
Using Phase Response Curves to Understand

Neuronal Synchronization and Sleep

by

Timothy Christian George Fink

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2012

Doctoral Committee:

Assistant Professor Victoria Booth, co-Chair
Associate Professor Michal R. Zochowski, co-Chair
Professor Leonard M. Sander
Professor Robert S. Savit
Assistant Professor William Charles Stacey



“The important thing is not to stop questioning. Curiosity has its own reason for exist-
ing. One cannot help but be in awe when he contemplates the mysteries of eternity, of
life, of the marvelous structure of reality. It is enough if one tries merely to comprehend
a little of this mystery every day. Never lose a holy curiosity.” ∼ Einstein



c© Timothy Christian George Fink 2012
All Rights Reserved



To Chrissie: I never would have made it to this point without you. And to my parents, who gave
me the gift of curiosity.

ii



ACKNOWLEDGEMENTS

The last few years spent working toward my Ph.D. have been the best of my life,

and I have a number of people to thank for that. First of all, my wife: thank you,

Chrissie, for your encouragement and wisdom throughout this journey. Whenever

two paths diverged and I was uncertain of which to take, you were always by my

side, helping me to think clearly and bolstering my attitude with the comfort that

no matter what happened, we would enjoy the adventure together.

My parents have helped me reach this point through innumerable acts of sacrifice

and love, many of which I’m sure I am unaware of. But two things do stand out: the

joy of learning that they instilled, and the freedom they gave to pursue my passions.

My parents were constantly posing riddles and math problems to me as a child, and

they struck a good balance between making it fun while at the same time pushing

me to improve. I still remember my mom getting me to count all the way up to 28

(but not a number higher–it was too hard!) in kindergarden. And I remember my

dad taking me out to breakfast my senior year of high school to make sure I knew it

was all right with him if I deviated from the family tradition by becoming a physicist

instead of a physician. Thanks for everything, Mom and Dad.

My two advisors, Michal Zochowski and Victoria Booth, are by far the biggest

reason that working toward my Ph.D. has been an enjoyable process. They have

guided my investigation of very interesting problems while treating me as a colleague,

giving me the freedom to disagree and to explore my own ideas. They have taught me

iii



to communicate scientific ideas efficiently and with excitement, both when writing

and giving talks. They have also been enormously helpful with my career, introducing

me to many important people in the field and helping me prepare for my first job

interview. And through it all, they have been two of the nicest people I know.

Thanks so much, Michal and Victoria.

Thanks also to Bill Stacey, who gave me the opportunity to squeeze in one last

project before walking out the door. I am fortunate to have worked with my office/lab

mates, Dan Maruyama, Sima Mofakham, and Liz Shtrahman. Among many other

things, I owe Liz for patiently teaching me experimental techniques and sometimes

sharing delicious granola with the office, Dan for taking Quantum Information with

me and always being willing to talk Michigan football, and Sima for never failing to

lift our spirits with a smile and a piece of chocolate. Thanks to Tony and Troy as

well, for the great conversations over the years, and to Cameron and Nicole, for their

friendship throughout graduate school.

Finally, I must also acknowledge the teachers who have made a lasting impact.

Mr. Holste, my high school physics teacher, first taught me what it means to be

precise as a scientist, and Bob Davis, Matt DeLong, and Ken Kiers will always stand

out as models of clarity, patience, and dedication as college professors. I will look

to their examples often as I embark on my own academic career. I am also deeply

appreciative of the many lunches I have spent with Ron Larson, who has been a

wonderful mentor to me throughout my time at Michigan.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Information processing in the brain . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Neuronal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Rate coding and population coding . . . . . . . . . . . . . . . . . . 7

1.2 Synchronization in the brain . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Phase response curves . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Network connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Synaptic plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Long-term potentiation . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Synaptic plasticity and memory . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Spike-timing dependent plasticity . . . . . . . . . . . . . . . . . . . 23

1.4 Sleep and synaptic renormalization . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.1 Sleep stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Synaptic renormalization . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II. Effects of the frequency dependence of phase response curves on network
synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Type I and Type II dynamics of Morris-Lecar model neurons . . . . . . . . . 33
2.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Measuring network synchronization . . . . . . . . . . . . . . . . . . 37

2.4 Effects of the PRC Frequency Dependence on Network Synchronization . . . 38
2.5 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Cellularly-driven differences in network synchronization propensity are
differentially modulated by firing frequency . . . . . . . . . . . . . . . . . . . 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Morris-Lecar neuron model . . . . . . . . . . . . . . . . . . . . . . 47

v



3.2.2 Cortical pyramidal neuron model with simulated acetylcholine mod-
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 PRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Network simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Frequency modulation of neuronal phase responses . . . . . . . . . 54
3.3.2 Network correlates of PRC modulation . . . . . . . . . . . . . . . . 58

3.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV. Acetylcholine, network dynamics, and synaptic renormalization . . . . . . 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Cortical neuron model . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 PRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 Network simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

V. Summmary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



LIST OF FIGURES

Figure

1.1 Illustration of different phases of a neuronal action potential. . . . . . . . . . . . . 3

1.2 Primary anatomical features of a neuron. . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Neuronal circuit which generates the knee-jerk reflex. . . . . . . . . . . . . . . . . . 5

1.4 Firing rates of sensory neurons versus weight applied to frog muscle. . . . . . . . . 8

1.5 Example of a tuning curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Difference between complete synchronization and phase locking . . . . . . . . . . . 10

1.7 Examples of Type I and Type II PRCs. . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Intuition for effects of phase response curve type on neuronal synchronization . . . 15

1.9 Illustration of small-world network connectivity. . . . . . . . . . . . . . . . . . . . . 18

1.10 Neuronal basis of memory formation in Aplysia . . . . . . . . . . . . . . . . . . . . 21

1.11 Experimental data depicting the effects of spike-timing dependent plasticity . . . . 24

1.12 Typical EEG traces of the different stages of sleep. . . . . . . . . . . . . . . . . . . 26

1.13 Overview of the synaptic renormalization hypothesis. . . . . . . . . . . . . . . . . . 28

2.1 Characteristics of Type I and Type II Morris-Lecar neurons . . . . . . . . . . . . . 32

2.2 Frequency-dependent attenuation of PRC amplitude . . . . . . . . . . . . . . . . . 35

2.3 Effects of frequency modulation on network synchrony . . . . . . . . . . . . . . . . 43

2.4 Differential effects of frequency modulation on Type I and Type II network synchrony 44

2.5 Effects of frequency and connectivity density on network synchrony . . . . . . . . . 44

3.1 Neuronal response characteristics of Type I and Type II neurons for Morris-Lecar
and cortical pyramidal cell models . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Effects of modifying speed of intracellular currents upon depth of PRC delay in
Type II neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



3.3 Type II PRC profiles with the same delay depth for different levels of external current. 69

3.4 Differential effects of frequency modulation on Morris-Lecar network synchronization 70

3.5 Differential effects of frequency modulation on network frequency and synchroniza-
tion of cortical pyramidal cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Differential effects of frequency modulation upon phase-zero synchronization in
Types I and II cortical pyramidal cell networks. . . . . . . . . . . . . . . . . . . . . 72

3.7 Time to synchronization for differentially-driven Type II cortical pyramidal cell
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Differential effects of frequency modulation upon phase locking in cortical pyrami-
dal neuronal networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Average network frequency was directly modulated by noise frequency in stochastic
input simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Differential effects of frequency modulation upon synchronization in stochastically-
driven cortical pyramidal cell networks. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Effects of acetylcholine on phase response curves, network synchrony, and overall
network synaptic potentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Effects of acetylcholine on network potentiation and synchronization for varied
network parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Structure of neuronal firing of pre- and post-synaptic cell pairs in cholinergic and
non-cholinergic cortical networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Effects of noise amplitude on the difference in network potentiation between net-
works with and without cholinergic modulation. . . . . . . . . . . . . . . . . . . . . 100

4.5 Effects of connectivity density upon network potentiation. . . . . . . . . . . . . . . 100

4.6 Effects of the modulation of the STDP window, τstdp, upon network potentiation. . 101

4.7 Effects of acetylcholine on network potentiation and synchronization for varied
network parameters with an asymmetric STDP rule. . . . . . . . . . . . . . . . . . 102

4.8 Effects of acetylcholine on network potentiation and synchronization for varied
network parameters with a multiplicate STDP rule. . . . . . . . . . . . . . . . . . . 103

4.9 Effects of alternately switching between the presence and absence of cholinergic
modulation in a cortical network with an embedded cluster. . . . . . . . . . . . . . 104

viii



CHAPTER I

Introduction

The human brain is the physical foundation of all sensations, desires, emotions,

memories, and thoughts. How this 1.5-kilogram mass of neural tissue supports such

complex phenomena has been debated at least since the Greek philosopher Alcmaeon

first suggested that the brain is the seat of intelligence. It was barely one hundred

years ago, however, that the study of the brain entered the modern scientific era with

the pioneering experiments of Santiago Ramón y Cajal. Cajal discovered that the

brain is composed of neurons which connect with one another to form circuits which

unidirectionally transmit electrochemical signals [1]. This laid the foundation for the

modern paradigm of computational neuroscience, which views the brain as a powerful

computational organ which produces cognition and motor output by processesing

information, much like a computer.

1.1 Information processing in the brain

The analogy between brains and computers should not be pushed too far, however.

For one, there are many tasks in which computers far outperform brains (such as

performing fast mathematical computations, manipulating images, and searching for

words in documents), just as there are many tasks in which brains far outperform

computers (such as discovering new mathematical theorems, composing music, and
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conducting coherent conversations). The striking disparity in computational ability

between brains and computers is at the very least a result of their vastly different

construction. Computers and brains differ in their fundamental components, the

interactions between those components, and the ways in which those interactions are

harnessed to process information.

1.1.1 The neuron

Whereas transistors are the elementary processing units in computers, the brain

is fundamentally composed of neurons. The basic physical function of each of the

∼ 1011 neurons in the brain is the same: to transmit electrochemical signals. To

serve as a signaling device, the neuron establishes an electrical potential difference

across its cell membrane by tightly regulating the passage of various ions. Specialized

transmembrane proteins known as ion pumps actively establish transmembrane con-

centration gradients of Na+, K+, Cl−, Ca2+, and other ionic species. Crucially, the

cell membrane is selectively permeable to just one ionic species, K+, when resting.

This results in K+ ions passively flowing down their concentration gradient, from

inside to outside the cell. This leaves a small excess of negative charge within the

cell, which attracts the exited K+ ions to the external surface of the cell membrane,

thereby establishing a transmembrane electrical potential difference.

The resting membrane potential of a neuron typically lies between -60 mV and

-80 mV. A neuron’s membrane potential will typically fluctuate around this resting

membrane potential until the neuron receives input from another neuron. Such input

may cause the neuron’s membrane potential to increase; if it breaches a certain

threshold, voltage-gated ion channels will open and allow Na+ ions to flow into the

cell, thereby causing the membrane potential to rise even more quickly. After a very

short time (approximately 1 ms), a different set of voltage-gated ion channels will
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open and allow K+ ions to flow out of the cell, causing the membrane voltage to

return to its resting state. This process is illustrated in Fig. 1.1.

Figure 1.1: Illustration of different phases of a neuronal action potential.

Action potentials constitute the electrical phase of the electrochemical signals

that are transmitted from neuron to neuron. Action potentials are initiated in the

axon hillock (which connects the cell body and the axon) and propagate down the

neuron’s axon to various connections that the neuron makes with other neurons,

known as synapses (see Fig. 1.2). At these synapses the propagating electrical

signal is transduced to a chemical signal as the spike in membrane potential initiates

a molecular cascade that results in the release of neurotransmitter molecules from

the neuron. These neurotransmitter molecules diffuse across a short space between

the pre-synaptic neuron (the neuron that “sends” the neurotransmitter) and the

post-synaptic neuron (the neuron that “receives” the neurotransmitter) and induce

changes in the membrane potential of the dendrites of the post-synaptic neuron.

Dendrites constitute the “input” units of a neuron, and they transmit their altered

membrane potentials to the soma, where the incoming signals from various dendrites
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are summated. If the membrane potential of the soma increases beyond a certain

threshold, an action potential is generated, and the entire process repeats itself.

Figure 1.2: Primary anatomical features of a neuron. Neurotransmitter released from pre-syanptic
neurons alters the membrane potential of a given neuron’s dendrites. These dendritic signals prop-
agate to the neuron’s cell body, or soma, where they are summated. If the soma’s membrane
potential breaches a certain threshold, an action potential is generated and propagates down the
neuron’s axon. At the end of the axon, this electrical signal induces the release of neurotransmitter,
and the entire process is renewed in downstream neurons.

One crucial point is that when a neuron generates an action potential, it will

release one of two kinds of neurotransmitter: one kind causes the membrane potential

of post-synaptic neurons to increase, while the other kind causes the membrane

potential of post-synaptic neurons to decrease. Neurons which do the former are

called excitatory, and neurons which do the latter are called inhibitory. Both kinds

are essential to normal brain function.

1.1.2 Neuronal circuits

In order to process information, neurons in the brain are connected in highly

complex but specific patterns which are capable of producing appropriate motor



5

output in response to varying sensory input. A simple example of input-output

neuronal processing is found in the knee-jerk reflex, which serves to stabilize the

body when balance is temporarily lost (see Fig. 1.3). When a physician taps below

a patient’s knee with a reflex hammer, this pulls a tendon, which in turn stretches

the patient’s quadriceps femoris muscle. This muscle must subsequently contract

in order for the familiar reflexive response–the extension of the lower leg–to occur.

The neuronal circuit which mediates this response starts with a bundle of sensory

neurons (so called because they respond to sensory input) which have ion channels

that are sensitive to stretching of the quadriceps femoris, thus resulting in these

neurons firing a barrage of action potentials in response to the hammer tap.

Figure 1.3: Neuronal circuit which generates the knee-jerk reflex. Note the parallel pathways in this
circuit. One involves the sensory neurons directly stimulating the motor neurons which cause the
quadriceps to contract, while the other involves inhibitory interneurons which prevent the hamstring
from contracting. This image taken from [2].
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These sensory neurons are very long, projecting from the quadriceps femoris all

the way to the spinal cord, where they form connections with motor neurons, which

in turn project all the way back to the quadriceps. Motor neurons are an important

class of neurons which connect directly to muscles and cause muscles to contract by

firing action potentials. In the knee-jerk circuit, contraction of the quadriceps is a

result of increased activity of motor neurons, which is a result of increased activity

of pre-synaptic sensory neurons, which is a result of muscle stretching due to the

hammer tap.

This chain of events describes only half the circuit, however, for there is a parallel

pathway which ensures that the muscle group antagonistic to the quadriceps, the

hamstring, does not contract. The sensory neurons originating in the quadriceps

accomplish this by forming a second set of connections in the spinal cord with in-

hibitory neurons. These inhibitory neurons in turn connect to the motor neurons

responsible for causing the hamstring to contract. The inhibitory neurons therefore

prevent contraction of the hamstring when they fire at a high rate, which they do

upon receiving elevated input from the pre-synaptic sensory neurons projecting from

the quadriceps. These inhibitory neurons belong to a general class of neurons known

as interneurons, a broad term which encompasses all neurons that are not sensory

or motor neurons. Interneurons are crucial in processing information, as this simple

circuit illustrates: without the inhibitory interneurons, there would be no mechanism

to prevent simultaneous contraction of both the quadriceps and the hamstring.

The circuit mediating the knee-jerk reflex is extremely simple in comparison to

the morass of neural circuitry which comprises the brain. Each neuron in the hu-

man cerebral cortex is estimated to receive between 5,000 and 50,000 connections

from other neurons [3]. Despite this enormous complexity, all behavior can still be
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understood as a product of the three stages described in the knee-jerk circuit: 1) en-

coding of stimuli by sensory neurons, followed by 2) processing of sensory signals by

intermediate neuronal networks, and finishing with 3) behavioral output generated

by motor neurons.

It is, of course, an enormous challenge to decipher how the billions of neurons in

the brain process incoming sensory signals, and not just because there are so many

connections to untangle. The structure of these connections is very complicated,

rarely being organized in a strictly feed-forward manner as in the knee-jerk circuit,

but instead exhibiting massive feedback from higher processing centers to lower ones

(such as from primary visual cortex to the lateral geniculate nucleus). It has been

conjectured that the ubiquitous feedback observed in the brain facilitates top-down

processing to support anticipatory memory systems, and that this enhanced abil-

ity to anticipate future events is the primary distinction between brains and our

predominantly feed-forward modern computers [4, 5].

1.1.3 Rate coding and population coding

Neurons represent, or encode, sensory information in a variety of ways. One of the

simplest was discovered by Edgar Adrian in 1926, when he observed increased firing

rates of sensory neurons in a frog’s leg muscle as the muscle was stretched [6] (see Fig.

1.4). This is precisely how sensory information is encoded in the first stage of the

human knee-jerk reflex: a hammer tap stretches the quadriceps, which results in a

transient increase in the firing rates of sensory neurons projecting from the muscle to

the spinal cord. The increase in firing rate serves the functional purpose of inducing

action potentials in the post-synaptic motor neurons, which results in a jerk of the

knee. Rate coding operates in many neuronal systems, such as neurons in the skin

that fire more frequently as greater pressure is applied or as temperature increases
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[2], as well as motor neurons which induce more forceful muscle contraction by firing

at a higher rate.

Figure 1.4: Firing rates of sensory neurons versus weight applied to frog muscle. The muscle
stretched more as greater weight was applied, which led to increased neuronal firing rates. Image
taken from [5].

Closely related to rate coding is population coding, in which neuronal firing rates

are tuned to one specific value of a stimulus. For example, many neurons in primary

visual cortex and the middle temporal area fire at elevated rates only when light

bars are swept across their receptive fields at particular orientations. This results

in what is known as a tuning curve, in which the functional relationship between

firing rate and stimulus orientation is well-approximated by a Gaussian centered

upon the “preferred orientation” of a given cell (see Fig. 1.5). This contrasts with

the monotonic relationship between firing rate and stimulus intensity observed in

rate coding (as in Fig. 1.4).

Population coding is essential to many fundamental functions of the brain. The

mental map of a rat’s physical environment, for example, depends upon place cells

in the hippocampus which are tuned to fire when the rat is located within a circum-

scribed area [8]. There is strong evidence that the human brain also makes use of
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Figure 1.5: Firing rate as a function of stimulus orientation for a specific neuron in the middle
temporal area of the macaque brain [7]. Note how maximum firing rate occurs at a preferred value
of the stimulus, unlike the monotonic nature of firing rates displayed in Fig. 1.4.

hippocampal place cells [9]. Population coding is also responsible for coordinating

movement. Georgopoulos showed that neurons in primary motor cortex of rhesus

monkeys are each tuned to specific directions of the monkey’s arm movements [10].

This knowledge has enabled the design of algorithms which decode recorded neuronal

activity to control prosthetic limbs for monkeys [11] and humans [12]. Population

coding is also associated with the cricket’s sense of wind direction [13], the macaque

monkey’s numerosity representation [14], and the direction of saccades in the rhesus

monkey’s visual system [15].

1.2 Synchronization in the brain

In many cases firing rate is not the only quantity used to process information in

the brain. Rate coding is often augmented by temporal coding [16], in which relative

spike timing conveys information about a stimulus [17]. For example, neurons in the

nucleus laminaris of the barn owl encode the azimuthal position of sound sources by
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responding to small differences in the arrival time of afferent signals arriving from

either ear [18]. In another study, disruption of neuronal synchrony in the insect

antennal lobe resulted in diminished ability to discriminate different odors [19, 20].

Temporal precision appears to be important not only for sensory encoding but

also in higher-order processing, as neuronal synchrony is associated with many high-

level cognitive processes. One study showed a significant link between synchrony

and attention by recording from the secondary somatosensory cortex of monkeys

that were trained to perform two tasks, one requiring attention to tactile input and

the other requiring attention to visual input. The monkeys received both input types

simultaneously, and trials which required attention to tactile input resulted in higher

pairwise synchrony between cortical neurons compared to trials requiring attention

to visual input [21]. The authors showed that a specific kind of synchronization

known as complete synchronization, in which neurons fire spikes at the same time

(see Fig. 1.6), was enhanced.

Figure 1.6: Cartoon depiction of the difference between complete synchronization and phase lock-
ing. Spikes are represented by vertical lines, and the horizontal axis represents time. Complete
synchronization occurs when neurons fire at the same time, whereas phase locking occurs when one
neuron leads another by constant phase. Complete synchronization is the special case of phase-zero
phase locking.



11

A more general form of synchronization known as phase-locking was found to be

predictive of successful memory storage [22]. Rutishauser et. al. conducted an exper-

iment in which subjects were presented 100 novel images for one second each. They

were later shown another set of 100 images, 50 of which were taken from the first set,

and asked to declare whether or not they had seen each image before. The activities

of individual neurons in the medial temporal lobe were recorded in response to the

100 novel images when they were first presented, and the authors then compared

the recordings associated with successfully-recalled images to those associated with

recall failure. They found that phase-locking synchrony was significantly higher in

response to images that were later recalled correctly.

The most debated possible function for neuronal synchronization concerns its

relation to the binding problem.This problem addresses how visual features are com-

bined, or bound, to form a unified perception, such as how another person’s nose,

eyes, mouth, chin, etc., are bound into the unitary perception of their face. The

“temporal correlation hypothesis” asserts that neuronal assemblies which respond to

individual features must synchronize in order for the features to be bound [23]. This

idea was proposed independently by Milner [24] and von der Malsburg[25], and it was

supported by a 1989 experiment performed by Gray and Singer. They showed that

the synchronization of two neurons with adjacent (but non-overlapping) receptive

fields was higher when a single, long light bar was swept across the two receptive

fields than when two disconnected light bars were simultaneously swept across the

same receptive fields [26]. Simple though this observation was, it demonstrated that

neuronal synchronization could encode global stimulus properties, and may therefore

be essential to visual binding. Whether or not synchronization is actually involved in

visual binding has not yet been resolved and remains an issue of contentious debate
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[27].

While synchronization has been linked to many higher-order brain processes, it has

also been implicated in several pathologies of the brain. The characteristic tremor as-

sociated with Parkinson’s disease, for example, is associated with highly-synchronized

neuronal activity in the subthalamic nucleus [28]. Epileptic seizures have tradition-

ally been thought to result from extensive hypersynchronous neuronal activity [29],

though some recent studies have called this into question [30, 31]. There is also ev-

idence that abnormal synchronization is associated with schizophrenia, autism, and

Alzheimer’s disease [32, 33].

Taken together, the preponderance of the evidence suggests that neuronal syn-

chronization is enormously important to proper brain function, though many details

(such as whether synchrony is definitely necessary for binding, how synchrony fa-

cilitates memory formation, and what constitues “abnormal” synchrony) are still

unknown. Understanding the factors that determine the level of neuronal synchro-

nization is therefore critical both to understanding how the brain operates and to

finding treatments for various diseases of the brain.

A wide variety of factors are known to influence synchronization, but they can

generally be grouped into one of two categories: cellular properties or network proper-

ties. The work presented in this dissertation focuses on a specific measure of cellular

properties known as the phase response curve, and also considers the influence of

network connectivity upon network synchrony.

1.2.1 Phase response curves

The phase response curve (PRC) is an important tool for understanding the

propensity of a group of neurons to synchronize. The PRC characterizes the response

of one periodically firing neuron to a brief current pulse (which can be excitatory or
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inhibitory), and it is calculated as the normalized time difference between the firing

of the neuron when it is perturbed by the external pulse relative to its firing when

it is unperturbed:

(1.1) ∆ =
T − Tpert(θ)

T
,

where θ = t/T denotes the normalized phase of the neuron when the external pulse is

applied (with θ ≡ 0 at a voltage peak), t is the time of pulse application, T is the firing

period of the unperturbed neuron and Tpert is the period of a perturbed cycle. Thus,

the value of ∆ is negative if the perturbed period is longer than the unperturbed one

(constituting a phase delay) and, conversely, it is positive if the perturbed period is

shorter than the unperturbed one (constituting a phase advance). Neuronal PRCs

typically belong to one of two groups. Type I PRCs show phase advances in response

to external stimuli for almost all stimulus phases, while Type II PRCs show a region

of phase delay for early excitatory stimulus phases and a region of phase advance for

late excitatory stimulus phases (see Fig. 1.7).

Properties of PRCs and their implications for neuronal responses have been stud-

ied extensively for single neurons as well as for small networks composed of a few

cells [35, 36, 37, 38, 39, 40]. Theoretical results have shown that two mutually-coupled

excitatory neurons with Type II PRCs tend to completely synchronize more readily

than two neurons with Type I PRCs [35, 36]. This may generally be attributed to

the absence of a phase delay region in the Type I PRC, which leaves Type I neurons

with only one method of adapting to the signal of a coupled neuron. For a heuris-

tic explanation of this phenomenon, see Fig. 1.8. Formally, consider the simplified

model of two phase oscillators with identical natural frequencies and which interact

via a prescribed PRC [36], so that their dynamics are described by
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Figure 1.7: Examples of Type I and Type II PRCs. (A) Neurons with Type I PRCs respond to a
brief excitatory perturbation by advancing their phase, regardless of when in the oscillatory cycle
the perturbation is received. (B) Neurons with Type II PRCs show phase delays when input is
received relatively early in the oscillatory cycle, and they switch to phases advances when the input
is received late. The PRCs shown here are calculated for the model cortical pyramidal neurons
presented in [34].

φ′1 = ω + PRC(φ1 − φ2)(1.2)

φ′2 = ω + PRC(φ2 − φ1).(1.3)

Define θ = φ2 − φ1 and subtract Eq. 1.2 from Eq.1.3 to obtain

θ′ = PRC(θ)− PRC(−θ) ≡ H(θ).(1.4)

Because the PRC is periodic over 2π, phase-locked solutions exist at θ = 0 and

θ = π (since PRC(π) = PRC(−π)). For a solution θs to be stable, H(θ) must have

a positive slope,

(1.5)
dH(θ)

dθ

∣∣∣∣
θ=θs

> 0.

This condition is always met by Type II PRCs at θ = 0, since they by definition

have a negative slope at φ = 0, which corresponds to a positive slope of H(θ) at θ = 0.
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Figure 1.8: Heuristic explanation of why excitatory neurons with Type II PRCs have a greater
propensity for synchronization than excitatory neurons with Type I PRCs. Consider two neurons
coupled with a unidirectional excitatory synapse and being driven to fire periodically at similar
frequencies. For cases (1)-(4), vertical ticks represent spike times of the pre-synaptic (blue) and the
post-synaptic (red) neuron during an unperturbed cycle (dashed tick) and a perturbed cycle (solid
tick, with black arrows indicating the change in spike time). In cases (1) and (2), the pre-synaptic
neuron fires near the end of the post-synaptic neuron’s oscillatory cycle, which induces a phase
advance in both Type I and Type II neurons. The phase advance results in the post-synaptic spike
occurring closer in time to the next pre-synaptic spike, thereby enhancing synchrony. In cases (3)
and (4), the pre-synaptic neuron fires near the beginning of the post-synaptic neuron’s oscillatory
cycle. This induces a phase advance in the Type I post-synaptic neuron but a phase delay in the
Type II post-synaptic neuron. The phase advance of the Type I neuron increases the separation
in time between spikes of the pre- and post-synaptic neurons, resulting in diminished synchrony.
In contrast, the phase delay of the Type II neuron decreases the separation in time between spikes
of the pre- and post-synaptic neurons, resulting in enhanced synchrony. Thus, input to Type II
neurons at both early and late phases promotes synchrony, while input to Type I neurons only
promotes synchrony when received at late phases.

Type I PRCs do not have a negative slope at φ = 0 and therefore are not guaranteed

to completely synchronize; their peaks may be skewed toward later phases in order

for the slope of H(θ) to be positive at θ = 0. Theoretically, therefore, two-neuron

networks coupled with excitation will always completely synchronize if they are both

Type II, but if they are Type I they will only completely synchronize if their PRCs

take a special form, such as being skewed to the right. Other theoretical work has

shown that inhibitory coupling between two Type I neurons strongly favors complete

synchrony, opposite the case of excitatory coupling [41, 42].
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Experimental exploration of these predictions is made possible by the dynamic

clamp technique, which enables the application of computer-controlled synaptic con-

ductance pulses to biological neurons [43, 44]. This allows for the construction of

hybrid networks, typically composed of either one biological neuron and one model

neuron, or of two biological neurons. Netoff et. al. used dynamic clamp to investi-

gate the synchronization of pairs of entorhinal stellate cells whose PRCs were Type

I and shifted to the right when stimulated with excitation [45]. They found that

these cells completely synchronized when coupled with excitation, but fired out of

phase when coupled with inhibition. The first finding was in line with theoretical

predictions, but the second was not. The authors conjectured that synchronization

was not achieved under inhibitory coupling because inhibitory effects are more sus-

ceptible to noise, suggesting that PRC theory may be more biologically relevant to

excitatory than to inhibitory coupling.

One might also question whether PRC theory is biologically relevant for networks

of more than two neurons. While experimental investigation is currently infeasible,

simulations of large-scale neuronal networks have shown that PRC theory is a good

predictor of synchronization in large-scale networks [46], with excitatory Type II net-

works demonstrating a much greater propensity for synchronization than excitatory

Type I excitatory networks. But what else can PRC theory tell us about the synchro-

nization of large-scale networks? Surprisingly little work has been done to answer

this question. A theme for the work presented in this thesis is to investigate the

robustness of the more detailed predictions made by PRC theory for synchronization

in large-scale networks.
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1.2.2 Network connectivity

While the PRC may be a powerful tool for understanding and predicting neuronal

synchronization, it is far from the only factor to influence network dynamics. Given

a set of neurons whose PRC properties are fixed, network activity can still be dra-

matically altered by changing network connectivity. Simulations of hippocampal net-

works, for example, show that a phase transition occurs in network synchrony as the

average in-degree (number of incoming connections per neuron) increases [47]. And

even when the mean in-degree is above the critical threshold required for synchrony,

network coherence can still be diminished by increasing in-degree heterogeneity [48].

Perhaps one of the most striking features of connectivity structure in the brain

is the high proportion of short-range connections (projecting within clusters), com-

plemented by a minority of long-range connections (which project between clusters)

[49]. Watts and Strogatz devised a very useful method of modeling such structure

[50]. Start with a group of neurons (or “nodes,” in the more general terminology

of network theory) that are each connected to their r nearest neighbors, forming a

lattice-like structure. Then individually consider each connection in the network,

and with probability p re-wire it to a new, random target. The Watts-Strogatz

method is simple, requiring only three parameters (the number of neurons in the

network N, the radius of connectivity r, and the re-wiring probability p), yet it is ex-

tremely useful because it interpolates between lattice-like, locally coupled networks

and completely random networks (see Fig. 1.9). Between these two extremes lies

the so-called “small-world” regime, where network structure is highly clustered (as

quantified by a measure called the clustering coefficient), yet the average path length

between any two nodes is relatively small. It is within this small-world regime that

neuronal networks typically transition from asynchronous to synchronous dynamics,
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for the introduction of even a small number of long-range connections can have a

very strong synchronizing effect [51].

Figure 1.9: Illustration of how the re-wiring probability of the Watts-Strogatz model interpolates
between a regular, lattice-like network and a random network. Image taken from [50].

Studies indicate that cortical connectivity structures in many species exhibit

“small-world” connectivity, as defined by clustering coefficient and average path

length [52]. This has led to widespread use of the Watts-Strogatz method to model

connectivity in the brain, which is fine as long as the modeler recognizes that this

method certainly does not capture all features of the rich and complex structure of

real-world neuronal networks. In the work presented in this dissertation, the Watts-

Strogatz method is used as a way to explore a wide range of network structures while

scanning just a few parameters. Since we do not know the exact parameter set which

best replicates connectivity structure in various areas of the brain, we are interested

in results which hold for large regions of parameter space, and are therefore likely to

apply to the specific network structures realized in the brain.
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1.3 Synaptic plasticity

Part of the difficulty in modeling the brain is that even if its connectivity could be

determined down to each and every synapse, such knowledge would almost instantly

be obsolete, for the brain constantly reconfigures its connections. The ability to

grow, purge, and modify the strength of connections in response to neuronal activity

is known as synaptic plasticity, and it enables the brain to adapt to ever-changing

environments. The concept was famously postulated by Donald Hebb in 1949 when

he conjectured that “when an axon of cell A is near enough to excite cell B or

repeatedly or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased” [53]. Hebb’s postulate was dramatically confirmed by Terje

Lomo’s work investgating the rabbit brain in 1973.

1.3.1 Long-term potentiation

Lomo was interested in how neurons in the dentate gyrus (a region of the hip-

pocampus) would respond to activity from a bundle of fibers known as the perforant

path, which is the primary input to the hippocampus. Lomo stimulated the per-

forant path with a brief electrical pulse, then characterized the response of neurons

in the dentate gyrus by recording their excitatory post-synaptic potentials (EPSP’s).

Lomo next stimulated the perforant pathway with high-frequency (100 Hz) electrical

activity, inducing action potentials in the dentate gyrus, then returned to the initial

protocol of administering a brief electrical pulse and measuring EPSP’s in the den-

tate gyrus. To his surprise, the EPSP’s increased dramatically in both magnitude

and slope after the high-frequency stimulation, indicating that the synapses between

the perforant pathway and the dentate gyrus had grown much stronger. Crucially,
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this increase in synaptic efficacy lasted for at least several hours, and in some cases

for days [54].

This phenomenon was christened long term potentiation (LTP), and it convinc-

ingly demonstrated that correlated activity between pre- and post-synaptic neurons

may result in potentiation of their intervening synapses. Subsequent work revealed

that post-synaptic NMDA receptors function as molecular “coincidence detectors,”

since they open to allow calcium influx only when glutamate is released by pre-

synaptic neurons and the post-synaptic cell is depolarized. The calcium influx in-

duces a complex molecular cascade which ultimately results in AMPA receptors being

added to the post-synaptic cell membrane, thereby strengthening the synapse [1, 55].

LTP is not merely an intellectual curiosity, for it has a role to play in a very

important cognitive function: memory. Various studies have shown that mice which

are genetically modified in ways which disrupt hippocampal LTP suffer severe spatial

memory impairment [56, 57]. Why is synaptic plasticity essential to proper memory

function? The answer to this question is best understood by considering a simpler

system.

1.3.2 Synaptic plasticity and memory

The giant marine snail Aplysia is a fairly simple invertebrate organsim that has

proven invaluable to investigation of the neuronal correlates of memory formation.

The gill is an exposed organ which Aplysia uses to breathe, and which it reflex-

ively withdraws for protection when the nearby siphon is lightly touched (see Fig.

1.10(a)). The neurons mediating this behavior are very large and therefore quite ac-

commodating to electrophysiological recording, a fact which Eric Kandel exploited to

map their connectivity. Kandel wanted to understand the biological changes which

supported two learned behaviors: in habituation, repeated stimulation of the siphon
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leads to diminished gill withdrawal, while in sensitization, pairing siphon stimulation

with a sharp shock to the tail leads to increased gill withdrawal in response to siphon

stimulation alone [1].

Figure 1.10: Neuronal basis of memory formation in Aplysia. (a) The three main structures in-
volved in the behavioral modification protocols induced by Kandel. (b) Neuronal circuit mediating
habituation of the gill withdrawal reflex. If the siphon is repeatedly stimulated, the gill will respond
less and less due to a weakening of the sensory-motor synapse depicted here. (c) Neuronal circuit
mediating sensitization of the gill withdrawal reflex to tail shock. Repeated shocks to the tail re-
sult in serotonin being released at the same sensory-motor synapse as in (b), resulting in siphon
stimulation eliciting a greater gill withdrawal response. This image was adapted from [1].

Kandel found that both instances of learning result from modification of synaptic

strength. Habituation occurs due to weakening of the connections between sensory

neurons (which respond to siphon stimulation) and motor neurons (which induce gill

withdrawal–see Fig. 1.10(b)). On the molecular level, this weakening results from

decreased pre-synaptic release of glutamate. Sensitization depends upon a modu-

latory circuit which originates in the tail and terminates at the synapses between

the siphon sensory neurons and the gill withdrawal-inducing motor neurons (see Fig.

1.10(c)). Repeated shocks to the tail result in serotonin being released at these

synapses, which in turn induces a molecular cascade which increases pre-synaptic
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glutamate release. This effectively strengthens the sensory-motor synapses so that

the gill withdrawal reflex becomes more sensitive to stimulation of the siphon.

These two learned behaviors illustrate how memory formation depends upon

synaptic plasticity. It is hypothesized that higher forms of memory, such as se-

mantic and episodic memory, also result from synaptic modification, which carves

out neural pathways to ensure that specific assemblies of neurons activate in response

to appropriate stimuli [58]. The location of these assemblies in the brain remained

a mystery for much of the twentieth century, until the enlightening but unfortunate

case of Henry Molaison emerged. Henry battled intractable epilepsy after suffering

a bike accident as a child, and in a desperate move to cure him doctors removed his

entire hippocampus in 1953, when he was twenty-seven years old [59]. The proce-

dure succeeded in controlling his epilepsy, but it had a dramatic and unforeseen side

effect: Henry was unable to form new declarative memories. His knowledge of facts

and episodes before the surgery remained intact, but he was largely unable to acquire

any declarative memories after the operation (though he could form new procedural

memories).

The case of Henry Molaison convincingly demonstrated that the hippocampus is

essential to the formation of new memories. At the same time, it showed that the

hippocampus does not store memories in their final, long-term state, since Henry’s

pre-1953 memories were unaffected by the operation. The prevailing modern theory

suggests that the hippocampus serves as a temporary repository for new memories,

which are then transferred to the cortex during sleep [60, 61]. This view is supported

by studies showing that spike sequences observed in awake organisms during tasks

that require memory formation (such as maze navigation by a rat) are replayed

in both the hippocampus [62] and various regions of the cortex [63] during sleep.
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Furthermore, suppression of replay events has been shown to impair memory consol-

idation [64, 65]. Other studies have shown that the hippocampus and cortex replay

the same events simultaneously [66, 67], indicating that they engage in a dialogue

that is essential to memory consolidation. It is unknown exactly how this dialogue

transfers memory traces from the hippocampus to the cortex, but it is assumed that

plasticity mechanisms enable the replay of spike sequences to facilitate information

transfer through the modification of cortical connections.

1.3.3 Spike-timing dependent plasticity

There exist many forms of activity-dependent synaptic plasticity, but one that has

generated significant interest in the last decade is known as spike-timing dependent

plasticity (STDP). While most other forms of plasticity depend upon simple increased

activity of pre- and post-synaptic neurons, STDP depends upon the fine temporal

structure of neuronal spiking. This phenomenon was demonstrated convincingly by

Bi and Poo, who persistently paired pre- and post-synaptic spiking of cultured hip-

pocampal neurons while enforcing strict timing differences between spikes [68]. They

found that synapses almost exclusively increased in strength when pre-synaptic spik-

ing preceded post-synaptic spiking, while they predominantly decreased in strength

when spike ordering was reversed (see Fig. 1.11).

This experimental data is often mathematically modeled as two decaying expo-

nential curves which give the change in synaptic weight as a function of the difference

in pre-post spike timing. This model is then used in network simulations to govern

the activity-dependent evolution of synaptic strength. STDP models have been used

to provide a possible explanation for the development of ocular dominance columns

[69], as well as to suggest that neuronal networks may perform a crude form of prin-

cipal component analysis [70, 71]. Chapter IV of this dissertation describes work
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Figure 1.11: Experimental data from cultured hippocampal neurons shows that synaptic strength
increases or decreases depending upon whether pre-synaptic spiking precedes or succeeds post-
synaptic spiking. Note how the degree of strengthening or weakening depends upon the timing
difference between the spikes (positive time differences imply that post-synaptic spikes followed
pre-synaptic spikes). This plot is taken from [68].

in which networks with plastic synapses obeying an STDP model were simulated to

explore the effects of a ubiquitous, yet poorly understood, animal behavior: sleep.

1.4 Sleep and synaptic renormalization

Sleep is one of the fundamental mysteries facing contemporary neuroscience. Vir-

tually every known species of animal requires sleep, yet we still do not know why.

The essential need for sleep was demonstrated in a series of experiments by Allan

Rechtschaffen, who showed that totally depriving rats of sleep resulted in their death

within two to three weeks [72]. Disappointingly, however, no “unambiguous cause

of death” could be identified [73]. Various theories for the purpose of sleep have

been proposed, including wound healing [74], strengthening of the immune system

[75], and memory consolidation [76], and while some of these theories enjoy extensive

experimental support, none explain why sleep deprivation should lead to death in

such a short time.
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1.4.1 Sleep stages

In the early twentieth century, most scientists assumed that sleep results from

decreased neuronal activity–that the brain essentially “shuts down” every night due

to fatigue [2]. This simple view of sleep was dramatically overturned in the 1930’s

when Alfred Loomis applied nascent EEG technology to record the brain activity

of sleeping subjects. Loomis discovered that the sleeping brain is not quiet, but in

fact pulses with a vast repertoire of exotic waveforms [77]. Loomis classified these

waveforms into five distinct sleep stages, a concept which remains foundational to

the modern study of sleep [78].

We currently understand sleep to consist of two distinct phases: rapid eye move-

ment (REM) and non-rapid eye movement (NREM) sleep. REM sleep is character-

ized by loss of both muscle tone and body temperature regulation [79], and it is also

referred to as paradoxical sleep because its EEG recordings resemble those observed

during wakefulness. The eponymous eye movements observed during REM sleep are

associated with cholinergically-modulated bursts of neuronal activity in the pons,

lateral geniculate nucleus, and occipital cortex known as PGO spikes [80]. Most

memorable dreams are thought to occur during REM sleep [81], and EEG recordings

typically show low-voltage patterns with mixed frequency content.

In NREM sleep, both muscle tone and regulation of body temperature remain

intact, and unlike REM sleep, NREM sleep is further divided into three stages (the

old Rechtschaffen and Kales classification system featured four stages, but the more

recent American Association of Sleep Medicine system condenses the number to three

[78]). Stage N1 features EEG activity similar to that observed during REM sleep,

but Stage N1 is not associated with rapid eye movement and serves primarily as a

brief transition between wakefulness and Stage N2 (see Fig. 1.12). Stage N2 consti-
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tutes a deeper state of sleep, and its EEG is marked by K-complexes (large, biphasic

waveforms that are thought to suppress external stimuli from reaching conscious

awareness [82]) and sleep spindles. Sleep spindles last ∼ 1 s, feature 10-16 Hz oscil-

lations, and are associated with both procedural and episodic memory consolidation

[83].

Figure 1.12: Typical EEG traces of the different stages of sleep. On the right is a typical hypnogram,
which plots the stage of sleep over time. Note how slow wave sleep (Stage N3) progressively decreases
in duration throughout the night, while REM sleep increases in duration.

N3 is the deepest stage of sleep and is easily identified by its high-amplitude,

low-frequency EEG, for which reason it is also called slow wave sleep. Slow waves

are produced by the alternating bursting and quiescence of thalamocortical neu-

rons, a pattern which in turn results from their interaction with cells in the reticular

nucleus. Thalamocortical neurons have specialized membrane channels that admit

calcium only when they are hyperpolarized, so that inhibitory input from the reticu-

lar nucleus primes thalamocortical neurons to fire bursts of action potentials. During

slow wave sleep the cells of the reticular nucleus fire rhythmically (due to calcium

channels similar to those found in thalamocortical cells), and this rhythmic firing in-

duces rhythmic thalamocortical activity, which generates the rhythmic post-synaptic
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potentials in cortical dendrites that are recorded as slow waves [2].

Interestingly, slow wave activity is associated with memory consolidation. In one

study, for example, participants whose slow wave activity was suppressed during

sleep using acoustic stimulation showed decreased improvement in a texture discrim-

ination task relative to the control group [84]. In another study, participants whose

slow wave activity was boosted using transcranial stimulation showed increased im-

provement in a paired-associate learning task compared to the control group [85].

Experiments indicate that slow wave activity and sleep spindles in the neocortex

gate high-frequency ripples in the hippocampus, which strongly suggests that mem-

ory traces stored in the hippocampus are transferred to the neocortex during slow

wave sleep [86, 87]. This theory is made even more compelling by the fact that in

rats, spike sequences observed during preceding maze navigation are often replayed

within hippocampal ripples during slow wave sleep [88].

1.4.2 Synaptic renormalization

The evidence clearly supports an essential role for slow wave sleep in memory

consolidation, but that may not even be its most important function. Giulio Tononi

theorizes that slow wave activity is also the primary force which maintains synaptic

homeostasis within the brain [89]. This is enormously important because stronger

synapses consume more energy and physical space, two precious resources which the

brain holds in short supply. Tononi’s synaptic renormalization hypothesis posits that

synaptic strength is globally upscaled during wakefulness, and that slow wave activity

during sleep serves to globally downscale, or “renormalize,” connection strength (see

Fig. 1.13). This process is thought to simultaneously facilitate memory consolidation

by enhancing the relative strength of synapses which comprise memory traces [90].

Evidence in favor of the synaptic renormalization hypothesis continues to mount.
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Figure 1.13: Overview of the synaptic renormalization hypothesis. During waking, synapses expe-
rience an overall increase in strength, while during sleep they are downscaled. Note that the two
synapses in this cartoon start with the same strength, but end with one being relatively stronger,
perhaps because it was integrated into a memory trace. This plot is taken from [76].

Electrophysiological studies show that evoked LFP/EEG responses increase in slope

during wakefulness and decrease following sleep in rats [91] and humans [92], exactly

as the theory predicts. At the level of individual cortical neurons, it has been shown

that firing rates increase with wakefulness and decrease following sleep, and that the

magnitude of the decrease in firing rate correlates with the intensity of slow wave

activity [93]. Furthermore, slow wave activity increases locally during sleep in brain

regions known to have experienced significant potentiation during waking, providing

compelling support for the idea that slow wave activity has a homeostatic effect [94].

While the synaptic renormalization hypothesis enjoys fairly strong empirical sup-

port for its basic premises, it suffers from the fact that it provides no specific bio-

physical mechanism for either wake-dependent synaptic upscaling or sleep-dependent

downscaling [76]. Tononi and others have suggested that differences in the cortical

neuromodulatory milieu may favor potentiation during wakefulness and depression

during sleep [95], but exactly how the various neuromodulators induce these effects

is unclear. Chapter IV of this dissertation describes work done in collaboration
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with Victoria Booth, Geoffrey Murphy, and Michal Zochowski which investigates

the effects of one particular neuromodulator–acetylcholine–on overall network po-

tentiation. We show that cholinergic modulation provides a possible biophysical

explanation for synaptic renormalization.

1.5 Outline

This explanation for synaptic renormalization employs phase response curves,

which motivate work throughout this thesis and which we argue are useful for un-

derstanding large-scale network dynamics. Chapter II demonstrates their utility by

presenting an investigation of how the variation of PRCs with firing frequency affects

the synchronization of large-scale neuronal networks. Using the Morris-Lecar neu-

ronal model, we first show that the phase-delay region of Type II PRCs diminishes

as frequency increases. We then demonstrate that this leads to decreased synchro-

nization with increased frequency in networks composed of Type II neurons, and we

compare these results to those obtained for Type I neurons.

Chapter III continues this line of inquiry using a more realistic neuron model. This

model was developed to simulate experimental results which showed that cholinergic

modulation switches cortical pyrmidal neurons’ PRCs from Type II to Type I [34, 96].

We show that this model also results in significant frequency-dependent attenuation

of the phase-delay region of Type II PRCs, and we explain how this effect depends

upon the relative speeds of an adaptation-inducing potassium current and a fast-

acting sodium current. We also show that in this model, as in the Morris-Lecar model,

increased frequency leads to diminished synchronization of networks composed of

Type II neurons.

Finally, the work presented in Chapter IV uses the cortical pyramidal model
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introduced in Chapter III to investigate how network potentiation is affected by

acetylcholine, which is present in cortex during waking but virtually absent dur-

ing slow wave sleep. We show that the presence/absence of acetylcholine induces

low/high network synchronization due to neurons exhibiting Type I/Type II PRCs.

This in turn leads to high/low overall network potentiation as a result of STDP,

thus indicating that acetcylcholine may be a key to understanding synaptic renor-

malization, and providing another example in which PRC theory correctly predicts

the synchronization properties of large-scale networks.



CHAPTER II

Effects of the frequency dependence of phase response
curves on network synchronization

2.1 Introduction

It is well known that individual neurons respond differently to external stimula-

tion. Different response properties are primarily due to different excitation properties

of the neuronal membrane, but differences in the anatomical structure of the neu-

rites can also contribute [97]. Two basic measures characterizing general response

properties of individual neurons are the frequency-current (f-I) curve and the phase

response curve (PRC). The f-I curve measures neuronal firing frequency in response

to continuous stimulation by external current. Typically, neurons can be divided

into two groups based on their f-I curves, Type I and Type II (see Fig. 2.1(a)). The

frequency of Type I neurons is strongly modulated by the magnitude of the external

current and can take on very low values at firing threshold. The frequency of Type II

neurons is much less responsive to changes in the current magnitude. These neurons

start firing at threshold with a critical frequency and as current amplitude increases,

firing frequency does not change as significantly.

As mentioned in Section 1.2.1, the PRC is a measure used to describe the response

of an individual neuron to perturbations to its oscillation. PRCs are very useful for

understanding how well several individual neurons will synchronize when coupled

31
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Figure 2.1: (a) Frequency-current (f-I) curves for Type I and Type II Morris-Lecar neurons. The
firing frequency of the Type I neuron goes to zero at firing threshold, while the Type II neuron
exhibits a threshold frequency of about 8 Hz. (b) PRCs for various firing frequencies of the Type I
Morris-Lecar neuron. PRCs were calculated using 0.5 msec excitatory current pulses of amplitude
200 µA/cm2. (c) PRCs for various firing frequencies of the Type II Morris-Lecar neuron. PRCs
were calculated using 0.5 msec excitatory current pulses of amplitude 200 µA/cm2.

with excitation. Like f-I curves, neuronal PRCs are generally grouped into two

categories, and, conveniently, neurons with Type I f-I curves typically have Type I

PRCs and neurons with Type II f-I curves typically have Type II PRCs [36].

In this chapter, we first investigate links between these two measures, then inves-

tigate their influence on network spatio-temporal activity patterns. Specifically, we

measure changes in the PRC as a function of firing frequency of the neuron. We find

that while the PRC of a given neuron depends on a number of factors, including the

amplitude of the stimulating pulse and the firing frequency of the neuron at which

the PRC is measured, for neurons with Type I PRCs these factors mainly influence

the amplitude of the induced phase shifts but do not qualitatively change the profile

of the PRC. However, for neurons with Type II PRCs, the amplitude of the phase

delays evoked at early phases can decrease significantly as the intrinsic firing fre-

quency increases, leading to a more Type I-like response. Thus, by modulating firing

frequency, we can continuously monitor the transition from Type II to Type I-like

PRCs and observe the effect of this transition upon spatio-temporal patterning in

a large network. Specifically, we consider the propensity for synchronization as a
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function of network firing frequency in large-scale excitatory networks composed of

either Type I or Type II Morris-Lecar model neurons. The work presented in this

chapter was published as the textbook chapter “Effects of the frequency dependence

of phase response curves on network synchronization” in Phase Response Curves in

Neuroscience. The work was performed in collaboration with Victoria Booth and

Michal Zochowski [98].

2.2 Type I and Type II dynamics of Morris-Lecar model neurons

In our model networks, individual neurons are modeled by the Morris-Lecar equa-

tions [99],

C
dV

dt
= −gCam∞(V )(V − VCa)− gKw(V − VK)− gL(V − VL) + Iapp(2.1)

dw

dt
= φ

w∞(V )− w
τw(V )

(2.2)

m∞(V ) =
1

2

[
1 + tanh

(
V − V1

V2

)]
(2.3)

w∞(V ) =
1

2

[
1 + tanh

(
V − V3

V4

)]
(2.4)

τw(V ) =
1

cosh
(

V−V3

2V4

) ,(2.5)

where V represents membrane voltage (in mV) and time is measured in msec.

Action potentials are generated by an inward Ca2+-mediated current and an outward

K+-mediated current whose dynamics are governed by the gating variable w. The

functions m∞(V ) and w∞(V ) are the steady state activation functions of the Ca2+

and K+ currents, and τw(V ) is the time constant governing dynamics of the gating

variable w. The term Iapp represents an externally applied stimulus to the neuron.

Following [100], we use the parameters listed in Table 2.1 to simulate Type I

and Type II Morris-Lecar model neurons. Fig. 2.1(a) depicts the f-I curves of both
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Parameter Type I Type II
C 20 µF/cm2 20 µF/cm2

gCa 4.0 mS/cm2 4.4 mS/cm2

gK 8.0 mS/cm2 8.0 mS/cm2

gL 2.0 mS/cm2 2.0 mS/cm2

VCa 120.0 mV 120.0 mV
VK -84.0 mV -84.0 mV
VL -60.0 mV -60.0 mV

V 1 -1.2 mV -1.2 mV

V 2 18.0 mV 18.0 mV

V 3 12.0 mV 2.0 mV

V 4 17.4 mV 30.0 mV
φ 1/15 0.04
Iapp 35.0 µA/cm2 80.0 µA/cm2

Table 2.1: Parameters for the Morris-Lecar Type I and Type II model neurons used in our simula-
tions, taken from [100].

neuron types. Note that the frequency of the Type I neuron is capable of assuming

arbitrarily low values at firing threshold, while the Type II neuron exhibits a critical

frequency at threshold of about 8 Hz.

Figs. 2.1(b,c) depict the PRCs of Type I and Type II Morris-Lecar neurons in

response to excitatory stimulation. Note that at low frequency, both types exhibit

a phase delay when a current pulse is applied at values of θ slightly greater than

0. This is due to the fact that θ = 0 is defined to occur at maximum membrane

voltage, so that the voltage naturally decreases at the beginning of the cycle, when

the neuron is repolarizing after an action potential. The excitatory applied current

pulse therefore opposes this process and delays the natural oscillatory behavior. In

the Type I neuron, this initial phase delay gives way to phase advance for stimulation

at later phases in the firing cycle. The Type II neuron exhibits qualitatively different

behavior. The initial phase delay region is followed by a further delay region, forming

a second, larger “trough” before finally giving way to a phase advance region at late

phases of stimulation.



35

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
0

10

20

30

40

50

60

70

80

90

100

 

 

Trough

Peak

P
e

rc
e

n
t 

a
tt

e
n

u
a

ti
o

n

Frequency (Hz)

Figure 2.2: Attenuation of both the peak and trough of the Type II PRC as a function of frequency,
relative to the amplitudes of the peak and trough when the neuron is firing at approximately 9.3
Hz. PRCs were computed using 0.5 msec current pulses of amplitude 40 µA/cm2.

In the Morris-Lecar model, PRC properties are strongly affected not only by the

properties of membrane excitability but also by the induced firing frequency of the

unperturbed neuron. Figs. 2.1(b,c) depict changes in the phase shifts for both types

of neurons as the firing frequency of the neuron is increased by increasing the external

current Iapp. In both cases, there is an overall attenuation of the PRC as frequency

increases. Additionally, the Type II PRC exhibits an extreme attenuation of the

phase delay region relative to the phase advance region with increased frequency,

rendering the neuron more Type I-like. This phenomenon is quantified in Fig. 2.2.

2.3 Network Model

To better understand the effects on network dynamics of frequency-dependent

changes in the characteristics of the PRC, we simulated large-scale excitatory net-

works consisting of either Type I or Type II Morris-Lecar neurons for different average

network firing frequencies. We varied synaptic weight and network connectivity and

then quantified synchronization of the network spatio-temporal activity patterns.
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2.3.1 Network structure

In our networks of Morris-Lecar neurons, individual neurons are in an excitable

state (Iapp levels are set below firing threshold) and underlying network activity is

driven by random, excitatory noise to each neuron. Thus, we modify equation (3.1)

for the membrane voltage of the ıth neuron Vı as follows:

(2.6)

C
dVı
dt

= −gCam∞(Vı)(Vı−VCa)−gKwı(Vı−VK)−gL(Vı−VL)+Iapp +
∑
∈Γı

Isyn
ı +Inoise

ı .

Here we have added two terms, one for the synaptic current exchanged between

neurons,
∑

∈Γı
Isyn
ı , and another for random, excitatory inputs used to modulate

average network firing frequency, Inoise
ı . The synaptic current flowing from neuron

 to ı is defined to be non-zero if neuron  is directionally coupled to neuron ı (i.e.,

 ∈ Γı) and the voltage of neuron  is greater than 0 mV. The magnitude of the

synaptic current is given by

(2.7) Isyn
ı = smax(0,V).

The synaptic weight s is the same for all synapses, and its specific value is one of

the parameters varied from simulation to simulation.

The term Inoise is used to control the average firing frequency of the network.

Each neuron randomly receives square current pulses of amplitude 300 µA/cm2 and

duration 0.5 msec at a specified frequency. The noise frequency determines the

average firing frequency of the network. Additionally, Type I and Type II neurons

are both given sub-threshold baseline currents, with Iapp = 35 µA/cm2 for Type I

and Iapp = 80 µA/cm2 for Type II, to compensate for their differences in threshold
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current.

The neurons are connected in a one-dimensional network with periodic bound-

ary conditions. The connectivity pattern is constructed using the Watts-Strogatz

architecture for Small World Networks [50] . A radius of connectivity r is specified,

and each neuron is directionally coupled to its 2r nearest neighbors. Then, every

connection in the network is rewired with probability p to another neuron chosen at

random. In this way, p = 0 results in a locally-connected network and p = 1 in a

randomly connected network. The radius of connectivity r therefore determines the

density of connections in the network, while the re-wiring probability p determines

the network connectivity structure. r is set to 5 for all simulations except those used

to generate Fig. 2.5. All simulated networks have 250 neurons.

2.3.2 Measuring network synchronization

We monitor phase-synchronization of firing in the network using the mean phase

coherence, σ [101]. The mean phase coherence between a pair of neurons, σ1,2, is

defined by:

σ1,2 =

∣∣∣∣∣ 1

N

N∑
k=1

eiφk

∣∣∣∣∣(2.8)

φk = 2π

(
t2,k − t1,k
t1,k+1 − t1,k

)
,(2.9)

where t2,k is the time of the kth spike of neuron 2, t1,k is the time of the spike of

neuron 1 that is largest while being less than t2,k, t1,k+1 is the time of the spike of

neuron 1 that is smallest while being greater than or equal to t2,k, N is the number of

spikes of neuron 2, and eiφk = cos(φk) + i sin(φk). The mean phase coherence of the

entire network, σ, is calculated by averaging σi,j over all pairs of neurons, excluding

ı = .
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2.4 Effects of the PRC Frequency Dependence on Network Synchroniza-
tion

We investigated the changes in network mean phase coherence as a function of

network structure for different values of average frequency of network activity. Figs.

2.3(a-c) summarize the dual effects of synaptic coupling and architecture on syn-

chronization of Type I networks. For low coupling strengths s (vertical axis), the

networks essentially fail to synchronize regardless of the value of the rewiring prob-

ability p (horizontal axis), indicated by the low values of mean phase coherence.

Above s ≈ 0.3 mS/cm2, however, the networks synchronize for network architectures

with a large fraction of random connectivity. Fig. 2.3(c) shows that the differences

in mean phase coherence between networks driven at high frequencies and low fre-

quencies, σhigh−σlow, are positive, revealing that Type I networks synchronize better

at higher frequency. This is hardly a surprising result, because higher network fre-

quency implies more exchange of synaptic current, which leads to greater effective

coupling among neurons. For s & 0.45mS/cm2, the differences in mean phase co-

herence, σhigh− σlow, return to approximately 0, since σ saturates for both the high-

and low-frequency networks at such high coupling.

Type II networks, on the other hand, exhibit quite different behavior. Results

depicted in Figs. 2.3(d-f) demonstrate that appreciable network synchronization

occurs at coupling strengths of s ≈ 0.2mS/cm2 and greater. At the same time,

the differences in mean phase coherence between networks driven at high frequency

and at low frequency, σhigh − σlow, remain negative, implying that Type II networks

synchronize better at lower frequency (see Fig. 2.3(f), and note the difference in

scale from Fig. 2.3(c)). These results differ from those obtained for Type I networks,

in which synchrony increases with increasing mean network firing frequency. This
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contrast in synchronization behavior is even more clearly illustrated in Fig. 2.4, where

the differences in mean phase coherence between high- and low-frequency networks

are plotted as a function of synaptic weight for a number of different pairings of

noise frequency. In all cases, the difference in synchronization between high- and

low-frequency Type I networks starts at essentially zero, steeply rises to a large peak

as synaptic weight increases, then returns to zero as both networks saturate. The

presence of this pronounced region of positively-valued σhigh − σlow for all frequency

pairings demonstrates the tendency of Type I networks to synchronize better at

higher frequency. Type II networks, on the other hand, exhibit large regions of

negative σhigh − σlow for all frequency pairings, indicating that Type II networks

tend to synchronize better at lower frequency. Interestingly, Figs. 2.4(c,d) show a

small region where σhigh − σlow is significantly positive for Type II networks. This

feature is lacking in Figs. 2.4(a,b). These contrasting results may be a result of

the competing influences of effective coupling and PRC phase delay. As frequency

increases, more current is exchanged between neurons, leading to higher effective

coupling and increased synchronization. At the same time, increasing frequency also

leads to a diminishing phase delay region in the neuronal PRCs, which depresses

synchronization. The interplay between these two influences is nontrivial, and we

see that in Figs. 2.4(a,b) the depressive pressure of the neuronal PRC dominates

for virtually all values of s, while in Figs. 2.4(c,d) the positive pressure of effective

coupling dominates for small synaptic weight values, before giving way to the effects

of the neuronal PRC at greater values of s.

We obtain similar results when considering cross sections of the color plots from

Figs. 2.3(a-f). In Figs. 2.3(g,h) the synaptic coupling is fixed and the mean phase

coherence is plotted as a function of re-wiring probability p for four different noise fre-
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quencies. The strength of synaptic coupling was chosen to lie in a transitional region,

where Type I network synchrony takes on an intermediate value (s = 0.36 mS/cm2).

In both Type I and Type II networks, mean phase coherence increases with increas-

ing re-wiring probability, but increasing frequency affects the two types of networks

in different ways. In the Type I network (Fig. 2.3(g)), higher frequency implies

greater σ values for all values of p, while in the Type II network (Fig. 2.3(h)) higher

frequency yields slightly smaller σ values for virtually all values of p. This effect in

the Type II network is not due to changes in network firing frequency with changes in

p, since average network firing frequency remains virtually constant for all values of

p (Fig. 2.3(i)). These results further indicate that for networks of Type II neurons,

the increase in network propensity for synchronization due to higher mean firing

frequency, and thus higher effective coupling, is offset by reduced cellular propensity

for synchronization.

We also investigated how network connection density affects the emergence of net-

work synchrony for the two network types. Figs. 2.5(a) and 2.5(b) depict the differ-

ences in mean phase coherence for high- and low-frequency network firing, σhigh−σlow,

as a function of p and the radius of connectivity r, for Type I and Type II networks,

respectively. Similar to our previous results in which Type I networks exhibited

positive values of σhigh − σlow for a bounded range of coupling strength values (Fig.

2.3(c)), Type I networks also show greater synchrony at high frequency than at low

frequency between r ≈ 5 and r ≈ 7. Type II networks synchronize slightly better at

low frequency than at high frequency for r & 2, which is analogous to the transition

that occurs at s ≈ 0.2 mS/cm2 in Fig. 2.3(f). These results show that the networks

behave in qualitatively the same manner for both increasing r and increasing s, which

is not surprising, since the effect of both is a greater exchange of synaptic current
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within the network.

2.5 Discussion and summary

The aim of this chapter has been to show the link between frequency modulation of

the neuronal PRC and propensity for network synchronization. We investigated these

links in the Morris-Lecar neuronal model under two standard excitability regimes,

Type I and Type II excitability. For each cell type, as the intrinsic firing frequency

of our model neurons increased, phase shifts in spike timing (as measured by the

PRC) decreased. This attenuation was uniform across all phases for the Type I cell

but not for the Type II cell, which exhibited a greater attenuation of the phase delay

region than of the phase advance region. We investigated the effect of this frequency-

dependent, gradual abolition of the phase delay region of Type II PRCs upon network

synchronization. In large, noisy, excitatory networks, we varied synaptic weight and

connectivity architecture across parameter regimes that both prevented and pro-

moted network synchronization. As average network firing frequency was increased

by changing the frequency of random excitatory inputs, we observed diminished syn-

chronization (as measured by mean phase coherence) in networks composed of Type

II neurons. This phenomenon was robust and can be attributed to the non-uniform,

pronounced attenuation of phase delays observed in Type II neurons as frequency

increases. In contrast, networks composed of Type I neurons, whose PRCs have no

delay region and are uniformly attenuated as frequency increases, showed an increase

in propensity for synchronization as frequency increased.

These results paint a complex picture of interactions between network and cel-

lular properties that may lead to nontrivial effects in terms of network dynamical

patterns. For example, neurons having various intrinsic cellular properties may be
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differentially mixed to form networks having different capacities in terms of their

pattern formation. As we have shown, Type I networks have a stronger propensity

to synchronize at high compared to low frequencies, whereas Type II networks show

the opposite tendency. It is therefore possible that Type I networks function as in-

tegrators, while Type II networks may act as low-pass filters in the temporal coding

regime.
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Figure 2.3: (a,b) Mean phase coherence σ as a function of synaptic coupling strength s and re-wiring
probability p for networks of Type I neurons driven with a noise frequency of 65 Hz (σhigh, a) and of
35 Hz (σlow, b). (c) Difference between the σ values for the high-frequency and low-frequency Type
I networks, σhigh − σlow, as a function of synaptic coupling strength s and re-wiring probability
p. (d,e) Mean phase coherence σ as a function of synaptic coupling s and re-wiring probability p
for networks of Type II neurons driven with a noise frequency of 100 Hz (σhigh, d) and of 70 Hz
(σlow, e). (f) Difference between the σ values for the high-frequency and low-frequency Type II
networks, σhigh − σlow, as a function of synaptic coupling strength s and re-wiring probability p.
Note the difference in scale between (c) and (f). (g) Cross sections of (a) and (b) with additional,
intermediate frequency stimulation values and s fixed at 0.36mS/cm2. (h) Cross sections of (d)
and (e) with additional, intermediate frequency stimulation values and s fixed at 0.36mS/cm2. (i)
Average network firing frequency as a function of p for various values of the noise frequency in a
Type II network, with s = 0.36mS/cm2.
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(b) σhigh − σlow as a function of r and p in a Type II network. s is fixed at 0.30 mS/cm2, and the
noise frequency is 100 Hz in the high frequency network and 70 Hz in the low frequency network.



CHAPTER III

Cellularly-driven differences in network synchronization
propensity are differentially modulated by firing frequency

3.1 Introduction

In the previous chapter, we showed how the frequency dependence of phase re-

sponse curves (PRCs) can be used to understand why synchronization responds dif-

ferently to frequency modulation in Type I networks versus Type II networks. In this

chapter, we show why frequency modulation alters neuronal PRCs, and we specifi-

cally explain why the phase delay region of Type II PRCs is attenuated more than

the phase advance region. In addition to the Morris-Lecar model used previously, we

also explore these effects in a more biophysically realistic model of a cortical pyrami-

dal cell. The work presented in this chapter was published as the paper “Cellularly-

driven differences in network synchronization propensity are differentially modulated

by firing frequency” in the May 2011 issue of PLoS Computational Biology. The work

was performed in collaboration with Victoria Booth and Michal Zochowski [102].

Neuronal synchronization is thought to underlie spatiotemporal pattern formation

in the healthy [103, 104, 105, 106] and pathological brain [32, 107, 108, 109, 110].

The propensity for synchronization in a neuronal network is determined by both cel-

lular and network properties. An important experimentally obtainable measure of

cellular properties is the neuronal phase response curve [35]. The PRC characterizes

45
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the change in spike timing of a periodically firing neuron in response to brief, weak

external stimulation. PRCs have been classified into two general categories: Type

I, which display only phase advances in response to excitatory stimuli, and Type II,

which respond with both phase advances and delays. Type I cells exhibit relatively

poor propensity for synchronization under excitatory coupling, while Type II cells

synchronize better [35, 36, 111, 37, 38, 39, 40, 46]. Furthermore, the PRC character-

istics thought to be responsible for synchronization propensity change differentially

as a function of frequency for Type I and Type II cells [112]. In this study, we explain

the differential effects of frequency modulation on neuronal response properties and

exploit these effects to investigate differential changes in the capacity for synchro-

nization of excitatory networks consisting of Type I or Type II neurons.

To demonstrate the universality of the frequency-dependent effects on the neuronal

PRC, we consider a reduced model neuron described by the Morris-Lecar equations

[99] which can display either a Type I or Type II PRC in different parameter regimes

[100]. Then, to present the effects within a physiological context, we turn to the

results of a recent experimental study which showed that cholinergic modulation

of cortical pyramidal neurons switches the neuronal PRC from Type II to Type I

[96]. In a Hodgkin-Huxley-based cortical pyramidal neuron model, the switch in

PRC type was shown to depend on a slow, low-threshold potassium current which

is targeted by cholinergic modulation [34]. Using these two neuronal models, we

explain the underlying cellular basis of the differential frequency effects on the PRC.

We show that the relative timing of hyperpolarizing, potassium currents in relation

to the model’s depolarizing currents (a calcium current in the Morris-Lecar model

and a sodium current in the cortical pyramidal cell model) plays a crucial role in

shaping the phase response of a neuron. We then investigate the influence of the
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frequency-dependent cellular effects on network activity by analyzing network syn-

chronization as a function of underlying neuronal spike frequency near firing thresh-

old in large-scale, excitatory networks composed of either Morris-Lecar neurons or

cortical pyramidal model neurons. As expected, the neuronal PRC type profoundly

affects network propensity for synchronization [46]. We show that, in general, in-

creasing firing frequency near firing threshold has little effect upon synchrony in Type

I networks, while it severely suppresses synchrony in Type II networks. We show

these results to be robust to neuronal heterogeneity, network connectivity parame-

ters and whether neuronal activity is driven by constant or stochastic inputs. Our

results provide important insight into differential changes in the propensity for net-

work synchronization induced by the external modulation of neuronal frequency. As

neuronal firing frequency changes, the changes in network spatiotemporal patterns

depend upon the response characteristics of the individual cells in the network.

3.2 Methods

3.2.1 Morris-Lecar neuron model

We used the Morris-Lecar model [99] as a generic neuronal model to initially

explore frequency-dependent PRC effects. The model contains two active ionic cur-

rents: an inward Ca2+ current whose dynamics are instantaneous and an outward

K+ current gated by the dynamic variable w. The current balance equation for the

ıth cell is

(3.1) C
dVı
dt

= −gCam∞(Vı)(Vı−V Ca)− gKw(Vı−V K)− gL(Vı−V L) + Idrive
ı − Isyn

ı ,

where C = 20.0 µF/cm2, Vı is in millivolts, t is in milliseconds, Idrive
ı is an

externally applied current measured in µA/cm2, and Isyn
ı is the synaptic current
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received by neuron ı. The Ca2+ current is governed by the steady-state activation

function m∞(V ) = 1/2{1 + tanh[(V − V1)/V2]}, while dynamics of the K+ current

gating variable w are given by dw/dt = φ(w∞(V )−w)/τw(V ), with w∞(V ) = 1/2{1+

tanh[(V − V3)/V4]} and τw(V ) = {cosh[(V − V3)/(2V4)]}−1.

The Type I and Type II neuronal models share the parameter values gK =

8.0 mS/cm2, gL = 2.0 mS/cm2, V Ca = 120.0 mV, V K = −84.0 mV, V L =

−60.0 mV, V1 = −1.2 mV, and V2 = 18.0 mV. Type I cells are modeled with

gCa = 4.0 mS/cm2, V3 = 12.0 mV, V4 = 17.4 mV, and φ = 1/15, while Type II cells

are modeled with gCa = 4.4 mS/cm2, V3 = 2.0 mV, V4 = 30.0 mV, and φ = 0.04.

These values were taken from [100].

3.2.2 Cortical pyramidal neuron model with simulated acetylcholine modulation

The cortical pyramidal model neuron we employed was motivated by recent com-

putational and experimental findings, as reported in [34]. Varying the maximum con-

ductance of a K+-mediated adaptation current, gKs, from 1.5 mS/cm2 to 0 mS/cm2

effectively switches the response characteristics of the cortical pyramidal model neu-

ron from Type II to Type I, a phenomenon which has been observed in situ and

simulates the effects of cholinergic neuromodulation [96]. The model also features

a fast, inward Na+ current, a delayed rectifier K+ current, and a leakage current,

in addition to the aforementioned slow, low-threshold K+ current responsible for

spike-frequency adaptation [34, 113]. The current balance equation for the ıth cell is

(3.2)

C
dVı
dt

= −gNam3
∞(Vı)h(Vı−VNa)−gKdrn4(Vı−VK)−gKsz(Vı−VK)−gL(Vı−VL)+Idrive

ı −Isyn
ı ,

with C = 1.0 µF/cm2, Vı in millivolts, and t in milliseconds. Idrive
ı is an externally
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applied current measured in µA/cm2, and Isyn
ı is the synaptic current received by

neuron ı. Activation of the Na+ current is instantaneous and governed by the steady-

state activation function m∞(V ) = {1 + exp[(−V − 30.0)/9.5]}−1. Dynamics of the

Na+ current inactivation gating variable h are given by

(3.3) dh/dt = αh(h∞(V )− h)/τh(V ),

with h∞(V ) = {1 + exp[(V + 53.0)/7.0]}−1 and τh(V ) = 0.37 + 2.78{1 + exp[(V +

40.5)/6.0]}−1. The delayed rectifier K+ current is gated by n, whose dynamics are

governed by

(3.4) dn/dt = (n∞(V )− h)/τn(V ),

with n∞(V ) = {1 + exp[(−V − 30.0)/10.0]}−1 and τn(V ) = 0.37 + 1.85{1 +

exp[(V + 27.0)/15.0]}−1. The slow, low-threshold K+ current targeted by cholinergic

modulation is gated by z, which varies in time according to

(3.5) dz/dt = αz(z∞(V )− z)/75.0,

where z∞(V ) = {1 + exp[(−V − 39.0)/5.0]}−1. The parameters αh and αz in the

current gating equations are varied in the investigation of the underlying cellular ba-

sis of the differential frequency effects on the PRC, but they are set to αh = αz = 1

in the network simulations. The slow, low-threshold K+ current loosely models the

muscarine-sensitive M-current observed in cortical neurons. It has been shown in sil-

ico that eliminating this current is sufficient to switch the model neuron’s PRC from

Type II to Type I [34]. This is intended to model cholinergic neuromodulation, which
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has been shown experimentally to switch cortical pyramidal neurons between Type

I and Type II phase responses [96]. This switching of PRC profile is demonstrated

in Fig. 1, and is obtained by setting gKs = 0.0 mS/cm2 to obtain a Type I response

(simulated cholinergic modulation) and gKs = 1.5 mS/cm2 to obtain a Type II re-

sponse (simulated absence of cholinergic modulation). All other parameter values

are the same for both types of neurons: gNa = 24.0 mS/cm2, gKdr = 3.0 mS/cm2,

gL = 0.02 mS/cm2, VNa = 55.0 mV, VK = −90.0 mV, and VL = −60.0 mV.

3.2.3 PRC Calculation

For both neuronal models, Idrive is set to a fixed value to elicit repetitive firing in a

single, synaptically isolated neuron, and the model equations are time evolved using

a fourth-order Runge-Kutta numerical scheme until the oscillatory period stabilizes.

Then, using initial conditions associated with spike peak, brief current pulses are

administered at different phases of the oscillation, and the perturbed periods are

used to calculate the corresponding phase shifts. The current pulses are administered

at 100 equally-spaced time points throughout the period of the neuronal oscillation.

The current pulses have a duration of 0.06 ms and an amplitude of 3.0 µA/cm2 for

the Type I cortical pyramidal neuron, a duration of 0.06 ms and an amplitude of

10.0 µA/cm2 for the Type II cortical pyramidal neuron, and a duration of 0.50 ms

and an amplitude of 100.0 µA/cm2 for both the Type I and Type II Morris-Lecar

neurons.

3.2.4 Network simulations

In all network simulations, the number of neurons is 200, and the synapses are

exclusively excitatory. The network connectivity pattern is constructed using the

Watts-Strogatz architecture for Small World Networks [50]. Starting with a 1-D ring
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network with periodic boundary conditions, each neuron is at first directionally cou-

pled to its 2r nearest neighbors, and then every connection in the network is rewired

with probability p to another neuron selected at random. In this way, p = 0 results

in a locally-connected network and p = 1 in a randomly connected network. The

radius of connectivity r therefore determines the density of connections in the net-

work, while the re-wiring parameter p determines the network connectivity structure.

Network connectivity r is set to 4 in all simulations. Synaptic current is transmitted

from neuron  at times t when its membrane voltage breaches -20 mV. The synaptic

current delivered from neuron  to a synaptically connected neuron ı at times t >= t

is given by Isyn
ı = s exp

(
− t−t

τ

)
(Vı−Esyn). The total synaptic current to a neuron ı

is simply given by Isyn
ı =

∑
∈Γı

Isyn
ı , where Γı is the set of all neurons which synapse

onto neuron ı. The synaptic weight s is the same for all synapses within a given

simulation, and we set τ = 0.5 ms and Esyn = 0 mV. All simulations are run for

10,000 ms, with the first 3000 ms disregarded in order to eliminate initial transient

effects. The dynamics are numerically integrated in Matlab using a fourth-order

Runge-Kutta method with a time step of 0.05 ms for the cortical pyramidal neuron

networks and 0.10 ms for Morris-Lecar neuron networks. We employ two different

methods to modulate network firing frequency in our simulations. The first is to

simply modulate the supra-threshold value of Idrive for all neurons in the network.

In order to prevent the networks from trivially synchronizing, we do not supply each

neuron with exactly the same level of current, but instead sample from a Gaussian

distribution of current values. The mean value of the distribution determines the

average firing frequency of the network, and the standard deviation of the Gaus-

sian is chosen such that the standard deviation in natural neuronal frequencies is

1 Hz. In order to model more biologically relevant environmental inputs, we also
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run simulations of cortical pyramidal neuronal networks in which frequency is mod-

ulated by stochastic input. All neurons are given the same constant sub-threshold

baseline current, plus square current pulses randomly delivered to each neuron at a

specified frequency fnoise, so that Idrive
ı = Ibase + Inoise

ı (fnoise). The delivery of the

square current pulses is a Poisson process. Modulation of this noise frequency thereby

modulates the average frequency of the network. In our simulations of stochastically-

driven cortical pyramidal neuronal networks, Inoise
ı consists of square current pulses

with amplitude 30 µA/cm2 and duration 0.2 msec. With these values, at least two

successive pulses are required to elicit neuronal firing. The baseline currents are

Ibase = −0.16 µA/cm2 for Type I networks and Ibase = 0.0 µA/cm2 for Type II

networks. We monitor phase-synchronization of neuronal firing in our simulations

using the mean phase coherence (MPC) measure, σ [101]. This measure quantifies

the degree of phase locking between neurons, assuming a value of 0 for completely

random spiking and 1 for complete phase locking. Note that MPC may be attained

for locking of phases at any value, not just zero. The MPC between a pair of neurons,

σ1,2, is defined by:

σ1,2 =

∣∣∣∣∣ 1

N

N∑
k=1

eiφk

∣∣∣∣∣(3.6)

φk = 2π

(
t2,k − t1,k
t1,k+1 − t1,k

)
,(3.7)

where t2,k is the time of the kth spike of neuron 2, t1,k is the time of the spike

of neuron 1 that is largest while being less than t2,k, t1,k+1 is the time of the spike

of neuron 1 that is smallest while being greater than or equal to t2,k, and N is the

number of spikes of neuron 2. The MPC of the entire network, σ, is calculated by

averaging σi,j over all pairs of neurons, excluding ı = . Note that this measure is
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not symmetric. We quantify phase-zero synchronization of a network by calculating

the bursting measure B, which is 0 for random spiking and approaches 1 for perfect

locking at phase zero between all neurons, for a large number of total spikes and

neurons. Calculation of B requires a time-ordered list of the spike times of all

neurons over the duration of the entire simulation [114]. Denoting as τi the time

difference between spikes i and i+1, which do not necessarily (and probably do not)

correspond to spikes of the same neuron, B is then defined as

(3.8) B =

(√
〈τ 2〉 − 〈τ〉2
〈τ〉

− 1

)
1√
N
,

where 〈〉 represents averaging over all spikes. This measure makes use of the fact

that an ensemble of spike time intervals will have a larger standard deviation in

a synchronous signal than in an asynchronous signal. In our simulations, both the

mean phase coherence and the bursting parameter are calculated for neuronal activity

from 3000 ms to 10,000 ms, unless otherwise noted.

3.3 Results

We first investigate the underlying cellular basis of the differential frequency ef-

fects on Type I and Type II PRCs. We show that the relative activation levels

and timing of hyperpolarizing, potassium currents in relation to depolarizing cur-

rents play a crucial role in shaping the phase response of a neuron. We then show

that individual neuronal spiking frequency modulates network synchrony in signifi-

cantly different ways for networks consisting of Type I or Type II cells. Specifically,

synchrony in Type I networks is affected very little by frequency modulation near

threshold, whereas in Type II networks, synchrony falls dramatically as frequency

increases above firing threshold. This effect is due to the disparity in the frequency-

modulated attenuation of the PRCs of the two cell types. We first show this effect in
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excitatory networks composed of Morris-Lecar model neurons, and then investigate

it in depth for excitatory networks consisting of model cortical pyramidal cells under

acetylcholine modulation.

3.3.1 Frequency modulation of neuronal phase responses

Fig. 3.1 displays the response properties of the model neurons in our simula-

tions, with Fig. 3.1(a,d) showing the frequency-current curves of the model neurons

and Fig. 3.1(b,c,e,f) showing the PRCs of the model neurons. Type I PRCs in

both the Morris-Lecar and the cortical pyramidal neuron models exclusively display

phase advances (positive PRC values) in response to excitatory perturbations (Fig.

3.1(b,e)) while Type II PRCs show phase delays (negative PRC values) at earlier

phases and advances at later phases (Fig. 3.1(c,f)). (Note that the presence of

small negative regions early in Morris-Lecar PRCs and the absence of such regions

in cortical pyramidal cell PRCs is a consequence of the fact that spikes consume

a much larger portion of the interspike interval in the Morris-Lecar model than in

the cortical pyramidal cell model [100]. We therefore ignore these early regions in

Morris-Lecar PRCs.) The switch from Type I to II is induced by changes in the

steady state activation function of the K+ current in the Morris-Lecar model and

by the presence of the slow, low-threshold K+ current in the cortical pyramidal cell

model. A categorization of Type I and Type II can also be applied to a neuron’s

frequency-current (f-I) relation, with Type I f-I curves exhibiting arbitrarily low fre-

quencies at firing thresholds and Type II f-I curves showing a finite, non-zero firing

frequency at threshold. While the categorization of a neuron’s PRC and f-I curve

are not necessarily the same, and the relationship between the curves has not been

completely determined [115], for both models considered here, PRC and f-I curve

types coincide (Fig. 3.1(a,d)).
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In both models, increasing frequency by increasing the constant applied current

results in an attenuation of phase responses (Fig. 3.1). This attenuation occurred in

qualitatively different ways for Type I and Type II neurons. In the Type I model neu-

rons, increased firing frequency led to diminished phase advances but did not change

the relative shape of the curves–they all remained distinctly Type I (Fig. 3.1(b,e)).

In the Type II model neurons, however, there was much greater attenuation of the

phase-delay region compared to the phase-advance region (Fig. 3.1(c,f)). This asym-

metric attenuation can affect synchronization properties because the phase-delay re-

gion contributes to the increased propensity for synchronization in Type II excitatory

networks [111]. Previously, the emergence of phase delay regions at low firing fre-

quencies was attributed to decreased activation of K+-mediated adaptation currents

at low frequencies [111, 112], but this explanation cannot apply to the Morris-Lecar

model, since it contains no adaptation currents. Below we discuss the properties of

a cell’s hyperpolarizing and depolarizing currents that are responsible for its phase

response, and which explain the observed frequency-dependent attenuation.

In both models, phase delays exist in the Type II parameter regimes because

there is a voltage interval in which activation of an outward, hyperpolarizing current

is greater than activation of the inward, depolarizing current. In the Type II Morris-

Lecar model, the steady state activation curve of the K+ current, w∞(V ), is shifted to

the left and steeper compared to that of the Ca2+ current, m∞(V ), thus providing for

this voltage interval. In the Type II cortical pyramidal neuron model, the steady state

activation curve, z∞(V ), of the slow, low-threshold K+ current (which is absent in the

Type I neuron), is similarly shifted to the left relative to the steady-state activation

curve of the Na+ current, m3
∞(V ). In either model, as the voltage trajectory passes

through the early part of the interspike interval, a brief, excitatory stimulus will
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induce a larger response from the lower-threshold K+ current than from the inward

current, resulting in negative values of the PRC at early phases. At higher voltage

levels later in the interspike interval, the inward current dominates the response to

the brief stimulus due to its faster (instantaneous) activation dynamics, thus leading

to advances in the cycle, and positive values of the PRC at later phases. As firing

frequency increases, the cycle trajectory passes through this K+-dominant voltage

interval at a faster rate, thus preventing the full K+ response from developing before

reaching voltage levels where the instantaneous inward current can respond. The

delaying K+ response to the brief stimulus is thus diluted by the advance-promoting

inward current response, and phase delays are attenuated. This attenuation of phase

delays is therefore the result of a disparity between the fixed dynamics of the delay-

inducing K+ current and the time afforded that current to act by the shrinking

interspike interval. Phase advances are less sensitive to frequency modulation since

the instantaneous dynamics of the inward currents in both models can directly track

the faster cycle trajectory.

We further illustrate this point by modulating the speed of the gating variable

controlling the delay-inducing potassium current in each model. Fig. 3.2(a) demon-

strates that in the Morris-Lecar model, increasing φ, which increases the rate of the

K+ gating variable w, results in an increase in the amplitude of PRC phase delays,

while decreasing φ has the opposite effect. Faster K+ dynamics allow for faster de-

velopment of the delaying K+ response to the excitatory stimulus. In this model,

modulating φ also changes the voltage levels during the interspike interval, which

can shift the K+ dominant voltage interval to different phases. We systematically

quantify the contribution of K+ dynamics to the generation of the phase delay by

measuring the changes in the PRC delay depth as a function of φ for neurons re-
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ceiving different driving currents and thus exhibiting different intrinsic frequencies

(Fig. 3.2(b)). The depth of the PRC delay region increased with increasing φ for

all levels of external current, and faster-firing neurons could display similar delay

depths as slower-firing neurons with appropriate increases in φ. While increasing φ

also acted to increase firing frequency (Fig. 3.2(c)), phase delay amplitudes nonethe-

less increased, indicating that speeding up the rate of K+ dynamics exerts a stronger

effect on the phase delay than does the accompanying frequency increase. A similar

dependence of phase delay amplitude on the rate of the gating variable z for the

slow, low-threshold K+ current in the cortical pyramidal cell model is shown in Fig.

3.2(d,e). As the rate of z dynamics increased (i.e., as αz increased in Eq. 4.4), depths

of the PRC delay increased due to the ability of the K+ current to develop a delaying

response before voltage levels were reached where the Na+ current activated. Again,

increasing the rate of z dynamics caused an increase in frequency (Fig. 3.2(f)), but

the faster development of the K+ response to the perturbation could overcome a

frequency-induced attenuation of phase delays. In this model, voltage levels during

the interspike interval also changed with the changes in αz, but they did not greatly

influence the phase of maximal delays. In the cortical pyramidal neuron model, the

amplitude of phase delays also depended on the rate of the Na+ current inactivation

(Fig. 3.2(g-i)), gated by the variable h in Eq. 4.1. Slower Na+ inactivation, induced

by lower values of αh in Eq. 4.2, allowed larger Na+ responses to the perturbing

stimulus, which diluted the delaying effect of the K+ response and therefore atten-

uated phase delays. The rate of Na+ inactivation had little effect on voltage levels

as a function of phase during the interspike interval, and only slightly affected the

frequency. Increasing the rate of Na+ inactivation did induce a decrease in firing

frequency, which would promote the observed increase in delay depth, but these
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changes to firing frequency were too slight to be the primary cause of the enlarged

delay amplitude.

These results imply that appropriate selection of the rate of variables gating the

intracellular currents mentioned above permits the recovery of specified PRC delay

depths for different levels of external current. Fig. 3.3 illustrates this effect for

both models. From the curves in Fig. 3.2(b,e,h), appropriate rates of the gating

variables were separately selected for each level of external current to induce delay

depths of 0.04 in the Morris-Lecar neuron and 0.025 in the cortical pyramidal neuron.

In the Morris-Lecar model, the maximal phase delay region was shifted to the left

as the external current increased because the voltage trace was similarly shifted

(Fig. 3.3(a,d)). However, in the cortical pyramidal cell model, the PRC profiles

were virtually identical for different levels of external current, both when the slow

potassium current was modified and when the sodium inactivation was modified (Fig.

3.3(b,c)). This was due to the fact that the voltage traces (plotted as a function of

oscillatory phase) were not shifted when either of these intracellular currents were

altered (Fig. 3.3(e,f)). The invariance of the voltage traces in the cortical pyramidal

cell model is an interesting phenomenon, but it is beyond the scope of this chapter.

3.3.2 Network correlates of PRC modulation

Morris-Lecar neuron network driven by constant applied currents

We analyzed network activity patterns in large-scale (N=200) excitatory networks

composed of Morris-Lecar model neurons with Type I and Type II PRCs under differ-

ent network connectivity regimes. As described in the Methods section, randomness

of network connectivity was determined by the small-world “re-wiring parameter.”

Network activity was modulated by altering the mean applied current given to each

neuron, and neuronal heterogeneity was enforced by selecting applied current values
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from a Gaussian distribution centered on the specified mean. Fig. 3.4(a,b) show that

increased mean applied current generally led to increased network frequency. Effects

of the frequency-dependence of PRCs upon network synchrony are evident in Fig.

3.4(c,d), which plot phase-zero synchronization, as measured by the bursting mea-

sure B, versus the re-wiring parameter for different network frequencies. In Type I

networks, increased neuronal firing frequency had little effect upon synchronization,

while synchronization of Type II networks substantially decreased with increased

neuronal firing rates. Fig. 3.4(e,f) show that phase locking of the networks, as mea-

sured by mean phase coherence (MPC), painted a similar picture. For a given value

of the re-wiring parameter, increased frequency had very different effects upon Type

II networks in comparison to Type I networks. In fact, for 0.2 . p . 0.4, Type I

network MPC discernably increased with increased frequency, showing exactly the

opposite trend as Type II networks.

Cortical pyramidal neuron network driven by constant applied currents

We first investigated synchronization properties of networks driven with constant

applied currents, as in the Morris-Lecar network simulations. Every cell was driven

with a constant current, Idrive, whose value was chosen from a Gaussian distribution

with specified mean. This mode of driving neuronal activity reflected the conditions

under which the PRC is generally computed. Fig. 3.5(a,d) show that increasing

the mean value of Idrive typically led to an increase in the average network firing

frequency, as expected.

We observed sharp differences between responses of the Type I and Type II net-

works to frequency modulation. As shown in Fig. 3.5(b), the bursting parameter

tended to increase only slightly with increased applied current in Type I networks,

while Fig. 3.5(e) shows that in Type II networks the phase-zero synchronization
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substantially decreased as applied current increased. This same trend was seen in

the phase locking of the networks, albeit to a lesser degree, as shown in Fig. 3.5(c,f).

The large drop in MPC shown in Fig. 3.5(c) was due to the disruption of propagat-

ing waves as long-range connections were introduced into the network. This drop in

synchrony in turn explains the large increase in frequency over the same range of the

re-wiring parameter (Fig. 3.5(a)), since each neuron then receives a steady barrage

of input, rather than punctuated bursts of input.

To show that these results were robust to network structure and coupling strength,

Fig. 3.6 displays how the bursting measure B varied with the re-wiring parameter

and synaptic weight in both types of networks. Note that synaptic weights were

much higher in Type I than in Type II networks because Type I networks required

greater coupling in order to reach appreciable levels of synchronization. The left

panels in Fig. 3.6(a,b) show the values of the bursting parameter corresponding to

high-frequency networks (Idrive = 0.20 µA/cm2 for Type I and Idrive = 1.40 µA/cm2

for Type II), while the center panels show the data corresponding to low-frequency

networks (Idrive = −0.10 µA/cm2 for Type I and Idrive = 1.20 µA/cm2 for Type II).

The right panels show the difference in B between the high- and low-frequency net-

works for each network type, revealing the fundamental difference in synchronization

response of the two types of networks. The right panel in Fig. 3.6(a) shows values

very near zero for most of the parameter landscape, with a few slightly positive

values sprinkled throughout, indicating that Type I network synchrony was largely

unaffected by increased frequency, and that when increasing frequency did have an

effect, it generally increased synchrony. In Type II networks, on the other hand, dif-

ferences in bursting values were negative for values of s greater than approximately

0.020 mS/cm2 and values of the re-wiring parameter greater than approximately 0.10.
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These values correspond to the parameter space in which appreciable synchronization

occurred and in which propagating waves were precluded, indicating that Type II

networks synchronized much better at lower frequencies for non-trivial network pa-

rameters. For many Type II network parameters, the difference in synchronization

between high- and low-frequency networks was evident from the activity patterns

alone (see Fig. 3.6(e,f)), while differences in Type I network synchrony were not so

obvious (as in Fig. 3.6(c,d)).

Time to synchronization In the high-coupling regime, where differences in steady-

state synchronization between high- and low-frequency Type II networks were dimin-

ished, we investigated whether frequency might still affect the time to synchroniza-

tion. In the right panel of Fig. 3.6(b), it is clear that the magnitude of the difference

between high- and low-frequency values of B in Type II networks decreased above

approximately s = 0.06mS/cm2. This was a saturation effect; regardless of the level

of applied current, there was a ceiling of B ≈ 0.8 which was not breached, and as the

differentially-driven networks approached this limit, the differences in their steady-

state values of B diminished. This effect is displayed in the tightly-packed values

of B shown in Fig. 3.7(a). Despite this fact, our simulations showed that in this

regime there was still a major difference between the differentially-driven networks:

the time to synchronization. As Fig. 3.7(b) shows, when started with random initial

conditions, Type II networks synchronized more quickly when driven with lower lev-

els of applied current, even when there was very little difference between the levels

of steady-state synchrony. This further underscores the enhanced synchronization

properties that Type II networks exhibited at lower frequency.

Finally, Fig. 3.8 also supports the previously-presented trends. The differences in
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MPC between high- and low-frequency Type I networks were almost all very close

to zero, while in the Type II networks there was a very significant region in which

the MPC differences were negative. This negative region did not occupy as large an

area in parameter space as it did for the bursting parameter, but that was due to the

fact that the MPC saturated much more quickly than did the bursting parameter.

Cortical pyramidal neuron network driven by stochastic input currents

After we demonstrated the distinct synchronization response properties of Type I

and Type II networks stimulated by varing levels of constant current, we next inves-

tigated the more biologically relevant context of stochastic stimulation. Here random

current pulses were used to simulate neuronal drive coming from other brain modal-

ities. Fig. 3.9 shows, as we would expect, that average network firing frequency

consistently increased with fnoise, the average frequency at which sub-threshold cur-

rent pulses were stochastically applied (see Methods for a more detailed description of

this process), but remained largely independent of the network re-wiring parameter.

The synchronization responses of the networks to frequency modulation were very

similar to those described previously. The differences in bursting measure B between

high- and low-frequency Type I networks were again very small for virtually all

values of the network re-wiring parameter and coupling strength (Fig. 3.10(a)). The

Type II networks, on the other hand, transitioned to synchrony at approximately

s = 0.14 mS/cm2 for almost all values of the re-wiring parameter (data not shown), at

which point the differences in B became very negative (Fig. 3.10(b)), indicating once

again that Type II networks were very sensitive to frequency modulation and that

they had greater propensity for synchronization at low frequencies. Fig. 3.10(c,d)

further illustrate the effect of increased frequency upon network synchrony for a

particular value of the synaptic coupling.
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Phase locking again largely followed the same trend as bursting, with the difference

in MPC assuming values near zero for most of parameter space in Type I networks

(Fig. 3.10(e)). The few very negative values seen, for high coupling and low re-wiring

values, were most likely due to wave-propagation effects. Fig. 3.10(f) shows that

Type II networks underwent a transition in MPC at s = 0.14 mS/cm2, the same value

at which the bursting values transitioned. Line plots for the MPC at this synaptic

coupling value clearly demonstrate the increased propensity for synchronization at

low frequency for Type II networks (Fig. 3.10(h)), while Fig. 3.10(g) shows the

insignificant effect of frequency modulation upon Type I MPC.

3.4 Discussion and summary

We have shown that excitatory networks composed of neurons with either Type

I or Type II PRC properties respond very differently to frequency modulation near

firing threshold, with Type I network synchrony remaining largely unaffected by

frequency modulation and Type II networks synchronizing much better at lower fre-

quencies. This result is robust in virtually all network parameter regimes in which

the network is capable of attaining any appreciable level of synchronization. While

both Type I and Type II PRCs are modified by changes in frequency, only Type

II PRCs change in qualitative profile. Specifically, the phase delay region, which

is known to be critical in promoting synchrony, is severely attenuated. Increased

frequency therefore tends to have little effect upon Type I networks, since there is no

change in the PRC’s contribution to synchrony, while in Type II networks it leads

to depressed synchrony via the diminished phase delay region of the PRC. It should

be noted that our simulations agreed with a large body of previous work showing

that neurons with Type II membrane dynamics (as defined by the frequency-current
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curve) tend to synchronize better than neurons with Type I membrane dynamics,

when coupled with excitation. Previous theoretical work indicates that when exci-

tatory networks are driven with constant current, those composed of Type I neurons

will not synchronize as well as those composed of Type II neurons [35, 36, 116], a

phenomenon which we observed in our simulations, since much larger synaptic cou-

pling values were required in Type I networks to evoke levels of synchrony equivalent

to those in Type II networks (Fig. 3.6). Previous theoretical [117] and experimental

[118] work has also shown that neurons with Type I membrane dynamics respond

to excitatory noisy input with much higher spike-time variability than do neurons

with Type II membrane dynamics. This accords with the results of our simulations

of networks stimulated by noisy current pulses, where again we saw that greater

synaptic coupling was needed for Type I networks to synchronize as well as Type

II networks (Fig. 3.10). In this chapter, we focused on the implications for net-

work synchronization of the observed frequency-dependence of PRCs. Our results

suggest that the severe attenuation of the phase-delay region of Type II PRCs at

increased firing frequencies contributes to the observed decline in network synchro-

nization at such frequencies. Frequency-dependent modification of PRCs has been

investigated before in complex, multi-compartment neuronal models [119, 97], but

such results rely on dendritic effects and hence do not apply to our results using

single-compartment neurons. It has been shown in a simple θ-neuron model that

low-threshold adaptation currents can produce negative regions in the PRC at low

frequency [112], an effect which is probably due to the change in bifurcation structure

induced by such currents [111]. From this perspective, the delay region of the PRC

develops only at low frequency because the adaptation current is saturated at high

frequency, resulting in its responding to excitatory stimulation with relatively smaller
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transient increases. Our work extends this insight by explaining the emergence and

attenuation of delay regions in the PRCs of Morris-Lecar neurons, which have no

adapting current. Our explanation applies to the cortical pyramidal model neuron,

which does feature an adapting current, as well: it is the speed of low-threshold, hy-

perpolarizing currents relative to the interspike interval which determines the depth

of the PRC delay region in Type II cells. For a fixed level of external current, the

faster we made the K+ current in the Morris-Lecar neuron and the adapting K+

current in the cortical pyramidal neuron, the larger their PRC delay depths grew.

It is therefore not only the saturation level of low-threshold, hyperpolarizing cur-

rents that is important, but also the speed with which they can respond to brief

stimulation. In addition, our simulations showed that the PRC delay depth is not

exclusively controlled by the effects of hyperpolarizing currents, but can be greatly

affected by depolarizing currents as well. The faster we made the deactivation of the

sodium current, the larger the delay depth grew, underscoring once again the impor-

tance of the speed of intracellular currents relative to the interspike interval. The

frequency-dependent synchronization which we have described in this chapter could

potentially be involved in any cognitive process, functional or pathological, which

involves spatiotemporal pattern formation of neuronal populations. For example,

cholinergically-induced switching between sensitivity and insensitivity to frequency

modulation could be important in proper memory consolidation during slow wave

and REM sleep, two states that are characterized by differing levels of acetylcholine

in cortical and hippocampal regions. Frequency-mediated synchrony could also play

a part in the binding of signals from multiple sensory modalities. Gamma oscillations

(20-80 Hz) in cortical networks are believed to be generated by synchronous activity

of fast-spiking interneurons [120], which generally exhibit Type II frequency-current



66

relations and PRC profiles [118, 115]. While excitatory and inhibitory synaptic

connections and gap junctions may participate in the synchronous firing of interneu-

ron networks [121, 122, 123, 124], our results suggest the importance of the cellular

properties of the fast-spiking interneurons in generating synchrony. Additionally, the

frequency-dependence of synchronization may provide a means to restrict synchro-

nization to specific frequency bands. Finally, frequency modulation could contribute

to the onset of epileptiform activity, and our results might help to explain recent

evidence that synchrony decreases during seizures [30, 125]. At the same time, the

importance of our results is not confined to these examples alone. Our findings point

to the possibility that Type I and Type II excitatory networks function in two sep-

arate coding regimes, with Type I networks functioning in the rate coding regime

and Type II networks functioning in the temporal coding regime, effectively acting

as low-pass filters. Further experimental investigation into the interplay between

cellular properties, frequency, and network synchronization is clearly required.
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Figure 3.1: (a) Frequency-current curve for Type I and Type II Morris-Lecar model neurons. Note
that the Type I cell can fire at arbitrarily low frequencies, while the Type II cell exhibits a non-
zero frequency threshold. (b,c) Frequency dependence of PRCs for Morris-Lecar model neurons
with Type I and Type II response characteristics. When the PRC was computed at different
neuronal firing frequencies (different curves), amplitudes of phase shifts were attenuated, and the
Type II neuron showed asymmetric attenuation of the phase advance and phase delay regions.
(d) Frequency-current curves for Type I (gKs = 0 mS/cm2, cholinergic modulation) and Type II
(gKs = 1.5 mS/cm2, no cholinergic modulation) cortical pyramidal model neurons. The Type I
neuron could fire at arbitrarily low frequencies, while the Type II neuron exhibited a threshold
frequency of approximately 8 Hz. (e) PRCs for different firing frequencies of the Type I cortical
pyramidal neuron. (f) PRCs for different firing frequencies of the Type II cortical pyramidal neuron.
In both models, the Type I cells exhibited global attenuation of the phase responses, while increased
firing frequency evoked asymmetric attenuation in the phase delay region as compared to the phase
advance region in Type II cells.
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Figure 3.2: (a-c) Effects of modifying the speed of the potassium current in the Type II Morris-
Lecar neuron, with increasing values of φ/φ0 implying faster dynamics (φ0 = 0.04). (a) PRCs of the
neuron for three sample values of φ/φ0, with Idrive = 96.0 µA/cm2. As the speed of the potassium
dynamics increases, the PRC delay depths grow progressively larger. (b) Absolute value of the
delay depth of the PRCs as a function of φ/φ0, for four different values of Idrive, which correspond
to those in Fig. 3.1(c). (c) Neuronal firing frequency as a function of φ/φ0, for the same values of
Idrive as in panel B. Note how linear growth of φ/φ0 results in sub-linear growth of the frequency,
indicating that the delay depth is largely determined by the speed of the potassium current relative
to the spiking frequency of the neuron. (d-f) Effects of modifying the speed of the slow potassium
gating variable z in the Type II cortical pyramidal cell model. (d) PRCs of the neuron for three
sample values of αz, with Idrive = 1.20 µA/cm2. (e) Absolute value of the delay depth of the PRCs
as a function of αz, for four different values of Idrive, which correspond to those in Fig. 3.1(f). (f)
Neuronal firing frequency as a function of αz, for the same values of Idrive as in panel E. (g-i) Effects
of modifying the speed of the sodium inactivation gating variable h in the cortical pyramidal cell
model. (g) PRCs of the neuron for three sample values of αh, with Idrive = 1.20 µA/cm2. (h)
Absolute value of the delay depth of the PRCs as a function of αh, for four different values of Idrive,
which correspond to those in Fig. 3.1(f). (i) Neuronal firing frequency as a function of αh, for the
same values of Idrive as in panel (h).
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Figure 3.3: (a) PRC profiles of the Type II Morris-Lecar neuron for three different values of Idrive,
with φ separately adjusted to induce a maximum phase delay of 0.04. (b) PRC profiles of the
Type II cortical pyramidal neuron for four different values of Idrive, with αz separately adjusted to
induce a maximum phase delay of 0.025. (c) PRC profiles of the Type II cortical pyramidal neuron
for two different values of Idrive, with αh separately adjusted to induce a maximum phase delay of
0.025. (d) Unperturbed voltage traces as a function of oscillatory phase corresponding to the Type
II Morris-Lecar PRCs in panel A. (e) Unperturbed voltage traces as a function of oscillatory phase
corresponding to the Type II cortical pyramidal PRCs in panel B. (f) Unperturbed voltage traces
as a function of oscillatory phase corresponding to the Type II cortical pyramidal PRCs in panel
C. Note how the voltage traces are virtually identical in for the cortical pyramidal model, but not
for the Morris-Lecar model. This explains why the PRCs are virtually identical for the cortical
pyramidal model, but not the Morris-Lecar model.
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Figure 3.4: Measures of network activity for simulations of large-scale (N=200) excitatory networks
of Morris-Lecar model neurons driven with various constant applied currents (different curves)
for Type I (a,c,e) and Type II (b,d,f) cells. The synaptic coupling was set to s = 0.3 mS/cm2

for Types I and II. (a,b) Average network firing frequency as a function of the network re-wiring
parameter. (c,d) Phase-zero synchronization (as quantified by the bursting measure) versus the
re-wiring parameter. (e,f) Phase locking (as measured by mean phase coherence) as a function of
the re-wiring parameter.
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Figure 3.5: (a-f) Measures of network activity for simulations of large-scale (N=200) excitatory
networks of cortical pyramidal model neurons driven with varying constant applied currents for
Type I (a,b,c) and Type II (d,e,f) cells. Synaptic weight was fixed at s = 0.35 mS/cm2 for Type I
plots and s = 0.035 mS/cm2 for Type II plots. (a,d) Average network frequency as a function of the
re-wiring parameter for Types I and II networks. (b,e) Phase-zero synchronization, as measured by
the bursting parameter, as a function of the re-wiring parameter for Types I and II networks. (c,f)
Phase locking, as measured by mean phase coherence, as a function of the re-wiring parameter for
Types I and II networks. Note how Type II network synchrony tended to decrease with increasing
stimulation intensity, while Type I network synchrony tended to remain the same or slightly increase
with increased stimulation intensity.
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Figure 3.6: (a,b) Phase-zero synchrony (as measured by the bursting parameter, B) of Type I and
Type II cortical pyramidal neuronal networks as a function of synaptic coupling strength s and
the re-wiring parameter, p. The left panels show values of B for networks stimulated with a high
applied current (0.20 µA/cm2 for Type I and 1.40 µA/cm2 for Type II), and the middle panels show
values of B for networks with a low applied current (−0.10 µA/cm2 for Type I and 1.20 µA/cm2 for
Type II). The right panel subtracts the low-frequency values of B from the high-frequency values of
B. Note the pronounced negative-difference region in the Type II plot, while the Type I plot shows
almost exclusively zero or positive values of the difference. (c,d) Raster plots of the last 100 ms of
simulations of high-frequency (c) and low-frequency (d) Type I networks with network parameters
s = 0.35 mS/cm2 and p = 0.40. (e,f) Raster plots of the last 1000 ms of simulation of (e) high-
frequency and (f) low-frequency Type II networks with network parameters s = 0.020 mS/cm2 and
p = 0.40. The difference in synaptic coupling values between Type I and Type II networks was due
to the fact that the Type II networks synchronized better than the Type I networks and therefore
required much smaller synaptic coupling values to appreciably synchronize.
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Figure 3.7: (a) Bursting parameter B as a function of the re-wiring parameter for four Type II
networks driven with different values of applied current (s = 0.065 mS/cm2). Note how for values of
the re-wiring parameter greater than approximately 0.40, there was little difference among the values
of B for different values of Idrive, especially for the three largest values of Idrive. (b) Average time
taken for the bursting parameter of Type II networks with randomly-distributed initial conditions
to breach 0.6. Initial conditions were randomized such that initial membrane voltage values were
uniformly distributed on the interval [-70 mV, -50mV], with gating variables set to corresponding
equilibrium values. Each data point is an average of 100 simulations. Note that panel B plots the
subset of values of the re-wiring parameter from panel A for which the bursting parameter assumes
approximately constant values.
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Figure 3.8: (a,b) Differences in MPC between high- and low-frequency networks as a function of
network re-wiring and synaptic weight for (a) Type I and (b) Type II networks composed of cortical
pyramidal cells. Values of Idrive were the same as in Fig. 3.6.
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Figure 3.9: (a,b) Average network frequency as a function of the re-wiring parameter for various
values of fnoise in (a) Type I and (b) Type II stochastic-input networks. Synaptic weight was set
to 0.30 mS/cm2 in (A) and 0.14 mS/cm2 in (b).
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Figure 3.10: (a,b) Differences in bursting parameter B between high- and low-frequency networks as
a function of synaptic weight s and the re-wiring parameter for (a) Type I and (b) Type II networks.
For Type I networks, fnoise = 40 Hz and fnoise = 10 Hz corresponded to high- and low-frequency
networks, respectively, while for Type II networks, fnoise = 125 Hz and fnoise = 50 Hz corresponded
to high- and low-frequency networks, respectively. (c,d) Values of the bursting parameter as a
function of the re-wiring parameter for four different values of fnoise, with synaptic coupling fixed
at s = 0.30mS/cm2 in (C) and s = 0.14mS/cm2 in (D). The circled regions in plots (a) and (b)
were constructed by taking the difference between the highest- and lowest-frequency data points
in (c) and (d). (e,f) Differences in MPC between high- and low-frequency networks as a function
of synaptic weight and the re-wiring parameter for Type I and Type II networks. (g,h) Values of
the MPC for four different values of fnoise, with synaptic coupling fixed at s = 0.30 mS/cm2 in (g)
and s = 0.14 mS/cm2 in (h). The circled regions in plots (e) and (f) were constructed by taking
the difference between the highest- and lowest-frequency data points in (g) and (h). Line colors in
plots (g) and (h) correspond to the same legend as in plots (c) and (d), respectively.



CHAPTER IV

Acetylcholine, network dynamics, and synaptic
renormalization

4.1 Introduction

In the previous chapter we analyzed the dynamics of a cortical pyramidal cell

whose phase response curve (PRC) switched from Type II to Type I when modulated

with acetylcholine. In this chapter, we explore how such cholinergically-induced PRC

switching may be important to understanding sleep. The work presented in this

chapter has been submitted for publication in PLoS Computational Biology, and it

was performed in collaboration with Victoria Booth, Geoffrey Murphy, and Michal

Zochowski.

Sleep is crucial for normal cognitive function, as evidenced by the many cognitive

impairments associated with chronic sleep loss [126, 127]. A leading proposal for

the function of sleep, called the synaptic renormalization hypothesis, posits that

sleep is required to maintain synaptic balance in the brain [90]. According to this

hypothesis, waking experiences result in the net potentiation of many brain circuits,

leading to both increased energy consumption and heightened demand for space by

the potentiated synapses. In order to conserve energy and space, sleep induces a

period of large-scale synaptic downscaling. Sleep is therefore “the price we pay for

plasticity” [95].

77
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Multiple lines of empirical evidence supporting the synaptic renormalization hy-

pothesis have recently emerged[128, 129, 130, 131, 132], including in vivo studies

finding increased slope of evoked LFP/EEG responses after wakefulness and de-

creased slope following sleep in rats[91] and humans[92]. Furthermore, increasing ev-

idence supports a link between synaptic depotentiation during sleep and slow wave

activity (SWA)[133], which is the pattern of electroencephalograph (EEG) activ-

ity observed during NREM sleep in mammals and birds which features increased

power in the delta band (0.5 to 4 Hz). Various studies have shown that SWA in

NREM sleep locally increases in brain areas that exhibit potentiation during prior

wakefulness[94, 134, 135], suggesting that SWA may function to maintain synaptic

homeostasis.

Exactly how synaptic downscaling is induced during sleep is an open question.

One suggestion is that the repeated alternation of depolarized “up” states, reflect-

ing the simultaneous activity of many neurons, and hyperpolarized “down” states,

reflecting fewer active neurons, observed to occur at approximately 1 Hz during

SWA may induce long-term depression (LTD) of synapses [136, 137]. Another pos-

sibility is that the reduction of brain-derived neurotrophic factor (BDNF) during

sleep[95, 128] might enable synaptic depression. Similarly, it is not clear exactly

why synapses might exhibit net potentiation during wakefulness, though it has been

suggested that the processing of sensory signals or the formation of new memories

may inevitably lead to synaptic upscaling[90].

A further hypothesis is that differences in the neuromodulators available during

waking and NREM sleep states may contribute to the opposing effects of wakefulness

and NREM sleep on neuronal potentiation levels[95]. Waking is characterized by

high levels of noradrenaline, serotonin, histamine and acetylcholine in cortex, while
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all these neurotransmitters are at low levels during NREM sleep[138, 139]. The

low levels of these neuromodulators during sleep has led to the idea that this alters

molecular mechanisms underlying spike-timing dependent plasticity (STDP) so that

sleep favors synaptic depotentiation[140]. Although some investigation has been done

into the effects of various neuromodulators on STDP[141], these mechanisms remain

poorly understood.

In the present study, we build upon previous work to develop a new theory for

synaptic downregulation during NREM sleep that highlights a role for differing cor-

tical network dynamics during wake and NREM sleep states. This theory relies upon

previous findings showing that acetylcholine (ACh) modulates the phase-dependence

of neural responses in cortex[142, 143]. When ACh is more available, as in the awake

state, most cortical neurons display phase-independent firing in response to synaptic

input: they fire soon after receiving excitatory input regardless of their activity when

the input arrives (Type I). In contrast, when ACh is less available, as during NREM

sleep, cortical neurons display phase-dependent firing in response to synaptic input:

whether they fire sooner or later after receiving an excitatory input depends on how

long it has been since they last fired (Type II). As we and others have shown previ-

ously, the increased flexibility of exact firing times in response to input that occurs in

the absence of ACh better enables pre- and post-synaptic cells to synchronize their

activity, thereby increasing synchronized activity in cortical networks [102, 35, 36].

While ACh has many diverse effects in the brain[144, 145], here we focus on these

dynamical effects of cholinergic modulation.

Our new theory concerns the effect of increased synchronized network activity dur-

ing NREM sleep on the strength of synaptic connections. In particular, we posit that

although this increase in synchronized network activity strengthens some individual



80

synaptic connections, it weakens others. Further, and critically, this weakening is

more pronounced when an animal is experiencing NREM sleep (more synchronized

activity) than when an animal is awake (less synchronized activity). Supporting this

novel hypothesis, we show that a computational model employing these dynamic,

physiologically-plausible mechanisms is fully able to account for synaptic renormal-

ization during NREM sleep.

4.2 Materials and Methods

4.2.1 Cortical neuron model

The cortical pyramidal model neuron we employed was motivated by a recent ex-

perimental study which showed that in slices of mouse visual cortex, the presence of

acetylcholine (ACh) modulated the response properties of cortical neurons as mea-

sured by the phase response curve [142]. The neuronal PRC tracks the changes in

spike timing in response to perturbations of the membrane potential as a function of

the phase of the spike cycle at which the perturbation occurs. The presence of ACh

and its effects upon neuronal PRCs were shown to be well modeled by varying the

maximum conductance gKs of a slow, low-threshold K+-mediated adaptation current

from 1.5 mS/cm2 to 0 mS/cm2 in a Hodgkin-Huxley based neuronal model [143, 113].

We used this model in the current study, and modulated only gKs to model the pres-

ence or absence of ACh. The model also featured a fast, inward Na+ current. The

model also includes an inward Na+ current, a delayed rectifier K+ current, and a

leakage current. The current balance equation for the ıth cell was

(4.1)

C
dVı
dt

= −gNam3
∞(Vı)h(Vı−VNa)−gKdrn4(Vı−VK)−gKsz(Vı−VK)−gL(Vı−VL)+Idrive

ı +Inoise
ı −Isyn

ı ,
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with C = 1.0 µF/cm2, Vı in millivolts, and t in milliseconds. Idrive
ı was an ex-

ternally applied current that was constant for each neuron but Gaussian-distributed

across neurons in the network, with a variance set to induce a spread of 1 Hz in

the instrinsic neuronal frequencies in the neurons comprising both cholinergically-

modulated networks and non-cholinergic networks. The mean of the distribution of

Idrive
ı values was 0.08µA/cm2 for the ACh networks and 1.30µA/cm2 for the non-ACh

networks (different values were necessary to account for different firing thresholds and

frequency-current curves). Inoise
ı was a Gaussian noise term supplied to each neuron

in our study of noise robustness (Fig. 4.4). This noise was independent from neuron

to neuron, but for each individual neuron the noise was correlated over a time scale

of 100 ms (the typical inter-spike interval of the slowest-firing neurons). Isyn
ı was the

synaptic current received by neuron ı.

Activation of the Na+ current was instantaneous and governed by the steady-state

activation function m∞(V ) = {1 + exp[(−V − 30.0)/9.5]}−1. Dynamics of the Na+

current inactivation gating variable h were given by

(4.2) dh/dt = (h∞(V )− h)/τh(V ),

with h∞(V ) = {1 + exp[(V + 53.0)/7.0]}−1 and τh(V ) = 0.37 + 2.78{1 + exp[(V +

40.5)/6.0]}−1. The delayed rectifier K+ current was gated by n, whose dynamics

were governed by

(4.3) dn/dt = (n∞(V )− n)/τn(V ),

with n∞(V ) = {1 + exp[(−V − 30.0)/10.0]}−1 and τn(V ) = 0.37 + 1.85{1 +

exp[(V + 27.0)/15.0]}−1. The slow, low-threshold K+ current targeted by cholinergic
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modulation was gated by z, which varied in time according to

(4.4) dz/dt = (z∞(V )− z)/75.0,

where z∞(V ) = {1 + exp[(−V − 39.0)/5.0]}−1.

The slow, low-threshold K+ current loosely modeled the muscarine-sensitive M-

current observed in cortical neurons. Setting gKs = 0 modeled the presence of ACh

in cortical networks, and setting gKs = 1.5 modeled the absence of ACh from cortical

networks. All other parameter values were the same for both cholinergic and non-

cholinergic networks: gNa = 24.0 mS/cm2, gKdr = 3.0 mS/cm2, gL = 0.02 mS/cm2,

VNa = 55.0 mV, VK = −90.0 mV, and VL = −60.0 mV.

4.2.2 PRC Calculation

To obtain the phase response curves displayed in Fig. 4.1, Idrive was set to a

fixed value to elicit repetitive firing in a single, synaptically isolated neuron, and

the model equations were time evolved using a fourth-order Runge-Kutta numerical

scheme until the oscillatory period stabilized. Then, using initial conditions associ-

ated with the spike peak, brief current pulses were administered at different phases of

the oscillation, and the perturbed periods were used to calculate the corresponding

phase shifts. The current pulses were administered at 100 equally-spaced time points

throughout the period of the neuronal oscillation. The current pulses had a duration

of 0.06 ms and an amplitude of 3.0 µA/cm2 for the cholinergically-modulated cortical

pyramidal neuron, a duration of 0.06 ms and an amplitude of 10.0 µA/cm2 for the

non-cholingically-modulated cortical pyramidal neuron.



83

4.2.3 Network simulations

We simulated networks with 800 excitatory neurons and 200 inhibitory neurons.

The network connectivity pattern was constructed using the Watts-Strogatz archi-

tecture for “small world networks” [146]. Starting with a 1-D ring network with

periodic boundary conditions, each neuron was at first directionally coupled to its

2r nearest neighbors, and then every connection in the network was rewired with

probability p to another neuron selected at random. In this way, p = 0 resulted in a

locally-connected network and p = 1 in a randomly connected network. The radius of

connectivity r therefore determined the density of connections in the network, while

the re-wiring parameter p determined the network connectivity structure. Network

connectivity r was set to 4 in all simulations except those in Fig. 4.9 and Fig. 4.5.

Synaptic current was transmitted from neuron  following times tk when its

membrane voltage breached -20 mV. The synaptic current delivered from neuron

 to a synaptically connected neuron ı at times t >= tk was given by Isyn
ı =

wı exp
(
− t−tk

τ

)
(Vı − Esyn), where we used τ = 0.5 ms and Esyn = 0 mV for

excitatory synapses and Esyn = −75 mV for inhibitory synapses. The total synap-

tic current to a neuron ı was given by Isyn
ı =

∑
∈Γı

Isyn
ı , where Γı was the set of

all neurons presynaptic to neuron ı. Excitatory synaptic strengths wı evolved ac-

cording to an additive STDP rule in which the change in synaptic strength between

postsynaptic neuron ı and presynaptic neuron  was given by

(4.5) ∆wı =


e−|∆t|/τstdp , if ∆t > 0

−e−|∆t|/τstdp if ∆t < 0

,

where ∆t represents the spike time of postsynaptic neuron ı minus the spike time



84

of presynaptic neuron . We set τstdp = 10.0 ms in all our simulations, except in Fig.

4.6, where we show that our results are robust to large variations in the size of this

window. We also confined synaptic strength values to the interval [0, wmax], where

wmax was a parameter that we varied in our simulations. The maximum amount

the strength of a synapse could change due to one spike pairing was wmax/10. We

intentionally chose this value to be rather large so that synaptic strength distributions

would equilibrate in a reasonable amount of time.

Simulations were initialized with all synaptic strengths set to wmax/2, after which

the strengths of excitatory synapses evolved freely according to the dynamics of

the network (strengths of inhibitory synapses were fixed). After the distribution of

synaptic weights had equilibrated (which required longer for non-cholinergic networks

because they fired at lower rates than cholinergic networks; cholinergic network sim-

ulations were run for 5,000 ms and non-cholinergic network simulations were run for

20,000 ms), the overall network potentiation was quantified using using the equation

(4.6) Network potentiation = 2
< w >

wmax
− 1,

where < w > designates the mean of all final excitatory synaptic strengths. This

measure attributed a network potentiation value of +1 to maximally potentiated

final synaptic distributions, and a network potentiation value of -1 to maximally

depotentiated final synaptic distributions. All simulations were numerically inte-

grated in Matlab using a fourth-order Runge-Kutta method with a time step of 0.05

ms.

We quantified phase-synchronization of neuronal firing in our simulations using

the mean phase coherence (MPC) measure [101]. This measure quantified the degree

of phase locking between neurons, assuming a value of 0 for completely asynchronous
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spiking and 1 for complete phase locking. Note that high MPC could be attained for

locking of phases at any value, not just zero. The MPC between a pair of neurons,

σ1,2, was defined by:

σ1,2 =

∣∣∣∣∣ 1

N

N∑
k=1

eiφk

∣∣∣∣∣(4.7)

φk = 2π

(
t2,k − t1,k
t1,k+1 − t1,k

)
,(4.8)

where t2,k was the time of the kth spike of neuron 2, t1,k was the time of the spike

of neuron 1 that was largest while being less than t2,k, t1,k+1 was the time of the spike

of neuron 1 that was smallest while being greater than or equal to t2,k, and N was

the number of spikes of neuron 2. The MPC of the entire network was calculated by

averaging the mean phase coherence of all neuron pairs, discounting the first half of

network activity, in order to capture steady-state network synchronization.

In our simulations exploring network heterogeneity, the network was composed

of 1000 neurons (800 excitatory, 200 inhibitory), of which 50 comprised a cluster

in which wmax was two times greater than in the rest of the network (wmax =

0.08 mS/cm2 for connections originating from neurons within the cluster, and wmax =

0.04 mS/cm2 for connections originating from neurons outside the cluster). Connec-

tivity was constructed by initially segragating the cluster from the rest of the network,

so that the cluster and the rest of the network formed two disjoint Watts-Strogatz

networks, each with a radius of connectivity of 4 and a re-wiring probability of 0.60.

The two networks were then coupled by sending three outgoing connections from each

cluster neuron to randomly-selected neurons in the rest of the network. Similarly,

three outgoing connections were also sent from each neuron in the rest of the net-

work to randomly-selected neurons within the cluster. Simulations were then run in
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which the network was repeatedly switched between cholinergic and non-cholinergic

states, and the effects on network potentiation were explored. We quantified the

network potentiation for all excitatory connections, as before, but also for just the

connections which linked the cluster and the rest of the network.

4.3 Results

We simulated the effects of ACh on synaptic potentiation in cortical networks con-

sisting of 1000 neurons (20% of which were inhibitory). Each neuron was described

by a recently-developed cortical pyramidal cell model [143] that was motivated by

experimentally measured effects of ACh [142]. In this model, simulated cholinergic

modulation blocks a slow, low-threshold M-type potassium current that induces spike

frequency adaptation. Blockade of this current modulates the response properties of

modeled neurons as measured by the phase response curve (PRC). In the absence

of ACh, the neuronal PRC displays phase regions where spike timing is delayed and

where it is advanced, categorized as Type II PRC [35, 36]. In the presence of ACh,

only advances in spike timing are obtained regardless of the phase of perturbation,

resulting in Type I PRC (see Fig. 4.1).

Switching PRCs of synaptically coupled neurons from Type II to Type I has been

shown to dramatically affect the synchronization of neuronal networks. Specifically,

simulated large-scale neuronal networks whose cells have Type II PRCs have been

shown to synchronize much better than neuronal networks composed of cells with

Type I PRCs [46]. This effect can be explained heuristically by the fact that neurons

with Type II PRC are in some sense “more flexible” than those with Type I PRC,

since neurons with Type II PRC can advance and delay their spike firing in response

to synaptic input [35, 36]. Accordingly, it has been shown that cholinergic modula-
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tion has a dramatic effect upon the synchronization of simulated cortical networks,

with the absence of ACh (inducing Type II PRC) leading to much higher network

synchrony than the presence of ACh (inducing Type I PRC) [102].

We investigated how the differential effects of ACh on network synchrony influenced

overall network synaptic potentiation when synaptic strengths evolved according

to a spike-timing dependent plasticity (STDP) rule. In our network simulations,

synaptic strength values were initialized to an intermediate value and then allowed

to evolve, according to the STDP rule, over the interval [0, wmax] (see Materials

and Methods for simulation details). We quantified the steady state distribution

of synaptic strength values with a measure of “network potentiation,” calculated as

a linear transformation of the mean of the equilibrium distribution. The values of

this network potentiation measure range from -1 for maximally weakened networks

(all synaptic strength values go to 0) to +1 for maximally strengthened networks

(all synaptic strength values go to wmax). We investigated the effects of network

connectivity by varying synaptic connection architecture using the Watts-Strogatz

small-world paradigm [146]. With this method, each neuron was initially connected

to a fixed number of its nearest neighbors, and then a certain proportion of these

connections were re-wired to synapse onto randomly-selected cells in the network.

The proportion of connections which were re-wired was specified by the re-wiring

probability. Since both maximum synaptic strength and network connectivity struc-

ture are known to dramatically influence neuronal network dynamics, we explored a

wide range of values for wmax and the re-wiring probability to ensure the robustness

of our results.
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Dynamical effects of acetylcholine on network synchronization and potentiation

Simulated cholinergic modulation switched neuronal PRCs from Type II to Type

I (Fig. 4.1 a,b), inducing a decrease in network synchronization (Fig. 4.1 c,d) that

affected the steady state distributions of synaptic strengths (Fig. 4.1 e,f). The

synaptic strength distribution of the cholinergically-modulated network was heavily

skewed toward maximal synaptic weight, reflecting higher network potentiation. On

the other hand, the distribution of the non-cholinergic network was more symmetric,

with about half the synapses at the maximal value and the majority of remain-

ing synapses at zero strength. These results were robust to variations in maximal

synaptic strength and network connectivity architecture (Fig. 4.2 a,b). Network po-

tentiation values for cholinergic networks exceeded those for non-cholinergic networks

for almost all combinations of re-wiring probability and wmax.

Differences in network potentiation were especially pronounced for wmax & 0.05 mS/cm2,

at which values the network potentiation dropped to approximately zero in non-

cholinergic networks for all values of the re-wiring probability (Fig. 4.2b). In-

terestingly, this drop in network potentiation coincided with the transition from

asynchronous to synchronous activity in non-cholinergic networks (Fig. 4.2d). On

the other hand, the robustly high levels of potentiation observed in cholinergic net-

works (Fig. 4.2a) corresponded to completely asynchronous activity for all network

parameters (Fig. 4.2c). Our simulations therefore counterintuitively showed that

synchronous network dynamics led to relatively lower network potentiation than

asynchronous network dynamics.

Since STDP requires correlated firing to potentiate the connection between two neu-
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rons, one might expect that asynchronous network activity should induce no net

change in network potentiation, rather than the overall increased potentiation we

observed. Further analysis of pre- and post-synaptic cell pairs uncovered an im-

portant statistical structure of the neuronal firing patterns in the cholinergically-

modulated networks: post-synaptic neurons throughout the network were more likely

to fire shortly after their pre-synaptic neurons rather than shortly before (Fig. 4.3a).

Thus, pre-post spike time differences landed in the positive portion of the STDP

curve more frequently than in the negative portion of the STDP curve, resulting in

increased potentiation of the network as a whole.

On the other hand, the relatively lower network potentiation observed in networks

without cholinergic modulation was due to post-synaptic neurons firing right before

their pre-synaptic partners much more frequently (Fig. 4.3b). This effect occurred

because the bursts of activity in non-cholinergic networks constrained all neurons to

fire within very short time windows, forcing pre-synaptic neurons to directly com-

pete with one another to induce common post-synaptic partners to fire. As a result,

roughly half the pre-post spike time differences fell in the positive portion of the

STDP curve, and the other half fell in the negative portion, leading to nearly sym-

metric and highly polarized final distributions of synaptic strengths (as in Fig. 4.1f).

It should be noted that we tested this result for robustness against noise by adding

Gaussian-distributed noise with a temporal correlation of 100 ms (the approximate

inter-spike interval of the slowest-firing neurons) to the external constant current

driving individual neurons. We found that even for a noise amplitude as high as

0.10 µA/cm2, we still observed much greater potentiation in networks with choliner-

gic modulation than in non-cholinergic networks for a large range of network param-
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eters (Fig. 4.4a,b). This noise amplitude was large relative to the driving currents

for both ACh networks (0.08 µA/cm2) and non-ACh networks (1.30 µA/cm2). Fur-

thermore, we found that if we chose one set of network parameters and progressively

increased the noise amplitude, the difference between network potentiation in the

presence and absence of ACh did not disappear until the noise amplitude reached

0.20 µA/cm2 (Fig. 4.4c).

We also tested our results for robustness to connectivity density by increasing the

radius of connectivity in our network simulations (see the description of the Watts-

Strogatz small world network paradigm detailed in Materials and Methods). Net-

works with cholinergic modulation showed greater overall potentiation than non-

cholinergic networks for a wide range of connectivity densities (0.8 % to 4.0 % connec-

tivity), though sparser connectivity led to greater differences in network potentiation

(Fig. 4.5).

We tested the results for robustness to frequency modulation by varying the duration

of the STDP window, τstdp. We used this approach rather than directly modulating

neuronal frequency because network effects made it difficult to elicit a wide range

of average firing frequencies. In Fig. 4.6, τstdp was varied from 1 ms to 100 ms (the

default value throughout this study was 10 ms). Cholinergically-modulated networks

exhibited much higher network potentiation than non-cholinergically-modulated net-

works for all values of τstdp.

Finally, several studies have shown that the equilibrium distribution of synaptic

weights in a network subject to STDP strongly depends upon the mathematical

form of the STDP rule. Some have suggested that the integral of the LTD portion
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of the STDP curve should be greater than the LTP portion of the curve in order to

maintain network potentiation at reasonable levels [?, ?], while others have pointed

out that “multiplicative” (weight-dependent) STDP rules tend to produce qualita-

tively different synaptic weight distributions than “additive” STDP rules [?]. We

explored the first suggestion by using an asymmetric STDP rule in which the inte-

gral of the LTD curve was ten percent greater than the integral of the LTP curve.

The results of these simulations, shown in Fig. 4.7, are qualitatively similar to our

main results in Fig. 4.2. We also implemented a weight-dependent STDP rule, which

resulted in more unimodal synaptic weight distributions but still resulted in cholin-

ergic networks showing higher network potentiation than non-cholinergic networks

(Fig. 4.8).

Switching acetylcholine levels in a heterogeneous network

The above results pertained to networks with homogeneous connectivity distribu-

tions in the sense that all synapses could achieve the same maximal strength, and

long-range network connections did not preferentially target any particular neurons.

Such homogeneity certainly does not exist in the brain [147, 148]. Therefore, we ex-

plored effects of cholinergic modulation on synaptic potentiation in the presence of

network connectivity heterogeneities. A question of particular interest was whether

ACh-induced changes in synaptic plasticity affect all connections in the network to

the same extent. To address this question, we considered a network of 1000 neu-

rons with an embedded cluster of 50 neurons. The maximal synaptic strength values

(wmax) of connections originating from cells within the cluster were two times greater

than for the surrounding network. Additionally, while the number of outgoing con-

nections per neuron was the same for both the cluster and the rest of the network, a

fixed fraction of out-going synaptic connections from surrounding cells preferentially
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targeted the cluster and vice versa. Thus, in the network, a small number of connec-

tions originated within the cluster and projected outside the cluster, while a larger

number of connections originated outside the cluster and projected to the cluster

(see Materials and Methods for more details).

In this heterogeneous network, we alternately switched between the presence and ab-

sence of cholinergic modulation (simulating waking and NREM sleep, respectively),

and found that such switching induced immediate and dramatic changes in network

synchrony and potentiation (Fig. 4.9a). As in the homogeneous networks, we found

that the asynchronous dynamics induced by cholinergic modulation resulted in rela-

tively high network potentiation (Fig. 4.9b,c), but we found that the depotentiating

effects of removing acetylcholine were even more pronounced than in homogeneous

networks. Fig. 4.9a shows that the network potentiation measure actually dipped

below zero for two non-cholinergic intervals, implying that the number of connec-

tions whose synaptic strength went to 0 exceeded the number that reached wmax

(Fig. 4.9d).

This enhanced depotentiating effect resulted from the dynamical interplay between

the cluster and the rest of the network. As shown in Fig. 4.9e, in the absence of

cholinergic modulation the cluster tended to fire in synchronized bursts, which drove

the rest of the network to respond by firing noisy bursts. The relative firing times of

the surrounding network relative to the cluster resulted in potentiation of connections

originating in the cluster and projecting outside the cluster, and depotentiation of

connections originating outside the cluster and projecting to the cluster (see the “no

ACh” intervals in Fig. 4.9f). Since there were more connections originating outside

the cluster and projecting into the cluster than vice versa, strong overall network
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de-potentiation occurred.

Fig. 4.9f demonstrates another striking feature of this network: the small subset

of connections projecting from the cluster to the surrounding network remains at

very high potentiation levels throughout cholinergic switching. Furthermore, this set

of connections collectively increases in strength during epochs when ACh is absent,

in contrast to the collective weakening exhibited by connections in the rest of the

network.

4.4 Discussion and summary

We have proposed a novel physiologically-plausible mechanism, based on cholin-

ergic modulation of neural membrane excitability, that can account for synaptic

renormalization during NREM sleep. We have shown that the dramatic changes in

membrane excitability induced by cholinergic modulation, and the resulting changes

in network firing patterns, lead to upscaling and downscaling of mean synaptic effi-

cacy. Thus, our results propose a dynamical mechanism for synaptic renormalization

that provides a bottom-up framework linking changes in the neuromodulator envi-

ronment during waking and NREM sleep to changes in neuronal excitability, network

activity patterns, and overall renormalization of network connectivity. Simulations

of networks with heterogeneous synaptic connection distributions also provided evi-

dence for selective rescaling of particular network connections.

Our simulations showed that the presence of ACh in cortical networks led to asyn-

chronous dynamics, which in turn led to relatively high network potentiation. On the

other hand, the absence of ACh resulted in more synchronous network activity and

relatively lower overall potentiation. These results are consistent with the prediction
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of the synaptic renormalization hypothesis that wakefulness (during which ACh is

present in cortex) is associated with global synaptic upscaling, while NREM sleep

(during which ACh is largely absent from cortex) is associated with global synaptic

downscaling. These results were also robust to noise, changes in network frequency,

different network topologies, and varoius STDP parameters, and they were strength-

ened by network heterogeneities.

The general effects of ACh upon the dynamics of our simulated networks also match

several empirical observations. The presence of ACh during wakefulness is associ-

ated with an asynchronous EEG [149] and greater power in high frequency bands

[142, 150]. These effects are replicated in our simulations through the asynchronous

network activity (see Fig. 4.1c) and the elevated frequency of neuronal firing ob-

served when cortical networks were cholinergically modulated (compare Fig. 4.1c to

Fig. 4.1d). On the other hand, ACh is known to be largely absent during NREM

sleep, when slow wave activity dominates EEG recordings. Such activity is associ-

ated with the slow oscillation of thalamocortical neuron membrane potential that

results from thalamocortical bistability [151, 152, 153]. In addition, multiple lines

of evidence suggest that slow waves involve the persistent synchronous bursting of

cortical neuron populations [95, 154, 155, 156]. Similar activity patterns were pro-

duced in our simulations when ACh was absent from the cortical networks (see Fig.

4.1d), suggesting that the absence of ACh may work in tandem with underlying

slow oscillations to facilitate bursting activity. Such bursting activity may have been

further promoted by the presence of inhibition within the network, since inhibitory

feedback has been shown to promote synchronous neuronal activity [41]. As shown

in Fig. 4.9, the highly synchronous activity associated with down-regulated ACh
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resulted in synaptic downscaling relative to the asynchronous activity induced by

the up-regulation of ACh.

Fig. 4.9f also shows how a subset of connections that were highly potentiated

following waking (ACh present) remained strong–and were actually even further

strengthened–during simulated NREM sleep (ACh absent). This effect was obtained

through the introduction of a small subset of connections which had larger maximum

synaptic strength values than in the rest of the network, providing a possible mecha-

nism for sleep-dependent memory consolidation within the framework of spike-timing

dependent plasticity. It is known that acetylcholine is essential to proper memory

function, as evidenced by the decrease in acetylcholine observed in dementia and the

effectiveness of acetylcholinesterase inhibitors such as donepezil in treating dementia

[157]. Our results are consistent with a role for acetylcholine in which its presence

is necessary for the formation of new memories, while its absence is required for

memory consolidation.

While our theory focuses on possible dynamical underpinnings of the renormalization

hypothesis, there are many other factors which may contribute to synaptic renor-

malization. Incoming sensory signals may promote upscaling during wakefulness

[90], while downscaling during sleep might be facilitated by the endogenous low-

frequency rhythms of slow-wave sleep, which share similar frequency content with

the low-frequency stimulation known to induce long-term depression [136, 137]. One

recent study suggested that elevated levels of neuromodulators such as noradrenaline

and acetylcholine during waking may promote overall synaptic potentiation, while

the absence of these same neuromodulators during sleep may modify spike-timing

dependent plasticity to favor synaptic depression [140, 141].



96

Our theory hinges on the result that synchronous network activity leads to synap-

tic downscaling, while asynchronous network activity generates synaptic upscaling.

Our analysis of the structure of spike times in pre- and post-synaptic cell pairs in-

dicates that downscaling was due to timing competition between arriving excitatory

post-synaptic potentials (EPSPs) within the brief period of synchronous spiking ac-

tivity. This competition within such a short time window resulted in about half the

pre-post pairings falling in the negative portion of the STDP curve and therefore

leading to lower network potentiation relative to asynchronous network activity. It

has previously been shown that asynchronous neuronal activity leads to increased

network potentiation while synchronous activity leads to decreased network potenti-

ation in simulated networks incorporating STDP with propagation delays [158]. Our

results show that similar effects can be obtained in networks where synaptic delays

are negligible. Additionally, these effects are obtained for completely different and

counterintuitive reasons, namely through altered statistics of spike arrival times at

post-synaptic cells.

In summary, we have shown that cholinergic modulation can lead to changes in

overall network potentiation, and that these changes may be understood in terms

of the altered cellular and network dynamics induced by ACh. Further experimen-

tal investigation into the possible role of cholinergic modulation in the dynamical

underpinnings of synaptic renormalization is clearly required.
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Figure 4.1: Effects of acetylcholine on phase response curves, network synchrony, and overall net-
work synaptic potentiation in 1000-cell cortical neuronal network models. (a,b) Phase response
curves of individual neurons with (a) and without (b) simulated cholinergic modulation. (c, d)
Raster plots of the activity of a model cortical network with (c) and without (d) simulated ACh.
Blue (Red) dots represent spikes of excitatory (inhibitory) neurons. Note the higher synchronization
in the network without cholinergic modulation compared to the network with cholinergic modula-
tion. (e) Average final distributions of synaptic strengths for a typical cholinergically-modulated
network, with a network potentiation value of ≈ 0.35. (f) Average final distribution of synaptic
strengths for a typical non-cholinergic network. This distribution constitutes a much lower network
potentiation value (≈ 0) due to a greater proportion of synapses with zero synaptic strength values.
In panels (c)-(f), the re-wiring probability was 0.60 and wmax = 0.08 mS/cm2. Panels (e) and (f)
represent histograms averaged over ten different network initializations.
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Figure 4.2: Effects of acetylcholine on network potentiation and synchronization for varied network
parameters. (a,b) Network potentiation as a function of re-wiring probability (controlling random-
ness of network connections, x-axis) and maximum synaptic strength (wmax, y-axis) for model
cortical networks both with (a) and without (b) simulated cholinergic modulation. Note the much
greater potentiation of cholinergic networks for virtually all network parameters, and especially
for wmax & 0.05 mS/cm2. (c,d) Network synchrony, as measured by mean phase coherence, as a
function of re-wiring probability and wmax for networks with (c) and without (d) simulated cholin-
ergic modulation. All results represent averages over ten randomly-initialized network simulations.
Arrows indicate network parameters which gave rise to panels c, d, e, and f in Fig. 4.1.
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Figure 4.4: Effects of noise amplitude on the difference in network potentiation between networks
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with cholinergic modulation exhibited much greater potentiation than those without cholinergic
modulation for wmax & 0.05µA/cm2. (c) Difference in network potentiation between cholinergic
and non-cholinergic networks as a function of noise amplitude for the network parameters indicated
by arrows in panels (a) and (b).
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Figure 4.5: Effects of connectivity density upon network potentiation. (a,b) Network potentiation
of ACh and non-ACh networks with 4.0 % connectivity density. Network potentiation is displayed
as a function of wmax and re-wiring probability, as in Fig. 4.2. Note the difference in scale between
these plots and Fig. 4.2. (c) Difference between ACh and non-ACh network potentiation values
as a function of connectivity density for networks with parameters analogous to those indicated by
arrows in panels (a) and (b). In order to investigate similar regimes of network excitability, we
decreased wmax in proportion to the increase in connectivity density.
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Figure 4.7: Effects of acetylcholine on network potentiation (a,b) and synchronization (c,d) for
varied network parameters with an asymmetric STDP rule that favors LTD over LTP. STDP pa-
rameters were τ− = 40 ms, τ+ = 20 ms, A+ = wmax/10, and A− = 1.1× (τ+/τ−)×A+.
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Figure 4.8: Effects of acetylcholine on network potentiation (a,b) and synchronization (e,f) for
varied network parameters with a multiplicate (weight-dependent) STDP rule. As found in previous
results, the distribution of synaptic weights is not bimodal (c,d). Nevertheless, ACh modulation
promotes overall network potentiation as illustrated in the asymmetry of the distribution profile
(c).
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Figure 4.9: Effects of alternately switching between the presence and absence of cholinergic modula-
tion in a cortical network with an embedded cluster. (a) Network potentiation and synchronization
(as measured by mean phase coherence) of the cortical network as a function of time as the pres-
ence and absence of simulated ACh was alternated (different intervals are demarcated by dashed
lines). (b) Distribution of synaptic strength values at the end of the last cholinergic interval. (c)
Representative raster plot of network activity during the last cholinergic interval. The first 50
neurons comprise the cluster. (d) Distribution of synaptic strength values at the end of the last
non-cholinergic interval. Note how the number of connections whose synaptic strength went to 0
is greater than the number that went to wmax. (e) Representative raster plot of network activity
during the last non-cholinergic interval. Note how the tight bursting of the cluster drove activity in
the rest of the network. (f) Network potentiation computed from distributions of synaptic weights
for all synaptic connections (heavy blue curve, as shown in (a)), for synapses originating in the
cluster and projecting outside the cluster (green curve), and for synaptic connections originating
outside the cluster and projecting to the cluster (light blue curve). During the non-cholinergic in-
tervals, the connections originating outside the cluster and projecting to the cluster showed extreme
depotentiation due to the driving of the rest of the network by the cluster.



CHAPTER V

Summmary and conclusions

This dissertation has followed the paradigm of modern neuroscience in seeking

to understand the physical substrates of behavior and cognition. Though it is a

daunting task to sift through the ∼ 1015 connections of the human brain in search

of universal principles, the progress that has already been made offers hope for fu-

ture investigation. We know, first of all, that the neuron is the building block of

the brain and that its primary function is to transmit electrochemical signals. We

know that individual neurons may encode information in their firing rates, and that

populations of neurons with complementary tuning curves can perform tasks as di-

verse as mapping spatial environments, processing visual signals, and coordinating

movements. We also know that neuronal synchronization supports the integration

of disparate sensory input into unified perceptions, and that memory formation re-

sults from plastic changes in the strengths of synapses. This dissertation has focused

upon extending our understanding of these last two themes, beginning with an in-

vestigation of how network synchrony interacts with network firing frequency, and

concluding with a study of how the function of sleep may depend upon the plastic

changes in connection strength that result from switching synchronization states.

In Chapter II, we described how phase response curves help to predict network
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synchronization, and specifically how network synchronization is affected by modu-

lation of network firing frequency. Using the Morris-Lecar neuron model, we showed

that while both Type I and Type II PRC amplitudes are attenuated as frequency in-

creases, Type II PRCs show an asymmetric attenuation, with the phase delay region

being affected much more than the phase advance region. Because it is the presence of

the phase delay region that endows Type II neurons with enhanced synchronization

capabilities, this suggested that Type II neuronal synchronization might decrease

with increased frequency. Our network simulations showed that this is in fact the

case. As a control, we also investigated how Type I network synchronization changes

with increased synchrony, and found no parameter regime where synchronization

appreciably decreased with increased network frequency. This was consistent with

PRC analysis, since the Type I PRC showed relatively uniform attentuation with

increasing frequency.

Chapter III continued the investigation of frequency’s effect upon synchrony us-

ing a more realistic neuron model. This neuron model was particularly interesting

because it was based upon the first ever experimental demonstration that neuromod-

ulation can switch neuronal PRC type [96] (application of acetylcholine switches the

PRCs of cortical pyramidal cells from Type II to Type I). In this model, too, increased

frequency produced much greater attenuation of phase delays than phase advances

for Type II PRCs. We showed that this was a result of the slow speed of hyperpolar-

izing potassium currents relative to depolarizing sodium currents, then proceeded to

demonstrate that network synchrony decreased with increased frequency in networks

composed of Type II neurons. Neurons with Type I PRCs were again used as a con-

trol, with the same result as before: frequency modulation had relatively little effect

upon network synchrony for most network parameters. Together, the results from
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Chapters II and III suggest that PRCs are excellent tools for predicting and under-

standing the synchronization properties of large-scale neuronal networks. The results

also suggest a possible method by which the brain may restrict synchronization to

low frequency bands.

In Chapter IV, we proposed a potential biophysical mechanism to support the

synaptic renormalization hypothesis. This was a dynamical mechanism which de-

pended upon the effects of cholinergic modulation on network synchronization. Us-

ing the pyramidal neuron model from Chapter III, we modeled waking by simulating

cholinergic modulation in a network of 1000 cells. This modulation induced asyn-

chronous network dynamics, which in turn resulted in elevated network potentiation

due to spike-timing dependent plasticity. The fact that asynchronous dynamics could

lead to elevated network potentiation was counterintuitive, but it made sense once

we showed that network activity was not entirely random: post-synaptic neurons

were more likely to fire shortly after (as opposed to shortly before) pre-synaptic

neurons. Sleep was modeled by simulating the absence of cholinergic modulation,

which resulted in highly synchronous network dynamics because the neurons had

Type II PRCs. This synchronous network activity led to depressed network poten-

tiation relative to simulated waking, effectively reproducing the results predicted by

the synaptic renormalization hypothesis. Our simulations therefore suggest that ex-

perimentalists should investigate the dynamical effects of acetylcholine as a potential

mechanism for synaptic renormalization.

Taken together, this work emphasizes the importance of understanding neuronal

dynamics in order to elucidate brain function. The phase response curve has proven

to be a very useful tool in this endeavor. The insight it provides into the synchroniza-

tion of thousands of neurons is powerful, especially considering that it characterizes
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the dynamics of just individual neurons. To make further progress in understanding

the brain, theorists and experimentalists alike must continue to develop powerful,

innovative tools to characterize neuronal dynamics, for it is only by seeking funda-

mental principles governing the quadrillions of interactions in the brain that we may

hope to fully understand the physical basis for behavior and cognition.
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