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ABSTRACT

This research focuses on building foundational algorithms for scheduling agents

that assist people in managing their activities in environments in which tempo and

complexity outstrip people’s cognitive capacity. The critical challenge is that, as

individuals decide how to act on their scheduling goals, scheduling agents should

answer queries regarding the events in their interacting schedules while respecting

individual privacy and autonomy to the extent possible. I formally define both the

Multiagent Simple Temporal Problem (MaSTP) and Multiagent Disjunctive Temporal

Problem (MaDTP) for naturally capturing and reasoning over the distributed but

interconnected scheduling problems of multiple individuals. My hypothesis is that

combining a bottom-up approach — where an agent externalizes constraints that

compactly summarize how its local subproblem affects other agents’ subproblems,

with a top-down approach — where an agent proactively constructs and internalizes

new local constraints that decouple its subproblem from others’, will lead to effective

solution techniques.

I confirm that my hypothesized approach leads to distributed algorithms that

calculate summaries of the joint solution space for multiagent scheduling problems,

without centralizing or otherwise redistributing the problems. In both the MaSTP and

MaDTP domains, the distributed algorithms permit concurrent execution for significant

speedup over current art, and also increase the level of privacy and independence in

individual agent reasoning. These algorithms are most advantageous for problems

where interactions between the agents are sparse compared to the complexity of

agents’ individual scheduling problems. Moreover, despite the combinatorially-large

and unwieldy nature of the MaDTP solution space, I show that agents can use

influence spaces, which compactly capture the impact of agents’ interacting schedules,

to tractably converge on distributed summaries of the joint solution space. Finally, I

apply the same basic principle to the Hybrid Scheduling Problem, which combines

constraint-based scheduling with a rudimentary level of planning, and show that my

Hybrid Constraint Tightening precompilation algorithm can improve the propagation

of information between planning and scheduling subproblems, leading to significant

search space pruning and execution time reduction.
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CHAPTER 1

Introduction

1.1 Motivation

Computational scheduling agents can assist people in managing and coordinating

their activities in environments in which tempo, a limited (local) view of the overall

problem, and complexity can outstrip people’s cognitive capacity. Often, the schedules

of multiple agents interact, which yields the additional responsibility for an agent to

coordinate its schedule with the schedules of other agents. However, each individual

agent, or its user, may have strategic interests (privacy, autonomy, etc.) that prevent

simply centralizing or redistributing the problem. In this setting, a scheduling agent

is responsible for autonomously managing the scheduling constraints as specified by

its user. As a concrete example, consider Ann, who faces the cognitively demanding

challenge of processing the implications of the complex constraints of her busy schedule.

A further challenge for Ann is that her schedule is interdependent with the schedules

of her colleagues, family, and friends with whom she interacts. At the same time,

Ann would still prefer the independence to make her own scheduling decisions and to

keep her consultations with her doctor Chris from impinging on recreational activities

with her friend Bill, thus using privacy to maintain a healthy separation between her

personal, professional, and social lives.

One of the challenges here is that, while Ann may lack sufficient time to realize

and reason through the implications of scheduling decisions, she may still desire to

exercise the autonomy that comes with making her own decisions. One way an agent

can support this is to provide answers to queries Ann asks regarding the possible

timings and relationships between events, rather than dictating particular scheduling

decisions. These types of queries can help Ann to determine not only if one of her

scheduling goals is achievable, but also, once this goal is expressed, to understand the

implications it could have on other parts of her schedule. This allows Ann to decide if

1



there are unintended or undesirable consequences to a particular scheduling decision

that may invalidate her original intent. It also provides Ann with possible courses of

action to be able to achieve her long-term scheduling goals. This back-and-forth with

her agent can also assist Ann with the more cognitively demanding task of deciding

how to deal with contingent events, a task that can become especially strenuous in

highly dynamic environments.

A scheduling agent must then be equipped to handle the many kinds of scheduling

queries that would help a user naturally evaluate his or her scheduling goals. There

might be queries regarding when an activity can be executed, such as “Can I start

this activity now, or alternatively, at time X?” or more generally, “When can I start

this activity?” There could be queries about relationships between various events or

activities, such as “How long should this activity take?” or “How much time will

I have between these two activities?” A user may also wish to evaluate a possible

scheduling goal, and thus pose queries that are based on a speculative or prospective

constraint. Examples of these kinds of queries might include “If I start activity X now,

how much time will I have for activity Y later?” or “If I want to give myself time

to perform activity X in the afternoon, which activities could I start now that will

allow me to do so?” Finally, for the answers to such queries to be meaningful, agents

must be able to update their advice in the presence of new, dynamically-introduced

constraints.

These queries reflect a wide range of motives and goals, but, at their core, there

is a fundamentally common structure to each of them: “provide me the bounds on

intervals of possible times between two events (or one event and its possible clock

times), given a (possibly null) condition that I may wish to achieve.” A scheduling

agent, then, can efficiently support such queries (and provide reliable advice to its user)

by preprocessing which spaces of schedules are feasible, and which are not. Further, a

scheduling agent that presents a user with advice based on spaces of solutions is more

robust than one that simply dictates a single schedule, which may be brittle to the

dynamics involved in the problem (due to new constraints from its user, additional

planning by other agents, or other dynamically arriving constraints). Finally, an

agent should be prepared to efficiently update the space of solutions in response to a

scheduling decision by its user or to other scheduling disturbances that arise.

A challenge for agents that are maintaining spaces of schedules is that the introduc-

tion of a new constraint by one agent may impact many other agents, requiring that

agents work together to maintain spaces of joint schedules. In many environments,

updates to a schedule may occur quite frequently. For example, as Ann executes her
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daily schedule, her agent should ensure ongoing consistent advice by incorporating

the events and activities that Ann executes as new dynamically-arriving constraints.

However, compared local reasoning, communication between agents tends to be signif-

icantly slower, intermittent, or altogether uncertain, which can inhibit agents from

providing unilateral, time-critical, and coordinated scheduling assistance. Fortunately,

agents can instead trade some of the completeness of the joint solution space in favor

of decreased reliance on communication by way of a temporal decoupling, which is

composed of independent sets of locally consistent spaces of schedules that, when

combined, form a space of consistent joint schedules (Hunsberger, 2002). This allows

an agent to make time-critical scheduling decisions and respond to rapidly occurring

scheduling disturbances in an independent, efficient manner. Continuing my ongoing

example, Chris’ schedule may be full of many medical consultations, the execution of

each of which could incrementally affect Chris’ future availability and hence should be

communicated so that, e.g., Ann’s agent can adjust her schedule accordingly. However,

if network connectivity is intermittent or slow, such messages to Ann’s agent could

get delayed, or worse, never be delivered at all, leading Ann’s agent to possibly give

scheduling advice that is stale or incorrect. If, instead, Chris’ and Ann’s agents can

initially agree on an a prescription hand-off time, then no further communication is

needed unless or until one of the agents determines it cannot uphold this commitment

locally. A temporal decoupling ensures that Chris’ agent can flexibly adapt to changes

in Chris’ schedule without impacting Ann’s schedule at all, allowing Ann’s agent to

independently manage her schedule as well.

While throughout this section I have used an agent that acts as a scheduling

assistant of human users to motivate my work, there are many other applications of

the ideas explored and developed in this dissertation. These include coordinating

embodied agents in disaster relief, military, or Mars rover operations; the automated

scheduling of integrated manufacturing, transportation, or health care systems; and

the distributed allocation of continuous resources, such as energy. While each of these

applications may balance efficient decision-making support with relative costs and

problems of communication differently, all have in common agents with a desire or

need to maintain some level of independence so as to uphold the strategic benefits of

distributed, independent schedule management. This is at the core of the problem

description presented next.
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1.2 Problem Statement

The overarching challenge that this thesis addresses is that of scheduling agents

efficiently working together to compute consistent summaries of joint schedules, de-

spite distributed information, implicit constraints, costs in sharing information among

agents (e.g., delays, privacy, autonomy, etc.), and the possibility of new constraints

dynamically arising. The pervasiveness of networked computational devices, coupled

with naturally distributed problem representations and agents’ strategic desires, ar-

gue for agents that solve such scheduling problems using distributed algorithms and

representations. The problem that this thesis addresses, then, is flexibly combin-

ing reasoning about interactions between agents’ schedules with more independent

reasoning within an agents’s local schedules.

Finding the right balance between agents that can render scheduling advice based

on complete joint solution spaces and agents that can independently render sound

advice is a challenge. A scheduling agent that provides complete scheduling advice

keeps its user maximally informed and provides both maximal flexibility over scheduling

decisions and maximal robustness in the midst of dynamic scheduling environments.

On the other hand, a scheduling agent that is independent of others provides its

user with maximal privacy and complete autonomy (within its local space of feasible

schedules), while eliminating reliance on slow or intermittent communication between

agents. These relative advantages and trade-offs argue for solution approaches that

can flexibly trade between complete spaces of sound joint schedules and partial spaces

of sound local schedules that agents can reason over independently.

As Bill specifies his activities and constraints to his individual scheduling agent,

he presumably assumes some level of privacy and personal control over his scheduling

problem. At the same time, if Ann and Bill mutually agree to a constraint that relates

activities from each of their respective scheduling problems, they have inherently

lost privacy and unilateral control over some of their particular activities. Beyond

what is already shared among agents due to agreed upon interagent constraints, a

goal of my thesis is to maintain the maximum level of independence between agents’

problems possible, regardless of an agent’s motivation for desiring independence. Thus,

throughout this thesis, I will assume that an agent is not permitted to reveal any

more of its local subproblem to other agents beyond what is inherently revealed by

mutually-known constraints. The result of this is that scheduling agents are permitted

to share information over already mutually-known events and activities, but forbidden

to reveal any local information that cannot be directly inferred from the shared
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information. An additional challenge is that just because an agent’s activity is not

directly constrained with another agent’s does not mean it cannot impact another

agent; thus any solution approach must find a way to consistently capture such implicit

constraints without growing the shared problem.

Finally, the adoption of distributed scheduling agents is more likely if it represents

a computational improvement over the current art. Thus, I require that all solution

approaches for distributed scheduling agents produce speedup over known state-of-the-

art solution approaches, all of which currently execute in a centralized fashion. When

interdependencies between agents are sparse compared to the complexity of agents’

local problems, there is hope for speeding solution algorithms over the current art in at

least two ways. First, even centralized solution algorithms can exploit loosely-coupled

problem structure by decomposing multiagent problems into largely independent

subproblems and solving these subproblems separately and more efficiently using a

divide-and-conquer strategy. Second, loose-coupling between agents’ problems affords

opportunities for independent, concurrent agent reasoning, further speeding execution

over single-agent, centralized approaches. Given that both of these potential sources

of speedup rely on sparse relationships between problems, the amount of speedup will

likely depend on the relative level of interagent coupling.

Informally then, the problem this thesis solves is that of calculating a distributed

summary of the joint solution space of multiagent scheduling problems without

centralizing or otherwise redistributing the problem while achieving computational

speedup over current art. I will restate this problem formally in Section 2.4 and Section

3.4 after I have more precisely defined novel constraint-based scheduling problem

formulations.

1.3 Approach

The goal of this thesis is to solve multiagent, constraint-based scheduling problems

that are naturally distributed, while promoting independent reasoning between agents’

problems. I will introduce multiagent, constraint-based problem formulations that

compactly represent interacting schedules of multiple agents with n local problems,

which leads to n subproblems, one for each of the n agents involved in the problem,

and a set of external constraints that relate the activities of different agents. This

representation explicitly captures loosely-coupled problem structure when it exists,

thus avoiding the strategic costs typically associated with centralization (privacy,

autonomy, etc.).
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A distributed problem representation is maximally useful if there also exists an

approach than can flexibly combine shared reasoning about interactions between

agents’ schedules with local reasoning of individual agents about their local problems,

without impeding the speed or quality of the overall solution approach. Here I

discuss two complementary processes, an externalization process and internalization

process, that exploit both the natural problem decomposition and also the availability

of independently-executing agents to speed the solution process. Together these

two processes help agents collectively understand not only how their schedules are

intertwined, but also how to further disentangle them to further increase independent

reasoning.

Given the distributed nature of my approach, my algorithms will perform better as

the opportunities for independent local reasoning grows, for example, as the sizes of,

complexities of, and balance between agents’ local problems grow. Conversely, as the

need for reasoning about interactions increases, for example as the number of external

constraints between agents’ problems grows, the performance of my algorithms will

suffer. Further, my algorithms are tunable to the degree to which new constraints

are introduced. If many constraints are introduced over time, agents can invest the

time to find the complete space of all joint schedules. Alternatively, if only very few

constraints will be introduced, agents can sacrifice the completeness of the solution

space for increased independent reasoning and improved computational runtimes.

Finally, as the problems scale to include more agents, these tendencies will become

more exaggerated, for example, emphasizing the value of distributed, independent

reasoning for loosely-coupled problems, or alternatively, highlighting the de facto

centralization of my approach for highly-coupled problems.

1.3.1 The Externalization Process

The main thrust behind the externalization process is that, in order to compute a

distributed summary of the joint solution space, each agent must communicate the

impact that its local problem has on other agents’ problems. The insight that I exploit

throughout this thesis is that each agent can independently build a compact local

constraint summary of this impact by abstracting away portions of its local problem

that do not directly influence others, while simultaneously building new constraints

that succinctly summarize how local constraints affect the shared problem in terms of

mutually-known aspects of the problem. This avoids the privacy, communication, and

autonomy costs of centralized approaches while exploiting the loosely-coupled structure

between agents to achieve increased computational independence and speedup.
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1.3.2 The Internalization Process

Agents should revise their distributed summary of the joint solution space as new

constraints, which can render the solution space obsolete, arise. If such constraints

arise frequently, or if interagent communication is especially slow or costly, an agent

may lose its ability to provide sound advice efficiently. The main thrust behind the

internalization process is to sacrifice a portion of the joint solution space so that each

agent can independently and unilaterally reason over its own local solution space. The

insight that I exploit is that agents can replace external constraints that relate the

problems of two or more agents’ problems with new local (i.e., internal) decoupling

constraints that inherently satisfy the replaced external constraints. In contrast to

previous centralized approaches, this process increases the amount of independent,

private, and unilateral reasoning that an agent can perform.

1.3.3 An Integrated Approach

The externalization and internalization processes can be combined in a complemen-

tary way that balances the shared and local reasoning of agents and improves overall

efficiency. The local constraint summarization process helps an agent understand how

its problem is entangled with others’, thus informing and improving the disentangling,

decoupling process. Likewise, by decoupling their interacting spaces of schedules,

agents reduce the impact their local schedules have on one another, reducing the need

for further coordination. Moreover, these two approaches represent a natural trade-off

between increased independent reasoning on one hand, and increased joint flexibility

on the other, which is useful since each application may require a different trade-off

point depending on its specific goals and environments.

1.3.4 Evaluation

I analytically evaluate the runtime properties and correctness (soundness and

completeness) of all algorithms that implement my approach. I also empirically

compare the runtime performance my algorithms against the current art, which to this

point has been exclusively centralized in nature, to evaluate whether my algorithms

achieve computational speedup. To test how my algorithms perform as the demand for

reasoning about interactions between agents’ schedules versus reasoning about local

schedules varies, I hold the number and size of agent problems constant while varying

the number of external constraints between problems. As the number of external

constraints grows, so does the size of the problem that requires shared reasoning, while
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the portion of the problem that each agent can reason over independently shrinks.

I also test how my the performance of my algorithms responds as the number of

agents increases. I report metrics that capture runtime and communication costs. To

evaluate the completeness of the temporal decoupling that my algorithms calculate, I

adopt, and as necessary adapt, existing metrics of flexibility that attempt to measure

the portion of the complete joint solution space that is sacrificed in favor of increased

independence between agents’ problems.

1.4 Contributions

Current approaches in multiagent scheduling (Dechter et al., 1991; Hunsberger,

2002; Xu & Choueiry, 2003; Planken et al., 2008b, 2010a) either require an additional

coordination mechanism, such as a coordinator that calculates a (set of) solution

schedule(s) for all or simply ignore relationships between subproblems altogether. The

computational, communication, and privacy costs associated with centralization may

be unacceptable in multiagent scheduling applications, where users specify problems

in a distributed fashion and expect some degree of privacy and autonomy. Further,

not only does the complexity of representing and calculating the space of feasible joint

schedules grow with each additional agent, but generating joint schedules for every

eventuality that could arise can compromise the privacy and autonomy interests of

individual scheduling agents and introduces significant computational overhead. The

contributions of my thesis, which I highlight next, use distributed representations

and approaches to to reduce the computational, communication, and privacy costs of

current approaches.

1.4.1 Multiagent, Constraint-based Scheduling Formulations

A contribution of this thesis is the formal definition of multiagent problem for-

mulations that can capture scheduling problems involving interrelated activities that

belong to different agents. A multiagent problem formulation allows problems to be

specified in a distributed manner, with each user specifying his or her activities and

constraints directly to his or her agent, which leads to n subproblems, one for each of

the n agents involved in the problem. Furthermore, agents can better preserve the

privacy and autonomy of their user in a distributed setting.

My problem formulation also augments the n agent subproblems with a set of

external constraints that relate the activities of different agents. External constraints

only exist when interactions between the activities of different agents exist. This

8



helps limit the scope of the mutually known and jointly represented aspects of the

problem to only what is necessary so that, if relationships are limited and loosely-

coupled in nature, so will the underlying problem formulation. By eliminating the

privacy and computational costs of centralized representations and techniques, this

representation could benefit many current applications that use temporal networks to

achieve multiagent coordination, such as disaster relief efforts, military operations,

Mars rover missions, and health care operations (Laborie & Ghallab, 1995; Bresina

et al., 2005; Castillo et al., 2006; Smith et al., 2007; Barbulescu et al., 2010).

1.4.2 Formal Analysis of Properties of a Multiagent Temporal Network

Temporal constraint networks have often been touted for their ability to represent

spaces of feasible schedules as compact intervals of time that can be calculated

efficiently (Dechter et al., 1991; Xu & Choueiry, 2003; Planken et al., 2008b). Another

contribution of this thesis is to show that these advantages extend to distributed,

multiagent temporal constraint networks, while also introducing a level of independence

that agents can exploit in many ways.

Properties of temporal networks such as minimality and decomposability have

proven essential in representing the solution space for many centralized applications

such as project scheduling (Cesta et al., 2002), medical informatics (Anselma et al.,

2006), air traffic control (Buzing & Witteveen, 2004), and spacecraft control (Fukunaga

et al., 1997). Not only do I show that these important properties extend to multiagent

networks, but multiagent temporal networks can also afford increased independent

reasoning. Unfortunately, multiagent scheduling applications wishing to exploit

these properties have previously relied on either a centralized temporal network

representation or, if independence was also needed, completely disjoint, separate

agent networks. The multiagent applications that currently use centralized temporal

networks may benefit from the increased compactness of and independent reasoning

allowed by the multiagent temporal network. On the other hand, the multiagent

applications that currently use separate, disjoint networks may benefit from directly

establishing joint minimality and decomposability on the multiagent temporal network,

while still performing independent reasoning over local problems.

Minimality. A minimal temporal constraint network is one whose constraints

represent the exact set of values (times) that can lead to solutions for each event

or difference between two events. By using bounds over (sets of) time intervals, a

minimal constraint is a compact, sound and complete representation of the space
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of possible solutions for an event or constraint. This property allows an agent to

exactly and efficiently respond to users’ queries. I demonstrate that minimality can

be established for constraints in a multiagent temporal constraint network, and thus,

for multiagent temporal constraint networks as a whole.

Decomposability. A decomposable temporal constraint network is one where any

locally consistent assignment to a subset of events (i.e., an assignment that respects all

the constraints that exist among the subset of events) is guaranteed to be extensible to

a sound, full solution. A trivial example of a decomposable network is a fully specified

point solution. However, one of the advantages of a temporal network that is both

minimal and decomposable is that decomposability provides a mechanism for efficiently

returning a minimal network back to minimality after an update. This property also

allows an agent to provide support for the compound nature of contingent queries. I

demonstrate that establishing decomposable multiagent temporal constraint networks

is always possible, but a representation that is both decomposable and minimal (i.e.,

least-commitment in the sense that it represents the complete space of solutions)

typically results in a fully connected temporal network.

Independence. I show that as problems become more loosely-coupled, agents’ local

solution spaces become increasingly independent from one another. I prove that any

dependence that does exist between agents’ problems can be channeled through the

existing shared constraints between those agents’ problems. This in turn implies

that the remainder of each agent’s local problem can be reasoned over independently,

which increases concurrency, autonomy, and privacy while decreasing the need for

communication and sequentialization between agents.

1.4.3 Algorithms for Calculating the Joint Solution Space of Multiagent

Scheduling Problems

I develop algorithms that establish the joint solution space for constraint-based,

multiagent scheduling representation. The algorithms implement my high-level idea of

externalizing the constraints that summarize the impact that an agent’s local problem

has on other agents’ problems. The algorithms also achieve significant speedup over

current approaches, which grows as problems become more loosely-coupled. The

key observation is that agents can execute largely independently by first focusing

on abstracting away the non-externally constrained portions of their problems. In

the case of more complex, disjunctive scheduling problems, I contribute a distributed
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algorithm for calculating the joint space of solutions by borrowing the concept of

an influence space from the decentralized planning community (Witwicki & Durfee,

2010). The idea behind an influence space is that many of an agent’s unique local

schedules (plans) may impact other agents in exactly the same way, and thus agents

can benefit from computing and exchanging only the constraints that uniquely impact

other agents.

The coordination of agents is a critical component within many multiagent systems

applications including scheduling (e.g., Barbulescu et al. (2010)), planning (e.g.,

Witwicki & Durfee (2010)), resource and task allocation (e.g., Zlot & Stentz (2006)),

among others. While my algorithms have been tailored to multiagent, constraint-

based scheduling in particular, the high-level idea of summarizing the impact that one

agent has on another by systematically abstracting away local problem details while

capturing their implications is a high-level idea that could conceptually be applied in

many multiagent coordination domains. My algorithms, which provide a summary

of the space of all solutions, provide an alternative to modeling and reasoning over

uncertainty (e.g., Vidal, 2000; Morris & Muscettola, 2005) and also flexible support

for validating multiagent plan execution (e.g., Shah et al., 2009; Barbulescu et al.,

2010). Finally, the ideas established here represent a novel contribution to the greater

distributed constraint reasoning community, where my approach is unique in that

it produces complete solution space with atypical guarantees of local privacy and

autonomy.

1.4.4 Algorithms for Calculating Temporal Decouplings of Multiagent

Scheduling Problems

The second set of algorithmic contributions that I make in my thesis is for computing

temporal decouplings of multiagent scheduling problems. Unlike the algorithms

for calculating the joint solution space, these algorithms are not based on existing

centralized algorithms, but rather based on insights and properties of the algorithms

mentioned in the previous subsection. The result is a novel incorporation of decoupling

decisions into algorithms that summarize, exchange, and compute spaces of solutions

and leads to significant speedup over current approaches. A temporal decoupling

represents a sacrifice in the completeness of the space of feasible joint schedules for

increased agent independence. While the relative importance of independence in

agent reasoning vs. complete knowledge over the joint solution space is likely to be

application dependent (e.g., depending on communication costs, level of dynamism,

etc.), I contribute a comparison of the costs of these two approaches in terms of both
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computational effort and flexibility. Flexibility metrics attempt to measure the portion

of the joint solution space that is retained by a temporal decoupling.

A distributed temporal decoupling algorithm is an important contribution over

the current art (Hunsberger, 2002, 2003; Planken et al., 2010a) because it preserves

privacy and exploits concurrent by decentralizing computation. In addition to providing

another distributed technique for multiagent coordination, the beneficiaries of which

were discussed in the previous section, I provide novel insights on how best to combine

temporal decoupling with local constraint summarization to achieve greater efficiency,

which leads to significant gains in algorithmic efficiency over Hunsberger (2002), even

when this combination is executed in a centralized fashion. Additionally, temporal

decoupling can be viewed as a proactive hedge against the uncertainty introduced by

the presence of other agents, and thus contributes to the discussion of controllability

and uncertainty (e.g., Vidal & Ghallab, 1996; Vidal, 2000). Conceptually, temporal

decoupling algorithms can also be viewed as enforcing problem structure in a way that

increases efficiency in representing and monitoring plan execution (e.g., Shah et al.,

2009). Finally, my decoupling idea introduces a novel divide-first, conquer-second

approach to increase independent reasoning in a way that can be applied in the

distributed finite-domain constraint reasoning community.

1.4.5 Extension to Planning: Hybrid Constraint Tightening

Hybrid constraints capture the fact that often activity selection (e.g., deciding

which recreational activity to perform), impacts how an activity is scheduled (e.g.,

each recreational activity may be differently affected by a weather forecast or hours of

operation of local businesses). At some level, incorporating the power to select which

activities are to be performed and how to perform them adds a rudimentary layer of

planning to the multiagent scheduling problems I am investigating.

Method. As a highlight of the generality of my basic approach, I contribute Hybrid

Constraint Tightening (HCT), a preprocessing algorithm [Boerkoel and Durfee, 2008;

2009] that uses constraint summarization principles between an agent’s planning and

scheduling subproblems rather than the scheduling subproblems of different agents.

HCT reformulates hybrid constraints by lifting information from the structure of hybrid

constraints. These reformulated constraints elucidate implied constraints between an

agent’s planning and scheduling subproblems earlier in the search process, leading to

significant search space pruning.
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Empirical Evaluation. Despite the computational costs associated with applying

the HCT preprocessing algorithm, HCT leads to orders of magnitude speedup when

used in conjunction with off-the-shelf, state-of-the-art solvers, as compared to solving

the same problem instance without applying HCT. However, the efficacy of HCT is

dependent on the underlying structure of the constraints involved. I have systematically

explored properties of hybrid constraints that influence HCTs efficacy, quantifying

the influence empirically. Generally, the efficacy of HCT is increased as the size and

complexity, especially of the finite-domain constraints involved in hybrid constraints,

increases. Conversely, increased complexity of the temporal constraint component of

hybrid constraints tends to mitigate HCT’s effectiveness. HCT will play a critical role

in extending multiagent scheduling to incorporate rudimentary levels of planning.

Planning and scheduling, while interrelated (Myers & Smith, 1999; Garrido &

Barber, 2001; Halsey et al., 2004), are often treated as separate subproblems (e.g.,

McVey et al. (1997)). Thus, hybrid scheduling problems represent a way to bridge

planning and scheduling, while HCT, then, contributes an understanding on how to

improve reasoning between these two subproblems. Simply by reformulating hybrid

constraints in a way that summarizes the impact one subproblem has on another, I can

improve the efficiency of existing solvers. My contributions empirically demonstrate

that applications that ignore the interplay between scheduling and planning do so

at their own peril. As discussed in Section 4.3.3, HCT can be viewed as taking a

step towards, to borrow a phrase from Smith et al. (2000), “bridging the gap between

planning and scheduling”.

1.5 Overview

The logical flow of the rest of this thesis is as follows. Chapter 2 — The Multiagent

Simple Temporal Problem, flows into Chapter 3 — The Multiagent Disjunctive

Temporal Problem, which adds the possibility of representing multiagent disjunctive

scheduling problems. Then, in addition to scheduling disjunction, I add the ability to

select which activities are to be scheduled using the Hybrid Scheduling Problem in

Chapter 4 — Hybrid Constraint Tightening. Chapter 5 concludes with a discussion

about contributions and future research directions.

The structure of my thesis presentation is atypical in that the background and

related work are divided among each of the chapters, taking advantage of the fact that

each chapter conceptually builds on the previous one in terms of problem complexity.

There is uniformity across the structure of each chapter: a brief introduction section
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is followed by a section to introduce foundational background work and then a section

discussing related approaches. These sections are, in turn, followed by sections that

describe my approach, including one to describe the new problem formulation (when

one is needed), and sections that describe the implementations and evaluations of the

approaches discussed in Section 1.3. The hope is comprehension and readability is

increased by introducing key concepts closer to where they are most useful to the

reader.

I will progressively introduce the foundational and related work that my work

builds upon. I start by introducing the Simple Temporal Problem (STP), its properties,

existing solution approaches, and related models, approaches, and applications in

Chapter 2. Then, in Chapter 3, I introduce the Disjunctive Temporal Problem

(DTP), which adds a layer of complexity to the STP by allowing the representation

of disjunctive scheduling problems, as well as its constituent and related approaches.

Finally, I introduce the Hybrid Scheduling Problem (HSP), which adds a rudimentary

level of planning by relating constraint-based scheduling subproblems with the activity

selection allowed by finite-domain constraint satisfaction problems. I summarize this

progression of foundational and related approaches in Table 1.1.

Chapter Background Related Approaches and Applications
Chapter 2 Section 2.2 Section 2.3

The Multiagent Simple Temporal Problem; Simple Temporal Problem with Uncertainty;
Simple Temporal Problem Simple Temporal Networks; Dist. Coordination of Mobile Agent Teams;

Temporal Decoupling Problem Bucket-Elimination Algorithms
Chapter 3 Section 2.2 Section 2.3

The Multiagent Disjunctive Temporal Problem; Fast Dist. Multiagent Plan Execution;
Disjunctive Temporal Problem DTP Search Resource and Task Allocation Problems;

Operations Research
Chapter 4 Section 4.2 Section 4.3

Hybrid Constraint Satisfaction Problem; DTPFD;
Constraint Tightening Hybrid Scheduling Problem Dist. Finite-Domain Constraint Reasoning;

Multiagent Planning

Table 1.1: Overview of foundational and related approaches.
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CHAPTER 2

The Multiagent Simple Temporal Problem

2.1 Introduction

The Simple Temporal Problem (STP) formulation is capable of representing

scheduling problems, along with their corresponding solution spaces, where if the

order between pairs of activities matters, this order has been predetermined. As

such, the STP acts as the core scheduling problem representation for (and flexible

representation of scheduling solutions to) many interesting planning problems (Laborie

& Ghallab, 1995; Bresina et al., 2005; Castillo et al., 2006; Smith et al., 2007; Barbulescu

et al., 2010). Likewise, the Multiagent STP (MaSTP) is as a multiagent, distributed

representation of scheduling problems and their solutions for multiagent and can be

used for multiagent plan execution and monitoring.

As an example of this type of problem, suppose Ann, her friend Bill, and her doctor

Chris, have each selected a tentative morning agenda (from 8:00 AM to noon) and have

each tasked a personal computational scheduling agent with maintaining schedules that

can accomplish his/her agenda. Ann will have a 60 minute recreational activity (RA)

with Bill before spending 90 to 120 minutes performing a physical therapy regimen to

help rehabilitate an injured knee (TRA) (after receiving the prescription left by her

doctor Chris); Bill will spend 60 minutes recreating (RB) with Ann before spending 60

to 180 minutes at work (WB); and finally, Chris will spend 90-120 minutes planning

a physical therapy regimen (TPC) for Ann and drop it off before giving a lecture

(LC) from 10:00 to 12:00. This example is displayed graphically as a distance graph

(explained in Section 2.2.1) in Figure 2.1(a), with each event (e.g., the start time,

ST , and end time, ET ) appearing as a vertex, and constraints appearing as weighted

edges.

One approach, displayed graphically in Figure 2.1(d), is for agents to simply select

one joint schedule (an assignment of specific times to each event) from the set of
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Figure 2.1:
The distance graph corresponding to the (a) original, (b) minimal, (c)
decoupled, and (d) fully assigned, versions of the example problem.
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possible solutions. In this case, each agent can provide exact times when queried

about possible timings and relationships between events, and do so confident that

this advice will be independent of (and consistent with) the advice delivered by other

agents. However, this also leads to agents offering very brittle advice, where, as soon

as a new constraint arrives (e.g., Chris’ bus arrives late by even a single minute),

this exact, joint solution may no longer be valid. This, in turn, can require agents

to regenerate a new solution every time a new constraint arrives, unless that new

constraint happens to be consistent with the currently selected schedule.

A second approach for solving this problem is to represent the set of all possible

joint schedules that satisfy the constraints, as displayed in Figure 2.1(b). This leads

to advice that is much more robust to disturbances and accommodating to new

constraints. In this approach, if a new constraint arrives (e.g., Chris’ bus is late),

the agents can easily recover by simply eliminating inconsistent joint schedules from

consideration. However, doing so may still require communication (e.g., Chris’ agent

should communicate that her late start will impact when Ann can start therapy).

The need for communication may continue (e.g., until Chris actually completes the

prescription, Ann cannot start the therapy regimen), otherwise agents risk making

inconsistent, concurrent decisions. For example, if both Ann’s and Bill’s agent report

that recreation can start any time from 8:00 to 9:30 (all allowable times), but Ann

decides to start at 8:00 while Bill decides to start at 9:00, the agents will have

inadvertently given inaccurate (uncoordinated) advice, since Ann and Bill must start

the recreation activity together.

There is also a third approach that attempts to balance the resiliency of Figure

2.1(b) with the independence of Figure 2.1(d). Agents can find and maintain a

temporal decoupling, which is composed of independent sets of locally consistent

schedules that, when combined, form a set of consistent joint schedules (Hunsberger,

2002). An example of a temporal decoupling is displayed in Figure 2.1(c), where, for

example, Chris’ agent has agreed to prescribe the therapy regimen by 10:00 and Ann’s

agent has agreed to wait to begin performing it until after 10:00. Then, not only will

the agents’ advice be independent of other agents’, but it also provides agents with

some resiliency to new constraints and offers users some flexibility and autonomy in

making their own scheduling decisions. Now when Chris’ bus is late by a minute,

Chris’ agent can absorb this new constraint by independently updating its local set of

schedules, without requiring any communication with any other agent. The advantage

of this approach is that once agents establish a temporal decoupling, there is no need

for further communication unless (or until) a new (group of) constraint(s) render

17



the chosen decoupling inconsistent. It is only if and when a temporal decoupling

does become inconsistent (e.g., Chris’ bus is more than a half hour late, violating her

commitment to finish the prescription by 10:00) that agents must calculate a new

temporal decoupling (perhaps establishing a new hand-off deadline of 10:15), and then

once again independently react to newly-arriving constraints, repeating the process as

necessary.

Unfortunately, current solution algorithms (Dechter et al., 1991; Hunsberger, 2002;

Xu & Choueiry, 2003; Planken et al., 2008b, 2010a) require centralizing the problem

representation at some coordinator who calculates a (set of) solution schedule(s) for

all. The computation, communication, and privacy costs associated with centralization

may be unacceptable in multiagent planning and scheduling applications, such as

military, health care, or disaster relief, where users specify problems to agents in a

distributed fashion, and agents are expected to provide private, unilateral, time-critical,

and coordinated scheduling assistance, to the extent possible.

In this chapter, I contribute new, distributed algorithms for finding both the

complete joint solution space and temporal decouplings of the MaSTP. I prove the

correctness and runtime properties of each these algorithms, including the level

of independent, private reasoning that distributed algorithms can achieve. I also

empirically compare the approaches, both with each other, to show the trade-offs

in completeness vs. independence in reasoning, and with state-of-the-art centralized

approaches, to show significant speedup over these approaches.

2.2 Background

In this section, I provide definitions necessary for understanding my contributions,

using and extending terminology from the literature.

2.2.1 Simple Temporal Problem

As defined by Dechter et al. (1991), the Simple Temporal Problem (STP), S =

〈X,C〉, consists of a set of timepoint variables, X, and a set of temporal difference

constraints, C. Each timepoint variable represents an event and has a continuous

domain of values (e.g., clock times) that can be expressed as a constraint relative to

a special zero timepoint variable, z ∈ V , which represents the start of time. Each

temporal difference constraint cij is of the form xj − xi ≤ bij, where xi and xj are

distinct timepoints, and bij ∈ R is a real number bound on the difference between

xj and xi. Often, as notational convenience, two constraints, cij and cji, of the form
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bji ≤ xj−xi ≤ bij are represented as a single constraint of the form xj−xi ∈ [−bji, bij].
A schedule is an assignment of specific time values to timepoint variables. An

STP is consistent if it has at least one solution , which is a schedule that respects

all constraints.

Availability Duration Ordering External

Ann

RAST − z ∈ [480, 720]
RAET −R

A
ST ∈ [60, 60]

RAET − TR
A
ST ≤ 0

RAST −R
B
ST ∈ [0, 0]

RAET − z ∈ [480, 720]
TRAST − z ∈ [480, 720]

TRAET − TR
A
ST ∈ [90, 120] TPCET − TR

A
ST ≤ 0

TRAET − z ∈ [480, 720]

Bill

RBST − z ∈ [480, 720]
RBET −R

B
ST ∈ [60, 60]

RBET −W
B
ST ≤ 0 RAST −R

B
ST ∈ [0, 0]

RBET − z ∈ [480, 720]
WB
ST − z ∈ [480, 720]

WB
ET −W

B
ST ∈ [60, 180]

WB
ET − z ∈ [480, 720]

Chris

TPCST − z ∈ [480, 720]
TPCET − TP

C
ST ∈ [90, 120]

TPCET − L
C
ST ≤ 0 TPCET − TR

A
ST ≤ 0

TPCET − z ∈ [480, 720]
LCST − z ∈ [600, 600]

LCET − L
C
ST ∈ [120, 120]

LCET − z ∈ [720, 720]

Table 2.1: Summary of the running example problem.

In Table 2.1, I formalize the running example with specific constraints. Each

activity has two timepoint variables representing its start time (ST ) and end time

(ET ), respectively. In this example, all activities are to be scheduled in the morning

(8:00-12:00), and so are constrained (Availability column) to take place within 480

and 720 of the zero timepoint z, which in this case is the start of day (midnight).

Duration constraints are specified with bounds over the difference between an activity’s

end time and start time, whereas Ordering constraints dictate the order in which

an agent’s activities must take place with respect to each other. Finally, while a

formal introduction of external constraints is deferred until later (Section 2.4), the last

column represents constraints that span the subproblems of different agents. Figure

2.1 (d) illustrates a schedule that represents a solution to this particular problem.

2.2.2 Simple Temporal Network

To exploit extant graphical algorithms (e.g., shortest path algorithms) and effi-

ciently reason over the constraints of an STP, each STP is associated with a Simple

Temporal Network (STN), which can be represented by a weighted, directed graph,

G = 〈V,E〉, called a distance graph (Dechter & Pearl, 1987). The set of vertices

V contains a vertex vi for each timepoint variable xi ∈ X, and E is a set of directed

edges, where, for each constraint cij of the form xj −xi ≤ bij , a directed edge, eij from

vi to vj is constructed with an initial weight wij = bij . As a graphical short-hand, each
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edge from vi to vj is assumed to be bi-directional, capturing both edge weights with a

single interval label, [−wji, wij ], where vj − vi ∈ [−wji, wij ] and wij or wji is initialized

to ∞ if there exists no corresponding constraint cij ∈ C or cji ∈ C, respectively. An

STP is consistent if and only if there exist no negative cycles in the corresponding

STN distance graph.

The reference edge , ezi, of a timepoint vi is the edge between vi and the zero

timepoint z. As another short-hand, each reference edge ezi is represented graphically

as a self-loop on vi. This self-loop representation underscores how a reference edge eiz

can be thought of as a unary constraint that implicitly defines vi’s domain, where wzi

and wiz represent the earliest and latest times that can be assigned to vi, respectively.

In this thesis, I will assume that z is always included in V and that, during the

construction of G, a reference edge ezi is added from z to every other timepoint

variable vi ∈ V .

The graphical STN representation of the example STP given in Table 2.1 is

displayed in Figure 2.1 (a). For example, the duration constraint TRA
ET − TRA

ST ∈
[90, 120] is represented graphically with a directed edge from TRA

ST to TRA
ET with

label [90, 120]. Notice that the label on the edge from RB
ET to WB

ST has an infinite

upper bound, since while there is a constraint that dictates that Bill must start work

after he ends recreation, there is no corresponding constraint dictating how soon after

he ends recreation that this must occur. Finally, the constraint LCST − z ∈ [600, 600] is

translated to a unary loop on LCST , with a label of [10:00,10:00], which represents that

Chris is constrained to start the lecture at exactly 600 minutes after midnight (or at

exactly 10:00 AM). Throughout this thesis, I use both STP and STN notation. The

distinction is that STP notation captures properties of the original problem, such as

which pair of variables are constrained with which bounds, whereas STN notation is a

convenient, graphical representation of STP problems that agents can algorithmically

manipulate in order to find solutions by, for example, capturing implied constraints as

new or tightened edges in the graph.

2.2.3 Useful Simple Temporal Network Properties

Temporal networks that are minimal and decomposable provide an efficient repre-

sentation of an STP’s solution space that can be useful to advice-wielding scheduling

agents.

Minimality. A minimal constraint cij is one whose interval bounds, wij and wji,

exactly specify the set of all values for the difference vj − vi ∈ [−wji, wij] that are part
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of any solution. A temporal network is minimal if and only if all of its constraints

are minimal. A minimal network is a representation of the solution space of an STP.

For example, Figure 2.1 (b) is a minimal STN, whereas (a) is not, since it would allow

Ann to start recreation at, say, 9:31 and (c) is also not since it does not allow Ann to

start at 9:30. More practically, a scheduling agent can use a minimal representation

to exactly and efficiently suggest scheduling possibilities to users without overlooking

options or suggesting options that will not work.

Decomposability. Decomposability facilitates the maintenance of minimality by

capturing constraints that, if satisfied, will lead to global solutions. A temporal network

is decomposable if any assignment of values to a subset of timepoint variables that

is locally consistent (satisfies all constraints involving only those variables) can be

extended to a solution (Dechter et al., 1991). For example, Figure 2.1 (d) is trivially

decomposable, while (b) is not, since, for instance, the assignment RA
ET = 10:30 and

TRA
ET = 10:30, while self-consistent (because there are no constraints directly between

these two variables), cannot be extended to a solution. A scheduling agent can use a

decomposable temporal network to directly propagate any newly-arriving constraint(s)

to any other area of the network in a single-step, backtrack-free manner.

In sum, an STP that is both minimal and decomposable represents the entire set

of solutions by establishing the tightest bounds on timepoint variables such that: (1)

no solutions are eliminated and (2) any self-consistent assignment of a specific time

to a subset of timepoint variables that respects these bounds can be extended to a

solution in a backtrack-free, efficient manner.

2.2.4 Simple Temporal Problem Consistency Algorithms

In this subsection, I highlight various existing algorithms that each help establish

the STN solution properties introduced in the previous subsection.

Full-Path Consistency. Full-Path Consistency (FPC) works by establishing

the minimality and decomposability of an STP instance in O (|V |3) by applying an

all-pairs-shortest-path algorithm, such as Floyd-Warshall (1962) to its STN, resulting

in a fully-connected distance graph. The algorithm, presented as Algorithm 2.1,

finds the tightest possible path between every pair of timepoints, vi and vj, in the

fully-connected distance graph, where ∀i, j, k, wij ≤ wik + wkj. The resulting graph

is then checked for consistency by validating that there are no negative cycles, that

is, ∀i 6= j, ensuring that wij + wji ≥ 0 (Dechter et al., 1991). An example of the
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Algorithm 2.1 Floyd-Warshall
Input: A fully-connected distance graph
G = 〈V,E〉

Output: A FPC distance graph G or in-
consistent

1: for k = 1 . . . n do
2: for i = 1 . . . n do
3: for j = 1 . . . n do
4: wij ← min(wij , wik + wkj)
5: if wij + wji < 0 then
6: return inconsistent
7: end if
8: end for
9: end for

10: end for
11: return G
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Figure 2.2: Ann’s FPC STN.

FPC version of Ann’s STP subproblem is presented in Figure 2.2. Note that an agent

using an FPC representation can provide exact bounds over the values that will lead

to solutions for any pair of variables, regardless of whether or not a corresponding

constraint was present in the original STP formulation.

Graph Triangulation The next two forms of consistency require a triangulated

(also called chordal) distance graph. A triangulated graph is one whose largest non-

bisected cycle is a triangle (of length three). Conceptually, a graph is triangulated by

the process of considering vertices and their adjacent edges, one-by-one, adding edges

between neighbors of the vertex if no edge previously existed, and then eliminating

that vertex from further consideration, until all vertices are eliminated. The basic

graph triangulation algorithm is presented as Algorithm 2.2. The set of edges that

are added during this process are called fill edges and the order in which timepoints

are eliminated from consideration is referred to as an elimination order , o. The

quantity ω∗o is the induced graph width of the distance graph relative to o, and

is defined as the maximum, over all vk, of the size of vk’s set of not-yet-eliminated

neighbors at the time of its elimination.

Elimination orders are often chosen to attempt to find a minimal triangulation,

that is to attempt to minimize the total number of fill edges. While, generally

speaking, finding the minimum triangulation of a graph is an NP-complete problem,

heuristics such as the minimum degree (selecting the vertex with fewest edges) and

minimum fill (selecting the vertex that adds fewest fill edges) are used to efficiently
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Algorithm 2.2 Triangulate
Input: A distance graph G = 〈V,E〉; and elimination order o = (v1, v2, . . . , vn−1, vn)
Output: A triangulated distance graph G
1: for k = 1 . . . n do
2: for all i, j < k s.t. eik, ejk ∈ E do
3: E ← E ∪ {eij}
4: end for
5: end for
6: return G

find elimination orders that approximate the minimum triangulation (Kjaerulff, 1990).

Figure 2.3 shows a triangulated version of Ann’s distance graph where timepoints are

eliminated in order o = (TRA
ET , R

A
ET , R

A
ST , TR

A
ST ).

Directional Path Consistency. An alternative to FPC for checking STP consis-

tency is to establish Directional Path Consistency (DPC) on its distance graph

(Dechter et al., 1991). The DPC algorithm, presented as Algorithm 2.3, takes a trian-

gulated graph and corresponding elimination order, o, as input and then traverses each

timepoint, vk, in elimination order o, tightening edges between each pair of neighboring

timepoints, vi, vj , (each connected to vk via edges eij and ejk respectively) that appear

after vk in order o, using the rule wij ← min(wij, wik + wkj). The complexity of DPC

is O (|V | · ω∗2o ), but instead of establishing minimality, it establishes the property that

a solution can be recovered from the DPC distance graph in a backtrack-free manner

if variables are assigned in reverse elimination order. An example of a DPC version of

Ann’s problem (using elimination order o = (TRA
ET , R

A
ET , R

A
ST , TR

A
ST )) is presented

in Figure 2.3. Basically, establishing DPC is sufficient for a scheduling agent that

will need to give advice only with respect to a single-variable (the last one to be

eliminated).

Partial Path Consistency. Partial Path Consistency (PPC) (Bliek & Sam-

Haroud, 1999) is sufficient for establishing minimality on an STP instance by calculating

the tightest possible path for only the subset of edges that exist within a triangulated

distance graph. An example is Xu and Choueiry’s algorithm 4STP (2003), which

processes and updates a queue of all potentially inconsistent triangles (4) from the

triangulated graph. Alternatively, in their algorithm P3C, Planken et al. (2008b)

sweep through these triangles in a systematic order, resulting in an improved expected

runtime. The P3C algorithm, which executes the DPC algorithm as a first phase also
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Algorithm 2.3 Directed Path Consis-
tency (DPC)
Input: A triangulated temporal network
G = 〈V,E〉 and corresponding elimi-
nation order o = (v1, v2, . . . , vn−1, vn)

Output: A DPC distance graph G or in-
consistent

1: for k = 1 . . . n do
2: for all i < k s.t. eik ∈ E do
3: for all j < i s.t. ejk ∈ E do
4: wij ← min(wij , wik + wkj)
5: wji ← min(wji, wjk + wki)
6: if wij + wji < 0 then
7: return inconsistent
8: end if
9: end for

10: end for
11: end for
12: return G
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Figure 2.3: Ann’s DPC STN.

executes a backwards traversal of the DPC algorithm as a second phase, where edge

weights are updated in reverse elimination order and thus achieves the same complexity,

O (|V | · ω∗2o ), as the DPC algorithm. By exploiting sparse network topology, PPC-

based algorithms may establish minimality much faster than FPC algorithms in

practice (O (|V | · ω∗2o ) ⊆ O (|V |3)) (Xu & Choueiry, 2003; Planken et al., 2008b). The

PPC representation of Ann’s subproblem is displayed in Figure 2.4.

PPC networks only approximate full decomposability, where assignments to subsets

of variables are guaranteed extensible to a full solution only when the variables belong

to the same clique in the triangulated network. However solutions can still be recovered

in a backtrack free manner by either requiring constraint propagation between each

subsequent variable assignment or by assigning variables in any reverse simplicial

elimination order — any elimination order of variables that would yield the same

triangulated network (that is, introduce no new fill edges) (Planken et al., 2008b). An

agent using a PPC representation can offer advice over any pair of variables that were

originally related via a constraint in the original formulation (and those subsequently

added as fill edges). While unlike FPC temporal networks, an agent using a PPC

network cannot answer queries regarding arbitrary pairs of variables (i.e., those not

related via a constraint in the original specification), the sparser PPC structure will

have important benefits for agents’ independent and private reasoning.
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Algorithm 2.4 Planken’s Partial Path
Consistency (P3C)
Input: A triangulated temporal network
G = 〈V,E〉 and an elimination order
o = (v1, v2, . . . , vn−1, vn)

Output: A triangulated, PPC distance
graph G or inconsistent

1: DPC(G, o)
2: return inconsistent if DPC did
3: for k = n . . . 1 do
4: for all i, j > k s.t. eik, ejk ∈ E

do
5: wik ← min(wik, wij + wjk)
6: wkj ← min(wkj , wki + wij)
7: end for
8: end for
9: return G
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Figure 2.4: Ann’s PPC STN.

2.2.5 The Temporal Decoupling Problem

Hunsberger (2002) formally defined the concept of a temporal decoupling for

STPs. A partitioning of STP variables into two sets, V A and V B, leads naturally to

the definition of two sub-STPs, SA and SB, where each subproblem consists of only

its respective variables and the constraints defined exclusively over these variables.

Then SA and SB form a temporal decoupling of S if:

� SA and SB are consistent STPs; and

� Merging any locally consistent solutions to the problems in SA and SB yields a

solution to S.

Notice that a temporal decoupling exists if and only if the original STP is consistent.

Alternatively, when SA and SB form a temporal decoupling of S, SA and SB are said

to be temporally independent . The Temporal Decoupling Problem (TDP), then,

is defined as finding two sets of decoupling constraints, CA
∆ and CB

∆ , such that if CA
∆

and CB
∆ are combined with SA and SB respectively to form SA∆ and SB∆ respectively,

then SA∆ and SB∆ form a temporal decoupling of STP S. A minimal decoupling is

one where, if the bound of any decoupling constraint in either CA
∆ or CB

∆ is relaxed

(increasing the bound so that the constraint is more inclusive) or removed, then SA

and SB are no longer guaranteed to form a decoupling. The original TDP algorithm

(Hunsberger, 2002) executes centrally and iterates between proposing new constraints

to add to CA
∆ and CB

∆ and propagating these constraints to reestablish FPC on
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the corresponding global distance graph, so that subsequently proposed decoupling

constraints are guaranteed to be consistent. An iteration occurs for each constraint

that spans between SA and SB until all such constraints have been rendered moot

due to new decoupling constraints.

A temporal decoupling trades a complete solution space with possibly messy

interdependencies for a partial solution space with nice independence properties.

Independent reasoning, which can be critical in applications that must provide time-

critical, unilateral scheduling advice in environments where communication is costly

or uncertain, comes at a cost of eliminating valid joint solutions. Later (Section 2.5.4),

I will present various flexibility metrics that attempt to quantify the portion of the

solution space that is retained by a given temporal decoupling, and use these to help

quantify this trade-off.

2.3 Related Approaches

In this section, I summarize an approach that introduces explicit models of uncer-

tainty, highlight an application that could benefit from using the MaSTP formulation

and algorithms, and introduce a class of algorithms that help motivate my algorithm.

2.3.1 Simple Temporal Problem with Uncertainty

A Simple Temporal Problem with Uncertainty (STPU) (Vidal & Ghallab,

1996; Vidal & Fargier, 1999) partitions the set of constraints of an STP into a set

of requirement links and a set of contingent links. A requirement link is a

constraint that represents hard bounds on the difference between two timepoint

variables. A contingent link, kij, on the other hand, models the fact that the time

that will elapse between two timepoints, vi and vj, is dictated by an uncontrollable

process, and that the exogenously chosen value, βij, for this uncertain difference may

fall anywhere between the specified lower and upper bounds, vj − vi = βij ∈ [−bji, bij ].
A contingent timepoint , then, is a timepoint vj that appears as the target of some

contingent link, kij and whose value is chosen exogenously. All remaining timepoints

are called requirement timepoints and are controlled by the agent. So, for example,

if the start times of all activities are controllable by the agent, but the durations

are not controllable, then durations’ constraints would be specified with contingent

links, the set of contingent timepoints would be composed of the timepoint variables

corresponding to activity end times, and the set of requirement timepoints would be

composed of activity start timepoints.
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An STPU is checked not only for consistency, but also for controllability (Vidal,

2000). Whereas a consistent STP is one where there exist schedules that satisfy all

constraints, a controllable STPU is one where there exist satisfying schedules regardless

of how uncontrollable bounds are exogenously selected. The STPU literature specifies

various classes of controllability, including strong controllability, weak controllability,

and dynamic controllability, along with various static and dynamic approaches for

determining and maintaining controllability (Vidal, 2000; Morris et al., 2001; Morris &

Muscettola, 2005). The basic strategy for maintaining controllability is to preemptively

constrain requirement timepoints so that the remaining values are consistent with all

possible values for contingent timepoints.

The goal of controllability in the STPU literature is similar to the motivation for

internalizing constraints that decouple agents’ problems. For a particular agent i,

timepoints that are assignable by some other agent j 6= i are exogenously controlled

from agent i’s perspective. Further, my internalization of decoupling constraints

process is similar to the strategy of preemptively adding additional constraints for

guaranteeing controllability. A key difference here is that in an MaSTP an agent i

has the opportunity to negotiate with agent j about how this decoupling constraint

is constructed, whereas in an STPU, there is no such negotiating with nature. More

generally, the STPU assumes a model both for which constraints are dynamic and

also for how the values for these constraints may be chosen. Further, in order for

controllability to be effective, there is an implicit assumption that there will be

sufficient controllable slack to outweigh all uncertainty. In contrast, my work does

not explicitly differentiate between which constraints can be exogenously updated

(or which events are contingent) and which cannot. Instead, it permits that new

dynamic constraints can potentially arise in any part of the schedule, and uses spaces

of solutions as an alternative hedge against these new constraints.

2.3.2 Distributed Coordination of Mobile Agent Teams

The approach originally described by Smith et al. (2007) and extended by Bar-

bulescu et al. (2010) exploits the flexibility of decomposable STP instances in a

distributed framework. The general framework of the problems they solve contains

models of uncertainty over both the durations and utilities of different activities. Using

a greedy heuristic, their scheduler selects a set of activities that would maximize agent

utility and extracts duration bounds from the distribution of possible durations for

each activity, thus creating an STP for each local agent. Each agent captures the

current state of its local problem in the form of an STN representation of its local
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solution space, which the agent uses to help hedge against uncertainty. An agent

maintains the current state of the problem as new constraints arise by using efficient,

incremental STN consistency algorithms (e.g., Cesta & Oddi (1996) and Planken

et al. (2010b)). Each agent maintains its local STN problem representation until an

improved replacement STN is identified by the scheduler mechanism. This efficient

state-maintenance strategy frees agents to spend a greater portion of time exploring

alternative allocations and schedulings of activities between agents.

Barbulescu et al.’s approach divides the problem into separate, localized STP

instances, requiring a distributed state manager to react to and communicate local

scheduling changes that may affect other agents. To deal with the challenge of coordi-

nation, Barbulescu et al. establish an acceptable time δ within which interdependent

activities between agents are considered synchronized. As long as an agent can execute

its activities within the prescribed time δ’s, it can assume consistency with other

agents. The risk of inconsistencies between agents is mitigated by (1) restricting

synchronization scheduling to limited time horizon and (2) allowing agents to abandon

a synchronization as soon as it is determined to be unrealizable.

This work offers an example of an application that could benefit by putting my

approach into practice. Representing the joint solution space as a multiagent temporal

network could instead offer an agent a more complete view of available scheduling

possibilities as well as an increased understanding of how its problem impacts (or is

impacted by) other agents’ problems. Further, directly representing and reasoning

over the interacting scheduling problem of multiple agents also eliminates the need for

agents to execute separate threads of execution to monitor and communicate state

changes. Finally, directly implementing a multiagent temporal network allows agents

to more flexibly and directly trade between representing the complete joint solution

space and internalizing decoupling constraints in a just-in-time manner (using its

current time-horizon concept), rather than having to rely on additional mechanisms

to divide, manage, and coordinate state.

2.3.3 Bucket-Elimination Algorithms

Bucket-elimination algorithms are a general class of algorithms for calculating

knowledge compilations , solution space representations from which solutions can

be extracted in a backtrack-free, linear-time manner. The adaptive consistency

algorithm (Dechter & Pearl, 1987; Dechter, 2003) calculates a knowledge compilation

for general constraint satisfaction problems (which will be formally introduced in

Section 4.2.1) (Dechter, 1999). Adaptive consistency eliminates variables one-by-one,
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and for each variable that it eliminates, reasons over the “bucket” of constraints the

variable is involved with to deduce new constraints over the remaining non-eliminated

variables. After each step, merging the non-eliminated variables and the constraints

over non-eliminated variables with the new constraints implied by the eliminated

variable creates an equivalent problem with one fewer variable. Any solution to this

equivalent problem has the property that it can be extended to a solution to the original

problem, since the solution accounts for all constraints entailed by the eliminated

variable. The runtime of this algorithm is O
(
|V | · kω∗o

)
, where |V | is the number of

variables, k is the size of the variable domain, and ω∗o is the maximum induced graph

width — the number of non-eliminated neighbor variables that a variable has at the

time of its elimination, given that variables are eliminated in order o.
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2.4 The Multiagent Simple Temporal Problem

In this section, I extend the centralized STP formulation to a distributed setting

in a way that compactly represents the interdependencies of agents while supporting

independent reasoning over agents’ local scheduling problems. I show that this

formulation supports both the representation of complete joint solution spaces and

temporally independent solution spaces. I formalize the level of independent reasoning

an agent can expect given the level of coupling between its problem and the problems of

other agents. Finally, I more precisely re-express the problem statement and motivate

the subsequent sections of this chapter that deal with reasoning over this multiagent

scheduling problem formulation.

2.4.1 Multiagent Simple Temporal Problem Formulation

The Multiagent Simple Temporal Problem (MaSTP) is composed of n local STP

subproblems, one for each of n agents, and a set of constraints CX that establish

relationships between the local subproblems of different agents (Boerkoel & Durfee,

2010, 2011). An agent i’s local STP subproblem is defined as S iL = 〈V i
L, C

i
L〉1, where:

� V i
L is defined as agent i’s set of local variables, which is composed of all

timepoints assignable by agent i (and includes a variable representing agent i’s

reference to z); and

� Ci
L is defined as agent i’s set of intra-agent or local constraints , where a local

constraint, cij ∈ Ci
L, is defined as a bound bij on the difference between two

local variables, vj − vi ≤ bij, where vi, vj ∈ V i
L.

In Figure 2.1(a), the variables and constraints entirely within the boxes labeled Chris,

Ann, and Bill represent each person’s respective local STP subproblem from the

running example. Notice, the sets V i
L partition the set of all timepoint variables.

CX is the set of inter-agent or external constraints , where an external constraint

is defined as a bound on the difference between two variables that are local to different

agents, vi ∈ V i
L and vj ∈ V j

L , where i 6= j. However, each agent knows only the subset

of external constraints that involve its local timepoints and, as a by-product of these

external constraints, is also aware of a subset of non-local variables, where:

� Ci
X is agent i’s set of external constraints , which each involve exactly one of

agent i’s local timepoint variables (since all constraints are inherently binary);

and
1Throughout this dissertation, I will use superscripts to index agents and subscripts to index

variables and edges.
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� V i
X is agent i’s set of external timepoint variables, which are known to

agent i due their involvement in some constraint from Ci
X , but are local to some

other agent j 6= i.

Together, an agent i’s set of known timepoints is {V i
L ∪ V i

X} and its set of known

constraints is {Ci
L ∪ Ci

X}. Note, this assumes that each constraint is known by each

agent that has at least one variable involved in the constraint. In Figure 2.1(a),

external constraints and variables are denoted with dashed edges.

More formally, then, an MaSTP, M, is defined as the STP M = 〈VM, CM〉 where

VM = {
⋃
i V

i
L} and CM = {CX ∪

⋃
iC

i
L}. Note, the definition of the corresponding

distance graph is defined as before, where the definition of agent i’s local and external

edges, Ei
L and Ei

X , follows analogously from the definition of Ci
L and Ci

X , respectively.

An Algorithm-Centric MaSTP partitioning. The MaSTP formalization that

I presented naturally captures MaSTPs using an agent-centric perspective. However,

algorithmically, it is often easier to discuss a MaSTP in terms of which parts of

the problem an agent can solve independently, and which parts inherently require

shared effort to solve. Thus, here I introduce some additional terminology that helps

improve the precision and comprehension of both my algorithmic descriptions and my

analytical arguments.

The natural distribution of the MaSTP representation affords a partitioning of

the MaSTP into independent (private) and interdependent (shared) components. I

start by defining the shared STP (shown graphically in Figure 2.5), GS = 〈VS, CS〉
composed of:

� VS = VX ∪ {z} — the set of shared variables composed of all variables that

are involved in at least one external constraint; and

� CS = {cij|vi, vj ∈ VS} — the set of shared constraints, defined between a

pair of shared variables, and includes the entire set of external constraints CX ,

but could also include otherwise local constraints (that exist between two shared

variables belonging to a single agent).

Notice that the shared STP overlaps with an agent’s local subproblem, and thus

divides each agent i’s known timepoints into three distinct sets:

� V i
X — agent i’s set of external variables defined as before;

� V i
I = V i

L ∩ VS — agent i’s set of interface variables, which are agent i’s set

of local variables that are involved in one or more external constraints; and
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(a) (b) 

(a) (b) (c) 

Figure 2.5: High-level overview of the MaSTP structure.

 

(a) (b) 

(a) (b) (c) 

Figure 2.6:
Two alternative partitionings of an agent’s STP (a) into local vs. external
components (b) and into shared vs. private components (c).

� V i
P = V i

L \ VS — agent i’s set of private variables, which are agent i’s local

variables that are not involved in any external constraints.

These three sets of variables are depicted graphically in Figure 2.6 (a). Figure

2.6 also highlights the two alternate partitionings of a MaSTP into agent-centric

local vs. external components (b) and algorithm-centric independent (private) vs.

interdependent (shared) components (c). More formally, this allows me to define agent

i’s private subproblem, S iP = 〈V i
P , C

i
P 〉, where agent i’s set of private constraints,

Ci
P = Ci

L \ CS, is the subset of agent i’s local constraints that include at least one of

its private variables.

The partitioning depicted in Figure 2.6 (c) is useful algorithmically because it
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establishes which parts of an agent’s subnetwork are independent of other agents

(private), and which parts are inherently interdependent (shared). Notice, as illustrated

in the figure, agent i’s local constraints are included in its private subproblem as long

as they include a private variable, even if they involve one a shared variable. This is

because agent i is able to propagate changes to that constraint, and any other private

constraint, without directly affecting a shared timepoint or constraint. I will formalize

this notion in Section 2.4.3.

2.4.2 Multiagent Temporal Decoupling Problem

I adapt the original definition of temporal decoupling (Hunsberger, 2002) to apply

to the MaSTP. Agents’ local STP subproblems {S1
L,S2

L, . . . ,SnL} form a temporal

decoupling of an MaSTP M if:

� {S1
L,S2

L, . . . ,SnL} are consistent STPs; and

� Merging any combination of locally consistent solutions to each of the problems

in {S1
L,S2

L, . . . ,SnL} yields a solution to M.

Alternatively, when {S1
L,S2

L, . . . ,SnL} form a temporal decoupling of M, they are

said to be temporally independent . The Multiagent Temporal Decoupling

Problem (MaTDP), illustrated in Figure 2.7, is to find a set of constraints Ci
∆ for

each agent i such that if S iL+∆ = 〈V i
L, C

i
L ∪ Ci

∆〉, then {S1
L+∆,S2

L+∆, . . . ,SnL+∆} is a

temporal decoupling of MaSTP M. Note that solving the MaTDP does not mean

that the agents’ subproblems have somehow become inherently independent from

each other (with respect to the original MaSTP), but rather that the new decoupling

constraints provide agents a way to perform sound reasoning completely independently

of each other.

Notice that the external constraints involving agent i local variables can be removed

because they are superfluous given Ci
∆, and so are also removed from Figure 2.7 (b).

Finally, notice that local variables and edges that were previously considered shared

(marked in Figure 2.7 (b) with double edges), are now private.

Figures 2.1(c) and (d) represent temporal decouplings of the example, where new

unary decoupling constraints, in essence, replace all external edges (shown faded).

A minimal decoupling is one where, if the bound of any decoupling constraint

c ∈ Ci
∆ for some agent i is relaxed (or removed), then {S1

L+∆,S2
L+∆, . . . ,SnL+∆} is no

longer a decoupling. Figure 2.1(c) is an example of a minimal decoupling whereas the

decoupling in (d) is not minimal. The original TDP algorithm (Hunsberger, 2002)

executes on a centralized representation of the MaSTP and iterates between proposing
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Figure 2.7: The temporal decoupling problem.

new constraints to decouple agent subproblems with respect to a particular external

constraint (until all external constraints have been decoupled) and reestablishing FPC

on the corresponding global distance graph, so that subsequently proposed decoupling

constraints are guaranteed to be consistent.

2.4.3 Useful Multiagent Simple Temporal Networks Properties

Up until this point, I have mostly discussed the MaSTP problem formulation.

Because my algorithms actually execute on the temporal network representation of a

MaSTP, I will now switch to discussing properties of the corresponding Multiagent

Simple Temporal Network (MaSTN). In this section, I will describe desirable properties

of MaSTNs that will be useful to scheduling agents. These will, in turn, allow me to

more precisely state the problem being solved before discussing my solution algorithms.

Minimality and Decomposability. Because a MaSTN is an STN (albeit a decen-

tralized one), properties such as minimality and decomposability extend unhindered

to multiagent temporal networks. Thus, a minimal MaSTN is one where all the edges

are minimal. Likewise, a MaSTN is decomposable if any self-consistent assignment of

values to a subset of variables can be extended to a full joint solution. Decomposabil-
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ity inherently requires computing a fully-connected network, which, in a multiagent

setting, clobbers all independence between agents’ subproblems: each of an agents

timepoints will now be connected to every other timepoint of every other agent. For

this reason, my thesis focuses on instead establishing partial path consistency to retain

the loosely-coupled structure in an MaSTN when it exists.

Independence. Algorithms that use the distributed MaSTN represent to reason

over scheduling problems that span multiple agents have strategic (e.g., privacy) and

computational (e.g., concurrency) advantages. The extent of these advantages relies,

in large part, on the level of independent reasoning that an agent is able to perform

over its local problem. I define two timepoints as independent if there is no path

that connects them in the constraint network, and dependent otherwise. Notice that

all dependencies between agents inherently flow through the set of shared variables, VS.

The implication is that, outside of its shared variables, each agent i can independently

(and thus concurrently, asynchronously, privately, autonomously, etc.) reason over its

private subproblem S iP .

Theorem 2.1. The only dependencies between agent i’s local subproblem, S iL, and

any other agent j’s local subproblem SjL∀j 6= i exist exclusively through the shared

STP, SS, allowing agent i to independently reason over its private subproblem S iP .

Proof. By contradiction, assume there exist variables vi ∈ V i
P and vj ∈ V j

P such that

vi and vj are not independent given SS. This implies that there exists a path in the

constraint network between vi and vj that involves some pair of variables v′i ∈ V i
P and

v′j ∈ V
j
P that are connected via a constraint. However, this is a contradiction, since

v′i and v′j would, by definition, belong to VS, and thus SS. Therefore, every pair of

variables vi ∈ V i
P and vj ∈ V j

P are independent given SS.

Thus, given a solution to, or temporal decoupling of, SS, (which results in a set of fully-

assigned shared timepoints or effectively-removed external constraints respectively)

each agent i can independently reason over its private subproblem S iP .

Privacy. In my work, I assume that agents are cooperative. However, at the same

time, a user may still wish to avoid the gratuitous revelation of his or her scheduling

problem to the agents of other people, to the extent possible. I next look the level of

privacy that is preserved as a byproduct of the distributed problem representation and

level of independent reasoning established in Theorem 2.1. Obviously, any coordination
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between agents’ activities has some inherent privacy costs. However, I now show that

these costs are limited to the shared timepoints and edges between them.

Notice that in Figure 2.1 (a), Bill’s agent starts out knowing, only Ann’s recreational

start time variable RB
ST due to Bill’s shared constraint with Ann. Further, Ann’s

agent can eliminate (e.g., so as to triangulate and update its local network) TRA
ET

and RA
ET completely independently of other agents, because they are not involved in

any external constraints. However, if after eliminating its private timepoints (TRA
ET

and RA
ET ), Ann’s agent were to also eliminate RA

ST , the triangulation process would

construct a new external edge between TRA
ST and RB

ST , which then reveals TRA
ST to

Bill’s agent. At this point, not only will Bill’s agent be made aware of one of Ann’s

previously private timepoints, but it can also infer information about an edge that

exists within Ann’s local problem (i.e., the one between RA
ST and TRA

ST ). The question

becomes: can Bill (or his agent) continue this process to draw inferences about Ann’s

private timepoints and edges? Theorem 2.2 shows that, without an exogenous source

of information, Bill (or his agent) will not be able to infer the existence of, the number

of, or bounds on Ann’s private timepoints even if they influence Bill’s subproblem

through implicit constraints.

Theorem 2.2. No agent can infer the existence of or bounds on another agent’s

private edges, or subsequently the existence of private timepoints, solely from the

shared STP.

Proof. First, I prove that the existence and bounds of a private edge cannot be inferred

from the shared STP. Assume agent i has a private edge, exz ∈ Ei
P . By definition,

at least one of vx and vz is private; WLOG assume vx ∈ V i
P . For every pair of edges

exy and eyz that are capable of entailing (the bounds of) exz, regardless of whether

vy is shared or private, vx ∈ V i
P implies exy ∈ Ei

P is private. Hence, any pair of

edges capable of implying a private edge must also contain at least one private edge.

Therefore, a private edge cannot be inferred from shared edges alone.

Now, since an agent cannot extend its view of the shared STP to include another

agent’s private edges, it cannot infer another agent’s private timepoints.

Theorem 2.2 implies that SS (the variables and constraints of which are represented

with dashed lines in Figure 2.1) represents the maximum portion of the MaSTP that

agents can infer (even if they collude to reveal the entire shared subnetwork), without

an exogenous (or hypothesized) source of information. Hence, given the distribution

of an MaSTP M, if agent i executes a multiagent algorithm that does not reveal any

36



of its private timepoints or constraints, it can be guaranteed that any agent j 6= i will

not be able to infer any private timepoint in V i
P or private constraint in Ci

P by also

executing the multiagent algorithm — at least not without requiring conjecture or

ulterior (methods of inferring) information on the part of agent j. More generally, it is

not necessary or inevitable that any one agent knows or infers the entire shared STP.

2.4.4 Problem Statement Refinement

As a more precise refinement of the original problem laid out in Section 1.3, the

problem that this chapter addresses is developing a compact, distributed representation

of, and approaches for finding, (a temporal decoupling of) the joint solution space. This

section has developed such a distributed representation in the form of the Multiagent

Simple Temporal Problem, as well as desirable representational properties. The

following sections address the remaining goal of devising approaches that can establish

minimality and partial path consistency on multiagent temporal network, yielding a

compact solution space summarization that distributed scheduling agents can use to

provide sound and complete scheduling advice to their users. These algorithms execute

without centralizing or unnecessarily redistributing an agent i’s private subproblem,

S iP , while also achieving speedup over current state of the art approaches.
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2.5 Consistency Algorithms

This section is broken into four subsections. The first three present increasingly

distributed variations of algorithms for establishing Partial Path Consistency (PPC)

(and thus minimality) on MaSTNs. In Section 2.5.1, I revisit the centralized P3C

algorithm (Algorithm 2.4), making some key observations as I prepare to distribute

the execution of this basic algorithm. Next, in Section 2.5.2, I show how a partially-

centralized algorithm that makes use of a coordinator can exploit the algorithm-centric

MaSTN partitioning. I use the partially-centralized algorithm as a stepping-stone

towards describing the fully distributed algorithm in Section 2.5.3. Just like the

original P3C algorithm, each of these algorithms, and thus subsections, is divided into

two parts, one that establishes DPC, and the second that completes the backwards

sweep to establish PPC. Finally, Section 2.5.4 provides an empirical comparison of

these approaches.

2.5.1 Centralized Partial Path Consistency Revisited

The DPC (Algorithm 2.3) and P3C (Algorithm 2.4) algorithms take a variable

elimination ordering and already triangulated STN as input. However, if my aim

is to decentralize algorithm execution, requiring an already triangulated network

and complete variable elimination order punts on finding a distributed solution to

critical algorithmic requirement at best, or requires a centralized representation of the

entire network at worst, thus invalidating many of the motivations for distribution

in the first place. Thus, the point of this section is to demonstrate that both the

graph triangulation process and the elimination order construction process can be

incorporated into the DPC algorithm with no added computational overhead.

Observe that both the triangulation (Algorithm 2.2) and DPC algorithms end

up traversing graphs in exactly the same order, and thus their processing can be

combined. The result is an example of a bucket-elimination algorithm (Section 2.3.3)

for MaSTPs that produces a DPC temporal network without requiring an already

triangulated network with corresponding elimination order as input. My 4DPC

Algorithm (Algorithm 2.5) is the result of modifying the DPC algorithm based on

two insights: (1) that 4DPC can construct the variable elimination order during

execution by applying the SelectNextTimepointVariable procedure (line 3),

which heuristically chooses the next timepoint, vk, to eliminate; and (2) as 4DPC

considers the implications of each pair of temporal difference constraints involving

the removed timepoint variable, it necessarily considers the exact fill edges that
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the triangulation process would have added. Thus, line 6 adds, if necessary, any

newly created fill edges (between vk’s non-eliminated neighbors) and then proceeds

to propagate the implications of the eliminated timepoint’s constraints forward in

lines 7-8. Like the DPC algorithm, 4DPC halts as soon as it detects an inconsistency

(line 9). Incorporating the triangulation process into the 4DPC algorithm reduces

the problem of distributing both the DPC and graph triangulation algorithms to

that of distributing the execution of the 4DPC algorithm alone. Recall that bucket-

elimination algorithms have the property that the process could stop at any point,

and any solution to the remaining subproblem is guaranteed to be extensible to a full

solution involving the eliminated timepoints. Thus, a solution can be derived from a

DPC network by assigning timepoints in reverse elimination order.

As an example of the execution of the 4DPC algorithm, consider Figure 2.3, which

can be viewed as the output of4DPC with elimination order o = (TRA
ET , R

A
ET , R

A
ST , TR

A
ST ).

Upon initially eliminating TRA
ET , Ann’s agent first updates the unary constraint on

TRA
ST so that it has an upper bound of 10:30. By eliminating values from TRA

ST ’s

domain that are inconsistent with TRA
ET , Ann’s agent is guaranteed that if it can find

a solution for the remaining (non-eliminated) subproblem, this solution is extensible to

include TRA
ET . This process continues with Ann’s agent next eliminating RA

ET . Note

that, in addition to updating the domains of neighboring timepoints, Ann’s agent

must also capture the path from RA
ST to TRA

ST involving RA
ET . To guarantee that the

integrity of this path is retained, Ann’s agent adds a fill edge from RA
ST to TRA

ST with

a lower bound of 60 and infinite upper bound (as implied by the path). These added

fill edges are the reason that the output of 4DPC is a triangulated network.
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Algorithm 2.5 Triangulating Directed Path Consistency (4DPC)

Input: An STN G = 〈V,E〉
Output: A triangulated, DPC distance graph G and corresponding elimination order

o = (v1, v2, . . . , vn−1, vn) or inconsistent
1: o← ()
2: while |V | > 0 do
3: vk ← SelectNextTimepointVariable(〈V,E〉 , o)
4: V ← V \ {vk}
5: o.append(vk)
6: for all vi, vj ∈ V s.t. eik, ejk ∈ E do
7: E ← E ∪ {eij}
8: wij ← min(wij , wik + wkj)
9: wji ← min(wji, wjk + wki)

10: if wij + wji < 0 then return inconsistent
11: end for
12: end while
13: for k = n . . . 1 do V ← V ∪ vk
14: return G

Theorem 2.3. 4DPC establishes DPC on an STN.

Proof. The while loop (line 2) along with lines 3-5, establish a total order, o, of all

vertices. Given o, lines 2,6, and 7 exactly execute Algorithm 2.2. Given o, and the

correctly triangulated graph with respect to o, lines 2,6,8-10 exactly execute Algorithm

2.3, and thus the 4DPC algorithm establishes DPC.

Theorem 2.4. 4DPC executes in O (|V | · (αG + ω∗2o )) time, where αG is the com-

plexity of the variable selection heuristic (as applied to G) and ω∗o is the graph width

induced by o.

Proof. The outer while loop (lines 2-12) is executed |V | times. For each iteration,

all operations are constant time other than the SelectNextTimepointVariable

heuristic (line 3), whose cost αG is a function of the size and complexity of G, and the

inner for loop (lines 6-11), which has complexity ω∗2o .

Note that because an elimination order is not provided as input, the costs of the

variable selection heuristic become embedded into the algorithm. These costs can

range from constant time (if given) to NP-hard (if finding optimal) but are typically

polynomial in the number of vertices |V | and number of edges |E| (Kjaerulff, 1990).

Thus, the algorithm internalizes a computational cost that is typically assumed away

as part of preprocessing. So that my analyses are consistent with convention, and to

better capture only the computation costs associated with directly manipulating the
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underlying temporal network, from this point forward, I will not include these costs

in my analysis.

The centralized 4PPC algorithm, included as Algorithm 2.6 for completeness,

nearly identically follows the original P3C algorithm, simply replacing DPC with the

4DPC algorithm and dropping the triangulation requirement. Because subsequent

proofs of correctness and runtime follow verbatim from Planken et al. (2008b), I have

not included them here.

Algorithm 2.6 Triangulating Partial Path Consistency (4PPC)

Input: A distance graph G = 〈V,E〉
Output: A triangulated, PPC distance graph G or inconsistent
1: 4DPC (G)
2: return inconsistent if 4DPC did
3: for k = n . . . 1 do
4: for all i, j > k s.t. eik, ejk ∈ E do
5: wik ← min(wik, wij + wjk)
6: wkj ← min(wkj , wki + wij)
7: end for
8: end for
9: return G

2.5.2 The Partially-Centralized Partial Path Consistency Algorithm

Currently, to apply the 4PPC algorithm to an MaSTN would require centralizing

the representation on a single agent that can then execute 4PPC. However, by

centralizing the problem, not only does an agent reveal its entire local STP, but it

now must wait for a central solver. However, as proved in Theorem 2.1, and shown

visually in Figure 2.1 (b), if there are relatively few external constraints, portions of

an agent’s triangulated network can be solved independently from other agents. The

4DPC algorithm, then, could be used to allow an agent to independently triangulate

and update its private STP. My partially-centralized algorithm exploits this idea so

that each agent can independently reason over its private subproblem, thus limiting

the need for centralization to only the shared STP subproblem. By applying 4DPC

to its private STP, not only does an agent independently update its local network, it

also captures the impact that its private subproblem has on the shared problem in

the form of added or updated shared constraints.

As a stepping stone towards full decentralization, in my Partially-Centralized

Partial Path Consistency (PC4PPC) algorithm (Algorithm 2.7), each agent starts by

independently applying 4DPC on the private timepoints of its local STN (lines 1-2).

Then it sends its portion of the shared STP, which includes any constraints implied
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by its private subproblem, to a centralized coordinator (line 3). The coordinator

blocks until it receives the entire shared STN (line 5). The coordinator then applies

4DPC to the shared STN, which completes the triangulation of (and calculation

of DPC on) the entire MaSTN (lines 6-7). This is followed by applying the second

phase, P3C-2, of the P3C algorithm (lines 3-9, Algorithm 2.6), which is essentially a

reverse sweep of the DPC algorithm that establishes PPC on the shared STN (line

8). The coordinator then sends each agent its updated portion of the shared STN

(line 9). Each agent receives its portion of the shared STN (line 11), and finishes

establishing PPC on its private STN (line 12) before returning its local, minimal, and

PPC network Gi (line 13). The main advantage of this algorithm is the increased

independent reasoning, which, to the extent possible, also avoids the additional loss of

privacy typically associated with centralization.

Algorithm 2.7 Partially Centralized Partial Path Consistency (PC4PPC)

Input: Agent i’s local STN Gi = 〈V i, Ei〉, and coordinator id, coordID
Output: The PPC network of Gi or inconsistent

1: oiP ← 4DPC (〈V i
P , E

i〉)
2: return inconsistent if 4DPC does
3: Send(coordID, 〈V i

I , E
i
S〉)

4: if (i = coordID) then
5: GS ← ∪iBlockReceive(Agent i, 〈V i

I , E
i
S〉 ∀i

6: oS ← 4DPC (GS)
7: return inconsistent if 4DPC does
8: P3C-2(GS, oS)
9: Send(Agent i, 〈V i

I , E
i
S〉) ∀i

10: end if
11: Gi ← BlockReceive(coordId, 〈V i

I , E
i
S〉)

12: P3C-2(〈V i
P , E

i〉 , oiP )
13: return Gi

Theorem 2.5. PC4PPC correctly establishes PPC on the multiagent STP.

Proof (Sketch) – Full Proof in Appendix A.2. Since, by definition, none of an agent’s

private timepoints share any edges with private timepoints of any other agent, each

agent can apply 4DPC to its private subproblem independently (lines 1-2). Given

the nature of the 4DPC algorithm as a bucket-elimination algorithm (solutions to

the remaining subproblem are guaranteed extensible to the eliminated variables), each

agent will have computed all constraints over its interface variables that capture the

impact its private subproblem has on the shared subproblem. Thus, at this point,

the shared STN, which is collected by the coordinator using blocking communication
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(lines 3,5), correctly encodes all agents’ influences. Since the shared STN is itself

just an STN, the coordinator can correctly apply 4PPC (lines 6-7) to the shared

subproblem. The resulting updated edges are communicated back to each individual

agent using blocking communication (lines 9, 11). At this point, by Theorem 2.1, each

agent is free to independently update its private subproblem. Thus the backwards

sweep of the P3C is independently applied to agent i’s private subnetwork.

Theorem 2.6. PC4PPC executes in O ((|VP |+ |VS|) · ω∗2o ) time, where |VP | =

maxi |V i
P | and ωo is the graph width induced by o.2

Proof. The runtime of this algorithm is dominated by the functions in

� line 1 — O (|V |P · ω∗2o )),

� line 6 — O (|V |S · ω∗2o ),

� line 8 — O (|V |S · ω∗2o ), and

� line 12 — O (|V |P · ω∗2o ).

This aggregates to O ((|VP |+ |VS|) · ω∗2o ) time.

Notice, that the parts of the algorithm operating on private subproblems can

execute concurrently, leading to an overall savings when |VP |+ |VS| < |V |.

2.5.3 The Distributed Partial Path Consistency Algorithm

I introduced the PC4PPC algorithm as a stepping stone for understanding my

fully distributed partial path consistency algorithm D4PPC. I introduce this in two

stages, starting with the D4DPC algorithm for triangulating and establishing DPC on

a MaSTN instance in a distributed fashion in Section 2.5.3.1, followed by the reverse

sweep in Section 2.5.3.2.

2.5.3.1 The D4DPC Algorithm

In the partially-centralized PC4PPC algorithm, the coordinator waits for each

agent to triangulate its private portion of the MaSTN before it can triangulate and

establish DPC on the remaining shared portion of the MaSTN. Consider once again

the example in Figure 2.3. Ann’s agent can successfully and independently execute

2In Appendix A, we show that all elimination orderings that are consistent with any possible
interleaving of partial elimination orderings generated by concurrently executing agents are valid
elimination orderings.
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4DPC on its two private timepoints TRA
ET and RA

ET . At this point, consider what

would happen if, instead of sending the remaining subproblem to the coordinator

(like in PC4PPC), Ann’s agent optimistically proceeded with eliminating its other

timepoints RA
ET and TRA

ST . Now Ann’s agent must consider how other agents’ actions

will affect the MaSTN, and thus, the timepoint it is considering for elimination. For

example, suppose Ann’s agent is considering eliminating RA
ST , but unbeknownst to

Ann’s agent, Bill’s agent has already eliminated RB
ST . In this case, Ann’s agent would

be eliminating RA
ST assuming that an edge with RB

ST still exists, when in reality, it

does not. As a result, the computation of Ann’s agent could result in superfluous

reasoning or reasoning over stale information, which ultimately could jeopardize the

integrity of the output of algorithm as a whole. Next, I discuss how my algorithm

avoids these problematic situations.

My distributed algorithm D4DPC (Algorithm 2.8) is a novel, distributed im-

plementation of a bucket-elimination algorithm for multiagent temporal networks.

Each agent is not only responsible for externalizing shared constraint summaries of

the impact of its local problem, but also for eliminating its shared timepoints, using

communication to guarantee that DPC is established on the entire multiagent temporal

network. Each agent starts by applying 4DPC on its private STP (lines 1-2). Then

an agent proceeds to eliminating its shared timepoints by securing a lock on the shared

timepoint elimination ordering (line 4), selecting a local timepoint vk to eliminate

(line 5), recording vk in the shared elimination ordering (line 6), and releasing the lock

(line 7). To maximize concurrency, this is done in a first-come, first-served basis. To

avoid deadlocks and establish a precise ordering over all timepoints, if two or more

agents request the lock at the same time, the tie-breaker goes to the agent that has

the most non-eliminated timepoints remaining, and if this number is the same for

two or more agents, the lock goes to the agent with the smallest id. Then, before

performing the basic 4DPC inner loop for this selected timepoint, the agent blocks

until it has received updated edge information with respect to all timepoints that

share an edge with vk but appear before it in the shared elimination ordering (lines

9-12). Once these steps are completed, an agent can safely proceed with lines 13-23,

which are identical to the inner loop of the 4DPC algorithm except for lines 20-22,

which send updated edge information to each neighboring agent. This continues until

an agent has eliminated all of its local timepoints (line 3).
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Algorithm 2.8 Distributed Directed Path Consistency (D4DPC)

Input: Agent i’s portion of a distance graph Gi =
〈
V i, Ei

〉
Output: Agent i’s portion of a triangulated, DPC distance graph Gi and corresponding

elimination orders oiP and oS or inconsistent
1: Gi, oiP ←4DPC(

〈
V i
P , E

i
〉
); return inconsistent if 4DPC does

2: oS ← ()
3: while |V i

L| > 0 do
4: RequestLock(oS)
5: vk ← SelectNextTimepointVariable(

〈
V i
L, E

i
〉
, oS)

6: oS.append(vk)
7: ReleaseLock(oS)
8: V i

L ← V i
L \ {vk}

9: for all vi ∈ V i
X ∩ oS s.t. eik ∈ E do

10: Ei ← Ei∪ BlockReceiveUpdatedEdges(Agent(vi))
11: V i

X ← V i
X \ {vi}

12: end for
13: for all vi, vj ∈ V i

S s.t. eik, ejk ∈ E do
14: E ← E ∪ {eij}
15: wij ← min(wij , wik + wkj)
16: wji ← min(wji, wjk + wki)
17: if wij + wji < 0 then
18: Broadcast(inconsistent)
19: return inconsistent
20: else
21: SendUpdatedEdge(eij , Agent(vi)),SendUpdatedEdge(eij , Agent(vj))
22: end if
23: end for
24: end while
25: for k = n . . . 1 do V ← V ∪ vk
26: return Gi, oiP , oiS

Theorem 2.7. D4DPC is deadlock free.

Proof. There are two lines where agents may block on other agents in this algorithm:

line 4 and line 10. In line 4, there is only one lock (on the shared elimination order),

and requests for the lock are granted on a first-come, first-served basis, with ties being

broken according to remaining problem size and then agent id. Further, once an agent

has a lock on the elimination order, oS, it executes two local operations (to select a

variable to append to oS) before releasing the lock again in line 7. Hence, a deadlock

cannot occur as a result of contention over oS.

This leaves line 10. Assume, by way of contradiction, that line 10 causes a deadlock.

This implies that there are two (or more) agents, i and j, where i 6= j such that both

agent i and agent j are simultaneously waiting for communication from each other

in line 10. Thus, there exists a timepoint vjx ∈ V i
X ∩ V

j
L for which agent i is waiting
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to receive updated edges from agent j, while there is also a viy ∈ V
j
X ∩ V i

L for which

agent j is waiting to receive updated edges from agent i. Notice that vjy must appear

before vix in agent i’s copy of oS; because otherwise by the time vjy appeared in oS,

agent i would have already sent agent j all edge updates pertaining to vix (line 21) in

the previous loop iteration in which vix was eliminated (and added to oS in line 6).

However, for the same reason, vix must appear before vjy in agent j’s copy of oS. But

this is a contradiction, because there is only one shared elimination order and agents

can only append to it after being grant mutually exclusive access. This argument

extends inductively to three or more agents, and so line 10 can also not be the cause

of a deadlock.

Therefore the D4DPC algorithm is deadlock free.

Theorem 2.8. D4PPC correctly establishes DPC on the multiagent STP.

Proof (Sketch) – Full Proof in Appendix A.3. Since, by definition, none of an agent’s

private timepoints share any edges with private timepoints of any other agent, each

agent can apply 4DPC to its private subproblem independently (lines 1-2). Given

the nature of the 4DPC algorithm as a bucket-elimination algorithm (solutions to

the remaining subproblem are guaranteed extensible to the eliminated variables),

each agent will have computed all constraints over its interface variables that capture

the impact its private subproblem has on the shared subproblem. The remaining

algorithm applies the 4DPC algorithm on an agent’s local, shared timepoints. Lines

4-7 guarantee that a globally consistent elimination ordering of all shared timepoints

is established. Finally, lines 9-12 and 21-22 guarantee that information is sent and

received in an on-time basis.

Theorem 2.9. D4DPC executes in O ((|VP |+ |VS|) · ω∗2o ) time, where |VP | = maxi |V i
P |

and ωo is the graph width induced by o.

Proof. Beyond the lines added for communication, the D4DPC algorithm exactly

executes the 4DPC algorithm with the caveat that the elimination order is restricted

to eliminating all private timepoints prior to all shared timepoints. Locally, the lines of

code added for communication add only a constant amount of work within the 4DPC

algorithm. However, in line 10, agents may be required to block, waiting for some

other agent to complete some local computation. In the worst case, the elimination of

all shared timepoints must be done completely sequentially, which puts D4DPC in

the same complexity class as the PC4PPC algorithm, O ((|VP |+ |VS|) · ω∗2o ).
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Note that Theorem 2.9 provides a worst-case analysis. In the best case, complete

concurrency is possible, putting the runtime closer to O (|VL| · ω∗2o ) (where |VL| is

likely to be less than |VP |+ |VS|). That is, in the best case, no blocking occurs (and

agents can execute 100% concurrently), leading to only the costs of agents executing

4DPC on their local subproblems. Note, this best-case is likely only realized when,

for instance, there are no external constraints. In expectation, actual run times are

likely to fall between these two extremes.

2.5.3.2 The D4PPC Algorithm

An agent executing the D4DPC algorithm externalizes its local constraints in a

way that summarizes the impact its local problem has on the shared problem, and

thus other agents. However, this is only useful if an agent can also incorporate how the

externalized constraints of other agents impact its local problem. Here, I present the

D4PPC algorithm, which augments the D4DPC algorithm with a second, reverse

sweep of execution to establish the complete space of solutions (see Figure 2.1 b). Later

(Section 2.6), I will present an algorithm that instead uses the D4DPC algorithm to

inform the calculation of a temporal decoupling.

First, I return to the running example problem for motivation. At the end of the

D4DPC algorithm, both Ann and Bill’s agents will have externalized the impacts their

local problems have on the shared portion of the problem. With respect to Ann and

Bill’s recreational activity, this includes calculating the local window of time that both

Ann and Bill have available to start recreation, 8:00-9:30 and 8:00-10:00 respectively.

The role of the D4PPC algorithm, then, is to, e.g., calculate the intersection of

these two windows of time (8:00-9:30), and then locally incorporate the impact of this

updated window of availability (e.g., given that Bill will now start recreation no later

than 9:30, its agent should also update the end time to be no later than 10:30).

The D4PPC algorithm (Algorithm 2.9) starts by executing the D4DPC algorithm,

which results in a globally DPC network (or inconsistency), along with an elimination

order over vertices (lines 1-2). The remainder of the algorithm essentially executes the

second phase of the original P3C algorithm, which has been augmented to allow for

consistent, distributed computation. The algorithm traverses vertices in reverse order

and instead of calculating or updating a third edge based on two neighboring edges, it

updates the neighboring edges based on the (newly) updated third edge. Thus, to

guarantee that these updates are based on correct information, if that third edge is

external to the agent, it must wait until it receives updated edge weights from the

agent responsible for updating the edge (the agent whose timepoint appears lowest in
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the elimination order) in lines 6-8. The neighboring edge weights are then updated

with respect to this updated third edge. After performing all updates on an edge, an

agent then communicates the updated weights to any agent that also shares the edge

(lines 14-16). Note that the mechanisms that are in place for guaranteeing correct

communication only need to be executed when external edges are involved. After an

agent has revisited all of its interface variables (i.e., its local variables that appear in

the shared elimination order) it can revisit its remaining private variables completely

independently by applying the second phase of the P3C algorithm in line 19.

Algorithm 2.9 Distributed Partial Path Consistency (D4PPC)

Input: Agent i’s local STP instance Gi = 〈V i, Ei〉
Output: The PPC network of G or inconsistent

1: Gi, oiP , oS = (v1, v2, . . . vn)← D4DPC (Gi)
2: Return inconsistent if D4DPC does
3: for k = n . . . 1 such that vk ∈ V i

L do
4: for i = n . . . k + 1 such that ∃eik ∈ Ei

L ∪ Ei
X do

5: for j = n . . . i+ 1 such that ∃eik ∈ Ei
L ∪ Ei

X do
6: if eij ∈ Ei

X and wij, wji have not yet been updated then
7: wij, wji ← BlockReceiveUpdatedEdge(Agent(vi))
8: end if
9: wik ← min(wik, wij + wjk)

10: wki ← min(wki, wkj + wji)
11: wkj ← min(wkj, wki + wij)
12: wjk ← min(wjk, wji + wik)
13: end for
14: if vi ∈ V i

X then
15: SendUpdatedEdge(Agent(vi), eik)
16: end if
17: end for
18: end for
19: P3C-2(〈V i

P , E
i〉 , oiP )

20: return Gi

Theorem 2.10. D4PPC is deadlock free.

Proof. From Theorem 2.7, line 1 is deadlock free; the rest of this proof mirrors, in part,

the proof of Theorem 2.7. Notice that each agent revisits nodes in reverse oS (line 3).

By contradiction, assume line 7, which represents the only blocking communication

in this algorithm, introduces a deadlock. This implies that there are two (or more)

agents, i and j, where i 6= j such that both agent i and agent j are simultaneously

waiting for communication from each other in line 7. Thus, there exists a timepoint
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vjx ∈ V i
X ∩V

j
L for which agent i is waiting to receive updated edges from agent j, while

there is also a viy ∈ V
j
X ∩ V i

L for which agent j is waiting to receive updated edges

from agent i. Notice that vik (the timepoint that agent i is currently considering)

must appear before vjy (hence the need for blocking communication), but after vix in

agent i’s copy of oS, because otherwise agent i would have already sent agent j all

edge updates pertaining to vix (line 15) in the previous loop iteration in which vix was

revisited. However, for the same reason, vjk (the timepoint that agent j is currently

considering) must appear before vix but after vjy in oS. But this is a contradiction,

because (as established by Theorem 2.7), oS is constructed in a way that consistently

and totally orders all shared timepoints. This argument extends inductively to three

or more agents, and so line 7 can also not be the cause of a deadlock.

Therefore the D4PPC algorithm is deadlock free.

Theorem 2.11. D4PPC correctly establishes PPC on the multiagent STP.

Proof (Sketch) – Full Proof in Appendix A.4. The proof borrows from the basic intu-

ition of Theorem 2.8. The algorithm starts by correctly establishing DPC on the

MaSTN. Then, the algorithm executes the same operations as the second phase of

the P3C algorithm, but in a distributed fashion, using blocking communication to

guarantee that all computation is performed using only the penultimately updated

edge weights.

Theorem 2.12. D4PPC executes in O ((|VP |+ |VS|) · ω∗2o ) time, where |VP | =

maxi |V i
P | and ωo is the graph width induced by o.

Proof. Beyond the lines added for communication, the D4PPC algorithm exactly

executes the P3C with the caveat that the elimination order is restricted to eliminating

all private timepoints prior to all shared timepoints. Locally, the lines of code added

for communication add only a constant amount of work within the P3C algorithm.

However, in line 10, agents may be required to block, waiting for some other agent to

complete some local computation. In the worst case, the elimination and subsequent

revisiting of all shared timepoints must be done completely sequentially, which puts

in the same complexity class as the PC4PPC algorithm, O ((|VP |+ |VS|) · ω∗2o ).

Note that Theorem 2.12 once again provides a worst-case analysis. In the best

case, complete concurrency is possible, putting the runtime closer to O (|V |L · (ω∗2o )).

In expectation, actual run times are likely to fall between these two extremes.
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2.5.4 Empirical Evaluation

In this section, I empirically compare my algorithms for solving the MaSTP. The

performance of my distributed algorithms relies on the size of each agent’s private

subproblem relative to the size of the collective shared subproblem. This is in turn

influenced by the number external constraints relative to the number (and size /

complexity) of interrelated agent problems. The greater the portion of the problem

that is private to an agent, rather than shared, the greater the level of independent

reasoning and concurrency, and thus faster overall solve times.

2.5.4.1 Experimental Setup.

I evaluate my algorithms for solving multiagent STPs on randomly-generated STP

instances. While real problem instances would allow me to better characterize the

performance of my algorithms on naturally-structured problems, random problem

generation allows me to control the complexity of and the relative private-to-shared

timepoint ratio in the composition of problem instances. The random problem

generator is parameterized by the tuple 〈A, T, P, CL, CX〉, where A is the number of

agents, T is the number of timepoint variables per agent, P is the percentage of its

timepoints that an agent keeps private, CL is the number of local constraints per

agent, and CX is the total number of interagent constraints. My default parameter

settings are A = 25, T = 25, P = 67%, CL = 200, and CX = A · CL · P . Using the

default parameter settings as a basis, I normalize results as I vary P by scaling the

number of constraints (CL and CX) so that, in expectation, the complexity of the

centralized algorithm is constant (falls within 5% of the complexity of the default

settings).

To capture expected trends, I run all experiments using 25 trials (each with

a distinct random seed). My algorithms were programmed in Java, on a 2 GHz

processor with 2 GB of RAM. For the purposes of modeling a concurrent, multiagent

system, I interrupted each agent after it was given the opportunity to perform one

constraint check and send one message, systematically sharing the processor between

all agents involved. All approaches use the minimum fill heuristic (Kjaerulff, 1990).

My approaches were applied to connected networks of agents, although intuitively,

the performance of any of my algorithms would be enhanced by applying them to

disparate agent networks, independently. Finally, all problem instances were generated

to lead to consistent, decomposable STP instances to evaluate a full application of

each algorithm. In general, however, unlike previous approaches, my algorithms do not
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require input STPs to be triangulated (Xu & Choueiry, 2003; Planken et al., 2008b).

When solving a traditional CSP, one of the primary unit of computation is the

constraint check. Meisels & Zivan (2007) extend this metric to a distributed setting

by introducing the non-concurrent constraint check (nccc). Note that agents solving a

distributed problem form a partial order over constraint checks based on the fact that

(1) any two constraint checks performed within the same agent must be performed

sequentially and (2) any constraint check xi performed by agent i performed prior

to sending a message mij can be ordered before any constraint check xj performed

by agent j after receipt of mij. The nccc metric, then, is simply the length of the

longest critical path in this partial ordering of constraint checks. I generalized the

nccc metric to my work by counting the number of non-concurrent computational

units: the number of cycles it takes to establish global STP PPC, where each agent is

given an opportunity to perform a single bound check or update during each cycle of

computation (although agents may spend this cycle idly blocking on updates from

other agents). Since D4PPC requires a significant number of messages, I separately

count the number of computation cycles where at least one agent sends a message.

In addition to my evaluation of algorithm solve time (Section 2.5.4.2) I also demon-

strate how the variable elimination order induced by my divide-and-conquer based

partially-centralized and distributed algorithms leads to less efficient triangulations,

and thus more total computation (Section 2.5.4.3).

2.5.4.2 Impact on Concurrent Execution.

One of the main benefits that I associate with performing a greater amount of

computation in a more distributed fashion is that it promotes greater concurrency. The

greater the number of agents that can be computing at the same time, theoretically,

the less time it takes to complete the same amount of computation. In this section,

I explore how well my multiagent algorithms can exploit concurrent computation,

reporting the number of non-concurrent computational units along with the number

of that require messages.

Figure 2.8 shows the non-concurrent computation curves for 4PPC, PC4PPC,

and D4PPC algorithms, as well as two additional curves: one that captures D4PPC

performance when message latency is equal to the computational time required to

perform a single constraint check (Low Latency) and the other captures D4PPC

performance when message latency requires an-order-of-magnitude more time than

performing a single constraint check (High Latency). Note that message latency for

the centralized and partially-centralized approach is assumed negligible, since only a
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Figure 2.8: Non-concurrent computation vs. P .

single message (the one from each agent to centralize the problem) is passed per agent.

P dictates the portion of the problem that remains private, and thus corresponds to

level of coupling between problems, where when P is low the problem is highly-coupled

and when P is high, the agent subproblems are highly independent.

As shown in Figure 2.8, when P is low, PC4PPC behaves much like 4PPC, and

when P is high, it performs more similarly to D4PPC. When P is low, D4PPC, in

expectation, performs roughly four times fewer non-concurrent computational units

than 4PPC and exceeds 22 times speedup (given 25 agents, perfect speedup is 25) for

high P values. For both PC4PPC and D4PPC, the lack of concurrency is mainly

due to the synchrony required to solve the shared STP. As the size of the shared STP

shrinks relative to the size of the local STPs, this source of non-concurrency is reduced,

resulting in improved performance. In both cases, imbalance in the complexity and size

of individual agent problems prevents the algorithms from achieving perfect speedup.

Interestingly, when I account for low message latency, the distributed approach still

performs very well (roughly 3 times speedup for low P values and approaches perfect

speedup when P is high). However, when message latency is an-order-of-magnitude

more expensive than performing a single constraint check, notice that, for low P values,

the distributed approach would actually exceed the runtime of the more centralized

approaches. Regardless of message latency, both partially-centralized and distributed

approaches approach perfect speedup as P increases, meaning D4PPC can exploit

loosely-coupled problem structure, when it exists.
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Figure 2.9: Non-concurrent computation vs. A.

Finally, Figure 2.9 shows the non-concurrent computation as the number of agents

grows. The number of non-concurrent constraint checks tends to grow linearly with

the number of agents for both 4PPC and PC4PPC. For this set of experiments, P

was set at 67%, thus PC4PPC grows about a third as quickly as 4PPC and has a

speedup that hovers around 3. Figure 2.9 also shows that the expected runtime of

D4PPC increases more slowly than the PC4PPC, and D4PPC’s speedup increases

with the number of agents as seen by the widening relative gap between the 4PPC

and D4PPC curves.

2.5.4.3 Impact on Fill Edge Heuristics.

The minimum-fill variable ordering heuristic myopically selects the timepoint, from

a set of timepoints, whose elimination it expects will lead to the fewest added fill

edges. Since the centralized algorithm, 4PPC, places no restrictions on this heuristic,

I expect it to add fewer fill edges. PC4PPC and D4PPC, on the other hand, both

restrict private timepoints to be eliminated prior to shared timepoints. And whereas

the coordinator in the PC4PPC can apply fill heuristics to the set of all shared

timepoints, each agent in D4PPC is restricted to applying this heuristic to only its

local timepoints. Intuitively, I expect each of these additional restrictions to hurt

heuristic performance, that is, to lead to triangulations with more fill edges. I test

this hypothesis on problems by increasing the proportion of private timepoints (P );

the results are displayed in Figures 2.10 and 2.11.

Overall, the number of fill edges decreases as P increases, since, as constraints
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become more dense in the private STPs, more triangles preexist in the initial graph,

resulting in fewer fill edges that need to be added. While, as expected, D4PPC adds

more fill edges than the other two algorithms, surprisingly, the expected number of fill

edges (Figure 2.10) added using 4PPC and PC4PPC is nearly indistinguishable. As

P nears 1.0, the fill edge curve of D4PPC eventually approaches that of 4PPC, since

the restrictions on the heuristic have diminishing impact as interagent constraints

grow more sparse.
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Figure 2.10: Number of added fill edges vs. P .

The specific differences between the expected number of fill edges for 4PPC and

PC4PPC are statistically insignificant. By performing a paired Student’s T-test,

however, I find that the number of fill edges is statistically unlikely to come from

the same populations. This means that differences do in fact exist. In Figure 2.11,

I plot the ratio of the number of fill edges for both PC4PPC and D4PPC to the

number of fill edges generated by 4PPC. This shows that the restrictions imposed by

my partitioning of the STP hurt when P is low (when most triangles end up being

shared), increasing the relative number of fill edges by up to 5%, and help when P is

high (when most triangles end up being private), decreasing the relative number of fill

edges by up to 10%. The additional restrictions placed on D4PPC lead to up to a

50% increase in fill edges, and never significantly fewer edges than 4PPC.

These results are important, since as shown by the PC4PPC curve, before com-

putational concurrency is taken into account, the structural knowledge captured by

agents’ private subproblems can reduce the total amount of computation. Clearly, if
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Figure 2.11: Relative (to centralized) number of added fill edges vs. P .

agents use a method for determining the best elimination ordering (an NP-complete

problem), the centralized approach would be guaranteed to find it. However, these

results suggest that centralized heuristics could benefit from using the structural

knowledge embedded in my shared vs. private partitioning. While these problems

were randomly generated (and it would be easy to generate pathological cases where

a centralized view of the problem is critical to heuristic performance), my algorithms

demonstrate a promising ability to exploit structure and, to the extent that real-

world problems have more locally-dense, loosely-coupled structured, achieve increased

performance.
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2.6 Decoupling Algorithms

In this section, I introduce new distributed algorithms for calculating a temporal

decoupling, and prove their correctness and computational complexity. My algorithm

represents an improvement over the previous approach in that it is distributed, rather

than centralized, executes on a sparser, more efficient network representation, elimi-

nates the assumption that input graphs must be consistent, and performs decoupling

as an embedded procedure in existing, efficient consistency algorithms, rather than as

an outer-loop (Hunsberger, 2002).

2.6.1 A Distributed Multiagent Temporal Decoupling Problem Algorithm

The goal of the Multiagent Temporal Decoupling Problem (MaTDP) algorithm,

presented as Algorithm 2.10, is to find a set of decoupling constraints C∆ that render

the external constraints CX moot, and thus agents’ subproblems independent (see

Figure 2.7). Agents accomplish this goal by assigning shared timepoint variables in

reverse elimination order once D4DPC has completed, instead of tightening shared

edges as in the D4PPC algorithm. First, the D4DPC algorithm triangulates and

propagates the constraints, eliminating the shared timepoints VS last. Figure 2.12(a)

shows the shared temporal network after all other local variables have been eliminated.

Notice that local constraints are reflected in the tighter domains (as compared to

Figure 2.1 (a)). The shared variables are eliminated in order, from left to right

(oS = (TPC
ET , R

A
ST , TR

A
ST , R

B
ST )), which introduces the new edges, shown with dotted

lines, and their weights. If D4DPC propagates to an inconsistent graph, then the

algorithm returns inconsistent.

Otherwise, MaTDP initializes an empty C∆ and then steps through vertices in

inverse elimination order, starting with RB
ST . In this case, MaTDP skips over the inner

loop (lines 6-12) because in this example there are no vertices later in oS than RB
ST .

In line 13, I assign the timepoint to the midway point between its upper and lower

bounds. Notice that if the D4DPC algorithm had not first been executed, this would

lead to assign RB
ST to the midpoint of its original domain of 8:00-12:00, which would

result in an inconsistent assignment (to 10:00). However, in this case MaTDP would

add the constraint that RB
ST happens at 8:45 to C∆ (line 15). In line 14, this is sent

to Ann’s agent, because RB
ST shares external edges with Ann’s timepoints. The next

vertex is TRA
ST . Note, Ann’s agent would consider processing this variable right away,

but the inner loop (lines 6-12) forces Ann’s agent to wait for the message from Bill’s

agent. When it gets there, Ann’s agent updates its edge weights accordingly (lines
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Algorithm 2.10 Multiagent Temporal Decoupling Problem (MaTDP)

Input: Gi, agent i’s known portion of the distance graph corresponding an MaSTP
instance M.

Output: Ci
∆, agent i’s decoupling constraints, and Gi, agent i’s PPC distance graph

w.r.t. Ci
∆.

1: Gi, oiL, oS = (v1, v2, . . . vn)←D4DPC (Gi)
2: Return inconsistent if D4DPC does
3: Ci

∆ = ∅
4: for k = n . . . 1 such that vk ∈ V i

L do
5: wDPCzk ← wzk, w

DPC
kz ← wkz

6: for j = n . . . k + 1 such that ∃ejk ∈ Ei
L ∪ Ei

X do
7: if ejk ∈ Ei

X then
8: wzj, wjz ← Block until receive updates from (Agent(vj))
9: end if

10: wzk ← min(wzk, wzj + wjk)
11: wkz ← min(wkz, wkj + wjz)
12: end for
13: Assign vk // tighten wzk,wkz to ensure wzk + wkz = 0
14: Send wzk, wkz to each Agent(vj) s.t. j < k, ejk ∈ Ei

X

15: Ci
∆ ← Ci

∆ ∪ {(z − vk ∈ [−wzk, wkz])}
16: end for
17: if(RELAX)then Gi, Ci

∆ ← MaTDR(Gi, wDPC)
18: return P3C-2(GiL+∆, o

i
L), Ci

∆

10-11). In this case, given that TRA
ST is at least 60 minutes after RB

ST , TRA
ST ’s domain

is tightened to [9:45, 10:30]. Then in line 13, Ann’s agent chooses the decoupling point

by splitting the difference, thus adding the constraint that TRA
ST occurs at 10:08. This

same process is repeated until all timepoints in VS have been assigned; the result is

shown in Figure 2.12 (b).

As mentioned, a simple default heuristic is to assign vk to the midpoint of its

path consistent domain (which corresponds to using the rules wzk ← wzk − 1
2
(wzk +

wkz);wkz ← −wzk for line 13). In general, however, assigning variables is more

constraining than necessary. Fortunately, agents can optionally call a relaxation

algorithm (introduced in Section 2.6.2) that replaces C∆ with a set of minimal

decoupling constraints. Later, I will explore and evaluate other assignment heuristics

for line 13 (other than the default midpoint assignment procedure) that, when combined

with the relaxation algorithm, could lead to less constraining decoupling constraints.

To avoid inconsistency due to concurrency, before calculating decoupling constraints

for vk, an agent blocks in line 8 until it receives the fresh, newly-computed weights

wzj, wjz from vj ’s agent (Agent(vj), as sent in line 14) for each external edge ejk ∈ Ei
X
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Figure 2.12: Applying the MaTDP algorithm to the example scheduling problem.
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where j > k. While this implies some sequentialization, it also allows for concurrency

whenever variables do not share an external edge. For example, in Figure 2.12(b),

because TPC
ET and RA

ST do not share an edge, after Ann’s agent has assigned TRA
ST ,

both Ann and Chris’ agents can concurrently and independently update and assign

RA
ST and TPC

ET respectively. Finally, each agent establishes PPC in response to its

new decoupling constraints, by executing P3C-2 (which refers to lines 3-9 of Algorithm

2.4).

Theorem 2.13. The MaTDP algorithm (excluding the MaTDR subroutine) has an

overall time complexity of O ((|VP |+ |VS|) · ω∗2o ), where |VP | = maxi |V i
P | and requires

O (|EX |) messages.

Proof. The MaTDP algorithm calculates DPC and PPC in O ((|VP |+ |VS|)ω∗2o ) time.

Unary, decoupling constraints are calculated for each of |VX | external variables vk ∈ VX
(lines 4-16), after iterating over each of vk’s O (ω∗o) neighbors (lines 6-12). Thus

decoupling requires O (|VS| · ω∗o) ⊆ O (|VS| · ω∗2o ) time, and so MaTDP has an overall

time complexity of O ((|VP |+ |VS|) · ω∗2o ). The MaTDP algorithm sends exactly one

message for each external constraint in line 14, for a total of O(|EX |) messages.

Theorem 2.14. The MaTDP algorithm is sound.

Proof. Lines 1-2 return inconsistent whenever the input MaSTPM is not consistent.

By contradiction, assume that there exists some external constraint cxy with bound

bxy that is not satisfied when the decoupling constraints cxz and czy, calculated by

MaTDP, with bounds bxz′ and b′zy respectively, are. In such a case. b′xz + b′zy > bxy.

WLOG, let x < y in oS.

Note, by the time vx is visited (in line 4), the following are true:

wxy ≤ bxy; (2.1)

wzy + wyz = 0; (2.2)

b′zy = wzy. (2.3)

(2.1) is true since line 1 applies DPC; (2.2) is true since line 13 will have already

been executed for vy, and (2.3) is true by construction of czy in line 15. The only

update occurring to wxz occurs in line 11, and, since exy is external, one of these

updates will be w′xz = min(wxz, wxy + wzy), and thus

w′xz ≤ wxy + wzy. (2.4)
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Combining (2.1), (2.2), and (2.4), yields the fact:

w′xz + wzy ≤ wxy ≤ bxy. (2.5)

The only time w′xz may be be further updated is in future iterations of line 11 and

then possibly in line 13 to produce w′′xz, but both lines 11 and 13 only tighten (never

relax). Thus, with (2.5) this implies that

w′′xz + wzy ≤ w′xz + wzy ≤ wxy ≤ bxy. (2.6)

In line 15, cxz is constructed such that bxz = w′′xz; this fact, along with (2.3) and

(2.6), implies bxz + bzy ≤ bxy. However, this is a contradiction to the assumption that

b′xz + b′zy > bxy, so the decomposable distance graph and constraints C∆ calculated by

MaTDP form a temporal decoupling of M.

Theorem 2.15. The MaTDP algorithm is complete.

Proof (Sketch) – Full Proof in Appendix A.5. The basic intuition for this proof is pro-

vided by the fact that the MaTDP algorithm is simply a more general, distributed

version of the basic backtrack-free assignment procedure that can be consistently

applied to a DPC distance graph. I show that when I choose bounds for new, unary

decoupling constraints for vk (effectively in line 13), wzk, wkz are path consistent with

respect to all other variables. This is because not only is the distance graph DPC, but

also the updates in lines 10-11 guarantee that wzk, wkz are path consistent with respect

to vk for all j > k (since each such path from vj to vk will be represented as an edge

ejk in the distance graph). So the only proactive edge tightening that occurs, which

happens in line 13 and guarantees that wzk +wkz = 0, is done on path-consistent edges

and thus will never introduce a negative cycle (or empty domain). So if the MaSTP is

consistent, the MaDTP algorithm is guaranteed to find a temporal decoupling.

2.6.2 A Minimal Temporal Decoupling Relaxation Algorithm

The goal of the Multiagent Temporal Decoupling Relaxation (MaTDR) algorithm,

presented as Algorithm 2.11, is to replace the set of decoupling constraints produced

by the MaTDP algorithm, C∆, with a set of minimal decoupling constraints, C
′
∆.

Recall from Section 2.4.2 that a minimal decoupling is one where, if the bound of any

decoupling constraint c ∈ Ci
∆ for some agent i is relaxed, then {S1

L+∆,S2
L+∆, . . . ,SnL+∆}

is no longer guaranteed to form a decoupling. Clearly the temporal decoupling produced

when running MaTDP using the default heuristic on the example problem, as shown
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in Figure 2.12(b), is not minimal, since, for example, the decoupling bounds on TPC
ET

could be relaxed to includes its entire original domain and still be decoupled from

TRA
ST . The basic idea of the MaTDR algorithm is to revisit each external timepoint

vk and, while holding the domains of all other external timepoint variables constant,

relax the bounds of vk’s decoupling constraints as much as possible.

I describe the execution of the algorithm by describing an execution trace over the

running example problem. The MaTDR works in original oS order, and thus starts with

TPC
ET . First, Chris’ agent removes TPC

ET ’s decoupling constraints and restores TPC
ET ’s

domain to [9:30,10:00] by updating the corresponding edge weights to their stored,

DPC values (lines 1,3). Notice that lines 3-16 are similar to backwards execution

of lines 6-12 in the MaTDP algorithm, except that a separate, “shadow” δ bound

representation is used and updated only with respect to the original external constraint

bounds (not tightened edge weights) to ensure that the later constructed decoupling

constraints are minimally constraining. Also, in lines 17-24, a decoupling constraint is

only constructed when the bound of the potential, new constraint (e.g., δkz) is tighter

than the already implied edge weight (e.g., when δkz < wkz). For example, the only

constraint involving TPC
ET is that it should occur before TRA

ST . However, TRA
ST is

currently set to occur at 10:08 (δ=10:08), and since TPC
ET is already constrained to

occur before 10:00 (w =10:00), δ 6< w, and so no decoupling constraints are added to

the set C
′
∆ for TPC

ET (allowing it to retain its original domain of [9:30,10:00]). The

next variable to consider is RA
ST , whose domain relaxes back to [8:00,9:30]. However,

since RA
ST shares a synchronization constraint with RB

ST , whose current domain is

[8:45,8:45], Ann’s agent will end up re-enforcing the original decoupling constraints

of RA
ST ∈ [8:45,8:45]. On the other hand, after Ann’s agent recovers TRA

ST ’s original

DPC domain of [9:30,10:30], it then needs to ensure that TRA
ST will always occur after

TPC
ET ’s new domain of [9:30,10:00]. In this case, decoupling from TPC

ET requires only

a lower bound of 10:00 for TRA
ST and results in a more flexible domain of [10:00,10:30].

The minimal decoupling constraints and corresponding distance graph that MaTDR

calculates for the running example are presented in Figure 2.12(c) for the shared

network and Figure 2.1(c) for the entire MaSTN.

The MaTDR Algorithm applies two different kinds of updates. When the edge

ejk considered in line 6 is external, the MaTDR Algorithm executes lines 8-9, which

updates the shadow edge weights δzk and δkz in a way that guarantees they will be

consistent with all values of vj’s domain. On the other hand, if edge ejk is local, the

MaTDR Algorithm instead executes lines 11-12, which update the actual edge weights

wzk and wkz in a least-commitment way, guaranteeing that all encapsulated values
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Algorithm 2.11 Multiagent Temporal Decoupling Relaxation (MaTDR)

Input: Gi, and the DPC weights, wDPCzk , wDPCkz , for each vk ∈ V i
X

Output: C
′i
∆, agent i’s minimal decoupling constraints, and Gi, agent i’s PPC distance

graph w.r.t. C
′i
∆.

1: C
′i
∆ ← ∅

2: for k = 1 . . . n such that vk ∈ V i
L do

3: wzk ← wDPCzk , wkz ← wDPCkz

4: δzk ← δkz ←∞
5: for j = 1 to n such that ∃ejk ∈ Ei

L ∪ EX do
6: if ejk ∈ Ei

X then
7: if j < k then wzj, wjz ← Block receive from Agent(vj)
8: if cjk exists then δzk ←min(δzk, bjk − wjz)
9: if ckj exists then δkz ←min(δkz, bkj − wzj)

10: else if j < k then
11: wzk ← min(wzk, wzj + wjk)
12: wkz ← min(wkz, wkj + wjz)
13: end if
14: end for
15: if δkz < wkz then
16: wkz ← δkz
17: C

′i
∆ ← C

′i
∆ ∪ {(z − vk ≤ δkz)}

18: end if
19: if δzk < wzk then
20: wzk ← δzk
21: C

′i
∆ ← C

′i
∆ ∪ {(vk − z ≤ δzk)}

22: end if
23: Send wzk, wkz to each Agent(vj) s.t. j > k, ejk ∈ Ei

X

24: end for
25: return Gi, C ′i∆

are consistent with some value of vj’s domain. Then the more-restrictive “shadow”’

edge weights δzk and δkz only lead to a new decoupling constraint if they are tighter

than the implied bound encapsulated in the actual edge weights wzk and wkz.

For example, suppose vk has a domain of [1:00,4:00], vj has a domain of [2:00,2:30]

(which already incorporates its new decoupling constraints, since vj appears before vk

in oS), and ejk has the label [0,60] (e.g., vk − vj ∈ [0, 60]), which corresponds to the

bounds of the original constraints. If ejk is an external edge, the “shadow” domain of

vk would be updated by lines 8-9 to be [2:30,3:00] otherwise lines 11-12 would update

the actual domain to [2:00,3:30]. Notice that if the domain of vj had instead been

fully assigned (e.g., reduced to [2:30,2:30]), the updates in lines 8-9 and lines 11-12

would have resulted in the exact same update to the domain of vk (e.g., [2:30,3:30]).
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Theorem 2.16. The MaTDR subroutine has an overall time complexity of O (|VS|(ω∗2o ))

and requires O (|EX |) messages.

Proof. Unary, decoupling constraints are calculated for each of |VS| shared variables,

but require visiting each of vk ∈ VS’s O (ω∗o) neighbors (lines 4-16), after iterating

over each of vk’s O (ω∗o) neighbors (lines 6-12). Thus the MaTDR subroutine requires

O (|VS|ω∗2o ) time. The MaTDR algorithm sends exactly one message for each external

constraint in line 23, for a total of O(|EX |) messages.

Notice that MaTDR is called once as a subroutine of the MaTDP algorithm, but

runs in less time, so the overall MaTDP algorithm runtime is stillO ((|VP |+ |VS|)(ω∗2o )).

Theorem 2.17. The local constraints calculated by the MaTDR algorithm form a

minimal temporal decoupling of S.

Proof (Sketch) – Full Proof in Appendix A.6. The proof that the set C
′
∆ forms a tem-

poral decoupling is roughly analogous to the proof for Theorem 2.6.1. By contradiction,

I show that if the bound bxz of some decoupling constraint cxz ∈ C
′
∆ is relaxed by

some small, positive value εxz > 0, then C
′
∆ is no longer a temporal decoupling. This

is because lines 8-9 imply that there exists some y such that either, bxz = bxy − bzy,
and thus bxz + εxz + bzy > bxy (and thus no longer a temporal decoupling), or that

bzy = bxy − (bxz + εxz) (and so is either not a decoupling or requires altering bzy in

order to maintain the temporal decoupling).

2.6.3 Evaluation

In the following subsections, I introduce the methodology I use to empirically

evaluate the performance of the MaTDP and MaTDR algorithms’ computational effort

and flexibility. Like the original D4DPC algorithms, my decoupling algorithms rely

on the size of each agent’s private subproblem vs. the size of the shared subproblem.

As the number of external constraints relative to the number of agents increases, not

only can less reasoning occur independently, but also the resulting decoupled solution

spaces will be subject to an increasing number of local constraints, and thus diminish

in completeness.

2.6.3.1 Methodology

To develop results comparable to those presented earlier, I reuse the basic experi-

mental setup from Section 2.5.4 but replace the random problem generator with the
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one described by Hunsberger (2002), which I adapt so that it generates multiagent

STP instances. Each problem instance has A agents each with start timepoints and

end timepoints for 10 activities. Each activity is constrained to occur within the time

interval [0,600] relative to a global zero reference timepoint, z. Each activity’s duration

is constrained by a lower bound, lb, chosen uniformly from interval [0,60] and an upper

bound chosen uniformly from the interval [lb, lb+ 60]. In addition to these constraints,

the generator adds 50 additional local constraints for each agent and N total external

constraints. Each of these additional constraints, eij, has a bound that is chosen

uniformly from the interval [wij − t · (wij +wji), wij ], where vi and vj are chosen, with

replacement, from the set of all timepoints with uniform probability, and t ∈ [0, 1] is a

tightness parameter, whose default value is set to t = 1 in these experiments, that

dictates the maximum portion that an interval can be tightened. To capture expected

trends in data, I generate and evaluate the expected performance of the algorithms

over 25 independently-generated trials for each parameter setting. Since the novelty

of the algorithms lies within the temporal decoupling aspects of the problem, I only

generate consistent MaSTP problem instances to compare the computational effort

of full applications of the various decoupling algorithms. I modeled a concurrently

executing multiagent system by systematically sharing a 3 Ghz processor with 4 GB of

RAM by interrupting each agent after it performed a single bound operation (either an

update or evaluation) and a single communication (sending or receiving one message).

2.6.3.2 Evaluation of Computational Effort

In the first set of experiments, I empirically compared:

� MaTDP+R – the MaTDP algorithm with the MaTDR subroutine,

� Cent. MaTDP+R – a single agent that executes MaTDP+R on a centralized

version of the problem,

� D4PPC – the execution of the D4PPC distributed algorithm for establishing

PPC for an MaSTP (but not a decoupling), and

� TDP — my implementation of the fastest variation (the RGB variation) of the

(centralized) TDP algorithm as reported in (Hunsberger, 2002).

For the TDP approach, I used the Floyd-Warshall algorithm to initially establish

FPC and the incremental update described in (Planken et al., 2008a) to maintain

FPC as new constraint were posted. I evaluated approaches across two metrics. The

non-concurrent computation (NCC ) metric, which, as described in Section 2.5.4,

is the number computational cycles before all agents in the simulated multiagent
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Figure 2.13: Nonconcurrent computation as A grows.

environment have completed their executions of the algorithm. The other metric I

report in this section is the total number of messages exchanged by agents.

In the first experiment set (the results of which are displayed in Figures 2.13 and

2.14), A = {1, 2, 4, 8, 16, 32} and N = 50·(A−1). In the second experiment set (Figures

2.15 and 2.16), A = 25 and N = {0, 50, 100, 200, 400, 800, 1600, 3200}. The results

shown in both figures demonstrate that the MaTDP+R algorithm clearly dominates

the original TDP approach in terms of execution time, even when the MaTDP+R

algorithm is executed in a centralized fashion, demonstrating the advantages of

exploiting structure by using PPC (vs. FPC) and dividing the problem into local and

shared subproblems. The other advantage of MaTDP+R over the TDP approach is

that it incorporates the decoupling procedure within a single execution of constraint

propagation (rather than introducing decoupling constraints incrementally, one-at-

a-time, running the consistency algorithm after each addition). Additionally, when

compared to the centralized version of the MaTDP+R algorithm, the distributed

version has a speedup (centralized computation/distributed computation) that varies

between 19.4 and 24.7. This demonstrates that the structures of the generated

problem instances support parallelism and that the distributed algorithm can exploit

this structure to achieve significant amounts of parallelism.

Additionally, notice that the MaTDP+R algorithm dominates the D4PPC algo-

rithm in both computation and number of messages, which means the MaTDP+R

algorithm can calculate a temporal decoupling with less computational effort than
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1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 50 100 200 400 800 1600 3200

N
o

n
co

n
cu

rr
e

n
t 

C
o

m
p

u
ta

ti
o

n
 

Number of External Constraints 

TDP
Cent. MaTDP
D∆PPC 
MaTDP+R

Figure 2.15: Nonconcurrent computation as N increases.

66



1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

50 100 200 400 800 1600 3200

N
u

m
b

e
r 

o
f 

M
e

ss
ag

e
s 

Number of External Constraints 

D∆PPC 

MaTDP+R
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the D4PPC algorithm can establish PPC on the MaSTP. This is due to the fact

that, while the MaTDP+R is generally bound by the same runtime complexity as the

D4PPC (due to both applying the D4DPC algorithm), as argued in Theorem 2.13,

the complexity of the actual decoupling portion of the procedure is less in practice. So

while the MaDTP+R algorithm calculates new bounds for all reference edges (edges

between a variable and the reference point z), by doing so, it renders all external edges

moot (and thus does not need to reason over them), whereas the D4PPC algorithm

must calculate new bounds for every shared edge. This is important because if agents

instead chose to try to maintain the complete set of consistent joint schedules (as

represented by the PPC output of D4DPC), agents may likely perform additional

computation and communication every time a new constraint arises, whereas the

agents that calculate a temporal decoupling can perform all additional computation

locally and independently, unless or until a new constraint arises that invalidates the

temporal decoupling. The fact that MaTDP+R algorithm dominates the D4PPC

algorithm also implies that even if the original TDP algorithm were adapted to exploit

the state-of-the-art D4PPC algorithm, the MaDTP algorithm would still dominate

the basic TDP approach in terms of computational effort. Overall, I confirmed that I

could exploit the structure of the MaSTP instances to calculate a temporal decoupling

not only more efficiently than previous TDP approaches, but also in a distributed

manner, avoiding centralization costs previously required, and exploiting parallelism to

lead to impressive levels of speedup. I next ask whether the quality of the MaTDP+R

algorithm is competitive in terms of the solution space completeness.
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2.6.4 Evaluation of Completeness (Flexibility)

Hunsberger (2002) introduced two metrics, flexibility (Flex) and conversely

rigidity (Rig), that act as a relative measure of the number of total solutions

represented by a temporal network, allowing the quality or “level of completeness” of

alternative temporal decouplings to be compared. He defined the flexibility between

a pair of timepoints, vi and vj, as the sum Flex(vi, vj) = wij + wji which is always

non-negative for consistent STPs. The rigidity of a pair of timepoints is defined as

Rig(vi, vj) = 1
1+Flex(vi,vj)

, and the rigidity over an entire STP is the root mean square

(RMS) value over the rigidity value of all pairs of timepoints:

Rig(S) =

√
2

|V |(|V |+ 1)

∑
i<j

[Rig(vi, vj)]
2.

This implies that Rig(G) ∈ [0, 1], where Rig(S) = 0 when S has no constraints and

Rig(G) = 1 when S has a single solution (Hunsberger, 2002). Since Rig(G) requires

FPC to calculate, in my work I apply this metric only as a post-processing evaluation

technique by centralizing and establishing FPC on the temporal decouplings returned

by my algorithms. There exists a centralized, polynomial time algorithm for calculating

an optimal temporal decoupling (Planken et al., 2010a), but it requires an evaluation

metric that is a linear function of distance graph edge weights, which the aggregate

rigidity function Rig(G), unfortunately, is not.

As mentioned earlier, one of the key properties of a minimal MaSTP is that it can

represent a set of consistent joint schedules, which in turn can be used as a hedge

against scheduling dynamism. My MaTDP algorithm sacrifices completeness precisely

only in line 13. In the default MaTDP algorithm, in line 13, agents tighten bounds

using the rules wzk ← wzk − 1
2
(wzk + wkz) and subsequently wkz ← −wzk , which is

the equivalent of assigning timepoint vk to the midpoint of its currently-calculated

bounds. While the assumption is that assignment to the midpoint (along with the

relaxation) attempts to divide slack evenly, in practice subsequent assignments are

influenced by earlier ones. For example, in Figure 2.12, TRA
ST is assigned to 10:08AM,

rather than 10:00AM, due to the earlier assignment of RB
ST . I also introduced the

MaTDR algorithm for relaxing the decoupling calculated by the MaTDP algorithm.

However, how I tighten the bounds in line 16 affords me opportunities to develop

additional heuristics for improving the flexibility of the output of the MaTDP. I

evaluate one such alternative heuristic. I call this second heuristic the locality

heuristic because it attempts to exploit additional information regarding the local
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problem to determine where the vk’s β interval should fall. Here, an agent assigns vk to

the value that reduces the domains of its neighboring timepoints the least. Thus rather

than simply selecting the midpoint, this heuristic biases how much an agent tightens

wzk relative to wkz using information from applying the full D4PPC algorithm in line.

As described by Hunsberger (2002), the TDP approach operates by incrementally

tightening the reference bounds of timepoints by a fraction of the total amount that

would be required for decoupling.

Evaluation. In this set of experiments, I compare the rigidity of the temporal

decouplings calculated by:

� Midpoint – a variant of the MaTDP algorithm that uses the (default) midpoint

heuristic, but without MaTDR,

� Midpoint+R – the MaTDP algorithm using the midpoint heuristic along with

the MaTDR sub-routine,

� Locality – a variant of the MaTDP algorithm where, in line 16, the agent assigns

vk to the value that reduces the domains of its neighboring, local timepoints the

least (no MaTDR),

� Locality+R – the MaTDP algorithm using the locality heuristic along with

the MaTDR sub-routine,

� Input – the rigidity of the input MaSTP, and

� TDP – my implementation of Hunsberger’s RLF variation of his TDP algo-

rithm (where r = 0.5 and ε = 1.0 which lead to a computational multiplier

of approximately 9) that was reported to calculate the least rigid decoupling

in (Hunsberger, 2002) (rather than the RGB variation used earlier, which was

reported to be most efficient).

In this experiment, A = 25 and N = {50, 200, 800}. Table 2.2 displays the rigidity of

the temporal decoupling calculated by each approach. On average, as compared to

Midpoint, the Midpoint+R approach decreases rigidity by 51.0% (while increasing

computational effort by 30.2%), and the Locality approach decreases rigidity by 2.0%

(while increasing computational effort by 146%). The Midpoint+R approach, which

improves the output decoupling the most, offers the best return on investment. The

Locality heuristic, however, is very computationally expensive while providing no

significant improvement in rigidity. I also explored combining these rigidity decreasing

techniques, and while the increase in computational effort tended to be additive (the

Locality+R approach increases effort by 172%), the decrease in rigidity did not. In
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Table 2.2: The rigidity values of various approaches.
N=50 N=200 N=800

Input 0.418 0.549 0.729
Locality+R 0.508 0.699 0.878
Midpoint+R 0.496 0.699 0.886

Locality 0.621 0.842 0.988
Midpoint 0.628 0.849 0.988

TDP 0.482 0.668 0.865

fact, no heuristics or other combinations of techniques led to a statistically significant

decrease in rigidity (as compared to the original Midpoint+R approach) in the cases

we investigated. The Locality+R approach came the closest, decreasing rigidity by

49.9% in expectation.

While this is far from conclusive evidence that there are no other variable assignment

heuristics that would outperform either the default midpoint or locality heuristics,

it does point to the robustness of the relaxation subroutine at achieving flexible

results (as seen in the performances of the Locality+R, Midpoint+R approaches). The

fact that the Midpoint+R approach alone decreases rigidity by more than any other

combination of other approaches can be attributed to both the structure of an MaSTP

and how rigidity is measured. The Midpoint+R improves the distribution of flexibility

to the shared timepoints reactively, instead of proactively trying to guess good values.

As the MaTDP algorithm tightens bounds, the general triangulated graph structure

formed by the elimination order branches out the impact of this tightening. So if the

first timepoint is assigned, this defers more flexibility to the subsequent timepoints

that depend on the bounds of the first timepoint, of which there could be many.

So by being proactive, other heuristics may steal flexibility from a greater number

of timepoints, whereas the MaTDR algorithm allows this flexibility to be recovered

only after the (possibly many more) subsequent timepoints have set their bounds to

maximize their local flexibility.

Notice from Table 2.2 that the TDP approach decreases the rigidity the most,

representing on average a 20.6% decrease in rigidity over the Midpoint+R approach.

However, this additional reduction in rigidity comes at a significant computational cost

— the TDP approach incurs, in expectation, over 10,000 times more computational

effort than the Midpoint+R approach. While in some scheduling environments the

costs of centralization (e.g., privacy) alone would invalidate this approach, in others the

computational effort may be prohibitive if constraints arise faster than the centralized

TDP algorithm can calculate a temporal decoupling. Further, in many scheduling
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problems, all temporal decouplings may be inherently rigid if, for example, many of

the external constraints enforce synchronization (e.g., Ann’s recreational start time),

which requires fully assigning timepoints in order to decouple.

Overall, on the space of randomly generated problems that I investigated, the

Midpoint+R approach, in expectation, outputs a high-quality temporal decoupling, ap-

proaching the quality (within 20.6%) of the state-of-the-art centralized approach (Huns-

berger, 2002), in a distributed, privacy-maintaining manner and orders-of-magnitude

faster than the state-of-the-art MaSTP solution algorithms.

2.7 Conclusion

In this chapter, I defined the MaSTP formulation. This in turn allowed the

definition of the MaSTN that divides agent problems into a shared subproblem that

requires coordination among agents and private subproblems that agents can reason

over independently. I developed provably correct algorithms that establish both

minimal and partially path consistent temporal networks and empirically found the

benefits of concurrent computation far exceeded any costs associated with extra fill

edges. In fact, the restrictions on elimination ordering that the STP partitioning

imposed served to improve heuristic performance when interagent constrainedness was

sufficiently sparse. I also empirically demonstrated, on randomly generated problem

instances, that the distributed algorithm dominated other approaches in terms of

non-concurrent computation, despite adding the largest number of fill edges.

Additionally, I have presented a new, distributed algorithm that solves the MaTDP

without incurring the costs of centralization like previous approaches. I have proved

that the MaTDP algorithm is correct, and demonstrated both analytically and em-

pirically that it calculates a temporal decoupling faster than previous approaches,

exploiting sparse structure and parallelism when it exists. Additionally I have intro-

duced the MaTDR algorithm for relaxing the bounds of existing decoupling constraints

to form a minimal temporal decoupling, and empirically showed that this algorithm

can decrease rigidity by upwards of 50% (within 20.6% of the state-of-the-art cen-

tralized approach) while increasing computational effort by as little as 20%. Overall,

I have shown that the combination of the MaTDP and MaTDR algorithms calcu-

lates a temporal decoupling faster than state-of-the-art distributed MaSTP solution

algorithms and the MaTDR algorithm reduces rigidity further than other heuristics I

evaluated.

Together, my approaches demonstrate the effectiveness of both local constraint
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summarization (as demonstrated by the D4PPC algorithm) and internalization of

decoupling (as demonstrated by the MaTDP algorithm). These approaches effectively

trade the completeness of scheduling agent advice for independence between agents.

I discuss how these trade-offs could be further evaluated in a dynamic setting in

Section 5.2.1. My algorithms, which generate a summary of the space of all solutions,

provide an alternative to explicitly modeling and reasoning over uncertainty (e.g.,

Vidal (2000) and Morris & Muscettola (2005) and also provide flexible support for

validating multiagent plan execution (e.g., Shah et al. (2009) and Barbulescu et al.

(2010)). More generally, my algorithms have been recently incorporated into the Jason

platform3 (Bordini et al., 2007) — a general, multiagent system development platform

that extends the agent-oriented programming language AgentSpeak (Rao, 1996) –

to help provide general, multiagent coordination support. Finally, my algorithms

represent a distributed constraint reasoning approach that is atypical in its level of

independent reasoning and preservation of agent privacy and autonomy.

3This work was done by, and verified through personal communication with, Vinicius de Antoni,
Masters student at the Universidade Federal do Rio Grande do Sul.
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CHAPTER 3

The Multiagent Disjunctive Temporal Problem

3.1 Introduction

In Chapter 2, I introduced the MaSTP, a distributed version of the STP where

each agent is responsible for a subproblem containing its set of activities and their

corresponding constraints, and where a set of external constraints relate the subprob-

lems of different agents. One downside of the STP is that there are no choices over

timing constraints so that if, for example, two activities must be temporally ordered,

then only one ordering between them is permitted. The Disjunctive Temporal

Problem (DTP) relaxes this requirement, allowing for disjunctive choices over which

temporal constraints should be enforced.

Consider the running example introduced in Chapter 1 and formalized in Chapter

2. While the constraints that order activities between agents make sense (e.g., Chris

must plan a therapy regimen prior to Ann executing the plan), these constraints

must be predetermined and may be unnecessarily constraining (e.g., there may be

no inherent reason why Ann must recreate before performing therapy). Disjunctive

temporal constraints allow agents to choose between possibly many different temporal

difference constraints (e.g., allowing Ann’s agent to decide which activity to perform

first). Figure 3.1 illustrates a version of the example problem where each agent is now

given a choice over the ordering of its local activities (here represented as a temporal

network where disjunctive edges are dotted). Now when Ann queries her agent about

the possible times she can start her therapy regimen, her agent can provide her with

the option to start therapy either before or after her recreation with Bill.

Solving a DTP is much more complex than an STP, since there are many possible

ways to select combinations of temporal difference constraints, many combinations of

which may not even be feasible. An additional challenge is that, despite a combinatorial

number of ways to select which constraints to enforce, a scheduling agent must still
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Figure 3.1: A disjunctive version of the running example problem.

provide advice over which times lead to feasible solutions. This challenge is further

complicated when the scheduling problems of multiple agents interact. Not only does

the number of possible joint schedules grow combinatorially with the number of agents,

but generating joint schedules for every eventuality that could arise among agents

may also decrease the amount of reasoning that an agent can perform independently.

The basic structure of this chapter parallels that of the last. I begin by introducing

work that is either foundational in understanding my contributions (Section 3.2) or

has similar motivations but cannot be directly applied to the problems I am interested

in solving (Section 3.3). Then, in Section 3.4, I define the Multiagent Disjunctive

Temporal Problem (MaDTP), which is a multiagent, distributed generalization of

the Disjunctive Temporal Problem (DTP) (Stergiou & Koubarakis, 2000). I extend

the properties of minimality and decomposability to the more general (Ma)DTP,

showing that (multiagent) disjunctive temporal networks can be used to compactly

represent the solution spaces of (multiagent) disjunctive scheduling problems. In

Section 3.5, I introduce local decomposability, an approximation of decomposability

that exploits the idea that, for many loosely-coupled problems, only a relatively

tractable portion of an agent’s local solution space will affect the global problem. I

empirically show that my distributed algorithm for computing locally-decomposable

solution spaces yields significant speedup over centralized algorithms that compute the

globally decomposable solution space. As an alternative to local decomposability, in

Section 3.6, I develop an approach where agents sacrifice global minimality in favor of

establishing a temporal decoupling. I show empirically that my distributed algorithm

for establishing a temporal decoupling, is more efficient than that of establishing local

decomposability, but comes at a cost in the completeness of the solution space.
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3.2 Background

This section builds on the background and problem specifications presented in

Chapter 2.

3.2.1 Disjunctive Temporal Problem

The Disjunctive Temporal Problem (DTP) (Stergiou & Koubarakis, 2000),

D = 〈V,CD〉, generalizes the idea of a set of temporal difference constraints from

the STP (from here on denoted CS),to a more general set of disjunctive temporal

constraints, CD, where a disjunctive temporal constraint , cy ∈ CD, takes the

form d1∨d2∨· · ·∨dk, and each dz = vjz−viz ∈ [−bjiz , bijz ]. These constraints represent

a disjunctive choice among k temporal difference constraints, where each temporal

difference constraint has its own bounds expressed over its own pair of timepoints,

which could differ from the timepoints involved in other alternative temporal differences

of the same disjunctive constraint. Table 3.1 represents the running example as a DTP,

where the disjunctive (dotted) constraints from Figure 3.1 appear in the Ordering

column, and contain more than a single disjunct.

A labelling , `, of a DTP, is the component STP formed by selecting a disjunct

(temporal difference) for each disjunctive constraint. A schedule s, then, is a solution to

a DTP instance if and only if it is the solution to at least one of the DTP’s component

STPs. For general DTPs with |CD| disjunctive temporal constraints, each of arity

k, there are O(k|CD|) possible labellings. As noted in Stergiou & Koubarakis (2000),

known NP-hard problems can be represented as DTPs, making the DTP an NP-hard

problem. To find a solution to the DTP, each of the combinatorially-many STN

labellings must be explored in the worst case; however, each component STP labelling

can be evaluated in polynomial time, putting the DTP in the class of NP-complete

problems. For example, the problem in Table 3.1 yields 23 = 8 possible labellings, but

only two (shown in Figure 3.3) have solutions.

The Temporal Constraint Satisfaction Problem (TCSP) (Dechter et al.,

1991), T = 〈V,CT 〉, is a well-studied special case of a DTP where all disjuncts of a

given disjunctive temporal constraint are expressed over the same pair of variables.

The STP is also a special case of the DTP (and TCSP) where k = 1. Thus, the

constraints expressive in CS are a subset of those expressible in CT , which themselves

are a subset of those expressible in CD and so, the DTP subsumes the TCSP and

the STP, in generality. Generally, establishing minimality and decomposability for

the TCSP, and thus DTP, is NP-hard (Dechter et al., 1991). Because the TCSP is
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Availability Duration Ordering External

Ann

RAST − z ∈ [480, 720]
RAET −R

A
ST ∈ [60, 60] RAET − TR

A
ST ≤ 0 RAST −R

B
ST ∈ [0, 0]

RAET − z ∈ [480, 720] ∨
TRAST − z ∈ [480, 720]

TRAET − TR
A
ST ∈ [90, 120] TRAET −R

A
ST ≤ 0 TPCET − TR

A
ST ≤ 0

TRAET − z ∈ [480, 720]

Bill

RBST − z ∈ [480, 720]
RBET −R

B
ST ∈ [60, 60] RBET −W

B
ST ≤ 0

RAST −R
B
ST ∈ [0, 0]

RBET − z ∈ [480, 720] ∨
WB
ST − z ∈ [480, 720]

WB
ET −W

B
ST ∈ [60, 180] WB

ET −R
B
ST ≤ 0

WB
ET − z ∈ [480, 720]

Chris

TPCST − z ∈ [480, 720]
TPCET − TP

C
ST ∈ [90, 120] TPCET − L

C
ST ≤ 0

TPCET − TR
A
ST ≤ 0

TPCET − z ∈ [480, 720] ∨
LCST − z ∈ [600, 600]

LCET − L
C
ST ∈ [120, 120] LCET − TP

C
ST ≤ 0

LCET − z ∈ [720, 720]

Table 3.1: Summary of the example MaDTP.

more limited in the problems it can represent (e.g., it cannot represent the Ordering

constraints in Table 3.1), but has the same complexity as the DTP, I focus on the

more general DTP in this chapter.

3.2.2 Disjunctive Temporal Problem Solution Algorithms.

The DTP is often solved using a meta-CSP formulation, where each constraint

c ∈ CD forms a meta-variable with a domain of meta-values formed by the set of

possible disjuncts. A singleton constraint, c ∈ Ck=1
D , is a meta-variable that contains

only a single meta-value (i.e., a temporal difference constraint). Tsamardinos &

Pollack (2003) note that the set of variables V and the subset of singleton constraints

Ck=1
D ⊆ CD together form an STP,

〈
V,Ck=1

D
〉
. This STP can be used to compile new

and tighter singleton constraints that constrain which meta-values can be assigned to

which meta-variables. This forward-checking procedure prunes any disjuncts that are

inconsistent with the STP compilation, since they are guaranteed to be inconsistent

with the overall DTP. It can also check for subsumed constraints, those that have

a disjunct that is inherently satisfied and thus can safely be ignored. This pruning

process may result in more constraints being added to the set Ck=1
D , which further

tightens the STP compilation, possibly leading to more pruning. In the extreme case,

this process could prune until all disjunctive temporal constraints are singleton, thus

eliminating the need for combinatorial search.

The meta-CSP formulation leads to a search algorithm that interleaves the STP

forward-checking procedure with an assignment of a meta-value to a meta-variable.

This has the effect of growing the set Ck=1
D and incrementally tightening the cor-

responding STP compilation. If a particular assignment of a meta-value di to a

meta-variable ci leads to no consistent STP instances, that assignment is backtracked.
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Since at this point di is known to be inconsistent with the current STP compilation, a

procedure known as semantic branching allows the STP relaxation to be tightened

by adding di’s inverse implication. Thus, if RA
ET −TRA

ST ≤ 0 leads to an inconsistency,

then if a solution exists, it must be the case that TRA
ST −RA

ET < 0. Explicating these

otherwise implicit constraints further tightens the STP relaxation, which in turn can

lead to improved forward checking performance. Additionally, Tsamardinos & Pollack

(2003) describe how to incorporate CSP techniques such as no-good recording and

back-jumping into the meta-CSP search algorithm to further decrease the expected

DTP solution algorithm runtime.

My Approach Synopsis. My approach for solving the MaDTP builds on the ideas

of capturing and summarizing aspects of solutions that must hold and also the insight

that many labellings might lead to identical constraints between agents. By focusing

on the limited ways agents can influence each other, agents can focus on computing

and exchanging possibly more tractable influence spaces, thus also preserving privacy

and increasing independent reasoning to the extent possible (Section 3.5). In the case

of computing a temporal decoupling (Section 3.6), agents can construct their influence

spaces in a way that can be short-circuited once a consistent decoupling is found,

further decreasing the overall runtime of the approach, but at the cost of solution

space completeness.

3.3 Related Approaches

3.3.1 Fast Distributed Multiagent Plan Execution

As alluded to throughout this thesis, a temporal network naturally lends itself to

dispatchable execution — an online approach whereby a dispatcher efficiently adapts to

scheduling upheavals by introducing new constraints. The dispatcher notifies agents of

the time it assigns to variables immediately prior to execution (Muscettola et al., 1998).

Shah & Williams (2008) generalize this idea to multiagent, disjunctive scheduling

problems by calculating a dispatchable representation of a Multiagent TCSP. Their

approach improves on an existing approach for dispatching DTPs (Tsamardinos et al.,

2001), which simply enumerates and computes the minimal, decomposable temporal

network of all solution STPs. Instead, Shah & Williams (2008) recognize that many

of the solution schedules contain significant redundancy, and so gain representational

efficiency by reusing the redundant portions of existing solution representations as much

as possible. This approach leads to not only a much more compact representation, but
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also faster execution by avoiding the need to simultaneously and separately update each

disparate STP. The algorithm propagates each disjunct using a recursive, incremental

constraint compilation technique called dynamic back propagation. The result is that

for each consistent component STP labeling, a list of implications to the temporal

network is kept.

The upside of this centralized preprocessing compilation procedure is that it can

lead to efficient, distributed plan execution. Shah & Williams’ basic dispatch algorithm

adds each currently-unassigned timepoint without any predecessors to an event list,

and then as one of these timepoints becomes ‘live’ (when the current time falls within

the timepoint’s domain), it is selected and updated to occur at the current time,

after which the update is propagated throughout the remaining problem, making

some other timepoints eligible to be added to the event list. In their distributed case,

agents communicate to coordinate which agents execute which events, and use this

information to locally prune the inconsistent, precompiled STNs. Shah et al. (2009)

demonstrate empirically that their approach leads not only to orders of magnitude

more compact representations, but also to orders of magnitude faster execution than

the previous, brute-force, enumeration-based approach (Tsamardinos & Pollack, 2003).

This approach is similar in spirit to my use of local constraint summarization (as

first introduced in Section 1.3), since an agent could utilize the ability to compactly

summarize a set of schedules to efficiently communicate information about its portions

of the problem without revealing private details. There are, however, a few key

limitations of Shah et al.’s approach that prevent me from directly taking advantage

of it. First, Shah et al. assume unlimited, no-cost preprocessing time on a central

machine, whereas I am interested in calculating the space of solutions as efficiently as

possible, in a distributed manner. Second, Shah et al. use constraint summarization as

a post-processing technique after enumerating all solutions for a TCSP, whereas I am

interested in generating local summaries of multiagent versions of the multiagent DTP,

so as to avoid enumerating many possibly infeasible schedules. Finally, this approach

implicitly assumes all new constraints (e.g., those arising due to schedule execution)

will, even in the multiagent case, arrive to the dispatcher sequentially, allowing the

dispatcher to process each constraint before subsequent scheduling decisions can be

made. My decoupled approach eliminates the need for this assumption, allowing

separate agents to soundly dispatch execution independently.
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3.3.2 Resource and Task Allocation Problems

Allocating tasks or resources to multiple agents has been studied in a variety of

settings (e.g., Goldberg et al., 2003; Nair et al., 2002; Sandholm, 1993; Simmons et al.,

2000; Wellman et al., 2001; Zlot & Stentz, 2006). Typically these problems involve

either assigning a set of tasks to a limited number of agents that can perform them

or, alternatively, assigning scarce resources to agents that require these resources. A

common approach for handling such task allocation is a market-based approach (e.g.,

Nair et al., 2002), where agents place bids on tasks (or subsets of tasks in combinatorial

auctions) according to their calculated costs for performing the tasks, with tasks then

being assigned to the lowest bidder. Other market-based approaches allow agents to

locally exchange tasks in order to quickly respond to a dynamic environment (e.g.,

Sandholm, 1993). While more recent approaches (Goldberg et al., 2003; Zlot & Stentz,

2006) allow agents to negotiate at various levels of task abstraction/decomposition, the

primary temporal reasoning occurs within an agent, which uses scheduling information

to estimate costs for its bid. Similarly, before bidding on them, agents can append

temporal constraints to tasks, such as time-windows, to help capture/enforce relevant

precedence constraints between tasks of different agents.

While task and resource allocation problems capture some aspects of scheduling

such as concurrency and joint production (synchronization), multiagent scheduling

problems support other complex temporal constraints (e.g., disjunctive constraints

between arbitrary pairs of timepoints). Also, my work assumes that the task and

resource allocation problems have already been solved, or, if necessary, constraints

are in place to prevent concurrent, overlapping use of a resource or duplication of

a redundant activity. Additionally, whereas task/resource allocation is cast as an

assignment problem, constraint-based scheduling deals largely with reasoning over

bounds so as to support flexible times representations. Finally as noted in greater

detail by Zlot & Stentz (2006), while optimal, centralized approaches for solving this

problem exist, the NP-hard nature of the problem coupled with the uncertain or

dynamic environment leads to most recent approaches being both distributed and

heuristic or approximate in nature. In contrast, my work assumes deterministic and

complete approaches, but does not explicitly model the relative costs or values of

various schedules. Instead, my agents provide their users with the autonomy to make

their own cost/value judgments, and in turn, provide advice about the implications of

their scheduling decisions.
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3.3.3 Operations Research

The multiagent constraint-based scheduling problem representations that I develop

are capable of representing very general classes of scheduling problems. However, the

Operations Research (OR) community is also interested in solving NP-hard scheduling

problems. In her overview comparison of the two fields, Gomes (2000; 2001) classifies

OR problems as optimization problems, where the utility function tends to play an

important role. Additionally, Gomes notes OR tends to represent problems using

mathematical modeling languages and linear and non-linear inequalities and uses

tools such as linear programming, mixed-integer linear programming, and non-linear

models. Finally, the representations used by the OR community tend to be limited

to problems with very specific structure, but as a result, the algorithms tend to be

tractable. In comparison, the constraint-based approach I am promoting is capable of

representing very rich problems and relies more heavily on constraint propagation and

search techniques.

While a full review of the many OR models (e.g., Traveling Salesperson Problem,

Job Shop Scheduling Problem, Resource Constrained Project Scheduling Problem,

Timetabling, etc.) is beyond the scope of this section, it is worth pointing out that

synergy between the two communities is growing (Baptiste et al., 1995; Barták, 1999;

Laborie, 2003; Baptiste et al., 2006). As an example, Oddi et al. (2010) recently

explored the advantages of representing a Resource Constrained Project Scheduling

Problem as a DTP. The advantage of taking a more general approach is that my

problem formulations can be specialized to adopt efficient OR techniques to the extent

that beneficial patterns of problem structure, as recognized by the OR community,

exist. For example, if agents are scheduling on behalf of users, timepoint variables are

likely to correspond to start and end times of user activities, which all compete for the

unary resource of the user’s attention. In this example, approaches such as timetabling

or edge-finding (Laborie, 2003), which are both OR techniques for tightening the

bounds over when possible activities can occur, could be applied effectively.
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3.4 The Multiagent Disjunctive Temporal Problem

While I could solve scheduling problems like the one in Table 3.1 as a single DTP,

the communication, privacy and computational costs of doing so argue for agents that

maintain and reason over their local problems separately. Next, I define a variation of

the DTP that captures the distributed, multiagent nature of my example problem,

and discuss the implications for agents that must provide answers to user queries

about their schedules.

3.4.1 Multiagent Disjunctive Temporal Problem

My definition of the Multiagent Disjunctive Temporal Problem (MaDTP) (Boerkoel

& Durfee, 2012) parallels the definition of the MaSTP. The MaDTP is composed of n

local DTP subproblems, one for each of n agents, and a set of external constraints,

CX , which are disjunctive temporal constraints that relate the local subproblems of

different agents. An agent i’s local DTP subproblem is defined as DiL = 〈V i
L, C

i
L〉,

where:

� V i
L is agent i’s set of local variables, and is the partition of timepoints

assignable by agent i (and may include agent i’s reference to z); and

� Ci
L is agent i’s set of local constraints, where each cy ∈ Ci

L is specified

exclusively over local variables.

In addition to its local problem, agent i is also aware of:

� Ci
X — agent i’s external constraints where each disjunctive temporal con-

straint c ∈ Ci
X is specified over at least one local variable vik ∈ V i

L and at least

one (external) variable vjl ∈ V
j
L , i 6= j; and of

� V i
X — agent i’s external variables where each vjl ∈ V i

X appears in at least one

of agent i’s external constraints, but is local to some other agent vjl ∈ V
j
L , i 6= j.

Notice that an external constraint could either contain one or more temporal difference

constraint disjuncts that are themselves inherently external, or it could contain

disjuncts associated with different agents, for instance, of the form vil − vik < bikl ∨ vjn−
vjm < bjmn, where each disjunct is local to a particular agent (e.g., i 6= j). Agent i’s set

of known variables is V i = {V i
L ∪ V i

X} and agent i’s set of known constraints is

Ci = {Ci
L ∪ Ci

X}.
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Figure 3.2:
The MaDTP is more general than alternative (single-agent) formulations.

More formally, then, an MaDTP, D, is defined as the set of agent DTP subproblems,

D = {
⋃
iDi}, where Di = 〈V i, Ci〉. V = {

⋃
i V

i
L} is the set of all variables and

C = {
⋃
iC

i
L ∪ Ci

X} is the set of all constraints. Note, as depicted in Figure 3.2,

multi- (and single-) agent versions of the STP and TCSP are special cases of the

MaDTP definition, making it a generalization of the approaches discussed in Section

3.2. Table 3.1, displays the MaDTP corresponding to the example problem. Here all

disjunctive constraints dictate that local activities should not overlap, whereas the

external constraints order or synchronize activities between agents as before.

A schedule s is a solution to D if and only if it is a solution to the component

MaSTP corresponding to one of D’s labellings. While each component MaSTP can

be evaluated in polynomial-time, each of the O
(
k|C|
)

possible labellings (the number

of which grows exponentially as the number of disjunctive constraints, each with up

to k disjuncts, grows) may need to be evaluated to enumerate the solution space, or

even to find a single solution in the worst case. Because the DTP can be viewed as

a special, single-agent case of the MaDTP, the MaDTP, like the DTP, falls into the

class of NP-complete problems. For example, the problem in Table 3.1 contains 23 = 8

possible labellings, but only two of them (illustrated as temporal networks in Figure

3.3 (a) and (b)) lead to consistent component MaSTPs.

An Algorithm-centric MaDTP Partitioning. I briefly reintroduce an algorithm-

centric perspective for partitioning the MaDTP that parallels the one introduced in

Chapter 2 for the MaSTP. Due to its parallel structure, I refer the reader to Figures

2.5 and 2.6 for the high-level intuition for how the temporal network is divided up.

The natural distribution of the MaDTP representation affords a partitioning of the

MaSTP into independent (private) and interdependent (shared) components, where
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the shared DTP DS = 〈VS, CS〉 composed of:

� VS = VX∪{z}— the set of shared variables composed of all variables involved

in at least one external constraint; and

� CS — the set of shared constraints , defined between a pair of shared variables,

and includes the set of external constraints CX .

The definition of the shared DTP affords a partitioning of agent i’s known time-

points into three distinct sets:

� V i
X — agent i’s set of external variables defined as before;

� V i
I = V i

L ∩ VS — agent i’s set of interface variables, which are agent i’s set

of local variables that are also involved in external constraints; and

� V i
P = V i

L \ VS — agent i’s set of private variables, which are agent i’s local

variables that are involved in no external constraints.

More formally, this allows me to define agent i’s private subproblem, DiP = 〈V i
P , C

i
P 〉,

where agent i’s set of private constraints , Ci
P = Ci

L \ CS, is the subset of agent i’s

local constraints that include at least one of its private variables. As in the MaSTP,

my MaDTP algorithms will exploit the fact that agents can reason about their private

subproblems concurrently and independently.

Multiagent Temporal Decoupling Problem Revisited. My definition of the

Multiagent Temporal Decoupling Problem in Section 2.4.2 extends trouble-free to

the disjunctive case. Agents’ local DTP subproblems {D1
L,D2

L, . . . ,DnL} form a

temporal decoupling of an MaDTP D if:

� {D1
L,D2

L, . . . ,DnL} are consistent DTPs; and

� Merging any combination of locally consistent solutions to each of the problems

in {D1
L,D2

L, . . . ,DnL} yields a solution to D.

Alternatively, when {D1
L,D2

L, . . . ,DnL} form a temporal decoupling of D, they are

said to be temporally independent . The Multiagent Temporal Decoupling

Problem (MaTDP), is defined as before: for each agent i, finding a set of constraints

Ci
∆ such that if DiL+∆ = 〈V i

L, C
i
L ∪ Ci

∆〉, then {D1
L+∆,D2

L+∆, . . . ,DnL+∆} is a temporal

decoupling of MaDTP D 1.

1As with the MaSTP, solving the MaTDP does not mean that the agents’ subproblems have
somehow become inherently independent each other (with respect to the original MaDTP), but rather
that the new decoupling constraints provide agents a way to perform sound reasoning completely
independently of each other.
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In the MaSTP, my MaTDP algorithm decoupled by exclusively adding reference

edges between a variable and the reference zero variable z. However, this is not the

only way an external constraint can be decoupled. For example, consider a disjunctive,

external constraint cy ∈ CD that takes the form d1 ∨ d2 ∨ · · · ∨ dk. If dz is of the form

vil − vik ≤ bikl, where both vik and vil ∈ V i
L are local to a single agent i (vik, v

i
l ∈ V i

L),

then cy could be decoupled by adding dz as a non-disjunctive temporal different

constraint to agent i’s local problem. As I discuss in Section 5.2.2, this could provide

an alternative to, or possible improvement of, the temporal decoupling algorithm that

I present in Section 3.6, where agents independently search for ways to decouple their

problems from each other by locally refining their subproblem.

3.4.2 Useful Multiagent Disjunctive Temporal Network Properties

In the previous chapter, I discussed useful properties of the MaSTN. There is a

unique challenge to coming up with an efficient analogue to the MaSTN for multiagent

disjunctive temporal networks. The challenge is that both minimality and decompos-

ability are traditionally defined in terms of binary, temporal constraint networks such

as the STP and the TCSP (Dechter et al., 1991), where the topology of the underlying

temporal network is known a priori.

Disjunctive temporal constraints, on the other hand, can involve arbitrarily many

timepoint variables and so are non-binary. This this implies that there can be up

to k|C| alternative component MaSTNs, each of which can have its own distinct

network topology, as illustrated by the differing topologies of the two spaces of

solutions in Figure 3.3. One approach would be to compute and maintain each of the

combinatorial number of component MaSTNs separately, however doing so introduces

significant computational time and space overhead, as agents must now reason over

combinatorially many independent networks. Further, given the ambiguity as to which

combinations of disjuncts are even possible, each edge that appears in any of these

component MaSTN could represent a relationship between two timepoint variables

that a user may care about, and thus, may pose queries over. An alternative approach

would be to aggregate multiple component STNs together, as in Figure 3.4 for instance;

however, doing so creates a network that is much more dense. This in turn can obscure

some of the important relationships captured by a sparse network representation and

also mitigate the amount of reasoning that can be done independently.

In this section, I show that despite these challenges, minimal and decomposable

representations of consistent DTPs and MaDTPs always exist, and some level of

independent, private reasoning can be preserved.
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Figure 3.3:
The minimal, PPC STN distance graphs corresponding to the two feasible
labellings of the problem in Table 3.1.
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Figure 3.4:
The minimal temporal network corresponding the example problem in
Table 3.1.

As discussed in Section 3.2, a minimal representation avoids requiring that agents

solve an NP-hard problem to evaluate queries. For example, minimality allows an

agent to quickly answer queries on behalf of Ann like “At which times can I start my

recreational activity?” with the exact set bounds over sets of intervals. A scheduling

agent using a decomposable representation could also help Ann evaluate prospective

scheduling decisions involving subsets of variables, such as “If I would like to start

my therapy regimen at 10:00, at what time(s) could I start recreation?” Moreover, as

new constraints arrive dynamically (e.g., the actual start time or duration of some

other agent’s activity is determined), an agent can use a decomposable representation

to directly and efficiently compute how these constraints affect the domains of future

events so as to maintain consistent scheduling advice.

Minimality. Tsamardinos et al.’s (2001) approach to establishing and maintaining

the solution space of a DTP suggests that these properties can always be established.

Their brute-force approach calculates the minimal, decomposable STN associated with

each of the DTP’s (exponentially many) feasible labellings ` ∈ L, and then as new

constraints arise, it tightens each STN accordingly, discarding all inconsistent STNs.

I exploit this observation to formally prove that minimal representations of DTPs

always exist, which follows as a corollary of Dechter et al. (1991)’s Theorem 1.

Corollary 3.1. A minimal representation of a consistent DTP always exists.
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Proof. The minimal network, M, of a given DTP, D, satisfies M = ∪`∈LM`, where

M` is the minimal network of the STP defined by labelling `, and the union is over

the set of all possible labellings L. Thus, the minimal network of D is the TCSP,

T = 〈V,CM〉, where the set of constraints, CM, is composed of constraints cij ∈ CM
defined as vj − vi ∈ ∪`∈L(M`)ij, where (M`)ij corresponds to the bound interval on

the difference between vj and vi in the minimal network of the STP corresponding to

labelling `.

So, to generate a single, minimal temporal constraint network, one can merge the

set of all consistent, minimal STNs (e.g., those in Figure 3.3) by labelling each edge

with the union over all bound intervals. The result of merging two networks together,

as illustrated in Figure 3.4, is that edges that appear in any consistent component

STP now appear in the minimal network, and edges may now require disjunctive sets

of intervals to capture minimality. I can now use the TCSP, presented in Figure 3.4 to

answer Ann’s query, “At what time(s) can I start my recreational activity?” using a

simple lookup to determine that it can be any time between 8:00 and 9:30 or at 11:00.

However, this also represents a challenge to compactly representing minimality for

disjunctive temporal networks since, even if there are a small number of edges, the

labels on such edges can grow to contain combinatorially many intervals.

Decomposability. A fully-specified, point solution (e.g., the one in Figure 2.1 (d),

where all intervals are points) is an example of a degenerate decomposable solution,

since any local assignment (from a point interval) will lead to a de facto solution.

Clearly, from this decomposable representation, an agent can immediately infer which

combinations of values to any subset of variables will lead to a (the only) solution.

Similarly, since each of the consistent component STNs can be made decomposable

(the STNs in Figure 3.3 can be made decomposable trivially by adding explicitly the

implicit constraints between every pair of timepoints), then any assignment of a subset

of variables that is locally-consistent with either of these consistent, component STNs

will lead to a global solution. But while each of these two examples offers a sound

representation of some solutions to the example DTP, the more interesting question is

whether there are representations that are both decomposable and minimal — that is,

do not rule out any feasible solutions.

Theorem 3.1. A minimal, decomposable representation of a consistent DTP always

exists.

Proof. If a DTP is consistent, its set of solutions can be represented as the set of
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minimal, decomposable STNs for the feasible labellings, ` ∈ L (Tsamardinos &

Pollack, 2003). Given this representation, any assignment to a (set of) variable(s)

that is (locally) consistent with respect to at least one of these STNs is, by definition,

guaranteed to be extensible to a global solution.

Since an MaDTP can be centralized into a DTP and a component MaSTP can

be centralized into a component STP, these theorems and corollaries hold, mutatis-

mutandis, for the MaDTP. Unfortunately, this remains an NP-hard problem and

relying on centralized approaches mitigates the potential advantages of a distributed

MaDTP representation (e.g., concurrency, privacy, etc.).

Independence. The MaDTP formulation allows the distributed representation of

scheduling problems that span multiple agents, which potentially yields strategic

(e.g., privacy) and computational (e.g., concurrency) advantages. The extent to

which these advantages materialize relies, in large part, on the level of independence

inherent in the problem, where two timepoints are independent if there is no path that

connects them in the constraint network corresponding to any labelling, and dependent

otherwise. The implication is that, outside of its interface variables, each agent i can

independently (and thus concurrently, asynchronously, privately, autonomously, etc.)

reason over its private subproblem DiP . Using this revised definition of independence

for disjunctive temporal problems leads to independence and privacy properties that

follow as Corollaries 3.2 and 3.3 of Theorems 2.1 and 2.2, which must be adapted to

apply to any and all component MaSTP labellings of a MaDTP.

Corollary 3.2. The only dependencies between agent i’s local subproblem, DiL, and

any other agent j’s local subproblem DjL∀j 6= i exist exclusively through the shared

DTP, DS, allowing agent i to independently reason over its private subproblem DiP .

Proof. By contradiction, assume there exist variables vk ∈ V i
P and vl ∈ V j

P such that

vk and vl are not independent given DS. This implies that there exists a path in

some component constraint network between vi and vj that, WLOG, involves some

pair of variables v′k ∈ V i
P and v′l ∈ V

j
P that are connected via a constraint. However,

this is a contradiction, since v′k and v′l would, by definition, belong to VX , and thus

DS. Therefore, every pair of variables vk ∈ V i
P and vl ∈ V j

P can be reasoned over

independently given DS.

Privacy. A by-product of independent agent reasoning over a distributed represen-

tation is the possibility for agents to preserve some privacy over their local problems.
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Corollary 3.3. No agent can infer the existence of or bounds on another agent’s

private constraints, or subsequently the existence of private timepoints, from the shared

DTP alone.

Proof. The high-level intuition is that all variables and constraints that appear in agent

i’s private DTP subproblem will also appear in agent i’s private STP subproblem for

all possible MaSTP labellings of the MaDTP. Thus, Theorem 2.2 can be independently

applied to each such component MaSTP labelling (i.e., all possible combinations of

shared DTP information), proving that each agent i’s private component STPs, and

thus private DTP, remains private.

By contradiction, assume there exists a constraint ciy C
i
P , that is inferable from

the shared DTP. Let ciy = d1 ∨ d2 ∨ · · · ∨ dk. By definition, every disjunct, dz of cy is

of the form viu − viw ≤ buv, for viu, v
i
w ∈ V i

L, where at least one of viu or viw is private.

WLOG, assume viu is private, viu ∈ V i
P . To infer the disjunct dz from the shared

DTP subproblems requires first inferring an edge euv and an edge evw from some

combination of shared constraint information, that is, edges euv and evw must appear

in at least one component STN of the shared DTP. Let G be any component MaSTN

of the MaDTP that contains dz, euv and evw. However, Theorem 2.2 states that the

edge corresponding to disjunct dz cannot be inferred from any shared component STP

that contains euv and evw, which are the only possible edges that can entail dz; hence

ciy C
i
P cannot be inferred from just the shared DTP. Further, since an agent cannot

extend its view of the shared DTP to include another agents private edges (or possible

disjuncts of private constraints), it cannot infer another agents private timepoints.

Notice that while these corollaries guarantee a level of independence and privacy for

agent’s subproblems, the disjunctive nature of the MaDTP often blurs the line between

private and shared. For example, in the extreme, one of agent i’s timepoint variables

may be private in all but one component MaSTP labelling. This variable would thus

be considered shared under my formulation, preventing it from being reasoned over

in a completely private, independent manner. In such cases, the extra scheduling

possibilities afforded by including additional disjuncts in a constraint may not be

worth the extra costs in privacy and independence. This means that even during

problem specification, an agent (or its user), must be conscious of these meta-level

trade-offs and decide when to sacrifice the flexibility of additional component MaSTP

labellings for increased privacy and independence.
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3.4.3 Problem Statement Refinement

As a more precise refinement of the original problem laid out in Section 1.3, the

problem that this chapter addresses is that of developing a compact, distributed

representation of, and approaches for finding, (a temporal decoupling of) the joint

solution space of multiagent, disjunctive scheduling problems. This section developed

the MaDTP representation and established that it is at least theoretically possible

to use multiagent temporal networks to capture the solution space of an MaDTP. In

Section 3.5, I will introduce and evaluate a distributed approach for capturing spaces

of solutions by exploiting more-compact influence spaces to capture and exchange the

influences agents have on one another. Then, in Section 3.6, I develop and evaluate

an approach in which agents progressively build and exchange their influence spaces

only until a solution to (and temporal decoupling of) the shared STP is possible, at

which point agents can adopt the computed decoupling constraints to independently

calculate their local schedules.
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3.5 Consistency Algorithms

In Chapter 2, the simplicity of the MaSTP allowed for a bucket-elimination style

algorithm to, in polynomial time, compile and thus exactly summarize how one agent’s

local STP affected others. In a disjunctive temporal network, this becomes much

more difficult. While the bucket-elimination algorithm is generally exponential (in the

induced graph width), for a disjunctive temporal network, this amounts to a process

that splits for every disjunct in a disjunctive constraint so that by the end of the

process, each agent would be separately compiling a combinatorial number of temporal

networks. The downside of this approach is two-fold. First, many combinations of

disjuncts will not lead to consistent, component MaSTPs, and so enumerating them is

wasteful. Second, many of the combinations of disjuncts that do lead to consistent,

component MaSTPs could impact other agents identically (i.e., lead to the same

constraints), and thus it is wasteful to separately compute each of these.

In this section, I introduce a new property called local decomposability that exploits

loose-coupling between agents’ problems, protects their strategic interests, and supports

typical queries all by compactly summarizing the impact an agent has on others as an

influence space. I provide and evaluate a new distributed algorithm that summarizes

agents’ solution spaces in significantly less time and space by using local, rather than

full, decomposability.

3.5.1 Local Decomposability

Intuitively, a scheduling agent should be reasonably expected to answer queries

about combinations of timepoint variables that it must know about (timepoints that it

can assign, or timepoints it knows about due to constraints it shares with timepoints

that it can assign). I call such queries typical . In contrast, it would be counter-

intuitive and unreasonable to ask an agent to answer queries concerning variables

and constraints that it does not know about; I call such queries atypical , and they

are generally unanswerable by an agent. For example, Bill’s scheduling agent should

support queries over any (subset) of Bill’s activities, but not over Ann’s and Chris’

activities, the details of which Ann and Chris may wish to keep private.

Generally, an agent may have strategic reasons for keeping the number of local

variables involved in external constraints (and thus known by other agents) to a

minimum (see Section 3.4.2). My idea is to exploit this loosely-coupled structure of

the network to efficiently establish sufficient decomposability to answer typical queries,

rather than much more expensive (and privacy destroying) full decomposability that
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can also answer additional queries that typically will never arise. Local decomposability

approximates full decomposability by assuming that only queries over any of an

individual’s locally-known variables or constraints will be posed.

Definition 3.1. An MaDTP is locally decomposable if, for any agent i, any

locally consistent assignment of values to any subset of agent i’s known timepoint

variables can be extended to a joint solution.

The reason for focusing on local decomposability, rather than other approximations

of decomposability (e.g., ones based on partial path consistency), is two-fold. The

first is problem-centric in that the disjunctive nature of MaDTPs makes it harder

to speculate which relationships between variables a user is likely to query over,

since different component STP labellings will emphasize different relationships. The

second is algorithm-centric in that, unlike in Section 2.5 where I designed solution

algorithms from scratch and had control over the fill edges that they created, here I

will employ start-of-the-art DTP solvers to find consistent component STPs. Thus,

the computational effort to produce the fully-connected, decomposable STN has

already been incurred. If space is a concern, a locally-decomposable formulation can

easily be converted to a more compact, partially path consistent representation by

removing redundant links (Muscettola et al., 1998). Likewise, my D4PPC algorithm

(Section 2.5.3.2) can easily be adapted to produce locally-decomposable solutions by

retroactively having each agent apply an all-pairs-shortest-path algorithm such as

Floyd-Warshall (Floyd, 1962) to its known subproblem.

Local decomposability enables an agent i to maintain minimality and full decompos-

ability over its locally known timepoint variables, V i = {V i
L ∪ V i

X}, but does not require

that it maintain any information over unknown timepoints, {v|v ∈ V j 6=i
L , v /∈ V i

X}.
Thus Bill’s agent can support any query over its local activities and queries involving

external variables (e.g., “How long before Ann is available for recreation?”), but

not queries regarding, for example, Chris’ lecturing activities. A challenge of local

decomposability, which I explore next, is that care must be taken to ensure that local

constraints are globally minimal — that locally feasible variable assignments will lead

to joint solutions. Next, I use the idea of an influence space to discuss how an agent

summarizes how it impacts others.

3.5.2 Influence Space

A key insight of my approach is that not all local labellings will lead to STNs that

qualitatively change how an agent’s problem will impact other agents. For example,
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regardless of what other activities Bill’s scheduling agent is responsible for scheduling,

coordinating with Ann’s agent only requires communicating the set of feasible times

that Bill can start recreation (i.e., RB
ST ). Thus, instead of enumerating all joint

labellings, an agent i can instead focus on enumerating labellings that lead to distinct

STNs over its interface timepoint variables, V i
I = {V i

L ∩ VX}, those variables

that are local to agent i, but involved in one of agent i’s external constraints, Ci
X . I

call this smaller space of labellings agent i’s local influence space , motivated by

the work of Witwicki & Durfee (2010). An influence space is the projection of a local

solution STN labelling onto an agent i’s interface variables, V i
I . I represent agent

i’s influence space as a set SiI of minimal, decomposable STNs expressed over agent

i’s interface variables, V i
I . An alternative view of an influence space is as a set of

constraints that summarize how an agent’s local constraints impact other agents, and

vice-versa.

The upside is that all coordination, including all communication and jointly

represented aspects of the problem, is limited to these smaller influence spaces. The

joint solution space, then, is represented in a distributed fashion as a cross-product of

local solution spaces. This distributed representation allows agents to better protect

their strategic interests such as privacy, autonomy, etc., with easier to maintain local

solution spaces. For example, an agent scheduling l local activities can primarily

spend its time managing the l! possible orderings and, at the extreme, may only have

to coordinate over the bounds of the single time-window during which a joint activity

(e.g., recreation) can occur. The main disadvantage of local decomposability is that

atypical queries (e.g., involving pairs of a different agent’s private timepoint variables)

cannot be answered, but as previously argued, typical ones can.

3.5.3 The Multiagent Disjunctive Temporal Problem Local Decompos-

ability Algorithm

My MaDTP local decomposability (MaDTP-LD) algorithm is presented as Algo-

rithm 3.1. The algorithm uses a findSolution function, which allows any solution

algorithm (e.g., Stergiou & Koubarakis (2000); Tsamardinos & Pollack (2003); Dutertre

& Moura (2006)) to be used for finding decomposable STNs corresponding to consistent

labellings. Each agent i uses this function to independently populate its solution space

representation as a set, Si, of minimal, decomposable STNs, S i. Of course, before

agents can compute their locally-decomposable STNs in a globally-consistent manner,

they first coordinate to compute shared solutions (which by Corollary 3.2, renders

private subproblems independent), which is done by calculating and exchanging their
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influence spaces. An extractSubNetwork function assists in this process by

taking an already decomposable STN instance and extracting only the decomposable

subnetwork associated with the interface variables and all constraints between them.

The algorithm begins with each agent i initializing its set of interface variables

V i
I (line 1) and both its local solution space Si and its influence space SiI (line 2).

Each agent then independently calculates its influence space by finding a minimal,

decomposable STN labelling (line 3), extracting the subnetwork formed by its interface

variables, V i
I (line 4), incorporating this subnetwork into its influence space Si (line 5),

and then adding this subnetwork as a no-good (line 5) so that the loop will terminate

once all consistent labellings over the interface variables have been enumerated. By

focusing no-goods more specifically on interface variables, I gain efficiency by pruning

away other local STP labellings that lead to the same influence. Notice, the process

of computing the influence space does not grow an agent’s set of interface variables.

So if only one of an agent’s many timepoints is involved in an external constraint,

each extracted subnetwork will contain just the locally-consistent time window for

that variable. In this case, the agent will only need to communicate this variable’s

domain of locally-consistent time windows.

Generally, the influence space acts as a set of constraints over an agent’s interface

variables that implicitly summarizes an agent’s many local constraints without revealing

them, thus avoiding the de facto centralization required by full decomposability. Agent

i communicates this set of constraints, as formed by SiI , along with its external

constraints, Ci
X , to all other agents (line 8), and incorporates other agents’ interface

constraints locally (line 9). Note, this exchange may grow the set of external variables

that agent i is aware of, V i
X , but guarantees that the subsequent computations will

be consistent with the constraints implied by other agents. While it is possible that

agents could be more judicious in the information they exchange (e.g., agent i could

send only the constraints that neighboring agent j is already aware of), this would

represent a further approximation that sacrifices agents’ support of typical queries

over externally known variables. Finally, each agent concurrently computes its local

solution space, Si, by finding and incorporating all local minimal, decomposable STNs

into its solution space, adding each as a no-good, until all consistent local labellings

have been enumerated (lines 11-13). The algorithm terminates by returning agent i’s

locally-decomposable representation, Si (line 14).
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Algorithm 3.1 Multiagent Disjunctive Temporal Problem Local Decomposability
(MaDTP-LD)

Input: Di =
〈
V i =

{
V i
L ∪ V i

X

}
, Ci =

{
Ci
L ∪ Ci

X

}〉
.

Output: A locally-decomposable temporal network.
1: V i

I ← {v ∈ V i
L ∩ VX};

2: Si ← {}; SiI ← {};
3: while STN Si ← Di.findSolution() do
4: SiI ← Si.extractSubNetwork(V i

I );
5: SiI ← SiI ∪ {SiI};
6: Di.addNoGood(SiI);
7: end while
8: for all Agent j 6= i do
9: Send(Agent j,SiI ∪ Ci

X);
10: Ci

X ← Ci
X∪ Receive(Agent j);

11: end for
12: Di.clearNoGoods();
13: while STN Si ← Di.findSolution() do
14: SiL ← Si.extractSubNetwork(V i

L);
15: Si ← Si ∪ Si;
16: Di.addNoGood(SiL);
17: end while
18: return Si

Theorem 3.2. The MaDTP-LD algorithm calculates local decomposability.

Proof. By way of contradiction, assume that there exists some locally consistent

assignment of values, aβ, to a subset of variables, Vβ ⊆ V i, for some agent i such that

aβ is not part of any joint solution. Since aβ is locally consistent, it must have appeared

as a solution to at least one of the feasible local component STNs, S iβ, generated by

agent i in line 13. If aβ is consistent with a local component STN generated in line 11,

it must also be simultaneously consistent with at least one constraint network, SjIβ , for

each agent j 6= i (as collected in line 9). For each agent j 6= i, SjIβ is generated only

if there is a corresponding feasible STN label Sjβ from which it was extracted (lines

3-4). Hence, the MaSTP formed by the union,
⋃
i S iβ, with which aβ is consistent,

simultaneously satisfies all local Ci
L and external Ci

X constraints for all agents i. But

this, by definition, is a joint solution, which violates the assumption. This implies

that the MaDTP-LD algorithm does indeed calculate local decomposability.

Theorem 3.3. The MaDTP-LD algorithm calculates minimal local constraints.

Proof. Note, by Theorem 3.2, all values that appear in any interval that agent i

calculated for any of its known constraints, c ∈ Ci, are part of at least one valid

solution. By contradiction, assume that there exists some assignment aβ of a subset of
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known variables Vβ ⊆ V i for some agent i such that a is part of a valid joint solution,

but is not represented in the intervals that agent i calculated for its known constraints,

Ci. Since line 11 results in only globally valid solutions (Theorem 3.2), agent i must

never generate an STN S i containing aβ. However, this is a contradiction, since line

11 is executed until all local, unique STN solutions are generated. Therefore, the

MaDTP algorithm captures the exact set of feasible values within the intervals of each

local constraint.

Together, these two theorems prove that Algorithm 3.1 calculates a distributed joint

solution space representation that is both sound (Theorem 3.2) and complete (Theorem

3.3). Note each agent i, in the worst case, will concurrently generate O(k|C
i|) unique

labellings. This compares favorably to previous, centralized approaches (Tsamardinos

& Pollack, 2003; Shah et al., 2009), which centrally generate O(k|C|) global labellings.

While the exact runtimes of both my approach and previous approaches depend on the

performance of the solution algorithm used, concurrently generating O(k|C
i|) labellings

rather than centrally generating O(k|C|) labellings represents a potentially exponential

runtime savings. Similarly, the space (and analogously bandwidth) required of each

agent to locally represent these local, fully-connected, STN labellings, O(|V i|2 · k|Ci|),
represents another potentially exponential reduction over previous approaches’ worst

case, O(|V |2 · k|C|). Of course, these exponential savings depend on the structure of

the MaDTP. My hypothesis, evaluated next, is that the relative performance of my

algorithm will be at its best for loosely-coupled, evenly-distributed problems.

3.5.4 Empirical Evaluation

My MaDTP-LD algorithm will depend on relative size of an agent’s influence space

vs. its local solution space. This will be determined, in part, by the number of external

constraints (i.e., the constrainedness), and also the number of agents involved. As

the number of external constraints increase, the size of an agent’s influence space will

also increase, which decreases the amount of each agent’s independent reasoning while

increasing the scope of each agent’s known subproblem, thus mitigating the amount

of speedup that my MaDTP-LD algorithm can achieve.

As described by Tsamardinos & Pollack (2003), the canonical random DTP

generator for evaluating DTP algorithms (Stergiou & Koubarakis, 2000) instantiates

DTP instances using the parameters 〈k,N,m,L〉, where k is the number of disjuncts

per constraint, N is the number of timepoint variables, m is the number of disjunctive

temporal constraints, and L is a positive integer that specifies a range of values, [−L,L],
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from which bounds over disjuncts are chosen with uniform probability, vj − vi ≤ bij ∈
[−L,L]. I adapt this generator to be multiagent by adding two parameters: a, the

number of agents, where for each agent I generate a local DTP using the above specified

random generator; and p, which establishes the proportion of the problem that is

external by adding |CX | = p ·m · a constraints that involve a total of |VX | = p ·N · a
variables, |V i

I | = p ·N per each agent i. I also add a zero temporal reference point z

(i.e., reference to a clock time) to the problem, where z is considered shared between all

agents (i.e., a pointer to z appears in each agent’s local problem). In order to enable

meaningful relationships with z, I add a non-disjunctive makespan constraint between

each timepoint and z of the form vi − z ∈ [0, L ·N ]. This will enable decoupling with

respect to the zero reference point in the next section.

In these experiments, I vary a, N , and p, and the fixed parameter settings are

k = 2 and L = 100 (Tsamardinos & Pollack, 2003). Two disjuncts per constraint

naturally captures the unordered sequentiality constraints that are featured in the

scheduling problems studied in this thesis (e.g., those in the Ordering column of Table

3.1). I set m so that the ratio of constraints to timepoints is 4 (m
N

= 4).

For all parameter settings, I average over 100 randomly generated test cases. I

use the state-of-the-art SMT solver Yices (Dutertre & Moura, 2006) as the baseline

implementation of findSolution() function in both my distributed MaDTP-LD

algorithm and its centralized variant (i.e., the brute-force approach), which executes

MaDTP-LD on a centralized, single-agent version of the problem. I record the

maximum processing time across agents (i.e., the time the last agent completes

execution) and the total number of iterations of the findSolution procedure. I also

record the number of decisions and conflicts as reported by Yices, but do not report

them, since they mirror the trends in time.

My first experiment tests my hypothesis that the size of an agent’s influence

influence space is smaller than the size of its corresponding local solution space. The

calculation and relative sizes of the influence space vs. local solution space is specific

to individual agents and is independent of the external constraints involved. As such,

comparing the influence and local solution space sizes is done most straightforwardly

and simply using a single agent by treating a portion of its variables as if they were

interface variables (but without needing to explicitly add external constraints). Here, p

determines the ratio of |V i
I | to |V i

L|, where V i
I = ∅ when p = 0 and V i

I = V i
L when p = 1.

Figure 3.5 shows that, when there are relatively few local variables in the interface (as

dictated by parameter p), the influence space contains orders-of-magnitude fewer STNs

and takes many orders-of-magnitude less time to find. However, when the interface
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p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1.0

Time 17445.2 1216.1 73.9 4.0 1.0

Iterations 280.2 24.5 4.8 1.5 1.0
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N=8, a=1, p∈{0,0.25,0.5,0.75,1.0} 

Figure 3.5: Local solution space vs. influence space.

contains all variables (p = 1.0), there is no advantage gained, which is to be expected

since the local solution and influence spaces would be the same.

My second experiment, the results of which are shown in Figures 3.6 and 3.7,

tests how much speedup two agents using my MaDTP-LD algorithm achieve over

a centralized approach calculating full decomposability. There are two contributing

factors for why I would expect MaDTP-LD to outperform its centralized, full decom-

posability counter-part — (1) computational savings due to the approximation and

(2) concurrency gained from load balancing. The second line in Figure 3.6 (Full /

Approx.) captures the gains made by the approximation alone by centrally calculating

full decomposability and comparing to centrally calculating the local decomposability

approximation. This demonstrates that, on average for these problems, 68% of the

total speedup (Full/Local) is due to the savings generated from the approximation,

while concurrency contributes the remaining 32% of the speedup. Unsurprisingly, it

takes less time and fewer STNs to find local decomposability when some variables are

not located in the interface (p = 0.0 . . . 0.75), leading to up to 11.26 times speedup

per problem instance in expectation. However, note that when p = 1.0, the relative

advantage of local decomposability decreases to a speedup of only 2.89. This dampened

speedup is because there is increasing overhead in first attempting to enumerate the

local influence space, and as p increases, more of the local solutions lead to unique

global solutions.
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p=0 p=0.25 p=0.5 p=0.75 p=1

Time (Full / Local ) 11.26 7.54 5.24 4.41 2.89

Time (Full / Approx.) 7.68 5.17 3.71 2.97 2.03

STNs (# Full / # Local) 2.69 2.13 1.87 1.93 1.84
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Figure 3.6:
Relative difference in computational effort using full vs. local decompos-
ability.

p=0 p=0.25 p=0.5 p=0.75 p=1

Time Diff (Seconds) 0.25 0.53 2.07 13.26 279.22
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Figure 3.7:
Absolute difference in computational effort using full vs. local decompos-
ability.
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While the relative magnitude in speedup decreases as p increases, as shown in

Figure 3.7, the absolute difference in time and number of findSolution iterations

increases. This is because as p increases, the problem combinatorics increase in

two ways. First, as p increases, the shared DTP grows to include an increasing

number of timepoints, adding to the combinatorics of the joint DTP. Second, as

p increases, so do the number of external, and thus number of overall, constraints,

further adding to the combinatorics. Thus, even though the growing size of influence

spaces causes the relative advantage of the MaDTP-LD to decrease, these relative

losses are outpaced by an overall increase in computational runtime due to increased

problem complexity. Overall, local decomposability leads to significant speedup over

calculating full decomposability, both due to the approximation being employed and

the concurrency that it allows.

Finally, while the amount of relative speedup over the centralized approach is

important, so is how well my MaDTP-LD algorithm scales with an increasing number

of agents. The results of the third experiment, displayed in Figures 3.8 and 3.9,

show that when problems are completely disjoint, my approach scales well, as one

would expect. However, even for relatively small amounts of coupling (p = 0.33),

the effort and number of STNs that must be explored still grows exponentially

(though at a significantly reduced rate due to a smaller base). These results indicate

that applications that cannot afford substantial precompilation time will require

exploiting additional local and interaction structures or employing additional forms

of approximation to scale to larger problems containing more interacting agents (as

described in Section 5.2.2).
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a=2 a=3 a=4 a=5 a=6

MaDTP-LD, =0.0 0.010 0.011 0.012 0.012 0.013

MaDTP-LD, =0.33 0.024 0.080 0.303 1.576 13.462

Cent., p=0.0 0.022 0.193 2.275 40.012

Cent., p=0.3 0.040 1.255 41.497 1498.637
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Figure 3.8: Runtime as the number of agents grows.

a=2 a=3 a=4 a=5 a=6

MaDTP-LD, =0.0 5.010 5.660 6.070 6.330 6.730

MaDTP-LD, =0.33 9.630 19.090 36.580 69.760 158.530

Cent., p=0.0 6.180 17.600 49.170 165.110

Cent., p=0.3 8.680 43.700 190.890 927.530
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Figure 3.9: Number of findSolution iterations as the number of agents grows.
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3.6 Decoupling Algorithms

While my MaDTP-LD approach exploits loosely-coupled structure when it exists to

achieve speedup over brute-force, centralized approaches, it still requires enumerating

a combinatorial number of component MaSTPs in order to compute the complete

solution space of an MaDTP. The downside of this is that, if a new constraint arises, an

agent must now propagate and communicate the (combinatorial number of) ways that

this new constraint can impact other agents’ problems. A temporal decoupling is an

alternative to computing the complete space of solutions that sacrifices some number

of local component STN solutions in favor of allowing agents to reason over their local

problems completely independently. The challenge is that, as shown by Hunsberger

(2002), a temporal decoupling exists if and only if a solution to the MaDTP exists, and

so computing a temporal decoupling for general problems is of the same complexity

as DTP search, which as discussed in Section 3.2.1, is an NP-complete problem. In

this section, I introduce an approach in which, like Section 3.5, agents independently

construct their influence spaces, but this time in an incremental manner. Furthermore,

this approach also incrementally searches over these growing sets of influence spaces

until it finds a solution to the shared DTP that can be used to construct a temporal

decoupling, possibly short-circuiting full influence space construction.

3.6.1 Temporal Decoupling in Disjunctive Temporal Networks

In the previous section (Section 3.5), I introduced an approach that sacrificed

global decomposability in favor of establishing local decomposability so as to exploit

loosely-coupled structure when it exists, while also preserving the minimality of the

overall network. In this section, I will explore finding a temporal decoupling, which

instead sacrifices global minimality (and thus the completeness of the joint solution

space) in favor of preserving the overall decomposability of the MaDTP. A temporal

decoupling preserves decomposability in much the same way that a fully-specified

point solution does, by limiting the domains of timepoint variables so that they cannot

help but be consistent with other variables. The introduction of local constraints to

decouple agents’ problems means that locally consistent solutions to a subset of one

agent’s local variables can be extended to a solution to any other agent’s problem,

and, in turn, the entire MaDTP. On the other hand, a temporal decoupling, as was

discussed in Chapter 2, sacrifices the completeness of the joint solution space (and

thus minimality) to permit each agent to independently reason over its problem.

My main objective in this section is to devise an approach that computes a valid
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temporal decoupling as expediently as possible. Accordingly, I will discuss how I

adapt the way agents construct their influence spaces (Section 3.6.2) to efficiently

select a valid temporal decoupling (Section 3.6.3) where the assumption is that agents

want to converge on any decoupling as soon as possible. Note that this emphasis on

speed means that agents might not find the most flexible temporal decoupling — one

that preserves as much of the complete joint solution space as possible. To assess the

degree to which my approach retains good portions of the complete solution space, I

develop two complementary ways for measuring the completeness of a DTP solution

space. First, I will adapt the metrics of flexibility (and rigidity) so that they can

aggregate over disjunctive minimal temporal network representations such as the one

in Figure 3.4. Second, I will develop a metric that counts qualitatively different sources

of flexibility as represented by distinct solution STN labellings. This will facilitate

an empirical evaluation of my approach in terms of both runtime and augmented

completeness metrics (Section 3.6.4).

3.6.2 Influence Space Construction

Part of the ingenuity of the MaTDP algorithm (Section 2.6) is that it combines

decoupling decisions with the existing D4PPC algorithm in a way that not only

computes a temporal decoupling, but does so while also reducing the expected runtime

over the D4PPC algorithm. The MaTDP algorithm does this by recognizing that

minimality of the full temporal network is not necessary in order to decouple. Instead,

the MaDTP only requires that the domain of the variable that it is about to assign is

sound, even if it is not minimal (i.e., complete), so that the subsequent assignment

(and thus decoupling) is consistent. This saves the effort of computing minimality

for most of the shared edges, many of which agents can safely ignore once they have

decoupled their problems. In short, this gives hope that if agents are clever about

how they construct their influence spaces, they may be able to avoid computing their

complete, combinatorial sets of influences. I now highlight two possible approaches

for constructing influence spaces.

First is a “bottom-up” approach. The observation is that when agents construct

their influence spaces (such as in the MaDTP-LD algorithm, Section 3.5.3) they can

do so incrementally, in a way that is always sound, but progressively more complete

over time. Then, as agents independently grow their influence spaces, these influence

spaces can be collected and incorporated into the shared DTP over time. Once a

solution to the shared DTP is found, it can be used to construct a decoupling in

the same way as the MaTDP algorithm did for the MaSTP. I call this a bottom up
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approach because a temporal decoupling organically emerges from the increasingly

complete shared DTP representation.

An alternative approach is a “top-down” approach, where agents begin coordination

using a complete, but not necessarily sound, representation of their influence spaces,

and progressively improve the soundness of their influence space representations over

time. For example, the MaSTP formed by all singleton constraints (as described in

Section 3.2.2) is one example of a complete, but not necessarily sound, representation

that can be established very efficiently. Then, agents could progressively improve

the soundness of this representation by identifying how each disjunct of a particular

temporal constraint leads to a new, more refined MaSTP branch, which more exactly

captures a space of joint solutions. The advantage of this approach is that decoupling

decisions can be made from the top-down in a search-like manner and, if successful,

could save agents considerable effort in enumerating their complete influence spaces.

However, given that decoupling search decisions would not necessarily be sound,

backtracking may need to occur, and would lead to new, learned constraints that

further improve the soundness of the joint representation.

I develop and evaluate the first of these approaches, as presented next in Section

3.6.3. Later, in Section 5.2.2, I discuss preliminary ideas for both implementing the

top-down approach and also general ideas for improving the efficiency of MaDTP

decoupling approaches.

3.6.3 The Multiagent Disjunctive Temporal Decoupling Algorithm

The MaDTP Temporal Decoupling (MaDTP-TD) Algorithm (presented as Al-

gorithm 3.2) utilizes a coordinator to help with the decoupling process. Having a

separate coordinator manage the shared DTP would be advantageous because it en-

ables each independent agent to concurrently enumerate its influence space. However,

if a coordinator is not available, agents themselves could easily adopt joint responsi-

bility over the shared problem much like they do in the MaDTP-LD algorithm. To

replace the coordinator, agents could instead exchange their influence spaces among

all agents in line 7, and sequence the coordinator’s role, given by Algorithm 3.3, in

lieu of lines 8-11. I have verified experimentally that the runtime differences between

these two approaches are negligible (not statistically different), so have decided to use

the coordinator notation as a way to cleanly differentiate between local and shared

reasoning.

The MaDTP-TD Algorithm proceeds much like the MaDTP-LD Algorithm (Section

3.5.3). An agent starts by initializing an empty local solution and influence space (line
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2), and like before, loops to enumerate local solutions that lead to unique influence

space labellings (lines 3-12). Once again, no-goods are constructed so as to guarantee

that only local STNs that lead to distinct influences will be generated, saving time over

wastefully enumerating influence-subsumed local solution STNs. The main difference

in this stage of the algorithm is that after each new consistent STN labelling over

interface variables is computed, the incremental contribution to the overall, complete

influence space is not only added to agent i’s set of no-goods, but also communicated

to the coordinator who assumes responsibility for resolving the shared problem. The

second difference is that during every loop, an agent checks to see if the coordinator

has identified a consistent STP labelling and corresponding decoupling of the shared

DTP (line 8), and if so, adds these decoupling constraints to its set of local constraints,

and then ceases to continue enumerating its influence space (lines 9-10). At this point,

the second phase of the algorithm is nearly identical to the MaDTP-LD Algorithm,

with the main difference being that, instead of adding constraints implied by the

influence spaces expressed over its external variables, decoupling constraints are added

only to local variables. Thus an agent incurs the combinatorics of its local DTP,

but because of the decoupling constraints, not the additional combinatorics of the

influence spaces of other agents. The resulting local solution space that is returned

represents a locally minimal, temporal decoupling of the MaDTP.
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Algorithm 3.2 Multiagent Disjunctive Temporal Decoupling Algorithm (MaDTP-
TD)

Input: Di =
〈
V i =

{
V i
L ∪ V i

X

}
, Ci =

{
Ci
L ∪ Ci

X

}〉
.

Output: Agent i’s locally minimal, temporally decoupled temporal network.
1: V i

I ← {v ∈ V i
L ∩ VX};

2: SiS ← {}; SiI ← {};
3: while STN Si ← Di.findSolution() do
4: SiI ← Si.extractSubNetwork(V i

I );
5: SiI ← SiI ∪ {SiI};
6: Di.addNoGood(SiI);
7: Di.sendUpdate(coordinator,SiI);
8: if checkForDecoupling(coordinator) then
9: CiL ← Ci

L∪ receiveDecoupling(coordinator);
10: break;
11: end if
12: end while
13: Di.clearNoGoods();
14: while STN SiL ← DiL.findSolution() do
15: SiL ← SiL ∪ SiL;
16: DiL.addNoGood(SiL);
17: end while
18: return SiL

The Shared DTP Decoupling Procedure (Algorithm 3.3) initializes the coordinator

to block until it has been seeded with each agent’s initial influence space (lines 1-3).

Because this influence space is part of a local solution for each agent, this guarantees

that if the coordinator finds a solution, it will lead to a sound temporal decoupling.

After this initial blocking communication, the coordinator repeatedly tries to find a

solution to the shared DTP, looping until it is successful (line 5-9). After each solution

attempt, the coordinator checks (with non-blocking communication) to see if any

agent has produced another influence, and if so disjuncts it with its current influence

space representation for that agent, creating an increasingly complete influence space

per agent.2 Once a complete enough view of the shared DTP emerges that a shared

STN solution can be found, the agent proceeds to extracting decoupling constraints

for each agent (lines 10-13). This is done by taking each temporal difference constraint

that is present in the resulting component STN and, if it is external, decoupling it

with respect to the temporal reference point z, else if it is local to one particular agent

i, adding it to agent i’s set of local constraints (i.e., Ci
∆). The resulting decoupling

2The disjunction that occurs involves taking the constraints implied by the growing set of influence
spaces, and converting them to disjunctive constraints; that is taking the union of an agents influence
space, which is inherently represented in CNF, and converting it to DNF.
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is then relaxed so that it is also a minimal decoupling (see the MaTDR relaxation

procedure in Section 2.6).

Algorithm 3.3 Shared DTP Decoupling Procedure

Input: DiS = 〈VS , CX〉.
1: for all agents i do
2: Ci

S ← blockReceiveUpdate(agent i);
3: end for
4: STN SS ←null;
5: while SS ← DS .findSolution() == null do
6: for all agents i do
7: Ci

S ← Ci
S∨ receiveUpdate(agent i);

8: end for
9: end while

10: for all agents i do
11: Ci

∆ ← extractDecouplingConstraints(agent i);
12: sendDecoupling(i, Ci

∆);
13: end for

Theorem 3.4. The MaDTP-TD algorithm produces a decomposable MaDTP.

Proof. By way of contradiction, assume that there exists some locally consistent

assignment of values, aβ, to a subset of variables, Vβ ⊆ V , for some agent i such that

aβ is not part of any joint solution. Notice that any portion of aβ belonging to a single

agent i, that is to the variables in Vβ ∩ V i
L, can be extended to include all variables in

V i
L, since the portion of aβ belonging to i is subject to the constraints of being part of

a local solution generated in line 14, for each agent i. Thus, the conflict must arise

between agents. However, the local solutions generated in line 14 also incorporate the

decoupling constraints received from the coordinator. Corollary 3.2 in Section 3.4.2

says that given a valid temporal decoupling, solutions to private timepoints can be

found independently, and since line 14 only generates valid solutions, the temporal

decoupling must not be valid. However, a decoupling is generated only if a solution

to the shared problem exists, which only occurs if the shared DTP is consistent with

some influence space S iI for each agent i. But each influence space S iI is generated

only if there is a corresponding feasible STN label S iI from which it was extracted

(lines 3-4). Thus, since aβ both must respect valid decoupling constraints and can be

extended to a local solution for each agent i’s local problem, say aiLβ , the combination⋃
i a

i
Lβ

forms a joint solution, which violates the assumption. This implies that the

MaDTP-TD algorithm does indeed calculate a decomposable MaDTP.

Theorem 3.5. The MaDTP-TD algorithm produces minimal local MaDTPs given

the decoupling constraints it computes.
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Proof. Note, by Theorem 3.4, all values that appear in any interval that agent i

calculated for any of its local constraints, c ∈ Ci, are sound, that is, part of at least

one valid joint (and thus local DTP) solution. By contradiction, assume that there

exists some assignment aβ of a subset of local variables Vβ ⊆ V i
L for some agent i such

that a is part of a valid local solution, but is not represented in one of the local STNs

added in line 15. Since line 14 results in only valid solutions (Theorem 3.4), agent i

must never generate a local STN S i containing aβ. However, this is a contradiction,

since lines 14-17 are executed until all local, unique STN solutions are generated.

Therefore, the MaDTP algorithm captures the exact set of feasible values within the

intervals of each local constraint.

3.6.4 Empirical Evaluation

Like the MaDTP-LD algorithm, my MaDTP-TD algorithm will depend on relative

size of an agent’s influence space vs. its local solution space. However, in this case,

because agents stop once a consistent decoupling of the shared DTP is found, the

size of the influence space contributes less to the overall runtime than it did for

the MaDTP-LD algorithm. Instead, the speed at which the coordinator can find

a temporal decoupling, and in turn, the number of local solution spaces that are

sacrificed by this decoupling, will play a larger role in the overall runtime of the

algorithm.

I reuse my experimental setup from the MaDTP-LD Algorithm (Section 3.5.4)

to empirically evaluate the performance of my MaDTP-TD algorithm. In my first

experiment, shown in Figure 3.10, I compare the expected runtimes of both my

MaDTP-TD and MaDTP-LD algorithms by varying p, the portion of the MaDTP

that is external. As one would expect, when there are no external constraints (p = 0),

the two algorithms have the same expected runtime. However, as p, and thus the level

of coupling between agent problems, grows, so does the relative gap between the two

approaches. In fact, as p approaches one, the difference in runtime grows to over four

orders-of-magnitude for a problem containing just two agents.

MaDTP-TD gains a runtime advantage over MaDTP-LD in two ways. First, an

agent that is initially enumerating its influence space while executing MaDTP-TD

may cut this process short, as soon as the coordinator finds a consistent decoupling.

Second, once a decoupling is in place, an agent executing MaDTP-TD only has to

enumerate all component STNs that are both consistent with the new decoupling

constraints and also lead to distinct labellings of local variables, as compared to the
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MaDTP-LD algorithm, in which each agent generates all consistent STNs for all its

known variables. So, as p increases, MaDTP-LD behaves increasingly like a centralized

algorithm, while the decouplings established by the MaDTP-TD algorithm allow for

more independent reasoning over local problems by sacrificing an increasing number

of joint solutions. In fact, even though as p increases it may become more difficult for

the coordinator to find a valid decoupling, the decoupling constraints it eventually

does find are increasingly restrictive, reducing the set of consistent local STNs, and

thus overall solve time.

p=0 p=0.25 p=0.5 p=0.75 p=1

MaDTP-TD 0.022 0.014 0.010 0.009 0.006

MaDTP-LD 0.02 0.08 0.47 2.90 140.69
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N=4, a=2, p∈{0,0.25,0.5,0.75,1.0} 

Figure 3.10:
Expected runtime of the MaDTP-TD vs. MaDTP-LD algorithms as
coupling between agents increases.

Of course, the MaDTP-TD algorithm gains much of its computational advantage

over local decomposability by sacrificing the completeness of the MaDTP solution space.

I now introduce three new metrics for evaluating the completeness of a disjunctive

solution space. As introduced for the MaSTP in Section 2.6.4, maintaining as much

flexibility, or conversely introducing as little rigidity, as possible between each pair of

timepoints can help absorb the effects of arriving constraints that tighten the bounds

between pairs timepoints. I adapt these flexibility and rigidity metrics so that they

apply to minimal disjunctive temporal networks, such as the one in Figure 3.4. I define

the flexibility, Flex(i, j), of a particular edge, eij, as Flex(i, j) =
∑

`∈IL(w`ij + w`ji),

that is the sum of the flexibility over each edge’s set of disjunctive interval labellings

(IL). Then, the definition of the rigidity between a pair of timepoints, Rig(vi, vj) =
1

1+Flex(vi,vj)
, and of the network as a whole, Rig(S) =

√
2

|V |(|V |+1)

∑
i<j [Rig(vi, vj)]

2,
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immediately follows using the new, disjunctive definition of Flex. In my evaluations,

I will report the average flexibility and rigidity over the local edges of all agents.

Unfortunately using a metric like flexibility or rigidity alone can under-represent

the completeness of a disjunctive temporal network. For example, using the flexibility

metric, Ann’s local STN labelling (which corresponds to a point solution) in Figure

3.3 (b) has no flexibility. However, if a constraint arises that dictates that Ann must

complete her therapy regimen prior to starting any recreation, the entire (more flexible)

network represented in Figure 3.3 (a) is invalidated. In this case, Ann’s agent would be

more resilient if it had maintained network (b) as an option, even if doing so required

sacrificing some of the flexibility of network (a) — a fact that can be missed when

using flexibility or rigidity metrics alone.

Thus a secondary metric is needed to more accurately capture the completeness

landscape. This is because the sets of solutions represented by a temporal network

are not independent: if a new constraint arises, as in the example from the previous

paragraph, it is likely that entire ranges of values may be eliminated. This effect is

compounded in disjunctive temporal networks, where a new constraint may not only

lead to tighter bounds between particular pairs of timepoints, but could also eliminate

entire (sets of) component STP solutions. Thus, it is important not only to establish

flexibility over particular pairs of timepoints, but also to establish multiple qualitatively-

diverse and even redundant sources of flexibility so that if a new constraint prunes a

particular component STN, an agent can avoid widespread pruning throughout its

network. To capture these additional sources of flexibility, I also report the average

proportion of the number of local STN labellings that are maintained in the decoupled

vs. complete representation, where I separately count a local STN labelling if (1) it is

decomposable (i.e., a sound representation of solutions) and (2) it is not subsumed by

any previously counted networks.

Using these metrics, I compare the completeness of the outputs of both the MaDTP-

TD and MaDTP-LD algorithms across the same space of problems. The results of this

experiment are displayed in Figure 3.11. Generally, the trend across all completeness

metrics is that, as coupling increases, the MaDTP-TD produces increasingly less

complete solution spaces relative to the complete approach. This general trend is to

be expected, since as the number of external constraints increases, so will the resulting

number of added decoupling constraints to each agent’s local problem. Notice that the

trend in the number of local STNs is inversely correlated with the relative difference

in runtimes, where MaDTP-TD produces an order-of-magnitude fewer local STN

solutions than MaDTP-LD (helping to explain its expected runtime advantage).
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The metric over which MaDTP-TD seems to suffer the most in terms of com-

pleteness is the number of distinct STN solutions, where it produces three orders-of-

magnitude fewer local STN labellings than MaDTP-LD as p approaches 1. However,

recall that as agents using the MaDTP-LD algorithm calculate their local solution

spaces, they include the constraints implied by the (combinatorially) many influence

spaces of other agents. Many of the additional local STN solutions that result from

the combinatorics of other agents’ influence spaces may only be subtly different in

nature, that is, provide redundant intervals between particular pairs of timepoints.

While, as discussed, this redundancy implies a certain kind of resiliency, an agent must

also be resilient to new constraints that specifically tighten bounds between pairs of

timepoints, and so is well-served by maintaining flexibility between timepoints.

Using the other available metrics (which only take into account local edges),

MaDTP-TD suffers to a much lesser extent, leading to less than an order-of-magnitude

reduction in flexibility and just over an order-of-magnitude increase in rigidity. This

indicates that while there are far fewer local solution STNs that are consistent with

decoupling constraints, the local STNs that are found tend to provide better coverage

over the minimal, complete bound intervals between local timepoints in expectation.

As seen in the last column of the table in Figure 3.11, even in the extreme case when

p = 1.0, while the temporal decoupling preserves only 0.5% of the number of consistent

local component STNs, it preserves 20% of the flexbility.

p=0 p=0.25 p=0.5 p=0.75 p=1

Num. Local Sol'ns 1.00 0.30 0.08 0.03 0.005

Local Rigidity 1.00 4.86 5.81 6.91 10.78

Flexibility 1.00 0.77 0.67 0.59 0.21
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N=4, a=2, p∈{0,0.25,0.5,0.75,1.0} 

Figure 3.11:
Ratio of completeness of the output of the MaDTP-TD algorithm to
the output of the MaDTP-LD algorithm as coupling between agents
increases.
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To make my second set of experiments comparable to the ones in Section 3.5.4,

I matched those experiments’ parameter settings of N = 3 and p = 1
3

while varying

the number of agents a ∈ {2, 3, 4, 5, 6, 7}. The results of this set of experiments are

displayed in Figures 3.12 and 3.13. As one would expect, the centralized, brute-

force approach scales very poorly as the number of agents increases. Figure 3.12

also confirms the results demonstrated in Figure 3.8, that the MaDTP-LD, while

significantly reducing computation over the centralized approach, does not scale well to

problems containing more than just a few (no more than ten) agents. The MaDTP-TD,

on the other hand, scales very well, executing in 4 orders-of-magnitude less time than

the MaDTP-LD algorithm for problems containing just 6 agents. While not completely

invariant to the number of agents, in this experiment the runtime grows sublinearly

with the number of agents, giving hope that tractable approaches for computing

at least somewhat flexible solution spaces to general scheduling problems involving

increasing numbers of agents exist. I later test whether this trend holds for larger

problems containing more agents, but first I look at the relative differences in terms

of completeness.

a=2 a=3 a=4 a=5 a=6 a=7

MaDTP-TD 0.007 0.008 0.008 0.009 0.009 0.01

MaDTP-LD 0.02 0.08 0.29 1.51 12.90

Centralized 0.04 1.21 39.87
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N=3, a∈{2,3,4,5,6,7}, p=0.33 

Figure 3.12:
Expected runtime of the MaDTP-TD vs. MaDTP-LD algorithms as
number of agents increases.

As shown in Figure 3.13, the comparative difference in flexibility and rigidity holds

relatively steady, where MaDTP-TD maintains roughly around 77% flexibility and

results in roughly 5.3 times more rigid solutions. As the number of agents grows,
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however, the temporal decoupling suffers in terms of the number of local solutions.

The reason for these apparently competing trends is that in these experiments, as

the number of agents increases, the number of external constraints that an agent is

involved with (and thus its number of interface variables) stays the same. Thus, metrics

such as rigidity and flexibility, which focus only an agent’s local edges, are relatively

unaffected by the growing number of agents. On the other hand, as the number of

agents grows, the overall number of joint solutions also grows. So the influence spaces

that an agent internalizes in the the complete approach (MaDTP-LD) also internalizes

this increased level of disjunction, whereas those internalizing a temporal decoupling

add a simple set of non-disjunctive decoupling constraints. Thus the increasing loss

in completeness in terms of the number of solutions is actually due to the fact that

agents using MaDTP-LD must account for the additional combinatorics implied by

the influence spaces of other agents, whereas the MaDTP-TD does not.

a=2 a=3 a=4 a=5 a=6

Num. Local Sol'ns 0.35 0.17 0.08 0.04 0.02

Rigidity 5.61 4.97 4.71 5.70 5.53

Flexibility 0.77 0.77 0.77 0.76 0.76
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N=3, a∈{2,3,4,5,6}, p=0.33 

Figure 3.13:
Ratio of completeness of the output of the MaDTP-TD algorithm to the
output of the MaDTP-LD algorithm as number of agents increases.

In Figure 3.12, the runtime of the MaDTP-TD algorithm appears to grow sub-

linearly. This is unexpected, since the coordinator must execute a search over the

shared DTP, which involves all of the growing number of agents’ influence spaces.

So while an individual agent’s local solution space does not grow with the number

of agents, the coordinator’s search space should. However, the coordinator’s search

incurs the expected runtime cost of finding the first solution to the shared DTP,

whereas the second phase of execution involves each agent enumerating its entire
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a=2 a=4 a=8 a=16 a=32 a=64

p=0 0.104 0.150 0.193 0.261 0.312 0.355

p=0.2 0.04 0.05 0.06 0.08 0.14 0.61

p=0.4 0.02 0.02 0.03 0.07 0.48 5.22
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N=5, a∈{2,4,8,16,32,64}, p∈{0,0.2,0.4} 

Figure 3.14:
Expected runtime of the MaDTP-TD algorithm as number of agents
increases.

combinatorially-large local solution space. Thus, my hypothesis is that for the smaller

problems explored in Figure 3.12, the runtime required by the coordinator’s search is

being significantly overshadowed by the time required for enumerating agents’ local

solution spaces, and that, if I scaled to a sufficiently large number of agents, the

exponential nature of the coordinator’s search would start to dominate the overall

MaDTP-TD algorithm runtime.

I test this hypothesis by measuring the runtime of my MaDTP-TD algorithm

on MaDTPs containing agent subproblems of size N = 5, growing these problems

to include many more agents (up to a = 64), and also varying the level of coupling

(p ∈ {0, 0.2, 0.4}). I display the results of this experiment in Figure 3.14. Interestingly,

when agents’ problems are completely decoupled from the outset, the overall runtime

of the algorithm still grows with the number of agents. This is because each execution

of the MaDTP-TD terminates only when all agents have completed computing their

local solution spaces, and so as the number of agents increases, the algorithm is

increasingly likely to encounter an agent that has randomly drawn a particularly large

solution space, and so requires more time to complete its execution.

Similar trends can be noticed for problems containing fewer agents when p = 0.2

and p = 0.4. However, in both cases, there appears to be an elbow indicating where
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Figure 3.15:
Expected runtime of Phase 1 of the MaDTP-TD algorithm as number of
agents increases.

the exponential nature of the first phase overtakes the execution time of the second. In

Figures 3.15 and 3.16, I display the execution time of each phase of the MaDTP-TD

algorithm separately. By teasing apart the contribution of each phase of execution

to the total runtime, I confirm that the runtime of the first phase of the algorithm

grows exponentially with the number of agents (due to the coordinator’s search over

the growing shared DTP), whereas the second phase runtime grows sublinearly (due

to the increasing likelihood of particularly large local solution spaces). Figures 3.15

and 3.16 also confirm that, as the level of coupling increases, the search for a solution

to the shared DTP becomes more difficult, while the effort required to compute local

solution spaces is decreased.

Summary. Overall, the MaDTP-LD and MaDTP-TD distributed solution algo-

rithms for the MaDTP offer two different trade-off points in terms of solution com-

pleteness and independence in reasoning. As shown in Figures 3.10 and 3.11, the

MaDTP-TD algorithm sacrifices completeness, and thus resiliency in the face of

new constraints, but does so with significant computational gains, especially for

loosely-coupled problems and enables agents to formulate sound advice independently.

Overall, in this space of randomly-generated problems, not only did I show that the

gains in speedup of the MaDTP-TD over MaDTP-LD outpace the relative losses in

completeness, I also demonstrate that MaDTP-TD extends tractability to an order-of-
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Figure 3.16:
Expected runtime of Phase 2 of the MaDTP-TD algorithm as number of
agents increases.

magnitude more agents than MaDTP-LD, as shown in Figures 3.12 and 3.14. Thus,

when speed is critical, MaDTP-TD can provide reasonably flexible spaces of local

solutions that agents can independently and efficiently reason over, and when speed

is not an issue and flexibility is most critical, MaDTP-LD can provide the complete

solution space at the cost of runtime coordination. Section 5.2.2 offers ideas for further

improving the efficiency, and thus applicability, of these algorithms.

3.7 Conclusion

In this chapter, I introduced the Multiagent Disjunctive Temporal Problem, a

general constraint-based scheduling formulation that can capture the interactions

of multiple agents in a distributed fashion. I demonstrated how the concepts of

minimality and decomposability naturally extend to the MaDTP formulation, but

that full decomposability results in a fully-connected multiagent temporal network,

which violates the objectives of an agent to reason as independently and efficiently as

possible. I also contributed the idea of local decomposability, which replaces significant

computational overhead of centrally computing joint schedules with independently

computing and exchanging more-compact influence spaces, thus promoting agents’

strategic interests while still supporting typical queries. I developed the MaDTP-LD

algorithm that exploits loose-coupling between agents and demonstrated significant
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speedup over a centralized algorithm while establishing the complete solution space

of a MaDTP. I also developed the MaDTP-TD algorithm, which further improves

runtime efficiency by establishing a temporal decoupling to create more independence

between agents’ reasoning, but does so at the cost of solution space completeness.

I demonstrated that capturing the impact that one agent’s local problem has on

another through influence space constraint summaries leads to orders-of-magnitude

improvement over current, brute-force approaches. Further, this approach can be

complemented by combining it with one that, as influence spaces are constructed,

proactively searches for ways to internalize the impact of external constraints in the

form of new decoupling constraints. These two algorithms, which generate complete

or temporally decoupled solution spaces, represent distinct trade-off points in terms of

solution space completeness vs. level of independent reasoning (and overall efficiency).

While I provided two algorithms that represented two trade-off points in solution

space completeness vs. independent reasoning, both were unavoidably subject to the

combinatorial explosion of possibilities inherent in MaDTP. Further, these are not the

only trade-off points that are possible. One could imagine agents that are willing to

spend more time independently constructing and analyzing their influences before

accepting the first temporal decoupling that arises in hopes of finding a maximally

complete (flexible) temporal decoupling. An additional challenge of finding an optimal

temporal decoupling is that each agent may have incentive to misrepresent its influence

space in order to selfishly maximize its own flexibility. Addressing this challenge

requires either making the assumption that agents are cooperative (as I have) or

designing coordination mechanisms that encourage agents to honestly represent their

influence spaces. Alternatively, one could imagine applying an influence space-like idea

to increase efficiency by exploiting sparse structure within an agent’s local problem,

an idea similar to Shah & Williams (2008)’s approach. In Section 5.2.2, I discuss

some promising ideas for alternatives to, and more efficient implementations of, my

high-level approach with the aim to improve efficiency.

Overall, this chapter demonstrated the advantages of representing and solving

multiagent, disjunctive scheduling problems using distributed, multiagent temporal

networks, and also the advantages of algorithms that exploit influence spaces to

perform solution space summarization and decoupling. I also demonstrated that, to

the extent possible, agents can independently reason over their private subproblems,

which becomes much more critical when these problems are NP-hard. Additionally, I

showed that despite the many combinatorial challenges of disjunctive problems, advice

and support of queries based on minimal and decomposable networks is still possible.
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CHAPTER 4

Extension to Planning: Hybrid Constraint

Tightening

4.1 Introduction

Planning and scheduling, while interrelated (Myers & Smith, 1999; Garrido &

Barber, 2001; Halsey et al., 2004), are often treated as separate subproblems (e.g.,

McVey et al. (1997)). Van Beek & Chen (1999) and Do & Kambhampati (2001)

demonstrate that planning problems can be automatically compiled into CSPs, which

can lead to impressive reductions in solution time. More recently, Cox et al. (2005);

Brafman & Domshlak (2008) and Nissim et al. (2010) demonstrate how to use

distributed constraint reasoning (Section 4.3.2) to solve multiagent planning problems.

A Hybrid Scheduling Problem (HSP) (Schwartz, 2007) combines the capability

of planning (as a finite-domain CSP) and constraint-based scheduling using hybrid

constraints as the bridge between planning and scheduling.

Hybrid constraints can capture that, for example, which recreational activity Ann

selects to perform is not independent from how it is scheduled. While I present a

more formal definition of hybrid constraints in Section 4.2, in Table 4.1 I illustrate

how to express hybrid constraints that naturally capture the relationship between

Ann’s recreation duration and which recreation Ann performs. So, by using an HSP,

Ann’s agent can inform her about how her selection of which recreational activity to

perform affects her possible schedules or, alternatively, which recreational activities

are available if Ann instead wishes to impose a specific time to start her recreation.

In this chapter, I discuss my Hybrid Constraint Tightening (HCT) pre-

processing algorithm (Boerkoel & Durfee, 2008, 2009). Inspired by local constraint

summarization (Section 1.3), HCT reformulates hybrid constraints by lifting informa-

tion from the structure of an HSP instance. These reformulated constraints compile
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Activity Duration Minimum Duration Maximum Duration
Hybrid Constraint Hybrid Constraint

Run [30,45] RA = run→ RA
ST −RA

ET ≤ −30 RA = run→ RA
ET −RA

ST ≤ 45
Swim [45,75] RA = swim→ RA

ST −RA
ET ≤ −45 RA = swim→ RA

ET −RA
ST ≤ 75

Bike [60,90] RA = bike→ RA
ST −RA

ET ≤ −60 RA = bike→ RA
ET −RA

ST ≤ 90

Table 4.1: Hybrid constraints related to the duration of Ann’s recreation activity.

implied constraints between the CSP and DTP subproblems of an HSP before the

search process, leading to significant search space pruning. In the remainder of this

HCT chapter, I provide background (Section 4.2) and discuss related approaches

(Section 4.3) before introducing the HCT algorithm in more detail and evaluating its

analytical properties (Section 4.4). Then in Section 4.5, I substantiate my claim that

HCT can be used with arbitrary constraint system solvers by using HCT preprocessing

prior to running a state-of-the-art, off-the-shelf solver and demonstrating empirically

that HCT reduces the actual runtime of search, often by an order of magnitude, across

a systematic exploration of spaces of possible problem structures. Additionally, I

show that as scheduling agents handle conditional temporal constraints that are more

general along certain dimensions, this speedup grows (Section 4.5.2.2). I also show that

other generalizations of conditional temporal constraint structures can diminish the

benefits of HCT (Section 4.5.2.3). Finally, I apply HCT in an expert team formation

domain, which leads to an augmented version of the HCT algorithm (Section 4.5.3),

and then conclude with discussion (Section 4.6).

4.2 Background

Before more formally introducing the Hybrid Scheduling Problem, I first review

the finite-domain Constraint Satisfaction Problem.

4.2.1 The Finite-Domain Constraint Satisfaction Problem

A finite-domain Constraint Satisfaction Problem (CSP), F , is defined as F =

〈VF , CF〉, where:

� VF is the set of finite-domain variables that must be assigned values; and

� CF is the set of finite-domain constraints , where each constraint c ∈ CF is

defined over a non-empty subset of VF and specifies the allowable (or alternatively

impermissible) combinations of values that can be assigned to the variables in

the subset.
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For each variable v ∈ VF , a unary constraint defines the finite domain of kF values

that v can be assigned. A CSP is solved by assigning each variable v ∈ VF a value

while simultaneously satisfying all constraints c ∈ CF .

Generally, the CSP is in the class of NP-complete problems, requiring O
(
k
|VF |
F

)
time, where kF is the variable domain size and |VF | is the number of variables, in

the worst case. However, there are many strategies to speed the expected solve

time. Typical solution approaches for solving CSPs use a backtracking search, where

the search procedure assigns values to variables in some order, backtracking from

inconsistent assignments, until all variables have been consistently assigned or all

possible assignments have been determined to be inconsistent. There are many basic

techniques for improving the efficiency of this search. First, the search can use a

variable ordering heuristic to select which variable to assign next, often based on the

fail-fast principle. The idea is to select the most constrained variable , which is

more likely to be involved in an inconsistency (failure), and assign it before assigning

other variables. Examples of fail-fast heuristics include the minimum remaining

values heuristic (|dom(v)|), maximum degree heuristic (|deg(v)|), or combinations

thereof (e.g., |dom(v)|
|deg(v)| ) (Bessiere & Regin, 1996). Once a variable vk ∈ VF is selected, a

value is chosen to maximize the chances of finding a complete, satisfiable assignment

using a least constraining value heuristic, e.g., minimizing total number of values

removed from other (possibly restricted to neighboring) variables,
∑

vi 6=k∈VF |dom(vi)|.
Finally, heuristics can be dynamically influenced by information gleaned from search

so that, for instance, a variable that may not initially appear to be heavily constrained

will be assigned earlier if it is the frequent cause of conflict.

Additional strategies for improving efficiency in CSP search include constraint

propagation, which propagates the implications of constraints on the domains of

variables by pruning away any values that are inconsistent with a current partial

assignment. Constraint propagation can result in differing levels of variable consistency.

One example is arc consistency , which guarantees that an assignment of any

value from any variable’s domain will be consistent with the domains of each of

the remaining variables. The Maintenance of Arc Consistency (MAC) algorithm,

which reestablishes arc consistency after every variable assignment, is a commonly

used constraint propagation strategy (Bessiere & Regin, 1996). Further strategies for

improving CSP search efficiency include conflict-directed backjumping (Prosser,

1993), which tries to reason over which variable assignments were ultimately responsible

for an inconsistency and directly backtracks to the search decisions involving those

variables, and constraint learning or no-good recording (Schiex & Verfaillie,
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1993), which try to avoid duplicating a bad assignment by making explicit an otherwise

implied constraint.

4.2.2 Hybrid Scheduling Problem

In the previous chapters, I discussed how to represent a broad class of constraint-

based scheduling problems. The Hybrid Scheduling Problem (HSP) of Schwartz (2007)

can additionally represent the activity selection aspects of scheduling problems by

combining the CSP and DTP (Section 3.2.1) representations. An HSP, H, is defined

as the tuple H = 〈F = 〈VF , CF〉 ,D = 〈VD, CD〉 , CH〉, where:

� VF is the set of finite-domain variables (as defined in Section 4.2.1);

� CF is the set of finite-domain constraints (as defined in Section 4.2.1);

� VD is the set of temporal variables (as defined in Section 3.2);

� CD is the set of disjunctive temporal constraints (as defined in Section 3.2); and

� CH is the set of hybrid constraints (as defined below).

An HSP’s set of variables is the union of the non-overlapping sets VF and VD, and its

set constraints is the union of the non-overlapping sets CF , CD, and CH. A hybrid

constraint c ∈ CH can mutually constrain variables in VD and VF by disjunctively

combining a finite-domain constraint (cF ∈ CF) with a disjunctive temporal constraint

(cD ∈ CD). A hybrid constraint cH = cF ∨ cD for cF ∈ CF and cD ∈ CD is satisfied

when at least one of cF or cD is. While a hybrid constraint must contain at least one

disjunct, it need not always contain both a finite-domain and disjunctive temporal

constraint, thus the HSP subsumes both the CSP and DTP formulations in generality.

A solution for an HSP is a complete assignment of values to variables that is consistent

with all constraints.

The set CH for the running example is represented in Table 4.1. For example,

(R = run → RA
ET − RA

ST ∈ [30, 45]) represents, in implicative form, that Ann will

recreate for between 30 and 45 minutes if she chooses to run. Hybrid constraints

play an important role, since they allow selections about which activities and how

to perform them (finite-domain variables) to affect when activities can be performed

(timepoint variables), and vice-versa. Note, Ann can easily add (or remove) activities to

(or from) the domain of her recreational activity and correctly capture the implications

of the added (or removed) activities simply by adding (or removing) any relevant

hybrid constraints. Further, hybrid constraints can involve more complex finite-domain
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constraints, for example, that the duration depends not only on which activity is

selected, but also with whom it is to be performed, as well as more complex temporal

domain constraints, for example, that the travel time between two locations is a

disjunctive temporal constraint that depends on the locations of each activity.

While hybrid constraints can capture general types of relationships between finite-

domain and temporal variables, many times groups of hybrid constraints may share

similar structure. One example of this are that the two sets of hybrid constraints

displayed in the right two columns Table 4.1. Each of these sets of hybrid constraints

share the same variables in all of the same positions; only the values of the bounds

differ between the constraints. I call such groups of hybrid constraints conditional

temporal constraints.

An alternative way of looking at such groups of hybrid constraints is as a single

(disjunctive) temporal constraint whose particular bound(s) is (are) contingent on the

assignment of values to some subset of finite-domain variables. The goal of my Hybrid

Constraint Tightening (HCT) approach is to lift information from the structure of a

conditional temporal constraint to recognize when the finite-domain “precondition”

of a particular hybrid constraint can be relaxed. By reformulating the finite-domain

components of the hybrid constraints involved in a conditional temporal constraint,

corresponding temporal bounds can be applied sooner, leading to search space pruning,

and thus reduced solve times.

4.3 Related Approaches

In this section I discuss a previous approach that combined DTPs and CSPs,

approaches for solving the Distributed CSP, and approaches for multiagent planning,

and relate each of these approaches to my work.

4.3.1 The DTPFD Formulation

As a precursor to the more general HSP, Moffitt et al. (2005) described a finite-

domain extension to the DTP, called the DTPFD, which allowed conditional temporal

constraints. They noted that conditional temporal constraints (i.e., groups of hybrid

constraints with common structure) have the property that, at any point in time,

one can enforce the temporal constraint with the tightest temporal bound consistent

with all remaining feasible finite-domain values. Their least-commitment approach

augments a search algorithm to apply this reasoning to prune more of the search

space.
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The new insight of HCT is that I can achieve the kind of reasoning described

in the example above by automatically recompiling hybrid constraints into tighter,

more effective constraints that enable typical search techniques to proactively prune

infeasible values sooner. This allows my hybrid constraint tightening (HCT) algorithm

to remain modular, leaving the implementation of the search algorithm untouched,

unlike the least-commitment approach of Moffitt et al. (2005). The HCT algorithm

applies to a more general set of hybrid constraints than those expressible in a DTPFD,

and can be more efficient by reasoning about such constraints once, whereas the

least-commitment approach might reason about them exponentially many times (as

explained in greater detail in Section 4.4.1).

4.3.2 Distributed Finite-Domain Constraint Reasoning

The Distributed Constraint Satisfaction Problem (DCSP) is a distributed constraint-

based problem formulation where all variables and constraints are finite-domain, rather

than temporal, in nature. While reasoning over the underlying temporal network

may be fairly disparate from typical finite-domain reasoning, it may be possible to

glean ideas from DCSP solution approaches to apply to the meta-CSP formulation

of the Multiagent DTP. Recall from Section 3.2.2 that the meta-CSP formulation

of a DTP represents disjunctive constraints as (finite-domain) meta-variables, using

the underlying temporal network to constrain which combinations of disjuncts are

consistent. In this section, I summarize DCSP approaches, and discuss their relative

strengths and weaknesses regarding their applicability and usefulness for solving both

multiagent scheduling problems and (multiagent versions of) the HSP.

Two seminal algorithms for solving the DCSP are the Asynchronous Backtracking

(ABT) and the Asynchronous Weak-Commitment (AWC) search algorithms (Yokoo

et al., 1998). Both algorithms work under the assumptions that each agent has exactly

one variable, all constraints are binary, and each agent knows all constraints relevant

to its variable. My work adopts only the last of these three assumptions. Each agent

executing these algorithms asynchronously assigns a value to its variable. Any time

an agent (re)assigns its value, it communicates this change to all neighboring agents —

the agents it shares constraints with. Additionally, each agent maintains an agent

view , which represents the currently reported values of its neighboring agents.

Upon receiving an update to its agent view, an agent evaluates the consistency of

its current value with the new agent view, given its known constraints. If its current

value is not consistent, it selects a new consistent value from its domain, if possible.

Otherwise it sends a no-good message to the agents involved in the conflict, which
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results in a newly expressed no-good constraint between agents. In order to eliminate

thrashing due to cyclic dependencies between agents, the algorithms add a priority

ordering over agents, where lower priority agents are responsible for assigning a value

consistent with higher priority agents. Whereas in the ABT algorithm each agent uses

a static priority, in the AWC algorithm, agents adjust their priorities dynamically using

a fail-first / most-constrained-variable style heuristic. Yokoo et al. (1998) demonstrate

that, in expectation, AWC reaches satisfying assignments much more quickly than

ABT, as measured by the number of message cycles, where each message cycle

consists of receiving all incoming messages, performing any local agent computation

(constraint checking and, if necessary, variable reassignment or no-good construction),

and then sending any outgoing messages.

The ABT and AWC give a general model for solving the DCSP. However, one

limitation of the algorithms is the assumption that each agent is responsible for only

one variable. For most interesting multiagent scheduling problems this is unlikely to be

the case, as agents may be responsible for scheduling multiple activities, each of which

may require temporal variables to represent. Yokoo et al. (1998) claim that the one

variable per agent assumption is general, and indeed Yokoo & Hirayama (1998) discuss

two approaches for generalizing the one variable per agent assumption. First, as a

preprocessing step, each agent could enumerate all possible solutions and construct a

single mega-variable whose domain consists of all possible local solutions. Second, an

agent could create a virtual agent for each of its local variables and then execute

as though each virtual agent is an independent agent. Armstrong & Durfee (1997);

Hirayama et al. (2004) and Silaghi & Faltings (2005) provide algorithms that perform

more intelligent prioritization of agents, order local agent variables dynamically, and

aggregate exchanges of information for agents with complex local problems. While

these extensions make the ABT/AWC much more applicable for solving multiagent

problems with complex local agent subproblems, each of these extensions to the basic

ABT/AWC algorithms have in common that variable assignments are performed

asynchronously and messages are used to resolve conflicts between agents’ assignments.

However, in constraint-based scheduling, approaches that rely on no-good messages to

eliminate one specific assignment of a time (of the possibly infinite number of possible

times) to a continuous timepoint variable could potentially never terminate. I now

describe fundamentally different algorithms that focus on alternative ways to increase

consistency in order to solve the DCSP.

Mailler & Lesser’s Asynchronous Partial Overlay (APO) algorithm (2006) is

mediation based. Since agents are good at efficiently solving local subproblems, the
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idea is to allow an agent to act as a mediator for neighboring agents by assuming

responsibility for solving portions of neighboring agents’ subproblems. In Mailler &

Lesser’s approach, an agent’s view — its subproblem and the variables it is assigning

on behalf of neighboring agents — may overlap with other agents’ views and the

sizes of agents’ views can increase over time. In the extreme, an agent mediator will

eventually centralize and be responsible for solving the entire DCSP, which guarantees

the completeness of this approach. The work empirically demonstrates that it can

solve problems more quickly than approaches such as ABT/AWC based approaches.

In contrast to ABT/AWC, which exchange messages to decentrally resolve conflicts,

an agent executing APO will instead subsume other agents’ variables with which it

has a conflict. While APO outperforms ABT/AWC based algorithms in terms of

runtime, it does so by, in the worst case, sacrificing all of an agent’s privacy. For

this thesis, where maintaining high levels of privacy and independence is a primary

motivation, this approach’s applicability will be limited to the shared portions of an

agent’s schedule problem.

Asynchronous Forward Checking (AFC), proposed and evaluated by Meisels &

Zivan (2007), synchronizes agent variable assignments by using an assignment token.

Instead of asynchronously assigning variables, an agent asynchronously forward checks

its domain against the current partial assignment , leading to earlier discovery of

and backtracking over infeasible partial assignments. One of the justifications for this

work is that the primary unit of computation when solving a CSP is the constraint

check . As first introduced in Section 2.5.4, Meisels & Zivan develop an additional

evaluation metric (besides message cycles) called the non-concurrent constraint

check (nccc). Note that agents solving a DCSP form a partial order over constraint

checks based on the fact that (1) any two constraint checks performed within the same

agent must be performed sequentially and (2) any constraint check xi performed by

agent i performed prior to sending a message mij can be ordered before any constraint

check xj performed by agent j after receipt of mij. The nccc metric, then, is simply

the length of the longest critical path in this partial ordering of constraint checks.

Additionally, Meisels & Zivan (2007) provide strategies for variable ordering and more

intelligent backtracking and demonstrate that AFC outperforms ABT in both number

of messages passed and nccc in expectation on the problems solved.

A Distributed Constraint Optimization Problem (DCOP) is a generalization of

the DCSP with more general utility or cost functions U (soft constraints) replacing

the set of constraints CFD (hard constraints), where each u ∈ U is defined over a

subset of variables in VFD and assigns a utility or cost to every possible combination
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of assignments to that subset of variables. A DCSP can be translated into a DCOP by

converting constraints into cost functions with infinite cost for inconsistent assignments.

As before, each utility function is known by at least one agent, and a DCOP is solved by

finding the assignment of values to variables that maximizes total utility (or minimizes

total cost).

ADOPT (Modi et al., 2005) and BnB-ADOPT (Yeoh et al., 2010) are both

decentralized, complete search algorithms for solving a DCOP using best-first and

branch-and-bound depth-first principles respectively. The OptAPO algorithm is an

optimization variant of the APO algorithm by Mailler & Lesser (2004). ADOPT

and OptAPO are generalizations of AWC and APO respectively, though in each

case, instead of terminating after the first feasible assignment of values to variables,

agents must exhaust the entire search space to guarantee the assignment they return

is the optimal one. The DPOP algorithm (Petcu & Faltings, 2005) is a distributed

implementation of the more general bucket-elimination algorithm of Dechter (2003)

(described in Section 4.2.1) and requires only a linear number of messages to solve a

DCOP, but suffers from exponentially (in the induced width of the constraint graph)

large message sizes. My local constraint summarization approach is also inspired by

bucket elimination but compactly encodes the impact of eliminated variables using

only binary constraints.

In summary ABT, AWC, and their variants are algorithms based on asynchronous

variable assignment, and use message passing of no-goods to resolve conflicts. Ap-

proaches based on assignment and no-good learning may be less applicable to con-

tinuous domain, constraint-based scheduling problems, where typical strategies focus

on maintaining consistent sets of solutions. APO deals with inconsistencies between

agents through mediation, which over time centralizes the view of the problem, and

thus may conflict with the privacy goals of my work. AFC provides strategies for

asynchronously increasing consistency across agents that, at a high-level, are similar

to my approach, which relies heavily on calculating consistency across an underlying

multiagent temporal constraint network, though the type of reasoning performed

is fundamentally different. Finally, DPOP is a distributed bucket-elimination algo-

rithm that calculates a knowledge compilation for an entire DCOP instance, which

increases consistency across agents to the point that assignments can be made in

a backtrack-free manner. However, my approach can maintain significantly higher

levels of independence and privacy through compact messages in the form of binary

constraints over mutually known variables.
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4.3.3 Multiagent Planning

The term planning encompasses many specific problem domains including classical

(Fikes & Nilsson, 1972), Hierarchical Task Networks (Erol et al., 1994), and MDP-

based planning (Bellman, 1966; Sutton & Barto, 1998). At a high-level, planning

involves developing policies or (partially-ordered) sequences of actions that (provably

or probabilistically) evolve the state of the world in a way that achieves a set of goals or

optimizes some objective function. Planning requires state descriptions, including the

initial states, models for determining how actions transform states, and an objective

function that evaluates the cost or value of particular states. Additionally, scheduling

is more explicitly concerned with specifically scheduling actions and with representing

complex scheduling constraints than planning is, which enforces temporal consistency

more implicitly through the world state. For many types of planning problems, the

plan or policy must also consider types of uncertainty not typically found in scheduling

(e.g., uncertainty over observations, effects of actions, etc.).

In comparison, in scheduling problems, the events that are to be scheduled have

already been determined and, along with complex temporal constraints, are taken

as input. The output, instead of some sort of general policy or (partial) sequence of

actions, is a specification of how times can be assigned to timepoint variables to satisfy

the temporal constraints, where all such schedules are considered equal. Planning and

scheduling, while interrelated (Myers & Smith, 1999; Garrido & Barber, 2001; Halsey

et al., 2004), are often treated as separate subproblems (e.g., McVey et al. (1997)).

Smith et al. (2000), who give a more complete comparison of planning and scheduling,

suggest “the difference [between planning and scheduling] is a subtle one: scheduling

problems only involve a small, fixed set of choices, while planning problems often

involve cascading sets of choices that interact in complex ways”.

Planning, due to its focus on complex choices of actions, also has a strong rela-

tionship to constraint satisfaction. In particular, Van Beek & Chen (1999) and Do

& Kambhampati (2001) demonstrate that planning problems can be automatically

compiled into CSPs, which can lead to impressive reductions in solution time. More

recently, Cox et al. (2005); Brafman & Domshlak (2008) and Nissim et al. (2010)

demonstrate how to use distributed constraint reasoning (Section 4.3.2) to solve multi-

agent planning problems. The fact that planning can be cast as a CSP demonstrates

that typical scheduling problem representations tend to lack what planning is heavily

dependent on — the ability to represent large, complex domains consisting of choices

of possible actions. So while planning relies heavily on an evolving world state /

environment for evaluating the complex relationships between actions, Van Beek &

127



Chen (1999); Do & Kambhampati (2001); Cox et al. (2005); Brafman & Domshlak

(2008) and Nissim et al. (2010) all demonstrate that such goals and environmental

constraints can often be specified as finite-domain constraints and variables in a

CSP. My Hybrid Constraint Tightening (HCT) advancements facilitate augmenting

multiagent scheduling problems with planning problems that can be represented as

CSPs with complex temporal reasoning. So for the particular classes of planning

problems that can be cast as CSPs, HCT can be viewed as taking a step towards,

to borrow the phrase from Smith et al., ‘bridging the gap between planning and

scheduling’ or, alternatively, a step towards generality.

There are many approaches from planning, particularly multiagent planning (of

which de Weerdt & Clement (2009) give a more complete introduction) or decentralized

planning (e.g., Bernstein et al. (2000)) that relate to and inspire my approach for solving

multiagent scheduling problems. First, the long history of exploiting loosely-coupled

structure in multiagent planning (Witwicki & Durfee (2010) offers one recent example)

serves as one of the motivations for my multiagent problem formulation. Second, a main

challenge in multiagent planning — how to interleave local planning and interagent

coordination — is also apt for multiagent scheduling problems. In planning, there

have been approaches where agents develop local plans and then work to integrate

the plans (e.g., Georgeff, 1983) and approaches that work out interdependencies

between agents first and then build local plans to fit these commitments (e.g., ter

Mors et al., 2004). However it is the success of approaches that blur this dichotomy

by interleaving planning and coordination (e.g., Clement et al. (2007) does this by

establishing multiple levels of abstraction) that inspire a similar increased interleaving

that my HCT approach affords. Third, both planning and scheduling involve ordering

events and checking for cycles (to ensure goals/conditions are not clobbered in planning

and to ensure consistency in scheduling), which is particularly challenging when cycles

are potentially distributed across multiple agents. For example, one challenge that

Cox et al. (2005) faced when casting the multiagent plan coordination problem as a

DCOP was evaluating the temporal consistency of multiagent plans. Unlike other

constraints, it is computationally infeasible to enumerate the necessary constraints

for eliminating all possible temporal cycles. Further, while checking for temporal

consistency can be executed as a polynomial time algorithm, such a constraint checking

process dampens the parallelism of DCOP algorithms. Cox et al. addressed this

challenge by partitioning their planning problems to restrict the scope of temporal

cycle checking to subproblems that can be evaluated in parallel, the success of which

serves, in part, as motivation for my approach.
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4.4 Hybrid Constraint Tightening Algorithm

My Hybrid Constraint Tightening (HCT) algorithm (Algorithm 4.1) involves three

basic steps. The first step is to group hybrid constraints based on the structure of

the temporal constraint involved. This is done efficiently by creating a simple hash

function based on the temporal variables involved and the order in which they appear

in the constraint (lines 2-4). Table 4.2 (upper) reproduces two such groups, with

three hybrid constraints each, corresponding to the minimum and maximum durations

of Ann’s recreational activity introduced earlier. Similar constraints could exist for

earliest start time, latest end time, lag between activities, etc., which may all be

dependent on the values of finite-domain variables like activity, location, etc.

Once these hybrid constraints have been grouped, the second step is to sort the

hybrid constraints based on the values of the bounds they impose on the temporal

difference. Notice that the sorting step can be omitted if, like in Algorithm 4.1, the

group is stored as a sorted list during construction. Both groups of hybrid constraints

in Table 4.2 (upper) are sorted, from top to bottom, in order of increasing tightness.

When the group of hybrid constraints involve a disjunctive temporal constraint with

more than a single disjunct, it is possible that a complete total ordering is not possible.

As long as the hybrid constraints are sorted in a total order that is consistent with the

partial order, this will not cause a problem. I will later present an example of such a

scenario in Table 4.4.

Algorithm 4.1 Hybrid Constraint Tightening Algorithm
Input: Set of hybrid constraints CH
Output: Set of reformulated, tightened hybrid constraints C ′H
1: constraintMap ← new hashMap 〈HybridConstraint, SortedList〉();
2: for all ch = 〈cfd → ct〉 ∈ CH do
3: constraintMap.getSortedList(ct).insert(c);
4: end for
5: C ′H ← {};
6: for all sortedLists l ∈ constraintMap do
7: c′fd ← {}
8: while l.isNotEmpty() do
9: ch = 〈cfd → ct〉 ← l.removeFirst();

10: c′fd ← c′fd ∨ cfd;

11: c′h ←
〈
c′fd → ct

〉
;

12: C ′H ← c′h;
13: end while
14: end for
15: return C ′H
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Minimum Duration Maximum Duration
Untightened RA = run→ RA

ST −RA
ET ≤ −30 RA = bike→ RA

ET −RA
ST ≤ 90

Hybrid RA = swim→ RA
ST −RA

ET ≤ −45 RA = swim→ RA
ET −RA

ST ≤ 75
Constraints RA = bike→ RA

ST −RA
ET ≤ −60 RA = run→ RA

ET −RA
ST ≤ 45

Tightened RA
ST −RA

ET ≤ −30 RA
ET −RA

ST ≤ 90
Hybrid RA ∈ {swim, bike} → RAST −R

A
ET ≤ −45 RA ∈ {swim, run} → RAET −R

A
ST ≤ 75

Constraints RA = bike→ RA
ST −RA

ET ≤ −60 RA = run→ RA
ET −RA

ST ≤ 45

Table 4.2:
Example of hybrid constraint tightening for the hybrid constraints related
to Ann’s recreational activity.

The third step (lines 6-14) is to construct new hybrid constraints based on the old

hybrid constraints, as displayed in Table 4.2 (lower). The insight here is that a more

restrictive temporal constraint subsumes a less restrictive temporal constraint, allowing

me to lift information that is inherently common to subsets of constraints so that the

search algorithm can exploit it, a concept similar in spirit to constructive disjunction

(Müller & Würtz, 1995; Würtz & Müller, 1996). These new hybrid constraints are

formed by replacing the current finite-domain component of each hybrid constraint

with a disjunction of the finite-domain components of all hybrid constraints whose

temporal bounds are at least as restrictive.

This is done efficiently by traversing the constraints in sorted order. The hybrid

constraint corresponding to the tightest temporal constraint in each group remains

untouched. The finite-domain component of the hybrid constraint with the second

tightest bound is merged (unioned) with the finite-domain component of the tightest

hybrid constraint of the group to form a new hybrid constraint where the temporal

bound is enforced when either of the unioned finite-domain constraints is consistent.

Since hybrid constraints are examined in sorted order, all finite-domain constraints

implying temporal bounds tighter than the current hybrid constraint will be merged

together to form the finite-domain component of the previously reformulated hybrid

constraint. Hence, the current hybrid constraint can be reformulated simply by

replacing its finite-domain component with a combination of its old finite-domain and

the new finite-domain component of the previous hybrid constraint. Notice that no

new hybrid constraints are created in this process.

A formal proof of the correctness of the HCT recompilation is available in Section

4.4.2; however, I give a brief intuition of its correctness here. This recompilation is

allowable because bounds are ordinal. In other words, if in a given hybrid constraint, a

certain finite-domain assignment leads a relatively tight bound, it will also inherently

satisfy any constraint with a bound that is less restrictive. Therefore, no assignments
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that would have previously been part of a consistent solution would be pruned or

inconsistent under this reformulation. Additionally, this reformulation does not allow

previously inconsistent assignments, since the HCT algorithm strictly loosens the

finite-domain constraint on which the corresponding temporal constraint is conditional.

Thus, any previous inconsistencies would remain inconsistent under the recompiled

constraints. My HCT algorithm therefore provides a sound and complete reformulation

of the hybrid constraints.

To demonstrate the efficacy of my approach, reference the example in Table 4.2. I

must verify my claim that the HCT approach always enforces the tightest allowable tem-

poral bound. As noted, groups of hybrid constraints can be thought of as conditional

temporal constraints, with the corresponding finite-domain component representing

the preconditions for applying the relevant temporal constraints. By combining a

finite-domain constraint that implies a particular bound on a temporal constraint with

all finite-domain constraints (from hybrid constraints) that imply tighter bounds, I

allow the search algorithm to satisfy the preconditions of the corresponding temporal

constraint earlier in the search process. By easing the preconditions of the temporal

constraints, I am allowing a correct search algorithm to apply the tightest possible

allowable temporal constraint at any given time. Notice in Table 4.2 (lower) that this

merging creates a constraint (e.g., RA
ST − RA

ET ≤ −30) with a precondition that is

always true, since the value of the recreation variable will necessarily be an element

of its entire domain. This allows me to add the corresponding temporal constraint

explicitly, enabling the search algorithm to enforce its temporal bound immediately.

Furthermore, as values are removed from the domains of finite-domain variables due

to the consistency maintenance policies of the search algorithm, the tightened hybrid

constraints enable the search algorithm to apply the tightest possible bounds on the

relevant temporal constraint. In contrast, the hybrid constraints, as expressed in Table

4.2 (upper), would allow the search algorithm to enforce a particular temporal bound

only after the finite domain variable involved was assigned a specific value.

The efficacy of my approach relies on the corresponding search algorithm. Whether

my approach enforces the tightest possible constraints as early as possible depends

on the heuristic decisions made by the search algorithm concerning its consistency

maintenance policy. My approach simply recompiles the hybrid constraints in such a

way as to make the search algorithm’s consistency maintenance as effective as possible

when it is applied, essentially achieving a higher level of consistency between two

heterogeneous sets of variables.
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4.4.1 Complexity Analysis

I analyze the runtime performance of HCT algorithm in two ways. In this subsection,

I consider the first of these, providing a precise, analytical evaluation of the runtime

of the compilation algorithm itself. Later in Section 4.5, I perform an empirical

evaluation to determine how HCT affects the overall solution process.

Theorem 4.1. The runtime of the HCT algorithm is O (|CH| · log(|CH|)).

Proof. The first step of my algorithm involves applying a hash function to the temporal

component of each hybrid constraint to determine its group. This will take a runtime

of O (|CH|), where |CH| is the number of hybrid constraints. The second step of my

algorithm involves sorting the hybrid constraints of each of these groups according to

the tightness of the bounds they enforce, requiringO (|CH| · log(B)), whereB is the size

of the largest group. The third step of the algorithm reformulates each hybrid constraint

by merging the finite-domain components of all hybrid constraints with less restrictive

constraints. The groups are maintained in sorted order, allowing the merge operation

itself (lines 10-11) to be accomplished in constant time by merging the recently

reformulated finite-domain component of the hybrid constraint with the immediately

more restrictive bound, thus all merges together require O (|CH|) time. Hence, my

algorithm is bounded by O (|CH| · log(B)) and since B is bounded by |CH|, the overall

runtime of my preprocessing algorithm is bounded by O (|CH| · log(|CH|)).

The least-commitment approach of Moffitt et al. (2005) is similar, but instead

requires explicit updates of the implied temporal bounds during search. Their approach

requires that, upon each change to the domain of a finite-domain variable, each

conditional temporal constraint must be reexamined, and new tighter consistent

temporal constraints must be determined. Although this is also a polynomial-time

algorithm, it may be applied an exponential number of times because finite-domain

CSPs may require trying an exponential number of assignments to finite-domain

variables. My approach is applied once, and thus the cost is amortized over the

entire run of the search. Additionally, since my approach requires a tightened hybrid

constraint for each unique temporal bound, I can take advantage of the often compact

representation of finite-domain constraints, as opposed to an explicit enumeration of

all possible combinations of finite-domain values present in the bounds tables required

by the Moffitt et al. (2005) approach.
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4.4.2 Proofs of Correctness

In the following proofs, I treat constraints as predicates that are true when satisfied

and false when violated for a particular assignment of values to variables.

Theorem 4.2. The HCT operation that replaces the set of hybrid constraints CH with

the set C̃H, where C̃H =HCT(CH), is a sound reformulation of the constraints CH.

Proof. Assume, by contradiction, that there exists an assignment s that is a solution

under C̃H, but not under CH.

Then, assignment s violates at least one constraint ciH ∈ CH.

WLOG, let ciH = (ciF → ciD) be the ith member of a conditional temporal constraint

containing n hybrid constraints where the n constraints are sorted in order of decreasing

tightness of temporal bounds.

Also, let c̃iH ∈ C̃H be the recompiled version of ciH.

By construction, c̃iH is equivalent to
((
c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
→ ciD

)
.

Since s violates ciH then ¬ (ciF → ciD) must be true, which implies ciF ∧ ¬ciD is true

for s.

However, notice if ciF ∧ ¬ciD, s must also violate the constraint c̃iH, which is

equivalent to
((
c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
→ ciD

)
, since ciF implies that the left side of

the implication is necessarily true while ¬ciD implies that the right side is necessarily

false.

Thus I have contradicted my assumption. Therefore there can exist no assignment

s that is a solution under C̃H, but not under CH and hence the HCT transformation

is sound.

Theorem 4.3. The HCT operation that replaces the set of hybrid constraints CH with

the set C̃H, where C̃H =HCT(CH), is a complete reformulation of the constraints CH.

Proof. Assume, by contradiction, that there exists an assignment s that is a solution

under CH, but not under C̃H.

Then, assignment s violates at least one constraint c̃iH ∈ C̃H.

WLOG, let c̃iH ∈ C̃H be the recompiled version of the constraint ciH = (ciF → ciD)

where ciH is the ith member of a conditional temporal constraint containing n hybrid

constraints where the n constraints are sorted in order of decreasing tightness of

temporal bounds.

By construction, c̃iH is equivalent to
((
c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
→ ciD

)
.

Since s violates c̃iH then ¬
((
c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
→ ciD

)
, which in turn implies(

c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
∧ ¬ciD for s.
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Notice, that if ¬ciD for s, then ¬cjD∀j = 1 . . . i is true for assignment s, since the

bounds of cj−1
D are tighter than those of cjD.

Notice also that since s is a solution under CH, then cjH =
(
cjF → cjD

)
must be

satisfied ∀j = 1 . . . i for assignment s. This, along with the fact that ¬cjD∀j = 1 . . . i

for assignment s, implies ¬cjF∀j = 1 . . . i for assignment s. However, this directly

contradicts earlier established fact that
(
c1
F ∨ c2

F ∨ · · · ∨ ci−1
F ∨ ciF

)
for s.

Thus my assumption leads to a contradiction. Therefore, there can exist no

assignment s that is a solution under CH, but not under C̃H and hence the HCT

transformation is complete.

4.4.3 HCT as a Guide for Establishing Hybrid Decouplings

Recall that calculating a temporal decoupling requires adding local constraints

that render constraints between two or more subproblems moot, leading to temporal

independence (Sections 2.2.5 and 2.4.2). More generally, distributed finite domain

constraint systems can also be decoupled through the similar process of adding new

intra-subproblem constraints to render inter-subproblem constraints moot (van der

Hoek et al., 2011). Here I extend this concept to the HSP. An HSP H′ = 〈F ′,D′, ∅〉 is

said to be a hybrid decoupling of H = 〈F ,D, CH〉 if:

� both F ’ and D’ are consistent, and

� any solution to F ’ combined with any solution to D’ forms a solution to H.

Intuitively, then, the Hybrid Scheduling Decoupling Problem is the process of

finding a set of finite domain constraints, C∆
F and temporal constraints C∆

D such

that the finite-domain CSP
〈
VF , CF ∪ C∆

F
〉

and DTP
〈
VD, CD ∪ C∆

D
〉

form a hybrid

decoupling of H.

A major advantage of the HCT process is that is exactly identifies the relative

trade-off of all possible decouplings for conditional temporal constraint. For example,

consider the tightened constraints from Table 4.2, reproduced in their disjunctive (non-

implicative) form in Table 4.3. A hybrid decoupling of this conditional constraint can

be formed by drawing a line between two subsequent lines of hybrid constraints, where

the temporal constraints above the line (in bold) and the finite-domain constraints

below the line (in bold) are the ones to be enforced. However, note that given the

subsumptive nature of these constraints, only the first temporal constraint above the

line (underlined) and first finite-domain below the line (underlined) need be enforced,

the rest follow implicatively. Each of the three possible decouplings of the example

are displayed in Table 4.3 (top, middle, bottom).
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RA
ST −RA

ET ≤ −30

RA = run ∨ RA
ST −RA

ET ≤ −45
RA ∈ {run, swim} ∨ RA

ST −RA
ET ≤ −60

RA
ST −RA

ET ≤ −30
RA = run ∨ RA

ST −RA
ET ≤ −45

RA ∈ {run, swim} ∨ RA
ST −RA

ET ≤ −60

RA
ST −RA

ET ≤ −30
RA = run ∨ RA

ST −RA
ET ≤ −45

RA ∈ {run, swim} ∨ RA
ST −RA

ET ≤ −60

Table 4.3: Possible decouplings of the conditional minimum duration constraint.

Note that HCT exactly illuminates the all meaningful trade-offs between the

tightness of the added finite-domain constraint and the tightness of the added temporal

constraint. This could be useful in algorithmically decoupling the planning and

scheduling subproblems of an HSP, which could potentially speed the solution process

if there exist separate, highly-specialized solvers for planning and scheduling that

could execute concurrently. In this dissertation, we utilize an off-the-shelf solver that

can solve both planning and scheduling aspects of HSPs. However, HCT could assist

a process in understanding the various trade-offs in constrainedness for a particular

conditional temporal constraint as it decides which subproblem is less constrained,

and thus better able to handle more constraints. As I discuss in Section 5.2.3, this

an interesting open question, but one that requires deeper understandings of the

inner-workings of specialized solvers and is ultimately unnecessary for appreciating

the value of HCT.
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4.5 Empirical Evaluation

Constraint summarization is a general technique that can be applied in concert

with many solution algorithms. HCT is no exception. The purpose of this empirical

analysis is to look beyond abstract time-complexity analyses to more fully understand

the space of HSPs where HCT is particularly effective. Additionally, I test my claim

that HCT can be incorporated into state-of-the-art, off-the-shelf solvers.

Typical predictors of search time, such as overall problem size and complexity, will

play a role in determining the solve time of HSPs. The impact of HCT more particularly,

however, will be determined by the structure of the conditional temporal constraints

that it reformulates. As the complexity of the underlying constraints increases, so will

the HCT preprocessing time; however, the usefulness of these constraints may also

increase. Generally, as the size and complexity of the finite-domain portions of these

constraints increase, so does the efficacy of HCT, where the converse is true for the

temporal portions of these constraints.

4.5.1 Experimental Setup

My general approach for evaluating the runtime performance HCT preprocessing is

to systematically explore and understand how HCT performs across spaces of possible

problem structures. I motivate the parameters of the problem generator by both

enumerating the parameters that have affected solution performance for subproblems

and also by grounding the problem generator with a real-world example problem.

Then, I present a problem generation technique that allows me to explore entire

spaces of hybrid constraint structures, introduce HCT as a preprocessing step to a

state-of-the-art Satisfiability Modulo Theory (SMT) solver, and track performance

metrics that elucidate HCT’s effect on solution algorithm execution time.

Problem Generation. Since HSPs, and hybrid constraints in particular, are largely

the result of merging components from CSPs and DTPs, aspects that influence the

time for solving CSPs and DTPs will clearly influence the solve time of HSPs. Before

I discuss how I generate realistic, interesting scheduling problems, I first review the

parameters known to affect solution complexity in generating interesting CSPs and

DTPs. First, CSP generators (e.g., Xu et al. (2007)) often use various settings of

the parameters
〈
NF ,mF , kF , V

D
F , pF

〉
, where NF is the number of variables, mF is

the number of constraints, kF is the arity of each constraint, V D
F is the maximum

domain size, and pF is the density of allowable tuples for a particular constraint.
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Canonical DTP generators (e.g., Stergiou & Koubarakis (2000)) use the parameters

〈ND,mD, kD, LD〉, where ND is the number of timepoints, mD is the number of

constraints, kD is the number of disjuncts per constraint, and where all bounds are

chosen uniformly between [−LD, LD]. Both types of generators have parameters

dictating the number of variables (NF , ND) the number of constraints (mF ,mD), as

well as the structure and tightness of the constraints (kF , V
D
F , pF , kD, LD). Exploring

HCT’s effect on the entire range of possible hybrid constraint structures, then, involves

investigating the effect of varying each parameter in the union of these two problem

generator types.

I adopt a strategy for generating difficult scheduling problems containing both

finite-domain and temporal components from Moffitt et al. (2005), which I adapt

to loosely match the running example. However, first, since I am currently working

with a single-agent HSP, I consider a subproblem of the problem first introduced in

Section 1, where a single scheduling agent is responsible for coordinating Ann and

others’ schedules with various doctors’ schedules. Since the remaining experimentation

generates problem instances that fit this general resource contention scenario, I detail

an example. Suppose that both Ann and another patient, Dave, both require a doctor’s

consult, which can be rendered by either of two resident doctors. If the same doctor

is to visit both Ann and Dave, then visits should be constrained to not overlap and to

allow for travel and transition time between visits. However, if, for instance, a shift

change occurs between the visits, then additional transition time is required to allow

for paperwork etc. to be performed.

This example is detailed in Table 4.4. In Table 4.4(a), I represent the visits to Ann

and Dave as finite-domain variables V A and V D respectively, each with domains that

specify which doctor, labeled 1 or 2, will perform the visit. I represent the amount of

time required between visits as a transition matrix in Table 4.4(b), which translates to

the hybrid constraints found in Table 4.4(c). Notice that in Table 4.4 (c, lower), unlike

in Table 4.2, there is no total ordering based on the bounds of the disjunctive temporal

bounds, since the hybrid constraints where V A = 1 ∧ V D = 2 and V A = 2 ∧ V D = 1

are not orderable over one another. As a result, for this example, both constraints

remain untouched during the HCT process. I now describe a problem generator that

produces problem instances corresponding to the running doctor scheduling scenario.

The problem generator takes parameters 〈A,R,B, pR, pO, CMAX , pH , pF , kF , kD〉,
where A is the number of activities the scheduling agent must schedule, R is the

number of doctors, B is a bounds matrix indicating a more general lag time, ranging

from 5 to 40 minutes (including time for transportation, paper work, etc.) between
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(a) Finite Do-
main Variables

V A ∈ {1, 2}
V D ∈ {1, 2}

(b) Transition Time Matrix

XET − YST ≤ X = 1 X = 2
Y = 1 -10 -25
Y = 2 -30 -15

(c) Hybrid Constraints

V A = 1 ∧ V D = 1→ V A
ET − V D

ST ≤ −10 ∨ V D
ET − V A

ST ≤ −10
Untightened V A = 1 ∧ V D = 2→ V A

ET − V D
ST ≤ −30 ∨ V D

ET − V A
ST ≤ −25

Hybrid V A = 2 ∧ V D = 1→ V A
ET − V D

ST ≤ −25 ∨ V D
ET − V A

ST ≤ −30
Constraints V A = 2 ∧ V D = 2→ V A

ET − V D
ST ≤ −15 ∨ V D

ET − V A
ST ≤ −15

V A
ET − V D

ST ≤ −10 ∨ V D
ET − V A

ST ≤ −10
Tightened A 6= 1 ∨D 6= 1→ V A

ET − V D
ST ≤ −15 ∨ V D

ET − V A
ST ≤ −15

Hybrid V A = 1 ∧ V D = 2→ V A
ET − V D

ST ≤ −30 ∨ V D
ET − V A

ST ≤ −25
Constraints V A = 2 ∧ V D = 1→ V A

ET − V D
ST ≤ −25 ∨ V D

ET − V A
ST ≤ −30

Table 4.4: Example of problem generator hybrid constraints.

each pair of visits, pR is the portion of doctors that can perform the visit, pO is the

probability that a non-overlap constraint is enforced between any pair of activities (e.g.,

that two visits require the same doctor), CMAX is the maximum allowable makespan

of the schedule (i.e., the total length of time over which the doctors’ shifts are being

scheduled), pH dictates the proportional constraint composition of the problem (hybrid

vs. non-hybrid constraints), and finally pF , kF , and kD, all correspond directly to their

original semantics. Feasible and nontrivial problems are guaranteed by calculating the

minimum possible makespan for each parameter setting.

These parameters relate directly to those of the CSP and DTP generators. First,

A encompasses both NF and ND, since each activity has two timepoints (start and

end) and one finite-domain variable (location) associated with it. Thus, both NF and

ND grow linearly as A grows. Next, R represents dF , the maximum size of variable

domains in CSPs, with pR probabilistically dictating how large each individual finite

domain is. CMAX correlates with LD, with B restricting bounds to realistic times.

Finally, pO probabilistically determines the number of constraints in the problem, thus

capturing both mF and mD. Later, I discuss how I adapt the generator to capture

the effect that HCT has on the structural changes of hybrid constraints implied by

the parameters pH , pF , kF , and kD.

To capture expected trends, I generate 50 problems for each setting of the param-

eters, varying parameters as described in Section 4.5.2. Any parameter that is not

varied in a given experiment is set to its following default value: A = 10, R = 6, pR =

0.33, pO = 0.9, kF = 2, kD = 2, pF = 1.0, pH = 1.0, B[i][i] = 0, B[i][j] is selected

uniformly from [5,40] when i 6= j, and CMAX is set as described above.
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SMT Solvers. As noted by Schwartz (2007), Satisfiability Modulo Theory (SMT)

technology represents the state-of-the-art in solving HSPs. SMT solvers generalize

powerful boolean satisfiability (SAT) solving techniques with additional first-order

theories. Z3 is a highly competitive SMT solver published by Microsoft Research and is

widely available for download (De Moura & Bjørner, 2008). For this experimentation,

I use Z3 version 1.2 on a Windows XP machine with 2.0 GHz processor and 2.0 GB

of RAM. Since there is an element of randomness associated with the Z3 solver, I

average the results for each of 50 distinct problem instances across 20 uniquely seeded

runs to dampen the noise associated with lucky and unlucky search paths.

Performance Metrics. The SMT solver I use reports three statistics relating to

search complexity. A decision is made any time the solver must choose a literal

in a disjunctive clause, similar to a variable assignment in more traditional CSP

nomenclature. A conflict occurs any time the solver encounters an empty clause that

leads to backtracking, similar to a variable with an empty domain in CSP. Finally, the

solver also reports the amount of time that is required before a consistent assignment

has been found. Since I am most interested in discovering the space of HSPs for

which HCT is most effective, I will often report speedup — the ratio of the number of

decisions, conflicts, or time required for solving the HSP with HCT vs. without HCT.

All speedups have been found to be statistically significant using a Student’s paired

t-test, unless otherwise noted.

4.5.2 Empirical Results

I explore the efficacy of HCT along each of the enumerated dimensions mentioned

in Section 4.5.1. First, I look at how HCT changes search performance as I scale

the number of activities (A) and constraints (pO). Then, I show that the margin of

improvement of HCT varies as the structure of the conditional temporal constraints

varies. I examine four generalizations of this structure for which relative HCT

performance improves and two generalizations of conditional temporal constraint

structure for which applying HCT becomes less beneficial. I summarize these at the

end of this subsection. It is important to note that I easily succeeded in overlaying

HCT on Z3. This was done by HCT performing the reformulation on the original HSP,

and then translating it to an SMT problem, using a process described by Schwartz

(2007).
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4.5.2.1 HCT for Scaling Problem Size and Complexity

Increasing the Number of Activities. The exponential nature of search in the

HSP means it is critical that any approach to improve the effectiveness of search

scales well as the number of activities (A) increases. In this subsection, I increase the

number of activities involved in the problem, while allowing the number of non-overlap

constraints to grow proportionally based on pO as described in Section 4.4.

Figures 4.1 and 4.2 show how the median and expected (respectively) number of

conflicts, decisions, and time required for search with and without HCT grows, using

a log scale on problems with 7 to 15 activities. Overall, HCT yields an improvement

of nearly an order of magnitude, across all problem sizes in expectation (Figure

4.2). However, the difference in time for smaller problems is much less significant,

and in fact, in the median-case there is a visible crossover point between 8 and 9

activities (Figure 4.1). Thus, for more than half of the problems containing fewer

than 9 activities, the computational savings yielded by HCT does not overcome the

overhead of performing the HCT preprocessing algorithm. While I mostly care about

relative, expected-case performance, Figures 4.1 and 4.2 report absolute rather than

relative statistics to inform the reader of the general solution time required by this

problem space and demonstrates that HCT yields an improvement both in expectation

and for the majority (median) of the problems. All subsequent figures will report only

relative performance (in terms of speedup).

Increasing the Number of Constraints. Although my strategy for setting CMAX

already guarantees the tightest feasible makespan, the burden on search increases as

I increase pO. It is easy for the scheduler to find a feasible schedule for a problem

with no overlap constraints: simply schedule everything at the same time. However,

by adding a non-overlap constraint, the solver may have to search over the possible

orders in which the activities might occur before finding an order that respects the

minimal feasible CMAX , since the transition time from one resource to another is not

necessarily reflexive. Adding non-overlap constraints increases the possible activity

orderings that must be searched before finding an ordering that fits.

Figure 4.3, which varies pO while holding the number of activities steady, is similar

to Figure 4.2 in many qualitative ways. There is an initial period where the overall

runtime using the HCT fails to significantly beat the runtime of search without HCT.

Further, sufficiently many constraints are needed before HCT yields benefits in time

efficiency (the dashed line at speedup 1 represents the crossover point in this and

subsequent graphs), though, overall, HCT scales well with the number of constraints.
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Figure 4.1:
Logarithmic scale of the median number of conflicts, decisions, and seconds
as agents handle additional activities.
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4.5.2.2 Conditional Temporal Constraint Generalizations That Increase

HCT Efficacy

In this section, I examine generalizations of the conditional temporal constraint

representation by varying the settings of parameters pH , dF , kF , and CMAX . These

generalizations all have one thing in common: scheduling agents using HCT enjoy an

increased speedup over scheduling agents not using HCT. This is critical because this

increases the scope of realistic, interesting problems to which HCT can be efficaciously

applied.

Increasing Temporal Constraint Precision. Consider the conditional temporal

constraints in Table 4.4. A knowledge engineer could approximate the hybrid con-

straints by replacing the entire transition matrix with the tightest possible bound

(-30), the loosest possible bound (-10), or any value in between. The result is that

all these temporal constraints that are conditional on specific finite-domain variable

assignments could be approximated with a single non-conditional temporal constraint.

However, such approximations could lead to an algorithm that sacrifices completeness

(e.g., there may be no satisfying solution that requires at least 30 minutes between

each activity) or sacrifices soundness (e.g., generating a schedule that does not leave

sufficient transition time due to an underestimate of bounds). To quantify how well

HCT performs compared to these approximation approaches, I duplicate the exper-

imentation used to generate Figure 4.3. However, I now hold pO constant while I

vary pH , which is the probability that a non-overlap constraint is expressed using a

conditional temporal constraint instead of the corresponding non-conditional temporal

constraint.

Figure 4.4 shows that speedup increases with pH across the statistics, although

the benefit does not overcome the preprocessing overhead until pH > 0.2. Beyond

the results in Figure 4.4, note that, though it may seem that replacing normal

temporal constraints with their hybrid counter-parts would lead to a more complex

search, solving the problem containing only hybrid non-overlap constraints using HCT

(pH = 1.0) finds a solution over 30 times faster than it takes the same solver to find a

solution using only temporal constraints (pH = 0.0). Furthermore, when pH = 1.0 the

search will not sacrifice soundness or completeness.

Increasing Finite-Domain Size. My motivating example (Table 4.4) involved a

scheduling agent selecting between two doctors for each visit, and as a result, the

conditional temporal constraint enforcing non-overlap contained four hybrid constraints.
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Similarly, the problem generator constructs finite-domains containing, in expectation,

two values. However, more generally, a scheduling agent must handle temporal

constraints conditioned on finite-domains even as the number of values per domain

(kF) increases. If both Ann’s and Dave’s visits could only be performed by a single

doctor, the conditional temporal constraint in Table 4.3(c) would have been expressed

using a single hybrid constraint, since only one consistent finite-domain assignment

would exist, eliminating the need for HCT. So for HCT to have any effect at all, an

agent must be able to select values for at least some of the finite-domain variables that

influence the bounds on corresponding temporal constraints. As the finite-domains

that a temporal constraint is conditioned on grow, more hybrid constraints are needed

to express the overarching conditional temporal constraint, one for each possible

combination of value assignments. For example, suppose Ann’s visit is a more routine

checkup, and thus could be performed by any of 8 resident doctors. The conditional

temporal constraint would now require 16 hybrid constraints, instead of four like in

Table 4.3(c). I explore the impact of HCT when increasing the number of hybrid

constraints used to express a conditional temporal constraint.

HCT works by lifting information common to multiple finite-domain variable/value

assignments involved in a particular conditional temporal constraint, and using that

information to assist in pruning. Since the overall search space grows exponentially

as the sizes of the finite domains grow, I hypothesize that any information that can

help pruning may become increasingly valuable. I test this hypothesis by varying the

domain sizes of the finite-domain variables in the doctor scheduling domain. Since

previously the size of variable domains were probabilistically determined (each doctor

can make each visit with a given probability), I altered the formulation slightly,

replacing pR with a new parameter nR, which dictates the number of doctors that

can make a visit (size of each finite-domain), with each doctor being chosen randomly

from the pool of candidate doctors with uniform probability. Since I had been using a

pR value of 0.33, I emulate this by updating R to be equal to 3 · nR for each problem.

As shown in Figure 4.5, HCT grows in effectiveness as the number of values per

finite-domain variable increases. While there is immediate benefit in the speedup

of decisions and conflicts, it takes problems with at least 4 values in each domain

before this reduction in complexity compensates for the preprocessing overhead. This

confirms my hypothesis that HCT works best when temporal bounds are dependent

on many values, each specified as a hybrid constraint, allowing search to prune using

the tightest consistent value.
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Increasing Finite Variables. The previous subsection demonstrates that, as the

number of values per finite-domain variable involved in a conditional temporal con-

straint increases, HCT becomes increasingly important for efficiently finding a schedule.

However, instead of increasing the number of values per finite domain, conditional

temporal constraints can also be generalized by increasing the number of finite-domain

variables on which they depend. This is achieved by increasing the finite-domain arity

(kF) of the hybrid constraints. The bounds of a non-overlap, conditional temporal

constraint depend on two finite-domain variables: the respective resources selected for

each activity. However, more generally, the transition time required between activities

could depend on any number of variables (e.g., also paperwork requirements, mental

processing time or doctor work habits, etc.). Such a change would require hybrid

constraints whose finite-domain components contain a different number of variables.

As Figure 4.6 demonstrates, increasing the number of hybrid constraints used to

express a conditional temporal constraint (due to larger finite-domains) increases the

efficacy of HCT. So to avoid conflating these results, I ensure that each conditional

temporal constraint depends on a constant number of hybrid constraints by using the

nL parameter to adjust the number of values in the domain of each finite-domain

variable so that the total number of possible assignments is held constant (e.g., one

variable with 9 elements in its domain is replaced with two variables, each with 3

elements in their domains). As discussed earlier, HCT excels at applying the tightest

consistent bound possible regardless of the number of remaining domain values. So,

whereas an untightened constraint requires a full assignment to every involved finite-

domain variable, tightened hybrid constraints can successfully leverage knowledge

from partial assignments to tighten the bounds on the respective temporal constraint.

Therefore, it is my expectation that HCT will be more effective as temporal constraints

become conditioned on an increasing number of variables.

Figure 4.6 confirms my expectation that HCT’s efficacy increases as the number of

variables increases. This result is important since, combined with the result captured

in Figure 4.5, knowledge engineers can have less fear of overwhelming scheduling agents

by giving them more control over deciding aspects of activities that impact the schedule.

Notice that speed-ups, reported using a logarithmic scale, are much higher in general

than occurred in the other experiments reported so far. This is because temporal

constraints were conditioned on many more finite-domain assignments, relative to the

overall number of activities, and this magnifies the effect shown in Figure 4.6.
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Finer Granularity of Temporal Bounds. Time is inherently continuous, and

the DTP exploits this for greater scheduling flexibility while mitigating the potential

exponential blowup often associated with dealing with an infinitely large domain.

Since the DTP, and thus implicitly the HSP as well, remains largely agnostic to the

granularity of temporal bounds, it is worth investigating if the HCT process also

remains unaffected. In the extreme, imagine that all the temporal bounds in Table

4.3(b) were the same value. Here, HCT would reformulate the hybrid constraint into

a single hybrid constraint, and thus a single, inevitably non-conditional temporal

constraint. Though search would be able to exploit this constraint immediately,

no further opportunities would exist for tightening the bounds. In contrast, when

each of the temporal bounds is distinct, these bounds provide significant tightening

opportunities as search progresses. In the experiments so far, all temporal bounds

were chosen uniformly from integers between 5 and 40 (35 different bounds). I test

how HCT performs as I vary the number of distinct allowable temporal bounds to

choose from, ranging from 1 to 35, corresponding to varying levels of granularity. I do

this by selecting, for example, two integers uniformly from [5,40], and then assigning

temporal bounds randomly from this pair of values.

Figure 4.7 shows that, in fact, as scheduling agents handle temporal constraints

expressed using an increasing number of distinct bounds, the speedup achieved by

applying HCT also grows. This is good news for scheduling agents; HCT mitigates

computational concerns over expressing temporal constraints as precisely as possible,

without concern for the granularity at which temporal bounds are chosen. Once

again, the importance of HCT grows with increasingly general conditional temporal

constraints. HCT assists search in exploiting even subtle differences in temporal

bounds.

4.5.2.3 Conditional Temporal Constraint Generalizations That Decrease

HCT Efficacy.

Unfortunately, while I have shown HCT efficacy grows with increasing generality

along dimensions like the number of variables and values they are conditioned on,

HCT efficacy does not grow with increasingly general hybrid constraints across all

dimensions. Here I examine two such generalizations, involving pF and kD, that

dampen HCT’s ability to assist in pruning the search space. It is important to note

that while certain conditional temporal constraint structures decrease the relative

benefits of HCT, HCT is only detrimental on sufficiently easy problems, when the

HCT precompilation overhead outweighs the benefits of the HCT reformulation.

150



0

2

4

6

8

10

12

14

0 10 20 30

Sp
e

e
d

u
p

 

Number of Distinct Bound Values 

Conflicts
Decisions
Time
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Partially-Conditional Temporal Constraints. In Table 4.4(c), every possible

finite-domain assignment is involved in a hybrid constraint and implies a distinct set

of temporal bounds. However, in general it is not required that every assignment must

imply a temporal bound. This would correspond to Table 4.4(c) where one or more of

the hybrid constraints were eliminated. For example, imagine that Ann’s and Dave’s

visits are completely independent of each other. Then, the scheduling agent should

only care about the activities not overlapping when both activities are performed by

the same doctor. In this case, the middle two hybrid constraints in Table 4.4(c)(upper)

could be eliminated. Now, HCT would no longer infer an unconditional temporal

constraint, since temporal bounds rely on Ann’s and Dave’s visits being assigned to

the same doctor. A hybrid constraint thus not only expresses which temporal bound to

enforce, but also, by its presence, if a temporal bound should be enforced at all. I call

this generalization a partially-conditional temporal constraint . To investigate

the effect that these more general partially-conditional temporal constraints have on

HCT efficacy, I vary the parameter pF , which is the probability that a particular

assignment of values to the finite-domain variables will imply a temporal constraint in

a given conditional temporal constraint.

Decreasing pF is likely to change the effectiveness of HCT. When pF = 1.0,

tightened hybrid constraints can immediately apply the tightest consistent temporal

constraint with the remaining values of the finite-domain constraints to assist in

pruning the temporal space, with the bounds tightening as the domains of the finite-

domain variables are reduced. With pF < 1.0, the tightened hybrid constraints will still

apply the tightest consistent temporal constraint; however now the tightest consistent

constraint may, in fact, be no constraint at all. Furthermore, HCT is now lifting

information from a smaller set of value combinations, which, shown in Figure 4.5,

decreases its efficacy.

Figure 4.8 confirms that as pF decreases, so does the relative effectiveness of HCT.

Partial specification of temporal bounds dampens the ability of HCT to lift and use

information as successfully during search. Not only does the relative performance

degrade as pF decreases, there is actually a span of pF where the runtime overhead of

performing and using HCT exceeds the reduction in decisions and conflicts. Scheduling

agents must use HCT judiciously when their problems contain partially-conditional

temporal constraints where the majority of the finite-domain value combinations do

not imply temporal constraints.
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Figure 4.8: Partially-conditional temporal constraints.
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Increasing Temporal Disjunctions. Through these experiments, I have used non-

overlap constraints, which results in conditional temporal constraints expressed using

two temporal disjunctions (kD = 2) whose temporal bounds were both conditioned

on the assignment of values to finite variables. However, a conditional temporal

constraint, just like a normal temporal constraint, is not limited in the number of

temporal differences it can involve in its disjunction, and can have any temporal arity,

kD. Thus, I generalize conditional temporal constraints by generalizing the structure

of the temporal constraint itself, varying the number of temporal disjuncts involved.

I first alter the example to contain constraints with a single temporal difference

(kD = 1) by replacing the current non-overlap constraints with non-overlap constraints

where the relative order of activities has already been determined as described above.

This relates to cases where, e.g., doctors have reasons to visit Ann before Dave.

Although conditional temporal constraints in the example scenario, and indeed in

many problems, tend to contain disjunctions of two or fewer temporal differences, I

can also alter the problem to contain conditional temporal constraints with three or

more temporal disjunctions.

For example, suppose that the values in each variable’s domain corresponds to the

types of doctors (e.g., a specialist) that could perform the appointment rather than

specific doctors. Then if one set of doctors’ shifts end at noon, at which point a new

set of doctors take over, the transition times (represented in Table 4.3(b)) may change

after the shift change occurs at noon. In this case, there would be two separate sets of

non-overlap constraints, one for the morning and one for the afternoon, each containing

disjunctions among four temporal differences (kD = 4). To capture this situation, a

morning hybrid constraint would contain a disjunction of four temporal differences:

Ann’s visit ends before Dave’s starts, Dave’s ends before Ann’s starts, Ann’s visit is

after noon, or Dave’s visit is after noon. A similar constraint is introduced to enforce

afternoon constraints.

The number of temporal differences involved in a hybrid constraint has a direct

effect on the runtime of the HCT algorithm, since the tightest bound must be discovered

for each temporal difference, causing a linear increase in runtime. I expect that as the

number of temporal disjuncts involved in hybrid constraints grows, the effectiveness of

HCT will diminish, because a tightened hybrid constraint will have a less immediate

impact and, as the number temporal disjuncts increases, the chance of a strict ordering

over constraint bounds decreases. For example, if a scheduling agent knows ahead of

time that one visit must end at least five minutes before another visit ends, it can

take advantage of this information to immediately prune the search space. In the
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case that the ordering of activities is irrelevant, the agent then knows either the first

activity ends at least 5 minutes before the start of the second, or the second activity

ends 5 minutes before the start of the first. At this point, the scheduling agent must

decide on an ordering before it can apply the knowledge gleaned from HCT.

Figure 4.9 confirms that HCT prunes the search space more effectively on problems

containing hybrid constraints with only a single temporal disjunction, with the speedup

of conflicts and decisions decreasing nearly identically. Surprisingly, the runtime

speedup actually increases slightly with increases in the number of temporal disjuncts.

This is partially an artifact of overall search runtime. Problems with only a single

temporal disjunct require search over only the finite-domain variables, while problems

containing more temporal disjuncts require search over both finite-domain and temporal

meta-variables. Thus, problems containing only a single temporal disjunct are solved

much more quickly, regardless of whether HCT is used or not, and so there is a bit

of a horizon effect where the problems are solved so quickly that the HCT overhead

prevents the time speedup from reaching speedup levels similar to those seen in the

number of decisions. In general, many realistic conditional temporal constraints (e.g.,

those representing minimum and maximum duration, earliest and latest start and end

times, etc.) contain only a single temporal disjunct, and the conditional temporal

constraints of problems I am interested tend to have no more than two disjuncts.

Notice that if I had run all the previous experiments using conditional temporal

constraints with only a single disjunct, the results would have likely been even more

pronounced.

4.5.2.4 Summary

Generally, as the size or complexity of problems grew, so did the relative perfor-

mance of the HCT preprocessing, leading to orders-of-magnitude improvement in solve

time for sufficiently large and complex problems. As the structure of hybrid constraints

grew to include a larger number of variables or as the domains of the variables involved

in the constraints grew, the speedup of overall solution time also grew. Similarly,

HCT sped solution time as hybrid constraints more precisely expressed bounds, both

in terms of the number of finite-domain value combinations for which there were

distinct bounds as well as the granularity of the bounds in general. Unfortunately,

some generalizations of the hybrid constraint structure dampened HCT performance.

As I allowed a greater number of hybrid constraints to express bounds for only a

subset of possible value combinations, the runtime costs of the HCT preprocessing

eventually outweighed the benefits to the SMT search time. Similarly, as the number
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of temporal disjuncts that a hybrid constraint contained increases, I showed that

the speedup associated with performing HCT decreases, though in this case, the

HCT preprocessing cost never outweighed the gain from the recompiled constraints.

Additionally, it is worth noting that many common hybrid constraints contain no

more than two disjuncts (e.g., non-overlap constraints) and many contain only a single

disjunct (e.g., constraints dictating earliest/latest start/end times, durations, etc.),

which actually improves the performance of HCT. In all previous experiments, all

hybrid constraints contained exactly two temporal disjuncts, and thus positive results

would have been more pronounced had (some) hybrid constraints contained only one

disjunct.

4.5.3 HCT for the Semi-Autonomous Formation of Expert Teams

Large-scale selection and scheduling problems can overwhelm the cognitive limita-

tions of people. The focus of Durfee et al. (2011) is in using the HSP to dynamically

form teams of human experts whose combined expertise, applied in coordinated ways,

can solve difficult problems, such as delivering emergency medical care, and diffusing

inflammatory confrontations with complex cultural, linguistic, and religious undertones.

Given a worldwide network of possible experts to draw upon, each with his or her

own specific aptitudes, interests, and availabilities, optimizing the formation of a team

involves considering a vast space of possibilities. Furthermore, because there are often

contemporaneous demands for teams emanating from different locations, assignment

and scheduling decisions about experts’ participation are intertwined. Durfee et al.

(2011) compare alternative designs for automating the solution of complex assignment

and scheduling problems, one using a sequential optimization strategy (Chen et al.,

2009, 2010), and one that used the HSP formulation. The conclusion of this work is

that each approach has strengths, but that the hybrid scheduling approach can be

particularly effective for problems where challenging scheduling constraints can make

finding a team of experts difficult.

In Section 4.5.2.1, I showed that HCT preprocessing led to an order of magnitude

speed-up over using the solver without the preprocessing. Some generalizations

of the hybrid constraint structure dampened HCT performance, although for all

but the simplest of problems HCT always provided at least a modest improvement.

Surprisingly, while previous results indicated that HCT tends to speed search (Sections

4.5.2.1 and 4.5.2.2), when I overlaid HCT onto the HSP approach and repeated the

experiments from Durfee et al. (2011), I discovered that sometimes HCT significantly

slowed the solve time, by a significant factor of 30, as shown in Figure 4.10. While for
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certain spaces of problems it might be expected that the costs of HCT preprocessing

might outweigh the benefits, in this case, even when I ignored preprocessing time, it

took the solver nearly an order of magnitude longer to solve preprocessed problems.

 

Figure 3: The effects of HCT on solve time. 

 

Figure

Figure 4.10: The effects of HCT on solve time.

Notice that increasing the finite-domain arity of a constraint (the number of

finite-domain variables involved in the constraint) be viewed as creating a larger

mega-variable, in which case increasing arity would simply be growing the domain

size of this mega-variable. However, my previous findings (Section 4.5.2) suggested

that the effectiveness of HCT increases as the finite-domain arity increases. This was

because each new variable increases the number of finite-domain assignments that can

lead to tighter temporal bounds, and thus increases the probability that HCT can

improve search space pruning.

This observation led me to identify a case that I had previously overlooked: what

happens if the creation of this mega-variable occurs because of HCT? Previously, when

combining hybrid constraints, the finite-domain variables involved in each constraint

were the same. For expert assignment and scheduling problems, however, most hybrid

constraints had the exact same bounds, and instead what differed were the finite-

domain variables involved. So, in fact, by performing HCT, no real information was

gained over the temporal aspect of the problem. Instead, HCT needlessly combined the

finite-domain constraint pre-conditions, and, in the process, took nicely decomposed,

compact finite-domain representations, and combined them into combinatorially larger
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representations. In fact, the HCT preprocessed problems led to formulations that took

over 6.5 times the memory to represent as the problems that had not been preprocessed.

This led me to hypothesize that part of the poor HCT performance could be due to the

high computational overhead associated with I/O and memory management. To test

this hypothesis, I compared the correlation between the solve time and the number

of decisions that the solver made (which should be an implementation-independent

measure of how much work is actually being done), with the correlation between the

solve time and required memory. As plainly visible from Figures 4.11 and 4.12, the

Pearson correlation between solve time and memory of 0.98 is significantly higher

than the Pearson correlation between solve time and number of decisions of 0.23.

 

Figure 4: The correlation between memory and solve time. 
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Figure 4.11: The correlation between memory and solve time.

While perhaps these finite-domain constraints could be represented more compactly,

Figure 4.13 shows a comparison of the number of decisions required by the solver that

demonstrates that something more is going on beyond burdensome problem size. In

the HCT preprocessing algorithm, I group together hybrid constraints that had the

same temporal constraint structure regardless of the structure of the finite-domain

component. In this case, combining conditional temporal constraints that have different

finite-domain constraint structures only conflated the hybrid constraints, rather than

tighten the representation, both leading to a much larger problem representation and

requiring many additional superfluous decisions to be made. This led me to a new

hypothesis: perhaps there is no need to tighten groups of hybrid constraints unless all
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Figure 5: The correlation between number of decisions and solve time. 
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Figure 4.12: The correlation between number of decisions and solve time.

the hybrid constraints in a given conditional constraint are specified over the same

subset of finite-domain variables. That is, perhaps grouping and tightening hybrid

constraints with differing finite-domain structures introduces unnecessary preprocessing

time that leads to superfluous reformulations. Further, these unwieldy mega-variable

reformulations might actually slow solve times using the off-the-shelf solver due to I/O

and memory costs associated with the combinatorially larger problem representation.
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Figure 6: The effects of HCT on the number of search decisions 

 

Figure

Figure 4.13: The effects of HCT on the number of search decisions.

Algorithm 4.2 Revised Hybrid Constraint Tightening Algorithm
Input: Set of hybrid constraints CH
Output: Set of reformulated, tightened hybrid constraints C ′H
1: constraintMap ← new hashMap〈HybridConstraint, SortedList〉();
2: for all ch = 〈cfd → ct〉 ∈ CH do
3: constraintMap.getSortedList(ch).insert(c);
4: end for
5: C ′H ← {};
6: for all sortedLists l ∈ constraintMap do
7: c′fd ← {}
8: while l.isNotEmpty() do
9: ch = 〈cfd → ct〉 ← l.removeFirst();

10: c′fd ← c′fd ∨ cfd;

11: c′h ←
〈
c′fd → ct

〉
;

12: C ′H ← c′h;
13: end while
14: end for
15: return C ′H

To test this hypothesis, I generated a new version of the HCT algorithm (Algorithm

4.2) — one that grouped together and tightened hybrid constraints only when they

are specified over the same finite-domain variables (only line 3 changes compared

to Algorithm 4.1 by using a different hash function that includes the entire hybrid
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constraint structure). Notice that, because previous experimentation had only ever

involved hybrid constraints with identical finite-domain variable structure, this algo-

rithm would execute identically on the problem sets in Sections 4.5.2.1,4.5.2.2, and

4.5.2.3. I then reran the same set of experiments used to generate Figures 4.10-4.13,

this time using the new HCT preprocessor. The results are displayed in Figures 4.14

and 4.15.

 

Figure 7: New HCT impact on solve time. 

 

Figure

Figure 4.14: New HCT impact on solve time.

Clearly, as seen in Figure 4.14, this is a case where the HCT preprocessing is now

well worth the additional computational complexity incurred. In fact, when considering

the solve time alone, using HCT achieves over an order-of-magnitude speedup, while,

incorporating the preprocessing costs leads to over a 2.5 times overall speedup. These

results demonstrate that HCT is significantly faster than before. Overall, HCT

required, on average, just over four times less memory than the non-preprocessed

problems. However, as demonstrated in Figure 4.15, speedups were not solely due to

less memory overhead, but also due to fewer search decisions. By more compactly

representing the problem and eliminating some of the redundancy, in expectation the

new HCT preprocessing led to over two orders-of-magnitude fewer solver decisions on

satisfiable (Sat) problems, while requiring just under two orders-of-magnitude fewer

on unsatisfiable (Unsat) problems. This leads to an overall (All = Sat+Unsat) two

orders-of-magnitude reduction in the expected number of decisions.

In short, this investigation into a new application of HSP and HCT techniques led
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Figure 8: New HCT impact on number of decisions. 

 

Figure

Figure 4.15: New HCT impact on number of decisions.

me to revise my general convention for how to group hybrid constraints into conditional

temporal constraints for HCT. This revised HCT procedure avoids unnecessarily

constructing unruly mega-variables and thus affords an orders-of-magnitude solution

time speedup for forming large-scale expert teams.

4.6 Conclusion

In this chapter, I have presented the HCT algorithm, which automates the ex-

plicit transformation of hybrid constraints into compact, tighter, and more effective

constraints that proactively help to prune the search space. I demonstrated both

analytically and empirically that the HCT algorithm applies to, and reduces the ex-

pected search time for, problems containing hybrid constraints that are not expressible

in a DTPFD representation. Further, the HCT algorithm can be applied separately

from the search algorithm, amortizing the cost across the entire search. This is in

contrast to the least-commitment approach of Moffitt et al. (2005), which required

such reasoning to be implemented into the search algorithm itself and applied after

each of the possibly exponential number of assignments of values to variables. While

Moffitt et al. (2005) first developed a least-commitment strategy for speeding solution
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algorithms for problems containing a combination of DTP and CSP elements, HCT

increases the impact of this approach by generalizing the approach to apply to a

broader class of important HSP problems, using a modular and low-overhead hybrid

constraint-tightening algorithm.

This chapter also takes significant steps forward in the understanding of HSP

solution methods, and in particular about using HCT preprocessing, validating that

HCT can be applied easily to an off-the-shelf search algorithm. My systematic

examination of performance over the space of HSPs, especially the structure of hybrid

constraints, leads to a more complete understanding of when HCT can be applied

most successfully.

HCT scales well with the number of activities and constraints, and is only detri-

mental when problems are too easy, leading to preprocessing costs that exceed the

gains. I showed that scheduling agents can use HCT to solve problems containing

conditional temporal constraints with increasing finite-domain variable choices and

bounds expressed at finer temporal granularity more efficiently. Although I noted that

HCT becomes less effective when applied to partially conditional temporal constraints

and conditional temporal constraints with increasingly large temporal disjunctions,

the upside is that using HCT sill improves the temporal complexity on HSPs with

these constraints. Furthermore, challenging problems generally contain a rich mixture

of hybrid constraint structures, leading to an order (or greater) of magnitude reduction

in solver runtime thanks to HCT. I also applied HCT techniques in the formation

of expert teams, which led me to revise my general convention for how to group

hybrid constraints into conditional temporal constraints for HCT. This revised HCT

procedure avoids unnecessarily constructing unruly mega-variables and thus affords

an orders-of-magnitude solution time speedup for forming large-scale expert teams.

This chapter demonstrates that the local-constraint-summarization strategy gen-

eralizes to wide variety of constraint-based solution algorithms, even between het-

erogeneous finite-domain planning and scheduling subproblems and using existing

solution algorithms. Thus, rather than treating planning and scheduling as separate

subproblems, I show that explicitly representing constraints that capture the impact

that one subproblem has on the other can improve overall solve time. The other high-

level approach that I advocated in this thesis (in Section 1.3) is that of internalizing

constraints between subproblems in a way that decouples the subproblems. While I

used solvers that did not require decoupling the planning and scheduling subproblems,

HCT leads to to exactly specify the trade-offs in establishing a hybrid decoupling of

an HSP. I believe that such an approach can further increase the impact of HCT by,
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in addition to improving the understanding of the interface between subproblems,

disentangling these subproblems in order that highly-specialized solution planning

and scheduling can separately, efficiently, and concurrently solve these subproblems.
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CHAPTER 5

Conclusions

The work I present in this thesis builds foundational algorithms for scheduling

agents that assist people in managing their activities, despite distributed information,

implicit constraints, costs in sharing information among agents (e.g., delays, privacy,

autonomy, etc.), and the possibility of new constraints dynamically arising. Scheduling

agents efficiently work together to take the distributed, interrelated scheduling problems

of their users and compute a distributed summary of solutions without centralizing

or otherwise redistributing the problem. Agents flexibly combine shared reasoning

about interactions between agents’ schedules with the independent reasoning of

individual agents about their local problems by externalizing constraints that compactly

summarize how their local subproblems affect each other and internalizing new local

constraints that decouple their problems from one another. This approach is most

advantageous for problems where interactions between the agents are sparse compared

to the complexity of agents’ individual scheduling problems, where my algorithms

achieve significant computational speedup over the current art. In the remainder of

this chapter, I summarize the contributions of my thesis, as well as discuss some of

the remaining open challenges.

5.1 Summary of Contributions

In the sections that follow, I revisit my claimed contributions from Section 1.4,

where for each high-level contribution, I point out specific instances from Chapters 2,

3, and 4 where each contribution is realized.

166



5.1.1 Multiagent, Constraint-based Scheduling Formulations

In both Chapters 2 and 3, I introduced extensions to existing constraint-based

scheduling formulations that allowed for explicitly modeling the interacting scheduling

problems of multiple agents.

� In Chapter 2, I define the Multiagent Simple Temporal Problem (MaSTP)

formulation for capturing multiagent scheduling problems in which activities

and their relative order have been predetermined. This formulation allows

the n STP subproblems of n different agents to be related through a set of

external constraints. In addition to its local subproblem, I also define the portion

of the global problem known to each agent, which includes its set of external

constraints and its set of external timepoints known to the agent through external

constraints.

� In Chapter 3, I formalize the Multiagent Disjunctive Temporal Problem (MaDTP)

formulation that extends my MaSTP representation by allowing disjunctive

constraints. Again, each agent’s DTP subproblems are related through a set of

external constraints; however external constraints may now involve arbitrarily

many timepoint variables, thus potentially expanding an agent’s set of known

timepoint variables.

� For both the MaSTP and MaDTP, I present algorithm-centric perspectives

on alternative partitionings of their corresponding temporal networks. This

alternative perspective recognizes that collectively, the set of external constraints,

and the variables involved in them form a shared network. The overlap of an

agent’s timepoints with the shared problem is called its set of interface variables,

while its local, non-shared variables are called its private variables. This helps

denote both the scope and limitations of an agent’s knowledge.

5.1.2 Independence Properties of a Multiagent Network

The algorithm-centric perspective on MaSTP and MaDTP partitioning provides

an intuition about what level of independence and privacy an agent can maintain.

� In Theorem 2.1 for the MaSTP and Corollary 3.2 for the MaDTP, I formally

prove that agents can reason over their private subproblems independently of

each other, channeling the impact that their local problems has on other agents’

problems through the shared subproblem.
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� In Theorem 2.2 for the MaSTP and Corollary 3.3 for the MaDTP, I formally

prove that agents cannot infer others’ private timepoints or variables from the

shared problem alone.

5.1.3 Solution Space Properties of a Multiagent Temporal Network

I advocated properties of temporal networks that are particularly useful to schedul-

ing agents: minimality and decomposability.

� A minimal network exactly specifies, for each edge in a network, the exact set

of values that can lead to a solution. I discuss how minimality is useful in

efficiently answering user queries about relationships between events with the

precise bounds over (sets of) time intervals. I prove Corollary 3.1, which states

that minimality can be extended to (multiagent) disjunctive temporal networks

and I also provide distributed algorithms for establishing minimality for both the

MaSTP (using the D4PPC Algorithm) and the MaDTP (using the MaDTP-LD

Algorithm).

� A decomposable network is one where any self-consistent assignment to a subset

of variables can be extended to a joint solution. Decomposability necessarily

results in a fully-connected network, thus limiting its usefulness in distributed,

multiagent settings, where agents value the independence and privacy of their

subproblems. I prove Theorem 3.1, which shows that decomposability can

be extended to disjunctive temporal networks. However, I also discuss how

approximations of full decomposability, including partial path consistency for

the MaSTP and local decomposability for the MaDTP, offer nice a balance

between independent reasoning over agents’ problems and an ability to answer

queries about relationships between local events that a user cares about.

5.1.4 Algorithms for Calculating the Complete Solution Space of Multi-

agent Scheduling Problems

I promote a high-level, two-pronged approach based on two ideas. The first was

that of externalizing the impact that one agent’s local problem has on another in the

form of summary constraints that agents then exchanged. This leads to the following

algorithmic contributions:

� The D4DPC algorithm is my novel, distributed implementation of a general

class of bucket-elimination algorithms that applies my high-level, local constraint
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summarization approach to the MaSTP. The idea is that an agent can concep-

tually eliminate its variables, one-at-a-time, while capturing the impact that

each eliminated variable has on its non-eliminated neighboring variables. Thus,

once an agent has eliminated its private variables, it will have computed a set of

constraints that exactly summarizes the impact its problem has on other agents’

problems.

� The D4PPC algorithm is my way of distributing the execution of the P3C

algorithm, which completes the exchange of local constraint summaries so that

agents can establish minimal, partial path consistent MaSTNs. This algorithm

is essentially a reverse sweep of the D4DPC algorithm, where care must be

taken to ensure that an agent synchronizes its edge weights with those of other

agents prior to updating its local edges. Together with D4DPC, this algorithm

calculates the joint solution space of an MaSTP without unnecessarily revealing

private variables. While D4PPC has the same worst-case complexity as its

centralized counterpart, it can exploit concurrency to achieve significant speedup,

especially as problems grow to be more loosely coupled.

� The MaDTP-LD exploits the idea of an influence space to compactly summarize

the impact one agent has on another. The idea is that many of an agent’s local

schedules may not distinctly impact other agents’ problems, and thus savings

can be had by only enumerating the schedules that distinctly influence other

agents. This has the added benefit of maintaining privacy and independence over

an agent’s local problem, to the extent possible. After the exchange of influence

spaces has been completed, agents finish enumerating their local solution spaces

whilst simultaneously establishing the joint solution space in a distributed manner.

By instead focusing on computing the potentially more-tractable influence space,

the MaDTP-LD achieves orders-of-magnitude improvement over the previous,

centralized brute-force approach as problems grow to be more loosely-coupled.

5.1.5 Algorithms for Calculating Temporal Decouplings of Multiagent

Scheduling Problems

The second idea in my high-level, two pronged approach is that of internalizing

the impact of external constraints in the form of new, local decoupling constraints

that render local agent problems independent from one another. This leads to the

following algorithmic contributions:
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� The MaTDP algorithm (along with its MaTDR subroutine), which combines the

reasoning of the D4DPC and D4PPC algorithms with a decoupling procedure

that first assigns, then relaxes shared timepoints in a way that leads to a

minimal decoupling for a MaSTP. I show that while this algorithm has the

same complexity as the original D4PPC algorithm, it reduces solve time in

expectation. I demonstrate that the temporal decouplings that this algorithm

computes represent a slight decrease in completeness from its centralized counter-

part, but it calculates solutions in a much more privacy maintaining, independent

manner, leading to orders-of-magnitude speedup.

� Like the MaTDP algorithm did for MaSTPs, the MaDTP-TD algorithm combines

MaDTP-LD reasoning with an assignment and relaxation procedure on the shared

STP, leading to a temporal decoupling process that gains expected efficiency over

the MaDTP-LD algorithm by short-circuiting its reasoning once a decoupling is

found. I show that MaDTP-TD confirms my high-level hypothesis and speeds

the expected solution time over MaDTP-LD, allowing it to scale to problems

with an order-of-magnitude more agents.

5.1.6 Hybrid Constraint Tightening

In Chapter 4, I describe how Hybrid Scheduling Problems offer a way to add a

rudimentary level of planning to constraint-based scheduling problems. This leads to

agents capable of representing the relationships between their planning and scheduling

subproblems using hybrid constraints.

� My Hybrid Constraint Tightening algorithm takes sets of hybrid constraints with

the same structure, called conditional temporal constraints, and reformulates

them by lifting summarizing information about how the planning problem

impacts the scheduling problem and vice versa. By applying HCT to groups

of hybrid constraints that form conditional temporal constraints, I show just

how general the idea of local constraint summarization is. Further, I also

introduce ways that, like in multiagent scheduling, HCT can be used to decouple

the planning and scheduling subproblems, thus short-circuiting and, if highly-

specialized solvers are available, possibly speeding the solution process.

� My comprehensive empirical evaluation demonstrates that HCT, when applied to

HSPs as a preprocessing algorithm, can speed the solve time of an existing, off-the-

shelf solver by up to orders-of-magnitude. This speedup generally increases with
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problem size and complexity. I also show that generally, hybrid constraint that

contained a complex finite-domain constraint components tended to highlight

the effectiveness of HCT, while those with more complex temporal constraint

components tended to dampen HCT efficacy. This, in turn, improves the

understanding of hybrid constraint structures and how they relate the planning

and scheduling subproblems.

� I contribute a case-study that uses HCT in an expert-team formation application.

Here, I show that HCT can hurt efficiency if it combines nicely-decomposed

finite-domain components of hybrid constraints into a single mega-variable that

conflates the influence these variables have on the scheduling problem. I augment

the HCT algorithm so that it maintains the nicely-decomposed structure of

hybrid constraints, which in turn leads to significant solution time speedup for

this particular application.

5.2 Open Questions

My thesis has addressed the challenges of coordinating interacting multiagent

schedules in a way that maintains privacy and independence between agents’ subprob-

lems. During the course of my investigation, I have identified other, related challenges

that would make for interesting research investigations in their own right.

5.2.1 Complete vs. Partial, Temporally-independent Solution Spaces in

Dynamic Environments.

In this thesis, I use metrics accepted in the community to quantify the relative

advantages of computing (and thus maintaining) a complete solution space vs. comput-

ing a partial solution space with the property of temporal independence, using existing

metrics. Two factors largely contribute to the relative advantages/disadvantages of

these approaches: (1) the costs of maintaining a complete, joint solution space (which

is likely to be less than computing it from scratch), and (2) the frequency and nature

of dynamically arriving constraints, which will impact how often a given temporal

decoupling will break and need to be recomputed from scratch. An interesting open

challenge is that of comparing these two approaches in a dynamic setting. Towards

addressing this open question, I performed some preliminary empirical evaluations

that attempt to start to measure the on-going costs of maintaining a complete solution

space representation, which I briefly introduce here.
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When a new or updated constraint arises, the effect that this update has on the

temporal network is often relatively limited and local in scope. Thus, computational

gains can be made by caching and reusing large portions of a previously-consistent

network, rather than computing consistency from scratch. Incremental algorithms for

maintaining both full path consistency (Even & Gazit, 1985; Tsamardinos & Pollack,

2003) and partial path consistency (Planken et al., 2010b) in temporal networks have

been demonstrated to significantly improve solve time over their complete FPC and

PPC algorithm counterparts. However, until recently, the benefits of these incremental

approaches were limited to centralized approaches executing on single-agent temporal

network representations.

Boerkoel & Planken (2012) introduced two novel algorithms for incrementally

maintaining PPC consistency across a MaSTN. The first is my DI4STP algorithm,

which augments the 4STP (Xu & Choueiry, 2003) so that it incrementally processes

constraints in a distributed manner. The basic idea of 4STP was to place all triangles

of a triangulated network on a queue, and then one-by-one, establish FPC on each

triangle, re-enqueuing neighboring triangles when new updates occur until quiescence

is achieved. My DI4STP algorithm is novel in that it assigns the responsibility of

each triangle created by my D4PPC algorithm (Section 2.5) to the agent that created

it, and then each agent maintains a separate triangle queue (which in the incremental

setting is initially empty, rather than containing all triangles). When updates occur,

care must be taken to communicate edge updates that affect the triangle of another

agent. Triangles are allocated to the agent responsible for creating it during the

application of D4DPC. By quickly communicating updates to other agents, this

algorithm attempts to maximize agent utilization at the risk that an agent’s optimistic

computation could lead to redundant computation.

The second new algorithm is DIPPC, a distributed version of the state-of-the-

art IPPC algorithm (Planken et al., 2010b). Rather than attempting to maximize

agent utilization, this algorithm attempts to minimize the total effort by traversing

updated portions of the temporal network in a systematic, simplicial construction order

(effectively the reverse of a simplicial elimination order). The potential downside of this

approach is that it involves careful sequentialization, which can lead to under-utilized

agents.

Boerkoel & Planken (2012) use the same experimental setup as described in Section

2.5.4.1 to test the relative performance of these two algorithms, as well as compare

them to the state-of-the-art centralized algorithm. Experiments were executed on a

simulated multiagent environment, the details of which are available in (Boerkoel &
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Figure 5.1: Total computational time of incremental algorithms.

Planken, 2012). Rather than establishing consistency on the entire MaSTN, constraints

were fed in one at a time, allowing the algorithm to reach quiescence before posting

each new constraint.

As shown in Figure 5.1, only when there is no message latency at all do either of

the distributed approaches surpass that of the centralized IPPC. Otherwise, neither

distributed incremental approach clearly dominates the centralized approach. This

means that communication tends to dominate the cost of incrementally updating a

temporal network. Further, the centralized IPPC algorithm is an overestimate of how

long it would take to update a temporally decoupled network (which would require no

communication) for two reasons. First, any updates in a temporal network have to

only propagate locally, leading to an overall savings in the amount of effort. Second,

each agent could process updates independently, leading to concurrent processing of

updates, whereas approaches that maintain the complete solution space must process

all updates sequentially. This work demonstrates empirically that when message

latency is minimal, both algorithms achieve reduced solve times—DIPPC by upwards

of an order of magnitude—as compared to the state-of-the-art centralized approach,

especially as problems grow in the number of agents or external constraints. However,

as message latency increases, the relative performance of the incremental algorithms

degrades as compared to their centralized counterparts, making decoupling a stronger

option in high-latency settings.

5.2.1.1 Frequency of Broken Decouplings

In the experimental setup in Section 2.6.3.1, I described two parameters that

influenced the constrainedness of the problem. The first parameter is the number of

external constraints involved in the problem, N . The second parameter is the tightness
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Table 5.1: The frequency of broken decouplings.
t=0.2 t=0.4 t=0.6 t=0.8 t=1.0

N=0 0 % 0 % 0 % 0 % 0 %
N=20 0 % 0 % 1 % 5 % 16 %
N=80 0 % 1 % 12 % 18 % 29 %
N=320 1 % 6 % 27 % 33 % 49 %

of new constraints, t, which represents the maximum portion that an interval can be

tightened. Like before, I generate problems with 25 agents and 50 local constraints

each, and vary both N ∈ {0, 20, 80, 320} and t ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. However, in

this set of experiments, I select an edge, e
′
ij with uniform probability from the set of

all generated local constraints. Then, I construct an new, tighter constraint for that

particular edge as I did before by with a bound chosen uniformly from the interval

[wij − t · (wij + wji), wij]

The experiments are initialized using either the complete strategy (D4PPC) or

the decoupling-based strategy (MaTDP+R). At this point, e
′
ij is added to whichever

agent owns the edge, and DI4STP is executed. For agents using the decoupling-based

strategy, the additional edge may result in a local inconsistency. In this case, the

agents must abandon the current decoupling and calculate a new one by re-executing

the DTDP algorithm. For each parameter setting, I randomly draw 100 problem

instances. I record the ratio of non-concurrent computational effort required by the

decoupling approach over the effort required by the least-commitment approach.

My expectations are that if recomputing a new decoupling is not necessary, then

the decoupling approach should outperform the least-commitment approach. This is

because decoupled problems are independent and so unless recomputation is needed,

update propagation should remain local and invariant to the number of external

constraints. However, when recomputation is needed, I expect that computing a

completely new decoupling will be more expensive than simply revisiting the triangles

that need re-tightening in the least-commitment approach.

I present the results in Table 5.1 and Figures 5.2 and 5.3. Table 5.1 indicates that

the likelihood that decoupling breaks strictly increases as the tightness and number of

constraints increases. Unsurprisingly, as constraint tightness increases, so does the

ratio of the computational effort of the decoupled approach to the computational effort

of the least-commitment approach (Figure 5.2). This is because, as Table 5.1 indicates,

the tighter a new constraint is, the more likely it is be inconsistent with a given

decoupling, and thus more frequently requires computing a new temporal decoupling.

As the alternative presentation of the same results in Figure 5.3 demonstrate, when a
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Figure 5.2:
Ratio of decoupling update effort to least-commitment update effort as t
increases.

decoupling is unlikely to break (e.g., when new constraints are not very tight), the

margin by which decoupling approach outperforms the least-commitment grows as

the number of external constraints increases, to upwards of a 4-fold increase. This is

because the amount of effort required to update a least-commitment temporal network

increases as the network becomes more well-connected. However, the opposite affect

occurs when new constraints are likely to break the decoupling. In this case, not only

does the additional connectedness contribute to increased costs for establishing a new

decoupling, it also increases the likelihood that an update breaks a decoupling to

begin with.

5.2.2 Tractable Multiagent Disjunctive Temporal Problem Solution Ap-

proaches

Multiagent solution spaces offer a way to efficiently monitor and dispatch the

execution of multiple agents while hedging against uncertainty. In many applications,

expensive precompilation algorithms are fine, meaning my MaDTP-LD and MaDTP-

TD algorithms enable this preprocessing to be done in a privacy and independence

maintaining manner. However, my algorithms are generally intractable, and for

applications that cannot afford extensive preprocessing time, my algorithms are largely

impractical.
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Shah & Williams (2008) and Shah et al. (2009) offer hope that increased efficiency

in disjunctive temporal network is possible, but use a full enumeration and post-

processing technique to get there. Another approach is a more anytime approach

that could quickly converge on some solution very quickly, and progressively improve

completeness of the solution space representation over time. Here I provide some

preliminary insights and ideas on how to improve the efficiency of these kinds of

approaches in hopes that such ideas can lead to comprehensive, tractable solutions.

5.2.2.1 Multiagent Singleton Consistency

Recall from Section 3.2.2 that the set of singleton constraints, Ck=1
D ⊆ CD (where

c ∈ Ck=1
D is one that contains only a single disjunct) can be used to form an STN that

can be used to prune inconsistent disjuncts and safely ignore temporal constraints

with subsumed disjuncts. As mentioned, this procedure can be reapplied until an

inconsistency is returned, all disjunctive constraints are made to be singleton (in the

extreme case), or quiescence is reached. The output of such a procedure suggests a

level of consistency, that I now formalize in the following definition:

Definition 5.1. A DTP is singleton consistent if every disjunct is consistent with,

and not subsumed by, the minimal distance graph formed by the set of singleton
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constraints, Ck=1
D .

The concept of singleton consistency provides an alternative to local decomposability

for agents to summarize the impact their local DTP has on other agents. While this

approach does not exchange minimal bounds on intervals over edges, it is polynomial,

rather than exponential, in the number of disjunctive constraints.

Traditionally, singleton consistency has been established as an outer loop to an

incremental path consistency algorithm (Tsamardinos & Pollack, 2003; Planken et al.,

2010b). This requires iterating over each of the O
(
k|CD|

)
disjuncts, checking each

one against the current temporal network, and determining if it should be pruned

or subsumed. If a pruning results in a new singleton constraint, it is posted and

the incremental algorithm propagates the new constraint throughout the network,

triggering the forward-checking process to start anew. While this method, which

has typically been applied to single-agent, FPC temporal networks could easily be

adapted for PPC MaSTN, I provide an alternative approach that could, in expectation,

converge to singleton consistency faster, while also reducing the complexity of the

overall MaSTN temporal network representation.

Notice that this forward-checking / variable-subsumption testing requires compar-

ing disjuncts against a minimal network edge. This has a couple of implications for

DTPs. First, while PPC is typically relied on to maintain sparsity in MaSTNs, for

the forward-checking procedure to work, an edge must be added not only for every

preexisting singleton constraint, but also for each of the O
(
k|CD|

)
disjuncts. This could

have the effect of mitigating some of the sparsity typically enjoyed by maintaining a

PPC network. However, as disjuncts are pruned or subsumed, a PPC network may be

able to recover some of its sparsity. Of course, this can only be realized if the network

is re-triangulated from scratch, after eliminating edges associated with now pruned or

subsumed disjuncts.

Second, because each disjunct is associated with exactly one minimal edge, testing

for singleton consistency only needs to occur if that disjunct’s edge is tightened. Thus,

I propose an alternative approach to forward-checking as an inner loop, rather than

outer loop, to existing STN consistency algorithms. The basic idea is each edge eij

can have associated with it two sorted linked lists of disjuncts `ij, `ji. Then any

existing consistency algorithm (e.g., FPC, PPC, or incremental variants thereof) can

be augmented to so that forward-checking/subsumption checking occurs if and only if

an edge weight, say wij , is tightened. Then, wij is forward-checked against the tightest

bound in `ji (which is pruned if wij + bji < 0) and against the least restrictive in `ij

for subsumption (which occurs if wij < bij). Notice that, unless pruning/subsumption
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occurs, this check adds only a constant amount of work, only if an edge is updated.

The advantage of this approach is that forward-checking only occurs on-demand,

rather than iterating through all O
(
k|CD|

)
disjuncts after each network propagation,

and also amortizes potentially many updates across a single propagation, rather than

requiring a separate (albeit possibly incremental) propagation for each update.

Performing the forward-checking as an outer loop requires O
(
β · k2·|CD|

)
time in the

pathological worst-case, where β represents the complexity of the consistency method.

This is because, each of the O
(
k|CD|

)
disjuncts may need to be explored before finding

one that is pruned and results in a new constraint being posted, which triggers a

restart of both the consistency algorithm and the forward-checking procedure (which

can occur up to O
(
k|CD|

)
times). Performing the forward-checking using my proposed

inner loop method instead requires O
(
β · k|CD|

)
time in the pathological worst-case,

where again β represents the complexity of the consistency method. This occurs if

each application of the consistency algorithm only triggers one new forward-check,

which can happen up to O
(
k|CD|

)
times. Of course, neither of these worst cases are

likely in expectation.

In summary, my proposed inner loop strategy, when coupled with my D4PPC

algorithm, offers an agent a way to incrementally summarize how each new decoupling

constraint affects the impact its local problem has on other agents’ problems. Next,

I will discuss the implications of decoupling as search, before introducing ideas for

combining these two approaches.

5.2.2.2 Decoupling Search

Multiagent Singleton Consistency, as introduce in the previous section, allows

agents to exchange summaries based on the current singleton MaSTN. While efficient

to compute, these summaries are by no means minimal in that, while the complete

set of solutions is represented, it is not the exact set of bounds over intervals that will

lead to sound solutions (it may include infeasible schedules). Traditionally, search

in a DTP involves assigning disjuncts to meta-variables so as to find a consistent

component STN. In my case, I am interested in a search that, rather than find a

consistent component STN, finds a consistent temporal decoupling. In this section,

I discuss how to use information from the singleton MaSTN to inform this search

both in terms of finding the most-constrained variable as well as the least-constraining

decoupling value.
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Most-Constraining Variable. The basic triangulation algorithm (Algorithm 2.2),

as well as my distributed variant (the D4DPC Algorithm, Section 2.5), both use

heuristics that aim to minimize the number of fill edges added by, for example, choosing

the variable involved in the fewest number of (non-eliminated) edges (Kjaerulff, 1990).

A by-product of this procedure for choosing variables is that the last variable to be

selected for elimination (the one appearing last in the elimination order) is the one

consistently picked over as potentially leading to the most fill edges (e.g., involved in

the most non-eliminated edges). This also holds true in the multiagent case (e.g., the

D4DPC Algorithm), where the last variable eliminated is guaranteed to be external.

Thus my hypothesis is that the variable that appears last in the elimination order is

the most (externally) constrained variable.

Least-Constraining Value. In traditional CSP search, once a variable has been

selected for assignment, the goal is to assign it to its least-constraining value, which

can be heuristically evaluated, for example, as the one that least reduces the domains

of neighboring timepoints. In constraint-based scheduling problems, there are two

possible interpretations of least-constraining. My goal is to provide an intuitive

heuristic that achieves both. First, least-constraining could be measured in terms of

scheduling flexibility, i.e., one would like to choose the value that prunes the fewest

schedules. Second, in the meta-CSP sense, a least-constraining value might be one that

results in the least number of disjuncts being pruned from neighboring meta-variables.

Before hypothesizing a least-constraining decoupling heuristic, I first want to

observe a relationship between temporal decoupling and meta-variable subsumption.

More generally, subsumption capitalizes on the fact that, if a given disjunct is already

inherently satisfied, there is no need to assign the meta-variable; it can be safely

be ignored, thus reducing the search complexity without increasing the level of con-

strainedness. Disjunct forward-checking, on the other hand, can lead to increased

constrainedness in the network, since new temporal difference constraints may need

to be enforced somewhere else in the network. Notice that the goal of temporal

decoupling could be framed as proactively subsuming external constraints. I use this

insight in developing a least-constraining decoupling strategy.

Given that temporal decoupling inherently implies adding new decoupling con-

straints anyway, my hypothesis is that these decoupling constraints should be chosen

so as to maximize the number of (external) disjuncts subsumed while minimizing

the number of disjuncts pruned, that is to maximize the value (number of disjuncts

subsumed) - (number of disjuncts pruned). By doing so, this heuristic will maximize
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the number of external constraints that are subsumed (i.e., decoupled), while not

unnecessarily constraining timepoints elsewhere in the network (as can occur through

forward-checking). My hypothesis is that this heuristic will lead to temporal networks

that are both more flexible and consistent with more original temporal disjuncts.

5.2.2.3 Combining Approaches

My insights on how to both efficiently propagate constraints and also make good

decoupling decisions provide an opportunity to combine these approaches. The

idea would be to adapt a MaTDP-style algorithm to perform singleton checking as

constraints are propagated, and only introduce one decoupling decision at a time.

This lends itself to an iterative combination of local constraint summarization and

decoupling, where, after each iteration, the shared network might decrease in size as

agents become more decoupled.

5.2.2.4 Independent Local Discovery of No-/Low-Cost Decoupling Op-

portunities.

A final insight is that opportunities for decoupling can be discovered and incorpo-

rated independently by local agents. An agent can use the LCV heuristic described

above to determine no- or low- cost decoupling constraints (where cost is determined

by the resulting disjuncts that are pruned). Additionally, as discussed in Section 3.4,

external disjunctive constraints can contain disjuncts that are completely local to

a particular agent. If an agent can independently discover that it can consistently

incorporate this local constraint, it effectively decouples that constraint, reducing the

size of the shared DTP before coordination even starts. This provides an alternative

to, or possible improvement of, the temporal decoupling algorithm that I present in

Section 3.6, where agents independently search for ways to decouple their problems

from each other by locally refining their subproblem.

5.2.3 Decoupling Planning and Scheduling Problems

In Section 4.4.3, I described how Hybrid Constraint Tightening reformulates

conditional temporal constraints in a way that exactly specifies the possible ways that

a particular conditional temporal constraint could be decoupled. Such a decoupling

could be highly useful if there are highly-specialized planning or scheduling solvers

that can concurrently and independently solve these subproblems. I did not, however,

implement or evaluate an algorithm for enforcing such a decoupling. While Section

180



4.4.3 conceptually outlines how such an approach could work, doing so would require

metrics and heuristics for determining decouplings that are most likely to lead to (the

most) solutions to the planning and scheduling subproblem, which in turn, requires a

deeper understanding of the inner-workings of highly-specialized solvers.

5.2.4 The Multiagent Hybrid Scheduling Problem

The Hybrid Scheduling Problems (HSP) (Section 4.2), offers a way to expand

the generality of constraint-based scheduling to include aspects of planning that can

be captured as finite-domain CSPs. My work demonstrates both that using Hybrid

Constraint Tightening (HCT) can improve the overall solve time of problems containing

both planning and scheduling elements, and that solving multiagent, constraint-based

scheduling problems can be done in an efficient, distributed fashion. Combining these

advantages into a Multiagent HSP offers further opportunities to improve the overall

solution approach of multiagent planning and scheduling problems. Doing so, however,

requires either adapting my high-level multiagent scheduling strategies to the finite-

domain, planning subproblem, or adapting existing distributed constraint reasoning

techniques (Section 4.3.2) to be more conducive to the complex local problems and

privacy demands of agents.

5.2.5 Explicit Models of Utility and Uncertainty

Throughout my thesis, I promote the idea of using minimal temporal networks

to represent solution spaces that can act as a hedge to new constraints that may

arise dynamically over time either due to non-volitional events (e.g., the actual

duration of a bus ride might be uncertain given traffic, time-of-day, etc.) or due to an

(previously un-)expressed goal of a user. While models that accurately capture user

preferences and true models uncertainty of an environment may be difficult to come

by in practice (hence highlighting the resilience of my particular approach), if these

models did in fact exist, it may change the goals of a scheduling agent from finding

all possible solutions to perhaps just finding an optimal one (e.g., the most robust

one or the one that achieves the highest expected utility). As a preliminary step

towards understanding how to naturally elicit, model, and incorporate qualitative user

preferences, I have demonstrated that interleaving users’ qualitative preferences with

constraint propagation is an efficient path towards finding a most-preferred solutions

(Purrington et al., 2009; Boerkoel et al., 2010).

Of course, any particular schedule, even one with the highest expected utility, may
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be brittle. Instead, what an agent may want instead is to compute, e.g., an optimal

temporal decoupling (Planken et al., 2010a), which allows an agent the flexibility of a

complete local solution space, but chooses the local solution space that maximizes

expected utility. Or when some level of controllability is possible (Vidal, 2000), agents

may wish to constrain themselves to a controllable space of problems that maximizes a

user’s utility. Thus, optimization (with respect to uncertainty or utility) adds another

layer of complexity and many new challenges for scheduling agents.

5.2.6 Human Factors

Throughout my dissertation, I used the concept of a scheduling agent as a mo-

tivation for my theoretical, foundational, and algorithmic contributions. However,

how an agent presents information to and elicits information from a human user is a

challenging question in its own right (Purrington et al., 2009). The rational reasoning

of scheduling agents may not align well with how humans actually cognitively process

information. For example, humans may find that at some point, summaries of spaces

of solutions may be overwhelming, and might be better equipped for comparing

and selecting representative examples of possible schedule. Codifying a model of

human agent interaction is an open challenge, and one that is beyond the scope of

this dissertation, but one that is necessary for closing the loop between theory and

practice.
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APPENDIX A

Formal Proofs

Throughout my dissertation, I provided proof sketches to convey the gist of the

proof when presenting the full proof would break flow of the prose. In this Appendix,

I provide the formal proofs for all such Theorems.

A.1 Preliminaries

In this section, I provide present definitions and lemmas that will be useful in

my proofs of correctness for the PC4PPC, D4DPC, and D4PPC algorithms. I

begin by defining a key relation about elimination orderings. Once I have defined this

relationship, I will prove some properties about this relationship that will be useful

for proving that my algorithms correctly establish PPC.

Definition A.1. Given a graph G = 〈V,E〉 and a total ordering o, ∀vx, vys.t.x 6=
y ⇒ (vx ≺o vy ∨ vy ≺o vx), over V , let ∆(o,G) =

〈
V,E ∪ EFill(o,G)

〉
be the graph that

results from triangulating graph G by eliminating vertices in order o and adding fill

edges EFill(o,G).

Definition A.2. Given a graph G = 〈V,E〉 and (total) elimination order o, I define

the precedence relation ≺∆(o,G), where vx ≺∆(o,G) vy if and only if, at the time of

vx’s elimination, vy shares an edge with vx and has not been eliminated. That is,

vx ≺∆(o,G) vy ⇔ (vx ≺o vy) ∧ (exy, eyx ∈ E ∪ EFill).

Next I label the two key algorithmic operations of the DPC and PPC algorithms,

eliminate and revisit respectively.
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Definition A.3. I label lines 4-11 of the4DPC algorithm as the eliminate procedure.

This procedure eliminates a timepoint vk after first using edges eik and ekj to tighten

(and when necessary, to add) each edge eij for every pair of non-eliminated, neighboring

timepoints, vi and vj.

Definition A.4. I label lines 4-7 of the 4PPC algorithm as the revisit procedure.

This procedure revisits a timepoint vk by, for every pair of previously-revisited,

neighboring timepoints vi and vj, tightening edge eki and edge ejk with respect to eij.

Lemma A.1. Let o and o′ be two distinct total orderings of the vertices, V for

some graph G = 〈V,E〉. If o′ is consistent with the precedence relation ≺∆(o,G), then

∆(o,G) = ∆(o′,G).

Proof. Assume ∆(o,G) 6= ∆(o′,G).

Since ∆(o,G) =
〈
V,E ∪ EFill(o,G)

〉
and ∆(o′,G) =

〈
V,E ∪ EFill(o′,G)

〉
, if ∆(o,G) 6=

∆(o′,G) then EFill(o,G) 6= EFill(o′,G).

EFill(o,G) 6= EFill(o′,G) implies that there exists at least one edge exy such that, either

exy ∈ EFill(o,G) and exy /∈ EFill(o′,G), or exy /∈ EFill(o,G) and exy ∈ EFill(o′,G).

WLOG, let exy ∈ EFill(o,G) be the first edge that is added to EFill(o,G) under

elimination order o that is not added to EFill(o′,G) under o′. In order for edge exy to

be added under elimination order o, there must be some vertex vz such that it is

eliminated prior to vx and vy and shares an edge with both vx and vy (exz and eyz

respectively) at the time of its elimination. By definition, this implies vz ≺∆(o,G) vx

and vz ≺∆(o,G) vy. So, under the assumption that o′ respects the precedence relation

≺∆(o,G), o
′ eliminates vz prior to vx and vy. Since vz is eliminated prior to vx and vy

but no fill edge exy is added, at least one of exz or exy is absent at the time of vz’s

elimination under o′. WLOG, assume exz is missing. If exz is missing at the time of

vz’s elimination it cannot be part of the original specification of G, which implies it

is a member of EFill(o,G). However, once vz is eliminated, no new edge exz can ever

be constructed, since fill edges are only ever added between non-eliminated vertices.

Thus, either exy is not the first edge that is added to EFill(o,G) under elimination

order o that is not added to EFill(o′,G) under o′, or o′ does not respect the precedence

relation ≺∆(o,G), but both cases violate the assumptions. Therefore, since every time

elimination order o adds a fill edge e, it induces a new ≺∆(o,G) relation, any other

elimination order o′ that also satisfies the relation ≺∆(o,G) will also add the fill edge

implying EFill(o,G) ⊆ EFill(o′,G).

Next I prove that EFill(o′,G) ⊆ EFill(o,G), which mirrors the proof that EFill(o,G) ⊆
EFill(o′,G). WLOG, let exy ∈ EFill(o′,G) be the first edge that is added to EFill(o′,G)
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under elimination order o′ that is not added to EFill(o,G) under o. In order for edge

exy to be added under elimination order o′, there must be some vertex vz such that

it is eliminated prior to vx and vy and shares an edge with both vx and vy (exz and

eyz respectively) at the time of vz’s elimination. Since exy is the first edge added to

EFill(o′,G) under elimination order o′ that is not added to EFill(o,G) under o and also

since no edges can be added after the elimination of one of its endpoints, exz must

already exist at the time of both vx’s and vz’s elimination under o and exy and exz

must already exist at the time that vz, and vx and Vy respectively, are eliminated

under o. However, since elimination order o does not add exy, at least one of vx

or vy is eliminated before vz under o. WLOG assume vx is eliminated prior to vz.

However, since at the time of vx elimination, vx and vz share edge exz and so by

definition vx ≺∆(o,G) vz. This contradicts the assumption that o′ respects ≺∆(o,G).

Therefore, since the order that vertices that share edges are specified as part of ≺∆(o,G)

by definition, if elimination order o′ respects ≺∆(o,G), EFill(o′,G) ⊆ EFill(o,G)

Since EFill(o,G) ⊆ EFill(o′,G) and EFill(o′,G) ⊆ EFill(o,G), EFill(o,G) = EFill(o′,G) which

violates the assumption that ∆(o,G) 6= ∆(o′,G) since they only can differ in fill

edges. Therefore, if o′ is consistent with the precedence relation ≺∆(d), then ∆(o,G) =

∆(o′,G).

Lemma A.2. Let o be a total elimination order used to triangulate STN G, resulting

in graph ∆(o,G) and precedence relation ≺∆(o,G). Any application of 4DPC that

eliminates nodes with respect to the precedence relation ≺∆(o,G) will have the same

output as DPC(o,∆(o,G)).

Proof. By contradiction: Let G4DPC be the output of 4DPC and GDPC be the

output of DPC. Assume G4DPC 6= GDPC . This implies for at least one edge exy,

w4DPCxy 6= wDPCxy .

Part 1: Suppose after applying both DPC and 4DPC, there was an edge exy,

where wDPCxy < w4DPCxy and, WLOG, this was the first edge that DPC tightened

further than 4DPC. This implies that for at least one vertex vz, DPC performs the

update wDPCxy = min(wDPCxy , wDPCxz + wDPCzy ) and either 4DPC does not, or if it does,

min(wDPCxy , wDPCxz + wDPCzy ) < min(w4DPCxy , w4DPCxz + w4DPCzy ). However, since DPC

only performs the update wDPCxy = min(wDPCxy , wDPCxz +wDPCzy ) iff edges exists between

vx, vy, and vz and vz is eliminated before vx and vy, by definition, vz ≺∆(o,G) vx and

vz ≺∆(o,G) vy.

Since 4DPC eliminates nodes with respect to the precedence relation ≺∆(o,G),

4DPC must eliminate vz before eliminating vx and vy, resulting in the update
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w4DPCxy = min(w4DPCxy , w4DPCxz + w4DPCzy ), so unless the assumption that 4DPC

respects ≺∆(o,G) is violated, 4DPC correctly applies the update.

Since4DPC correctly applies the update w4DPCxy = min(w4DPCxy , w4DPCxz +w4DPCzy ),

the only way that wDPCxy < w4DPCxy holds true after the update is if either w4DPCxy <

wDPCxy , or w4DPCyz < wDPCyz at the time the update is performed. But this violates the

assumption that wDPCxy < w4DPCxy is the first update performed by DPC that is never

correctly performed by 4DPC.

Thus DPC will never perform an update to the bound wDPCxy of any edge exy that

will not also be applied by 4DPC, thus wDPCxy ≥ w4DPCxy .

Part 2: Suppose after applying both DPC and 4DPC, there exists an edge exy,

where w4DPCxy < wDPCxy , that was the first edge that ∆ DPC tightens further than

DPC. This implies there must be some vertex vz such that 4DPC eliminates it prior

to vx and vy and that shares edges with both vx and vy with tightened values w4DPCxz

and w4DPCzy respectively. Further, at the time of vz’s elimination, 4DPC tightens the

bound w4DPCxy using the rule w4DPCxy = min(w4DPCxy , B4DPCxz + w4DPCzy ).

Since w4DPCxy is the first bound that 4DPC tightens further than DPC using

elimination order o and also since DPC does not tighten the bounds of any edge

after it eliminates one of its endpoints, DPC will have already tightened wDPCxz by the

time it eliminates either vx or vz and DPC will have already tightened wDPCzy by the

time it eliminates either vy or vz. Thus, if vz appears before vx and vy, DPC would

apply the update wDPCxy = min(wDPCxy , BDPC
xz + wDPCzy ) with wDPCxz = w4DPCxz and

wDPCzy = w4DPCzy , which is exactly the same update as 4DPC. Thus, w4DPCxy < wDPCxy ,

DPC must never apply the update, implying vz must appear after either vx or vy in o.

WLOG, assume vx appears before vz in o. However, as shown before, at the time

of the elimination of vx or vz, edge exz must already exist, since edges are never added

between eliminated vertices. Since vx and vz share an edge and vx appears before vz

in o, by definition vx ≺∆(o,G) vz. However, this contradicts the assumption that the

order 4DPC eliminates vertices respects ≺∆(o,G). Therefore, w4DPCxy ≥ wDPCxy .

Conclusion: Since both wDPCxy ≥ w4DPCxy and w4DPCxy ≥ wDPCxy , then w4DPCxy =

wDPCxy . However this contradicts the assumption that G4DPC 6= GDPC . Therefore, the

output, G4DPC , of an application of 4DPC will be the same as the output, GDPC , of

DPC(o,∆(o,G)) if 4DPC eliminates nodes with respect to the precedence relation

≺∆(o,G).

Lemma A.3. Let o be a total elimination order used to triangulate STP G, resulting

in graph ∆(o,G) and precedence relation ≺∆(o,G). Also let G ′ = 〈V,E ′〉 be the output

of DPC(o,∆(o,G)). Then the output, G4PPC , of any application of the second phase
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of the 4PPC algorithm that revisits vertices in reverse ≺∆(o,G) order will be the same

as the output, GP 3C, of applying P3C (o,∆(o,G ′)).

Proof. Note: When a vertex vx is revisited, both 4PPC and P3C apply the following

updates:

� wxi ←min(wxi, wxj + wji)

� wxj ←min(wxj, wxi + wij)

� wix ←min(wix, wij + wjx)

� wjx ←min(wjx, wji + wix)

∀i, j such that exi, exj ∈ E ′, where vx appears before vi and vj in o.

By contradiction: Assume that applying P3C (o,∆(o,G ′)) achieves a different

output than an application of 4PPC to G ′ that revisits vertices in reverse ≺∆(o,G)

order does. Then there exists at least one pair of vertices, vx and vi, where, WLOG,

vx appears before vi in o, such that wP
3C

xi 6= w4PPCxi . So either wP
3C

xi < w4PPCxi or

wP
3C

xi > w4PPCxi . WLOG, let wP
3C

xi 6= w4PPCxi be the first such difference between GP 3C

and G4PPC .

Part 1: Assume that after both P3C and 4PPC are applied, wP
3C

xi < w4PPCxi .

Thus P3C applies some update wP
3C

xi ←min(wP
3C

xi , wP
3C

xj +wP
3C

ji ) that4PPC either

does not apply or applies when wP
3C

xj < w4PPCxj or wP
3C

ij < w4PPCij .

Notice that the only time a bound wP
3C

ij is updated during P3C is when either

vi or vj is being considered. Thus, any updates to wP
3C

xi , wP
3C

xj , or wP
3C

ij must have

occurred when processing either vi or vj, both of which appear later than vx in o. If

exj and eij exist in G ′, and vx appears before vi and vj in o, then by definition, vx will

appear before vi and vj in ≺∆(o,G), thus 4PPC will also apply this update. Since I

assumed this was the first time P3C and 4PPC differed, neither wP
3C

xj < w4PPCxj nor

wP
3C

ij < w4PPCij can be true.

Thus, there is a contradiction, and so wP
3C

xi ≥ w4PPCxi .

Part 2: Assume that after both P3C and 4PPC are applied, w4PPCxi < wP
3C

xi .

Since wxi is the first place that P3C applies a different update than 4PPC, the

difference cannot occur as a result of a tighter bound w4PPCxj < wP
3C

xj or w4PPCij < wP
3C

ij

at the time of the update wxi ←min(wxi, wxj + wji). Thus, 4PPC must apply an

update that P3C does not apply, which can only occur in two cases.

Case 1: There exists some vk that appears later than vx in o such that vx and vk

share an edge during 4PPC’s execution but not P3C. However, this violates Lemma

A.2.
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Case 2: 4PPC revisits some vk that shares an edge with vx before revisiting

vx, but that appears earlier than vx in o. However, if vk shares an edge with vx and

appears before vx in o, then vx ≺∆(o,G) vk, which violates the assumption that 4PPC

revisits vertices in reverse ≺∆(o,G).

Therefore wP
3C

xi ≤ w4PPCxi .

Conclusion: Since, for the outputs of P3C (o,G ′) and 4PPC, wP
3C

xi ≥ w4PPCxi

and wP
3C

xi ≤ w4PPCxi , wP
3C

xi must equal w4PPCxi for all x, i. Therefore the outputs of

P3C (o,G ′) and 4PPC are identical.

So far, I have defined a key precedence relation of graph triangulations, ≺∆(d). I

have shown that any elimination order o′ that respects this precedence relation will

result in the same triangulated graph. Further, I have shown that any application

of the 4PPC (4DPC) algorithm that respects the precedence relation ≺∆(d) as it

eliminates and revisits vertices and tightens bounds will calculate exactly the same

PPC (DPC) STP temporal network as applying the P3C (DPC) algorithm using o.

Notice, that since I proved this for each phase of the P3C algorithm independently, as

long both phases of 4PPC respect ≺∆(d), the total order in which it revisits vertices

in the two phases can be different.

I must now prove that both my PC4PPC and my D4PPC algorithms correctly

apply 4PPC, and hence P3C, to calculate a PPC STP instance.

A.2 The PC4PPC Algorithm Proof of Correctness

Note, this proof builds on definitions and properties established in Section A.1.

Theorem A.1. PC4PPC correctly establishes PPC on the multiagent STP.

Full Proof of Theorem 2.5. Notice that the semantics of PC4PPC dictate that each

agent i eliminates its private timepoints V i
P in some order oiP . Despite the fact that

agents eliminate private timepoints asynchronously, when seen globally, all private

timepoints are eliminated in some order oP , which respects the partial order oiP∀i.
WLOG, let oP = o1

P ∧ o2
P ∧ · · · onP , where ∧ appends two orderings together. Then,

the coordinator eliminates the shared timepoints VS in some order oS. The resulting

total order that PC4PPC eliminates timepoints in is oP append oS. I call this total

order oPC .

This proof proceeds to show that PC4PPC establishes PPC on G by demonstrating

its output is the same as P3C (oPC ,G). I show this by demonstrating that PC4PPC

correctly applies 4PPC with respect to ≺∆(oPC ,G).
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Part 1: I begin this proof by appealing to Lemma A.2 which states that any

application of 4DPC that eliminates timepoints with respect to the precedence

relation ≺∆(oPC ,G) achieves the same output as DPC(oPC ,G). I show that, despite its

concurrent execution, PC4PPC eliminates vertices (and applies 4DPC) in a way

that respects precedence relation ≺∆(oPC ,G) and therefore achieves the same output as

DPC(oPC ,G). I do this by considering the elimination of some timepoint vix, where vix

belongs to agent i.

Case 1: vix is private.

Assume that there exists some vy such that vy ≺∆(oPC ,G) v
i
x but has not been

eliminated at the time agent i eliminates vix. Suppose vy belongs to agent j where

j 6= i. However, since vix is private, by definition there can be no edge exy ∈ E.

Further, since vix is private, all of its neighbors are local to agent i, and since, by

definition of oPC , the only vertices that agent i could have eliminated at this point are

also private, no fill edge between vix and vy could have been added. Therefore vy must

belong to agent i. However, by construction of oPC , vy ≺∆(oPC ,G) v
i
x only if vy also

appears before vix in oiP , meaning all subsequent edge updates have also been correctly

performed. But if vy also appears before vix in oiP , it will have been eliminated by

PC4PPC before vix, thus establishing a contradiction. Therefore, if vix is private, at

the time that PC4PPC eliminates vix there can exist no vy such that vy ≺∆(oPC ,G) v
i
x

but vy has not been eliminated.

Case 2: vix is shared.

Assume that there exists some vy such that vy ≺∆(oPC ,G) v
i
x but has not been

eliminated at the time that coordinator eliminates vix. vy cannot be private since the

coordinator only eliminates shared timepoints and, before the coordinator eliminates

a single vertex, it blocks until all private timepoints have been eliminated, and it has

received all resulting fill edges and edge updates involving any shared timepoints that

result from the elimination of all private timepoints.

vy must then be shared. Notice, vy ≺∆(oPC ,G) v
i
x implies vy ≺oPC vix, which by how

oPC is constructed, implies vy ≺oS vix. However vy ≺oS vix, by definition, implies that

the coordinator eliminates vy before vix, but this violates the assumption that the

coordinator eliminates vix before some vy such that vy ≺∆(oPC ,G) v
i
x. Therefore, when

the coordinator eliminates any shared timepoint vix, it is guaranteed that all vy such

that vy ≺∆(oPC ,G) v
i
x will have been eliminated.

Therefore, both agent i and the coordinator always execute 4DPC with respect

to ≺∆(oPC ,G) and thus, by Lemma A.2, calculates the same output as DPC(oPC ,G).

Part 2: Let G ′ be the outcome of DPC(oPC ,G). By Lemma A.3, any application
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of 4PPC that revisits vertices, and performs all its corresponding edge updates, in

reverse ≺∆(oPC ,G) order will achieve the same output as P3C (o,G ′). So I now show

that, despite its concurrent execution, the second phase of the PC4PPC algorithm

revisits all vertices in reverse ≺∆(oPC ,G) order.

Assume that there exists some edge eij, where vx ≺∆(oPC ,G) vi, vj, that was not

tightened before PC4PPC revisits vix. Note, that eij is only tightened when revisiting

either vi or vj, so will be properly tightened as long as both vi and vj are revisited.

Case 1: vix is shared.

Since vix is shared, it will be tightened by the coordinator, which will revisit nodes

in the exact opposite order that it eliminated them. The coordinator eliminates nodes

in oS order, and so revisits in reverse oS order. However, if vx ≺∆(oPC ,G) vi, vj , then vx

appears before vi, vj in oS, meaning the coordinator will have revisited both vi and

vj and performed their corresponding edge updates prior to revisiting vx. Thus, this

violates the assumption, so vx must not be shared.

Case 2: vix is private.

eij cannot be shared because agent i blocks until it receives all updates from the

coordinator and the coordinator tightens the entire shared STP before sending updates

to each agent i. Thus, if eij is untightened, it must be private.

If eij is private, then both vi and vj belong to agent i, and, by definition, at least

one of vi and vj is also private. WLOG, assume vi ≺∆(oPC ,G) vj, implying that vi is

private. If vj is not also private, then the coordinator will have already revisited it. If

it is, then both vi and vj are private. But, as argued before, vix ≺∆(oPC ,G) vi only if

vix ≺oiP vi, that is if agent i eliminated vix before vi. However, each agent revisits its

private nodes in the opposite order it eliminated them, and so agent i would revisit

vertices in reverse oP order. Thus, we have a contradiction.

Conclusion: Therefore, PC4PPC revisits vertices (and executes 4PPC) with

respect to ≺∆(o,G) for both agent i and the coordinator and thus, by Lemma A.3,

calculates the same PPC temporal network as P3C (o,G).

Hence I have shown that PC4PPC correctly applies 4DPC and 4PPC with

respect to ≺∆(o,G), and thus establishes PPC on the MaSTN G by proving equivalence

to P3C (oPC ,G).

A.3 The D4DPC Algorithm Proof of Correctness

Note, this proof builds on definitions and properties established in Section A.1 and

is similar, in parts, to the proof of Theorem A.1.
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Theorem A.2. D4PPC correctly establishes DPC on the multiagent STP.

Full proof of Theorem 2.8. Notice that the semantics of D4DPC dictate that each

agent i eliminates its private timepoints V i
P in some order oiP before eliminating its

shared timepoints V i
S, which are eliminated in a globally consistent order oS. Despite

the fact that agents eliminate timepoints concurrently, using a fine enough granularity

of time, this implies that globally, all private timepoints are eliminated in some order

oD, which respects the partial order oiP∀i and oS. WLOG, let oD = o1
P∧o2

P∧· · ·∧onP∧oS,

where ∧ appends two orderings together. This proof proceeds to show that D4DPC

establishes DPC on G by showing that it calculates the same result as DPC(oD,G) by

demonstrating that D4DPC correctly applies DPC with respect to ≺∆(oD,G).

I begin this proof by appealing to Lemma A.2 which states that any application

of 4DPC that respects precedence relation ≺∆(oPC ,G) achieves the same output as

DPC(oPC ,G). I show that, despite its concurrent execution, D4DPC eliminates

vertices (and so applies 4DPC) in a way that respects precedence relation ≺∆(oPC ,G)

and therefore achieves the same output as the same out as DPC(oPC ,G). I do this by

considering the elimination of some timepoint vix, where vix belongs to agent i.

Assume that there exists some vy such that vy ≺∆(oD,G) v
i
x but has not been

eliminated by the time agent i eliminates vix.

Case 1: vix and vy belong to the same agent i.

Notice vy ≺∆(oD,G) v
i
x implies vy ≺oD vix. However, if both vy and vix belong to

agent i, they must both appear in oiP ∧ oS (constructed in lines 1 and 6) and therefore,

by construction of oD, vy ≺oi vix. This presents a contradiction since vy ≺oi vix is true

if and only if agent i executing D4DPC eliminates vy before eliminating vix, but I

assumed agent i will have not eliminated vy by the time it eliminates vix. Therefore,

vy must belong to some agent j where i 6= j.

Case 2: vix is private and vy belongs to some agent j where i 6= j.

Since vy cannot belong to i, suppose vy belongs to agent j where j 6= i. However,

since vix is private, by definition there can be no edge exy ∈ E. Further, since vix is

private, all of its neighbors are local to agent i, and since, by definition of oD, the only

vertices that agent i eliminated at this point are also private, no fill edge between

vix and vy could have been added. Therefore vy must belong to agent i. However, I

have already shown that this can never be the case, thus establishing a contradiction.

Therefore, if vix is private, at the time that agent i executing D4PPC eliminates vix

there can exist no vy such that vy ≺∆(oD,G) v
i
x but has not been eliminated. So for the

assumption to hold, vix must be shared, which brings me to the third and final case.

Case 3: vix is shared and vy belongs to some agent j where i 6= j.
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At this point, vix and vy must be shared, vy must belong to some agent j, where

j 6= i, and I assume both that vy ≺∆(oD,G) v
i
x and agent i eliminates vix before agent j

eliminates vy. Because of the assumption that agent i eliminates vix before agent j

eliminates vy, the following sequence of events can never occur – agent j eliminates vy

– agent i synchronizes its view of the MaSTP – agent i eliminates vix.

However before the elimination of vix, agent i first has to obtain a lock on the

shared elimination order (line 4-7). Thus, if vy appears before vix, the agent i would

learn of this in line 9. Line 10 would then ensure that agent i waits to receive all

pertinent edge updates (w.r.t. vy). Thus, agent i could never eliminate vix at the same

time as, or prior to vy, if vy appears before it in ≺∆(oD,G).

Therefore, whether vix is private or shared and vy belongs to agent i or some other

agent j 6= i, D4DPC correctly eliminates timepoints with respect to ≺∆(oD,G), and so

by Lemma A.2, calculates the same output as DPC(oD,G).

A.4 The D4PPC Algorithm Proof of Correctness

Note, this proof builds on definitions and properties established in Section A.1 and

is similar, in parts, to the proof of Theorem A.1.

Theorem A.3. D4PPC correctly establishes PPC for on the MaSTN instance G.

Full Proof of Theorem 2.11. Notice that the semantics of D4DPC dictate that each

agent i eliminates its private timepoints V i
P in some order oiP before eliminating its

shared timepoints V i
S, which are eliminated in a globally consistent order oS. Despite

the fact that agents eliminate timepoints concurrently, using a fine enough granularity

of time, this implies that globally, all private timepoints are eliminated in some order

oD, which respects the partial order oiP∀i and oS. WLOG, let oD = o1
P∧o2

P∧· · ·∧onP∧oS,

where ∧ appends two orderings together. This proof proceeds to show that D4PPC

establishes PPC G by showing that it calculates the same result as P3C (oD,G) by

demonstrating that D4PPC revisits vertices (and so correctly applies 4PPC) with

respect to ≺∆(oD,G).

I start by acknowledging the proof of Theorem A.2, which demonstrates that line

1 correctly establishes DPC.

By Lemma A.3, if the reverse sweep of the 4PPC algorithm revisits vix after it

revisits vy if vx ≺∆(oD,G) vy, it achieves the same out as P3C (o,G). I now show that,

despite its concurrent execution, the last time D4PPC revisits vx is after it revisits

vy if vx ≺∆(oD,G) vy.
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By contradiction, assume agent i revisits vix (i.e., applies line 4-17 of the D4PPC

Algorithm) before vy, despite the fact that vix ≺∆(oD,G) vy.

Case 1: vix and vy belong to the same agent i.

Notice vix ≺∆(oD,G) vy implies vix ≺oD vy. However, if both vy and vix belong to

agent i, they must both appear in oi (denoted algorithmically as oiL) and therefore, by

construction of oD, vix ≺oi vy. However, line 3 explicitly revisits nodes in reverse oi

order. Therefore, vy must belong to some agent j where i 6= j.

Case 2: vy ∈ V j
P for some agent j 6= i.

vix ≺∆(oD,G) vy implies there is an edge between vix and vy at the time vix is

eliminated, which, by definition, implies vy is not private. Further, if vy is private,

Theorem 2.1 states agent j can reason over it independently of agent i. Thus, either

way we have a contradiction, thus vy cannot be private to some other agent j.

Case 3: vy ∈ V i
X , that is vy ∈ V i

L for some agent j 6= i.

In this case, vix cannot be private, since vix ≺∆(oD,G) vy implies that there exists an

edge connecting vix to a node belonging to another agent. Further, if vix were private,

Theorem 2.1 states agent i can reason over it independently of agent j.

So, by definition, exy belongs to Ei
X . Thus, agent i would be explicitly forced to

block in line 7, until receiving edge updates wzy, wyz∀vzs.t.exz ∈ Ei
L ∪ Ei

X , which can

only occur after vy has been revisited, updates calculated by agent j in lines 9-12, and

edge update sent to agent i in line 15..

Hence, all three cases present contradictions, implying that it is impossible for agent i

to revisit vix prior to vy when vix ≺∆(oD,G) vy.,

Conclusion: Hence I have shown that D4PPC either achieves the same output

as applying 4DPC and 4PPC with respect to ≺∆(o,G), and thus establishes PPC on

G that is equivalent to P3C (oD,G).

A.5 The MaTDP Algorithm Proof of Completeness

Theorem A.4. The MaTDP algorithm is complete.

Full Proof of Theorem 2.15. The basic intuition for this proof is provided by the

fact that the MaTDP algorithm is simply a more general, distributed version of

the basic backtrack-free assignment procedure that can be consistently applied to a

DPC distance graph. I show that when I choose bounds for new, unary decoupling

constraints for vk (effectively in line 13), wzk, wkz are path consistent with respect to

all other variables. This is because not only is the distance graph DPC, but also the

updates in lines 10-11 guarantee that wzk, wkz are path consistent with respect to vk
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for all j > k (since each such path from vj to vk will be represented as an edge ejk in

the distance graph). So the only proactive edge tightening that occurs, which happens

in line 13 and guarantees that wzk + wkz = 0, is done on path-consistent edges and

thus will never introduce a negative cycle (or empty domain).

Fact 1: After lines 1-2 of Algorithm 2.10, if no decoupling exists, line 2 is guaranteed

to terminate the algorithm by returning inconsistent, since, by definition, any

consistent MaSTP has at least one solution schedule, which is a de facto temporal

decoupling.

Fact 2: Lines 1-2 of Algorithm 2.10 establish DPC, which implies that for every

(external) timepoint variable vk, the weights of all edges involving vk (including, in

particular, the weights of ezk, wzk and wkz), are path consistent with respect to all

variables vj such that vj appears before vk in oS.

Now I will show by induction for every external timepoint vk that the decoupling

bounds computed in line 13 and constructed in line 15 are path consistent with respect

to every other variable vj where j > k in oS (part 1) and form a non-empty domain

(that is bzk + bkz ≥ 0) (part 2).

Base case(k = n): The base case is trivial, since when k = n there exist no vj such

that j > k. Thus upon entering line 13, wzk and wkz are path consistent with respect

to every variable vj where j 6= k (Fact 2). Also, since line 2 returns inconsistent if

the problem instance is, this guarantees that wzk + wkz ≥ 0 (Fact 1). In line 13, the

incoming weights wzk and wkz are either left unchanged or tightened, but not beyond

wzk + wkz ≥ 0. Thus the bounds constructed in line 15 are path consistent.

Inductive case(k < n): Assume that the bounds of all decoupling constraints

chosen for all variables vj for j = k+1, . . . , n are path consistent, that is wjz+wzj ≥ 0,

wjz ≤ wjx + wxz, and wzj ≤ wzx + wxj for all x 6= j.

Part 1: Here I show that the bounds of the decoupling constraints computed in

line 13 and constructed in line 15 are as least as tight as the tightest existing path

between vk and z. By contradiction, assume there exists some timepoint vj where

j > k in oS such that WLOG wkz > wkj + wjz. Note that since DPC is established in

lines 1-2, any path from vj to vk will be represented as an edge ejk with path consistent

195



weights wjk, wkj in the distance graph (Fact 1). Notice also that if vj is local to the

agent of vk, then the update in line 13 ensures that wkz ≤ wkj + wjz, thus vj must

be external to the agent of vk. However, then the update in line 10 ensures that

wzk ≤ wjk−wjz. Since I inductively assumed that wjz and wzj were chosen to be path

consistent, wzj ≥ −wjz. So the update in line 10 implies wkz ≤ wkj −wzj ≤ wkj +wjz.

Thus there is a contradiction since I have shown that lines 10,13 (and for wzk, lines

9,12 ) ensure that wkz and wzk represent the tightest path between vk and z coming

into line 13, which only further tightens wkz and wzk (if at all). Thus the bounds

chosen in line 15 are guaranteed to be at least as tight as any existing path between

vk and z.

Part 2. Here I show that the bounds of the decoupling constraints constructed in

line 15 form a non-empty domain. By contradiction, assume that wkz +wzk < 0. Once

DPC is established in lines 1-2, (at which point inconsistent is returned for any input

distance graphs with negative cycles), wzk and wkz are tightened in lines 9-10, 12-13,

and 13. However, notice that line 13 guarantees that wzk + wkz ≥ 0 and lines 12-13

simply recovers path consistency with respect to any local variable vj where j > k

in oS, which is guaranteed to be path consistent based on the inductive assumption.

This implies that the combination of lines 9 and 10 introduce the negative cycle. That

is, there exists some vx and vy such that wzk = wxk − wxz and wkz = wkx − wzx and

where x, y > k in oS and vx,vy are external to the agent of vk, which together implies

wxk − wxz + wky − wzy < 0. Then, if x = y,

wxk − wxz + wky − wzy < 0 (A.1)

→ wzx + wxk + wkx + wxz < 0 (A.2)

→ wxk + wkx < 0 (A.3)

where (A.2) holds by simple replacement (x = y), and (A.3) holds inductively (since

wxz+wzx = 0). However, (A.3) is a contradiction, since the only time exk will have been

updated is during the DPC, which for this case would have returned inconsistent.

So x 6= y. WLOG, let vx appear before vy in oS. Then,

wxk − wxz + wky − wzy < 0 (A.4)

→ wzx + wxk + wky + wyz < 0 (A.5)

→ wzx + wxy + wyz < 0 (A.6)

→ wzx + wxz < 0 (A.7)

196



where (A.5) holds inductively (since wxz + wzx = 0;wyz + wzy = 0), (A.6) holds

since DPC is established in lines 1-2 (since wxy ≤ wxk + wky), and (A.7) holds since

x < y in oS, and thus line 10 or 13 (depending on whether exy is external or not)

ensures wxz ≤ wxy − wzy = wxy + wyz. However, (A.7) is an obvious contradiction.

Thus, the decoupling bounds chosen for vk are guaranteed to form a non-empty domain.

Therefore we have shown inductively that the decoupling bounds chosen for vk are

at least as tight as the tightest possible path between vk and z and always form a

non-empty domain. Thus, Algorithm 2.10 always finds a temporal decoupling of a

MaSTN, if one exists.

A.6 The MaTDR Proof of Minimal Decoupling

Theorem A.5. The local constraints calculated by the MaTDR algorithm form a

minimal temporal decoupling of G.

Full proof of Theorem 2.17. Notice, that the MaTDR subroutine is only called if the

input network is consistent (and a valid decoupling has been found). I prove by

contradiction that if any bound on an edge in C ′∆ is relaxed, C ′∆ may no longer form

a temporal decoupling of G. Assume there exists a bound of an edge in C ′∆ that can

be relaxed such that C ′∆ still forms a decoupling of G. WLOG, let δxz be the bound

on edge exz that can be relaxed by some positive value εxz and still form a temporal

decoupling of G.

Notice that during the execution of the MaTDR, δxz is updated exclusively in line

9, and WLOG, let the loop where j = y be the last time that δxz is updated, that is,

δxz < wxy − δzy. Then after line 9 is executed, δxz = wxy − δzy.
If vy appears before vx in o, then δzy will have already been updated (prior to δxz

due to line 6). But this leads to a contradiction, since δxz + δzy = wxy implies that

δxz + εxz + δzy > wxy since εxz is positive, and thus a bound of δxz + εxz would no

longer imply that exy will be satisfied.

Thus, vy must appear after vx in o. Let δINzy and δOUTzy be the input and output

values of δzy respectively. Then, as already shown δxz + δINzy = wxy and by our

assumption δxz + εxz + δOUTzy ≤ wxy, which implies δOUTzy ≤ δINzy − εxz. For this to

be true, there must exist some timepoint vw such that w 6= x, w appears before y

in o, and δOUTzy = wwy − δwz. Then, wwy − δwz ≤ δINzy − εxz. However, line 9 would

have guaranteed that δwz ≤ wwy − δINzy and so δINzy ≤ wwy − δwz, which leads to the

contradiction δINzy ≤ δINzy − εxz.
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Therefore, if any bound on any edge in C ′∆ is relaxed, C ′∆ may no longer by a

decoupling of G. In other words, if we relaxed a bound of some edge in C ′∆, the bound

on some other edge in C ′∆ must be tightened to guarantee that C ′∆ decouples G.
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