04030201















(4.6.15)

Here, kj is the slew maneuver (angle) required for changing pointing from target k to

target j. Also, we set δk = 1 for all targets k ϵ {1,2,…,n}. We select ρ1 = 0.001 and ρ2 =

10-4 for calculating transition probabilities based on (4.3.8), and we assume δk = Δvkk.

 Optimal values were generated for the states of both MDPs using an infinite horizon

value iteration algorithm with γ = 0.99. The values were merged using the ADP addition

heuristic from Equation (4.5.6) i.e.,

* *
1 1 2 2() () ()estV s V s V s  , (4.6.16)

where s1 and s2 are states in the decomposed MDPs that combine to form state s in the

original MDP. For example, the state (010, 5, 255) (in group 1) and state (100, 5, 255) (in

group 2) combine to form the state (010100, 5, 255) in the main MDP. Finally, we

compute the estimated policy Pest using (4.5.7) with estimated values. We also solve the

main MDP and compute policy P* from optimal values.

86

 To compare the two policies, we carried out simulations in which trajectories were

computed using random initial state for both policies. The stopping criterion for a

trajectory was an execution of 200 actions after acquisition of data from all six targets by

both policies and five additional actions (to incorporate steady state behavior and account

for the fact that optimization is over infinite trajectories). Results are shown in Figure 4.7

and Table 4-10. The normalized expected values shown in Figure 4.7 and their difference

as shown in Table 4-10 for all simulations were calculated according to the following

equations:

 

 

    
00

0

0

2max,1maxmax

21

:])(2...)2(2)1(2[2

:)()()(2

:])(1...)2(1)1(1[1

:)()()(1

sw

EVEV

EVEV
EV

ssimulationxxevevevEV

simulationithCwREiev

ssimulationxxevevevEV

simulationithCsREiev

k

t
tt

t

k

t
tt

t


























(4.6.17)

Table 4-10: Comparison of P* and Pest

No. of
Simulations

∆EVmax ∆EVmin ∆EVmean

25 0.0459 0 0.0150
250 0.0750 0 0.0182
2500 0.1203 0 0.0189

 The results show that the ADP-based policy attains on average 98% of the optimal

reward attained by the optimal policy. The computational complexity of the original

MDP is of the order 1010, whereas the computational complexity of the ADP-based MDP

is of the order 108, two orders of magnitude less. Figure 4.7 shows that for most states the

percentage difference in the expected values obtained by the optimal and the estimated

87

policies is quite low. In fact the maximum percentage difference for all possible states

(32,256) is 13.6. This verifies the results presented in Table 4-10.

Figure 4.7: Cumulative distribution of the percentage difference in expected values
obtained by trajectories of P* and Pest

4.6.3 Further	Analysis	of	the	Approximate	Dynamic	Programming	Example	

In this section, we present the performance results of the approximate dynamic

programming example from Section 4.6.2. To be precise, we change the values for

different parameters in the planning MDP and record the performance of the ADP-based

MDP. The expected reward for simulated trajectories with each possible initial state is

then compared for ADP-based MDP against the original MDP. Table 4-11 shows the

results for variations in the epoch (horizon length), discount factor (γ), weighting factor

for goal state reward (α), risk factor (ρ1), and level of overlap for the data collection

windows of the targets. Note that the level of overlap ranges between 1 and 10 where

level 10 is the least overlap. Data collection windows for level 10 are the same as in

Section 4.6.2 and for every level below level 10 the windows for targets 4, 5, and 6 are

shifted back in true anomaly by 15 degrees. This means that for the level 1 overlap, the

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Cumulative distribution of the difference in expected reward

N
um

be
r

of
 s

ta
te

s

Range (%)

88

data collection windows for targets 4, 5, and 6 are [65,115], [115,165], and [165,215]

respectively. Recall that the data collection windows for targets 1, 2, and 3 are [50,100],

[100,150], and [150,200] respectively.

Table 4-11: Performance results for the ADP-based MDP

Variable
Factor

Constant
Factors

Best Average
performance

Worst Average
Performance

Worst case
Performance

Epoch: 3-50 γ = 0.99
α = 1000
ρ1 = 0.001
Level of
overlap = 1

99.9% for
Epoch = 3

93.5% for
Epoch = 8

34% for Epoch
= 10

γ =
0.29:0.1:0.99

α = 1000
ρ1 = 0.001
Epoch = 50
Level of
overlap = 1

99.9% for γ =
0.29

96.7% for γ =
0.79

54% for γ =
0.79

α =
100:500:5000

γ = 0.99
Epoch = 50
ρ1 = 0.001
Level of
overlap = 1

99.3% for α =
600

98.9% for α =
100

88% for α =
100

ρ1 =
0.001:0.01:0.1

γ = 0.99
Epoch = 50
α = 600
Level of
overlap = 1

99.3% for ρ1 =
0.001

62.1% for ρ1 =
0.021

9.6% for ρ1 =
0.071

ρ1 =
0.001:0.01:0.1

γ = 0.99
Epoch = 11
α = 1000
Level of
overlap = 1

95.2% for ρ1 =
0.001

87.6% for ρ1 =
0.021

31.5% for ρ1 =
0.051

Level of
Overlap = 1-10

γ = 0.99
Epoch = 11
α = 1000
ρ1 = 0.07

92.4% for
Level of
overlap = 1

90.5% for Level
of overlap = 10

28.7% for Level
of overlap = 10

Level of
Overlap = 1-10

γ = 0.99
Epoch = 50
α = 1000
ρ1 = 0.001

99.3% for
Level of
overlap = 1

94.4% for Level
of overlap = 9

60.3% for Level
of overlap = 9

89

The worst-case results in Table 4-11 are for Epoch = 10 where the variable factor is

Epoch and for ρ1 = 0.071 where the variable factor is ρ1. Upon further analysis of these

cases, we found that Epoch = 10 has bad performance because the policy generated using

the original MDP is able to complete the mission in 10 steps and hence collects additional

reward corresponding to mission completion (see Equation (4.3.6)) whereas the policy

generated using the ADP-based MDP is unable to complete the mission. For lower or

higher values of the Epoch, either both MDP policies are able to complete the mission or

both are unable to complete the mission and hence the performance of the policy

generated using the ADP-based MDP is reasonable for those values of the Epoch. In the

case of ρ1 = 0.071, a similar situation arises. In this case, the policy generated using the

ADP-based MDP is unable to complete the mission because the value of risk factor is too

high to enable a sufficient set of attitude maneuvers to complete the mission whereas the

same value of ρ1 does not prevent the original MDP from completing the mission. This

suggests that the policy generated using our proposed ADP approach is conservative (at

least in case of our case study) as compared to the original optimal policy. Also for

higher or lower values of ρ1, where either both MDP policies complete the mission or

both MDP policies do not complete the mission due to high risk, the performance of the

ADP-based MDP policy is reasonable.

4.7 Alternate	Formulations	and	Complexity	

This chapter presents one of many possible MDP formulations for spacecraft mission

planning. Every mission has its own specific requirements and specifications that likely

result in complexities in the state-space beyond decomposing the mission into a set of

independent objectives. For example, some missions may require management of energy

90

resources while others might require the decision about when to communicate with the

ground station. There also might be factors such as pointing towards or away from the

sun under certain circumstances, variable costs of the mission-related actions,

occurrences of exogenous events that might change the mission objectives and/or their

relative importance e.g. science rewards etc. Regardless of additional model attributes,

the MDP remains a general-purpose tool for spacecraft activity planning. The ADP,

potentially with analogous decomposition over true anomaly observation windows, is still

a viable approach to reducing complexity to manageable levels.

 Once the problem is formulated as an MDP, it can be solved for finite-horizon optimal

policies using backward induction [84]. Backward induction allows the reward and cost

functions and the transition probabilities to be time-varying. When using backward

induction, it is important to select an optimal horizon length that allows for the

completion of the mission even in the presence of certain faults. Another important issue

is the selection of the state space. A careless selection may lead to unnecessarily large

state space size making it difficult to compute the solution. Often there are weak links

between the decisions and the information required to make those decisions that create a

chance to decompose a large MDP into smaller MDPs without losing much optimality.

Such situations of reducing the computational complexity should be considered. Defining

the actions to be context-dependent sometimes also reduces state-space size. For

example, in our formulation, we used only one action for both data collection and attitude

maneuvering. Options like this should be explored based on the structure of the problem

at hand.

91

4.8 Conclusions	

We have modeled the problem of autonomous planning of spacecraft pointing sequences

based on the theory of Markov Decision Processes. Our objectives were to maximize the

science reward, account for action cost (such as energy consumption) and treat emerging

failure states. We have also presented a method to implement our framework in a finite

receding horizon scenario and an approximate dynamic programming formulation to

reduce complexity for large-scale problems.

 The presented framework accounts for one-time and repeat-visit targets and

incorporates observation time window constraints. Our case studies demonstrate that

changing the risk probability strongly influences the control policy from maximizing

more immediate rewards to reducing risks. We also demonstrate that the policy generated

by using our framework can deal with conflicts in target observation windows while

maximizing science rewards. In the case of sufficiently long planning horizon, the

optimal policy resulting from our models and cost assumptions is to collect data from

one-time targets first before collecting data from repeat-visit targets. However, if the

effective planning horizon is reduced by decreasing the discount factor then the optimal

policy equally emphasizes collecting data from repeated targets as from single visit

targets.

 In this chapter we also presented an example of approximate dynamic programming

which indicated that the policy calculated using approximate value functions using our

proposed ADP algorithm can perform almost as well as the policy calculated from

optimal integrated value functions.

92

 In future work we will develop a formulation that incorporates re-planning and

contingency planning based on observed failures that cause the current planner to halt its

executing plan (i.e., safe the spacecraft). Also we anticipate that in future spacecraft

missions, the spacecraft can be made more robust by learning over time the values of

rewards, risks, and even transition probabilities.

93

 	Chapter	5

Conflict	Resolution	Algorithms	and	Collaborative	Fault	Detection	

This chapter first describes two algorithms for conflict resolution between two fault

detection schemes then uses these algorithms for collaborative fault detection. In our first

conflict resolution method, we assume initially that there is no conflict and optimize

detection thresholds of both fault detection schemes with respect to a partial cost function

that penalizes false alarms and missed detections. Then we continuously update

thresholds based on a comprehensive cost function that penalizes conflicts in addition to

false alarms and missed detections. Our updates are bounded and managed in such a way

that the cost function always assumes the lowest possible cost as a function of thresholds.

We make use of residual signals to minimize computational complexity.

In our second conflict resolution method, we present a different solution to the conflict

resolution problem using a Markov Decision Process framework that generates an

optimal policy for adjusting the fault detection thresholds. This method is

computationally more complex but it is more general, does not require knowledge of

residuals, and does not require initial optimization of the thresholds. We introduce an

error signal that indicates failure in resolving the conflict using threshold updating in

which case, a supervisor (human or computer) can be alerted and prompted to take a

corrective action. We illustrate our methods on a spacecraft attitude control thruster-valve

94

system simulation with high noise. Our results show good performance and substantial

reduction in conflicts under highly uncertain conditions.

 In the second part of this chapter (sections 5.8 through 5.14), we present a framework

based on MDP for facilitating the implementation of collaborative fault detection through

conflict resolution. The conflict arises when two fault detectors make opposite decisions

about the presence of a fault. Transition probabilities for various modes of the

components within the system are represented by a Bayes Network. The transition

probabilities for some fault flags given applied changes in thresholds are assumed to be

pre-calculated using Monte Carlo simulations or other similar methods. Since MDP

suffers from the curse of dimensionality, we also present an approximate dynamic

programming (ADP) approach for our framework based on decomposition and

recombination of states. A comprehensive example is included to demonstrate the

implementation of the proposed framework and corresponding ADP approach.

5.1 Conflict	Resolution	Algorithms	

Autonomous aerospace systems require increasingly sophisticated fault protection

systems that maximize their ability to maintain a safe operational state in the presence of

onboard system failures or environmental anomalies that pose risk or degrade

performance. Several strategies have been proposed [99][75][111] to detect, diagnose,

and reconfigure in the presence of faults. The Markov Decision Process (MDP) and

variants have been considered to manage discrete system models [75][104], while signal

filtering, system identification, and adaptive control algorithms have been developed to

manage physics-based (continuous) system models [111]. While many of the decisions

95

made by discrete versus physics-based deliberation engines are distinct, many decisions

or conclusions can also impact or overlap with the others [70].

 Considering the cost of space missions, their associated communication constraints, and

the amount of risk involved due to hostile and uncertain deep space environment, it is

desirable for space missions to have multiple fault detection schemes. In this situation,

two or more detection schemes may occasionally render inconsistent decisions about the

occurrence of a fault. Therefore, a conflict resolution algorithm is desirable.

 This chapter presents a formal language and protocol by which symbolic and physics-

based fault management systems can share information to negotiate consistent decisions

with respect to fault detection. Specifically, we present two methods of conflict resolution

that minimize or eliminate discrepancies between the fault information obtained from two

separate fault detection algorithms. Our methods apply to any pair of detection

algorithms that satisfy corresponding assumptions. Our first method is based on initial

threshold optimization with respect to a partial objective function and subsequent

threshold updating that is optimal with respect to a specified cost function. While

optimizing the thresholds, we make use of residual signals to minimize computational

complexity. If the resulting minimum value of the objective function allows a persistent

unresolved conflict, an error flag is generated that can be used to alert a human

supervisor. The updating equations for thresholds attempt to keep the thresholds as close

to the optimal values as possible without causing a conflict, with changes optimized

within bounds imposed to achieve minimum acceptable performance criteria.

 Our second conflict resolution method is based on a Markov Decision Process (MDP).

This approach makes use of the reward function and discount factor to optimize changes

96

in fault detection thresholds. This method does not require knowledge of residual signals

but it is also more computationally-intensive.

 In this chapter we apply our conflict resolution strategy to a spacecraft example in

which we model continuous time dynamics of the spacecraft and associated faults, as

well as a limited number of discrete parameters (e.g., instrument on/off, valve open/shut).

Our first fault detection scheme is based on an Interacting Multiple Model (IMM)

framework that uses multiple models for the spacecraft to represent dynamics associated

with certain specific fault conditions. With this strategy a bank of observers use the

sensor data to compute the residuals for each fault models. The model with the lowest

residual is assumed to be the true model and the fault condition that it relates to is

considered to be the true condition of the spacecraft. Our second fault detection scheme is

based on state transition system [104] with Markov assumption. Fault detection is based

on the likelihood of reaching failure states given the transition probability table.

 In the next sections, we define the problem and present the two fault detection schemes

in the context of a limited spacecraft fault detection model. In Section 5.5, we present our

threshold optimization and updating methods. Section 5.6 shows simulation results.

5.2 Basic	Threshold	Adjustment	Approach	to	Conflict	Resolution	

To motivate subsequent developments, we consider a system that uses two schemes to

detect a particular fault. We assume that the performance of each scheme is represented

by the probabilities of missed detection P(MD) and false alarm P(FA), which are

functions of adjustable parameters or thresholds associated with each scheme. Let

1 2(,)J v v be a risk-based cost function which determines the combined performance of

97

two fault detection schemes (denoted 1 and 2) as a function of two scalar fault parameters

v1 and v2, one parameter for each scheme,

       1 2 1 1 1 1 1 1 2 2 2 2 2 2(,) | | | |J v v a P FA v a P MD v a P FA v a P MD v      

 (5.2.1)

Here 2211 ,,,  aaaa are positive weights that can be adjusted to emphasize missed detection

and false alarms of either scheme. Note that 1 2(,)J v v is a separable function of its

arguments, i.e., it can be represented as 1 2 1 2
1 2(,) () ()J v v J v J v  .

 Suppose now the two schemes make calls regarding the presence or absence of a

particular fault given the vector of current inputs and operating conditions, U. The fault

flags of the two schemes are denoted by 1 1 1 2 2 2(,), (,)b v U b v U . The fault flag functions

take binary values, either 0 or 1, depending on the inferred absence or presence of a fault.

 The existence of a conflict corresponds to a situation in which 1 1 1 2 2 2(,) (,)b v U b v U ,

i.e., one of the schemes indicates a fault and the other does not. To resolve an apparent

conflict, a fault or no fault decision needs to be made. Such a call can be made by

adjusting 1v and 2v so that 1 1 1 2 2 2(,) (,)b v U b v U and J is minimized.

1 2

1 2

,

1 1 1 2 2 2

(,) min

. .

(,) (,) 0

v v
J v v

s t

b v U b v U



 
 (5.2.2)

Due to the discontinuous nature of the fault flags, 1 1 1(,)b v U and 2 2 2(,)b v U , which take

binary values, the above optimization problem as stated can only be solved by a

systematic grid search.

98

 The case in which an easier solution strategy can be defined is when the parameter iv is

an additive threshold, i.e., the fault flags satisfy

1,2)(i 0)(h iff 0),(i  iiii vUUVb (5.2.3)

Here, ()i ih U are outputs (smooth functions) that we compare against the thresholds, and

()i i ih U v are residuals. In case of multiple thresholds, where vi and hi(Ui) are vectors,

the inequalities in (5.2.3) are understood in a component-wise sense. In this case, given

that the objective function 1 2(,)J v v is separable, the original optimization problem

reduces to a finite number of smooth optimization problems that can be solved

numerically. Modifications of these ideas will be used in the subsequent sections to

define and illustrate two conflict resolution schemes.

5.3 Problem	Formulation	

We now discuss specific assumptions about the two fault detection schemes for which

conflicts are to be resolved.

A1. Both detection schemes use numerical thresholds that determine the values of

fault flags based on the information available and the inputs to the detection

schemes.

A2. The residual signal which is the difference between an output and a threshold,

based on which the fault flag is set, is known.

A3. The probabilities of false alarm (FA) and missed detection (MD) for each

overlapping fault in both detection schemes are known (not necessarily

analytically) and are monotonic functions of thresholds.

99

A4. The communication of the information between the conflict resolution and fault

detection schemes, and computations, are instantaneous.

These assumptions are justified for many practical detection schemes. Problem

Statement: Under the assumptions stated above, devise an algorithm for conflict

resolution between two fault detection schemes to reach consensus with minimum

probabilities of false alarms and missed detections.

Below, we first present fault detection algorithms for a spacecraft. We then describe

conflict resolution methods and apply them to the spacecraft case study.

5.4 Example	Fault	Detection	Schemes:		A	Spacecraft	Case	Study	

We now present a spacecraft case study to illustrate the use of two fault detection

schemes and associated need for a conflict resolution strategy. One of the fault detection

schemes makes use of the physics-based dynamics model and the other makes use of a

qualitative, logic-based model.

 Consider a 1 DOF satellite attitude control system with two thrusters as shown in

Figure 5.1. The dashed line shows the axis of rotation. Two thrusters are mounted in such

a way that they produce equal and opposite forces resulting in torque about the axis of

rotation.

Figure 5.1: 1 DOF satellite schematic

100

The equations of motion for this system in normal (no-fault) mode can be written as

(1) () () (),

() () ().
cx k Dx k Eu k G k

y k Lx k N k




   

 
 (5.4.1)

Here, state vector x represents orientation and angular velocity of the spacecraft, uc ϵ {0,

1} represents an impulsive thrust value of off (0) or on (1); y represents sensor readings, ε

represents system disturbances, and η represents sensor noise. Matrices D, E, G, L, and N

are assumed to be of appropriate dimensions. We assume disturbance and noise are

normally distributed with zero mean values and known variances. Our physics-based

fault detection technique relies on the Interacting Multiple Model (IMM) approach [112].

In this approach, we make use of the fact that, under certain faults (or combination of

faults), the system has a specific and known dynamic model. Transitions between the set

of possible dynamics models can be treated as discrete jumps. In this chapter we consider

only one fault case, i.e. thrust failure. This leads to a discrete state m(k) taking values in

state set S = 0,1. At each decision step k, transition probability ()ij k of the model can be

defined by

() { () | (1) } ,

() 1 0,1

ij

ij
j S

k P m k j m k i i j S

k i






     

 
 (5.4.2)

Now, consider a system model representing the fault states plus a nominal operation state

(0).

(1) () () () () () ()

() () () () ()

0,1

j j c j j

j j j

x k D k x k E k u k G k k

y k L k x k N k k

j





   

 



 (5.4.3)

With the following values for disturbance and noise covariance:

101

jIPIRIQ

PxxRkkQkk

jjjj

jjjjjjj





2022

00

10,05.0,01.0,0

],[)0(];),([)(];),([)(



 ΝΝΝ
. (5.4.4)

Each cycle of IMM-based fault detection consists of four steps: mixing of estimates,

model-conditional filtering, mode probability update and fault detection and diagnostics

(FDD) logic, and combination of estimates [112]. Details of these steps for n-fault case

are presented in [112]. Fault flag b is set based on whether or not the likelihood of a

mode has crossed corresponding threshold v1.

1

1

1 : { () 1}
()

0 : { () 1}

if P m k v
b k

if P m k v

  
 

 
 (5.4.5)

For our spacecraft, we define candidate probability functions for missed detection (MD)

and false alarm (FA) for IMM. As mentioned earlier, we assume that these functions are

monotonic with the value of v1 (see Figure 5.2).

1

1

10(0.4)

10(0.6)

1
(|)

1
1

(|)
1

v

v

P FA v
e

P MD v
e



 







 (5.4.6)

Figure 5.2: Example MD and FA probabilities versus threshold for IMM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold v

P
er

fo
rm

an
ce

 P
ro

ba
bi

lit
ie

s

P(FA|v)

P(MD|v)

102

 Our second fault detection scheme for the same 1 DOF spacecraft is based on a

qualitative model of the system that models components, their composition, and possible

discrete value sets. As shown above in Figure 5.1, the main spacecraft components of

interest are valves and thrusters. For fault detection purposes, we define the following

logical clauses to describe the healthy system:

1 1 2

1 2 1

1 2

1 2

() ,

() ,

() ,

() .

i V T T

ii T T V

iii T T

iv T T

 
 

 


 (5.4.7)

Here, V1 represents that the corresponding valve is open and its complement  V1

represents a closed valve. Similarly Ti represents that thruster i is on and its complement

Ti represents an off thruster. In this model, we make use of the facts that the valve must

be open for the thrusters to be on and the thrusters operate as a pair. This model can

detect faults based on sensor readings. To identify faults, we may use the scheme

presented by Williams et al [104]. We define the system by triplet   ,,S for

valve V1 where  denotes the set of possible state features,  is the set of possible feature

value sets, and  is a finite set of transitions between states. In our example, we have

 

 1 2 (2 3 3) (2 3 3)

, , ,

{{ , },{ , , },{ , , }},

, ,..., .

status cmdin senout

normal failed open close none open close none

       

 

 

 

 (5.4.8)

Each transition is characterized by transforming the state variables from one set of values

to the same set or any other set reachable through a transition in . Thruster states are a

function of valve states; therefore we do not model thrusters with separate transitions. For

each given state configuration, there is a set of possible transitions with associated

103

probabilities, where the sum of all probabilities is equal to 1. This leads to the transition

probability table of size 18×18 which we assume to be known.

 If we represent Ot as the set of observations at time t and µt as the set of possible

commands or actions, we can obtain the set of feasible states at time t+1 as

 1 1.t j t t Ot
j

S S S S 

 
  
 
    (5.4.9)

Once, St+1 is computed, we can determine the most likely trajectories using Bayes rule,

(|) ()
(|) .

()
t

t
t

P O P
P O

P O

   (5.4.10)

In Equation (5.4.10), if τ(St-1) and Ot are disjoint sets then clearly P(Ot| τ) = 0. Similarly,

if τ (St-1) is a proper subset of Ot then Ot is entailed and P(Ot| τ) = 1, and hence the

posterior probability of τ is proportional to the prior. If neither of the above two situations

arises then P(Ot| τ) < 1. Estimating this probability is intricate and requires more research

[104]. Finally, the best estimate of current state is found using conflict-directed best first

search. Once the conclusion is made about the current state of the valve, fault flag b for

the fault is set (1) if a valve has status = failed and is cleared (0) otherwise. Failure status

is computed from observation O and hence the thresholds since the observed values

depend upon comparisons of sensor values against the thresholds.

2

2

: ,

: ,

: .

open if SensedVoltage v

senout close if SensedVoltage v

none if SensorFailed

 
 



 (5.4.11)

This scheme can detect thruster failures based on valve failures. For example, let us

consider the case where valve V1 is used to supply fuel to thrusters. If cmdin = open but

senout = close after an appropriate delay from initiation of the open instruction then the

104

valve is failed in close mode; note that in this simplified model we assume a failed sensor

will reliably give a SensorFailed status. The probabilities in Figure 5.3 depend upon the

threshold, control command, and the previous state of the valve itself. For conditions

when probabilities change with threshold i.e. trying to open a closed valve or close an

open valve, we can model the probabilities as functions of threshold in a similar way as

we did for the IMM-based detection scheme. In Figure 5.3 we present example relations

between probabilities and threshold for the case when a closed valve is commanded to

open (corresponding fault is stuck shut or failed in close mode).

Figure 5.3: Performance probabilities vs. threshold for the knowledge-based
detection scheme

The above curves are based on 5 volt fuel pressure sensor readings (horizontal axis)

where the fault output is either 0 or 1 indicating the valve as close or open, respectively.

Note that, as we increase the threshold, the probability of false alarm (FA) increases

because there is greater chance of sensor reading 0 when it actually might be 1 and hence

producing an incorrect detection of the valve as close when it actually is open. Analogous

behavior is exhibited in probability of missed detection (MD). Note that the chosen

sigmoid functions are monotonic and given by

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold v

P
er

fo
rm

an
ce

 P
ro

ba
bi

lit
ie

s

P(FA|v)

P(MD|v)

105

2(3)

2(2)

1
(|) ,

1
1

(|) .
1

v

v

P FA v
e

P MD v
e

 









 (5.4.12)

 Although the two fault detection schemes presented above are based on different

models, they share key properties that can be utilized. Specifically, we can manage their

thresholds to resolve conflicts at the expense of decreased performance in terms of MD

and FA probabilities. Below we introduce a framework to recursively optimize thresholds

so that the conflicts are minimized while maximizing performance in terms of MD and

FA probabilities.

5.5 Conflict	Resolution	

Consider the following conflict resolution cost function Jc.

        
 2,1:0,0,0

,,|| 222111








iiqaa

UvbUvbqvMDPavFAPaJ

ii

i

iiiiii
c

 (5.5.1)

In this equation, superscript i represents the detection scheme, ia , ia , q are penalty

factors or weights, v1 and v2 are thresholds, and U1 and U2 are inputs to the detection

schemes.

 Objective function (5.5.1) has two main terms. The first term can be interpreted as a

measure of risk incurred by changing the thresholds. The second term penalizes conflicts

between the specific faults detected by the two schemes. Note that the second term

depends on Ui which represents the command and sensor signals available to the

detection scheme i.

106

5.5.1 Threshold	Optimization	

Define the first term of (5.5.1) as

    
 2,1

||



 

i

vMDPavFAPaJ
i

iiiiii

 (5.5.2)

Note that

 2,1

)(

)(

)(

)(




















i

v

MDP

MDP

J

v

FAP

FAP

J

v

J
i

i

ii

i

ii (5.5.3)

We assume nominal threshold values iv are chosen to minimize J so that

 2,1

0









i
v

J
vv

i
ii

 (5.5.4)

We denote 1 2(,)J v v by J*. Note that J is a separable function i.e. we can optimize FA

and MD probabilities for each fault detection scheme separately. The following result

then emerges.

Theorem 	 1: Based on the assumptions in Section 5.3, the minimum of Jc is achieved at

thresholds 1v and 2v such that either 1 1v v or 2 2v v or both.

Proof: The proof follows from the observation that the fault flag changes if there is a

change in the threshold exceeding the residual, monotonicity of P(FAi|vi), P(MDi|vi) as

functions of vi and positivity of the weights.

5.5.2 Residual‐based	Conflict	Resolution	

We now present our first method of conflict resolution that uses knowledge of residuals

for threshold variation when the two fault detection schemes produce inconsistent

decisions regarding the presence of a particular fault. Underlying this method is a

107

mathematical formulation of the threshold update equations for both fault detection

schemes. With threshold updating, we are able to resolve fault decision conflicts in

situations where the disagreement is not strong. By strong disagreement, we mean the

cases for which the required change in thresholds causes the cost function increase

beyond a given bound. We define the upper bound of cost function based the penalty

weight on the conflict. For the cases where disagreement is strong, the thresholds are kept

at their optimal values while an error signal is generated to alert a higher level supervisor

that the conflict was not resolved.

 The upper bound on cost function is defined as

*
maxJ J q  (5.5.5)

 The cost of resolving the conflict based on the knowledge of the residual signal for each

scheme is given by

 
(,)

, 1, 2 ,

i i i jJ J v v v

i j i j

  

 
 (5.5.6)

Here, Δvi is the change in threshold for the ith scheme required to resolve the conflict

without changing the threshold for the other scheme.

 The threshold for each scheme is updated based on the following equation

 

 2,1

)(
1,:

,,min:
)(

)1(
max

21

21
max


















i

otherwisetv
iJJJor

JJJJif
vtv

tv
i

i
ii

i

 (5.5.7)

5.5.3 Conflict	Resolution	based	on	the	Markov	Decision	Process		

In this subsection, we present a different solution to the conflict resolution problem based

on a Markov Decision Process (MDP) framework. In this case we eliminate assumption

108

A.2 of Section 5.3 which states that we have knowledge of residual signals. Hence we

solve the problem of conflict resolution for any two schemes with independent fault

detection such that each fault flag depends upon the value of a scalar parameter. Even

though this parameter is not necessarily a threshold, we will refer to it as a threshold for

consistency. The optimal MDP policy is then generated for adjusting the threshold(s) of

the schemes to reach consensus between the fault flags.

 The MDP framework uses a set of MDP states s1, s2, s3… and leads to an optimal

policy that can maximize the time-discounted utility of states i.e.

0

* arg max () | .t
t

t

Val E R s


 




 
  

 
 (5.5.8)

The states of an MDP-based conflict resolution algorithm for a fault detected by two

schemes can be defined as:

 

 
 

1 2 3

1 2 1 2

, , ,...,

,

, , , ,

1, 2,..., .

N

i i i i i

S s s s s

where

s b b v v

i N







 (5.5.9)

Here, S contains states with all possible values of fault flags and thresholds related to the

fault. We represent the threshold value set with a finite number of equally-spaced discrete

values k
iv . Number of states N depends upon the size of Δv and the range of v. In

particular, if the number of possible values of each threshold is z, then N = 4z2.

The actions are represented as

 1 1 2 2, , , ,M NOOP       (5.5.10)

109

and correspond to the following possible actions: 1) increasing (1
) or decreasing (1

)

the threshold of the first detection scheme by Δv1; 2) increasing (2
) or decreasing (2

)

the threshold of the second detection scheme by Δv2; 3) no change (NOOP). Note that

each action can result in four possible states. This is because we can change the threshold

but cannot guarantee a specific transition in fault flags as the latter is determined by other

signals the flags depend upon. Note that NOOP results in states with the same thresholds

and same values of fault flags.

 Rewards for each state can be represented as

 
  0,,,,...,2,1

)|()|()|()|(exp)(21222222111111












kk

iiiiiii

Ni

bbvFAPvMDPvFAPvMDPsR

(5.5.11)

Reward depends upon MD and FA probabilities as well as conflicts in each state.

To find the transition probabilities, statistical information about the fault detectors used

should be collected. This can be done by using Monte Carlo simulations, in particular by

observing the transitions of the fault flags in response to increment and decrement in each

instantiation of the thresholds. From the obtained information, probabilities of fault flag

transition can be calculated:

     
(, ,)

1, 2 , , , , 1, 2,...,

k
i r pT T s s

k r i p N



    
 (5.5.12)

 In the MDP, an optimal policy can be calculated using the value iteration algorithm.

The policy that selects the optimal action may be found as

*

,
() arg max (, ,) ()

p

k
i i r p p

k r s S

P s T s s Val s


 
   

 


 (5.5.13)

110

There is a direct relationship between the utility of a state and the utilities of all the states

that can be reached from that state in a single optimal action. This relationship can be

expressed using the Bellman equation:

   

1
,

() () max (, ,) ()

, , 1, 2

k
t i i i r p t p

k r
p i

Val s R s T s s Val s

r k

 


 
   

 
   



 (5.5.14)

where Valt+1(si) is the utility of state si at iteration t+1, R(si) is the immediate reward of

state si, and T (si , μr
k, sp) is the probability of transitioning from state si to sp by executing

action µr
k. With this structure, the MDP computes the best available threshold setting

(action) for each state. The computational complexity of the value iteration algorithm is

5N2 or O(N2) per iteration of Equation (5.5.14). The number of iterations required for

convergence within a specified error tolerance depends upon the tolerance itself and the

discount factor γ.

5.5.4 The	Supervisor	Alert	

Since neither of our conflict resolution schemes guarantee 100% resolution of conflicts, it

is important to have a supervisor (human or software) that can handle strong conflicts. A

detailed algorithm for such a supervisor is beyond the scope of this chapter. However,

one approach to generating an alert flag for a supervisor can be based on the following

equation:

 

 
  iiii

UtvbUtvbtctctUtvbUtvbtc

llcte

iiiiiiiiiiii

t

ktl





 


,2,1,

)),1(()),(()()1()(,)),(()),(()(

)()()(
1





 (5.5.15)

111

Equation (5.5.15) has two interesting properties. First, it has a moving window that

indicates a persistent conflict. The moving window is important to avoid intermittent

anomalous situations that may be due to short-term external or internal disturbances. The

second feature is the use of an oscillation flag that avoids the generation of an error flag

for the case of non-persistent fault flags causing a persistent conflict. The oscillation flag

can also be used to detect particular failures such as power system failures causing

fluctuations in voltages, etc. The information about unresolved faults can be used to make

adjustments in system models and/or in the fault detection schemes to account for a

change in the environment or the system itself.

5.6 Simulation	Results	

5.6.1 Residual‐based	Conflict	Resolution	

We tested our threshold adjustment conflict resolution strategies for the case study of

Section 5.4. Recall that for IMM-based fault detection the residual is the difference

between the threshold v1 and the probability of fault mode, and for logic based fault

detection the residual is the difference between the threshold v2 and the voltage output of

the fuel pressure sensor. Based on our assumptions, the fault flag switches when the

residual changes sign. For these simulations, we command the thruster on/off periodically

with time period of 20 time steps and incorporate zero mean Gaussian noise in the

residuals with variance of 60% of their maximum value i.e. variance of 3 for the 5 volt

sensor output in logic based fault detection and variance of 0.6 for the probability of fault

mode in IMM based fault detection. We did not inject the fault in our simulations.

Therefore the conflict resolution is equivalent to mitigating a false alarm in one of the

two schemes.

112

 We selected the cost function as

),(),()|(7)|(5)|(7)|(5 22211122221111 UvbUvbvFAPvMDPvFAPvMDPJ 

(5.6.1)

The value of J* is 6.3129 and Jmax = 7.3129 from (5.5.5) and (5.6.1). We measure the

performance gain for our conflict resolution scheme as

1 2
max

max

(,)
100

J J v v
PG

J


  (5.6.2)

Table 5-1 shows simulation results for the conflict resolution algorithm based on the

knowledge of residuals. Note that the conflict is resolved 100% of the time and the

average performance gain is about 54%.

Table 5-1: Simulation results for residual-based conflict resolution
No. of Simulations No. of conflicts

incurred
No. of Conflicts

Resolved
Average

Performance Gain
50 5 5 54.15%
500 52 52 54.%
5000 554 554 54.05%

25,000 2463 2463 54.08%

Figure 5.4: Cost as a function of thresholds

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
6

7

8

9

10

11

12

13

14

v1
1

C
os

t
F

un
ct

io
n

J

v1
2 = 0.18

v1
2 = 0.38

v1
2 = 0.58

v1
2 = 0.78

v1
2 = 0.98

113

5.6.2 MDP	Based	Conflict	Resolution	Method	

We next consider the use of the MDP conflict resolution algorithm. Also, in these

simulations, the thruster is commanded on and off at the same period as above. We used

the following parameter values for our simulations.

     

1 2 1 1 2 2

1 2

0.25, 0.05, 5, 7, 5, 7, 100

21, 1764, 0,5 , 0,1 , 0.9, 0,0,2.25,0.55initial

v v

z N v v s

    


           

     

 Our numerical experiment consisted of executing the optimal policy on fault flags

generated from both schemes based on similar residual signals as for simulations with the

residual-based algorithm. The difference here is that the MDP does not make use of the

residual signals and hence the number of optimal actions required to resolve a given

conflict is unknown.

Table 5-2: Simulation results for MDP-based conflict resolution with 2 actions per
conflict

Simulation Time
steps

No. of conflicts
incurred

No. of Conflicts
Resolved

Average
Performance Gain

50 8 6 53.2%
500 41 34 53.1%
5000 413 312 52.97%

25,000 2215 1698 52.99%

Table 5-2 shows the simulation results where we allowed a maximum of two actions per

conflict. The performance gain is evaluated based on (5.6.2). Note that the MDP is unable

to resolve all the conflicts within 2 changes in the thresholds. But if we allow more

changes, more conflicts can be resolved as shown in Table 5-3 where we allowed the

MDP to execute up to 5 actions per conflict.

 From the comparison of results in Table 5-2 and Table 5-3, we might conclude that if

we allow a sufficient number of actions for an MDP based resolution scheme, we can get

100% conflict resolution. It is important to understand, however, that this is not always

114

the case. For example, when the conflict is strong, the required change in thresholds will

be so large that the reward obtained for resolving the conflict will be less than the loss of

reward due to use of a sub-optimal threshold. Also, in a real time implementation, there

can only be so many updates allowed within each time step depending upon the length of

each step and time taken by each update.

Table 5-3: Simulation results for MDP-Based conflict resolution with 5 actions per
conflict

Simulations Time
Steps

No. of conflicts
incurred

No. of Conflicts
Resolved

Average
Performance Gain

50 3 3 54.04%
500 39 39 54.04%
5000 386 386 54.04%

25,000 2052 2052 54.04%

5.7 Possible	Extensions	in	Proposed	Methods	

The ideas of conflict resolution presented above can be extended in two possible ways.

One way is to allow variable step size in the change in thresholds and the other way is to

impose a time constraint on conflict resolution in terms of the number of allowable

threshold changes for the resolution of the conflict(s) in the given state. Both of these

changes can be exercised simultaneously. The variable step size of the change in

thresholds would require additional actions without necessarily requiring a larger state

space. On the other hand, the time constraint on the conflict resolution would require an

additional variable in the state space to represent the count of the changes in the

thresholds exercised for the resolution of the conflict(s) at hand.

 The possible advantages of allowing variable changes in the threshold are the reduction

in the fluctuation of the thresholds, added precision in the selection of optimal conflict

resolving thresholds, and reduction in the number of changes required to resolve the

conflict. The fluctuations in the thresholds can be reduced by allowing smaller step sizes

115

for the threshold change so that the chances of encountering a case where one threshold

value is too high and the other threshold value is too low are reduced. On the other hand,

reduction in the number of changes required to resolve a conflict is facilitated by large

step sizes.

 The constraint on the number of changes in thresholds allowed for the resolution of the

conflicts can better represent some practical situations where the spacecraft has a hard

deadline for the fault detection framework to make a definite fault call. Adding a variable

for counting the number of threshold changes also requires modification in the reward

function. This is to reflect the importance of resolving the conflict within the allowed

number of threshold changes. One could formulate the problem such that if the conflict is

not resolved within the allowed attempts of changes in the thresholds, the MDP will

transition to a state that will indicate a failure to resolve the conflict. In such situations,

maximum likelihood or statistics-based methods can be used to resolve the conflicts that

are not resolved by the MDP policy.

5.8 Collaborative	Fault	Detection	

Fault detection and diagnosis has been an area of active research for over four decades.

Many fault detection schemes have been proposed that are either based on the dynamics

of the system [75][111][112][40] or on a compositional (symbolic) knowledge-based

model of the system such as in [75] and [104]. In addition to the development and

improvement of specific fault detection and isolation algorithms, integration of these

algorithms into an overall diagnostic and fault management (DFM) system is required

[70][71]. Such a system must be capable of optimally scheduling an execution monitor

(considering priorities and conflicts) to decide if a fault is present, to coordinate between

116

passive and active diagnostics and control strategies, and to reconfigure the system to a

safe/degraded functionality state in the event of fault occurrence in a manner that

maximizes system availability. An advanced DFM system is clearly an enabling

technology for the autonomous spacecraft and other autonomous aerospace systems.

 To improve the quality of fault detection decisions, it is advantageous to have more

than one independent detector. But multiple detectors can result in conflicting fault calls.

While majority voting can be used in systems with triple or greater redundancy, it does

not always work for systems with an even number of fault detectors. Additionally, voting

is only robust in cases where data sources and processing algorithms are independent.

 Depending upon how fault detection is implemented, there are certain factors that affect

the switching of fault flags. Most algorithms require numerical thresholds. In fault

detection, a threshold can be defined as an upper or lower bound on the deviation of a

signal from its nominal or expected behavior. More generally, a threshold can be any

parameter that effects the operation of a fault detector. Almost all fault detection schemes

are based on thresholds either explicitly or implicitly. Two fault detectors deployed

within the same system, utilizing independent or at least partially independent sources of

information, can share fault detection decisions to improve the speed and reliability of

fault decisions. This chapter studies how such shared information can improve fault

detection decisions, specifically in the context of a system with both compositional and

dynamics-based fault detection models.

 To facilitate the coexistence of fault detectors, a framework is desired that can not only

affect the fault decisions of both detectors, but that can also serve as a platform for

117

information sharing and improvement of decision quality. The framework needs to take

into its account the probabilities of missed detections and false alarms based on the

knowledge of the system and the transition probabilities of fault flags given the

thresholds of the flags.

 The focus of this part is on the development of one element of the full DFM system,

specifically a fault detection and diagnosis framework with the ability to resolve conflicts

between itself and an external fault detector. In a situation when the fault detectors

disagree, the conflict must be resolved to yield a consistent final decision.

 In this work, we assume that the external fault detector has fault decision logic that

depends on a set of thresholds. We also assume that the thresholds and fault decisions of

this external detector are available to our proposed detection and diagnosis framework.

We consider the problem of reaching consensus through either adjusting these thresholds

in the external detector, or through changing the fault calls made by our detection and

diagnosis framework. Note that by changing a threshold, the external detector may or

may not change its fault call, depending on the inputs. Consequently, the change in the

fault flag can be interpreted as a random event.

 To illustrate our approach, we consider attitude control of a single degree-of-freedom

(1DOF) spacecraft maneuvered by a battery-powered (electric) reaction wheel system.

The external detector in our example is an observer-based fault detector. This detector

indicates a fault if the dynamic behavior of the spacecraft is off-nominal. Detection logic

for this detector is assumed to be based on two thresholds. Simulation results are

presented which highlight the capability of our approach to resolve conflicts.

118

 To mitigate computational complexity, we present an approximate dynamic

programming (ADP) approach that can be used to generate near-optimal policies at a

reduced computational cost. The proposed ADP approach is based on task-based

decomposition of the original state space to create smaller MDPs, solution of smaller

MDPs to obtain corresponding optimal value functions, and recombination of these value

functions to obtain heuristic estimate for the optimal values of original states.

 In the next section, we present our MDP-based collaborative fault detection framework.

Sections 5.10 and 5.11 describe ADP decomposition and recombination, respectively,

applied to collaborative fault detection. Section 5.12 describes a spacecraft example

with simulation results presented in Section 5.13.

5.9 Main	Framework	

The Markov Decision Process (MDP) or stochastic dynamic programming (SDP)

framework outputs optimal decisions for problems involving complex decision making in

the presence of uncertainties. An MDP is composed of four basic elements i.e. set of

states, set of actions, a state dependent reward function, and action and state dependent

transition probabilities. Below we describe each of these four elements for our proposed

framework. Figure 5.5 shows interconnection and signal flow between our proposed

framework, external observer-based fault detector, and the system to be diagnosed.

119

Figure 5.5: Signal flow diagram.

In Figure 5.5, Oo represents the vector of sensor outputs related to the dynamic observer,

and OL represents the vector of observed values of logic-based operating modes of system

components. Vector U represents diagnostic or data gathering commands. Vector V

represents thresholds used in observer-based fault detection. Vector Bo contains binary

fault flags for faults detected by the observer-based fault detector. Vector Bl contains

binary fault flags generated by logic based fault detector built within our framework.

Note that in Figure 5.5, thresholds for the observer-based detector are dictated by the

MDP based framework so that they can be varied for conflict resolution. Also, Bo

provides information that is used for both fault detection and conflict resolution in the

MDP-based framework. The combined information of all faults [Bo Bl] can be used as

the final fault decision set if the conflicts are resolved, or for generating alarms if MDP

fails to resolve the conflicts in a specified number of time steps. Data gathering

commands U are used to obtain updated OL in response to predefined diagnosis actions.

This is useful when the available OL does not provide enough information to resolve a

conflict or to detect a fault.

120

5.9.1 States	

The state space is defined as

 

 
     
   

31 2

54

1 2

1 1 1

1 1

, ,...,

,

, , , , :

,..., , ,..., , ,..., ,

,..., , ,...,

N

i i i i i i

mm m
i i i i i i i i i

mm
i i i i i i

S s s s

Where

s Bl Bo U O V

Bl bl bl Bo bo bo U u u

O o o V v v





  

 

 (5.9.1)

A state contains five types of information. In a state si, vector Bli contains values of m1

logic-based fault flags, vector Boi contains values of m2 observer-based fault flags, vector

Ui contains values of m3 diagnostic commands, vector Oi contains observed values of m4

logic-based component modes, and vector Vi contains values of m5 thresholds for the m2

observer-based fault flags. Note that vector O in (5.9.1) is same as OL in Figure 5.5.

Subscript L has been removed because there are only logic-based observations in the

proposed MDP formulation.

5.9.2 Actions	

Actions can be defined using the following equation:

 1 3 5 51 1 1 1,..., , ,..., , , ,..., , ,bl blm u um v v vm vmM NOOP           (5.9.2)

There are m1 actions of the form µbli that are used to set the logic based fault flag i (from

1 to 0 and vice versa), m3 actions of the form µui that are used to issue data gathering (or

diagnostic) commands, 2m5 actions of the form µvi+ and µvi- that are used to increment

and decrement, respectively, the value of threshold i that affects an observer-based fault

flag. The amount by which the thresholds are incremented or decremented is assumed to

121

be pre-specified and fixed. Finally, there is a NOOP (no operation) action to complete the

set.

5.9.3 Reward	Function	

The reward function can be defined using the following equation

1

2

1 2

1

() 3 4

1

1 2
1, 2

1, 2

(| ,) (| ,)

() , () (|) (|)

(, , ,)

i

m

k k i i k k i i
k

m
J s

i i k k i k k i
k

k k
k k i i i i i i

k k Cn

a P FA U O a P MD U O

R s e J s a P FA V a P MD V

q bl bo H U O Bl Bo











 
 

 
     
 
 
   
 







 (5.9.3)

In (5.9.3), ai
j and qi,j for all i, j are constants. P(FAj|Ui, Oi) and P(MDj|Ui, Oi) represent

probabilities of false alarm and missed detection, respectively, in state i for the fault

represented by flag blj, given diagnostic commands and observations in state i. P(FAj|Vi)

and P(MDj|Vi) represent probabilities of false alarm and missed detection, respectively, in

state i for fault represented by flag boj, given threshold values in state i. H quantifies the

amount of information available in each state. The reward function is an inverse

exponential of a cost function which is a sum of four distinct terms. The first term

represents the weighted sum of the probabilities of false alarms (FA) and missed

detections (MD) for the logic-based fault detector. These probabilities are assumed to be

dependent upon diagnostic inputs and observations. We assume that the corresponding

conditional distribution can be represented in the form of a Bayes Net so that a Bayesian

inference algorithm can be used to compute these probabilities for each state. The second

term in the cost function represents the weighted sum of the probabilities of false alarm

and missed detection for the observer-based fault detector. Here, we assume that these

122

probabilities have been computed using Monte Carlo simulations or other similar

statistical methods. The third term in the cost function represents penalty weights on the

possible conflicts. Here, Cn is the set of faults which are detected by both detectors. Each

member of the set Cn is a pair (k1, k2) where k1 is the index of the fault in Bl and k2 is

the index of the same fault in Bo. The fourth term in the cost function quantifies the

amount of information available about the system. This term is negative because more

information improves the solution thus reduces cost.

5.9.4 Transition	Probabilities	

When an action µk is executed from a state si, the transition probability T(si ,µk, sj)

indicates the probability of transition to state sj. In our formulation, there are three types

of actions (besides NOOP). The first type consists of deterministic actions that switch the

logic-based fault flags. Transition probabilities for these actions can be represented as

     

   1

1 : \ \ 1
, ,

0

1, 2,..., , , 1, 2,...,

k k k k
i i j j j i

i blk j

if s bl s bl bl bl
T s s

otherwise

k m i j N


     


 

 (5.9.4)

We use the \ operator to indicate set difference. The second type of actions are diagnostic

command actions which are also deterministic since a command can be either issued (uj
k

= 1) or not issued (uj
k = 0).

     

   3

1 : \ \ 1
, ,

0

1, 2,..., , , 1, 2,...,

k k k
i i j j j

i uk j

if s u s u u
T s s

otherwise

k m i j N


    


 

 (5.9.5)

123

Although Equation (5.9.5) indicates deterministic transitions, there may be some

transitions that are not directly caused by actions. For example, once a diagnostic

observation is received, the state changes. This change is not deterministic because

observations are affected by random noise and other factors. The third type of action is

threshold changes (or conflict resolution actions). These actions change the thresholds

deterministically but the changes in corresponding observer-based fault flags are

represented as random events.

Equation (5.9.6) is based on the assumption that each threshold cannot affect more than

one observer-based fault flag whereas each flag may be affected by multiple thresholds

(i.e. m5 ≥ m2). Equation (5.9.6) also represents actions to increase thresholds. A similar

equation can be used to define actions that decrease thresholds. Variable p is the

probability of fault flag switching and is dependent upon values of threshold and the

corresponding change ∆ in the threshold. In general, p could be a function of time and

control inputs, but here we assume p to be a function of thresholds only. Finally, kv

represents the upper bound on the value of kth threshold and k̂ represents the index of the

fault flag affected by threshold k.

124

 

 
 
 

 

 
 
 

 

   

ˆ ˆ

ˆ ˆ

5

: \ \

1

: \ \
, , 1

0

ˆ1,2,..., , , 1, 2,..., , 1

k k k
j ik k

i i j j k k k
j j

k k
j i

k k k
j ik k

i i j j k k k
j ji vk j

k k
j i

v v
if s v s v

v v vp

bo bo

v v
if s v s v

v v vT s s p

bo bo

otherwise

k m i j N k

 

              
   


                


 








   2, 2,..., m

 (5.9.6)

5.9.5 Solving	the	MDP:	Value	Iteration	

There are three major ways of solving MDPs: Policy Iteration, Value Iteration, and

Linear Programming. All these methods calculate stationary optimal policies over an

infinite horizon. We use value iteration as presented in Chapter 2. The MDP can also be

solved using a backward induction algorithm [84] for obtaining a finite-horizon time-

varying optimal policy.

5.10 ADP	Decomposition	Approach		

Section 5.9 provides an optimal decision making framework that is computationally

intensive. This section proposes a strategy to mitigate complexity by decomposing the

full MDP into three sub-problems (MDP 1 – MDP 3), each of which is described below.

125

5.10.1 MDP	1:	Logic	Based	Fault	Detection	

This MDP is dedicated to the switching of logic-based fault flags based on information

about diagnostic inputs and observations along with the information of fault flags from an

observer-based detector.

States—The set of states is defined as:

 

 
   
   

1 2

3 4

1 2 1

1 1

1 1

1 , ,...,

,

, , , :

,..., , ,..., ,

,..., , ,..., .

N

i i i i i

m m
i i i i i i

m m
i i i i i i

S s s s

where each state is represented as

s Bl Bo U O

Bl bl bl Bo bo bo

U u u O o o





 

 

 (5.10.1)

Only the last component of the state in Equation (5.9.1) has been dropped in (5.10.1).

However, this nontrivially reduces MDP complexity since m5 is typically large. Also

values in Bo do not change in MDP1.

Actions—The set of actions is defined as:

 111 ,..., , .bl blmM NOOP  (5.10.2)

The only actions here are those of switching logic-based fault flags (refer to (5.9.2)).

Reward	Function—The reward function is defined as:

1
1 2

1() 1
1

1 2
1, 2

1, 2

(| ,) (| ,)
1() , 1() .i

m

k k i i k k i i
J s k

i i
k k

k k i i
k k Cn

a P FA U O a P MD U O
R s e J s

q bl bo
  



 
     

  
  





 (5.10.3)

126

This reward function is similar to (5.9.3) except for the absence of terms related to

information and performance probabilities for the observer-based detector. Note that we

use the term performance probabilities to represent the probabilities of false alarms and

missed detections.

Transition	 Probabilities—Transition probabilities can be represented using Equation

(5.9.4).

5.10.2 MDP	2:	Conflict	Resolution	

This MDP is dedicated to the resolution of conflicts by adjusting the thresholds for the

observer-based detector. The specifics are as follows.

States—States can be defined as:

 

 
     51 2

1 2 2

1 1 1

2 , ,...,

,

, , :

,..., , ,..., , ,...,

N

i i i i

mm m
i i i i i i i i i

S s s s

Where

s Bl Bo V

Bl bl bl Bo bo bo V v v





  

 (5.10.4)

Diagnostic inputs and observations are not required because we assume there is already a

separate observer-based detector in the system that generates Bo using any input and/or

observation data that it needs along with the model of the dynamics of the system. Also,

analogous to MDP1, in MDP2, flag values for Bl do not change.

Actions—Actions are the following subset of actions from (5.9.2):

 5 51 12 , ,..., , ,v v vm vmM NOOP       (5.10.5)

Reward	Function—The reward function can be defined as:

127

2
4 4

2() 1
2

1 2
1, 2

1, 2

(|) (|)
2() , 2()i

m

k k i k k i
J s k

i i
k k

k k i i
k k Cn

a P FA V a P MD V
R s e J s

q bl bo
  



 
     

  
  





 (5.10.6)

This reward function is similar to (5.9.3) except for the absence of terms related to

information and performance probabilities for the flags in Bl.

Transition	Probabilities—Transition Probabilities can be defined using (5.9.6).

5.10.3 MDP	3:	Information	Gathering/Diagnostics	

This MDP is dedicated to the task of information gathering or diagnostics.

States—States can be defined using (5.10.1). The set of states in MDP3 are the same as

those in MDP1.

Actions— Actions are the following subset of actions from (5.9.2):

 313 ,..., ,u umM NOOP  (5.10.7)

Reward	Function—The reward function can be defined as:

3()
33()

3() (, , ,)

iJ s
i

i i i i i

R s e

J s H U O Bl Bo

 

 
 (5.10.8)

Transition	Probabilities—Transition Probabilities can be defined using (5.9.5).

5.10.4 Integration	

We integrate the three MDPs as shown in Figure 5.6, and refer to this as the split MDP

solution approach. Recall that OL in Figure 5.6 corresponds to O in the original MDP

128

formulation. Also, some of the information generated by one MDP is used by the others

e.g. vector Bl generated by MDP1 is used by MDP2 and MDP3 etc.

Figure 5.6: Signal flow with the split MDP framework.

5.11 ADP	Recombination	Algorithm		

In this section we present a recombination algorithm that can be used to generate a policy

for the states in the framework of Section 5.9 by integrating policies generated by the

three decomposed MDPs in Section 5.10. Figure 5.7 shows the recombination steps.

129

Figure 5.7: ADP recombination algorithm for MDP-based framework.

5.12 Implementation	Example		

To illustrate our framework, we consider a spacecraft reaction wheel fault management

example. The reaction wheel (RW) is connected to two electronics driver boards (EB1

and EB2) with corresponding mode monitors (OEB1 and OEB2), and a battery, as shown in

Figure 5.8. We consider detection of six logic-based faults: a fault in the battery, faults in

each of the two electronics boards, faults in each of two monitors for the electronics

boards, and a fault in the reaction wheel. We also include an observer-detected fault in

the reaction wheel (anomalous torque) with detection logic that depends upon two

thresholds v1 and v2. A Bayes net that represents the joint distribution of the operational

Step 1. Solve each of the smaller MDP’s and compute

optimal values for all states.

Step 2. Merge the values calculated in step 1 to estimate the

optimal values for the recombined MDP as follows:

Step3. Calculate the ADP estimate of an optimal policy

using the equation:

for all s ϵ S

130

modes (normal/failed) of the components is shown in Figure 5.9. The Bayes net also

includes fault flag bRW and its corresponding thresholds v1 and v2. Variables SW1 and

SW2 correspond to the activation switches for the electronics boards. Initial conditional

distributions corresponding to the Bayes Net are shown in Table 5-4 for fixed values of

thresholds v1 and v2. The symbol “-” before a variable in Table 5-4 indicates faulty mode

except for SW1 and SW2 where it indicates that the corresponding switch is turned off.

Note that all probabilities in Table 5-4 are probabilities of components being in normal

mode given available evidence. The corresponding probabilities of components being in

faulty modes are calculated by subtracting the probability of the component fault from 1.

Using these distributions, the probabilities of failure (given any evidence) for any of the

components can be calculated using Bayesian inference.

Figure 5.8: Simulation example system.

131

Figure 5.9: Bayes net for the simulation example.

Table 5-4: Conditional probabilities (v1 = 0.5, v2 = 0.5)
P(B) 0.995
P(SW1) 0.5
P(SW2) 0.5
P(EB1|B,SW1) 0.998
P(EB1|-SW1,B) 0.999
P(EB1|SW1,-B) 0.4
P(EB1|-B,-SW1) 0.7
P(EB2|B,SW2) 0.998
P(EB2|-SW2,B) 0.999
P(EB2|SW2,-B) 0.4
P(EB2|-B,-SW2) 0.7
P(OEB1|EB1) 0.95
P(OEB1|-EB1) 0.15
P(OEB2|EB2) 0.95
P(OEB2|-EB2) 0.15
P(RW|EB1,EB2) 0.999
P(RW|EB1,-EB2) 0.999
P(RW|-EB1,EB2) 0.999
P(RW|-EB1,-EB2) 0.2
P(bRW|RW,v1,v2) P(FA|v1,v2)
P(bRW|-RW,v1,v2) 1-P(MD|

v1,v2)

The dynamics of the system are represented by:

RW
f

RW RW

I M d u

H M

 





  

 







 (5.12.1)

Bat

EB1

RWOEB1

EB2

OEB2

bRW

v1 v2

SW1 SW

132

In (5.12.1), d is assumed to be a zero mean Gaussian disturbance with variance 10-4.

Also, θ represents angular displacement of the spacecraft in the inertial frame, ω

represents angular velocity of the spacecraft represented in a body fixed frame, whereas,

HRW represents angular momentum of the reaction wheel in the spacecraft’s body fixed

frame. We assume full state feedback with perfect sensors.

For the detection of faults, we used a scheme based on the comparison of nominal and

actual dynamics. The nominal dynamics can be represented by similar equation as

(5.12.1) except for the disturbance d and fault input uf that would be zero in the nominal

model, specifically:

1

2

1 1 2 2

,

1 : 0, , 0

0

n

n

RW

v
r V

v

if v r or v r
b

otherwise

 
 
   

       
   

 


 (5.12.2)

Here, bRW is the fault where the reaction wheel turns off and its angular velocity decays to

zero at a constant rate, i.e.

 0, , 0RW RW
fu M H     (5.12.3)

It is easy to show that r converges to [0 0]T whenever MRW = K(xdes - x) is selected such

that the closed loop system has eigenvalues with negative real parts since there are no

disturbances or faults.

To implement our full MDP framework on the spacecraft reaction wheel system, we

define the following states:

133

 
 

 
 

 

     

1 2

1 2 3 4 5 6

1 2

1 2

1 2

, ,...,

, , , ,

,

, , , , ,

,

, , ,

1, 2 , , 0 : 0.1:1 , 1, 2

N

i i i i i

i i i i i i i

i i i

i i

T k
i i i i i

S s s s

s Bl bo O U V

Where

Bl bl bl bl bl bl bl

O O O

O O normal failed unknown

U V v v v k











     

 (5.12.4)

In (5.12.4), Bl includes 6 fault flags for faults in components shown in Figure 5.8. O

includes monitored status of the two electronics boards. U is a scalar where U = 1

indicates that SW1 is turned on and SW2 is turned off whereas U = 2 indicates that SW1 is

turned off and SW2 is turned on. V includes the two thresholds that effect observer-based

fault flag bo. For this domain the total number of states in S is 185,856 which is less than

all possible combinations of the values of state-components i.e. 26 × 2 × 32 × 2 × 112 =

278,784. This is due to the constraint that if a circuit board is in use, its status cannot be

unknown. Switching between electronics boards can yield additional information about

component failures in cases of anomalous spacecraft behaviors when status of the board

not in use is unknown. For example, in an anomalous situation, the MDP can command a

switch between the electronics boards in order to determine if both electronics boards are

providing the same functionality. If changing the board does not change the spacecraft

condition, the reaction wheel is more likely faulty. If, on the other hand, changing the

board restores nominal or improved operation, then there is an increased likelihood of

failure in the original board.

The actions for this domain can be represented as

134

1 1 2 2 1 2 3

4 5 6 1 2

, , , , , , ,...

, , , , ,
v v v v bl bl bl

bl bl bl SW SW

M
NOOP

      
    

    
  
 

 (5.12.5)

All actions in (5.12.5) are similar to the ones defined in (5.9.2) except for µSW1 and µSW2

that correspond to tuning U = 1 and U = 2, respectively.

The reward function can be obtained using Equation (5.9.3) where we define H as

follows:

 

1
1

()

2 ()

:
(, , ,)

0

i

i

i i

EB U
i i i i EB U

h bl bo
if O unknown

H Bl bo O U h O

otherwise



 
   



 (5.12.6)

In (5.12.6), bli
1 is the logic-based fault flag for a fault in the reaction wheel. This

information has positive reward if the status of the electronics board not in use is

unknown. The value of the reward depends on if there is a conflict between the two

detectors, if the in-use electronics board is ruled out as faulty, or both.

The parameter values used for the reward function, adapted from Equation (5.9.3), are

 1 2

3 4

5
1 2 1 2 3

0.5, 0.7, 1,2,...,6

0.5, 0.7

0.2, 0.3, 10

5

k ka a k

a a

h h

q

   

   

 

     



 (5.12.7)

Note that the parameter q (the penalty weighting parameter for the conflict) has no

subscript because there is only one possible conflict. The transition probabilities were

specified using Equations (5.9.4), (5.9.5), and (5.9.6). We selected p in Equation (5.9.6)

to be a piecewise constant function of bo and changes in v1 and v2. For bo = 0 and an

increment in v1 or v2, p = 0; for bo = 1 and an increment in v1 or v2, p = 0.1; for bo = 0

135

and a decrement in v1 or v2, p = 0.1; for bo = 1 and a decrement in v1 or v2, p = 0; for no

changes in v1 and v2 i.e. when the intended increment or decrement is not possible

because thresholds are already on their boundary values, p = 0.02. To implement the

decomposed MDPs on the reaction wheel system, equations from Section 5.10 can be

used with the same information used in the integrated MDP model.

Remark	 on	 Computational	 Complexity: The decomposed MDP1 and MDP3 each

have 1536 states, and MDP 2 has 484 states. The full MDP had 185,856 states,

illustrating the ability of decomposition to enable computational savings. Recall that the

computational complexity of value iteration is proportional to the square of the size of the

state space times the size of the action space which means that the original MDP has

computational complexity O(1011) whereas the three split MDPs have combined

computational complexity O(106). However, this computational savings comes at the cost

of loss in performance. Examples of this loss are presented in the next section.

5.13 Simulation	Results		

In this section, we explain two simulation cases and report the results. Most of the results

are generated by the comparison between main, split, and recombined MDP formulations.

5.13.1 Simulation	Setup	1	

Using the example described in Section 5.12, we implemented the main MDP, the split

MDPs, and the ADP-based recombined MDP using value iteration and ADP algorithms

described previously. The simulation setup for the main MDP and the ADP-based

solution are given in Figure 5.10. As shown in the figure, in the simulation we feed the

MDP policy current state per (5.12.4). The MDP policy then executes the optimal action

136

and state is partially updated. Then we use random number generators to set monitored

modes for the electronics boards (OEB1 and OEB2) and residuals for the observer-based

detector (r1 and r2). The state is updated using this new information and is fed into the

MDP policy to complete the cycle of one time step.

Figure 5.10: Setup for main and ADP-based MDPs.

For the split MDPs, there were quite a few options for implementing a series of

combinations. Figure 5.11 shows the particular combination that we used. The cycle of

MDP execution begins with the conflict resolution MDP which executes an optimal

action and causes changes in some parameters of the state S. Note that only a subset of

the information in S is required to determine the optimal action for the conflict resolution

MDP policy (see (5.9.1) and (5.10.4)). The state is updated after the optimal action is

complete. The same procedure is repeated for the logic-based fault detection MDP and

diagnostic MDP. Here again, only part of the information in S is required to determine

optimal policies for logic-based detection and diagnostic MDPs. The final updated state

137

is transferred to the output block after which external updates similar to those in Figure

5.10 are performed before the updated state is fed back into the split MDP block and the

cycle is completed.

Figure 5.11: Evoluation of System State S for split MDPs.

For case 1, false alarm and missed detection probabilities were generated by a similar

function as in [71]. For the next case, these probabilities were generated using Monte

Carlo simulations on the dynamic model and fault detection scheme presented in

138

Equations (5.12.1) and (5.12.2) respectively. In the results for case 1, we present

percentages of conflicts resolved for two cases with difference in the value of parameter

q.

5.13.2 Simulation	Results	for	Setup	1		

Case	 1	 (q	 =	 5)—Figure 5.12 shows the results from simulation setup 1. The trajectories

were recorded for 25, 250, and 2500 time steps where each time step corresponds to a

complete cycle per Figure 5.10 and Figure 5.11.

Figure 5.12: Percentage of conflicts resolved by MDPs in setup 1 (with q = 5).

Our result indicates that all conflicts were resolved by all MDPs. This is due to the high

penalty factor (q = 5) on conflicts in the reward function of the MDPs. Note that,

although resolution of conflicts is a desirable property, this alone cannot determine the

optimality of the MDP policy since the reward function is composed of four factors (see

(5.9.3)) among which resolution of conflicts is one.

Case	2	(q	=	0.5)—Figure 5.13 presents the results for this case.

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100
MDP Conflict Resolution

P
er

ce
nt

ag
e

of
 C

on
fli

ct
s

R
es

ol
ve

d

No. of Time Steps/Cycles (Natural Log Scale)

main

recombined
split

139

Figure 5.13: Percentage of conflicts resolved by MDPs in setup 1 (with q = 0.5).

Note that the percentage of conflicts resolved is dropped significantly for the split MDP

whereas it has also dropped slightly in main MDP. This points to the high sensitivity of

the split MDP to the change in q.

5.13.3 Simulation	Setup	2	

In setup 2, we used the dynamics model (5.12.1) and detection scheme (5.12.2) to

generate residuals r1 and r2 instead of a random number generator in Figure 5.10 and

Figure 5.11. Parameter values used in this setup were from (5.12.7) with q = 5. We

carried out four experiments with rest-to-rest maneuvers of the 1DOF spacecraft slewing

from 0 to π radians. We selected control gain vector K = [1 1]T and τ = 2 for all

experiments. The fault in all four experiments corresponds to a nonzero value of uf in

(5.12.3). The initial state for all MDPs in all experiments was the state where all fault

flags were turned off. Monitor OEB1 of the circuit board EB1 showed normal as its status

whereas the monitor OEB2 for the circuit board EB2 showed unknown as its status. The

switch of circuit board EB1 was set to 1 whereas the switch of board 2 was set to 0, and

the thresholds (v1, v2) were set to be (0.6, 0.1). Below, we present a brief description of

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100
MDP Conflict Resolution

P
er

ce
nt

ag
e

of
 C

on
fli

ct
s

R
es

ol
ve

d

No. of Time Steps (Natural Log Scale)

main

recombined
split

140

the behavior of the dynamics and MDP for each experiment. We also present plots of the

dynamics and MDP for our fourth experiment as an example. A performance comparison

of the ADP-based approach with the main MDP is shown at the end.

5.13.4 Simulation	Results	for	Setup	2	

Experiment	 1—In our first experiment, to assess the nominal behavior of the dynamics

and MDPs, we did not introduce the fault. In this case, the nominal dynamics and the

actual dynamics differ only slightly. This difference is due to disturbance d injected into

the simulated system. MDP policies for the main and recombined MDPs yield constant

trajectories whereas the split MDP yields some variations in thresholds. This was a

conflict-preventive behavior since the logic-based fault flag for the reaction wheel was

set to 0. Recall that in the split MDP the logic-based fault flags are fixed from the point

of view of the conflict resolution MDP. The main and split MDPs performed a diagnostic

action, and once information about EB2 was obtained, no further diagnostic action was

performed.

Experiment	 2—In the second experiment, we introduced the fault at t = 1 sec. The

resulting actual dynamics showed a significant deviation from the actual dynamics. On

the other hand, all the MDPs resolved the conflict by switching the logic-based fault flag

for the reaction wheel to 1 after switching of bo to 1 at t = 1 sec due to crossing of

thresholds by residuals r1 and r2. In this experiment, the recombined MDP made valiant

efforts to switch the flag bo back to zero but did not succeed since the residuals were very

high due to significant deviation of the dynamics from their nominal behavior.

141

Experiment	 3—In our third experiment, we introduce the same fault but at t = 13 sec. In

this case the fault is almost undetectable by the observer since the satellite has almost

completed its maneuver. For this case, the MDP behaviors are similar to the no-fault

case.

Experiment	 4—In our fourth experiment, we introduced the same fault at t = 1 sec and

then we removed the fault at t = 2 sec. The resulting dynamics are shown in Figure 5.14

where, x1 represents θ, x2 represents ω, and x3 represents HRW. All the MDPs resolved

the conflict by switching the logic-based fault flag for the reaction wheel to 1 as before,

but after the fault was removed this flag was also switched back to zero.

Figure 5.14: Dynamics for the reaction wheel fault at t = 1 sec and recovery
initiation at t = 2 sec.

0 5 10 15
-25

-20

-15

-10

-5

0

5

time (sec)

x1

x2
x3

x1
n

x2
n

x3
n

142

Figure 5.15: Behavior of MDPs for fault at t = 1 sec and recovery at t = 2 sec case.

Figure 5.15 shows the behavior of the diagnostic input U, and the thresholds v1 and v2 for

MDPs in this experiment. For this case the split and recombined MDPs both performed

aggressive threshold changes. This behavior is due to our selection of parameters (5.12.7)

where penalty on conflict is ten times larger than the penalty on probabilities of false

alarms and missed detections that are based on the threshold values. On the other hand,

the main MDP did not try to change the thresholds since the representation of fault flag

transition probabilities and hence possibility of conflict generation is accurately

represented in the main MDP as opposed to the split and recombined MDPs, where the

conflict resolution MDP assumes fixed Bl whereas the fault detection MDP assumes

fixed Bo.

Performance	of	ADP	Algorithm—Finally, we present a performance comparison of the

main, split, and recombined MDPs (Figure 5.16) based on total expected reward given by

Equation (5.13.1).

   1 1, ,t
t t t t

t

ER T s s R s   (5.13.1)

0 5 10 15
1

1.5

2

time (sec)

va
lu

e
of

 U

Experiment No. 1: No Fault

main

recombined
split

0 5 10 15

0.6

0.8

1

time (sec)

va
lu

e
of

 v 1

0 5 10 15
0

0.5

1

time (sec)

va
lu

e
of

 v 2

143

Figure 5.16 shows that the recombined MDP performs well in experiments 1, 3, and 4,

but poorly in experiment 2. Overall, considering the computational savings (of the order

of 105), our proposed ADP based approach appears promising.

Figure 5.16: Performance comparison for MDPs in all 4 cases.

5.14 Further	Analysis	of	the	ADP‐based	Policy	

In this section, we present some results that are analogous to the results presented in

Section 4.6.3 in Chapter 4 regarding the mission planning MDP. We use the original and

ADP-based MDP formulations in the fault detection case study presented above and

simulate the trajectories over finite horizon lengths using the policies calculated for both

the original and the ADP-based MDPs. The results of changes in the epoch, the discount

factor, the weights of the performance (ai
j’s in Equation (5.9.3)), and the weights on the

conflict ((qk1, k2’s in Equation (5.9.3))) are shown in Table 5-5.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5
x 10

6 MDP Conflict Resolution

T
ot

al
 E

xp
ec

te
d

R
ew

ar
d

No. of Experiment

main

recombined
split

144

Table 5-5: Performance results for the ADP-based MDP policy

Variable
Factor

Constant
Factors

Best Average
performance

Worst Average
Performance

Worst case
Performance

Epoch: 3-10 γ = 0.9
Performance
Weights = 0.5
Conflict
Weights = 5

98.9% for
Epoch = 3

96.4% for
Epoch = 10

67.8% for
Epoch = 3

γ: 0.29:0.1:0.99 Epoch = 3
Performance
Weights = 0.5
Conflict
Weights = 5

99.8% for γ =
0.29

98.9% for γ =
0.99

70.3% for γ =
0.99

Performance
Weights: 1-5
(Conflict
Weights = 6 –
Performance
Weights)

γ = 0.5
Epoch = 3

99.52% for
Performance
Weights = 5

99.45% for
Performance
Weights = 1

68.3% for
Performance
Weights = 5

5.15 Conclusions	and	Future	Work	

In the first part of this chapter, we presented two conflict resolution algorithms capable of

resolving differences in faults detected by diverse fault detection schemes. Both our

conflict resolution schemes share a common resolution strategy: they change missed

detection vs. false alarm thresholds for one or both fault detection algorithms as a method

of converging on a common fault set. In the first conflict resolution method, we

optimized the changes in thresholds with respect to a cost function that takes into account

not only the conflicts but also the probabilities of missed detection and false alarms for

both schemes and that uses residuals to update threshold values. In our second strategy,

we optimize the change in thresholds using a Markov Decision Process based on rewards,

transition probabilities of fault flags, and a discount factor, but without knowledge of

residuals. We have demonstrated the ability of both conflict resolution algorithms to

145

resolve conflicts using a simple example of spacecraft thruster failure. Simulation results

show that our approaches are able to resolve conflicts, with the residuals method offering

a faster solution and the MDP method offering a more general resolution method not

dependent on knowledge of residuals. In future work we plan to extend our models to

accommodate more than two fault detection schemes and to handle multiple faults,

initially with independent thresholds then ultimately with interdependencies.

 In the second part of this chapter, we have presented a Markov Decision Process

framework for detecting faults, executing diagnostic actions, and resolving conflicts. We

presented task-based decomposition and recombination approaches, with recombination

cast as approximate dynamic programming to reduce the computational complexity. To

compare the three MDP formulations, we demonstrated a 1DOF spacecraft case study in

which the spacecraft must diagnose reaction wheel system faults. Simulations indicate the

conflict is always resolved when penalty weight is sufficiently high, but this is not

necessarily the case with low penalty weight. Failure to resolve the conflict typically

happens when the dynamics-based observer is in strong disagreement with the

compositional model. Accurate resolution of the conflict is highly dependent upon the

consistency of the Bayes net model as well as appropriate selection of reward function

parameters. Although decomposition significantly reduces computational overhead, some

drawbacks of the decomposition approach were also revealed in simulation results in the

form of aggressive changes in thresholds. Otherwise, the performance of the ADP-based

approach showed close comparison with the main MDP in terms of total obtained

expected reward along the trajectories under the different fault cases.

146

 	Chapter	6

Mission‐Based	Fault	Reconfiguration	Framework	

We present a Markov Decision Process (MDP) framework for computing post-fault

reconfiguration policies that are optimal with respect to a discounted cost. Our cost

function penalizes states that are unsuitable to achieve the remaining objectives of the

given mission. The cost function also penalizes states where the necessary goal

achievement actions cannot be executed. We incorporate probabilities of missed

detections and false alarms for a given fault condition into our cost function to encourage

the selection of policies that minimize the likelihood of incorrect reconfiguration. To

illustrate the implementation of our proposed framework, we present an example of a

1DOF spacecraft with a reaction wheel system that is on a mission to collect scientific

data from three targets, as a baseline test case. We also show that there is a design

tradeoff between safe operations versus mission completion. Simulation results are

presented to indicate this tradeoff in the selection of design parameters for the proposed

framework.

6.1 Motivation	

Today’s space missions are increasingly sophisticated in part due to improvements in

onboard sensing and computing capabilities. One of the critical challenges for

autonomous or semi-autonomous space missions is reliable, fault tolerant mission

147

execution. This requires a combination of fault detection and subsequent reconfiguration.

Because fault detection and reconfiguration are inherently coupled, the system must

additionally decide when it is better to reconfigure versus maintain the current

configuration in a possibly degraded capacity. It is also important to determine what type

of reconfiguration is optimal given the estimated likelihood that the fault detection report

is accurate.

 Previously in fault reconfiguration, researchers have taken into account the uncertainty

of fault detection. For example Rago et. al. [87] have proposed a fault tolerant control

scheme where the post-detection control law is a weighted sum of the stabilizing

controllers for different failure modes where weight on each control law depends upon

the probability of that failure as predicted by the detection scheme. Also, Abu Bakar and

Veres [4] have proposed a multi-agent fault tolerant planning architecture where the

reconfiguration agent iterates on various reconfiguration actions while learning from

iterations until the response of the system is satisfactory.

 Our goal in this chapter is to devise a reconfiguration scheme that not only takes into

account the uncertainty in fault detection and the possibility of failure of a

reconfiguration action, but also incorporates the mission objectives and current policy

execution state into the decision-making process. The unique features of our approach, as

compared to the existing approaches, are formulation of the reconfiguration problem as a

Markov Decision Process (MDP) and the introduction of an explicit tradeoff between

spacecraft safety and importance of mission completion. Each state of the MDP contains

information about detected faults, current status of the mission in terms of its remaining

objectives, probabilities of correctness of fault detection, status of the mission-related

148

actions in terms of in-progress versus not-in-progress, and the current status of all

reconfiguration options. We use the value iteration approach [89] to compute an optimal

reconfiguration policy that maximizes the expected discounted performance reward

which is a function of our MDP state. The resulting policy provides an optimal

reconfiguration action for each state of the MDP. Specifically, the policy prescribes the

reconfiguration action as a function of state that contains information about fault

decisions, probability of correctness of the fault decisions, status of the mission and each

ongoing mission-related action, and status of reconfiguration options. Given that MDP-

based deliberation is computationally-intensive and the complexity grows exponentially

with the size of the state space, we must assume that the probability distribution of fault

decisions can be represented with a tractable set of reachable states for time horizons

under consideration. For example, consider a 1DOF spacecraft with a reaction wheel and

associated electronics. For this system, we can construct a Bayes Network [89] for the

fault probabilities of the electronics and the reaction wheel based on abstracted sensor

readings that contain information about the possible failure modes for the wheel and

electronics. For every possible value of the evidence, corresponding failure probabilities

are computed based on the Bayes Net. Since the evidence contains information about the

failure modes, there is a finite set of possible values for the evidence and hence there are

finitely many values for the probabilities of failures computed from this evidence. Since

probabilities of correctness of fault decisions are computed from probabilities of failures

and the value of the fault decision flags, this implies that the probability distribution of

fault decisions can be represented by a finite set of discrete or symbolic values. This

149

guarantees a finite state-space for the MDP in which state contains information about

probabilities of correctness of fault decisions.

 Below, we present the problem statement, our assumptions, and our MDP formulation

for fault reconfiguration. In Section 6.3 we present an implementation example of a

1DOF spacecraft attitude control system with a reaction wheel and associated electronics

boards. In Section 6.4 we present simulation results and discuss the tradeoff between safe

operations versus emphasis upon mission completion. Finally, we present conclusions

and future work related to fault reconfiguration in Section 6.5.

6.2 Problem	Formulation	and	Solution	Approach	

6.2.1 Problem	Statement	

We develop a framework for constructing a reconfiguration strategy that is optimal with

respect to minimizing the possibility of incorrect reconfiguration, maximizing the

possibility of achieving the remaining mission objectives, and maximizing the possibility

of completion of in-progress mission related actions while accounting for the possibility

of failure of the reconfiguration action. Our assumptions are stated below:

A1. The spacecraft is on a mission that can be decomposed into a set of mission

objectives.

A2. A status vector for mission objectives, assigned achieved and not-achieved values,

is available as an input to the reconfiguration algorithm.

A3. A status vector for mission-related actions, assigned in-progress and not-in-

progress values, is available as an input to the reconfiguration algorithm.

150

A4. The system has an on-board fault detector that provides fault information.

A5. Status of the fault detection decisions from the fault detector is available as an

input to the reconfiguration algorithm.

A6. Either the probabilities of correctness of fault decisions are available to the

reconfiguration algorithm, or the abstracted sensor readings are available from

which the probabilities of correctness can be calculated using a joint failure

probability distribution model, i.e. a Bayes net.

 A7. Reconfiguration actions are executed instantaneously. This allows the assumption

that ault decisions, status of the mission objectives, status of mission-related

actions, and probabilities of correctness of fault decisions do not change during

the execution of a reconfiguration action.

6.2.2 MDP	Formulation	

We present two possible formulations for the states of the fault reconfiguration MDP.

One of the formulations includes probabilities of correctness of fault decision flags as

part of MDP states whereas the other formulation includes abstracted sensor readings

from which the probabilities of correctness of fault flags are calculated using a Bayes net

as will be further described in the context of the spacecraft case study presented in

Section 6.3.

 The first formulation incorporates probabilities of fault flag correctness into the MDP

state as given by:

151

 

 
 
 
 
 
 

1 2 3

1 2 1

1 2 2

1 2 1

1 2 1

, , ,...,

,

, , , , , ,

, ,..., ,

, ,..., ,

, ,..., ,

, ,..., ,

1, 2,..., .

N

i i i i i i i

n
i i i i

n
i i i i

m
i i i i

m
i i i i

S s s s s

where

s A B F P sw c

A a a a

B b b b

F f f f

P p p p

i N















 (6.2.1)

Here, Bi is a vector of mission objective flags representing whether or not a certain

objective has been achieved. Ai is a vector of mission-related action flags indicating

which of the actions are active or inactive at the moment. F is a vector of resolved fault

flags generated by the fault detection process described in Chapter 5. P is a vector of

probabilities of correctness of the fault flags in F. Note that there is one-to-one relation

between the probabilities of false alarms/missed detections and the probabilities of

correctness of fault decisions e.g. for a fault j in state i, P(FAj
i) = (1 – pj

i)f
j
i and P(MDj

i)

= (1 – pj
i)(1 – f j

i). The discrete variable sw represents the current switch configuration

and c is a discrete variable representing the currently active control law for the system.

Note that based on assumption A6 probabilities of correctness of the fault detection are

known. Further implication of A6 is that there are finitely many values for the elements

of P as explained above.

The second state formulation replaces detection correctness probability vector P with

abstracted sensor-based observation vector O and has the following form,

152

 

 
 
 
 
 

 

1 2 3

1 2 1

1 2 2

1 2 1

1 2 2

, , ,...,

,

, , , , , ,

, ,..., ,

, ,..., ,

, ,..., ,

, ,..., ,

1,2,..., .

N

i i i i i i i

n
i i i i

n
i i i i

m
i i i i

m
i i i i

S s s s s

where

s A B F O sw c

A a a a

B b b b

F f f f

O o o o

i N















 (6.2.2)

The actions in this formulation are represented as

 1 2 3 1 2 4, ,..., , , ,..., ,m mM sw sw sw c c c NOOP
,
 (6.2.3)

where swi represents the selection of a particular switching configuration (i) among m3

possible switching configurations and cj represents selection of a particular control law (j)

among m4 possible control laws. We also have an option of doing no reconfiguration,

designated by NOOP in (6.2.3).

 The reward function is defined as a negative exponential of the corresponding cost

function and is given by

    

  




































1

1

2

1

1

1

,,,

1

exp)(
m

k
ii

k
i

k
i

n

k

k
i

critical
kik

n

k

k
i

critical
kik

i

cswpfG

bBsIaAsI

sR





 (6.2.4)

where αk, βk, and λ are positive constants for all k, I is an indicator function (I(x) = 1 when

x is true and 0 otherwise), Ak
critical is a subset of the state space for which activation of a

certain mission related action (ak) is critical or undesired, Bk
critical is a subset of the state

153

space containing those states that can lead to an inability to achieve mission objective k.

Also, G is a semi-positive-definite function of fault flags, their corresponding correctness

probabilities, and current switching and control configuration. G should be chosen so that

it is zero if for the current fault flags and current probabilities of correct detection, the

switching and control configuration is optimal in some sense, e.g. enables safe operation

of the spacecraft,. G is positive otherwise with highest value at the worst possible

configuration, e.g., the least safe operational state. Note that the reward function is an

exponential of the cost function which has three main terms. The first term penalizes all

the states where the active mission-related action is undesirable, where undesirable states

are states to avoid when a particular mission related action is active. The second term

penalizes being in states which could be undesirable for all or some of the unachieved

objectives. The third and final term penalizes being in states where given the current fault

flags and their probabilities of correctness the current configuration is suboptimal. The

reward function is chosen as an exponential so that the reward takes non negative values.

 The reward function for states with sensor observations (O) instead of pre-computed

probabilities for the values of the fault flags being correct (P) can be represented as,

    

  




































1

1

2

1

1

1

,,,

1

exp)(
m

k
ii

k
i

k
i

n

k

k
i

critical
kik

n

k

k
i

critical
kik

i

cswOfG

bBsIaAsI

sR





 (6.2.5)

where Oi
k is the subset of Oi that is used to calculate pi

k.

To specify transition probabilities, there are two possible cases for each of our alternate

state formulations. In the first case, we assume that the actions are instantaneous with

154

respect to the changing fault flags and other conditions (Assumption A7). Therefore, each

action could simply result either in the desired state (i.e. state with the desired

configuration with everything else being the same) or the same state from which it is

executed depending upon the probability of failure of the reconfiguration action. Hence

the transition probability function can be represented as

    
    

1

2

1

2

: \ \

: \ \
(| ,)

:1

1 :

j j i i j k

j j i i j k
j i k

j i j k

j i j k

k

if s sw s sw sw

if s c s c c
T s s

if s s sw

if s s c

M


 


 



   

    
   

   



 (6.2.6)

where θ1 and θ2 are probabilities of success over the switching and control law

reconfiguration actions respectively. Also, x \ y for y ϵ x implies elements of set x not also

in y.

 In the second case, we allow other transitions to happen during the execution of a

reconfiguration action i.e. we discard assumption A7. The resulting transition probability

function is presented in Equation (6.2.7). Although the probabilities of each transition

type are shown separately, any combination of the transitions can happen at a particular

time. For example, given a reconfiguration action in progress, the reconfiguration may

fail, but on the other hand, one of the unachieved mission objectives may still be

achieved, or the sensor output could change hence changing the fault flag correctness

probabilities. Alternatively the fault detection scheme may decide to change fault flags

based on new sensor information, etc. Note that values of the fault flags and the

probability of reconfiguration action failure depend upon sensor readings but sensor

readings are considered independent of the values of fault flags. Also, the probabilities of

155

failures are conditionally independent of the values of the fault flags given the sensor

readings.

1

2

1

1

2

1

(1, 1)

(1,1)

1 2 1

1
1 1 1

1 2 1

2
1 1 1

()

()

1 ()

2 ()

(| ,)

3 (,)

1 1 2 3

1 1 2 3

i

i

n

l i
l

n

l i
l

j i k m m

l i i
l

n n m

l l l
l l l

n n m

l l l
l l l

Transition sw

Transition c

Transition A

Transition B

T s s

Transition P F

NoTran











   

   







  

  



   

   







  

  

()

()

k j

k j

sition sw

NoTransition c



















 






 (6.2.7)

The transition function for the state formulation with O instead of P can be written

similarly. Below, we assume the case of instantaneous reconfiguration actions is true

(that Assumption A7 holds) and also we will assume that the states are represented with

vector O instead of P. Representation with P is similar. We do not present an example for

the model with transition probabilities as in Equation (6.2.7) because it requires further

assumptions about the knowledge of corresponding transition probabilities e.g. φ1, φ2, φ3

etc which is beyond the scope of this chapter. Nevertheless, this could be a desirable

future directionof study.

6.3 Baseline	Spacecraft	Case	Study	

Consider a 1DOF spacecraft with reaction wheel where the reaction wheel has two

associated electronics boards, and each electronics board has current and voltage sensors

to detect failure of the electronics board. There is also an inertial measurement unit

156

(IMU) that can be used to detect faulty operation of the reaction wheel based on rotation

rate of the spacecraft. We assume that the spacecraft is on a mission to collect scientific

data from three targets. At each point, we have the information of the collected data so

far. The mission-related actions are attitude maneuvering and data collection. For

simplicity, we assume that the data collection equipment does not fail. Figure 6.1 shows

the system under consideration.

Figure 6.1: 1-DOF reaction wheel (RW) system

Note that we can generate a Bayes net for this example using the interconnection of

components and information about how they work together. Figure 6.2 shows the Bayes

net for this example. In Figure 6.2, nodes Batt, EB1, EB2, and RW represent

faulty/normal mode of these components. Nodes OEB1 and OEB2 represent abstracted

sensor readings in terms of faulty/normal for EB1 and EB2, respectively. Node SWEB has

values {1, 2} indicating which of the boards is in use. Node C represents the active

control law. We assume three control laws one of which (c1) works best when the wheel

is normal, the second law (c2) works best when the wheel is faulty, and the third law (c3)

is the safe mode control where the reaction wheel is turned off. We also assume that the

control law appropriate for a faulty wheel (c2) yields lower performance than c1 if the

157

wheel is operating normally. Node aatt indicates whether or not the attitude maneuvering

action is active. Node IMU represents the normal/faulty status of the wheel abstracted

from IMU measurements. The initial conditional distributions corresponding to the Bayes

Net are shown in

Table 6-1. The symbol “-” before a variable in

Table 6-1 indicates a faulty mode except for SW1 and SW2 where it indicates that the

corresponding switch is turned off. Note that all probabilities in

Table 6-1 are probabilities of components being in normal mode given evidence from

parent nodes. The corresponding probabilities of components being in faulty modes are

calculated by subtracting probability of normal operation from 1. Using these

distributions, the probabilities of failure (given any evidence) for any of the components

can be calculated using Bayesian inference. We assume that the probability of failure of

RW is 0 when no attitude maneuvering action is under execution. Also we assume that the

failure/normal mode of RW does not change when control law c2 or c3 is in effect.

158

Figure 6.2: Bayes net for 1-DOF reaction wheel system

Table 6-1: Conditional probabilities for the Bayes net
P(Batt) 0.995

P(SW1) 0.5

P(SW2) 0.5

P(EB1|B,SW1) 0.998

P(EB1|-SW1,B) 0.999

P(EB1|SW1,-B) 0.4

P(EB1|-B,-SW1) 0.7

P(EB2|B,SW2) 0.998

P(EB2|-SW2,B) 0.999

P(EB2|SW2,-B) 0.4

P(EB2|-B,-SW2) 0.7

P(OEB1|EB1) 0.95

P(OEB1|-EB1) 0.15

P(OEB2|EB2) 0.95

P(OEB2|-EB2) 0.15

159

P(RW|EB1,EB2,c1,aatt) 0.999

P(RW|EB1,-EB2,c1,aatt) 0.999

P(RW|-EB1,EB2,c1,aatt) 0.999

P(RW|-EB1,-EB2,c1,aatt) 0.2

P(IMU|RW) 0.99

P(IMU|-RW) 0.02

Now we present the MDP formulation for this example. The states of the system are

represented as

 
 

1 2 3

1 2 3 1 2 1 2

, , ,...,

, , , , , , , , , , , ,

N

att Batt RW EB EB EB EB IMU
i i i i i i i i i i i i i i

S s s s s

s a b b b f f f f o o o sw c



 (6.3.1)

Given the information in a baseline state, we can solve the Bayes net in Figure 6.2 to

obtain probabilities of failures for RW, EB1, EB2, and Batt. Then we can compare

probabilities of failure with values of fault flags in the MDP states to determine

probabilities of false alarms and missed detections. The total number of states in above

equation amounts to 12,228. Since we have 6 actions, the computational complexity of

this example will be of the order of 108 which is manageable with a modern computer.

 Available actions are to flip a switch and to flip the control law. Doing nothing (NOOP)

is also among available options in action set M given by

 1 2 1 2 3, , , , ,M sw sw c c c NOOP
 (6.3.2)

 The reward function requires specification of critical sets and a G function that

represents the penalty on incorrect reconfiguration. We assume the attitude maneuvering

160

action is not desirable in states where the control law is c2 or c3 and fRW is 0 (indicating no

fault in the RW). Furthermore, an attitude maneuver can be executed with either c1 or c2

as the control law whereas, with c3, attitude maneuvering is not possible. Also we assume

that states with c2 or c3 as the active control law are critical for achieving objective b3 (i.e.

collecting data from asteroid 3). This may be due to pointing stability requirements for

this objective. For the other two objectives, the critical states are when the control law is

equal to c3. We define the G function for our example as

     

     

    

    

 

1 1 1 1
1

2 2 2 2
2

3

4

5

() 1 1 () 1

() 1 1 () 2

1 () 1 () 2
()

1 () 1 () 3

() 1 1 ()

EB EB EB EB
i i i i

EB EB EB EB
i i i i

RW RW RW RW
i i i i

i
RW RW RW RW
i i i i

RW RW
i i

P MD f P FA f I sw

P MD f P FA f I sw

P MD f P FA f I c
G s

P MD f P FA f I c

P MD f P FA











     
      
      
      

      

      6

1

() 1 1 () 1 3

RW RW
i i

Batt Batt Batt Batt
i i i i

f I c

P MD f P FA f I c

 
 
 
 
 
 
 
 
 
     
          (6.3.3)

In the above equation, P(FAj
i) and P(MDj

i) represent probabilities of false alarm and

missed detection respectively for component j in state i. These probabilities are

conditioned upon the information given in state si and are calculated from the Bayes net

in Figure 6.2 as described earlier. Also λ1, λ2, λ3, λ4, λ5, and λ6 are positive weighting

factors. Note that, function G has six main terms. The first two terms in G penalize usage

of a faulty electronics board. λ1 and λ2 are different because the two boards in general

may not be exact copies of each other. The next two terms in G penalize usage of

degraded control laws when the reaction wheel is still healthy. The fifth term penalizes

the usage of the normal control law c1 when the wheel is faulty. The sixth term in G

penalizes not using safe mode control in case of battery failure.

161

 Now, we can write the reward function for our example as

    
  



















 



i

k

k
i

critical
kik

att
i

critical
atti

i

sG

bBsIaAsI
sR

3

1
1 1

exp)(




 (6.3.4)

Finally, transition probabilities for the example are computed using Equation (6.2.6) with

θ1 = 0.9 and θ2 = 1.

Note that there are no constraints in the specified reconfiguration options and no

uncertainties in state transitions. Therefore, there is no need to compute the solution for

infinite horizon or even finite horizon of length greater than 2 for our case study. This

would have not been possible in the presence of constraints on reconfiguration such as

one-time on-off switches, non-instantaneous reconfiguration actions, temporarily

irreversible reconfiguration options, and uncertainties in state transitions such as those

presented in Equation (6.2.7) etc. Since we have simplified the problem, this allows us to

avoid value iteration and calculate the optimal policy for both MDPs simply by

computing the following for each of the states.

   arg max ()i jPol s R s


 (18)

6.4 Simulation	Results	

In this section we present simulation results that emphasize the importance of selecting

design parameters and the tradeoff between safe operations versus mission completion.

We present two case studies. In the first case, parameters are selected to emphasize

mission completion and in the second case, parameter selection favors safe operation.

162

6.4.1 Case	1:	Emphasizing	Mission	Completion	

For this case, we selected α = 2, β1, β2, and β3 equal to 9, λ = 105, λ 1, λ 2, and λ 3 equal to

3, λ4 and λ6 equal to 4, and λ5 = 5. Also we selected discount factor γ = 0.8. In our

simulation we started with an initial state where the spacecraft was in safe mode. Table

6-2 shows the response of the MDP policy to various events. Note that each state in Table

6-2 has the format  1 2 3 1 2 1 2, , , , , , , , , , , ,att Batt RW EB EB EB EB IMU
i i i i i i i i i i i i i is a b b b f f f f o o o sw c where the

values of fault flags are 1 when the component is faulty whereas the values of abstracted

observation flags are 1 when the component is observed as healthy.

Table 6-2: State trajectory emphasizing mission completion.
Simulation

Step #
State Policy Exogenous event

1 [0 0 0 0 0 0 0 0 1 1 1 1 3] c1 attitude maneuver begins
2 [1 0 0 0 0 0 0 0 1 1 1 1 1] NOOP OEB1 indicates failure
3 [1 0 0 0 0 0 1 0 0 1 1 1 1] sw2 attitude maneuver ends
4 [0 0 0 0 0 0 1 0 0 1 1 2 1] NOOP mission objective 1 completes
5 [0 1 0 0 0 0 1 0 0 1 1 2 1] NOOP attitude maneuver begins
6 [1 1 0 0 0 0 1 0 0 1 1 2 1] NOOP OEB2 indicates failure
7 [1 1 0 0 0 0 1 0 0 0 1 2 1] NOOP IMU indicates failure
8 [1 1 0 0 0 0 1 0 0 0 0 2 1] NOOP attitude maneuver ends
9 [0 1 0 0 0 0 1 0 0 0 0 2 1] NOOP mission objective 3 completes
10 [0 1 0 1 0 0 1 0 0 0 0 2 1] c2 attitude maneuver begins
11 [1 1 0 1 0 0 1 0 0 0 0 2 1] NOOP attitude maneuver ends
12 [0 1 0 1 0 0 1 0 0 0 0 2 1] NOOP mission objective 2 completes
13 [0 1 1 1 0 0 1 0 0 0 0 2 1] c3 ---

Several observations are worthy of note. First, in step 7, although both electronics boards

have been diagnosed as failed, the policy insists on keeping control law c1 to avoid

entering critical states for any of the remaining objectives. In step 10, the control law is

changed to c2. This is because c2 is the safest controller among the ones that are feasible

for the remaining mission objective. In step 11, the policy switches to the state that is

163

infeasible for the attitude maneuver since fRW is 0 and c2 is activated; this is because a low

value of α is selected as compared to safety-related parameters. After all the objectives

are completed, the reconfiguration policy opts for the safest control law i.e. c3. This

example raises the question of spacecraft safety. What if the calls made by OEB2 and IMU

were correct? In that case, the spacecraft would not have completed its objectives and the

control law would have stayed at c1 forever. This fact points towards a need for an

external safing mechanism to avoid consequences of a mission emphasizing

policymission completion to the extent that the mission can actually be jeopardized

(unsafe). On the other hand, the response of the policy is justified because the user has

defined his preferences through design parameters which indicate that mission objectives

are more important than safety.

6.4.2 Case	2:	Emphasizing	safety	

For this case, we selected α = 2, β1, β2, and β3 equal to 3, λ = 105, λ 1, λ 2, and λ 3 equal to

3, λ4 and λ6 equal to 4, and λ5 = 5. Also we selected discount factor γ = 0.8. We started

with an initial state where the spacecraft was in safe mode. Table 6-3 shows the response

of the MDP policy to various events.

Table 6-3: State trajectory with safety emphasizing policy
Simulation

Step #
State Policy Exogenous event

1 [0 0 0 0 0 0 0 0 1 1 1 1 3] c1 attitude maneuver begins
2 [1 0 0 0 0 0 0 0 1 1 1 1 1] NOOP OEB1 indicates failure
3 [1 0 0 0 0 0 1 0 0 1 1 1 1] sw2 attitude maneuver ends
4 [0 0 0 0 0 0 1 0 0 1 1 2 1] NOOP mission objective 1 completes
5 [0 1 0 0 0 0 1 0 0 1 1 2 1] NOOP attitude maneuver begins
6 [1 1 0 0 0 0 1 0 0 1 1 2 1] NOOP OEB2 indicates failure
7 [1 1 0 0 0 0 1 0 0 0 1 2 1] NOOP IMU indicates failure
8 [1 1 0 0 0 0 1 0 0 0 0 2 1] c3 attitude maneuver ends

(unsuccessful)

164

Note that, as opposed to the Table 6-2 trajectory, the trajectory in Table 6-3 goes into the

safe controller even though the mission objectives have not yet been achieved. At step 7,

although there was an indication both electronics boards have failed, the policy waited for

the signal from the IMU and when sufficient evidence of failure was received, the

spacecraft control law was changed to a safe one.

From the above two cases, there is a clear tradeoff between emphases upon mission

completion versus safe operation. It is important to point out here that having high values

for parameters related to both safety and mission-critical states is not the answer to this

problem because what really matters is their relative weighting given that tradeoffs are

ultimately required.

6.5 Complexity	Analysis	and	ADP	

An ADP method similar to the methods presented in chapters 4 and 5 can be used to

reduce the computational complexity of the problem, although we reserve specifics of

ADP application to spacecraft fault reconfiguration for future work. Usually, there are

cases where certain components (or subsystems) can be reconfigured independently of

the other components (or subsystems). There may also be hierarchical relationships in

reconfiguration that can be used to separate lower level reconfiguration from

reconfiguration at higher layers of abstraction. Also, as in our case study in this chapter,

the reconfiguration problem may often be static which allows the use of greedy search

which is computationally less expensive than value iteration.

165

6.6 Conclusions	and	Future	Work	

We have presented a framework for calculating an optimal policy for mission-based post-

fault reconfiguration. Our framework is robust in a sense that while calculating an

optimal policy, we take into account not only the uncertainty in the detection of faults,

but also the currently active mission-related actions and remaining objectives of the

mission. We have also shown a way to implement our framework and have indicated

some important mission completion versus safe operation tradeoffs through 1DOF case

study and simulation results. The primary drawback of our framework is its potential for

high computational complexity. In the future, we would like to develop approximate

dynamic programming techniques for this framework to reduce the computational

overhead. For example, with ADP applied to the case of a 3-DOF spacecraft with three

reaction wheels, the electronics board switching reconfiguration policy can be

implemented for each wheel separately whereas the control law reconfiguration policy

can be implemented at a higher level when the switching is not feasible or applicable.

166

 	Chapter	7

Far	Ultraviolet	Spectroscopic	Explorer	Case	Study	

In this chapter, we present a case study that is inspired by the Far Ultraviolet

Spectroscopic Explorer (FUSE) mission. This mission consisted of a low earth orbit

spacecraft that suffered from multiple failures related to the attitude control system. As a

result useful mission time was wasted while engineers and scientists on the ground

station were determining appropriate reconfiguration strategies to handle the failures. Our

purpose for presenting this case study is to elaborate how technologies such as CFT-

SOAP and alternative architectures ASPEN and Livingstone summarized previously in

Chapter 2 could have modeled and managed reconfiguration options for attitude control

such that mission downtime would have been minimized through automatic response to

the encountered spacecraft hardware failures. This of course would have required

anticipation of these failures, including onboard software to detect hardware problems as

well as alternate control laws capable of adequately controlling FUSE spacecraft attitude

when encountering any subset of the anticipated failures. CFT-SOAP application to

FUSE fault management is followed by an example application of ASPEN and

Livingstone for this purpose, enabling comparison of the three architectures for a real-

world spacecraft application. To our knowledge attitude fault tolerance has not been

modeled previously for any of the three architectures.

167

7.1 FUSE	Mission	Review	

The FUSE satellite was launched in June 1995 [65] in a low earth near-circular orbit

(eccentricity = 0.001) with altitude of approximately 762 kilometers and an inclination of

25 degrees. The primary objective of this satellite was to observe light in the far-

ultraviolet spectral region, 905-1187 Å, with a high spectral resolution. Science

instrumentation consisted of four co-aligned prime-focus telescopes and Rowland

spectrographs with micro-channel plate detectors. Two of the telescope channels used Al

: LiF coatings for optimum reflectivity between approximately 1000 and 1187 Å, and the

other two channels used SiC coatings for optimized throughput between 905 and 1105 Å.

Details of the design and early performance of FUSE can be found in [91], [90].

 The FUSE Attitude Control System (ACS) consisted of two sets of three ring-laser

gyroscopes (Inertial Reference Units, or IRUs) for attitude estimate propagation.

Redundant three-axis magnetometers and coarse sun sensors provided coarse attitude

information to ±2°. The required attitude resolution for fine pointing was achieved by

using a signal from a Fine Error Sensor [59] (FES) in the science instrument which

images a region of the sky around the spectrograph apertures. Four Reaction Wheel

Assemblies (RWAs) were used to control the attitude of the satellite and manage angular

momentum. Three wheels were arranged along the primary roll, pitch, and yaw axes of

the satellite and a fourth skew wheel was oriented equidistant from the others. The skew

wheel was biased to minimize zero-speed crossings on the other wheels and could serve

as a substitute in case of failure of one of the other RWAs. Three magnetic torqueing bars

(MTBs) were mounted along the primary axes and were used to control the momentum

load on the wheels by inducing torque on the spacecraft from the Earth’s magnetic field.

168

A more detailed description of the design of the ACS, along with a description of its

performance early in the mission and in two-wheel mode is available in [56], [65].

Beginning in late 2001, the failure of spacecraft components began to affect satellite

operations. While two out of the four reaction wheels failed by the end of 2001, the flight

software was modified to employ the torqueing bars in conjunction with the two

remaining wheels to provide fine pointing control. This upgrade in the software required

engineers and scientists to work round the clock for about 54 days. At this point,

additional software was also being developed for the cases where gyroscopes might fail.

In December 2004, the third reaction wheel also failed rendering the spacecraft into the

safe mode once again and requiring major changes in the FUSE mission planning and

attitude control. Regular scientific operations resumed in November 2005. By mid-2006,

the satellite was operating with only one of its four reaction wheels and two of its six

gyroscopes [91]. Loss of these hardware components required a significant redesign of

the ACS, but with software revisions manually computed by engineers on the ground,

FUSE was restored to operation, making observations with an efficiency approaching that

of its earlier days, albeit over a smaller portion of the sky.

7.2 Reliability	Prediction	(The	Probabilities	of	Failures)	

Application of CFT-SOAP for fault-tolerant attitude control in the FUSE mission

requires specification of a priori failure probabilities for relevant spacecraft components

and systems. These probabilities can be estimated from available failure databases

compiled over previous spacecraft missions, as well as through component-level testing

by the manufacturers. Failures observed during spacecraft missions have been compiled

in [96], [20], and [19]. In [96], a survey on serviceable spacecraft failures is presented

169

with a failure database including 854 failure records spanning the years 1957 to 2000.

This paper also presents a list of 242 partial and total failures out of 2431 space missions

between years 1981 and 2000. In [47] 3000 anomalous incidents are analyzed to predict

spacecraft reliability. In 80% of these incidents further analysis was possible to determine

the cause of the failure. Data was obtained from over 300 satellites launched between the

early 1960s through January of 1984. In [20] the authors have presented a reliability

analysis for 1584 earth-orbiting satellites launched between January 1990 and October

2008. Since its data is most recent and is obtained from Earth-orbiting spacecraft

missions, the data presented in [20] is used in this chapter to estimate the probability of

failures for gyroscopes and reaction wheels in the FUSE spacecraft. According to [20] the

reliability of gyroscopes and reaction wheels is approximately 99.5% after 4 years on-

orbit. Therefore, prior probability of failure within the first 4 years is 0.005 [100]. The

contribution of each sub-system to spacecraft failure in terms of pie-charts for different

durations spent on orbit is presented in [19]. According to these pie charts, gyroscope and

reaction wheel failures contribute about 11% to the total failures after 5 years of launch.

This is consistent with [47] where the percentage of failures due to guidance and

navigation is determined to be approximately 12% for science missions. Also, in [96], the

total number of guidance and navigation failures is 10% of the total number of cases

considered. If we assume that 10% of these failures are due to gyroscope and reaction

wheels then we can conclude that the reliability of gyroscopes and reaction wheels is

99% which is reasonably close to 99.5% as depicted in [19]. Note that while FUSE

components had a much higher probability of failing, mission engineers did not know

these components would have a high failure rate before launch, so failure probability

170

models embedded in a system such as CFT-SOAP would have initially been derived from

historical data as is described in this chapter.

7.3 Fuse	Modeling	with	CFT‐SOAP	

To model the FUSE satellite mission using CFT-SOAP, we assume there is a multiple-

model fault detection framework such as that described in [112] (also see section 5.4)

onboard the FUSE spacecraft. This fault detection module must be able to detect failures

in any of the reaction wheels as a minimum. The accuracy of this fault detection

framework depends upon the selection of appropriate detection thresholds. The

probabilities of false alarms and missed detections are assumed to be known functions of

these thresholds. We also assume that there are temperature and current/voltage sensors

in the electronics associated with the reaction wheels and the gyroscopes that can provide

health status data for these components. We also assume that there are 15 control laws

on-board the FUSE spacecraft, including the nominal (no-failure) control law, four

control laws using combinations of three out of the available four reaction wheels, six

control laws using combinations of two reaction wheels and magnetic torque bars, and

four control laws relying on only one of the four reaction wheels and the magnetic torque

bars. This is the minimal set of attitude control laws required to cover the suite of zero to

three reaction wheel failure cases.

 Under the above assumptions, the state space for the FUSE CFT-SOAP MDP is defined

follows:

171

 

 
     
   
       
 

1 2

1 2 5

1 10 1 4

1 10

, ,...,

, , , , , , , , , , ,

0,1, 2 , , ,..., , 0,1

1,11, 21,...,351 , 1, 2,3, 4,5

,..., , 0,1 , ,..., , 0,1

,..., ,

N

i i i i i i i i i i i i i

j
i i i i i i

i

j j
i i i i i i i i

j
i i i i

S s s s

where

s A B v z Bl Bo O V sw c SE EL

A B b b b b

v z

Bl bl bl bl Bo bo bo bo

O o o o





  

 

   

      
         

1 140,1 , ,..., , 1, 2,3

, , , 1, 2 , 1, 2,...,14 , 1,2,3 , 1, 2,...,5

j
i i i i

roll pitch yaw j
i i i i i i

V v v v

sw sw sw sw sw c SE EL

  

    

 (7.3.1)

In the above equation, variable A represents the status of in-progress mission activities

where A = 1 if an attitude maneuver is in progress, A = 2 if data collection from a target

region is in progress, and A = 0 if no mission-related action is in progress. Vector variable

B represents the status of the mission objectives where each component is a binary flag

corresponding to a particular mission objective. For FUSE, mission objectives are

defined as far ultraviolet radiation observations obtained from particular celestial objects

or regions. We model five specific observing targets or objectives in this case study.

 In Equation 7.3.1, variable v represents spacecraft true anomaly assuming the

remaining orbital elements are constant. We have discretized true anomaly into 10 degree

regions yielding a 36-value set. The variable z represents attitude pointing of the

spacecraft in terms of the five target regions of the sky. Vector Bl contains logic-based

fault flags for the six gyroscopes and four reaction wheels that are generated using

available information about the observed (using current/voltage sensors) operational

mode of these components in vector O and fault information generated using dynamics-

based fault flags for the four reaction wheels in vector Bo. Vector variable V contains

172

thresholds for fault models in the multiple-model dynamics-based fault detector. Each

threshold corresponds to one of the 14 possible failures configurations for the four

reaction wheels. In our case study, each threshold can have three possible values low,

medium, and high where high corresponds to vi
j = 3. These thresholds affect the values of

fault flags in Bo where each flag may be affected by multiple thresholds depending upon

number of fault scenarios in which that fault flag is involved e.g. fault flag for reaction

wheel 1 is involved in all (one-wheel, two-wheel, three-wheel, and four-wheel) fault

scenarios where failure of reaction wheel 1 is included. Vector sw represents which of the

gyroscopes are in use along each axis of rotation. The three binary flags in sw represent

the active gyroscope along the relevant axis (e.g. roll axis) from one (e.g. swroll = 1) or the

other (e.g. swroll = 2) set of onboard gyroscopes. The active control law is represented by

c where each value of c corresponds to one of the 15 possible combinations of the four

reaction wheels chosen at the most three and at least one at a time. Variable SE represents

a combination of eclipse and sun-pointing flags. SE = 1 means that the spacecraft is in

eclipse, SE = 2 means that the spacecraft is not in eclipse but the telescopes are pointed

towards the sun, and SE = 3 means that the spacecraft is not in eclipse and the telescopes

are not pointed toward the sun. This variable is used to maintain safety of the

instrumentation which might be damaged if open (in use) and pointed toward the sun. We

plugged in the parameters of the FUSE orbit in the Satellite Tool Kit (STK) software and

calculated that FUSE remained in eclipse during 33% of its orbital rotation. Later in our

simulation trajectory, we assume that the eclipse starts at 230 degrees of true anomaly

and ends at 350 degrees of true anomaly. Note that our CFT-SOAP formulation can deal

with any location of the eclipse. Finally, variable EL represents energy in terms of the

173

charge level available in the spacecraft batteries over 5 levels where EL = 5 means fully

charged and EL = 1 means lowest acceptable charge level.

 With the above definition of the state-space, the total number of MDP states is

approximately 1.5 × 1023. This state-space size is too large to be considered by an

integrated MDP. Therefore, we decompose the CFT-SOAP MDP into smaller MDPs

dedicated to mission planning, fault detection, and reconfigurable control in the manner

described in previous chapters e.g. Sections 3.4, 4.5, 5.10, and 5.11. Figure 7.1 shows the

process of decomposing with CFT-SOAP for the FUSE case study. We start with the

integrated approach and then decopose the larger MDPs into smaller MDPs step by step.

This way, it is easier to understand the tradeoff between computational complexity and

optimality of the solution since the integrated approach incorporates all the dependencies

between the planning, fault detection, and reconfiguration subproblems. Figure 7.2 shows

the specific map of MDPs generated by decomposing the larger MDPs in planning, fault

detection and reconfiguration. The details of decomposition and the corresponding effects

on the solution are discussed in the subsequent sections.

Remark: Note that the symbol for true anomaly () and the components of the threshold

vector V look the same but these can be differentiated from each other since components

of the threshold vector V have additional index representing their identification within V.

Figure 7.1: The process of decomposition using the CFT-SOAP framework

The integrated problem

Decomposition into
planning, fault
detection, and
reconfiguration

Further
decomposition
within planning,

fault detection, and
reconfiguration

174

Figure 7.2: MDP decomposition map for the FUSE case study

7.3.1 The	Planning	MDPs	

The planning MDP is tasked with sequencing observations in a manner that is feasible

given the detected fault state and reconfigurable control strategy determined by the

complementary fault detection and reconfiguration MDPs. For planning, we must

consider the available sensors/actuators and the probabilities of failures. This may require

a planning MDP for each of the failure cases, yielding a total 15 MDPs considering only

reaction wheels to be the important components for mission completion since gyroscopes

only help in the determination of the angular velocities that can be determined

alternatively from the attitude measurements provided by the three-axis magnetometers,

the course sun sensors, and the fine error sensor. We simplify our case by considering

available control authority instead of available components. This simplification is done

mainly to contain the size of this chapter and to demonstrate the concept of CFT-SOAP

Main MDP for the
FUSE Mission

Planning MDP

Planning with full 3‐
axis control

Planning with
partial control

Fault Detection
MDP

Logic‐based fault
detection

Conflict resolution

Reconfiguration
MDP

Control law
reconfiguration

Gyroscope
reconfiguration

175

implementation with minimum space occupation. With this simplification, we need two

classes of planning MDPs, one class of MDPs for the cases with full control availability

where at least two of the four reaction wheels are functional and the second class of

MDPs for partial control availability where only one out of the four reaction wheels is

functional. Note that, in this chapter, we do not consider the case where all four reaction

wheels have failed and the control authority is provided by only magnetic torque bars.

The only reason for excluding this case is that it adds complexity and is not required to

demonstrate CFT-SOAP in the context of the FUSE case study.

 In this chapter we focus on the planning MDPs with full control authority since the

planning MDP with partial control authority can be developed using a similar formulation

with additional information in the state space regarding which actions are possible and

when they can be achieved (e.g., slewing may require that the magnetic torqueing bars

pass through a specific part of the magnetosphere). Available actions given partial control

availability will depend upon which of the reaction wheels remain healthy or if only the

magnetic torqueing bars are available for control authority.

 The states for the planning MDP with full control availability are defined as follows.

 

   
   
   
   

1 2 1

1 2 5

, ,..., ,

, , , , , 1, 2,..., 1

, ,..., , 0,1

1,11, 21,...,351 , 1, 2,3, 4,5

1, 2,3 , 1, 2,...,5

N F

i i i i i i

j
i i i i i

i

S s s s s

where

s B v z SE EL i N

B b b b b

v z

SE EL



  

 

 

  (7.3.2)

176

Note that the size of the state space for this MDP is 86,400 which is manageable with

currently-available computational resources. State sF represents the failure state which

represents the conditions under which the spacecraft no longer possesses full control

availability indicating a switch to a policy applicable for cases of partial control

availability is required.

 The actions for the planning MDP with full control availability are

 1 2 5 10 20 50, ,..., , , ,M NOOP NOOP NOOP   (7.3.3)

These actions are defined such that there is one action corresponding to each of the five

target regions. Every action has an associated change in true anomaly that represents the

time required to complete that action (Table 7-1). This change in true anomaly and the

result of executing an action µi corresponding to the target i depends upon the state from

which the action is executed. If the action is executed from a state where the spacecraft is

not already pointing towards the target i, then the action results in the attitude maneuver

from the current pointing towards the pointing i. If on the other hand, the spacecraft is

already pointed towards the target i and the true anomaly of the spacecraft is within the

window of visibility of the target (see chapter 4), then the action results in the collection

of data from the target if the data flag for that target is set to 0 in the current state. In all

other cases, the action simply results in the change in true anomaly associated with it.

There are three actions of type NOOP with associated changes in true anomaly of 10, 20,

and 50 degrees. These values were selected for NOOP of short, medium and long

durations respectively since 10 degrees is the smallest possible change in true anomaly

for the MDP formulation and 50 degrees is comparable to one of the largest maneuvers in

177

Table 7-1. Table 7-1 provides information about change in true anomalies associated with

the actions and the energy required in terms of the number of charge levels of the

batteries. The energy required for each attitude maneuver is 2 units and for each data

collection action is 1 unit. The changes in true anomaly incurred by the attitude

maneuvers are calculated from the magnitude of the maneuvers. The magnitudes of the

maneuvers are calculated from the locations of the science targets in the sky with respect

to an inertial frame of reference that has the origin in terms of roll, pitch, and yaw angles

placed such that the spacecraft is pointed towards Target 1 at the origin. Target 2 is

placed at positive (counterclockwise) 20 degrees roll rotation with respect to Target 1.

Target 3 is placed at positive 40 degrees pitch rotation with respect to Target 1. Target 4

is placed at positive 30 degrees yaw rotation with respect to Target 1. Target 5 is at a

location that is at positive 20 degrees roll rotation with respect to Target 4. The

magnitude of the maneuver between any two targets is calculated from cos-1(k/2) where k

is one less than the trace of the rotation matrix [51] involved in the rotation between the

two targets. Note that the changes in true anomaly are the same no matter where in the

orbit the action is applied. This is the result of the fact that we model the FUSE orbit as

circular (in real-world deployment the orbit had eccentricity = 0.001).

Table 7-1: True anomaly changes and data collection windows

For
current
Attitude
pointing

Associated change in true anomaly (deg) for attitude
maneuvering/data collection and (energy required)

Data
collection
window

(deg)
µ1 µ2 µ3 µ4 µ5

1 10 (1) 20 (2) 40 (2) 30 (2) 40 (2) 50-100
2 20 (2) 10 (1) 50 (2) 40 (2) 30 (2) 100-150
3 40 (2) 50 (2) 10 (1) 50 (2) 50 (2) 150-200
4 30 (2) 40 (2) 50 (2) 10 (1) 20 (2) 200-250
5 40 (2) 30 (2) 50 (2) 20 (2) 10 (1) 250-300

178

The diagonal entries in columns 2 through 6 of Table 7-1 indicate changes in true

anomalies associated with data collection. All other entries in these columns are

associated with attitude maneuvers between the targets. The numbers in parentheses

indicate the energy required for each of the attitude maneuver/data collection actions.

Note that we assume here that energy is consumed by an action only if the spacecraft is in

eclipse. This means that the rate of energy consumption is equal to the rate of energy

production when the spacecraft is executing a mission related action while not in eclipse.

Also, if no mission-related action is being performed, energy is produced at the rate of 1

unit per 10 degrees change in true anomaly. The last column of Table 7-1 represents data

collection windows for targets 1 through 5 in descending order.

 The reward function for the planning MDP with full control authority is defined as

   

1 1

1 2 3 4 5

1
() (1) 500 : {1,2,..., 1}

2

, , , , 30,50,70,40,60

i

i

nn
zk k

i i k z i i
k k

R s b r r b b i N

where

r r r r r r

 

  
      

  

 

 

 (7.3.4)

The costs of the actions are defined to be proportional to the associated changes in the

true anomalies and have values equal to one-half of the entries in Table 7-1.

 Transition probabilities are calculated from the failure probabilities of the components

using [19], [20] (per Section 7.2) along with the change in true anomaly associated with

each action. The failure probabilities are calculated by using the assumption of

independence i.e. failure probability of each component is independent of the failure

179

probability of any other component. Also, for NOOP actions, failure probabilities are

assumed to be zero. Since control authority is associated with the reaction wheels in our

case study, and since at least three out of four wheels have to fail to reach a partial

control availability state (state sF in Equation 7.3.2), the probability of reaching sF

becomes 1.25 × 10-7. We multiply this number with the associated change in true

anomaly and a safety factor of 100 yielding 1.25× 10-5 times the change in true anomaly

incorporated by the given mission-related action. The safety factor is used to compensate

for the fact that we have aggregated failure cases to enable separation of the planning

MDP from details of fault detection and control reconfiguration.

7.3.2 The	Fault	Detection	MDPs	

In our FUSE case study, we only consider the faults in the reaction wheels and

gyroscopes. Therefore, there are 10 independent fault flags, six for gyroscopes and four

for the reaction wheels. In our formulation, we assume that reaction wheel faults are

detectable by both dynamics-based and logic-based methods whereas ring laser

gyroscope faults are detectable only by the logic-based method. This assumption is made

for two reasons; first, sensor fault detection using the dynamics-based model is not

straightforward and second, the laser gyroscopes are easier to diagnose by sensing the

laser light intensity than by comparing the output angular velocity with a dynamic model.

Therefore, the MDP state-space for fault detection is defined as follows

180

 

 
       
       

1 2 3

1 10 1 10

1 10 1 14

, ,...,

, , ,

,..., , 0,1 , ,..., , 0,1

,..., , 0,1 , ,..., , 1, 2,3

N

i i i i i

j j
i i i i i i i i

j j
i i i i i i i i

S s s s

where

s Bl Bo O V

Bl bl bl bl Bo bo bo bo

O o o o V v v v





   

   

 (7.3.5)

Recall that vector Bl contains logic-based fault flags, vector Bo includes observer-based

fault flags, vector O includes processed observation flags (or observed component

modes), and vector V is the set of thresholds for the observer-based fault detector. With

the above definition, the size of the state-space becomes approximately 8 × 1013. Since

this size is still formidable, we decompose the fault detection MDP into two MDPs. The

first MDP is responsible for generating an optimal policy for logic-based fault detection

of the reaction wheels and the gyroscopes. The second MDP is responsible for conflict

resolution between logic-based and dynamics-based fault flags for the reaction wheels by

controlling the thresholds for the dynamics-based fault detector. We assume the

existence of an observer module capable of providing dynamics-based fault information

to our conflict resolution MDP.

7.3.2.1 Logic‐based	Fault	Detection	MDP	

This MDP is defined using the assumptions that all four reaction wheels have identical

chances of failure and at any given time, at most three out of four wheels are in use.

Similarly, we assume that all six gyroscopes have identical chances of failure and at any

given time, at most 3 out of 6 gyroscopes are in use. Therefore, we need to detect the

faults for only in-use reaction wheels and gyroscopes. Note that the fault flags exist for

all four reaction wheels and all six gyroscopes (total 10 flags) but at any given time, only

181

six of these fault flags are used by the fault detection MDPs based on which of the

components are in use versus not in use. This implies the existence of onboard logic to

map the three reaction wheels in-use to the three flags in the MDP policy. The

assumption of identical chances of failures for all four wheels and for all six gyroscopes

is important for this formulation. The states for the resulting logic-based fault detection

MDP are defined as

 

 
       
   

1 2 4

1 6 1 3

1 6

, ,...,

, ,

,..., , 0,1 , ,..., , 0,1

,..., , 0,1

N

i i i i

j j
i i i i i i i i

j
i i i i

S s s s

where

s Bl Bo O

Bl bl bl bl Bo bo bo bo

O o o o





   

 

 (7.3.6)

The size of the state space with above definition is 32,768. The actions for this MDP are

defined as

 1 2 6, ,..., ,M NOOP   (7.3.7)

where six of the actions correspond to the switching (on/off) of logic-based fault flags

where the first three actions are for gyroscopes and the next three actions are for reaction

wheels. The axis order for both gyroscopes and reaction wheels is yaw, pitch, and roll. In

case the slew axis reaction wheel is in-use, its corresponding action is always µ6 and the

remaining wheels are assingned µ index according to the yaw, pitch, and roll precidence.

The last action is for no-operation. The reward function for this MDP is similar to the one

presented in Section 5.10.1 and is represented as

182

 

 

()

6

1
1

1 2
2

1, 2 4,5,6

()

,

(| ,) (| ,)
()

iJ s
i

k i i k i i
k

i
k k
i i

k k

R s e

where

q P FA Bo O P MD Bo O
J s

q bl bo

 







 
    

  
  




 (7.3.8)

where q1 = q2 = 1, and the probabilities of missed detections and false alarms are

calculated from Table 7-2. The probabilities in the table are multiplied by blk and (1- blk)

to indicate that the probability of false alarm is nonzero only when the corresponding

fault is identified as present. Similarly, the probability of missed detection is nonzero

only when the corresponding fault is determined to not exist.

Table 7-2: False alarm and missed detection probabilities for the logic-based fault
detection

Value of
bok

Value of ok For the Reaction Wheels For the Gyroscopes
P(FAk|bok,ok) P(MDk|bok,ok) P(FAk|bok,ok) P(MDk|bok,ok)

0 0 0.083blk 0.917(1- blk) 0.01 blk 0.99(1- blk)
0 1 0.999blk 0.001(1- blk) 0.99 blk 0.01(1- blk)
1 0 0.001blk 0.999(1- blk) 0.01 blk 0.99(1- blk)
1 1 0.917blk 0.083(1- blk) 0.99 blk 0.01(1- blk)

 All actions in this MDP are deterministic therefore there is no transition probability

matrix involved. Also, since all the actions in this MDP are instantaneous and available

from every state, the optimal policy for this MDP can be calculated using greedy search

instead of value iteration to reduce computational overhead.

7.3.2.2 Conflict	Resolution	MDP	

For this MDP, we make the same assumptions that all four reaction wheels have identical

chances of failure and that reaction wheels can fail at any time (any true anomaly). We

183

also assume as described above that at most three out of four reaction wheels are in

operation. Also recall that the gyroscope failures are only determined by the logic-based

fault detection scheme. Therefore, conflict resolution has to be performed for only in-use

reaction wheels. The resulting state space is represented as

 

 
       
   

1 2 5

1 3 1 3

1 7

, ,...,

, ,

,..., , 0,1 , ,..., , 0,1

,..., , 1, 2,3

N

i i i i

j j
i i i i i i i i

j
i i i i

S s s s

where

s Bl Bo V

Bl bl bl bl Bo bo bo bo

V v v v





   

 

 (7.3.9)

The thresholds in Equation (7.3.9) are arranged according to the following table. Note

that there is no threshold corresponding to the no-fault scenario because it isn’t modeled.

Table 7-3: Threshold variables and their relevant fault scenarios

Threshold Variable Relevant Fault Scenario
v1 [1 0 0]: Failure of reaction wheel 1
v2 [0 1 0]: Failure of reaction wheel 2
v3 [0 0 1]: Failure of reaction wheel 3
v4 [1 1 0]: Failure of reaction wheels 1 and 2
v5 [0 1 1] : Failure of reaction wheels 2 and 3
v6 [1 0 1] : Failure of reaction wheels 1 and 3
v7 [1 1 1] : Failure of all three reaction wheels

The size of the state space for this MDP is 139,968 which is manageable. As shown there

are seven thresholds corresponding to the seven possible fault cases, i.e. three single

wheel failure cases, three dual-wheel failure cases, and one failure case where all 3

remaining wheels fail.

The actions for this MDP are defined as,

184

 1 1 7 7, ,..., , ,M NOOP       (7.3.10)

where each of the first 14 actions is used to increase or decrease the associated conflict

resolution threshold and the last action is for no operation. As was described in Section

5.10.2 the reward function for this conflict resolution MDP is defined as

 

 

3

1
() 1

1 2
2

1, 2 1,2,3

(|) (|)
() , ()i

k i k i
J s k

i i
k k
i i

k k

q P FA V P MD V
R s e J s

q bl bo
  



 
     

  
  





 (7.3.11)

Again, q1 = q2 = 1 and the probabilities of false alarms and missed detection are

calculated based on the following formula:

 
 

 

0.3 (1) || (3) 0.1(2)

|
()

(|) : 1
|

(|) : 0

kv V
k k

k k
k

k k

v v v

P WrongFaultDecision V
Cardinality V

P FA V if bo
P WrongFaultDecision V

P MD V f bo



   



  



 (7.3.12)

Here, Vk is the set of thresholds related to fault k. Note that the above formula calculates

the probability of false alarm if the corresponding fault flag is set to 1. Otherwise, the

formula calculates the probability of missed detection.

 To understand the transition probabilities, we summarize the process of observer-based

fault detection. First each fault scenario is assigned a transition threshold (except for the

no-fault scenario assumed to be the initial state). When the estimated states from the

185

actual system are compared with the predicted states corresponding to a particular fault

scenario, a residual signal is generated. This residual signal estimates the difference

between the actual states and the states for the corresponding fault scenario. If the

difference/residual is smaller than the threshold for that fault scenario, the fault is

identified as present. For cases where more than one scenario is likely, the tie can be

broken with a default preference.

 The conflict resolution MDP transition probabilities are calculated based on whether or

not the state from which the threshold-change is applied has a relevant fault scenario for

the changed threshold (see Table 7-3). If the scenario is relevant, increasing the threshold

always results in no change and decreasing the threshold may result in either no change

(with probability 0.5) or may result in a fault status change to a different state of the

seven possible scenarios (with equal probabilities of 0.5/7). If on the other hand, the

scenario is irrelevant, decreasing the threshold always results in no change while

increasing the threshold may result in either no change (with probability 0.5) or a new

fault scenario corresponding to the threshold that is increased (with probability 0.5).

7.3.3 Control	Reconfiguration	MDP	

The states of the MDP for the FUSE spacecraft attitude control reconfiguration can be

defined as

186

 
 

     
       
     

1 2 6

1 2 5

1 10 1 10

, ,...,

, , , , ,

,

0,1, 2 , , ,..., , 0,1

,..., , 0,1 , ,..., , 0,1

, , , 0,1 , 1, 2,...,14

N

i i i i i i i

j
i i i i i i

j j
i i i i i i i i

roll pitch yaw j
i i i i i i

S s s s

s A B F O sw c

where

A B b b b b

F f f f O o o o

sw sw sw sw sw c





  

   

  

 (7.3.13)

In the above equation, F represents conflict-resolved fault flags generated by the fault

detection schemes for the six gyroscopes and four reaction wheels. Note that we have

used a set of unified fault flags here instead of separate flags i.e. Bl and Bo. If there are

any conflicts in Bl and Bo that are not resolved by the conflict resolution MDP (since the

conflict resolution MDP does not always guarantee the resolution of every conflict, see

Section 5.13), maximum likelihood with default preference of one flag type over the

other for tie breaking is used to generate the set of fault flags in F. O represents processed

sensor data that represents fail/not fail status of the gyroscopes and the reaction wheels.

This data is used to calculate the probabilities of false alarms and missed detections for

the flags in F. Note that the fault flag for the reaction wheel that is not in use is stored

from the last time when it was in use. Also, if a reaction wheel has never been used, it is

assumed to be healthy and its fault flag has value zero.

With the above definition of state, the total number of states for the MDP is

11,274,289,152 which is too large to handle easily in an integrated MDP. Consequently,

we simplify our problem by observing that the selection of gyroscopes can be separated

from mission objectives and mission-related actions. This is rationalized on the basis that

the angular velocities can be estimated using the dynamic model of the spacecraft and

information about its attitude although the pointing accuracy may be reduced. Also we

187

assume that the control law uses gyroscope readings only when the fault flags for

gyroscopes are turned off. The reconfiguration of gyroscopes can therefore be separated

from the reconfiguration of the control laws. The subsystem for control law

reconfiguration then becomes

 
 

     
       
 

1 2 6

1 2 5

1 4 1 4

, ,...,

, , , ,

,

0,1,2 , , ,..., , 0,1

,..., , 0,1 , ,..., , 0,1

1,2,...,14

N

i i i i i i

j
i i i i i i

j j
i i i i i i i i

i

S s s s

s A B F O c

where

A B b b b b

F f f f O o o o

c





  

   



(7.3.14)

where A and B are the same as in Equation (7.3.1). Vector F contains fault flags for the

four reaction wheels with axis order yaw, pitch, roll, and skew. Vector O contains the

sensor-based values of the operational modes for the four wheels in the same order as in

F. Variable c represents the active control law for the 14 possible fault scenarios. Note

that the scenario where all four reaction wheels fail is not considered here. The size of

this state space is 344,064 which is manageable. The states for gyroscope reconfiguration

are then defined as

 
 

       
   

1 2 8

1 6 1 6

, ,...,

, ,

,

,..., , 0,1 , ,..., , 0,1

, , , 0,1

N

i i i i

j j
i i i i i i i i

roll pitch yaw j
i i i i i

S s s s

s F O sw

where

F f f f O o o o

sw sw sw sw sw





   

 

 (7.3.15)

The flags in vectors F and O in Equation (7.3.15) are arranged such that the first three

flags correspond to the gyroscopes in the IRU-A set and the next three flags correspond

188

to the gyroscopes in the IRU-B set. The axes are in the order yaw, pitch, and roll. The

size of the state-space in Equation (7.3.15) is 32,768 which is easily manageable.

Variable sw represents the current selection of gyroscopes among IRU-A and IRU-B

along each axis. Note that we assume here that along any axis, the gyroscope can be

selected from any of the two sets. The actions of each system are related to selection of a

control law for the control law reconfiguration MDP, and selection of a gyroscope for the

gyroscope reconfiguration MDP. Initially, we assume these selections are deterministic;

therefore, there are no transition probabilities involved. The reward function for the

control law reconfiguration MDP is defined as

 
 

 
 

 

5

1

(,) (,)
exp

, ,

,

0 : 1, , 1,2,3, 4

(,) 1 : 0, , 5,6,..10

2 : 0, , 11,12,13,14

k
k i i i i

ki

i i i

k
i i

k k
i i i i

k
i i

IsMissionCritical c b IsActionCritical c A
R s

G F O c

where

if b or c

IsMissionCritical c b if b and c

if b and c

I

 
 

 
    
  

  
  
  



 
 

 

0 : 0, , 1, 2,3, 4

(,) 1 : 0, , 5,6,..10

2 : 0, , 11,12,13,14

i i

i i i i

i i

if A or c

sActionCritical c A if A and c

if A and c

  
  
  

 (7.3.16)

In the above equation, the IsMissionCritical function determines the penalty of using a

less capable control law for each of the mission objectives. In our case study, we base this

function on the number of reaction wheels in-use for the active control law. Precisely, we

set βk = 1 for all k except for β3 = 5 to indicate that the third objective has more

importance than the other objectives. We set the IsMissionCritical function to return 0 if

189

c uses 3 wheels, 1 if c uses two wheels, and 2 if c uses 1 wheel. Similarly, we set α = 2

and define IsActionCritical to return 0 if either A = 0 or c uses 3 wheels, 1 if A > 0 and c

uses two wheels, and 2 if A > 0 and c uses 1 wheel. G penalizes control laws such that

there is a penalty of 2.5 for each in-use wheel with the fault flag in F activated. There

also is a penalty of 2.5 for each not-in-use wheel with the fault flag in F deactivated.

These penalties are summed along with the additional penalties of value 1 corresponding

to flags in O. For example, if the flags in F indicate failure of reaction wheel 2 (i.e. F =

{0 1 0 0}) and the flags in O indicate failure of reaction wheels 1 and 3 (i.e. O = {0 1 0

1}), the value returned by G for control law using wheels 1, 2, and 3 would be 8.

However, if c uses three wheels and all of them are deemed healthy by both F and O,

then there is no penalty for not using the fourth wheel. Details of the G function for each

control law is presented in Table 7-4.

Table 7-4: Calculation of G(F, O, c) function

In use
Control law

Function for calculating value of G
F(i) = 1 if ith wheel is faulty
O(i) = 0 if ith wheel is faulty

c = 1,
wheel(s) in

use {1, 2, 3}

(2.5*(F(1)+F(2)+F(3)) + (~O(1)+~O(2)+~O(3)) +
(F(1)||F(2)||F(3)||~O(1)||~O(2)||~O(3))*(~F(4)*2.5

+ O(4)))
c = 2,

wheel(s) in
use {1, 2, 4}

(2.5*(F(1)+F(2)+F(4)) + (~O(1)+~O(2)+~O(4)) +
(F(1)||F(2)||F(4)||~O(1)||~O(2)||~O(4))*(~F(3)*2.5

+ O(3)))
c = 3,

wheel(s) in
use {1, 3, 4}

(2.5*(F(1)+F(3)+F(4)) + (~O(1)+~O(3)+~O(4)) +
(F(1)||F(4)||F(3)||~O(1)||~O(4)||~O(3))*(~F(2)*2.5

+ O(2)))
c = 4,

wheel(s) in
use {2, 3, 4}

(2.5*(F(2)+F(3)+F(4)) + (~O(2)+~O(3)+~O(4)) +
(F(4)||F(2)||F(3)||~O(4)||~O(2)||~O(3))*(~F(1)*2.5

+ O(1)))
c = 5,

wheel(s) in
use {1, 2}

(2.5*(F(1)+F(2)) + (~O(1)+~O(2)) +
(~F(3)*2.5+~F(4)*2.5) + (O(3)+O(4)))

c = 6,
wheel(s) in

(2.5*(F(1)+F(3)) + (~O(1)+~O(3)) +
(~F(2)*2.5+~F(4)*2.5) + (O(2)+O(4)))

190

use {1, 3}
c = 7,

wheel(s) in
use {1, 4}

(2.5*(F(1)+F(4)) + (~O(1)+~O(4)) +
(~F(3)*2.5+~F(2)*2.5) + (O(3)+O(2)))

c = 8,
wheel(s) in
use {2, 3}

(2.5*(F(2)+F(3)) + (~O(2)+~O(3)) +
(~F(1)*2.5+~F(4)*2.5) + (O(1)+O(4)))

c = 9,
wheel(s) in
use {2, 4}

(2.5*(F(2)+F(4)) + (~O(2)+~O(4)) +
(~F(3)*2.5+~F(1)*2.5) + (O(3)+O(1)))

c = 10,
wheel(s) in
use {3, 4}

(2.5*(F(3)+F(4)) + (~O(3)+~O(4)) +
(~F(1)*2.5+~F(2)*2.5) + (O(1)+O(2)))

c = 11,
wheel(s) in

use {1}

(2.5*(F(1)) + (~O(1)) +
(~F(3)*2.5+~F(4)*2.5+~F(2)*2.5) +

(O(3)+O(4)+O(2)))
c = 12,

wheel(s) in
use {2}

(2.5*(F(2)) + (~O(2)) +
(~F(3)*2.5+~F(4)*2.5+~F(1)*2.5) +

(O(3)+O(4)+O(1)))
c = 13,

wheel(s) in
use {3}

(2.5*(F(3)) + (~O(3)) +
(~F(1)*2.5+~F(4)*2.5+~F(2)*2.5) +

(O(1)+O(4)+O(2)))
c = 14,

wheel(s) in
use {4}

(2.5*(F(4)) + (~O(4)) +
(~F(3)*2.5+~F(1)*2.5+~F(2)*2.5) +

(O(3)+O(1)+O(2)))

The reward function for the reconfiguration of gyroscopes can be defined with only the G

term similar to the reward function for the control law reconfiguration. Note that in this

model there are no constraints in the reconfiguration options and no uncertainties in the

state transitions. Therefore, the policy for this MDP is also calculated using greedy

search instead of value iteration.

7.3.4 CFT‐SOAP	Execution	

After having formulated all the MDPs related to planning, fault detection, and

reconfiguration, in this section we describe the real-time execution of all the MDP

policies onboard the spacecraft. Figure 7.3 represents the block diagram for CFT-SOAP

191

execution for the FUSE mission. This figure is similar to Figure 3.3 except for the fact

that instead of one integrated MDP policy, we have separate policies. In Figure 7.3, all of

the information from the spacecraft sensors, observer-based fault detector, system

dynamics, and system configuration is obtained by the real-time executive. The current

state for each of the MDPs on the left side of the figure is extracted from this information.

Note that extracting the current state for the logic-based fault detection MDP involves

determining which of the wheels and gyroscopes are currently in use. This can be easily

done using the current gyroscope switching and control law configuration. Also the

execution of the current state for reconfiguration MDPs involves generation of the F

vector that may require resolving the unresolved fault conflicts from the previous time

step using the maximum likelihood method. Once the state information for all the MDPs

is generated, the corresponding updated actions are extracted from the MDP policies.

These actions are then converted into commands and are sent to the system configuration

manager, reconfigurable controller, and observer-based fault detector. The interpretation

of the actions here includes the selection of the actions among µP-1 and µP-2 based on the

fault information. If the fault information indicates full control availability, µP-1 is

executed; otherwise µP-2 is executed.

192

Figure 7.3: Online execution of CFT-SOAP for the FUSE mission

7.4 FUSE	Modeling	with	ASPEN	and	Livingstone	

ASPEN and Livingstone formulations generate plans and post-fault sequences of

activities, respectively. An ASPEN model [85] has seven basic components: 1)

Parameters, 2) Parameter dependencies, 3) Temporal constraints, 4) Resources, 5) State

variables, 6) Activities, 7) Activity reservations. Once a planning problem is modeled in

the ASPEN framework, the solution (plan) is computed by using iterative repair search

that may be guided by appropriate heuristics [22]. Conceptually, iterative repair search

starts with an approximate plan supplied by the user that may have conflicts and that may

193

not be complete. The conflicts in the initial plan are resolved one by one by adding,

deleting, and adjusting activities. Sometimes larger activities may be decomposed into

primitive actions while at other instances, actions may be aggregated. The ASPEN model

can be changed online as a result of faults. For example new constraints might be

imposed on the activities. Under such situations, the plan is repaired online using the

updated model and iterative repair search.

 Livingstone [104], on the other hand, is an online reactive deduction system that serves

the purposes of fault detection and reconfiguration. The basic modeling entity in

Livingstone is a state transition system. A state transition system is composed of three

components: 1) State variables, 2) The domain space for state variables, 3) The set of

possible state transitions. Each component of the spacecraft can be represented as a state

transition system. Together all state transition system layers form the plant transition

system. The problem of fault detection is addressed by using combinatorial optimization

over design variables X, constraints Y, and objective function W. Each variable in X

represents a component in the plant whose values are the possible component transitions.

Each possible plant transition corresponds to assignment of values to the variables in X. Y

is the constraint that all state transitions should belong to the set of allowable transitions.

The objective function is the probability of each plant transition. For FUSE, a transition

might include any number of components transitioning from normal to a faulty state and

hence the objective function would be the probability of occurrence of the corresponding

faults given the sensor observations. Specifics of ASPEN and Livingstone models for

application to the FUSE case study are provided below.

194

7.4.1 The	ASPEN	Model	

The ASPEN model translation for the FUSE mission is represented in Table 7-5. There

are a total of 15 activities, five of which include data collection activities while the

remaining 10 are attitude maneuver activities. Each activity has associated constraints

and parameters. Although there are five types of constraints listed in Table 7-5, not all

activities have all five constraints active. For example the constraint of the data collection

window is active only for activities of type data collection.

Table 7-5: ASPEN model

Model Attribute Description Remarks
Activities Five data collection

activities, one for each
science target

Ten attitude-maneuver
activities, one maneuver
between any two different
target pointings.

Each activity has its own
parameters such as energy
required, sun avoidance,
instruments required,
feasible true anomaly
window, etc

Constraints Data collection window
Sun exposure
Energy Depletion
Attitude Pointing
Instrument Health

Constraints are matched
with the activity parameters
to make sure that the
activity is feasible.

States True Anomaly
Orbit count
Attitude Pointing
Data Collection Flags
Available Energy
Eclipse-Sun Flag
Available Instruments

States are obtained from
various sensors and fault
detection schemes in the
system.

Activity Parameters Feasible True anomaly
Window
Sun Avoidance flag
Energy Required
Attitude Pointing Required
Instruments Required
Change in True Anomaly
Incurred

Attitude pointing activities
do not have a true anomaly
window requirement or sun
avoidance requirement

195

The state information reflects the situation of the spacecraft related to its mission. Note

that the state variables are the same as for the planning MDP in the CFT-SOAP

formulation of FUSE. Symbolically, the above model can be represented as:

 
 
 
 
 

1 2 15

1,1 1,2 1,5 2,1 15,5

1 7

1,1 1,2 1,5 2,1 5,5 6,1 6,4 7,1 15,4

, , ,

, ,...,

, ,..., , ,....,

,....,

, ,..., , ,...., , ,..., , ,...,

ASPEN A C S P

A a a a

C c c c c c

S s s

P p p p p p p p p p









 (7.4.1)

Each activity in ASPEN can be assigned a true anomaly range and an orbit count number.

No two activities are allowed to overlap. There are five possible constraints for each

activity assignment. Each binary element of the constraint set ci,j represents the presence

or absence of constraint j in activity i. There are seven state variables each with a

respective domain. For example, the domain of true anomaly state variable ranges from 0

to 360 degrees in discrete intervals. The domain of orbit count is the set of natural

numbers up to a predefined maximum limit. The domain of the attitude pointing variable

is the set of the first five natural numbers. Note that the domains of the state variable

should be finite; otherwise there is a possibility of never being able to find a feasible

plan. The goal state in our case study is any state where the data collection flag variable

indicates all of the required data has been collected.

 The ASPEN planning process starts with an initial state and a set of randomly-assigned

activities. If there are no constraints and the goal state is reached at the end of the last

activity, the solution is found. Otherwise, activities are added, deleted, or

196

adjusted/reassigned until all constraints are satisfied and the goal state is depicted to be

achieved by the end of the last activity in the plan.

7.4.2 Livingstone	Model	

For the Livingstone model, each of the four reaction wheels and six gyroscopes is

represented as a state transition system where state represents the health status in terms of

failed/normal. There are four possible transitions for each of the state transition systems

i.e. normal to failed, normal to normal, failed to normal, and failed to failed. Therefore,

the overall spacecraft health transition is a collection of transitions of each of the ten

components of interest for our case study. The combinatorial optimization problem

therefore, is presented as:

 

 
 
 

     

1 10

1 10

1 10

, ,

,

,...,

,...,

,...,

| 1 1 |

FD

i i i i i i i

CO X Y W

where

X x x

Y y y

W w w

w x P x y x P x y









    (7.4.2)

The above equation is based on the assumption of the independence of faults. Therefore,

failure detection of the ith component can be optimized with respect to objective function

wi. wi is a function of xi and has maximum value for the most consistent value of xi given

yi, where the most consistent refers to the value of xi which is most likely based on the

available information. Binary flag xi represents the normal/faulty mode of the ith

component. Binary flag yi represents the observed mode of the ith component. There are

no constraints in mode transitions of the components, i.e., all four possible transitions are

allowed.

197

 For reconfiguration, the combinatorial optimization problem selects among available

reconfiguration options such that the current plan is executable. The objective function is

set to Equation (7.3.16) to maximize consistency between the Livingstone and CFT-

SOAP models. Variables in X are possible reconfigurations, Y includes flags for

infeasible reconfigurations, and W is a function of X and Y whose value can be

maximized with the selection of the best among the feasible values of variables in X.

 

 
 
 

1 2

1 14

1 1 2 2

, ,

,

,

,...,

(), (,)

RCCO X Y W

where

X x x

Y y y

W w x w x Y







 (7.4.3)

In the above equation, x1 is used to select a combination of gyroscopes and x2 is used to

select a combination of reaction wheels. Variables in Y indicate feasible/infeasible status

for each combination of the reaction wheels. This status is calculated based on the

Instruments Required parameter of the remaining plan activities e.g. if any of the

remaining activities of the current plan generated by ASPEN require three reaction

wheels, all the combinations of the reaction wheels where less than three wheels are in

use are marked infeasible. Variables in W calculate the cost of using a particular

configuration that is similar to the G function in Equation (7.3.16).

7.4.3 Execution	of	ASPEN‐Livingstone	

In this section we present an online execution scheme for the ASPEN-Livingstone

framework. Figure 7.4 shows the online execution scheme where the real-time execution

module collects the system health and system output (angular velocities and attitude)

198

information from the system monitors and the real-time control scheme respectively. This

information is used to generate the initial state for ASPEN to request a new plan if there

is no in-progress plan or the in-progress plan is no longer applicable due to a fault. Once

the plan is acquired, the real-time executive executes the plan activities one by one by

issuing real-time control commands. Meanwhile the real-time executive also monitors the

health of the system using information from the system monitors that use information

from the sensors to generate operational modes for the components that represent

component health. The observed modes for the components are sent to the mode

identification module that uses the Livingstone fault detection scheme to determine the

fault flags for the reaction wheels and gyroscopes. If there is a new fault, the

reconfiguration request is sent to the Livingstone-based reconfiguration module along

with fault information and information about the current plan. The reconfiguration

module either sends a corresponding reconfiguration command if possible; otherwise a

new plan request must be sent to the ASPEN by the real-time executive.

Figure 7.4: ASPEN-Livingstone execution for the FUSE mission

199

7.5 Simulation	Results	

In this section, we simulate the sequence of failures from the actual FUSE mission and

report the responses from CFT-SOAP and ASPEN-Livingstone models. Table 7-6 lists

the gyroscope and reaction wheel failure cases actually encountered during the FUSE

mission (as of 2006) [91].

Table 7-6: Status of the FUSE gyroscopes and reaction wheels as of 2006

Axis IRU-A IRU-B Reaction Wheel
Assemblies

Yaw 1/6/00 Warning flag
tripped

Operational

12/10/02 Warning flag
tripped

7/31/03 Failed

2/16/01 Stopped;
restarted in 11 days

11/25/01 Failed
Pitch 1/18/00 Warning flag

tripped
Operational

8/31/01 Warning flag
tripped

9/28/04 Noisy / Turned
off

8/04/00 Stopped;
restarted in 40 days

12/10/01 Failed

Roll 4/19/00 Warning flag
tripped

5/30/01 Failed

10/06/01 Warning flag
tripped

5/17/05 Failed

12/17/03 Stopped;
restarted in 2 hrs
12/27/04 Failed

Skew ---------------- ------------------- Operational

Although the failures were separated from each other by months or in some cases years,

we compress the failures into the course of a few orbits to facilitate their integration into

the case study. This is a worst-case scenario, and supports comparison of the capabilities

of CFT-SOAP, ASPEN, and Livingstone to support reactive mission configuration

without assistance from the ground station.

200

7.5.1 Simulation	with	CFT‐SOAP	

7.5.1.1 Trajectory	Analysis	

MDP policies for planning (with full control availability) as well as fault detection and

control reconfiguration were calculated using MATLAB software with an Intel core i5

processor. Table 7-7 shows the computation times for the MDPs. Note that all MDPs

have been solved using a finite horizon. The discount factor (γ) and epoch for the

planning MDP have higher values. The discount factor has a high value because a plan

needs to consider values of future rewards. The epoch has value 20 to make sure that the

mission is completed. The discount factors and epochs for the fault detection and

reconfiguration MDPs are low because these MDPs require emphasis of more immediate

actions to resolve the fault scenario.

Table 7-7: MDP computation times

MDP type Computation time
(sec)

Discount factor
(γ)

Epoch

Planning (full control authority) 103.72 0.99 20
Logic-based fault detection 5.9 0.5 3

Conflict resolution 33.85 0.5 3
Control law reconfiguration 88.44 0.5 3
Gyroscope reconfiguration 5.9 0.5 3

Online execution is performed as depicted in Chapter 3 (Figures 3.3. and 3.4). Policies

generated for FUSE are shown in Table 7-8. The fault flags in Bl, Bo, and F as well as the

flags in O are arranged such that the first three flags correspond to the IRU-A set of

gyroscopes in the order of yaw, pitch and roll axes. The next three flags correspond to the

IRU-B set of gyroscopes in the same order of axes, and the final four flags correspond to

the reaction wheel assemblies in the order of yaw, pitch, roll, and skew axes. The

201

thresholds and control laws are ordered as in Table 7-4 where wheel 1 corresponds to the

yaw axis, wheel 2 corresponds to the pitch axis, wheel 3 corresponds to the roll axis, and

wheel 4 corresponds to the skew axis.

 We start with a normal state in step 1 with attitude pointing at Target 1 and true

anomaly value of 1. In the response, there is no reconfiguration required from the control

law or gyroscope reconfiguration policy. The fault detection policy does not detect any

fault and the planning MDP suggests NOOP50. Before the start of step 2, the spacecraft

moves by 50 degrees of true anomaly and meanwhile the observation flags for the yaw

and pitch axes gyroscopes in IR-A unit turn off indicating potential failures. In step 2, the

spacecraft is pointed towards Target 1 and is within the window of visibility therefore the

planning MDP suggests µ1 i.e. to collect data from Target 1. The reconfiguration policy is

to switch the yaw and pitch axis gyroscopes from IRU-A to IRU-B. No more failures

occur at this point. Before step 3, data is collected from Target 1 and the spacecraft

advances by 10 degrees of true anomaly. Also, the reconfiguration of gyroscopes

commanded by the reconfiguration policy is carried out while two more observation flags

turn off, one for the roll axis gyroscope in IRU-A and one for Reaction Wheel 2. In step

3, the reconfiguration policies change the control law and gyroscope configurations to

avoid usage of potentially faulty components. Similarly, in the remaining steps, the

response of the MDP policies to the sequence of failures is presented. By the end of step

11, all scientific data is collected, the spacecraft has advanced to the true anomaly value

of 261, the spacecraft is in an eclipse condition that started at the end of step 11, and the

energy left in the batteries is 2 units. By the end of step 13, only one of the four reaction

wheels is working, and only two of the six gyroscopes are operational.

202

Table 7-8: Simulation case study for CFT-SOAP with FUSE

Sim
Step

State of the FUSE
Spacecraft

MDP Policies Exogenous and Policy-
related Events

1 A = 0, B = {0, 0, 0, 0, 0}
v = 1, z = 1, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,0,0,0,0}
Bo = {0,0,0,0,0,0,0,0,0,0}
F = {0,0,0,0,0,0,0,0,0,0}
O = {1,1,1,1,1,1,1,1,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 1}, c = 1; wheels
{1, 2, 3}

πPlan, full = NOOP50
πPlan, partial = Not in
use
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control =
NOOP

v = 51
O = {0,0,1,1,1,1,1,1,1,1}

2 A = 0, B = {0, 0, 0, 0, 0}
v = 51, z = 1, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,0,0,0,0}
Bo = {0,0,0,0,0,0,0,0,0,0}
F = {0,0,0,0,0,0,0,0,0,0}
O = {0,0,1,1,1,1,1,1,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 1}, c = 1; wheels
{1, 2, 3}

πPlan, full = µ1
πPlan, partial = Not in
use
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = {2,2,1}
πReconfig, Control =
NOOP

A = 2, A = 0
B = {1, 0, 0, 0, 0}, v = 61
O = {0,0,0,1,1,1,1,0,1,1}
sw = {2,2,1}

3 A = 0, B = {1, 0, 0, 0, 0}
v = 61, z = 1, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,0,0,0,0}
Bo = {0,0,0,0,0,0,0,0,0,0}
F = {0,0,0,0,0,0,0,0,0,0}
O = {0,0,0,1,1,1,1,0,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {2, 2, 1}, c = 1; wheels
{1, 2, 3}

πPlan, full = µ2
πPlan, partial = Not in
use
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = {2,2,2}
πReconfig, Control = 3

A = 1, A = 0
v = 81, z = 2
c = 3; wheels {1, 3, 4}
sw = {2,2,2}
O = {0,0,0,1,0,0,0,0,1,1}

4 A = 0, B = {1, 0, 0, 0, 0}
v = 81, z = 2, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,0,0,0,0}
Bo = {0,0,0,0,0,0,0,0,0,0}
F = {0,0,0,0,0,0,0,0,0,0}
O = {0,0,0,1,0,0,0,0,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {2, 2, 2}, c = 3; wheels
{1, 3, 4}

πPlan, full = NOOP20
πPlan, partial = Not in
use
πFDD, Logic = Bl(7)
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control =
NOOP

v = 101
Bl = {0,0,0,0,0,0,1,0,0,0}
Bo = Bl = F

5 A = 0, B = {1, 0, 0, 0, 0} πPlan, full = µ2 A = 2, A = 0

203

v = 101, z = 2, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,1,0,0,0}
Bo = {0,0,0,0,0,0,1,0,0,0}
F = {0,0,0,0,0,0,1,0,0,0}
O = {0,0,0,1,0,0,0,0,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {2, 2, 2}, c = 3; wheels
{1, 3, 4}

πPlan, partial = Not in
use
πFDD, Logic = Bl(8)
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control = 4

v = 111
B = {1, 1, 0, 0, 0}
Bl = {0,0,0,0,0,0,1,1,0,0}
Bo = Bl = F
c = 4; wheels {2, 3, 4}

6 A = 0, B = {1, 1, 0, 0, 0}
v = 111, z = 2, SE = 3, EL = 5
Bl = {0,0,0,0,0,0,1,1,0,0}
Bo = {0,0,0,0,0,0,1,1,0,0}
F = {0,0,0,0,0,0,1,1,0,0}
O = {0,0,0,1,0,0,0,0,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {2, 2, 2}, c = 3; wheels
{2, 3, 4}

πPlan, full = µ3
πPlan, partial = Not in
use
πFDD, Logic = Bl(4)
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control = 10

A = 1, A = 0
v = 161, z = 3
O = {0,0,0,0,0,0,0,0,1,1}
Bl = {0,0,0,1,0,0,1,1,0,0}
Bo = Bl = F
c = 10; wheels {3, 4}

7 A = 0, B = {1, 1, 0, 0, 0}
v = 161, z = 3, SE = 3, EL = 5
Bl = {0,0,0,1,0,0,1,1,0,0}
Bo = {0,0,0,1,0,0,1,1,0,0}
F = {0,0,0,1,0,0,1,1,0,0}
O = {0,0,0,0,0,0,0,0,1,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {2, 2, 2}, c = 10; wheels
{3, 4}

πPlan, full = µ3
πPlan, partial = Not in
use
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = {1,2,2}
πReconfig, Control =
NOOP

A = 2, A = 0
v = 171
B = {1, 1, 1, 0, 0}
O = {0,0,0,0,0,0,0,0,0,1}
sw = {1,2,2}

8 A = 0, B = {1, 1, 1, 0, 0}
v = 171, z = 3, SE = 3, EL = 5
Bl = {0,0,0,1,0,0,1,1,0,0}
Bo = {0,0,0,1,0,0,1,1,0,0}
F = {0,0,0,1,0,0,1,1,0,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 2, 2}, c = 10; wheels
{3, 4}

πPlan, full = µ4
πPlan, partial = Not in
use
πFDD, Logic = Bl(5)
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control =
NOOP

A = 1, A = 0
v = 221, z = 4
Bl = {0,0,0,1,1,0,1,1,0,0}
Bo = Bl = F

9 A = 0, B = {1, 1, 1, 0, 0}
v = 221, z = 4, SE = 3, EL = 5
Bl = {0,0,0,1,1,0,1,1,0,0}
Bo = {0,0,0,1,1,0,1,1,0,0}
F = {0,0,0,1,1,0,1,1,0,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =

πPlan, full = µ4
πPlan, partial = Not in
use
πFDD, Logic = Bl(9)
πFDD, Conflict = NOOP
πReconfig, gyro = {1,1,2}
πReconfig, Control =

A = 2, A = 0
v = 231
B = {1, 1, 1, 1, 0}
SE = 1
Bl = {0,0,0,1,1,0,1,1,1,0}
Bo = Bl = F
sw = {1,1,2}

204

{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 2, 2}, c = 10; wheels
{3, 4}

NOOP

10 A = 0, B = {1, 1, 1, 0, 0}
v = 231, z = 4, SE = 1, EL = 5
Bl = {0,0,0,1,1,0,1,1,1,0}
Bo = {0,0,0,1,1,0,1,1,1,0}
F = {0,0,0,1,1,0,1,1,1,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 2}, c = 10; wheels
{3, 4}

πPlan, full = µ5
πPlan, partial = Not in
use
πFDD, Logic = Bl(6)
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control = 14

A = 1, A = 0
v = 251, z = 5, EL = 3
Bl = {0,0,0,1,1,1,1,1,1,0}
Bo = Bl = F
c = 14; wheels {4}

11 A = 0, B = {1, 1, 1, 1, 0}
v = 251, z = 5, SE = 1, EL = 3
Bl = {0,0,0,1,1,1,1,1,1,0}
Bo = {0,0,0,1,1,1,1,1,1,0}
F = {0,0,0,1,1,1,1,1,1,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 2}, c = 14; wheels
{4}

πPlan, full = Not in use
πPlan, partial = µ5
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = {1,1,1}
πReconfig, Control =
NOOP

A = 2, A = 0
v = 261, EL = 2
B = {1, 1, 1, 1, 1}
sw = {1,1,1}

12 A = 0, B = {1, 1, 1, 1, 1}
v = 261, z = 5, SE = 1, EL = 2
Bl = {0,0,0,1,1,1,1,1,1,0}
Bo = {0,0,0,1,1,1,1,1,1,0}
F = {0,0,0,1,1,1,1,1,1,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 1}, c = 14; wheels
{4}

πPlan, full = Not in use
πPlan, partial = NOOP10
πFDD, Logic = Bl(3)
πFDD, Conflict = NOOP
πReconfig, gyro = {1,1,1}
πReconfig, Control =
NOOP

v = 271
Bl = {0,0,1,1,1,1,1,1,1,0}
Bo = Bl = F

13 A = 0, B = {1, 1, 1, 1, 1}
v = 271, z = 5, SE = 1, EL = 2
Bl = {0,0,1,1,1,1,1,1,1,0}
Bo = {0,0,1,1,1,1,1,1,1,0}
F = {0,0,1,1,1,1,1,1,1,0}
O = {0,0,0,0,0,0,0,0,0,1}
V =
{2,2,2,2,2,2,2,2,2,2,2,2,2,2}
sw = {1, 1, 1}, c = 14; wheels
{4}

πPlan, full = Not in use
πPlan, partial = NOOP10
πFDD, Logic = NOOP
πFDD, Conflict = NOOP
πReconfig, gyro = NOOP
πReconfig, Control =
NOOP

v = 281

205

7.5.1.2 Robustness	Analysis	

In this section, we present some results from the variation of the a priori probabilities of

failures of the reaction wheels and gyroscopes. Recall that, in Section 7.3, we used the a

priori failure probability values for all the reaction wheels and gyroscopes to be 0.05 and

calculated the probability of transition to the failure state for the planning MDP with full

control authority to be 1.25 × 10-5 times the change in true anomaly incorporated in the

attitude maneuver. This value was based on a safety factor that was selected based on

engineering judgement. Since engineering judgement is not always accurate, we present

in this section the results of selecting inaccurate failure probabilities. In particular, we

solved 10 MDPs for planning with full control availability each with a different failure

probability value. Then we simulated the trajectories for each of the 10 MDPs in all of

the 10 possible failure probability environments. This required 100 MDP trajectory

simulations. Each of the 100 trajectory simulations was simulated for each possible initial

state. Since there are 86,400 normal states (and one failure state) in each MDP (see

equation 7.3.2), this amounts to 8,640,000 trajectories. To compute an average over

several cases, we run each of the 8,640,000 trajectories 250 times. The total time taken by

all simulation runs on Intel core i5 laptop computer was 40 hours. From all these

simulations, we computed the average survival time and average expected discounted

reward for each of the 10 MDPs in each of the 10 failure probability environments. The

average was taken over all of the 86,400 initial states that were run 250 times.

 Table 7-9 shows the indexing map for the failure probability environments used in our

simulations. Table 7-10 shows the results from the simulation in the form of average

survival times and average expected discounted rewards. Note that the survival time is

206

out of 20 steps (or a sequence of 20 actions) because the epoch (or finite horizon) of the

MDP policies generated was selected to be 20 steps as shown in Table 7-7. The results

indicate that the policies generated for higher probabilities of failure have a better

survival rate in the environment with the highest probability of failure (environment with

index 10). Also note that due to the conservative nature of the policies with higher

probabilities of failure, the expected reward obtained by these policies is also lower.

These results indicate a clear tradeoff between spacecraft safety and expected science

reward obtained by the policy. In general, if the probabilities of failure are

underestimated, the resulting policy might consist of bold decisions to collect science

data that may introduce risk of failure to the spacecraft. On the other hand, if the

probability of failure is overestimated, the science reward obtained from the mission may

not be high. This study also suggests that if spacecraft mission planning does not take

into account the probabilities of failure, the resulting plan may jeopardize spacecraft

safety.

Table 7-9: Index of the MDPs with respect to the selected failure probabilities

MDP Index / Environment Index Failure Probability
1 1.25 × 10-5
2 2. 88 × 10-4
3 5.65 × 10-4
4 8.41 × 10-4
5 1.1 × 10-3
6 1.4 × 10-3
7 1.7 × 10-3
8 1.9 × 10-3
9 2.2 × 10-3
10 2.5 × 10-3

207

Table 7-10: Robustness analysis results

MDP
Index

Expected
reward (own
environment)

Worst
case

expected
reward

Environment
index for

worst case
expected
reward

Survival
time (out of
20 steps) in

own
environment

Worst
case

survival
time

Environment
index for

worst case
survival

time
1 20,720 5,909 10 19.92 12.28 10
2 16,560 6,302 10 19.19 14.19 10
3 13,780 6,662 10 19.18 17.03 10
4 11,790 6,853 10 19.35 18.46 10
5 10,360 6,955 10 19.49 19.07 10
6 9,305 7,015 10 19.56 19.33 10
7 8,503 7,047 10 19.60 19.48 10
8 7,896 7,078 10 19.68 19.63 10
9 7,452 7,108 10 19.73 19.71 10
10 7,169 7,169 10 19.75 19.75 10

7.5.2 Simulation	with	ASPEN‐Livingstone	

The following table shows the initial plan that we assume ASPEN could have generated

given the initial conditions as in Table 5. The eclipse is assumed to be from 230-350

degrees of true anomaly. Note that we did not generate this plan using the actual ASPEN

software but in theory, this is one of the plans that ASPEN could have generated since it

is complete and satisfies all activity constraints.

Table 7-11: ASPEN plan for FUSE case study

Step Number Plan Activity (true anomaly, orbit)
1 Data Collection 1 (50-60, 1)
2 Pointing 1-2 (70-90, 1)
3 Data Collection 2 (100-110, 1)
4 Pointing 2-3 (120-170, 1)
5 Data Collection 3 (170-180, 1)
6 Pointing 3-4 (180-230, 1)
7 Data Collection 4 (230-240, 1)
8 Pointing 4-5 (240-260, 1)
9 Data Collection 5 (260-270, 1)

208

Livingstone assumes the same fault sequence as in Table 5 and we also assume that all

faults are correctly diagnosed. Reconfiguration decisions for Livingstone are

straightforward since there is no tradeoff between mission objectives and safety of the

spacecraft. All faulty components are taken out and healthy components are selected for

use. In the case of partial control availability, online re-planning is required using

ASPEN based on remaining available attitude maneuver activities. In short the response

of ASPEN-Livingstone is similar to that of CFT-SOAP for the FUSE case study. Note

that this does not mean that these two technologies are equivalent. The next section

presents a comparison between the two technologies on the basis of their model

expressiveness, computational complexity, and robustness of generated solutions.

7.6 Comparison	between	CFT‐SOAP	and	ASPEN‐Livingstone	

Approaches	

In this section, we compare the CFT-SOAP and ASPEN-Livingstone approaches for fault

tolerant planning on three bases: expressiveness of the modeling, computational

complexity of the solution, and robustness to failures. Table 7-12 presents a comparison

on the basis of model expressiveness. The major difference is in the expression of

uncertainties. CFT-SOAP incorporates uncertainties in all three identified aspects of fault

tolerant planning whereas the ASPEN-Livingstone system incorporates only the

uncertainty in fault detection. The last row in Table 7-12 indicates the difference in the

representation of time. Here CFT-SOAP may have a disadvantage of having discrete time

but ASPEN’s state-space will grow increasingly complex as temporal resolution is

increased. Note that in our case study, time is represented in terms of the true anomaly in

CFT-SOAP and in terms of the combination of true anomaly and orbit count in ASPEN.

209

Table 7-12: Comparison of model-expressiveness between CFT-SOAP and ASPEN-
Livingstone modeling methods

Expressiveness
Quality

CFT-SOAP ASPEN-
Livingstone

State Information Yes Yes
Available Decisions Yes Yes
Optimality Criterion Yes Yes: only in the

Livingstone
Science-optimal

Planning
Yes No

Comprehensive Fault
Tolerance

Yes No

Transition
Constraints

Yes: Implicit Yes: Explicit

Uncertainties Yes: Both in
planning and fault

tolerance

Yes: Only in Fault
Detection

time Yes: Variable
length discrete time

horizons

Yes: Constant
length discrete time

horizons

Table 7-13 presents a comparison of online and offline computational complexities. Note

that the majority of computations for CFT-SOAP are performed offline. This is important

because the cost of computing is much less offline (on the ground) as compared to online

(onboard the spacecraft) for space missions. Also, although we have presented a nice case

for ASPEN in our case study, it may not always be easy to plan and re-plan during the

real missions since the time to find the plan that is sufficient for the mission is highly

dependent upon amount of repairing that needs to be done and also upon the heuristics

for guiding the search. In general, the search space for ASPEN is as large as all possible

repair methods (Q) to all possible conflicts (C) in all possible orders. On the other hand,

for fault tolerance, the online computations required by the Livingstone for our case study

are quite low but in general, the size of the search problem is all possible state

instantiations (Z) of the fault detection and reconfiguration problem states. If the calls to

210

fault detection and reconfiguration routines are frequent for an extended mission time,

then Livingstone will lose the computational advantage over the fault tolerance in CFT-

SOAP. Finally, although the computational complexity of value iteration is the square of

the number of states (N) times the number of actions (M), in CFT-SOAP, not all states

transition to all other states and in fact there are two possible results for each action in

almost all the MDPs involved hence reducing the computational complexity to two times

the number of states times the number of actions. Also, the online computational

complexity is a function of MDP state-space size.

Table 7-13: Comparison of computational complexity

As for the robustness of the solution, the CFT-SOAP has an advantage over ASPEN-

Livingstone since an MDP policy has a response for every possible state whereas the plan

generated by ASPEN may only be responsive to part of the state-space, and a state

outside this space may be encountered due to an anomalous event. Also, since the

planning policy in CFT-SOAP considers fault probabilities, CFT-SOAP generates

activities that reduce the chances of failure through explicit fault detection and

reconfiguration capability. This feature is not available in the ASPEN model.

Solution Type CFT-SOAP ASPEN-Livingstone
Planning offline: ~O(2NM))

online: ~O(n)
offline: None

online: ~O(QC!)
Fault Detection offline: ~O(2NM))

online: ~O(n)
offline: None
online: ~O(Z)

Reconfiguration offline: ~O(2NM)
online: ~O(n)

offline: None
online: ~O(Z)

211

7.7 Concluding	Remarks	

The FUSE case study presented in this chapter provides an illustration of how to model

and decompose a CFT-SOAP model for the real-world space missions such that the

computation of the solution becomes tractable. Also presented in this chapter is a

comparison between CFT-SOAP and alternate technologies i.e. ASPEN-Livingstone.

There are three major differences in the alternate technologies. The first difference is that

the planning in CFT-SOAP framework accounts for the probabilities of failures and the

rewards obtained from the science data whereas the planning in ASPEN does not take

into account these factors. The second major difference is that the fault tolerance in the

CFT-SOAP is comprehensive i.e. accounts for the fault information obtained from both

logic-based and dynamics-based fault detection whereas the formulation in Livingstone

does not take into account the dynamics-based fault information. The third difference is

that CFT-SOAP produces policies that include an optimal action for every possible

situation whereas, in ASPEN and Livingstone, every new fault event requires online

calculation of the new plan and new system configuration. Although CFT-SOAP is more

computationally-complex than ASPEN or Livingstone, we propose the CFT-SOAP MDP

policies be developed offline, or worst-case (MDP failure state reached) built on the

ground while the spacecraft is safed. The computations for ASPEN and Livingstone can

be performed online, on the spacecraft, but may require additional support from the

ground as any failure state the CFT-SOAP policy doesn’t cover will also not likely be

covered by onboard ASPEN and Livingstone models.

212

 	Chapter	8

Conclusions	and	Future	Directions	

In the dissertation, a Markov Decision Process (MDP)-based approach to comprehensive

fault tolerance and science optimal attitude planning for spacecraft applications has been

presented. To reduce the computational complexity involved in solving each MDP, we

demonstrated that our problem can be decomposed into multiple smaller MDPs. These

MDPs included planning MDPs for different fault scenarios, a fault detection MDP for

detecting faults based on a logic-based model of the spacecraft, a conflict resolution MDP

for resolving the conflicts between fault information from the logic-based model and the

dynamics-based model of the spacecraft, and a reconfiguration MDP that incorporates the

relative importance of the mission objectives versus the safety of the spacecraft.

Approximate Dynamic Programming (ADP) methods for the decomposition of the

planning and fault detection MDPs have also been presented.

 To illustrate the performance of the MDP-based frameworks and ADP methods, several

case studies were presented. These case studies have revealed the important features of

the CFT-SOAP framework and the behavior of the resulting optimal policies in response

to the changes in the design parameters. A major case study based on the Far Ultraviolet

Spectroscopic Explorer (FUSE) mission was presented. Our approach was also compared

213

with existing alternate approaches for planning and fault tolerance in the context of

FUSE.

Below, specific conclusions are summarized from the work presented in the thesis.

Related future research directions are also discussed.

8.1 Conclusions	

8.1.1 Fault	Tolerant	Mission	Planning	

Fault-tolerant mission planning can minimize disruptions and extend the life of space

missions with nominal additional effort mostly incurred during the mission design and

development phase. Since a policy, generated in our formulation with an MDP, is capable

of reacting to off-nominal or anomalous situations (depending upon MDP formulation

used), the operational cost of space missions can be reduced. This is useful for missions

where contact with the ground station is expensive, unreliable, or infrequent.

 The incorporation of science reward along with costs and failure probabilities

associated with mission-related actions enables the plan to be more comprehensive and

robust than if manually specified as a sequence augmented by a “safing” capability that

ceases mission execution in off-nominal situations. Also, since the plan includes

responses under various failure scenarios, re-planning is only required when scenarios,

failures, or new tasks not considered in the original planning phase are encountered.

Additional capabilities of fault reconfiguration and dual fault detection by logic-based

and physics-based modules ensure that the policy is executed with the best spacecraft

control and compositional configuration possible given specified cost, reward, and

threshold parameters.

214

 The selection of MDP states and design parameters in reward and cost functions is a

crucial step that requires understanding of the specific mission requirements, and the

spacecraft used in the mission.

8.1.2 Computational	Issues	

A serious concern with using MDP formulation is its computational complexity which

can be significant even for an off-board implementation. To reduce the computational

complexity, decomposition of the MDP into smaller problems has been pursued along

with the application of Approximate Dynamic Programming (ADP) algorithms.

Specifically, one can make use of the structure of the mission tasks and constraints on

their execution to reduce the state-space of associated MDPs. Some methods that exploit

these properties were introduced in chapters 4 and 6, for example capitalizing on the

separation of tasks when their observation windows do not overlap. Also by defining

actions to be context-dependent, the action space is reduced significantly. Our proposed

ADP algorithms have shown good performance with a significant reduction in

computational complexity. With the rapidly growing computing power, the capability to

generate MDP policies for large state dimensions is improving. This facilitates the

implementation of the MDP-based presented approach in this thesis.

8.1.3 Implementation	Issues	

Although real-time execution can be more robust, potentially requiring less operational

support once deployed, implementation of the presented MDP framework presented in

this thesis will likely require more capable computational hardware on the spacecraft and

also additional engineers in the design team to carefully build the models on which the

MDPs are based. On the ground, computational resources will be required to build

215

policies from MDPs with large state-space sizes. On the spacecraft, policies covering

large state-space sets must be executed. Communication resources must also support

uploading new policies to the spacecraft as needed. The overview of the full CFT-SOAP

implementation presented in Chapter 3 can be used as a guide to understand the

complexity of programming and deploying the full implementation. In terms of

engineering design team, additional experts will be necessary who will be responsible for

analyzing the mission environment, durability and life expectancy of spacecraft

components, mission costs in terms of fuel and energy given the control laws designed

for various failure situations, reconfiguration options and effects of using each

reconfiguration, probabilities of false alarms and missed detections for the fault detection

and diagnosis algorithms used, computational complexity, and pertinent interactions

within the decomposed systems that must be considered prior to building a trusted set of

policies.

8.2 Future	Directions	

8.2.1 ADP	Algorithms:	Reduction	of	Computational	Complexity	

Further use of Approximate Dynamic Programming (ADP) techniques to reduce the

computational complexity deserves further attention as it may lead to more efficient

algorithms for implementing fault tolerant planning for real-world space missions.

Researchers have made good progress in the field of Approximate Dynamic

Programming, but most results are either for general use or for applications different from

spacecraft, thus do not consider the challenges associated with a space mission.

Developing ADP for specific spacecraft applications or mission types can ultimately

contribute to a reusable (mission-independent) infrastructure to facilitiate future fault-

216

tolerant spacecraft deployments without the development costs that will be incurred for

the first such mission. For example, the proposed ADP schemes in Chapters 4 and 5

already make use of the specific structure of the state space typically found in spacecraft

mission operations to obtain a reasonable decomposition. Further matured schemes and

methods could be developed that will enable comprehensive fault tolerance planning for

space missions at substantially lower cost.

8.2.2 Receding	Horizon	Implementation	and	Online	Learning	

Another promising direction includes the development of onboard learning mechanisms

for design parameters involved in the proposed algorithms. There are quite a few design

parameters involved in the proposed MDPs. Finding good values for these parameters is a

very difficult task; one can only find good approximations in most cases. Therefore it will

be desirable to have an adaptive learning mechanism that can improve the parameters

online based on observed data to enable adjustment or recalculation of optimal policies

(in a receding horizon sense) based on improved parameters. If such updates occur

onboard, this obviously will require more computational power that is currently available

onboard spacecraft.

8.2.3 Developing	MDP	Frameworks	for	more	Complex	Space	Missions	

In this thesis, a specific mission type has been considered to convey the main ideas

associated with CFT-SOAP in a clear fashion. In general, the MDP formulations can be

modified for different types of space missions. For example, collaborative fault detection

and comprehensive reconfiguration can be performed using the MDP formulations for

missions involving interplanetary orbital maneuvers, reentry, rover deployment, etc.

From the Aerospace Engineering perspective, the deterministic and predictable nature of

217

decisions and behaviors offered by CFT-SOAP can be an advantage for implementation.

NASA’s now decade-old demonstration of Remote Agent (RA) illustrated both the power

and challenges of onboard deliberation.

8.2.4 Extending	the	Approach	towards	Non‐Aerospace	Applications	

The ideas of fault tolerant planning, collaborative fault detection, conflict resolution, and

comprehensive reconfiguration are extendable to other important applications especially

in the automation and robotics industries. Even in newer smart cars, automated fault

detection and reconfiguration can add vital value. Industrial and commercial robots,

unmanned aircraft systems (UAS), and even toys can be developed with built-in optimal

responses for a number of situations (states).

 CFT-SOAP can be generalized for other types of missions with appropriate changes in

the formulation. The problem of validation and verification (V&V) becomes ever more

difficult as model and architecture complexity increases. Even when software

implementing algorithms internal to each layer completes a V&V process, the new

communications, including arbitration between potentially-disparate conclusions,

introduces a new challenge. From a practical implementation standpoint, while the

integration of deliberative compositional and dynamics-based algorithms enables capture

and management of a more comprehensive fault set, increased complexity also increases

risk of unanticipated execution sequences due to unpredicted interactions. A formidable

but surmountable challenge is then to ensure the integrated system is validated.

 As a multidisciplinary architecture, CFT-SOAP will require team-based adaptation to

any domain, with composition of experts in both symbolic inference and adaptation (AI)

218

and physics-based control systems. This may be a negative for small projects, although

the author argues that any goal-based system with nontrivial dynamics requires

participation from both communities today, just in segregated modules presumed to work

with little to no knowledge of the other.

219

References	

[1] “Electromagnetic Storm Hits Intelsat Satellite”, Space News, Vol. 5, No 5,

January 31-February 6, 1994, p. 3.

[2] “Spacecraft Anomaly Database”, Version. ANOM5I, National Geophysical

Data Center, Solar-Terrestrial Physics Division, Boulder CO, March 1994.

[3] Aberkane, S. Ponsart, J.C. Rodrigues, M. and Sauter, D. “Output feedback

control of a class of stochastic hybrid systems”, Automatica, Elsevier 2008.

[4] Abu Bakar, B. and Veres, S. “A multi-agent approach to integrated FDI and

reconfiguration of autonomous systems.” In the proceedings of IASTED

conference on Artificical intelligence and applications, 2010. Innsbruck,

Austria.

[5] Adams, L., “Proton Induced Upsets in the Low Altitude Polar Orbit,” IEEE

Transactions on Nuclear Science, Vol. 36, No. 6, December 1989, pp. 2339-

2343.

[6] Antsaklis, P.J. “A Brief introduction to the Theory and Applications of Hybrid

Systems”. Proceedings of the IEEE, Special Issue on Hybrid Systems: Theory

and Applications, Vol. 88, No. 7, pp. 879-887, July 2000.

[7] Atlas, A. K., and Bestavros, A., “Statistical Rate Monotonic Scheduling”,

Proceedings of the 19th IEEE Real-Time Systems Symposium, 1998, pp. 123-

132.

220

[8] Bate, Roger et al, Fundamentals of Astrodynamics, Dover Publications, INC.

New York copyright 1971.

[9] Bedingfield, K.L., Leach, R. D., and Alexander, M. B., “Spacecraft System

Failures and Anomalies Attributed to the Natural Space Environment”.

National Aeronautics and Space Administration: Marshall Space Flight Center,

Alabama, 1996.

[10] Bertsekas, D. and Tsitsiklis, J., Neuro-dynamic programming, Athena

Scientific, Belmont, MA, 1996.

[11] Bialke, B., and Dorsey, G., “FUSE Reaction Wheel Torque Anomaly

Resolution,” Advances in the Astronautical Sciences 107, pp. 441-458, 2001.

[12] Blanke, M., Izadi-Zamanabadi, R., & Lootsma, T. F., “Fault monitoring and

re-configurable control for a ship propulsion plant”, International Journal of

Adaptive Control and Signal Processing, 12(8), 671–688.

[13] Blanke, M., Izadi-Zamanabadi, R., Bogh, R., & Lunau, Z. P., “Fault Tolerant

control systems—A holistic view”, Control Engineering Practice, 5(5), 693–

702, 1997.

[14] Boutilier, C. Brafman, R.I., and Geib, C. Prioritized goal decomposition of

Markov decision processes: Toward a synthesis of classical and decision

theoretic planning, in: Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 1162–1165.

[15] Boutilier, C. Dean, T. Hanks, S. Decision-Theoretic Planning: Structural

Assumptions and Computational Leverage Journal of Artificial Intelligence

Research 11 (1999) 1-94.

221

[16] Boutilier, C. et al., “Prioritized Goal Decomposition of Markov Decision

Processes: Toward a Synthesis of Classical and Decision Theoretic Planning”,

Proc. 15th Intl. Joint Conf. on AI (IJCAI-97), Nagoya, August, 1997.

[17] Brailsford, S.C. et al. “Constraint Satisfaction Problems: Algorithms and

Applications”. European Journal of Operational Research 119 (1999) 557-

581.

[18] Burlton, Bruce, “The Rescue of Anik E2”, Canadian Aeronautics and Space

Journal, Vol. 41, Ottawa : CASI, 1995.

[19] Castet, J. F. and Saleh, J. H., “Satellite and satellite subsystems reliability:

Statistical data analysis and modeling”, Reliability Engineering and System

Safety, volume 94, pages 1718-1728, 2009

[20] Castet, J. F. and Saleh, J. H., “Single versus mixture Weibull distributions for

nonparametric satellite reliability”, Reliability Engineering and System Safety,

volume 95, pages 295-300, 2010

[21] Chamseddine, Abbas, Noura, Hassan and Ouladsine, M. “Sensor Fault

Detection, Identification and Fault Tolerant Control: Application to Active

Suspension”. 1-4244-0210-7/06 2006 IEEE.

[22] Chien, S. Knight, R. Stechert, A. Sherwood, R. Rabideau, G. “Using

Iterative Repair to Increase the Responsiveness of Planning and Scheduling for

Autonomous Spacecraft”. International Joint Conference on Artificial

Intelligence (IJCAI 1999). Stockholm, Sweden. August 1999.

222

[23] Clark, R.N., Fosth, D.C. and Walton, W.M., “Detecting Instrument

Malfunctions in Control Systems,” IEEE Trans. Aerospace and Electronic

Systems, IEEE, Vol. AES-11, 465-473, 1975.

[24] Conway, R. W. et al. Theory of Scheduling, Dover Publications Inc., 31 East

2nd Street, Mineola, N.Y. 11501, 2003.

[25] Crassidis, J.L. and Markley, F.L. “A Minimum Model Error Approach for

Attitude Estimation”. AIAA Journal of Guidance Control and Dynamics, 20 (6)

(1997) 1241-1247.

[26] Crassidis, J.L. and Markley, F.L. “Attitude Estimation Using Modified

Rodrigues Parameters” Proceedings of the Flight Mechanics/Estimation

Theory Symposium, (NASA/CP-1996-3333)NASA-Goddard Space Flight

Center, Greenbelt, MD, 1996, pp. 71–83.

[27] Crassidis, J.L. and Markley, F.L. “Unscented Filtering for Spacecraft Attitude

Estimation”. AIAA Journal of Guidance Control and Dynamics, 20 (4) (2003)

536-542.

[28] Crassidis, J.L. et al.“A Survey of Nonlinear Attitude Estimation Methods”.

AIAA Journal of Guidance, Control, and Dynamics, 30 (1): 12-28, January

2007.

[29] Das, S. et al. “Reconfigurable Magnetic Attitude Control of Earth Pointing

Satellites”. Proceedings of Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering, 2010 224:1309. Published by SAGE. DOI:

10.1243/09544100JAERO681.

223

[30] Dean, T. and Givan, R. “Model Minimization in Markov Decision Processes”.

AAAI-97 Proceedings. Copyright © 1997, pp 106-111.

[31] Dean, T. and Kanazawa, K., “A model for Reasoning about Persistence and

Causation”, Computational Intelligence, 5. 142-150 (1989).

[32] Dean, T.L., McDermott, D.V. “Temporal data base management”, Artificial

Intelligence 32 (1987) l-55.

[33] Dechter, R. “Temporal Constraint Networks”. Artificial Intelligence, 49 (1991)

61-95. Elsevier Science Publishers B.V.

[34] Dechter, R. and Pearl, J. “Network Based Heuristics for Constraint Satisfaction

Problems”. Artificial Intelligence, 34 (1) (1987),pp 1 – 38.

[35] Dechter, R. Constraint Processing, Morgan Kaufmann Publishers an Imprint

of Elsevier Science, San Francisco, California. Copyright 2003 by Elsevier

Science (USA).

[36] Deyst, J.J. and Deckert, J.C., “Maximum Likelihood Failure Detection

Techniques Applied to the Shuttle RCS Jets,” Journal of Spacecraft and

Rockets, AIAA, Vol. 13, 65-74, 1976.

[37] Ding, S. and Li, S. “Stabilization of the Attitude of a Rigid Spacecraft with

External Disturbances using Finite-time Control Techniques”. Aerospace

Science and Technology, 13 (2009) 256-265. Copyright by Elsevier Masson

SAS 2009.

[38] Elsen, William, G., Orbital Anomalies in Goddard Spacecraft for CY 1989,

Assurance Requirements Office, Office of Flight Assurance, NASA Goddard

Space Flight Center, July 1990.

224

[39] Frank, P. M., “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy—a survey and some new results”, Automatica,

26(3), 459–474, 1990.

[40] Frank, P.M. and Ding, X., “Survey of Robust Residual Generating and

Evaluation Methods in Observer-Based Fault Detection Systems,” Journal of

Process Control, Elsevier Ltd, Vol. 37, No. 6, 403-424, 1997.

[41] Garret, H., and Whittlesey, “Environment Induced Anomalies on the TDRSS

and the Role of Spacecraft Charging,” 28th Aerospace Sciences Meeting,

January 8-11, Reno, Nevada.

[42] Garret, Henry, Berry, “The Charging Of Spacecraft Surfaces,” Reviews of

Geophysics and Space Physics, Vol. 19, No. 4, November, 1981, p. 577-616.

[43] Gat, E., “ESL: a language for supporting robust plan execution in embedded

autonomous agents”, in: L. Pryor (Ed.), Proc. AAAI Fall Symposium on Plan

Execution, AAAI Press, 1996.

[44] Goldman, C. V. and Zilberstein, S., “Communication-Based Decomposition

Mechanisms for Decentralized MDPs”, Journal of Artificial Intelligence

Research, 32 (2008) 169-202.

[45] Haralick, R.M. and Elliott, G.L. “Increasing Tree Search Efficiency for

Constraint Satisfaction Problems”. Artificial Intelligence 14 (1980) 263-313,

Copyright © by North-Holland Publishing Company.

[46] Havelund, K., Lowry, M. et al “Formal Analysis of the Remote Agent Before

and After Flight.” In Proceedings of the 5th NASA Langley Formal Methods

Workshop, June 2000.

225

[47] Hecht, H. and Hecht, M., “Reliability Prediction for Spacecraft”, Rome Air

Development Center, Griffiss Air Force Base, Final technical report RADC-

TR-85-229, New York, December 1985.

[48] Ho, L.-W., & Yen, G. G. (2002). “Reconfigurable control system design for

fault diagnosis and accommodation”, International Journal of Neural Systems,

12(6), 497–520.

[49] Ho, Y. C. and Chu, K. C. “Team decision theory and information structures in

optimal control problems-part I”, IEEE Transactions on Automatic Control, 17

(1972), pp. 15 - 22.

[50] Hughes, David, “Telsat Succeeds in Anik E2 Rescue,” Aviation Week &

Space Technology, July 4, 1994, p. 32.

[51] Hughes, Peter “Spacecraft Attitude Dynamics” Dover Publications, INC. New

York copyright 1986, 2004 Peter Hughes

[52] Johnson, M. D. and Miller, G. E., “Spike: Intelligent Scheduling of Hubble

Space Telescope Observations”, edited by M. Zweben and M. Fox, Intelligent

Scheduling, Morgan Kaufmann Publishers, San Francisco, CA, 1994.

[53] Jonsson, A., & Barto, A., “A causal approach to hierarchical decomposition of

factored MDPs”, Proceedings of the Twenty Second International Conference

on Machine Learning (ICML 05), 2005.

[54] Knapp, Bill, “Telsat Ponders Using Thrusters To Salvage Anik,” Space News,

Vol. 5, No. 5, January 31- February 6, 1994, p. 1.

[55] Krishnan, H. McClamroch, N.H. and Reyhanoglu, M. “Attutude Stabilization

of a Rigid Spacecraft Using Two Control Torques: A Nonlinear Control

226

Approach Based on the Spacecraft Attitude Dynamics”. Automatica, Vol. 30,

No. 12, December, 1994, 1885-1897.

[56] Kruk, J. W., et al, “FUSE In-Orbit Attitude Control with Two Reaction Wheels

and No Gyroscopes,” Proc. SPIE 4854, pp. 274-285, 2002.

[57] Kruk, L. et al. “Earliest-Deadline-First Service In Heavy-Traffic”, The annuals

of applied probability, 2004, Vol 14, No. 3, pp. 1306-1352.

[58] Kumar, P. R. and Varaiya, P., Stochastic Systems: Estimation, Identification,

and Adaptive Control, Prentice Hall Inc., Englewood Cliffs, New Jersey

07632, 1986.

[59] Kurk, J. W. et al, “FUSE Fine Error Sensor Optical Performance”, Proc. SPIE

4139, 2000.

[60] Labinaz, Gino et al. “A Survey of Modeling and Control of Hybrid Systems”.

International Fedration of Automatic Control 1997, published in Great Britan,

S0066-4138(97)00019-0, Vol 21, pp. 79-92.

[61] Leffers, E.J. et al “Kalman Filtering for Spacecraft Attitude Estimation” AIAA

20th Aerospace Science Meeting, Orlando, Florida, January 11-14, 1982.

[62] Lovera, M. and Astolfi, A. “Spacecraft Attitude Control using Magnetic

Actuators”. Automatica, 40 (2004) 1405-1414. Copyright 2004 Elsevier Ltd.

[63] Marschak, J. “Elements for a theory of teams”. Management Sci., 1 (1955), pp.

127 - 137.

[64] Meier, L., Ross, D.W. and Glaser, M.B., “Evaluation of the Feasibility of

Using Internal Redundancy to Detect and Isolate Onboard Control Data

227

Instrumentation Failures,” Tech. Report AFFDL-TR-70172, Wright-Patterson

Air Force Base, Dayton, Ohio, Jan., 1971.

[65] Moos, H. W. et al., “Overview of the Far Ultraviolet Spectroscopic Explorer

Mission,” ApJ 538, pp. L1 – L6, 2000.

[66] Muscettola, N. “HSTS: Integrating planning and scheduling”. In Mark Fox and

Monte Zweben, editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[67] Muscettola, N. Smith, B. Chien, C. Fry, C. Rabideau, G. Rajan, K. Yan, D.

“On-board planning for autonomous spacecraft”, in: Proc. 4th International

Symposium on Artificial Intelligence, Robotics. And Automation for Space (i-

SAIRAS), Tokyo, Japan, August 1997.

[68] Muscettola, N., Nayak, P., et al “Remote Agent: To Boldly Go Where No AI

System Has Gone Before”. Artificial Intelligence, 103(1-2):5--48, 1998.

[69] Nasir, A. Atkins, E.M. Kolmanovsky, I.V. “Science-optimal Spacecraft

Attitude Maneuvering While Accounting for the Failure Mode”. 18th IFAC

World Congress. Milano, Italy. August 29th to September 2nd 2011.

[70] Nasir, A. and Atkins, E.M. “Fault tolerance for Spacecraft Attitude

Management,” AIAA Guidance, Navigation, and Control Conference, Toronto,

Ontario, Aug. 2-5, 2010 (AIAA-2010-8301).

[71] Nasir, A., Atkins, E.M., and Kolmanovsky, I.V. “Conflict Resolution

Algorithms for Fault Detection and Diagnosis” AIAA Infotech@Aerospace

Conference, St. Louis, Missouri, March. 29-31, 2011 (AIAA-2011-1587).

228

[72] Park, B.G. and Kwon, W.H., “Robust one-step receding horizon control of

discrete-time Markovian jump uncertain systems”, Automatica, 38 (2002)

1229-1235.

[73] Patton R. J., Lopez-Toribio C. J., & Uppal F. J., “Artificial Intelligence

Approaches to Fault Diagnosis,” Applied Mathematics and Computer Science,

Technical University of Zielona Gora, Poland, Vol. 9, No. 3, 471-518, 1999.

[74] Patton, R. J., “Fault-tolerant control: The 1997 situation”, In Proceedings of

the 3rd IFAC symposium on fault detection, supervision and safety for

technical processes, (pp. 1033–1055), August, 1997.

[75] Patton, R. J., Frank, P. M., & Clark, R. N., Fault diagnosis in dynamic

systems: Theory and applications. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[76] Pell, B. et al “A Hybrid Procedural/Deductive Executive for Autonomous

Spacecraft”. Autonomous Agents and Multi Agent Systems, 2, 7-22(1999)

Kluwer Academic Publishers, 1999.

[77] Pinedo, M. L. Scheduling: Theory, Algorithms, and Systems, 4th edition,

Springer Science+Business Media, LLC, 233, Spring Street, New York, NY,

10013, USA, 2012.

[78] Potocnik, B. et al. “Model Predictive Control of Discrete-time Hybrid Systems

with Discrete Inputs”. ISA Transactions, 44 (2005), 199-211.

[79] Powell, W. B., Approximate Dynamic Programming: Solving the Curses of

Dimensionality. New York: Wiley, 2007.

[80] Powell, W.B. “What You Should Know About Approximate Dynamic

Programming”. Naval Research Logistics, Vol. 56 (2009) pp 239-249,

229

published online 24 February 2009 in Wiley InterScience, DOI

10.1002/nav.20347.

[81] Pritchard, B. E., Swift, G. M., and Johnston, A. H., “Radiation effects,

predicted, observed and compared for spacecraft systems,” IEEE NSREC 2002

Data Workshop Proc., 2002, pp. 7–17.

[82] Pulecci, T. et al. “Classical vs Modern Magnetic Attitude Control Design: A

Case Study”. GNC 2008 7th International ESA Conference, Tralee, County

Kerry, Ireland, 2008.

[83] Purvis, C.K. et al., “Design Guidelines for Assessing and Controlling

Spacecraft Charging Effects”. National Aeronautics and Space Administration,

Technical Paper 2361, 1984.

[84] Puterman, Martin L., Markov Decision Processes: Discrete Stochastic

Dynamic Programming, © John Wiley and Sons Inc. (1994).

[85] Rabideau, G. Knight, R. Chien, S. Fukunaga, A. Govindjee, A. “Iterative

Repair Planning for Spacecraft Operations in the ASPEN System”.

International Symposium on Artificial Intelligence Robotics and Automation in

Space (ISAIRAS 1999), Noordwijk, The Netherlands. June 1999.

[86] Radner, R. “Team decision problems”. Ann. Math. Statist., 33 (1962), pp. 857 -

881.

[87] Rago, C. et. al. “Failure Detection and Identification and Fault Tolerant

Control using the IMM-KF with applications to the Eagle-Eye UAV.”

Proceedings of the 37th IEEE Conference on Decision and Control, Tampa,

Florida, USA. December 1998.

230

[88] Roberts, Bryce A., et al, “Three-axis Attitude Control with Two Reaction

Wheels and Magnetic Torquer Bars,” AIAA Guidance, Navigation, and

Control Conference and Exhibit, Paper 5245, Providence, Rhode Island, 16-19

August 2004.

[89] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 2nd

Edition, Prentice-Hall, Upper Saddle River, New Jersey 07458, 2005.

[90] Sahnow, D. J. et al, “On-orbit Performance of the Far Ultraviolet

Spectroscopic Explorer Satellite” The Astrophysical Journal, 538: L7-L11,

July, 2000.

[91] Sahnow, David J., “Operations with the new FUSE observatory: three-axis

control with one reaction wheel,” SPIE, Vol. 6266, Paper 2, 2006.

[92] Shima, T. and Rasmussen, S. UAV Cooperative Decision and Control

Challenges and Practical Approaches, Copyright © 2009 by Society of

Industrial and Applied Mathematics.

[93] Shuster, M.D. “A Survey of Attitude Representations”. Journal of

Astronautical Sciences, Vol 41, No 4, October-December, 1993, pp 439-517.

[94] Silani, E. and Lovera, M. “Magnetic Spacecraft Attitude Control: A Survey

and Some New Results”. Control Engineering Practice, 13 (2005) 357-371.

Copyright Elsevier Ltd.

[95] Smith, B., Feather, Martin S. and Muscettola, N. “Challenges and Methods in

Testing the Remote Agent Planner”, Proceedings of the Fifth International

Conference on Artificial Intelligence Planning Systems, Breckenridge, CO.

231

[96] Sullivan, B. R. and Akin, D. L., “ A Aurvey of Serviceable Spacecraft

Failures”, AIAA 2001-4540

[97] Sutton, R. and Barto, A., Reinforcement learning, The MIT Press, Cambridge,

Massachusetts, 1998.

[98] Wadham, P., N., “The Effects of Electrostatic Discharge Phenomena on

Telsat’s Domestic Communications Satellites,” AGARD, The Aerospace

Environment at Altitude and Its Implications for Spacecraft Charging, 1987, p.

21-18.

[99] Walker, B.K. and Gai, E., “Fault Detection Threshold Determination

Technique Using Markov Theory,” Journal of Guidance, Control and

Dynamics, AIAA, Vol. 2, 313-319, July-Aug. 1979.

[100] Web link: http://www.weibull.com/hotwire/issue13/relbasics13.htm

[101] Wertz, J.R. and Larson, W. J., Space Mission Analysis and Design. El

Segundo, California: Microcosm Press, 2003.

[102] Wie, Bong “Space Vehicle Dynamics and Control” AIAA Education Series

1998.

[103] Wilkinson, D., “TDRS-1 Single Event Upsets and the Effect of the Space

Environment,” IEEE Transactions on Nuclear Science, Vol. 38, No. 6,

December 1991.

[104] Williams, C.B., and Nayak, P.P., “A Model-Based Approach to Reactive Self-

Configuring Systems,” in Proceedings of AAAI-96, pages 971-978, AAAI,

AAAI Press, Cambridge, Mass., 1996.

232

[105] Witsenhausen, H. “Equivalent stochastic control problems”. Mathematics of

Control, Signals, and Systems (MCSS), 1 (1988), pp. 3-11.

[106] Xiong, M., Wang, Q., and Ramamritham, K., “On earliest deadline first

scheduling for temporal consistency maintenance,” Real-Time Systems, 2008.

[107] Xu, R. et al. “Multi-Agent Planning System for Spacecraft”. Proceedings of

the Second International Conference on Machine Learning and Cybernetics,

Xi’an, 2-5 November 2003, pp 1995-1999.

[108] Yoshikawa, T. “Decomposition of dynamic team decision problems”.

Automatic Control, IEEE Transactions on, 23 (1978), pp. 627 - 632.

[109] Zalewski, J., “What Every Engineer Needs to Know about Rate Monotonic

Scheduling: A Tutotial”, IEEE magazine-95/1, IEEE Computer Society Press,

1995.

[110] Zentgraf, P and Reggio, D. “Magnetic Rate Damping for Satellites in LEO”.

32nd Annual AAS Guidance and Control Conference, Jan 31 – Feb 4, 2009,

Breckenridge, Colorado.

[111] Zhang, Y., Jiang, J., “Bibliographical review on reconfigurable fault-tolerant

control systems,” Annual Reviews in Control, Elsevier Ltd, Volume 32, Issue

2, December 2008, Pages 229-252.

[112] Zhang, Y.M. and Jiang, J, “Integrated Active Fault Tolerant Control Using

IMM Aproach”. IEEE Transactions on Aerospace and Electronic Systems,

IEEE, Vol. 37, No. 4, 1221-1235, October 2001.

233

[113] Zhang, Y.M. and Jiang, J. “Fault Tolerant Control System Design with Explicit

Consideration of Performance Degradation”, IEEE Transactions on Aerospace

and Elctronic Systems, 2003, 37 (3).

[114] Zhou, D.H. and Frank, P.M. “Fault Diagnostics and Fault Tolerant Control”.

IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 2,

April 1998.

[115] Zweben, M. and Mark S., Fox Intelligent Scheduling (Chapter 6), Morgan

Kaufman Publishers, San Francisco, California, 1994.

	Untitled

