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ABSTRACT 
 

Nanopore-based, resistive-pulse sensing is a simple single-molecule technique, is 

label free, and employs basic electronic recording equipment.  This technique shows 

promise for rapid, multi-parameter characterization of single proteins; however, it is 

limited by transit times of proteins through nanopores that are too fast to be resolved, 

non-specific interactions of proteins with the nanopore walls, and poor specificity of 

nanopores for particular proteins. 

This dissertation introduces the concept of nanopores with fluid walls and their 

applications in sensing and characterization of proteins, disease-relevant aggregates of 

amyloid-β peptides, and activity of membrane-active enzymes.   

Inspired by lipid-coated nanostructures found in the olfactory sensilla of insect 

antennae, this work demonstrates that coating nanopores with a fluid lipid bilayer confers 

unprecedented capabilities to a nanopore such as precise control and dynamic actuation 

of nanopore diameters with sub-nanometer precision, well-defined control of protein 

transit times, simultaneous multi-parameter characterization of proteins, and an ability to 

monitor the enzyme phospholipase D. 

Using these bilayer-coated nanopores with lipids presenting a ligand, proteins 

binding to the ligand were captured, concentrated on the surface, and selectively 

transported to the nanopore, thereby, conferring specificity to a nanopore.  These assays 

enabled the first combined determination of a protein’s volume, shape, charge, and 

affinity for the ligand using a single molecule technique.  For non-spherical proteins, the 

dipole moment and rotational diffusion coefficient could be determined from a single 

protein. 

Additionally, the fluid, biomimetic surface of a bilayer-coated nanopore was non-

fouling and enabled characterization of Alzheimer’s disease-related amyloid-

β aggregates.  The presented method and analysis fulfills a previously unmet need in the 



xix 
 

amyloid research field: a method capable of determining the size distributions and 

concentrations of amyloid-β aggregates in solution.  

The experiments presented here demonstrate that the concept of a nanopore with 

fluid walls enables new nanopore-based assays.  In particular, it demonstrates the benefits 

of this concept for simultaneous, multi-parameter characterization of proteins with a 

single-molecule method.  This technique may, therefore, be well-suited for identification 

of proteins directly in complex biological fluids.  Based on these findings, the addition of 

fluid walls to nanopores holds great promise as a tool for simple, portable single-

molecule assays and protein characterization. 
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Chapter 1 

 
Nanopore-based, Single Molecule Biophysics of Proteins 

 
 If you consider the DNA sequences of organisms to be a detailed, 

architectural layout of a house, then by analogy, proteins are the architects, site managers, 

wood workers, electricians, plumbers and roofers responsible for erecting that house.  

The word “protein”, first used by Geradus Mulder and Jöns Berzelius in 1838, is derived 

from the Greek word “proteios” meaning “primary”, and indeed, proteins are the primary 

agent of biological function (1).  Consequently, abnormal concentrations or functions of a 

particular protein may reveal medical conditions for which this protein serves as a 

biomarker (1).  To date, however, very few biomarkers have been found and approved by 

the U.S. Food and Drug Administration for clinical tests (i.e. only 10 biomarkers were 

approved between 1993 and 2002 (2)), in part because current technologies are not 

capable of performing high throughput, rapid, inexpensive, and simultaneous 

identification of proteins in complex mixtures (1).  Identifying all of the proteins in an 

organism and their concentrations is a serious technological challenge due to the presence 

of thousands of different proteins at widely different concentrations (1, 2).  For instance, 

humans have ~10,000 different proteins circulating in the vasculature at concentrations 

ranging from pM to mM and thousands more proteins are confined within cells and their 

lipid membranes (3).  To overcome these challenges, engineers and scientists would 

ideally develop technologies capable of determining multiple properties simultaneously 

of a single protein within these complex solutions in order to identify each protein in the 

mixture and its concentration (2).  If fast enough and inexpensive enough, this proposed 

technology could be employed in a clinical setting such that every patient has a historical 

record of their personal proteome (i.e. the protein counterpart to the genome), which 

would aid diagnoses when biomarkers or abnormalities appear (2, 3).  Moreover, these 

capabilities would enable the construction of a proteome database that also contained 
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information on every protein’s biophysical properties, function, and down-stream effects 

on organism function.  Such a technology and resulting database could be expected to 

impact human health and scientific understanding as significantly as the sequencing of 

the human genome (2). 

The most popular technologies for characterizing proteins as part of the biomarker 

search have been two-dimensional gel electrophoresis (invented by Patrick O’Farrell in 

1975; ~18,500 citations at press time) (4), mass spectroscopy (Carl-Ove Andersson, 1958 

– first use with proteins (5)), and antibody arrays equipped with fluorescent detection (i.e. 

ELISA, Peter Perlmann and Eva Engvall, 1970 (6, 7)) (2).  Analytical centrifugation 

(Theodor Svedberg, 1924 (8, 9)), capillary electrophoresis (initial work by Tiselius, 1930; 

realized by Stellan Hjertén, 1983, (10, 11)), surface plasmon resonance (12), nuclear 

magnetic resonance spectroscopy (Richard R. Ernst and Kurt Wüthrich, 1960’s (13)), 

small angle X-ray scattering (Heinrich Stuhrmann, 1967 (14-18)), and X-ray 

crystallography (Max Perutz and John Kendrew, 1957 – first use with proteins (19, 20)) 

are also commonly used to characterize additional properties of proteins such as their 

size, shape, net electric charge, affinity for a ligand, and atomic structure.  While these 

techniques have been extremely valuable, generally they are capable of determining only 

one or two properties of a protein and are not well-suited for examining the complex 

mixtures of proteins that are in biological fluids.  Moreover, because these methods are 

based on ensemble measurements of 1015 – 1018 molecules, they have difficulty resolving 

dynamic properties and functions of proteins (21).  Since the 1970’s, however, physicists, 

biochemists, and engineers have developed extraordinary methods to measure and 

manipulate individual molecules one at a time in situ (21).  These methods, called single-

molecule methods, are not limited by ensemble averaging and can therefore characterize 

heterogeneous mixtures, resolve dynamic properties of single molecules, and reveal rare 

events with unprecedented sensitivity.  Moreover, the data obtained from single molecule 

experiments tends to be more complete and easier to interpret than the data obtained in 

ensemble and time-averaged techniques, revealing fluctuations in conformation or 

activity of proteins that can be compared to theoretical models (22).  New single 

molecule methods are currently being developed and advanced at a rapid pace, but 
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already in the last 30 years they have yielded unprecedented insight into the structure and 

function of motor proteins, enzymes, receptors, and entire signaling complexes (21, 22).   

Here, I will introduce and describe a simple single-molecule method based on an 

invention by Wallace H. Coulter in 1947.  Coulter’s invention was re-pioneered in 1996 

by Kasianowicz, and over time, the method has become known as “resistive-pulse 

sensing.”  It employs a single, electrolyte-filled hole with a length and diameter on the 

order of 1–100 nm, a so-called nanopore.  The work presented here explores recent 

advancements that I, with the help of many colleagues and advisors, have made toward 

developing nanopore-based sensors for single-molecule, biophysical investigations and 

for simultaneous, multi-parameter characterization of proteins.  In this introduction, I first 

describe the principles behind resistive pulse sensing and the challenges associated with 

sensing and characterizing proteins with nanopore-based sensors.  Finally, I briefly 

introduce the strategies developed in this thesis to overcome these challenges and the 

resulting advantages of characterizing proteins with nanopore-based sensors. 

 

1.1 Invention and evolution of resistive-pulse sensing  
The principles behind resistive-pulse sensing trace their origins to theoretical and 

experimental work by James Clerk Maxwell and Lord Rayleigh (John William Strutt, 3rd 

Baron Rayleigh) (23).  Lord Rayleigh and Maxwell first described the deformation of an 

electric field spherical particles in solution, thereby enabling theoretical calculations of 

the resistivity of solutions containing spherical colloids.  The deformation of the electric 

field around a spherical particle is often considered analogous to the flow of solution 

around a sphere, described as Hele-Shaw flow.  Fricke (1924, 1953), and later Velick and 

Gorin (1940), extended these models to describe the resistivity of solutions containing 

non-spherical particles such as prolate and oblates (24-26).   

In 1947, Wallace H. Coulter took the innovative step of using a small pore to 

connect two electrolyte solutions while applying a constant voltage across the pore (Fig. 

1.1), thereby inventing the method of resistive-pulse sensing or Coulter counting (27). 

This innovation enabled rapid identification and counting of blood cells and stimulated 

the development of automated blood cell counters that were 120 times faster and 10 times 

more accurate than the best cell counting methods at the time (28).  The massive 
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charge and size of the particle and experimental parameters such as the applied voltage, 

the flow rate and viscosity of the solution in the pore, and the length of the pore. 

 After Coulter’s invention, many studies of μm and sub-μm particles demonstrated 

that resistive-pulse sensing can reveal the general shape of particles.  For instance, 

Grover et al. (1969) considered the effect of a particle’s shape and orientation in the pore, 

which lead to the introduction of an electrical shape factor (31-36) that related the 

magnitude of the reduction in current to the well-documented depolarization factors of 

non-spherical particles (in addition to the volume of the particle) (37).  Golibersuch 

elegantly demonstrated the effect of particle shape by sensing oblate-shaped erythrocyte 

cells (Fig. 1.2) and observing periodic variations in the resistance of the pore as the cells 

rotated within the pore.  Golibersuch took this analysis amazingly far by theoretically 

describing the expected rotational orbits of the cells (due to the Pouseille flow in the 

pore) and the expected distribution of resistance values due to the possible values of the 

electrical shape factor.  Other spheroid particles that have been detected include oblate 

shaped objects such as erythrocytes (Golibersuch 1973), T-Cells (Carbonaro 2008) and 

Rochelle salt (Berge , Feder, Jossang 1989) as well as prolate shaped objects such as 

fused polystyrene spheres (Golibersuch 1973), bacteriophages (Deblois et al. 1977).  

 

Figure 1.2 | Periodic variations in the magnitude of resistive-pulses due to the rotation of oblate-
shaped erythrocytes within a microchannel as predicted and observed by Golibersuch.  The volume of 
each cell remains constant, but the resistance varies with time as a consequence of the orientation-
dependent shape factor.  Adapted from (32). 
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It soon became apparent in theory and experiment that the sensitivity of resistive-

pulse sensors (i.e. the smallest particles that can be detected) was primarily limited by the 

size of the pore.  For instance, smaller pores could detect smaller particles than larger 

pores.  Hence, there was a push to develop methods of fabricating pores with smaller 

diameters and shorter lengths than the micometer-sized holes in use at the time (38-42).  

During this time period, methods of fabricating pores in the sub-micrometer range 

(diameters of several hundred nanometers and lengths less than 1 μm) enabled exciting 

assays where smaller and smaller particles and the assembly of particles could be 

characterized including bacterial cells (30), nanoparticles (30, 42, 43), virus particles (34, 

38, 44), assembly of nanoparticles (45), and antibodies binding to synthetic particles (40, 

46).  

 

1.2 Resistive-pulse sensing of single molecules 
In the 1980’s and early 1990’s, many investigators were examining the interaction 

between soluble polymers and ion channels that were embedded in planar lipid bilayers.  

From these first reports, the idea emerged to take advantage of the “incredibly” small 

dimensions of biological ion channels to sense individual molecules (47).  The first report 

describing this concept was published by Bezrukov et al. in Nature in 1994 (48), and it 

was first realized in the seminal paper by Kasianowicz et al. in the Proceedings of the 

National Academy of Sciences in 1996 (49).  The landmark publication by Kasianowicz 

et al. used the resistive-pulse sensing technique to detect individual polynucleotide 

strands passing through the lumen of the membrane protein α-hemolysin (Fig. 1.3A).  

This work led the groups of Daniel Branton, David Deamer, and George Church (1996) 

to the hypothesis that single strands of DNA may be sequenced by detecting nucleobase-

dependent changes in the current through the pore (50).  If it would be possible to achieve 

this nucleobase-specific signal, nanopore-based sequencing would potentially be able to 

sequence long strands of DNA (10’s of kilo-bases or longer) without any modifications 

or amplification steps, and therefore, reduce the cost and experiment time by an order of 

magnitude or more.  Consequently the work by Kasianowicz et al. energized a large 

community of scientists to pursue nanopore-based nucleotide sequencing and formed the 

foundation of a new research field: nanopore-based, single molecule biophysics.   
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Figure 1.3 | Illustration of the experiment performed by Kasianowicz et al. where a single 
polynucleotide was detected using an α-hemolysin pore embedded in a planar lipid membrane as well 
as the concept of using synthetic nanopores mounted in a simple microfluidic device.  (A) Illustration 
of α-hemolysin embedded in a planar lipid membrane and the translocation of a single-stranded 
polynucleotide translocating through the lumen.  Each polynucleotide passing through the lumen causes a 
reduction in the current through pore as shown in the current trace on the right.  This result led Branton, 
Church, and Deamer to hypothesize that single polynucleotide strands (10’s of kilobases long) could be 
sequenced by detecting nucleobase-dependent changes in current (i.e. Adenine, Thymine, Guanine, and 
Cytosine; far right illustration).  Adapted from (49).  (B) Illustration of a chip that contains a nanopore 
fabricated in a synthetic material, typically silicon nitride.  These synthetic nanopores have larger diameters 
than biological pores and enable the detection of folded, native proteins.  The passage of each protein 
through the nanopore also leads to a transient decrease in the current through the pore as seen in the current 
trace on the right.   
 

NOTE: In spring of this year (February and April 2012), sixteen years after the 

initial hypothesis by Branton, Church, and Deamer, nanopore-based sequencing of DNA 

was realized. The group of Jens Gundlach published the first report in Nature 

Biotechnology in which Manrao et al. used an engineered pore, mycobacterium 

smegmatis porin A (MspA), in combination with a motor protein, phi29 DNA 

polymerase, to sequence approximately 100 bases from individual polynucleotide strands 

(51).  The company Oxford Nanopore technologies presented a similar method at the 
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Advances in Genome Biology and Technology Conference (February 15 – 18, Marco 

Island, FL, U.S.) and reported the ability of its nanopore-based products (expected release 

in early 2013) to sequence single stranded DNA with read lengths up to ~10 kilo-bases.  

Their products are reported to contain more than 2,000 nanopores, each individually 

addressable, on devices the size of a USB stick or portable hard drive, and by combining 

approximately 20 of these devices together are reported to sequence an entire human 

genome in ~15 minutes for ~$1,000 USD (52).  These capabilities met the stated goal of 

the $1,000 genome proposed by the National Human Genome Research Institute and 

approach economics where personalized medicine for the population based on an 

individual’s genomic data is feasible. 

Since the initial work by Kasianowicz et al., various ion channels were 

engineered to be optimal resistive-pulse sensors (53) and nanofabrication methods were 

developed in order to fabricate robust, synthetic nanopores in silicon-based materials 

commonly used by the semi-conductor industry (54-56). There were two advantages of 

fabricating nanopore-based sensors in synthetic materials.  First, biological pores derived 

from membrane porins or ion channels require the use of a fragile lipid bilayer that is 

susceptible to thermodynamic and mechanical instabilities that limits its use to less than 

~30 min.  Second, the “incredibly” small dimensions of biological pores were too small 

to allow native, folded proteins to pass through the interior of the pore.  While many 

elegant studies were performed with biological nanopores that characterized properties of 

proteins such as enzymatic activity (57-60), binding affinities (61-63), and 

polymerization (64), nanopores with diameters between ~5 nm and ~50 nm and short 

lengths less than 50 nm would be required to perform resistive-pulse sensing experiments 

on folded, native proteins (Fig. 1.3B) (65).   

These ideal synthetic nanopores became available with new a fabrication method 

reported by Li et al. in the journal Nature in 2001 (66).  Briefly, a silicon chip is used to 

support a thin (~ 200 nm) membrane of silicon nitride. In the free-standing silicon nitride 

membrane a focused ion beam (i.e. Ar+ or Ne+ etc.) is used to machine a nanopore with 

diameters on the order of 1 to 50 nm and lengths ranging from ~10 nm to 20 nm.  In 

2006, Han et al. used these types of nanopores to detect, for the first time, individual, 

folded proteins passing through a nanopore one-by-one, opening a new door for 
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nanopore-based resistive pulse sensing.  Han et al. employed the same principles of 

earlier resistive-pulse sensors to measure accurately the diameter of the protein bovine 

serum albumin directly in solution and without labels.  This report marked the beginning 

of many future studies aimed at sensing single, native proteins with nanopore-based 

resistive pulse sensors.  

 
1.3 Challenges of sensing and a characterizing single proteins with 
nanopores 
 
 The first reports of protein translocation by Han et al. and several later reports 

demonstrated that the magnitude of the change in current due to individual translocation 

events could be used to determine the volume of the protein and identify different 

proteins, if their differences in volume were significant (67-71).  From 2006 until the 

work described in this thesis, however, nanopore-based resistive pulse sensing of single 

proteins, in particular the work with synthetic nanopores, faced many challenges that 

limited the first reports primarily to detecting the presence of a protein.  One of the 

primary challenges involved the fast translocation speeds of proteins through the pores 

due the short length of the pore and the electrophoretic force (i.e. the electric field 

interacting with the charge of the protein) pushing charged proteins through the pore (41, 

72, 73).  For instance, by diffusion alone a typical protein would be expected to pass 

through a 20 nm long pore in ~10 μs, approximately five times faster than the 

translocation time required to determine the magnitude of the current change accurately 

due the required electronic filtering of the noise (41, 73).  Consequently, the inherently 

fast translocation speeds of proteins led to large errors in measuring the magnitude of 

resistive pulses and inaccurate determination of the volume of proteins.  A time-averaged 

signal of ~250 μs or longer, however, would enable very accurate determination of 

protein volume and therefore better differentiate proteins of different volume.   

 Based on the expected time for proteins to go through the pore it was surprising 

they could be seen at all in the first reports; this serendipitous result was the consequence 

of another major challenge specific to protein sensing experiments: non-specific 

interactions of proteins with the pore walls.  These interactions reduced the average 

transit speed through the pore and increased their total translocation time.  This effect 
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caused two problems: 1) it frequently lead to clogging of nanopores (74) and 2) it made 

translocation times unpredictable (56).  Even the best non-stick coatings such as 

monolayers of polyethylene glycol could not prevent protein adsorption to the synthetic 

pore walls (72).  This challenge was particularly limiting because Talaga and Li 

demonstrated that, in the absence of additional effects, the distribution of translocation 

times of proteins is related the electrophoretic force on the protein and the diffusion 

coefficient of the protein (67, 75).  Consequently, if the distribution of translocation times 

could be experimentally determined in the absence of non-specific adsorption, nanopore-

based resistive pulse sensing might be able to characterize the volume, charge, and 

diffusion coefficient of proteins.  Recently, Wei et al. and Ding et al. circumvented the 

issue of translocation times by immobilizing a single or very few ligand within a 

nanopore to detect the binding and unbinding of individual proteins; in the work by Wei 

et al. this enabled detection and differentiation of immunoglobulin G subtypes based on 

their affinity constants (76, 77).   

 Another major issue with nanopore-based resistive pulse sensing of proteins 

pertains to specificity.  Any protein that is small enough to pass through the nanopore has 

the potential to pass through the pore and be detected.  In many cases, however, the ideal 

nanopore would be specific to a protein of interest and, therefore, enable detection and 

characterization of that particular protein.  Immobilizing a ligand within the nanopore as 

described above was the state-of-the-art strategy for imparting specificity to a nanopore.  

Several nanopore based assays used thousands of immobilized ligands to bind thousands 

of proteins and monitor the resulting change in bulk current flow; these studies were 

primarily aimed at biosensing, however, Siwy’s research group determined the isoelectric 

point of streptavidin from these types of assays, but not the volume of the protein (78-

83).   

Despite these challenges, synthetic nanopore-based resistive pulse sensors 

enabled several very nice biophysical studies of proteins and their function including the 

interactions between DNA and DNA-binding proteins (55, 84-89), Fab-fragments 

binding to bovine serum albumin (90), and the folding and unfolding of proteins (67, 91).  

Many of these studies are reviewed in these works (92-94). Though not yet realized, the 
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results from these first reports suggested that it should be possible to characterize proteins 

of interest by three parameters in a single assay: size, charge, and conformation.  

 

1.4 Introduction to nanopores with fluid walls inspired by bombyx mori 
 In order to address the challenges of sensing single proteins with nanopores, we 

pursued the concept of nanopores with fluid walls.  As it turns out, Nature already 

developed a nanopore structure with fluid walls that was also involved in sensing with 

exquisite detection limits (95, 96) (Fig. 1.4A). These nanopores are less sophisticated and 

more stable than ion channel proteins, and they evolved in organisms that can survive in 

some of the harshest habitats on the planet: insects (95).  

Sensing of odorants by many insects involves the translocation of these molecules 

through lipid-coated nanopores (diameter 6-65 nm) that span the exoskeleton of the insect 

(Fig. 1.3) (97-100).  These lipid coatings are thought to participate in capture, pre-

concentration, and subsequent translocation of odorants to specific receptors on dendrites 

of olfactory neurons in the antennae of insects (95, 98, 100).  Inspired by this natural 

design, we explored whether coating synthetic nanopores of comparable diameters with 

fluid lipid bilayers could provide benefits for nanopore-based, single-molecule studies of 

proteins while addressing associated challenges.  Previous reports on coating synthetic 

nanopores with organic molecules focused on strategies that generated coatings of 

molecules that were fixed on the surface of the pore (101-103); here, we introduce the 

concept of fluid coatings. 
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Figure 1.4 | Lipid-coated nanopores perforate the exoskeleton of olfactory sensilla in the antenna of 
many insects and serve as a model for synthetic nanopores with fluid walls. (A) Illustration of a 
magnified cross-section through one sensillum in the antenna of the silk moth Bombyx mori.  Capture, pre-
concentration, and subsequent translocation of pheromones to dendrites of olfactory neurons in these 
sensilla is thought to occur through lipid-coated nanopores and pore tubules (95, 97-100). (B) Electron 
micrographs of an anetenna hair with thousands of sensilla and a close-up micrograph of a sensillum 
perforated with nanopores.  Adopted from (95, 97-100).  (C) Cross-section illustration of a synthetic 
nanopore (grey) and the concept of a nanopore with fluid walls for capturing specific proteins by using 
fluid lipid bilayers (yellow and black).  Adapted from (104). 

 

 In Chapter 2, we describe the process of creating nanopores with fluid walls and 

many of the advantages associated with this coating.  Briefly, the fluid wall structure is 

achieved via formation of a supported lipid bilayer on the synthetic substrate and interior 

walls of the nanopore (Fig. 1.4B).  This simple strategy enabled various chemically 

reactive groups to be on the surface by including different lipids in the coating, permitted 

inclusion of mobile ligands in the fluid bilayer coating, and minimized non-specific 
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interactions between proteins and the pore walls.  Chapter 2 demonstrates that lipid-

anchored ligands could be used to concentrate proteins on the fluid surface and move 

these proteins through the nanopore in a controlled and predictable speed based on the 

viscosity of the bilayer coating.  Moreover, the frequency of translocation events was 

related to the affinity of the protein for the mobile ligand.  Chapter 2 demonstrates the 

ability of nanopores with fluid walls for determining the size, charge, and affinity for a 

ligand of a protein in a single experiment. 

 In Chapter 3, we demonstrate the use of nanopores with fluid walls for 

determining a protein’s shape as spherical, prolate, or oblate.  For non-spherical proteins, 

we demonstrate that the fluctuations in the current through the pore due to the rotation of 

a single protein in the nanopore enabled determination of that individual protein’s 

volume, shape, dipole moment and rotational diffusion coefficient.  Consequently, this 

chapter demonstrates the possibility of nanopores to perform the multiparameter 

characterization of an individual protein that would be required to differentiate proteins in 

a mixture.   

 In Chapter 4, we present a model to describe the frequency of protein 

translocations quantitatively based on their affinity for a mobile ligand in the fluid bilayer 

coating and the two-dimensional diffusion of these lipid-anchored proteins on the bilayer 

coating.  Kinetic and equilibrium binding parameters are determined.  The chapter 

confirms the ability of nanopores with fluid walls for determining the size, charge, shape, 

and affinity for a ligand of a protein in a single experiment.   

 In Chapter 5, we show that nanopores with fluid walls are resistant to clogging 

and take advantage of this fact to analyze single aggregates of amyloid-β peptide.  

Amyloid-β aggregates are implicated in Alzheimer’s disease, and in order to determine 

how amyloid- β contributes to Alzheimer’s disease pathology, characterization of the size 

distributions of amyloid-β aggregates in solution is required.  This chapter demonstrates 

the first nanopore-based assay, to the knowledge of the author, that analyzes such 

heterogeneous and biologically relevant aggregates of peptides.  We report accurate 

determination of the size of amyloid-β aggregates and demonstrate the ability to track the 

size distribution of aggregates in solution over time.   
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 In Chapter 6, we demonstrate the capability of nanopore-based assays to 

determine quantitatively the activity of membrane-active enzymes.  Since most 

membrane-active enzymes modify the charge of lipid head groups, we measured the 

change in the bulk current through the pore as the enzyme phospholipase D catalyzed the 

hydrolysis of zwitterionic, neutral lipids to negatively charged lipids.  We were able to 

determine kinetic parameters of phospholipase D and demonstrate the utility of lipid-

bilayer coated nanopores for monitoring the activity of this unique class of membrane-

active enzymes.   

 In chapter 7, I summarize the major results and impacts of this work and provide 

suggestions for future research, and in the Appendix, I provide a discussion of the 

electrical noise in these experiments and a list of the equations that govern these 

experiments.  
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Chapter 2 
 

Controlling the Translocation of Proteins through Nanopores with Bio-
Inspired, Fluid Walls 

 

Synthetic nanopores have been used to study individual biomolecules in high throughput, 

but their performance as sensors does not match biological ion channels. Controlling the 

translocation times of single-molecule analytes and their non-specific interaction with 

pore walls remain a challenge. Inspired by the olfactory sensilla of the insect antenna, 

here we show that coating nanopores with fluid bilayer lipids allows the pore diameters to 

be fine-tuned in sub-nanometre increments. Incorporation of mobile ligands in the lipid 

conferred specificity and slowed down the translocation of targeted proteins sufficiently 

to time-resolve translocation events of individual proteins. The lipid coatings also 

prevented pores from clogging, eliminated non-specific binding and enabled the 

translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of 

their translocation time, volume, charge, shape and ligand affinity, different proteins were 

identified. 
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2.1. Introduction 
 

Nanopores hold tremendous promise for applications such as single-molecule 

binding assays (1-3), portable detection of (bio)warfare agents (4-6), and ultra-fast 

sequencing of DNA or RNA(7, 8). Nanopore-based experiments provide sub-molecular 

detail on the composition of individual molecules (9) and on the formation of molecular 

complexes or aggregates (1, 10).   Recording of resistive current pulses during the 

translocation of single molecules through electrolyte-filled nanopores makes it possible to 

study their size (1, 4, 6, 11-13), conformation (14, 15), and activity (16, 17) in situ (3, 18-

23).  This technique can characterize hundreds of unlabeled single molecules per second 

in physiological solutions and yields distributions of measured parameters from these 

single-molecule investigations (3, 9).  However, several challenges should be addressed. 

First, there is a need for methods that can reliably fabricate synthetic nanopores on the 

sub-nanometre scale (24) and adjust or actuate pore diameters in situ (24, 25). Second, 

better control of translocation times of single-molecule analytes are still needed to 

achieve complete time resolution of translocation signals and more accurate 

determination of the amplitude and duration of resistive pulses (26-28). Third, methods to 

control the surface chemistry inside synthetic pores (16) may reduce non-specific 

interactions of analytes with the pore walls (1, 3, 29) and prevent pore clogging (3).  

Finally, low frequency of translocation events at low analyte concentrations (30) and the 

poor specificity of the nanopores for analytes (3) need to be improved.  

Nature solved most of these challenges in the design of biological nanopores (23).  

Ion channel proteins, for instance, fold into three-dimensional structures with 

predetermined locations of individual atoms and precisely defined internal diameters that 

can be actuated by ligand binding or by changes in the environment of the pore (31).  

Many ion channel proteins are specific towards ligands and permeants, have minimal 

non-specific interactions, and irreversible clogging is rare. However, instability of these 

proteins limits their sensing applications (23).   

Insects detect pheromones by translocating odorant molecules through lipid-coated 

nanopores (diameter 6-65 nm) that span their exoskeleton (Fig. 2.1A) (32-34).  These 

lipid coatings are thought to participate in capture, pre-concentration, and subsequent 

translocation of odorants to specific receptors on dendrites of olfactory neurons in the 
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antennae of insects (32, 34).  Inspired by this design, we explored whether coating 

synthetic nanopores of comparable diameters with fluid lipid bilayers could provide 

benefits for nanopore-based, resistive pulse sensing of single proteins while addressing 

the associated challenges.  Coating synthetic nanopores with organic molecules has been 

shown but these coatings were fixed on the surface of the pore (35-37). Here we 

introduce the concept of fluid coatings. 

 

 
Figure 2.1 | Bioinspired synthetic nanopores with bilayer-coated fluid walls.   (A) Drawing showing a 
cross-section through one sensillum in the antenna of the silk moth Bombyx mori.  Capture, pre-
concentration, and translocation of pheromones through the exoskeleton of these sensilla towards dendrites 
of olfactory neurons is thought to occur via lipid-coated nanopores and pore tubules (32-34).  (B) Drawing, 
to scale, showing a synthetic, lipid-coated (yellow) nanopore in a silicon nitride substrate (grey) and the 
interstitial water layer (blue).  (C) Nanopore resistance and corresponding open pore diameter as a function 
of the thickness of the bilayer coating (38).  Red curve is a best fit of the data to equation (2.1).  Numbers 
underneath the lipid cartoons refer to the number of carbons in their acyl chains (see Table 2.1).  (D) 
Actuation of nanopore diameters by a change in the thickness of the bilayer coating, Δd, in response to a 
thermal phase transition of DMPC lipids (see Section 2-App.S1).  Blue dotted line and grey shaded region 
represent the mean value and range of phase transition temperatures reported for DMPC lipids (39).  Inset: 
cycling the temperature between 13º and 27º C actuated the pore diameter dynamically as indicated by the 
larger changes in electrical resistance through a pore with (green squares) than without (back squares) a 
bilayer.  
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2.2. Advantages of fluid coatings 
 

To create lipid bilayer-coated nanopores (Fig. 2.1B), we exposed silicon chips 

that contained a single pore through a silicon nitride window to an aqueous suspension of 

small unilamellar liposomes (40-43).  Spreading of these liposomes on the Si3N4 window 

and on the walls of the nanopore (see Sections 2-App.S1 – 2-App.S3) created a bilayer 

coating and reduced the nanopore diameter.  The thickness and surface chemistry of this 

coating can be accurately controlled by the choice of lipids in the liposome preparation.  

For instance, the bilayer thickness is fine-tuned by the length and the number of double 

bonds in the hydrocarbon tails of the lipids (Fig. 2.1C), whereas the surface chemistry is 

controlled by the nature of their polar head groups (see Section 2-App.S4).  

The capability of fine-tuning the diameter of nanopores is illustrated by the red 

curve in Fig. 2.1C.  This curve resulted from a best fit of the data to a simple physical 

model that described the electrical resistance through the nanopore, R (Ω), as the sum of 

four terms: 1) the resistance of the cylindrical nanopore, 2) the access resistance to and 

from the nanopore (31), 3) the resistance of the cylindrical channel through the silicon 

nitride window that led to the pore (see Section 2-App.S1 for a schematic drawing), and 

4) the access resistance to this cylindrical channel.  These four resistances in series are 

represented in sequence by the terms in equation (1) (see Section 2-App.S1 for a 

derivation): 

2 2

( 2 2 ) ( 2 2 )
( ) 2( ) ( ) 4( )

P L C L

P L P L C L C L

l d w l d wR
r d w r d w r d w r d w

ρ ρ ρ ρ
π π

+ + + +
= + + +

− − − − − − − −
 , (2.1) 

where ρ (Ω m) represents the resistivity of the electrolyte, lP (m) the length of the 

cylindrical nanopore, d (m) the thickness of the lipid bilayer (see Table 2.1), wL (m) the 

thickness of the interstitial water layer between the bilayer and the silicon nitride wall of 

the pore (44, 45), rP (m) the radius of the nanopore, lC (m) the length of the cylindrical 

channel through the silicon nitride that led to the pore, and rC (m) the radius of this 

cylindrical channel (see Section 2-App.S1 for values of ρ, lP, rP, lC, and rC). 
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Table 2.1.  Lipids used in this work to coat nanopore walls.  

Chemical name Abbreviation Acyl chainsa Bilayer thicknessb (nm) 

1,2-dilauroyl-sn-glycero-3-
phosphocholine DLPC (12:0) 3.0 ± 0.1 

1,2-dimyristoyl-sn-glycero-3-
phosphocholine DMPC (14:0) 3.4 ± 0.1 

1,2-dipalmitoleoyl-sn-glycero-3-
phosphocholine DΔPPC (16:1) 3.6 ± 0.1 

1,2-dieicosenoyl-sn-glycero-3-
phosphocholine DEPC (20:1) 4.2 ± 0.1 

1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine POPC (18:1–16:0) 3.7 ± 0.1 

1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl) Biotin-PE (16:0) - 
aFor lipids with two identical acyl chains, (c:db) indicates the number of carbons (c) and the number of 
double bonds (db); for lipids with two different acyl chains, (c1:db1–c2:db2) refer to acyl chains 1 and 2.  
bThickness according to Lewis et al. (38). 
 
 

Equation (2.1) shows that this model estimated the effective, open radius of a pore 

by taking into account the reduction of its radius and increase of its length as a function 

of the thickness of the bilayer coating and the thickness of the interstitial water layer 

between the bilayer and the silicon nitride wall of the pore.  A fit of the data in Fig. 2.1C 

to this model returned a thickness of the water layer of wL = 1.2 ± 0.1 nm (literature 

values: 0.5 – 1.7 nm) (44, 45) as the only fitting parameter.  The excellent fit of the data 

to equation (1) (R2 = 0.97, N = 7) and the realistic value for the thickness of the water 

layer, suggest that self-assembled bilayer coatings make it possible to fine-tune and 

predict the radius of a cylindrical nanopore in increments of two carbon atoms (albeit in a 

range limited to lipids that can generate stable supported lipid bilayers). 

Since the sensitivity and information content of nanopore-based single-molecule 

experiments depend strongly on the size of the pore, one particularly desirable feature for 

nanopore sensing would be the ability to adjust the diameter of a nanopore dynamically 

to the size of various analytes, in situ.  Fig. 2.1D demonstrates that a thermal phase 

transition of a coating of DMPC lipids (Table 1) from the ordered gel phase (Lβ) to the 

disordered liquid crystalline phase (Lα) decreased the estimated thickness of the bilayer 

coating by Δd ≈ 0.7 nm (lit.: 0.9 – 1.1 nm) (39, 46, 47) and made it possible to actuate the 

diameter of the nanopores dynamically by 1.4 ± 0.1 nm.  Fig. 2.1D also shows that the 

midpoint (dashed blue line) and range (grey area) of the phase transition in the nanopore 



 26

coating occurred precisely at the reported temperature for DMPC lipids of 23.5 ± 2.3º C 

(39).  Changing the diameter of nanopores by a phase transition of lipids may be a 

relevant mechanism by which insects regulate their water uptake and evaporative loss 

through lipid-coated nanopores in their exoskeleton (34, 48).  In the context of synthetic 

nanopores, this bio-inspired capability of changing pore diameters constitutes a novel 

approach to determine thermal phase transition temperatures of lipid bilayers, in situ.  

 

 

 
Figure 2.2 | Capture, affinity-dependent pre-concentration, and translocation of specific proteins 
after binding to ligands on mobile lipid anchors.   (A) Cartoon, drawn to scale, illustrating binding of 
streptavidin (large red) to specific lipid-anchored biotin-PE (blue circles) followed by single molecule 
translocation of the anchored complex through the nanopore.  (B) Current versus time traces illustrating 
capture, pre-concentration, and reduced translocation speed of streptavidin.  In the absence of biotin 
groups, only rare translocation events with short translocation times, td, could be detected in electrolytes 
containing 6 pM streptavidin (top current trace).  In contrast, 0.4 mol% of biotinylated lipids in the lipid 
coating strongly increased the event frequency and slowed down the translocation speed sufficiently to 
enable complete time resolution of translocation events (bottom current trace).  (C) Minimum bulk 
concentrations of streptavidin, polyclonal anti-biotin Fab fragments, and monoclonal anti-biotin IgG 
antibodies required to observe at least 30 – 100 translocation events per second. 

 

 

In addition to fine-tuning and actuating the diameters of nanopores, bilayer coatings 

provide a straightforward strategy to render nanopore recordings specific for certain 

analytes by functionalizing the bilayer surface with ligands or receptors.  Fig. 2.2 

illustrates that adding defined mole fractions of lipids with desired functional groups 

(here, biotinylated lipids) during the formulation of liposomes and the subsequent 

formation of a bilayer coating (42) can control the surface density of ligands in and 
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around the pore.  These lipid-anchored ligands, which were mobile within the fluid sheet 

of the lipid bilayer, could concentrate dilute analytes from the bulk solution to specific 

ligands on the bilayer surface and deliver these analytes to the pore by two-dimensional 

diffusion (Fig. 2.2A,B).  This same basic principle is thought to occur on the lipid coating 

of olfactory sensilla in insect antenna, which contributes to the extremely sensitive 

detection of lipophilic pheromones by insects (32, 34, 49). 

Pre-concentrating and translocating analytes that are bound to a fluid surface also 

made it possible to distinguish between different analytes based on their affinity to the 

displayed ligand (Fig. 2.2C).  For instance, proteins present at picomolar concentrations 

in the bulk electrolyte solution concentrated at the surface and induced frequent 

translocation events if they bound with high affinity to lipid-anchored ligands in the 

bilayer.  In contrast, proteins with low affinity to these ligands required more than 300-

fold increased bulk concentrations to reach comparable frequencies of time-resolved 

translocation events (Fig. 2.2C).  In the case of streptavidin, polyclonal anti-biotin Fab 

fragments and monoclonal anti-biotin IgG antibodies, we found that to reach a frequency 

of 30 - 100 translocation events per second, a concentration of only 0.006 nM 

streptavidin was required compared to 1 nM of Fab fragment and 20 nM monoclonal 

antibody.  Control experiments revealed that in the absence of biotinylated lipids in the 

bilayer coating, or in the presence of excess biotin in solution, the frequency of detectable 

translocation events for each protein was up to 500-fold lower than in the presence of 

specific capture sites in the bilayer (Fig. 2.2B and Section 2-App.S5). 

 

2.3. Lipid coating enables time-resolved translocation events 
 

The capability of moving captured analytes through pores with fluid walls made it 

possible to obtain the translocation time, td, through the pore as well as the corresponding 

amplitude of the resistive pulses, ΔI.  This information is unique to the fluid nanopore 

coatings introduced here; previous reports on nanopore recordings with specific, surface-

attached binding groups captured analytes on permanently fixed positions (4, 5) and did 

not allow translocation of bound analytes thereby excluding the possibility to determine td 

or to relate ΔI to the molecular volume of the bound analyte.  An additional benefit of 

translocating analytes that are bound to a lipid anchor emerges if the intrinsic 
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translocation speed of the unbound analyte through a pore is too fast to resolve td and ΔI 

completely in time – a problem encountered previously by other groups (26-28).   

Fig. 2.2B and Section 2-App.S5 show that translocation events of individual 

proteins could not be fully resolved without lipid-anchored capture sites.  In contrast, 

anchoring analytes to lipids during their passage through the pore had the advantage that 

the translocation speed was dominated by the high viscosity of the bilayer coating rather 

than the low viscosity of the aqueous electrolyte in the pore (50).  The resulting, 

prolonged translocation times enabled time-resolved detection of td (Fig. 2.3) and ΔI (Fig. 

2.4) combined with accurate, quantitative characterization of individual proteins.  

Alternative strategies for prolonging the translocation time by increasing the length of the 

pore or the viscosity of the electrolyte or by reducing the applied voltage have been 

associated with a reduction of the amplitude of translocation events and reduced the 

signal to noise ratio (28).  In contrast, bilayer coatings with fluid capture sites can fine-

tune the viscosity of the bilayer and prolong the translocation times of lipid-anchored 

analytes while the conductivity of the aqueous electrolyte remains unchanged.   

Fig. 2.3A demonstrates that acyl chains with increasing length and saturation could 

slow down translocation speeds.  For instance, POPC lipids with one monounsaturated 

acyl chain of 18 carbon atoms and a second saturated acyl chain of 16 carbons generated 

approximately 1.4 times more viscous bilayers than DΔPPC lipids with two 

monounsaturated acyl chains of 16 carbons.  These two bilayer coatings resulted in most 

frequently observed translocation times for streptavidin of 114 ± 15 μs in the POPC 

coating compared to 81 ± 10 μs in the DΔPPC coating (Fig. 2.3A).  Translocation speeds 

could be slowed down even further by adding 50 mol% cholesterol to a POPC bilayer; in 

this case the most frequently observed translocation time of Fab fragments doubled from 

78 ± 5 μs to 175 ± 4 μs (Fig. 2.3B).  
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Figure 2.3 | Controlling the translocation times, 
td, of single lipid-anchored proteins by the 
viscosity of the bilayer coating and 
distinguishing proteins by their most probable 
td values.   (A) Distribution of translocation times 
of streptavidin.  Insets: current versus time traces 
illustrating that td could be prolonged more with 
intermediate viscosity POPC bilayers (blue current 
traces) than with low viscosity DΔPPC bilayers 
(red current traces).  (B) Translocation of anti-
biotin Fab fragments through nanopores with 
bilayers of intermediate viscosity (POPC) or high 
viscosity (~49 mol% cholesterol and 50 mol% 
POPC).  (C) Translocation of anti-biotin 
antibodies through a pore with a coating of 
intermediate viscosity (POPC).  Red, blue, and 
green curves represent a best fit of the 
corresponding data to a biased diffusion first 
passage time model (14) (equation 10-App.2 in 
Section 2-App.S5).  All bilayers contained 0.15 - 
0.4 mol% biotin-PE.  See Sections 2-App.S7 and 
2.App.S9 for binning methods, errors of td, and 
measurement errors. 
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Figure 2.4 | Distribution of ΔI values and corresponding 
molecular volumes and shape factors of individual 
proteins translocating through bilayer-coated nanopores 
with biotinylated lipids.  (A-C) Translocation of 
streptavidin (A), anti-biotin Fab fragments (B) and anti-
biotin antibodies (C); the dashed red lines indicate ΔI values 
that would be expected for IgG antibodies with a volume of 
347 nm3 and different shape factors γ; see Section 2-App.S6 
for a schematic illustration and discussion of shape factors 
(51, 52). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complete time resolution of translocation events of lipid-anchored proteins allowed 

us to determine the volume of individual translocating proteins based on accurate 

acquisition of the amplitude of resistive pulses, ΔI(t).  Fig. 2.4 shows amplitude 

distributions of the resistive pulses for three different biotin-binding proteins.  We used 

equation (2.2) to estimate the transiently excluded volume of electrolyte, Λ(t) (m3) during 

the translocation of these three proteins (12, 13, 53). 

2

γ ( )( ) ( )
( 1.6 )
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+
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In equation 2.2, γ (unitless) represents a shape factor (52) with a value of 1.5 for spheres, 

Va (V) is the total applied voltage, and S(rP/dM) is a correction factor that depends on the 
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relative values of rP and the diameter of the molecule, dM.  Like most groups, we used a 

value of 1 for S(rP, dM) for all calculations (12, 13).  Since Λ(t) from the translocation of 

spheroidal particles is approximately equal to the molecular volume of the particles(14, 

29), we were able to estimate the molecular volumes of streptavidin (94 ± 18 nm3; lit. 

value: 105 ± 3 nm3)(54), Fab fragments (172 ± 31 nm3; lit. value: ~140 nm3)(55), and 

antibodies (308 – 696 nm3; lit. value: 347 ± 15 nm3)(51).  The distributions of ΔI values 

for streptavidin (Fig. 4a) and Fab fragments (Fig. 2.4B) were significantly narrower than 

the distribution for the antibodies (Fig. 2.4C).  Since control experiments revealed that 

the broad distribution was not caused by contamination of the antibody sample with other 

proteins (see Section 2-App.S6), we attribute the broad distribution of ΔI values in Fig. 

2.4C primarily to the complex molecular shape of IgG antibodies (γ ≠ 1.5) compared to 

the approximately spherical shape (γ ≈ 1.5) of streptavidin and Fab fragments (for a 

detailed discussion on the proposed effect of molecular shape on ΔI, see Section 2-

App.S6). 

 

2.4. Determining translocation time and charge of proteins 
 

Fig. 2.3 shows that different proteins moved through the nanopores at different 

distributed speeds as expected for biased diffusion first passage time processes (14).  

Because we performed the experiments with streptavidin using a different pore (see 

Table 1-App.2 for dimensions of pores used for all experiments), a direct comparison of 

the most frequently observed td values was only possible between Fab fragments (78 ± 5 

μs, blue bars in Fig. 2.3B) and monoclonal antibodies (54 ± 8 μs; Fig. 2.3C). The 

observed differences in td values added a third dimension for distinguishing between 

different proteins in addition to comparing their affinity to specific ligands based on the 

frequency of translocation events (Fig. 2.2C) and quantifying their molecular volumes 

based on ΔI values (Fig. 2.4A-C). 

Since the translocation speed of different lipid-anchored proteins varied, we 

hypothesized that the fluid nature of the pore walls may minimize non-specific adsorption 

processes and open the door to determining the net charge of proteins.  To test this 

hypothesis, we developed the simplest possible model that yields a relationship between 

td of a lipid-anchored protein and the net charge of this protein, |z| × e, based on a model 
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introduced recently by Sexton et al. (26).  Here z (unitless) is the net valency of the 

overall charge on the protein and e (C) is the elementary charge of an electron.  This 

model assumed that a charged protein experiences an electrophoretic force that is 

opposed by the viscous drag inside the pore and leads to a constant drift velocity (lP/td) 

through the pore.  It also assumed that the viscous drag of lipid-anchored proteins is 

determined by the diffusion constant of the lipid anchor, DL (m2 s-1) in the lipid bilayer 

rather than by the diffusion constant of the protein in the aqueous electrolyte inside the 

pore lumen (50).  Based on these assumptions, we derived equation (2.3) to predict td 

values theoretically (for a detailed derivation and additional assumptions made, see 

Section 2-App.S8): 
2
P B

d
P L

l k Tt
z eV D

=  (2.3) 

Here kB (J K-1) is the Boltzmann constant, T (K) is temperature and Vp (V) refers to the 

part of the total applied voltage that drops inside the pore; it does not include the voltage 

drop due to the access resistance to and from the pore (see Section 2-App.S8). 

 Equation (2.3) made it possible to compare theoretically predicted td values with 

experimentally determined values for proteins with known net charge.  Fig. 2.5 shows 

this comparison for translocation events of streptavidin at five different pH values in the 

recording electrolyte and therefore five different values of |z|.  The excellent agreement 

between the data (black squares) and the predicted td values (red curve) supports the 

simple model used for the derivation of equation (2.3).   
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Figure 2.5 | Comparison of experimental 
and theoretical values of charge-dependent 
translocation times of streptavidin.  
Experimental values are shown in black 
squares and the red curve represents the 
theoretical prediction by equation (2.3).  
Dashed black line corresponds to the expected 
translocation time for streptavidin assuming a 
translocation event due purely to diffusion in 
one dimension (td = <lp>2 / (2DL), i.e. without 
an electrophoretic effect.  The valance |z| of 
the net charge of streptavidin was varied by 
the pH of the electrolyte (56).  The length of 
the pore with the bilayer coating was 28 ± 0.2 
nm.  Note that the red curve is not a best fit to 
the data; it is the prediction of td as a function 
of |z| according to equation (2.3) when all 
parameters were fixed to their known values. 
 

Additional support for this model stems from a comparison between two bilayer 

coatings of different viscosity.  In one experiment we coated the nanopore with a POPC 

bilayer and in the other experiment with a DΔPPC bilayer.  Before adding streptavidin to 

the top compartment of the chips, we determined the lateral diffusion coefficient of lipids 

in the POPC bilayer (DL = 1.13 ± 0.11 nm2 μs-1) and in the DΔPPC bilayer (DL = 1.56 ± 

0.16 nm2 μs-1) by fluorescence recovery after photobleaching (FRAP) experiments on the 

silicon nitride support (see Section 2-App.S2) (57).  With these DL values and a valence 

of net charge of |z| = |-1.9 ± 0.4| at pH 7.4 (56), equation (2.3) predicted a translocation 

time for streptavidin of 126 ± 29 μs in POPC-coated pores and of 91 ± 21 μs in DΔPPC-

coated pores.  Experimentally, the most frequently observed translocation time of 

streptavidin (Fig. 2.3A) was 114 ± 15 μs through pores with a POPC coating (deviation 

from the predicted value: -10%) and 81 ± 10 μs through pores with a DΔPPC coating 

(deviation from the predicted value: -11%).  The excellent agreement between the 

theoretically predicted values of td and the experimentally measured td values as well as 

the data in Table 2 confirm that translocation times of lipid-anchored analytes were 

indeed dominated by the viscosity of the bilayer (50) and were hence independent of the 

shape of the proteins (Fig. 2.3B,C). 

These observations raise the possibility to use td values, in analogy to migration 

times in electrophoresis, for distinguishing between, and possibly identifying, specific 
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proteins.  The agreement between theory and experiment also suggests that determining 

translocation times of lipid-anchored proteins through a bilayer-coated nanopore makes it 

possible to determine the net charge of proteins.  For instance, at pH 7.4, the measured td 

values suggest a net charge between -2.9 and -5.3 for the polyclonal anti-biotin Fab 

fragments and a net charge of -4.2 ± 0.5 for the monoclonal anti-biotin antibodies (see 

Section 2-App.S8).  These values agree well with results from capillary electrophoresis 

experiments (see Section 2-App.S8).  Moreover, for a protein with known charge, 

translocation experiments combined with equation (2.3), make it possible to determine – 

non-optically – the lateral diffusion constants of lipids and therefore the fluidity of 

bilayers within seconds (Table 2.2).  This attribute might be useful to test therapeutic 

compounds for their propensity to change membrane fluidity (57).   

 
Table 2.2.  Comparison of diffusion coefficients of lipid-anchored proteins within the nanopore, DP, 
with diffusion coefficients of lipids, DL, in coatings of two different lipid bilayers on three different 
nanopores.  

Protein Lipid bilayera DL
b DP

c ΔD 

  (nm2 µs-1) (nm2 µs-1) % 

SAd DΔPPC 1.56 ± 0.16 1.7 ± 0.4  +9 

SAd POPC 1.13 ± 0.11 1.2 ± 0.3  +6 

SAe POPC 1.65 ± 0.17 1.9 ± 0.5 +15 

mAbf POPC 1.29 ± 0.13 2.6 ± 0.7 +100 

Fabf POPC 1.27 ± 0.13 1.5 ± 0.2 +18 
aAll lipid bilayers also contained 0.15 – 0.4 mol% of biotin-PE.  bValues for DL were determined by FRAP 
as described in Section 2-App.S2.  cValues for DP were determined with equation (2.3) based on the most 
frequently measured values of td and values of |z| for SA from Sivasankar et al. (56) and values of |z| for 
mAb and Fab as determined by capillary electrophoresis (see Section 2-App.S8).  dNanopore dimensions: 
rP = 10.0 nm, lP = 18 nm.  eNanopore dimensions: rP = 10.5 nm, lP = 18 nm.  fNanopore dimensions: rP = 
16.5 nm, lP = 22 nm 

 

Finally, the agreement between predicted and experimental td values suggests that 

the measured td values are close to the “true” electrophoretic translocation times.  In other 

words, these measured translocation times represent translocation in the absence of non-

specific adsorption of proteins to the bilayer coating or to the silicon nitride substrates.  

This point is important because all single-molecule translocation experiments with 

proteins reported so far were hampered by non-specific adsorption of proteins to the 

nanopore walls with regard to accurate determination of td values (1, 14, 26).  In some 
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cases, these interactions increased the translocation times of proteins by several orders of 

magnitude (26). 

 

2.5. Aggregated Aβ peptides translocate without clogging 
 
Due to the unique capability of fluid bilayer coatings to eliminate non-specific 

interactions, these pores made it possible to analyze translocation events of molecules 

that aggregate and have a tendency to clog nanopores.  Amyloidogenic peptides, such as 

Alzheimer’s disease-related amyloid-β (Aβ) peptides (58), belong to this category of 

molecules.  The current versus time trace in Fig. 2.6A shows that a nanopore without a 

bilayer coating clogged within minutes after addition of Aβ peptides.  Despite several 

attempts, we were never able to detect translocation events from samples of Aβ peptides 

with uncoated pores.  In contrast, Fig. 2.6B illustrates that coating nanopores with bio-

inspired, fluid lipid bilayers incurred non-fouling properties to these pores and made it 

possible to detect numerous large amplitude translocation events due to the passage of 

individual Aβ oligomers and fibrils. 
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Figure 2.6 | Bilayer-coated nanopores resist clogging and enable the monitoring of the aggregation of 
amyloid-beta (Aβ) peptides. (A) Cartoon illustrating clogging of uncoated nanopores and a typical current 
versus time trace during clogging of a nanopore by Aβ aggregates.  This concatenated current trace shows 
several 1 s recordings and one 5 min recording.  (B) Cartoon illustrating translocation of individual Aβ 
aggregates through a bilayer-coated nanopore with a fluid wall (white arrow in the inset) and a typical 
current versus time trace of translocation events.  The bilayer coating conferred non-fouling properties to 
these pores and enabled resistive pulse recordings over at least 40 min without clogging.  Both recordings 
are 5 s long, one was taken immediately after addition of the Aβ sample and the other one 40 min later.  Aβ 
(1-40) samples were aggregated for 72 h. 
 
 
2.6. Conclusions 
 

In conclusion, the crucial novelty of lipid-coated, synthetic nanopores is the 

multifunctional and fluid nature of the self-assembled coating.  This singular, bio-

inspired strategy addresses many of the unmet challenges in nanopore sensing and is 

particularly beneficial in the context of single-molecule studies of native proteins.  For 

example, the fluidity of the coating enables capture and concentration of proteins from 

dilute solutions and permits translocation of lipid-anchored proteins at frequencies that 

reveal information about their affinity to ligands on these lipid anchors.  Fluid coatings 

also eliminate non-specific adsorption of proteins to the synthetic walls of the pore by 

translocating captured proteins on top of a fluid, biocompatible lipid bilayer and establish 

a predictable, quantitative relationship between translocation times and the charge of 

individual proteins.  The viscous character of the fluid coating slows the translocation 



 37

speed of lipid-anchored proteins and makes it possible to introduce selectivity while 

resolving translocation events completely in time.  These viscous coatings therefore 

enable accurate quantitative analyses of the molecular volume and qualitative analyses of 

the shape of individual proteins.  The anti-fouling character of fluid coatings made it 

possible to translocate aggregated forms of disease-relevant Aβ peptides through the pore 

without clogging.  This capability may open the door for analyses of the diameter, length, 

and volume from a large number of individual Aβ oligomers and fibrils during their 

aggregation in situ. 
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Chapter 2 Appendix 
 

2-App.Methods.  Supporting methods 
 

Lipids and proteins. We obtained all phospholipids from Avanti Polar Lipids, 

Inc.  We purchased the proteins streptavidin (SA) and monoclonal anti-biotin antibody 

(mAb, B7653) from Sigma Alrdrich and polyclonal anti-biotin Fab fragments (Fab, 

20938) from Rockland Inc. 

Nanopores.  We used a focused ion beam to fabricate nanopores in a silicon 

nitride membrane that was supported by a silicon chip (see Section 2-App.S1 for 

information on the pores) (59).  Prior to experiments, we cleaned the pore-containing 

chips for at least 30 min with a fresh mixture of 3:1 (v/v) concentrated sulfuric acid and 

30% (v/v) aqueous hydrogen peroxide solution at a temperature of 60 – 70 °C followed 

by rinsing with deionized water and drying with argon gas.  To create separate fluid 

compartments on either side of the nanopore, we mounted the chip between two pieces of 

cured polydimethylsiloxane (PDMS) (10).  After each experiment, we rinsed the silicon 

chips for 2 – 3 min successively with the following solvents: water, ethanol, methanol, 

and chloroform.  We stored chips in chloroform between experiments.  

Formation of supported lipid bilayers.  We formed supported lipid bilayers by 

fusion of small unilamellar vesicles (SUVs) (40-43).  We prepared these SUVs as 

described in Section 2-App.S2.  To form the supported lipid bilayer on silicon nitride 

membranes, we filled the top compartment of the PDMS fluidic setup with 10 – 30 µL of 

the aqueous solution with the SUVs and the bottom compartment with a 150 mM KCl 

solution without liposomes.  After 5-10 min, we removed excess SUVs by immersing the 

entire fluidic setup for 5 – 10 min in a large (500 mL) beaker containing deionized water.  

Before recordings, the fluidic compartments were filled with the desired electrolyte.  

Each liposome preparation contained 0.8 mol% of the fluorescently-labeled lipid, 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rh-

PE), for measuring the fluidity of lipid bilayers by fluorescence recovery after 

photobleaching (FRAP, see Section 2-App.S2). 

Electrical resistance as a function of bilayer thickness.  We used Ag/AgCl 

pellet electrodes (Warner Instruments) to monitor ionic currents through electrolyte-filled 
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nanopores with a patch-clamp amplifier (Axopatch 200B, Molecular Devices Inc.) in 

voltage clamp mode (i.e., at constant applied voltage).  See Section 2-App.S9 for a 

description of data acquisition methods.  We determined the resistance between the 

electrodes by measuring the current at various applied voltages in the range of ± 0.5 V; 

the slope of the corresponding current versus voltage plots equaled the inverse of the 

resistance.  To measure the resistance as a function of the bilayer thickness, we formed 

different lipid bilayers on the same chip by using SUVs composed of DLPC, DMPC, 

DΔPPC, or DEPC lipids.  We cleaned this chip before the formation of each lipid bilayer 

as described above.  The chip used for these experiments contained a nanopore with a 

diameter of 28 nm and a length of 12 nm (see Section 2-App.S1 for a TEM image) and 

the recording buffer contained 500 mM KCl and 10 mM HEPES at a pH value of 7.4 ± 

0.1.  To measure the resistance of nanopores as a function of temperature, we used a 

feedback-controlled Peltier Cooler from Warner Instruments (see Section 2-App.S1). 

Sensing proteins with biotinylated lipids in the bilayer.  We formed supported 

lipid bilayers on the silicon chip from SUVs containing 0.15 – 0.4 mol% of biotin-PE, 0.8 

mol% Rh-PE, and ~99 mol% POPC.  We used an electrolyte containing 2.0 M KCl and 

10 mM HEPES with a pH of 7.4 ± 0.1 and performed all current recordings at -0.1 V.  To 

detect SA, we used a nanopore with an area-equivalent diameter of 19.2 nm (see Section 

2-App.S1) and a length of 18 nm (before formation of the bilayer), and we added SA to 

the top compartment at concentrations of 3.2 - 6.2 pM.  To detect mAb and Fab, we used 

a nanopore with an area equivalent diameter of 33.0 nm and a length of 22 nm; we added 

mAb or Fab to the top compartment at concentrations of mAb or Fab of 0.1 – 50 nM.  

See Section 2-App.S9 for a description of the resistive-pulse analysis.  

Detection of aggregates of amyloid-beta (Aβ) peptides.  See Section 2-App.S10 

for a description of Aβ sample preparation.  We used a nanopore with a diameter of 96 

nm and a length of ~ 275 nm (before bilayer coating), which was either uncoated or 

coated with a POPC bilayer.  We added solutions containing Aβ peptides (residues 1-40) 

to the top compartment at concentrations of Aβ of 0.1 to 0.2 mg × mL-1.  We used an 

electrolyte containing 70 mM KCl and 10 mM HEPES with a pH of 7.4 ± 0.1 and 

recorded resistive pulses at +0.2 V. 
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2-App.S1.  Resistance of nanopores as a function of bilayer thickness 

S1.1 Model of electrical resistance in electrolyte-filled nanopores.  We 

explored the simplest possible model for the relationship between the electrical resistance 

and the geometry of the nanopore.  Based on previous work, this model assumes that the 

smallest constriction of a nanopore and the resistivity of the electrolyte solution in the 

nanopore determine the total resistance, while the electrical resistance through the bulk 

electrolyte solution from the electrodes to the chip with the nanopore is negligible (52, 

53).  In the work presented here, the cylindrical nanopore and channel leading to the pore 

were the narrowest constrictions (Fig. 1-App.2). 

 

 

 
Figure 1-App.2 | Schematic cross-section of the silicon chip and of the nanopore with the channel 
leading to the pore.  (A) Silicon chip (blue) with a silicon nitride layer (grey) on the top; the free-standing 
part of this Si3N4 layer constitutes a window with a nanopore and with a channel through the silicon nitride 
that leads to the pore.  (B) Schematic illustration of this channel with a length lC of 258 ± 9 nm and a radius 
rC  of 50 ± 7.5 nm, which led to a nanopore with radii rP of 16 – 50 nm and lengths lP of 12 – 22 nm, 
depending on the chip.  Schematic illustration of a lipid bilayer coating with a thickness d and a water layer 
between the bilayer and the chip with a thickness wL; this bilayer coating increases the effective length of 
the nanopore to lP’ = lP + 2(wL + d) and reduces the effective radius to rP’ = rP - wL - d. 
 

We described the nanopore, and the channel leading to the nanopore, as cylinders, 

each with a radius r (m) and length l (m) that were filled with an electrolyte with 

resistivity, ρ (Ω × m).  Due to the nanoscale diameter of the pore, the electric field lines 

converge from the bulk solution to the entrance of the nanopore, resulting in an additional 

resistive component called the access resistance, RA
 (31).  Equation (1-App.2) quantifies 

RA for one entrance to a nanopore (31). 
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4AR
r

ρ
=  (1-App.2) 

Thus, the total resistance is a function of the resistance of the nanopore, RP, the access 

resistance at each side of the pore, RAP, the resistance due to the channel, RC, and the 

access resistance from the bulk solution below the chip to the channel, RAC.  We treated 

these resistive components as resistors in series such that equations (2-App.2) and (3-

App.2) describe the total resistance between two electrodes on opposite sides of a 

nanopore: 

R =    RP +  2RAP +  RC   +  RAC , (2-App.2) 

2 22 4
CP

P P C C
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r r r r

ρρ ρ ρ
π π

= + + +
,
 (3-App.2) 

where lP is the length of the nanopore, rP is the radius of the nanopore, lC is the length of 

the channel, and rC is the radius of the channel (Fig. 1B-App.2). 

S1.2 Dimensions of nanopores.  We determined the radius of the nanopores, rP, 

and of the channels leading to these pores, rC, from transmission electron microscopy 

images (Fig. S2).  To determine the total resistance of a pore for a given electrolyte, we 

measured the current through a pore at various applied voltages.  For these 

measurements, we used an electrolyte solution containing 500 mM KCl and 10 mM 

HEPES at pH 7.4 with a resistivity ρ of 0.1517 Ω × m (measured with a calibrated 

conductance meter).  Finally, we determined the length of the pore, lP, by solving 

equation (S3) with the measured value of resistance R, the values of rP and rC determined 

from the TEM images, and the known value for the thickness of the silicon nitride 

membrane (275 ± 15 nm (59, 60)).  Fig. 2-App.2 shows TEM micrographs of several 

pores used in this work; the caption lists the dimensions of these pores and specifies for 

which experiments they were used.   
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Figure 2-App.2 | Transmission electron micrographs of several nanopores used in this work.  The 
brightest part in the center of each image depicts the shape and size of the nanopore and the surrounding 
circle with reduced brightness reflects the channel leading to the nanopore. All scale bars are 50 nm.  (A) 
Pore used for experiments with bilayers that contained lipids with different acyl-chain lengths (<rP> = 14 
nm, lP = 12 nm, rC = 48 nm, and lC = 264 nm).  (B) Pore used for sensing streptavidin (<rP> = 9.6 nm, lP = 
18 nm, <rC> = 49 nm, and lC = 258 nm).  (C) Pore used for sensing monoclonal anti-biotin antibody and 
anti-biotin antibody Fab fragment (<rP> = 16.5 nm, lP = 22 nm, <rC> = 53 nm, and lC = 255 nm).  (D) Pore 
used for sensing aggregates of Aβ peptides.  For these experiments, the channel created by a focused ion 
beam without sculpting was used as the pore (<rP> = 48 nm and lP = 275 nm; rC = 0 and lC = 0).  Notation 
of a radius as <r> indicates an area-equivalent radius calculated with equations (4-App.2) or (5-App.2).  All 
dimensions refer to the pores before bilayer coating.  

 

 

For cases in which the cross-section through the nanopore was ellipsoid rather 

than circular, we calculated an “area-equivalent” radius of the pore, <rP>, in such a way 

that the area of a perfect circle with radius rP would be equal to the area of the ellipse 

with x corresponding to the major axis and y corresponding to the minor axis of the 

elliptical cross-section: 

Pr xy< > = . (4-App.2) 

Similarly, we calculated an area-equivalent radius for channels, <rC>, through the silicon 

nitride with an ellipsoid cross-section by: 

Cr xy< > = . (5-App.2) 
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Table 1-App.2 lists the dimensions of nanopores used for experiments in the main chapter 

and the corresponding experiments.  

 
Table 1-App.2.  Dimensions of all nanopores used for experiments and corresponding experiment 
and figure.  All dimensions refer to the pores before bilayer coating.

Figure Description of experiment Pore 
dimensions  Notes 

  (nm)  

2.1C Resistance as a function of bilayer thickness   rp = 14; lp = 12 TEM image in Fig. 2A-
App.2   

2.1D Resistance during a phase transition of DMPC 
lipids  rp = 13; lp = 28 -  

2.2B, 2.3A, 2.4A Sensing streptavidin <rp> = 9.6; lp = 18 TEM image in Fig. 2B-
App.2 

2.3B, 2.3C, 2.4B, 
2.4C  

Sensing anti-biotin Fab fragments and anti-
biotin monoclonal antibodies (IgG) 

<rp> = 16.5; lp = 
22 

TEM image in Fig. 
2C-App.2 

2.5 Sensing streptavidin as a function of charge 
and pH rp = 10.5; lp = 18 - 

2.6 Sensing aggregated of amyloid-beta (Aβ) 
peptides 

<rp> = 48; lp = 
275 

TEM image in Fig. 
2D-App.2 

 

S1.3 Dimensions of nanopores after the formation of a lipid bilayer coating.  

To determine the dimensions of a nanopore after forming a lipid bilayer coating, we used 

the cylindrical pore shown in Fig. 2A-App.2 and added parameters for the thickness of 

the lipid bilayer, d, and for the thickness of the water layer between the silicon nitride and 

the lipid bilayer, wL, to equation (3-App.2) to obtain equation (6-App.2), which is the 

same as equation (2.1): 
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 Equation (6-App.2) implies that the lipid bilayer and water layer did not conduct 

ionic current through the nanopore.  These two layers, hence, reduced the effective radius 

of the nanopore by (d + wL) and increased the effective length of the pore by 2 × (d + wL) 

(Fig. 1B-App.2).   

 Note that we measured currents over tens of seconds in order to determine the 

resistance of the nanopore, R.  As a result, fluctuations in the water layer or in the 

thickness of the supported lipid bilayer due to possible membrane undulations were 

averaged.  We attribute the excellent agreement between the resistance of the nanopore 

and the thickness of the lipid bilayers (shown in Fig. 2.2C) to the use of the same chip 

and lipids with the same chemical head group (phosphatidylcholine) in these 
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experiments.  These conditions resulted in similar interactions between the bilayer, 

substrate, and water.   In addition, we used the same cleaning procedure, same methods 

of preparing liposomes, and same electrolyte in each experiment. 

 S1.4 Thermal actuation of the diameter of bilayer-coated nanopores.  To 

calculate the thickness of a lipid bilayer, and hence, the effective open radius of a 

nanopore as a consequence of a thermal phase transition of the lipids, we described the 

resistivity, ρ, of the electrolyte as a function of temperature with equation (7-App.2) (61): 

2
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π ηρ
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=
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 (7-App.2)  

where the viscosity of water,  (Pa × s), as a function of the temperature, T (K), is given 

by (62): 

( )
247.8K

5 140K2.414 10 Pa s 10 Tη
⎛ ⎞
⎜ ⎟− −⎝ ⎠= × ⋅ × , (8-App.2) 

and C (mol × m-3) is the concentration of a monovalent salt, AV is Avogadro’s constant 

(mol-1), e (C) is the elementary charge of an electron,  (m) is the radius of the hydrated 

cation, and  (m) is the radius of the hydrated anion in the electrolyte.  To validate this 

model, we measured the resistance of a nanopore without a bilayer coating as a function 

of temperature.  We used an electrolyte containing 500 mM KCl and controlled the 

temperature of the device and electrolyte with a Peltier cooler (Warner Instruments, 

Hamden CT).  Fig. 3-App.2 shows the measured resistance as a function of temperature 

(squares).  Note that the green curve is not a fit to the data; instead it reflects the 

calculated resistance as a function of temperature based on equations (3-App.2), (7-

App.2) and (8-App.2).  In equation (8-App.2), we used values for r+ of 133 × 10-12 (m) 

for K+ ions and for r- of 181 × 10-12 (m) for Cl- ions (31).   

 To change the diameter of the nanopore, we coated the pore with a lipid bilayer of 

DMPC lipids (both acyl chains of DMPC are saturated and contain 14 carbons) and 

varied the temperature while measuring the resistance (Fig. 3-App.2, circles).  We fit the 

data in Fig. 3-App.2 with equations (6-App.2) – (8-App.2) using the thickness of the 

bilayer, d, as the only fitting parameter.  This fit in the temperature range of 300 – 310 K 

η

r+

r−
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returned the red curve (N = 5, R2 = 0.97), and in the temperature range of 280 – 290 K, it 

returned the blue curve (N = 5, R2 = 0.95) (Fig. 3-App.2).  To calculate the change in d as 

a function of the thermal phase transition of the lipid bilayer, we used Maple™ 13 to 

solve equations (6-App.2) – (8-App.2) for d, with all parameters except temperature held 

constant (Fig. 2.2C).  These calculations revealed a change in bilayer thickness, Δd, 

between the disorderd liquid crystalline phase (T > 296 K) and the ordered gel phase (T < 

296 K) of 0.7 ± 0.04 nm (fit in Fig. 2.2C).  This value of Δd is similar to reported values 

for Δd of DMPC bilayers of 0.9 - 1.1 nm (46, 47). 

 

 

 
Figure 3-App.2 | Shrinking and actuating the diameter of bilayer-coated nanopores with 
temperature.  Resistance as a function of temperature in a nanopore coated with a bilayer of DMPC lipids, 
( ), and in a pore without a bilayer coating, ( ).  The green curve (–) represents a physical model based 
on equations (3-App.2), (7-App.2), and (8-App.2) and described the resistance through the uncoated 
nanopore.  Inclusion of the bilayer thickness, d, as a fitting parameter by employing equations (6-App.2) – 
(8-App.2) described the resistance through a bilayer coated-nanopore in the temperature range from 280 K 
to 290 K (–, R2 = 0.95, N = 5) and in the temperature range from 300 K to 310 K (–, R2 = 0.97, N = 5).  The 
dimensions of the nanopore before bilayer formation were rP = 13 nm, lP = 28 nm, rC = 50 nm, and lC = 247 
nm.  The recording buffer contained 500 mM KCl and 10 mM HEPES (pH 7.4 ± 0.1), and the applied 
potential difference was ± 0.1 V. 
 
 
2-App.S2.  Formation of fluid lipid bilayers on the silicon nitride substrate 
and determination of translational diffusion constants 
 Reimhult et al. demonstrated that liposome fusion on a silicon nitride surface 

forms a single supported lipid bilayer (42).  To prepare small unilamellar vesicles 

(SUVs), we dissolved the desired lipids in 100 µL chloroform to a lipid concentration of 

� �
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10 mM.  We evaporated the solvent under vacuum using a rotary evaporator to form a 

lipid film in a round bottom glass flask with a volume of 10 mL.  We resuspended this 

lipid film in an aqueous solution containing 150 mM KCl and 10 mM HEPES at pH 7.5 

such that the lipid concentration was 2 mM.  Finally, we formed SUVs via tip sonication 

(Branson Sonifier 150) of the solution with a power of 3 – 4 W for ~ 10 min and stored 

these solutions at 4 °C for up to 4 days. We formed the supported lipid bilayer on the 

chips as described in 2-App.Methods.  

We used epifluorescence microscopy to confirm the formation of a fluid lipid 

bilayer for experiments with bilayer-coated nanopores.  To visualize the lipid bilayer, we 

prepared all liposomes with 0.8 mol% of lipids labeled with the fluorophore rhodamine B 

(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B 

sulfonyl)) (Rh-PE, Avanti Polar Lipids).  To form the lipid bilayer, we incubated the top 

side of the chip in a solution containing Rh-PE labeled liposomes for 5 – 10 min followed 

by rinsing with pure water for 5 – 10 min.  We used a Nikon E600FN upright microscope 

equipped with an Evolution MP (Media Cybernetics, Canada) camera and a 60× water-

dipping objective (NA = 1.00) to image the bilayers.  Fig. 4A-App.2 shows a fluorescent 

micrograph (false-colored in red) that confirmed the presence of a supported lipid bilayer 

on the silicon nitride substrate. The sharply defined square in the middle of the image is 

the free-standing silicon nitride membrane.  A line scan across the silicon nitride 

membrane (solid white line) quantified the fluorescence intensity as a function of the 

position along this line (Fig. 4A-App.2).   
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Figur 4-App.2 | Fluorescence micrographs of Si-Si3N4 chips with a supported lipid bilayer containing 
Rh-PE lipids and corresponding line scans.  (A) Epifluorescence micrograph with a line scan to quantify 
the fluorescence intensity along the path shown by the solid white line.  This pore had an area-equivalent 
diameter of 33.5 nm and a length of 22 nm without the bilayer coating.  (B) Plot of fluorescence intensity 
as a function of position along the line scan.  The numbers 1-4 correspond to the numbers in (A)  to the 
location on the chip indicated in the schematic illustration (C).  (D) Additional epifluorescence 
micrographs showing the diffraction limited spot at the location of the nanopore.  Line scans were 
measured from the opposite corners of the silicon nitride window similar to that in panel (A).   From top to 
bottom these pores had area-equivalent diameters of 31 nm, 33.5 nm, and 20 nm; and lengths of 20 nm, 22 
nm, and 18 nm.  All bilayers were labeled with 0.8 mol% Rh-PE.  All scale bars correspond to 10 µm.  
 
 
 Interestingly, we observed four values of fluorescence intensity along this path.  

The lowest intensity occurred in area 1 (I = 528 ± 15); a location in which the bulk silicon 

chip supported the silicon nitride membrane.  Moving along the line scan to an area over 

part of the free-standing silicon nitride membrane, indicated as area 2, we observed a 

slightly greater intensity (I = 873 ± 31) than in area 1. We attribute the reduced intensity 

in area 1 compared to area 2 to destructive interference from light reflected by the bulk 

silicon chip below area 1 (63).  Moving further along the line scan toward the center of 

the free-standing, silicon nitride membrane (area 3), we observed a fluorescence intensity 
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approximately twice the intensity (I = 1,542 ± 29) of area 2.  This result indicates that 

area 3 contained approximately twice the amount of fluorescent Rh-PE lipids than area 2 

and is consistent with a supported bilayer on both sides of the free-standing, silicon 

nitride membrane.  Finally, area 4, in the center of the free-standing, silicon nitride 

membrane and at the location of the nanopore, had the greatest fluorescence intensity (I = 

2,222).   We attribute this high intensity to the presence of a lipid bilayer on the vertical 

walls of the nanopore and channel (see Fig. 1-App.2), and hence, to an increased number 

of Rh-PE lipids in the optical path.  Fig. 4E-App.2 shows three additional fluorescence 

micrographs with a spot of high intensity in the center of the free standing, silicon nitride 

membrane at the precise location of the nanopores.  The width of these spots at 1/e2 of 

their maximum intensity, 2(1/ )e
w , ranged from 0.8 µm to 1.8 µm.  These values are 2-5 

times larger than the theoretical diffraction-limited spot size of 0.33 µm that we 

calculated for this objective with equation (9-App.2) (64): 

2(1/ )

2
e

w
n NA

λ
π

= , (9-App.2) 

where,  λ is the wavelength of light (here ~700 nm), n is the index of refraction of the 

medium (here 1.33), and NA is the numerical aperture of the objective (here 1.00).   The 

larger than expected values for the size of the diffraction-limited spot could be due to 

reflection or refraction occurring at the interface between the aqueous solution and the 

transparent silicon nitride structure of the nanopore.  Furthermore, equation (9-App.2) 

predicts the size of the smallest spot that can be obtained theoretically given all of the 

optics were perfect – real microscopes typically cannot reach this theoretical limit.  

Regardless of deviations from the theoretically expected spot size, the images in Fig. 4E-

App.2 confirm the observations in Fig. 4A,B-App.2 with regard to the fluorescence 

intensity from bilayers on the chips.  These results, in combination with the well-defined 

shrinkage of the pore diameter by bilayer coatings of various lipids (Fig. 2.2B) and the 

results from Fig. 2.3 and 2.4, suggest that a supported lipid bilayer formed on the silicon 

nitride, on the inner walls of the nanopore and channel, and on the underside of the free-

standing, silicon nitride membrane.   

 To confirm the fluidity of the supported lipid bilayers and to determine lateral 

diffusion constants of the lipids, we preformed fluorescence recovery after 
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photobleaching (FRAP) experiments (Fig. 4A,B-App.2) on the bilayer at a location 

outside, but near, the free-standing, silicon nitride membrane (i.e., in area 1 of Fig. 4A-

App.2) (57).  We analyzed these images by calculating the difference between the mean 

fluorescence intensity of the photobleached spot and a second spot on the same bilayer 

that was not photobleached.  We normalized to the maximum difference between these 

two intensities and determined the diffusion coefficients by the equation, DL (nm2 × µs-1) 

= 0.224 × ω2 (nm)2/ t1/2 (µs), where ω is the radius of the bleached spot and t1/2 is the half 

time of the fluorescence recovery (65, 66).  We obtained the value of t1/2 from an 

exponential curve fit through the data (Fig. 5B-App.2).  On the chip used in Fig. 5-App.2 

and shown in Fig. 2-App.2, the diffusion coefficient for bilayers containing POPC lipids 

was 1.13 ± 0.13 nm2 × µs-1 and for bilayers containing DΔPPC lipids it was 1.56 ± 

0.16nm2 × µs-1.  These values are close to reported values of diffusion coefficients of 

supported bilayers, which range from 2 nm2 × µs-1 to 5 nm2 × µs-1 and are typically 

obtained on glass or SiO2 surfaces instead of Si3N4 surfaces (67, 68). 

 

 

Figure 5-App.2 | Fluorescence micrographs for determining bilayer fluidity by fluorescence recovery 
after photobleaching (FRAP) experiments.  (A) Epifluorescence micrographs indicating the recovery of 
fluorescence in a photobleached spot of the lipid bilayer on the Si-Si3N4 chip.  (B) Plot of intensity versus 
time from two separate FRAP experiments on a chip that was coated with a bilayer containing 98.8 mol% 
POPC ( ) or with 98.8 mol% DΔPPC ( ).  The larger t1/2 value for POPC lipids compared to DΔPPC 
lipids indicated the increased viscosity of POPC bilayers compared to DΔPPC bilayers.  All bilayers were 
labeled with 0.8 mol% Rh-PE and contained 0.4 mol% of 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl) (biotin-PE) because the same chips were later used to sense the 
translocation of streptavidin (Fig. 2.3A and 2.4A). Images in (A) were both contrast enhanced to the same 
extent to increase clarity.  The scale bars correspond to 25 µm. 
 
 
 

� �
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2-App.S3.  Additional evidence for a bilayer coating on the walls of the 
nanopores 

S3.1 Bilayer coatings prevented physisorption of fluorescently-labeled 

streptavidin.  To provide additional evidence that a supported lipid bilayer formed on the 

walls inside the nanopores, we incubated a chip containing a nanopore with rhodamine-

labeled streptavidin (SA-TRITC).  We incubated the same piranha-cleaned chip with SA-

TRITC in one experiment after forming a supported lipid bilayer on the chip (and in the 

pore) and in the other experiment before forming the bilayer. Fig. 6-App.2 shows that in 

the absence of a bilayer coating, SA-TRITC physisorbed to the silicon nitride surface 

including in the center of the silicon nitride window where a bright spot of fluorescence 

indicates that SA-TRITC also physisorbed onto the walls inside the uncoated nanopore.  

Similar to the line scans shown in Fig. 4-App.2, the width of the diffusion limited high 

intensity spot in Fig. 6A-App.2 was 0.9 µm.  In contrast, Fig. 6B-App.2 shows that the 

same chip, after being cleaned and subsequently coated with a lipid bilayer, did not 

physisorb a detectable amount of rhodamine-labeled streptavidin.  Additionally, at the 

center of the silicon nitride window and the location of the nanopore, we did not detect an 

increase in the intensity of fluorescence.  This result suggests that the vertical walls inside 

the nanopore were also coated with a lipid bilayer that prevented the physisorption of SA-

TRITC.  
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Figure 6-App.2 | Fluorescence micrographs of silicon-nitride windows with a nanopore after 
exposure to fluorescently labeled-streptavidin.  (A) Fluorescence micrograph taken of the silicon nitride 
window after physisorption of streptavidin-TRITC onto a chip that was cleaned with a fresh 3:1 mixture of 
concentrated sulfuric acid and a 30% (v/v) hydrogen peroxide solution (Piranha solution).  The line scan 
beneath the image corresponds to the intensity of fluorescence along a diagonal path across the silicon 
nitride window through the location of the nanopore at its center.  (B) Fluorescence micrograph taken of 
the same silicon nitride window but after formation of a supported lipid bilayer of POPC lipids followed by 
incubation with streptavidin-TRITC.  The line scan beneath the image corresponds to the intensity of 
fluorescence along a diagonal path across the silicon nitride window through the location of the nanopore at 
its center. The nanopore for these experiments had an area-equivalent diameter of 110 nm and a length of 
275 nm.  Scale bars correspond to 10 µm.  The same camera and exposure settings were used to acquire 
both images. 
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S3.2 Analysis of the electrical current noise provides additional evidence for 

the formation of a bilayer inside the pore.  Since supported lipid bilayers are fluid 

sheets, lipid molecules within the bilayer are in dynamic motion.  In addition, the water 

layer between the lipid bilayer and the silicon nitride substrate fluctuates around an 

average value.   We hypothesized that the resulting bilayer undulations may influence the 

electrical noise in current recordings.  Fig. 7A,B-App.2 compares the power spectra of 

the noise as a function of frequency for two chips with nanopores before and after 

generating a supported lipid bilayer.  As expected, when the pore was coated with a fluid 

lipid bilayer, the noise increased at low frequencies (< 2 kHz) compared to the uncoated 

pore.  Since this increased noise was likely due to dynamic motions consistent with a 

supported lipid bilayer inside the nanopores, it provides additional evidence for the 

formation of a lipid bilayer on the walls inside the nanopores. To test this hypothesis, we 

obtained power spectra of the noise with a chip that contained a very small nanopore with 

area-equivalent diameter of 9 nm.  The diameter of this nanopore was too small for a 

supported lipid bilayer to form on the interior walls of the pore. In this case, spreading of 

fluorescently-labeled liposomes on the top side of the chip coated only this top side while 

no increased fluorescence could be detected at the location of the pore and no doubled 

fluorescence intensity could be detected from creeping of fluorescent bilayers through the 

pore to the other side of the silicon nitride window.  Fig. 7C,D-App.2 shows that in this 

case, the electrical noise in the system remained relatively unchanged compared to the 

nanopores with a diameter large enough to accommodate a bilayer coating inside the 

pore.  In both experiments, we confirmed by FRAP experiments that the bilayer near the 

pore was fluid.  Together these results provide additional evidence for the formation of a 

fluid lipid bilayer on the walls inside the nanopore.    
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Si/Si3N4 chips with a nanopore to generate the bilayer coating, we measured the electrical 

resistance through the nanopore.  Since under conditions of low ionic strength, positively 

charged ions accumulate near the surface of a negatively charged bilayer, we expected to 

observe a decrease in the resistance of the pore with increasing mole fractions of DOPA 

(69).  Fig. 8-App.2 confirms that the resistance of the bilayer coated nanopore decreased 

with increasing mole fractions of DOPA lipids inside the nanopore walls. 

 

 

Figure 8-App.2 | Nanopore coatings with increasing mole fractions of negatively charged lipids 
reduce the resistance of the nanopore in electrolytes with low ionic strength.  The supported lipid 
bilayers were formed from liposomes with the indicated mole fractions, XPA, of DOPA lipids with a 
background of POPC lipids.  The pore used for these experiments had a diameter of 28 nm before the 
bilayer coating.  The electrolyte had an ionic strength of ~2.5 mM and contained 750 µM CaCl2 and 250 
µM KCl with a pH of ~ 7.  
 
 

To demonstrate that this decrease in the resistance was a nanoscopic effect, as 

predicted by the Gouy-Chapman theory, we compared the resistance of a conical pore (tip 

diameter 500 nm) whose walls were coated by an electrically neutral bilayer (~99 mol% 

POPC) to the resistance of the same pore with a negatively charged bilayer coating (~40 

mol% DOPA and ~59 mol% POPC).  Using the same electrolyte as in Fig. 8-App.2, the 

resistance of this large pore remained independent of the presence of a neutral or 

negatively charged bilayer coating (Fig. 9-App.2).  This result confirms that the 

observations in Fig. 8-App.2 were due to nanoscopic phenomena in pores with diameters 

that are significantly smaller than 500 nm; it also provides additional evidence for the 

formation of a negatively charged bilayer on the walls inside the nanopore.  
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Figure 9-App.2 | Charges on the surface of a pore with a diameter of 0.5 μm did not significantly 
affect the permeation of ions, and hence resistance, through the pore.  Currents were measured as a 
function of applied potential difference through a conical pore (tip diameter 500 nm) without a bilayer ( ), 
through the same pore with an electrically neutral bilayer coating of POPC lipids ( ), and through the 
same pore with a bilayer coating containing 40 mol% of negatively charged lipids ( ).  The recording 
electrolyte was the same as in Fig. 8-App.2. 
 
 
2-App.S5.  Evidence for the binding of proteins to lipid-anchored ligands in 
the bilayer and for the translocation of lipid-bound proteins through 
bilayer-coated nanopores 
 

We used the amplitude of resistive pulses, ΔI, to distinguish the translocation of 

streptavidin (SA), monoclonal anti-biotin antibody (mAb), and anti-biotin Fab fragments 

(Fab) through nanopores.  These pores were coated with a bilayer that contained 

biotinylated lipids (biotin-PE) at the specified mole fractions.  To confirm that resistive 

pulses were due to proteins that were bound to biotin-PE, we performed several control 

experiments that entailed: 1) replacing the electrolyte in the top compartment with a 

solution that did not contain SA to investigate if the frequency of events would be 

reduced (as expected for unbound SA) or remain the same (as expected for lipid-

anchored SA); 2) presenting an excess of soluble biotin in solution in the presence of 

mAb on a chip that contained a bilayer-coated nanopore with biotin-PE lipids; and 3) 

detecting the translocation of SA, mAb, and Fab with bilayer-coated nanopores that did 
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not contain biotin-PE lipids.  We describe these experiments in detail in the following 

paragraphs, but briefly, when the protein could bind to biotin-PE in the bilayer coating, 

we observed 20-500 times more frequent translocation events than under conditions in 

which the protein could not bind to biotin-PE.  Furthermore, we observed significantly 

prolonged translocation times when proteins could bind to biotin-PE; these increased td 

values permitted time-resolved measurements of ∆I (and therefore quantitative estimation 

of protein volume).  Finally, the viscosity of the bilayer coating influenced the 

translocation time of proteins passing through the nanopore only when proteins could 

bind to biotin-PE.  We show that the diffusion coefficients of the proteins in the nanopore 

under these conditions were similar to the diffusion coefficients of the lipids in the 

bilayer coating, and we present a simple model for predicting the translocation times for 

proteins through a nanopore.  We conclude from these results that bilayer-coated 

nanopores with biotin-PE lipids detected specifically proteins that bound to these lipid 

anchored biotin groups.  Moreover, resistive pulses were due to the translocation of 

protein-(biotin-PE) complexes through the nanopore because biotin-PE remained mobile 

within the fluid bilayer coating of the nanopore.  The unique ability of bilayer-coated 

nanopores to exploit the viscosity of a fluid bilayer coating in order to reduce the 

translocation speed of proteins made it possible to determine the volume of proteins 

accurately and, consequently, to distinguish anti-biotin Fab fragments from anti-biotin 

mAbs. 

S5.1 Control experiments with streptavidin.  We hypothesized that SA would 

remain bound to biotin-PE for extended periods of time due to the very slow off-rate of 

the SA to biotin interaction (koff  ~ 10-6 s-1) (70).  Consequently, after washing the liquid 

compartments to remove unbound SA from solution, we expected to observe a 

continuation of frequent resistive pulses with a nanopore coated with a bilayer containing 

biotin-PE.  To start this experiment, we generated a bilayer-coated nanpore that contained 

0.15 mol% biotin-PE lipids.  After adding 6 pM SA to the electrolyte on top of the fluidic 

setup, we applied a voltage of -0.1 V and observed resistive pulses at a frequency of ~ 45 

s-1 (Fig. 10A-App.2).  Consistent with resistive pulses due to proteins with a net negative 

charge, we observed a 28-fold decrease in the frequency of resistive pulses after changing 

the polarity of the applied voltage to +0.1 V (frequency of ~1.6 s-1).  After rinsing the 
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fluidic channels periodically for 3 h, we again applied a voltage of -0.1 V and observed 

resistive pulses at a frequency similar to the frequency before washing (41 s-1 versus  

45 s-1, Fig. 10A-App.2).  When we repeated this experiment with a bilayer-coated 

nanopore that did not contain biotin-PE lipids, we observed almost no resistive pulses 

(frequency of ~ 0.09 s-1, Fig. 2.2B and Fig. 10A-App.2).  Together these results confirm 

that the observed resistive pulses were due to translocation of SA bound to lipid-anchored 

biotin through the nanopore while biotin-PE remained mobile within the fluid bilayer 

coating.  

 
 

 
Figure 10-App.2 | Bar graphs comparing the frequency of resistive pulses due to the translocation of 
streptavidin, anti-biotin mAb, and anti-biotin Fab fragments through bilayer-coated nanopores with 
biotin-PE lipids and respective control experiments. (A) Frequency of resistive pulses due to 
translocation of SA through a nanopore with a bilayer coating that contained biotin-PE lipids and after 
exchanging the electrolyte for 3 h to remove SA from solution compared to a coating without biotin-PE 
lipids (in this case the frequency of events was 0.09 s-1 and is too low to be seen as a bar).  (B) Frequency 
of resistive pulses due to the translocation of anti-biotin mAb through a nanopore with a bilayer coating 
that contained biotin-PE lipids compared to the same experiment after adding 10 µM of soluble biotin to 
the solution and compared to an experiment with a nanopore coating that did not contain biotin-PE lipids.  
(C) Frequency of resistive pulses due to the translocation of anti-biotin Fab through a nanopore with a 
bilayer coating that contained biotin-PE lipids compared to a coating without biotin-PE lipids.  The 
concentrations of the proteins are shown above the bars.  Bilayers were formed from ~99 mol% POPC, 0.8 
mol% Rh-PE, and if indicated, 0.15 mol% biotin-PE.   
 
 

S5.2 Excess free biotin in solution abolished resistive pulses due to anti-biotin 

mAb.  To provide additional evidence for the specificity of detection of proteins that 

were targeted by lipid-anchored biotin (i.e. streptavidin, anti-biotin mAb, or anti-biotin 

Fab fragments) with bilayer-coated nanopores, we performed a control experiment by 

adding a high concentration of soluble biotin (10 μM) to an ongoing experiment with a 

bilayer-coated nanopore that contained biotin-PE.  We hypothesized that the excess biotin 
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in solution would compete for biotin binding sites on these proteins, and consequently, 

the frequency of resistive pulses after the addition of biotin would decrease.  To start this 

experiment, we coated a nanopore with a bilayer that contained biotin-PE lipids.  After 

adding 20 nM anti-biotin mAb to the solution in the top fluid compartment, we observed 

resistive pulses at a frequency of 34 s-1 (Fig. 10B-App.2 and 11A-App.2). After adding 

10 μM soluble biotin to the solution, we observed significantly fewer resistive pulses 

(frequency of 1.3 s-1) demonstrating that approximately 96% of the resistive pulses in 

Fig. 11A-App.2 were due to mAb that was bound to biotin-PE (Fig. 10B-App.2 and Fig. 

11B-App.2).  This result indicates that the detection of the proteins (i.e. streptavidin, 

mAb, or Fab) required binding of the proteins to biotin-PE lipids and that the proteins 

moved through the nanopore while bound to mobile biotin-PE lipids in the fluid, lipid 

bilayer coating.   
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Figure 11-App.2 | Detection of monoclonal anti-biotin IgG1 antibody (mAb) with a bilayer-coated 
nanopore.  (A) Current versus time trace showing resistive pulses due to translocation of mAbs that were 
bound to biotin-PE lipids in the bilayer coating and analysis of td and ΔI of the corresponding resistive 
pulses.   Resistive pulses occurred at a frequency of 34 s-1.  (B) Current versus time trace recorded after the 
addition of excess biotin (10 µM) to the solution, illustrating the reduced frequency of resistive pulses (1.3 
s-1) and analysis of td and ΔI of the corresponding resistive pulses.  (C) Current versus time trace recorded 
using the same nanopore as (A) and (B) but with a bilayer coating that did not contain biotin-PE lipids, 
illustrating the reduced frequency (2 s-1) of resistive pulses even at a concentration of mAb of 25 nM and 
analysis of td and ΔI of the corresponding resistive pulses.  Distributions of td values were fit with equation 
(10-App.2) as described in Sections 2-App.S5.4 and 2-App.S7.1.  Bilayers were formed from ~99 mol% 
POPC, 0.8 mol% Rh-PE, and if indicated, 0.15 mol% biotin-PE. The experiments were performed with the 
nanopore shown in Fig. 2C-App.2.  The recording buffer contained 2.0 M KCl and 10 mM HEPES 
buffered at a pH of 7.4 ± 0.1, and currents were recorded at an applied potential difference of -0.1V. 
 
 

We hypothesized that in this control experiment, the excess biotin in solution 

would occupy the majority of the binding sites of anti-biotin mAb and would therefore 

prevent the mAb from binding to biotin-PE lipids.  Consequently, we expected the 

translocation of mAb through the nanopore to occur faster than before the addition of 

excess biotin (i.e. when the mAb moved through the nanopore as a lipid-anchored mAb-

biotin-PE complex).  The histograms of td and ∆I values in Fig. 11A,B-App.2 confirmed 

this expectation by illustrating that the most frequently observed translocation time 
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decreased from 54 ± 8 µs to ~27 µs after adding excess biotin in solution.  This result 

indicates that the viscosity of the bilayer coating reduced the translocation speed (i.e. 

increased the value of td) of mAbs that were bound to biotin-PE lipids in the bilayer by at 

least a factor of two compared to translocation of unbound mAbs.  Furthermore, in 

contrast to the translocation times for mAb that was bound to biotin-PE (td = 54 ± 8 µs), 

translocation times for unbound mAb (td ≈ 27 µs) were shorter than the bandwidth of the 

recording setup (Section 2-App.S9), and consequently, the values for ∆I were attenuated 

because they were not time resolved (Fig. 11B-App.2). 

S5.3 Resistive-pulses in the absence of biotinylated lipids could not be time-

resolved.  To confirm that time-resolved detection of streptavidin, anti-biotin mAb, and 

anti-biotin Fab fragments with bilayer-coated nanopores required biotin-PE lipids in the 

bilayer coating, we generated bilayer-coated nanopores that did not contain biotin-PE and 

added SA, mAb, or Fab fragments. We analyzed the current recordings to determine the 

frequency of resistive pulses, the values of td, and the magnitudes of ∆I.  Fig. 10-App.2 

shows that bilayers without biotin-PE resulted in resistive pulses at 20-500-fold lower 

frequencies than bilayers with biotin-PE (see also Fig. 11-App.2 and 12A-App.2 for 

original current traces). These results suggest that biotin-PE in the supported lipid bilayer 

concentrated the proteins from solution onto the surface of the fluid bilayer via protein-

ligand binding and that these surface bound proteins translocated through the pores at a 

higher frequency than proteins from the bulk electrolyte.  Furthermore, it suggests that 

the resistive pulses we observed with bilayer-coated nanopores containing biotin-PE were 

mostly (> 90%) due to the movement of protein-biotin-PE complexes within the bilayer 

coating of the nanopore.  
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Figure 12-App.2 | Viscosity of bilayers can slow the translocation of anti-biotin Fab fragments that 
are bound to biotin-PE lipids permitting time-resolved determination of the peak amplitude of 
resistive pulses. (A) Current traces showing resistive pulses due to the translocation of Fab fragments 
through the nanopore.  Resistive pulses were observed at a frequency of ~100 s-1 with bilayer coatings that 
contained biotin-PE, whereas bilayer coatings without biotin-PE resulted in resistive pulses at a frequency 
of 2 s-1.  (B) Individual resistive pulses from translocation of Fab fragments through a bilayer-coated 
nanopore containing 99.2 mol% POPC and 0.8 mol% Rh-PE in the bilayer coating (but no biotin-PE) and 
analysis of td and ΔI of these resistive-pulses.  (C) Individual resistive pulses from translocation of Fab 
fragments through a bilayer-coated nanopore containing 0.15 mol% biotin-PE, ~99 mol% POPC, and 0.8 
mol% Rh-PE and analysis of td and ΔI of these resistive-pulses.  (D) Individual resistive-pulses from 
translocation of Fab fragments through a nanopore coated with a bilayer of increased viscosity (containing 
0.15 mol% biotin-PE, 49.5 mol% POPC, 49.5 mol% cholesterol, and 0.8 mol% Rh-PE) and analysis of td 
and ΔI of these resistive-pulses.  Distributions of td, except the incomplete distribution in (B) were fit with 
equation (10-App.2) as described in Section 2-App.S5.4 and 2-App.S7.1. The experiments were performed 
with the nanopore shown in Fig. 2C-App.2.  The recording buffer contained 2.0 M KCl and 10 mM HEPES 
buffered at a pH of 7.4 ± 0.1. Currents were recorded at an applied potential difference of -0.1 V. 
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In the absence of biotin-PE in the bilayer coating, we expected the translocation 

of proteins through the pore to occur faster than in pores that were coated with a bilayer 

containing biotin-PE since in the latter case the viscosity of the bilayer can reduce the 

translocation speed of proteins bound to lipids.  As a result, we expected to observe 

reduced values of td and attenuated values of ∆I compared when biotin-PE was not used 

in the bilayer coating.  Due to the non-Gaussian distributions of td, we compared the 

values of translocation times, td, that we observed most frequently in each distribution of 

td values (i.e. the most probable value). For instance, the translocation of anti-biotin mAb 

through a bilayer-coated pore without biotin-PE lipids was significantly faster (td ≈ 22 µs) 

than the translocation through the same pore with a bilayer coating that contained biotin-

PE (td = 54 ± 8 µs) (Fig. 11-App.2). The translocation time of 22 µs was below the lower 

limit of accurate quantification of td, and consequently, we obtained reduced values of ΔI 

when the bilayer coating did not contain biotin-PE (Fig. 11C-App.2).  Thus, we did not 

resolve a complete distribution of ΔI, and we observed few values of ΔI (<10%) larger 

than 500 pA (Fig. 11C-App.2). 

We obtained similar results from analyzing resistive pulses due to the 

translocation of Fab fragments; the translocation of Fab fragments through a bilayer-

coated pore without biotin-PE lipids was faster (td ≈ 20 μs, Fig. 12B-App.2) than the 

translocation through the same pore with a bilayer coating that contained biotin-PE (td = 

78 ± 5 μs, Fig. 12C-App.2).  Again, we observed reduced values of ΔI and an incomplete 

distribution of ΔI (Fig. 12B-App.2) when the bilayer did not contain biotin-PE lipids.  In 

contrast, when the bilayer coating contained biotin-PE, the increased translocation time 

of Fab through the nanopore resulted in a fully resolved distribution of ΔI with an 

average value of 254 ± 39 pA (Fig. 12C-App.2). Using equation (2.2), we estimated a 

volume of 172 ± 31 nm3 for the Fab fragments; the expected volume from literature is 

~140 nm3 (55).  Together, these results provide evidence that the local viscosity of the 

bilayer coating in combination with lipids presenting ligands provides an effective novel 

strategy for increasing the translocation time of specific proteins that are bound to lipid-

anchored ligands.  
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To further increase the translocation time of Fab fragments, we generated a 

bilayer coated nanopore that contained biotin-PE and cholesterol.  The presence of 

cholesterol in a lipid bilayer can increase its viscosity significantly (57).  We 

hypothesized that the translocation of Fab through this bilayer-coated nanopore would be 

slower than with a bilayer coating of purely POPC and biotin-PE.  For these experiments, 

we formed the bilayer coating from liposomes prepared with 0.15 mol% biotin-PE, 0.8 

mol% Rh-PE, 49.5 mol% POPC, and 49.5 mol% cholesterol.  As expected, in the 

presence of anti-biotin Fab fragments, we observed translocation times (td = 175 ± 4 µs, 

Fig. 12D-App.2) approximately twice as long as with bilayers that did not contain 

cholesterol (td = 78 ± 5 µs, Fig. 12C-App.2).  We obtained a value of ΔI of 275 ± 29 pA, 

which corresponds to a volume of 178 ± 19 nm3 (Fig. 12D-App.2).  Given that the 

reported volume of Fab fragments are ~140 nm3, these results suggest, once again, that a 

bilayer coating with increased viscosity made it possible to resolve translocation events 

of individual proteins completely in time and that this capability makes it possible to 

determine the volume of Fab fragments accurately.   

S5.4 Comparison of diffusion coefficients of lipids and diffusion coefficients 

of proteins in the nanopore.  We expected the diffusion coefficient of the lipids in the 

bilayer, DL, and the diffusion coefficient of the proteins in the nanopore, DP, to have 

similar values since diffusion coefficients of lipid-anchored proteins are determined by 

the diffusion coefficients of their lipid anchor in a lipid bilayer (50, 71, 72).  Table 2.2 

compares DL to DP using equation (2.3) to calculate DP based on measured td values.  For 

this comparison, we used the most probable value of td and the known charge of the 

protein to calculate the diffusion coefficient, DP.  Recent work by Talaga and Li enables 

an additional method for determination of DP by fitting individual distributions of td 

values to a biased diffusion first passage time model developed by these authors (14).  

Here, we compare diffusion coefficients obtained by these fits to the entire distribution of 

td values with diffusion coefficients of the lipids, DL, determined by FRAP.   

 The model developed by Talaga and Li is shown in equation (10-App.2); this 

function describes the distribution of values of td that result from the translocation of 

charged proteins through a nanopore in the presence of an electric field (14): 
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.
 (10-App.2) 

Here, v (m × s-1) is the electrophoretic drift velocity and D (m2 × s-1) is the diffusion 

coefficient of the protein within the nanopore. Briefly, this equation assumes that a 

particle (or protein) moves in one dimension with an elecrophoretic mobility ue (m2 × V-1 

× s-1) and that its motion is driven by a linear electric field, E  (V × m-1), which results in 

the electrophoretic drift velocity, v = E   × ue.  It also assumes that the protein moves from 

a starting point (signified in time by the beginning of the resistive pulse) to an infinite 

sink that is a distance lp away (signified in time by the end of the resistive pulse).  Further 

details on the derivation can be found in the article by Talaga and Li (14, 73, 74).   

 Since the values of td result from the translocation of a protein, a best-fit analysis 

of the distribution of td values from protein translocation experiments with equation (10-

App.2) provides the diffusion coefficient of the proteins in the nanopore (i.e. D = DP).  

As shown in Table 2-App.2, the values of DP were similar to values of DL when the 

bilayer coating contained biotin-PE lipids and when the proteins were able to bind to the 

lipid-anchored biotin moiety.  Typically we observed values of DP that were within ± 

31% of the value for DL, with a maximum deviation of +117%.  When the bilayer coating 

did not contain biotin-PE or when the protein did not bind to the lipid-anchored biotin 

moiety (i.e. in the presence of excess biotin free in solution), this analysis determined 

values of DP that were at least 3-fold greater than the value of DL.  Although these DP 

values were only semi-quantitative due to the incomplete distribution of such short td 

values, they indicate that the diffusion coefficient of unbound proteins through the 

nanopore did not depend on the viscosity of the bilayer coating.  Moreover, the 

agreement between DP of proteins bound to a lipid-anchored ligand and DL supports the 

hypothesis that the fluidity of the bilayer coating determined the translocation time of 

lipid-anchored proteins through the nanopores.  These results provide further evidence for 

the formation of a fluid, bilayer coating within the nanopore. 

 

  

( )
( )2

4

( )
4

p d

d

l v t

Dt
d p

d
d d

v t l e
P t

t D t π

− −

+ ×
=

×



 65

Table  2-App.2.  Comparison of diffusion coefficients of lipid-anchored proteins within the nanopore, 
DP, determined by equation (10-App.2) with diffusion coefficients of lipids in the bilayer coating, DL.

Protein Lipid Bilayer DL
 a DP

 b ΔD
c 

  (nm2 µs-1) (nm2 µs-1) % 

SAd  POPC + biotin-PE  1.13 ± 0.13  1.4  ± 0.1  +24 

SAd  D∆PPC + biotin-PE  1.56 ± 0.16  1.7  ± 0.1  +9 

mAbe  POPC + biotin-PE  1.29 ±  0.13  2.8  ± 0.2  +117 

Fabe  POPC + biotin-PE  1.27 ± 0.13  1.7  ± 0.1  +31 

Fabe 
 50 mol% POPC and  
 50 mol% cholesterol 
 + biotin-PE 

 0.31 ± 0.03  0.6  ± 0.05  +100 

a DL was calculated based from the FRAP method as described in Section 2-App.S2.  b Diffusion coefficient 
of the protein, DP, in the nanopore as obtained from the best-fit of equation (13-App.2), the integrated form 
of equation (10-App.2), to the cumulative distributions of td values (see Section 2-App.S7.1).  c Delta (ΔD) 
was calculated by: 100 × (DP – DL) / DL  d Experiments were performed with the nanopore shown in Fig. 
2B-App.2.  e Experiments were performed with the nanopore shown in Fig. 2C-App.2. 
 
 
2-App.S6.  Translocations of non-spherical proteins generate broad 
distributions of ∆I 
 
 Fig 2.4 shows that the distributions of ΔI values for streptavidin and Fab 

fragments were significantly narrower than the distribution for the IgG antibodies.  On 

first sight, the two maxima in Fig. 2.4C might be attributed to a contamination by other 

proteins in the solution of anti-biotin IgG antibodies.  Closer inspection of the data 

reveals, however, that these contaminants would have to bind specifically to biotin, since 

neither of the two peaks in Fig. 2.4C were present in control experiments with pores that 

were coated with the same bilayer but without biotinylated lipids (Fig. 11-App.2).  The 

broad distribution in Fig. 2.4C was, however, not caused by a contamination of anti-

biotin Fab fragments in the solution of anti-biotin IgG antibodies because Fab fragments 

would result in a narrow peak in the distribution with a most frequently observed ΔI 

value ~0.25 nA (Fig. 2.4B), while the two maxima in Fig. 2.4C were located at ΔI values 

of ~0.4 nA and ~1.0 nA.  Therefore, we attribute the broad distribution of ΔI values in 

Fig. 2.4B primarily to the complex molecular shape of IgG antibodies (γ ≠ 1.5) compared 

to the approximately spherical shape (γ ≈ 1.5) of streptavidin and Fab fragments.  In 

order to provide an estimate for the shape factor of IgG antibodies, we considered their 

thickness of 2.4 nm and volume of 347 nm3 (51) and approximated their shape by an 

oblate spheroid (i.e., by a lentil-shaped particle) with a volume equal to IgG antibodies 
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and a pole-to-pole diameter, A, equal to the thickness of IgG antibodies (A = 2.4 nm).  

This approximation yields an oblate spheroid with an equatorial diameter, B, of 16.6 nm.  

The shape factor, γ, of an oblate spheroid with diameters A and B depends on the 

orientation in which it translocates through the pore (52) . Fig. 13-App.2 illustrates this 

orientation dependence of γ graphically. For the two extremes of translocation with the 

pole-to-pole axis of the spheroid oriented perpendicular to the length axis of the pore, 

Grover et al. predicted γ = 1.1, and for translocation with the equatorial axis oriented 

perpendicular to the length axis of the pore they predicted γ ≈ 5.0 (52).  The two dashed 

red lines in Fig. 2.4C indicate ΔI values for these two values of γ as predicted 

theoretically by equation (2.2) for oblate spheroids with diameters A and B and a volume 

of 347 nm3.  Since these two values of ΔI represent the extremes with regard to the 

orientation during translocation, the majority of the experimentally observed values of ΔI 

would be expected to lie between these extremes.  Fig. 2.4C confirms this expectation 

and provides the first experimental support that resistive pulse analysis may yield 

information about the shape (based on the distribution of ΔI values) and orientation 

(based on the individual ΔI value) of proteins with known volumes during their 

translocation, as predicted theoretically by Grover et al. in 1969 (52).   Previously, Mathe 

et al. observed orientation dependent translocation in nanopore-based DNA experiments 

through α-hemolysin pores (75) and Akeson et al.observed large variations in ΔI for the 

same population of nucleic acids due to various physical processes (76). 
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Figure 13-App.2 | Two extremes of possible orientations of an IgG antibody, approximated by an 
oblate spheroid, during its translocation through a nanopore.  (A) Cartoon illustrating the translocation 
of an oblate spheroid with its pole-to-pole axis oriented perpendicular to the length axis of the pore; this 
orientation would result in a shape factor, γ, of 1.1.  (B) Illustration of the same oblate spheroid as in (A) 
but translocating through the pore with its equatorial axis oriented perpendicular to the length axis of the 
pore; this orientation would result in a shape factor, γ, of 5.0.  Note that the illustration is drawn to scale 
and that the nanopore was drawn to match the dimensions of the pore used for the experiments in Fig. 2.4C.  
A scaled space-filling model of an IgG antibody (77) with a volume of 347 nm3 overlays the oblate 
spheroid with the same volume. 
 
 

As mentioned before, the two orientations in Fig. 13-App.2 represent the two 

extremes, realistically a lipid-anchored protein will probably not move through the pore 

in only one orientation but in many orientations as it rotates around its lipid anchor.  To 

examine the possibility of rotation, we estimated the time it would take an antibody to 

rotate 2π radians (360°) around one axis based on equations (11-App.2) and (12-App.2) 

(78): 
2 2 rD tθ< > = , (11-App.2) 

where θ (rad) is the degrees of rotation, Dr (rad2 s-1) is the rotational diffusion coefficient 

and, t is (s) the time.  Using the effective radius of an IgG antibody determined from 
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diffusion coefficient measurements (79) (reff = 5.5 nm), we estimated Dr for an IgG 

antibody from equation 12-App.2 (78): 

38
B B

r
r M

k T k TD
f rπη

= = , (12-App.2) 

where kB (J K-1) is the Boltzmann constant, T  (K) is the temperature, and fr is the 

rotational friction coefficient.  Based on these calculations, which were derived for 

spherical particles, we estimated that the average time for an antibody to complete one 

rotation would be ~ 18 µs. We also calculated the time for one rotation of a disk with a 

similar size to an IgG antibody and obtained a value of ~ 26 µs (78).  These times are 

approximately one third of the translocation time of the antibody through the nanopore 

(Fig. 2.3C).    Consequently, the rotation of the antibody while inside the nanopore may 

result in a value of γ that is the average of the two extreme values, which would yield <γ> 

= 3.1.  This hypothesis is consistent with the peak at ΔI ~1.0 nA in the distribution of ΔI 

values for the mAb as indicated by the red dashed line in Fig. 2.4C.  The additional peak 

in Fig. 2.4C at ΔI ~ 0.4 nA might be due to factors that are not considered in equations 

(11-App.2) and (12-App.2).  For instance, the rotational diffusion coefficient predicted by 

equation (12-App.2) assumes a spherical protein that is free in solution.  Here, the protein 

was not spherical and attached to a surface inside the confined volume of a nanopore.  All 

three effects likely increase the average time it takes for the antibody to complete a full 

rotation.  This increased time in combination with steric effects inside the confined 

volume of the nanopore may result in a preferred orientation of the antibody in the 

nanopore (i.e. Fig. 13A-App.2) that is maintained throughout most of the translocation 

time.  Another possibility is the alignment of the antibody within the electric field due to 

a dipole moment within the molecule.  Due to the shape of the IgG antibody, such an 

alignment would be most likely along its length axis and result in the orientation of the 

mAb shown in Fig. 13A-App.2 and a peak in the ΔI distributions at a value of γ of 

approximately 1.1.   In addition, hydrodynamic effects as a result of rotation may drive 

antibodies towards the wall of the pore, which would also favor the orientation shown in 

Fig. 13A-App.2.   

 To provide a second example of a broad distribution of ΔI obtained with a non-

spherical protein, we employed a bilayer coated nanopore containing biotin-PE lipids in 
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the bilayer coating, streptavidin, and a biotinylated IgG antibody (anti-catalase antibody, 

AbCam®).  In this experiment, streptavidin bound to the biotin-PE lipids and translocated 

through the pore resulting in resistive pulses with small values of ΔI (Fig. 14A-App.2).  

Subsequent addition of the biotinylated-IgG antibody and the translocation of the lipid-

anchored, streptavidin-IgG complex returned large values of ΔI and an even broader 

distribution of values for ΔI (Fig. 14B-App.2) than those from the translocation of the 

anti-biotin mAb (Fig. 11A-App.2 and Fig. 2.4C).  We expected this result since the shape 

of the streptavidin-IgG complex deviates even further from a spherical shape than an IgG 

antibody.  We approximated the streptavidin-IgG complex as an oblate spheroid with a 

pole-to-pole diameter of 2.4 nm and an equatorial diameter of 18.8 nm; the shape factor 

of such an oblate spheroid would be γ = 1.1 when the pole-to-pole axis is oriented 

perpendicular to the length axis of the pore and γ = 5.5 when the equatorial axis is 

oriented perpendicular to the length axis of the pore.  Figure 14-App.2 shows that 

approximately 95% of the values for ΔI were between the expected ΔI for the protein 

complex given the molecular volume of the complex and these values for γ.   
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Figure 14-App.2 | Translocation of non-spherical lipid-anchored streptavidin-IgG complexes resulted 
in broad distributions of ∆I due to the various orientations the complex could assume inside the 
nanopore.  (A) Distributions of ∆I and td resulting from the translocation of streptavidin while bound to 
biotin-PE lipids in the bilayer coating of a nanopore. (B) Distributions of ∆I and td  after the addition of a 
biotinylated polyclonal, IgG antibody against catalase.  Note that before recording resistive pulses, the 
electrolyte solutions were thoroughly rinsed to remove unbound proteins from the solution.  The bilayer 
coating in this experiment contained 0.15 % biotin-PE, 0.8% Rh-PE, and ~99% POPC.  The nanopore had 
a diameter of 36 nm and a length of 26 nm with the bilayer coating.   
 
 
2-App.S7.  Determining the most probable value of td and its error 
   

S7.1 Determining the most probable td value and its error by fitting 

cumulative distributions of td values.  In the main chapter, we report the most 

frequently observed value of td, located at the absolute maximum of each distribution of 

measured td values.  We quantified these most probable values of td by generating 

cumulative distributions of td values. To generate cumulative distributions we summed 

the relative number of observations that occurred at or below a specified td value (x-axis), 

effectively integrating the data (80).  Cumulative distributions are advantageous 

compared to the histograms shown in Fig. 2.3 because they are generated from all td 

values without binning the data (80).  To fit these cumulative distributions we integrated 

equation (10-App.2) to obtain equation (13-App.2) and fit the data to this equation: 
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Fig. 15-App.2 shows several cumulative distributions of td values that we obtained from 

translocation events of mAb through the pore while we applied different voltages across 

the pore.  Fig. 15-App.2  also shows the corresponding best fits of equation (13-App.2) to 

the data in these distributions.   

 

 

Figure 15-App.2 | Cumulative distributions of td obtained from translocation events of mAb at 
different applied voltages.  Distributions of td values were determined from recording translocation events 
of mAb while applying potential differences of 120 mV (—), 100 mV (—), 80 mV (—), 70 mV (—), and 
60 mV (—) across the chip.  The inset shows the distributions over the range of td values of 20 μs to 150 μs.  
Best curve fits of this data to equation (13-App.2) determined the most probable values of td in order of 
decreasing applied potential difference: 40 μs, 43 μ s, 60 μs, 67 μs, and 90 μs.   
 
 

To determine the most probable td value for a given distribution, we set the 

second derivative of the fitted equation (13-App.2) equal to 0 and solved for td.   The 

most probable td values determined from the cumulative distributions shown in Figure 

15-App.2 are plotted in Figure 16-App.2 in Section 2-App.S8.1.  To report an error for 

each most probable td value, we varied the fitting parameters, the length of the nanopore 

(lP) and the diffusion coefficient (DL), by their measured error and reported the maximum 

deviation in td.  The maximum error in lP, as estimated from the data in Fig. 2.1C, was ± 

1 nm while the maximum error of diffusion coefficients of lipids in supported lipid 
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bilayers as determined by FRAP was ± 10 % (57).    This method resulted in most 

probable td values with errors that ranged from ± 5 % to ± 15 % of the most probable 

value of td.  

Figure 15-App.2 shows that occasionally cumulative distributions whose most 

probable td values differed by only 3 μs could be resolved (see the black and red data) if 

the experiment was performed on the same chip, with the same bilayer, and under the 

same experimental conditions.  This resolution occurred because any error in lP would be 

nearly the same systematic error for all recordings and would therefore be expected to be 

significantly smaller than ± 1 nm.  The errors of ± 5 % to ± 15 % of the most probable td 

values reported above refer to separate experiments, possibly with different chips, when 

the chips were cleaned and fresh bilayers were formed between each experiment.  

S7.2 Determining the most probable td value by fitting histograms of td.  In the 

experiments for determining the most probable values of td for the translocation of 

streptavidin at different pH values of the electrolyte (Fig. 2.5), we found that a few of the 

cumulative td distributions could not be fit very well with equation (13-App.2).  

Therefore we determined the most probable value of td from these distributions with 

equation (14-App.2), which returns the location of the maximum in the histograms:   
( ) ( )

1
x xc

cw x x
e

w

oy y Ae

+⎛ ⎞−⎜ ⎟− − +
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⎝ ⎠= + . (14-App.2) 

In this equation yo is the baseline, A is the amplitude of the peak, xc is the x-value at the 

center of the peak (i.e. the most probable value of td), and w is the width of the 

distributions.  Based on the results of this fit to the distributions of td, we reported the 

value of xc and its error from the fit as the most probable td value with its associated error.  

To determine if the value of xc was sensitive to the size of the bins in the td histograms, 

we generated histograms with different bin-widths from td values obtained streptavidin.  

In all cases the first bin began at 25 µs since this value represents the lower limit for 

accurate detection and quantification of td (see Section 2-App.S9).  Fig. 16-App.2 shows 

the resulting histograms from bin widths of 15 µs, 30 µs, and 50 µs.  In all three cases, 

the most probable td values (i.e. the value of xc) determined by the best curve fits of 

equation (14-App.2) to the distributions were within error of each other (with maximum 

deviations of 6 µs), demonstrating that this method of fitting distributions of td values for 
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drops inside the pore; it also assumed that inside of cylindrical nanopores the voltage Vp 

(V) drops linearly along the length of the pore, lp (m): 

. (15-App.2) 

Note that Vp refers only to the part of the total applied voltage, Va, that drops inside the 

pore, and it can be calculated by Vp = Va × Rp / Rtotal (see equations (3-App.2) and (6-

App.2)).  Based on these assumptions, the charged protein experiences a constant force 

opposed by a viscous drag inside the pore, leading to a constant net electrophoretic drift 

velocity, ν (m s-1): 

, (16-App.2) 

where ζ (kg s-1) represents the viscous friction coefficient.  Assuming that, for lipid-

anchored proteins, ζ is dominated by the lipid anchor in the bilayer (50, 71, 72), it can be 

expressed by the Stokes-Einstein relationship: 

,  (17-App.2) 

where kB (J K-1) is the Boltzmann constant, T (K) is temperature, and DL (m2 s-1) 

represents the lateral diffusion coefficient of lipids in the bilayer.  Combining equations 

(15-App.2)-(17-App.2) yields the desired functional relationship between td, the diffusion 

coefficients of the lipids in the bilayer coating, and the net charge of a translocating 

protein: 

.  (18-App.2) 

This equation is the same as equation (2.3).   

In order to validate this model and the resulting equation (18-App.2), we analyzed 

translocation events of streptavidin molecules through bilayer-coated pores with biotin-

PE lipids while employing electrolyte solutions of various pH to vary the value of |z| 

according to Sivasankar et al. (56). Fig. 2.5 shows that equation (18-App.2) accurately 

predicted td as a function of |z| and could be used to determine parameters such as DL, lP, 

or |z|.   
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We further validated equation (18-App.2), which is the same as equation (2.3), by 

determining the most probable td values from translocation events of the IgG antibody as 

a function of the voltage drop inside the nanopore, Vp.  Fig. 17-App.2 illustrates that td 

was indeed inversely proportional to Vp as predicted by equation (18-App.2).  Moreover, 

fitting equation (18-App.2) to the data in Fig. 16-App.2 revealed a net charge of the 

antibody of z = -4.2 ± 0.5 with z as the only fitting parameter.  This value compares well 

to the value of z = -3.6 ± 2.3 determined by capillary electrophoresis (Section 2-

App.S8.2).  We also used equation 18-App.2 to calculate a net average charge for the Fab 

fragment of -5.4 ± 0.6 based on the most frequently observed td value in Fig. 2.3B.  This 

value is comparable to the charge that we determined by capillary electrophoresis (z = -

4.3 ± 0.4) or by fits to the distributions of td (z = -2.9 ± 0.6) (see Sections 2-App.S8.2 and 

2-App.S8.3).  As a result, we reported a range for the values of z in the main chapter.  

Note that in all experiments, we assumed that the pH value inside the nanopore 

was the same as the pH value in the bulk electrolyte solution.  Since we carried out all 

protein translocation experiments in nanopores that were coated with electrically neutral 

phosphatidylcholine bilayers and since the KCl concentration of the electrolyte in these 

experiments was 2.0 M, we did not expect significant differences between the pH value 

inside the pore and the value in the bulk solution. 
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Figure 17-App.2 | Most probable td values for the monoclonal anti-biotin IgG1 antibody (mAb) as a 
function of the voltage drop, VP, across a bilayer-coated nanopore containing biotin-PE.  The red 
curve was obtained by a best fit of equation (18-App.2) to the data with z as the only fitting parameter.  The 
fit returned a value for z of -4.2 ± 0.5 with R2 = 0.94 (N = 8).  The error bars of the most probable td values 
in this plot are overestimates that are based on an lP of ± 1 nm since all of these recordings were performed 
on the same chip with the same bilayer and the variations in lP between current recordings are more likely 
to be ± 0.2 nm due to fluctuations in the thickness of the water layer and lipid bilayer.  The bilayer coating 
in this experiment contained 0.15% biotin-PE, 0.8% Rh-PE, and ~99% POPC.  After the bilayer coating, 
the nanopore had a diameter of 36 nm and a length of 24 nm.   
 
 
 S8.2 Capillary electrophoresis for determining the net charge of proteins. To 

provide independent evidence that values of td can be used to calculate the net charge of 

proteins used in this work, we determined the net charge of streptavidin (SA), anti-biotin 

antibody Fab fragments, and monoclonal anti-biotin IgG antibodies (mAb) from capillary 

electrophoresis (CE) experiments.  Fig. 18A,B-App.2  shows electropherograms for SA 

and Fab that we obtained using a CE instrument from Hewlett-Packard equipped with a 

UV absorbance detector.  In each electropherogram, two peaks were present due to a 

transient increase in the absorbance within the light-path of the detector near the end of 

the capillary.  The first peak was due to the so-called neutral marker (a small molecule 

with a net charge of zero), 4-methoxybenzyl alcohol, and the second peak was attributed 

to the protein.  The difference between the elution time for the neutral marker, tNM (s), and 

the elution time, tA (s), for a spherical protein is given by equation (19-App.2) (81):  

1 16T D M
A NM

A

L L r
t t

z
V e

π η
⎛ ⎞

−⎜ ⎟
⎝ ⎠=  ,  (19-App.2) 
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where LT (m) is the total length of the capillary, LD (m) is the length of the capillary to the 

detector, η (Pa × s) is the viscosity of the electrolyte (calculated in this work from 

equation (8-App.2)), rM (m) is the effective radius of the protein, VA (V) is the applied 

potential difference across the capillary, and e (C) is the elementary charge of an electron.  

Based on the volume of the proteins, we estimated an effective radius for SA of 2.9 nm 

(corresponding to 105 nm3) and for Fab of 3.2 nm (corresponding to 140 nm3).  For the 

mAb, we used an effective radius of 5.5 nm that Jossang et al. determined from the 

diffusion coefficient of IgG antibodies (79).  Table 3-App.2 lists the calculated charge of 

SA and Fab that we determined from these CE experiments and compares these values to 

the ones determined from fits to the distributions of td values obtained during the 

nanopore translocation experiments.  
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Figure 18-App.2 | Capillary electropherograms for determining the charge of the proteins used in 
this work.  (A,B) Electropherograms obtained with a CE instrument equipped with UV detection.  Protein 
samples were prepared in PBS at pH 7.4 and included the neutral marker, 4-methoxybenzyl alcohol.  The 
neutral maker appeared at 15-15.5 min and is labeled in the figure.  Peaks due to the protein are shown in 
red and the time of each peak’s maxima is indicated in the figure.  The capillary was a fused silica capillary 
with a total length of 64.5 cm and an internal diameter of 50 µm.  The length of the capillary to the detector 
was 56 cm and the total applied voltage was 15 kV.  The temperature of the capillary was maintained at 25 
°C (C) Electropherogram obtained with a CE instrument equipped with fluorescence excitation at 490 nm 
and detection at 540 nm.  The protein sample was prepared in PBS at pH 7.4 and included the zwitterionic 
fluorophore, rhodamine B, which served as the neutral fluorescent marker.   The sample contained 1.8 µM 
of the anti-biotin IgG mAb and 0.5 µM of biotin-5-fluorescein, with a net charge of z = -1.  The capillary 
was a fused silica capillary with a total length of 30 cm and an internal diameter of 50 µm.  The length of 
the capillary to the detector was 20 cm and the total applied voltage was 7.0 kV.  The temperature of the 
capillary in (C) was maintained at 28 °C   Note that in all cases, the baseline of the electropherograms were 
adjusted. 
 
 

Based on CE experiments, we measured slightly different values for the charge of 

SA than those reported by Sivisankar et al; these deviations increased as the pH 

decreased.  These discrepancies are likely due to the difference in the charge of SA in 

solution compared the charge of SA bound to a surface by a biotin anchor.  The reported 

pI of SA in solution is 6.3 (56) while Sivasankar et al. reported a pI of SA bound to 

biotinylated lipids of 5-5.5 and Vlassiouk et al. reported a pI of SA bound to immobilized 

biotin on a surface of ~5.5 (56, 82).  Since, the experimental conditions used by 

Sivasankar et al. were very similar to those used here (i.e. SA bound to biotinylated lipids 
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in a lipid bilayer composed of lipids with a head group of phosphatidylcholine), we 

plotted td values in Fig. 2.5 versus the values reported by Sivasankar et al.  

 
Table 3-App.2.  Net valence, |z|, of the charge of proteins, diffusion coefficients of proteins within the 
nanopore, DP, and diffusion coefficients of lipids in the bilayer coating, DL.

Protein 
Lipid 

Bilayera 
pH zLITERATURE(56) zCE

b zTd
c DL

 d DP
c ΔD 

      (nm2 µs-1) (nm2 µs-1) % 

SA  POPC 7.4  -1.9 ± 0.4 -1.8 ± 0.1 -0.8 ± 0.2 1.13 ± 0.13 1.4 ± 0.1  +24 

SA  DΔPPC 7.4  -1.9 ± 0.4 -1.8 ± 0.1 -1.1 ± 0.2 1.56 ± 0.16 1.7 ± 0.1  +9 

SA  POPC 8.0 -2.4 ± 0.4 -2.8 ± 0.3 -2.3 ± 0.2 f 1.65 ± 0.17 1.8 ± 0.1 f  +6 

SA  POPC 7.1 -1.7 ± 0.4 -0.9 ± 0.2 -1.6 ± 0.1 f 1.65 ± 0.17 1.7 ± 0.1 f  +6 

SA  POPC 6.6 -1.2 ± 0.4 -0.7 ± 0.2 -1.0 ± 0.1 f 1.65 ± 0.17 1.4 ± 0.1 f  -15 

SA  POPC 6.1 -0.8 ± 0.4 -0.3 ± 0.1 -0.9 ± 0.1 f 1.65 ± 0.17 1.0 ± 0.1 f  -39 

SA  POPC 5.7 -0.5 ± 0.4 — -0.9 ± 0.1 f 1.65 ± 0.17 1.2 ± 0.1 f  -21 

Fab  POPC 7.4 — -4.3 ± 0.4 -2.9 ± 0.6 1.27 ± 0.13 1.7 ± 0.1  +31 

mAb  POPC 7.4 — Peak 1: -0.3 ± 0.3 -4.2 ± 0.5e 1.29 ± 0.13 1.8 ± 0.5  +38 

    Peak 2: -3.6 ± 2.3     

a All lipid bilayers also contained 0.15 – 0.4 mol% of Biotin-PE. b Value of zCE determined by capillary 
electrophoresis from equation (18-App.2). c Value of zTd and DP determined by fitting the cumulative 
distributions of td with equation (13-App.2), in which v was described by equation (20-App.2), with both 
zTd and DP as fitting parameters. d

 Values for DL determined by FRAP as described in Section 2-App.S2.e 
Value of z determined from the fit in Fig. 17-App.2. f Values were determined by fitting equation 21-App.2 
to histograms.  
 

 

We performed a second set of CE experiments with a CE instrument from 

Beckman equipped with fluorescence detection.  To detect proteins with this instrument, 

we incubated the anti-biotin IgG antibody with biotin-5-fluorescein prior to performing 

the CE experiment.  Fig. 16C-App.2 shows the resulting electropherogram, which we 

used to calculate the net charge of the mAb.  Since biotin-5-fluorescein presumably has a 

net charge of approximately -1 at pH 7.4, we subtracted 1 charge from the value of z 

determined with equation (19-App.2) to calculate a net charge of the mAb.  We observed 

two peaks in the presence of mAb, both of which grew in size with increasing 

concentrations of biotin-5-fluorescein.  These two peaks did not overlap with the peak of 

unbound biotin-5-fluorescein and could therefore both represent the antibody-ligand 
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complex.  These two peaks after the neutral marker in Fig. 18C-App.2 correspond to z 

values of -0.3 ± 0.3 and -3.6 ± 2.3 (Table 3-App.2). 

S8.3 Fitting individual distributions of td with both z and D as fitting 

parameters.  To determine if parameters such as |z| and DL could be extracted from 

distributions of td such as those shown in Fig. 2.3, we incorporated the net valence of the 

charge, |z|, of a protein into equation (10-App.2) by combining it with equation (20-

App.2), which describes the electrophoretic drift velocity, v, based on equations (15-

App.2)-(17-App.2): 

P

P B

z eV D
v

l k T
= . (20-App.2) 

Substituting equation (20-App.2) into equation (10-App.2) resulted in equation 

(21-App.2), which permitted the determination of the diffusion coefficient of lipid 

anchored proteins, DP, and the net valence of the charge of the proteins, |z|, in the 

nanopore based on best curve fits to individual distributions of td.   
2
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(21-App.2) 

Table 3-App.2 compares the values of |z| obtained with this method to the 

literature values of |z| for SA, the values of |z| obtained with CE, the values of DP, and the 

values of DL for SA, mAb, and Fab.  For Fab, values of |z| and DP determined with 

equation (21-App.2) from nanopore-based td distributions were in good agreement (± 35 

%) with the expected values as obtained from CE and from FRAP experiments.   

For streptavidin, values of |z| determined by Sivasankar et al. agreed well with the 

values determined by fitting td distributions from translocation experiments with SA with 

equation (21-App.2).  The only exception was the experiment with streptavidin in an 

electrolyte with a pH of 5.7.  The difference in the value of |z| of Δz = 0.4 in the 

electrolyte with a pH of 5.7, is likely due to the reduced charge of SA at this pH (|z| = 0.5 

± 0.2) (56).  This charge, which is close to neutral, presumably led to a shift from an 

electrophoretically dominated movement through the nanopore to a diffusion-dominated 

movement of SA.  Consequently, a fraction of the recorded resistive pulses may have 
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been due to partial translocation events (i.e. diffusion of SA into and out of the same side 

of the nanopore).  Such events could be associated with shorter than expected values for 

td.     

For the mAb, we observed two peaks in the CE data which corresponded to two 

different charges for the mAb.  One of the peaks corresponds to a z = -3.6 ± 2.3, which 

agrees well with the value of z = -4.2 ± 0.5 determined from the fit in Fig. 17-App.2.  The 

second peak in the CE data corresponds to a z = -0.3 ± 0.3.   If the charge of the mAb 

would indeed be -0.3 ± 0.3, then some proteins may only partially move through the 

nanopore (as discussed for SA at pH 5.7), which may result in shorter than expected 

values for td.  Consequently, the predictions of the charge of the mAb based on td values 

would calculate values for z that are larger than the true value.  However, based on the 

results in Fig. 17-App.2, the charge of the mAb is likely to be z = -3.6 rather than -0.3.  

 

2-App.S9.  Data acquisition and analysis of resistive pulses for protein 
detection  
 

We used Ag/AgCl pellet electrodes (Warner Instruments) to monitor ionic 

currents through electrolyte-filled nanopores with a patch-clamp amplifier (Axopatch 

200B, Molecular Devices Inc.) in voltage clamp mode (i.e., at constant applied voltage).  

We set the analog low-pass filter of the amplifier to a cutoff frequency of 100 kHz.  We 

used a digitizer (Digidata 1322) with a sampling frequency of 500 kHz in combination 

with a program written in LabView to acquire and store data.   

To detect resistive pulses caused by the translocation of proteins through the 

nanopore, we applied a potential difference of ± 0.1 V across the nanopore.  The polarity 

refers to the top fluid compartment that contained the protein while the other fluid 

compartment was always connected to ground. We recorded the resulting current with the 

maximum bandwidth of the recording setup (cut-off frequency, fc ~ 50 kHz) (28) and 

with a sampling frequency of 500 kHz using a custom program written in LabVIEW.  To 

distinguish resistive pulses reliably from the electrical noise, we used the software 

PClamp (Molecular Devices Inc.) to determine the baseline of the current and to filter 

current recordings with a digital, Gaussian low-pass filter (fc =15 kHz). 
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Using PClamp software, we performed a threshold-search for resistive pulses 

within the current recordings.  We defined the start of a resistive pulse by a resistive 

decrease in the magnitude of the current past a threshold value that we set to 5× the 

standard deviation of the noise of the baseline current.  Based on this definition, typical 

threshold values ranged from 150 to 250 pA depending on the nanopore dimensions and 

the bilayer coating. The subsequent return of the current past a second threshold, which 

we set to one standard deviation of the noise in the baseline current, and toward the 

baseline value, marked the end of the resistive pulse.  We confirmed that for the analysis 

of translocation events from streptavidin and Fab, this procedure returned the same td 

values as a method based on half-widths of resistive pulse recently reported by Talaga 

and Li (14).  Due to the large magnitude and magnitude variability of resistive pulses in 

the antibody experiments, we determined td values based on the half-width of resistive 

pulses from antibodies in a method similar to the approach described by Talaga and Li 

(14).  We defined ΔI as the maximum deviation from the baseline current within the time, 

td.   

To determine the time-response of the recording and analysis methods 

experimentally, we used a waveform generator (Agilent 33220A) to input current pulses 

in a method similar to Talaga and Li (14).  These current pulses had a ΔI of 650 pA with 

a rise time of 5 ns and durations ranging from 10 μs to 200 μs.  Analyzing the data based 

on the half-width of the current pulses, Fig. 19A-App.2 shows that we could accurately 

measure the magnitude (ΔI) of resistive pulses if these pulses had td values larger than 50 

μs and Fig. 19B-App.2 shows that we could accurately determine td values that were 

larger than 25 μs.  In all quantitative analyses of resistive pulses reported in this work, we 

constructed td histograms only from translocation events that lasted at least 25 μs and ΔI 

histograms only from translocation events that lasted at least 50 μs (typically 70 μs).  

To characterize the inherent measurement error of td, σt, of the recording and 

analysis methods, we added a current trace containing experimentally recorded electrical 

noise from a resistive-pulse experiment to current traces containing current pulses 

generated by a waveform generator.  Thus, these current traces contained current pulses 

with a precisely defined duration and contained a realistic representation of the electrical 

noise in a resistive pulses experiment.  Using the resulting current traces we determined td 
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Figure 20-App.2 | Histograms of td 
values measured from current pulses with defined duration and added electrical noise from resistive 
pulse experiments.   Current pulses with precisely defined durations of 30, 50, 70, 100, 120, 140, and 160 
µs were combined with electrical noise from a resistive-pulse experiment and the duration of these pulses 
was determined by their half-width.  The red lines were obtained by fitting the histograms with a Gaussian 
distribution.  From these fits, the measurement error of td, σt, was determined to be 2.3, 4.0, 3.4, 3.9, 3.2, 
3.2, and 3.4 µs (listed in order of increasing pulse duration). 
 
 
2-App.S10.  Preparation of amyloid-beta samples and gel-electrophoresis  
 

We received Aβ peptides (residues 1-40, Aβ 1-40) in powder form from GL 

Biochem (Shanghai) Ltd with a purity above 98%.  To remove aggregates of Aβ 1-40, we 

dissolved the powder in hexafluoroisopropanol (HFIP) to a concentration of 1 mM of Aβ 

1-40.  After 24 h incubation in HFIP, we diluted this solution with cold (4 °C) deionized 

water at a 2:1 (v/v) ratio (H2O:HFIP).  We then rapidly aliquoted the solution, 

immediately froze it in a CO2/acetone bath, and lyophilized the frozen aliquots for two 

days to remove HFIP (58).  To start the aggregation process of Aβ(1-40) peptides, we 

dissolved the lyophilized powder in deionized water to a concentration of 1 mg × mL-1.  

We incubated these samples in siliconized plastic microcentrifuge tubes on a 

temperature-controlled shaker at a temperature of 22 °C.  To detect aggregates of Aβ 1-

40, we formed a supported lipid bilayer of POPC lipids on a chip containing a nanopore 

with a diameter of 96 nm and a length of ~ 275 nm (dimensions are before the lipid 

bilayer coating).  We added solutions containing Aβ(1-40) to the top solution 

compartment of the fluidic setup such that the final concentration of Aβ(1-40) ranged 

from 0.1 to 0.2 mg × mL-1.  We used a recording buffer containing 70 mM KCl and 10 



 85

mM HEPES with a pH of 7.4 ± 0.1 and recorded resistive pulses at an applied potential 

difference of +0.2 V. 

To confirm the presence of large aggregates of Aβ peptides in these samples 

independently, we performed a Western blot with solutions containing Aβ(1-40) that 

were allowed to aggregate for 0, 24, 48, and 72 h.  Prior to performing the 

electrophoresis, we followed a standard protocol (83) and cross-linked Aβ(1-40) samples 

(1 mg mL-1) with 0.04% glutaraldehyde for 20 min at room temperature and stopped the 

reaction by adding 200 mM of Tris.  We diluted the cross-linked samples to 0.01 μg μL-1 

in native sample buffer (Bio-Rad), containing 10% (v/v) sodium dodecyl sulfate.  To 

resolve aggregates of Aβ(1-40) of different molecular weights we used a polyacrylamide 

gel: 18% Tris-HCl Ready Gel (Bio-Rad) in Tris-Glycine buffer.  After running the gel, 

we transferred proteins to a polyvinylidene fluoride (PVDF) membrane (PerkinElmer 

Life Science) and blocked the membrane for 1 h with TBS buffer containing 5% (w/v) 

nonfat dry milk and 0.0625% (w/v) Tween20.  We incubated the membrane with a 

primary antibody against Aβ(1-40) (6E10 from Covance) for 1.5 h.  An IgG anti-goat 

antibody served as the secondary antibody and was incubated with the membrane for 1 h.  

We developed the membrane onto film using enhanced chemiluminescence (ECL, 

PerkinElmer Life Sciences).  Fig. 21-App.2 shows the resulting Western blot and the 

increasing molecular weights of Aβ(1-40) aggregates with increasing incubation time.  

Note the presence of fibrillar aggregates with molecular weights greater than 250 kDa 

that remained in the wells of the polyacrylamide gel.  Also note that the amount of these 

fibrillar Aβ(1-40) aggregates in the wells of the gel increased with increasing time of 

aggregation. 
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Figure  21-App.2 | Gel electrophoresis results showing aggregation of amyloid-beta (residues 1-40) as 
a function of incubation time in water.  Lane 1 (0 h), containing a solution of freshly prepared Aβ (1-40), 
shows that initially most of the Aβ peptides in solution were monomers with a molecular weight of ~4 kDa.  
Lanes 2 (24 h), 3 (48 h), and 4 (72 h) show that as Aβ aggregated in solution for increasing times, it formed 
aggregates of large molecular weight (6 – 250 kDa).  Furthermore, lanes 2 and 3 show a population with a 
very large molecular weight (greater than 250 kDa) that remained in the wells of the polyacrylamide gel as 
it would be expected for fibrillar aggregates.  The inset shows the same gel but exposed for 180 s and 
reveals that aggregates of large molecular weight (greater than 250 kDa), which remained in the well of the 
gel, were already present after 24 h of aggregation (lane 2).  The molecular weight markers were SeeBlue 
Plus2 Stained Standard Markers from Invitrogen. 
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Chapter 3 
 

Determining the Shape, Dipole Moment, and Rotational Diffusion 
Coefficient of Single, Non-Spherical Proteins 

 

Recording ionic current through electrolyte-filled nanopores during the passage of 

proteins is an emerging technique for characterizing unmodified proteins in their native, 

aqueous environment.  Here, we demonstrate the use of lipid-bilayer coated nanopores 

for determining the shape and volume of single, spherical and non-spherical proteins that 

are anchored to mobile lipids in the coating.  This work shows that individual resistive-

pulses can also be used to determine the rotational diffusion coefficient and dipole 

moment of non-spherical proteins while in the nanopore.  Moreover, this method has the 

potential to detect transient changes in the conformation of flexible proteins (e.g. an IgG 

antibody).  This work extends the power of nanopores for characterizing proteins by 

adding the parameters of shape, volume, rotational diffusion coefficient, and dipole 

moment of non-spherical proteins to those that can already be determined in a single 

experiment such as the volume of spherical proteins, charge, and affinity for a ligand.  
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3.1 Introduction 
 Proteins orchestrate cell behavior, serve as functional biomarkers, and are the 

targets of almost all drugs; consequently, methods for rapid analysis of proteins are 

necessary to reduce health care costs and continue the advancement of personalized 

medicine (1).  Arguably, the best techniques available for identifying proteins (i.e. two-

dimensional polyacrylamide gel electrophoresis and mass spectroscopy) are time 

consuming and require biochemical steps that modify, denature, or enzymatically digest 

proteins (1).  Few techniques characterize proteins in their native environment.   Here, we 

describe the use of electrolyte-filled nanopores for determining the shape and volume of 

single native proteins in situ, and for non-spherical proteins, we describe methods for 

determining their apparent rotational diffusion coefficients and dipole moments while in 

the nanopore. 

Electrolyte-filled nanopores through an insulating membrane are an emerging 

technology for characterizing macromolecules in their native environment (2-13).  For 

instance, recordings of ionic current through individual nanopores can be used in 

applications such as single-molecule folding and binding assays (6, 14-18), portable 

detection of biowarfare agents (19-21), and ultrafast sequencing of nucleic acids (22-25).  

These single-molecule experiments involve measuring the electric field-induced flow of 

ions through a single nanopore and the changes in this current (i.e. resistive pulses) when 

single macromolecules pass through the nanopore.  Measuring the magnitude and 

duration of these transient changes in current ( ΔI and td) during the translocation of 

thousands of single proteins enables construction of distributions that can reveal dynamic 

heterogeneities in size (4, 12, 18, 19, 21, 26-29), conformation (6, 14, 15, 30), and 

activity of biomolecules in situ (8, 10, 16, 31-33).  

Established methods for measuring the shape and rotational diffusion coefficients 

of native proteins in solution include depolarized dynamic light scattering (34), 

sedimentation by ultracentrifugation (35), small-angle X-ray scattering (36), and neutron 

scattering after modification of the proteins with deuterium (37).  These techniques 

employ ensemble-based measurements and, therefore, have difficulty characterizing 

heterogeneous populations and resolving dynamic structures (33).  For example, Gambin 

et al. recently used single-molecule FRET methods to observe transient intermediates 
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during the folding of a single protein that would have been masked using traditional 

ensemble-based methods (38, 39).  As another example, we previously translocated IgG1 

antibodies through bilayer-coated nanopores and observed broad distributions of ΔI 

values that appeared to be bimodal (16).  We hypothesized that this unexpected result 

was related to the shape and time-dependent orientation of IgG proteins in the nanopore 

(16).  A few months later, Raillon et al. also observed what appeared to be bimodal 

distributions of ΔI values due to the translocation of a non-spherical RNA polymerase 

through a nanopore and attributed this result to different orientations of the RNA 

polymerase (26).  Additional indications that the shape and orientation of 

macromolecules can affect the ΔI signal have been reported by Mathé et al. who 

observed orientation-dependent translocation signals of DNA through α-hemolysin pores 

(40) and Fologea et al. who observed unimodal, skewed distribution of ΔI values due to 

the translocation of nodular fibrinogen proteins through nanopores (5).  Despite these 

first reports, a detailed understanding and quantitative analysis of the effect of molecular 

shape and orientation on single protein translocation events has not been described.  

Furthermore, single-molecule methods capable of resolving the shape and volume of 

single, unlabeled proteins in aqueous environments have yet to be reported. 

Here, we use bilayer-coated nanopores to sense four proteins with different 

shapes: IgG1 antibody, GPI-anchored acetylcholinesterase (GPI-AchE), IgG-Fab 

fragment, and streptavidin.  We demonstrate that the resulting distributions of maximum 

ΔI values as well as the time-dependent ΔI signals during the translocation of single 

proteins are bimodal for non-spherical proteins and thus can be used to calculate the 

shape and volume of these proteins in situ.  The time-dependent ΔI signals also reflect the 

time-dependent orientation of non-spherical proteins in the nanopore and make it possible 

to determine the apparent rotational diffusion coefficient and dipole moment of a single, 

unlabeled protein.   

 

  



 95

3.2 Non-spherical proteins generate bimodal distributions of ΔI values. 
 To sense the four proteins used in this work (Fig. 3.1), we mounted nanopores 

between two fluidic channels and coated nanopores with a lipid bilayer comprised of 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids and 0.15 mol% 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-capbiotinyl (biotin-PE) lipids (Fig. 

3.1A) (16).  The biotin-PE lipids served as a ligand to bind and effectively lipid-anchor 

monoclonal anti-biotin IgG1 antibodies, polyclonal anti-biotin IgG fab fragments, and 

streptavidin on the fluid bilayer surface.  In contrast, GPI-AchE self-associated with the 

lipid bilayer coating via its glycosylphosphatidylinositol (GPI) anchor.  The lipid anchor 

serves to reduce the translocation speed of the proteins, and the fluid bilayer coating 

minimizes non-specific interactions with the nanopore surface (16).  After recording the 

baseline current, we added the desired protein to the solution on one side of the nanopore 

and recorded the resulting current pulses.  The magnitudes of resistive pulses, ΔI, due to 

the translocation of monoclonal anti-biotin IgG1 antibodies (Fig. 3.2) were markedly 

more distributed than the ΔI values due to the translocations of the other proteins (Fig. 

3.3).  In fact, the resistive pulses due to IgG1 translocations contained multiple current 

levels within single translocation events, and we observed these types of distributed ΔI 

values in three different nanopores.  These results were interesting because researchers in 

the field have traditionally considered proteins to be globular spheres for which the ΔI 

value is proportional to the volume of the protein according to equation (3.1) (4, 5, 12, 

16, 29, 31, 41). 

( )20.8
A M

PP P
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dl d
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  (3.1) 

In this equation, Λ (m3) is the excluded volume of the protein, VA (V) is the applied 

voltage, γ (unitless) is an electrical shape factor set to a value of 1.5 for spherical 

particles, lP (m) is the length of the pore, dP (m) is the radius of the cylindrical pore, and ρ 

(Ω m) is the resistivity of the electrolyte.  M

P

dS d
⎛ ⎞⎜ ⎟
⎝ ⎠

 is a correction factor  that we set to 

a value of 1 (Section 3-App.S1) (4, 5, 16, 29, 41-43).  Only recently has the shape of non-

spherical proteins, determined from crystal structures, been used to estimate values of γ 

and, subsequently, to calculate the volume of proteins using equation (3.1) (16, 26, 27). 
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Figure 3.1 | Current recordings through electrolyte-filled, bilayer-coated nanopores during the 
translocation of the four proteins sensed in this work reveal the corresponding spheroidal shape of 
proteins (blue shapes) as determined by analysis of resistive pulses.  (A) Cross-sectional view of a 
nanopore fabricated in silicon nitride (grey), the lipid bilayer coating (yellow and black), and the water 
layer between the lipid bilayer and silicon nitride (blue).  In this illustration, streptavidin binds to the biotin 
group of the biotin-PE lipid (blue and red). (B) Crystal structures were obtained from the protein database 
bank (IgG1: 1HZH, GPI-AchE: 3LII, Fab: 1F8T, and streptavidin: 3RY1).  Blue spheroids show the volume 
and shape of the proteins as estimated by analysis of resistive pulses (Table 3.1).  (C) Possible orientations 
of lipid-anchored Fab fragments, GPI-AchE, and IgG1 antibodies. 

 

 

In agreement with the treatment of proteins as spherical particles, the ΔI values of 

resistive pulses due to the translocation of spherical streptavidin proteins were not widely 

distributed (Fig. 3.3A).  We confirmed that the distribution of maximum ΔI values due to 

streptavidin was Normal (44) by generating empirical cumulative distributions* and 

performing a Kolmogorov-Smirnov (KS) test (Fig. 3.3D).  The resulting p-value of  
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Figure 3.2 | Current traces showing resistive pulses due to the translocation of monoclonal anti-biotin 
IgG1 antibodies (A-C) through three different bilayer-coated nanopores and the resulting 
distributions of the maximum ΔI values (D-F).  The volumes of the three nanopores were different 
resulting in different ΔI values in each pore.  Stars (*) indicate the three pulses shown enlarged above the 
5 s current traces. (D-F) Histograms of maximum ΔI values show empirical distributions of ΔI values, 
P(ΔI).  Black curves show the solution of the convolution model, p(ΔI), after a non-linear least squares 
fitting procedure, and red dashed curves show the estimated distribution of ΔI values due to the distribution 
of shape factors, p(ΔIγ).  Dimensions of all nanopores are shown in Fig. 4-App.3, and Table 1-App.3 shows 
the values for all fitting parameters. 
 

 

p = 0.23 indicated that the difference between these two distributions was not significant.  

Thus, for streptavidin, the mean ΔI value corresponds to the molecular volume of 110 

nm3 according to equation (3.1), and the width of the Normal distribution reflects 

measurement errors, σ = 70 pA or 25 nm3 (Table 3.1).    In contrast to streptavidin, the 

distributions of maximum ΔI values due to the translocation of the non-spherical proteins 

(IgG antibody, Fab fragment, and GPI-AchE) were not Normal (p-values < 0.002, Fig. 1-

App.3).  Furthermore, control experiments confirmed that the widely distributed ΔI 

values during IgG1 translocations were not due to impurities in the solutions, dimers of 

IgG1, or translocation of multiple IgG1 proteins simultaneously (Fig. 2-App.3 and Section 

3-App.S2).  We also confirmed that the large molecular weight of an IgG protein (152 

kDa) (45) did not cause the large variations in ΔI, since the translocation of GPI-AchE 

(160 kDa) (46) through the same nanopore resulted in a significantly narrower 
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distribution of ΔI values than the IgG antibodies (Fig. 3-App.3).  Consequently, we 

hypothesized that the non-spherical shape of these three proteins and their orientations in 

the nanopore relative to the electric field were responsible for the non-Normal 

distributions of ΔI values and the large variations in ΔI values for IgG antibodies.    

 

 

 
Figure 3.3 | Current traces showing resistive pulses due to the translocation of streptavidin (A), Fab 
fragments (B), and GPI-AchE (C) and  histograms of the maximum ΔI values determined during the 
translocation of streptavidin (D), Fab fragments (E), and GPI-AchE (F).  (D inset) Empirical 
cumulative distribution (black circles) fit with a Normal cumulative distribution function (CDF) (red line).  
The derivative of the CDF shows the probability density function (PDF) and is plotted in black with the 
histogram in D.(E-F)  Black curves show the solution of the convolution model, p(ΔI), after a non-linear 
least squares fitting procedure, and red dashed curves show the estimated distribution of ΔI values due to 
the distribution of shape factors, p(ΔIγ).  Stars (*) indicate the three pulses shown enlarged above the 5 s 
current traces.  Table 1-App.3 lists the values of all fitting parameters. 
 

 

Consistent with this hypothesis, Golibersuch first described the effect of particle 

shape and orientation on the distribution of ΔI values due to cell-sized objects in 1973 

(47). Golibersuch observed periodic variations in the values of ΔI during the translocation 

of rotating, oblate-shaped erythrocytes through microchannels and attributed this periodic 

signal to the orientation- and shape-dependent values of the electrical shape factor, γ, 

which is a function of the length to diameter ratio, m, of a spheroid and the angle between 
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the spheroid’s axis of revolution and the electric field, θ, (Fig. 3.4A and 3.4B, Section 3-

App.S3) (47-55).  Assuming the erythrocytes were randomly oriented at the time the 

maximum value of ΔI was determined, Golibersuch derived a bimodal probability 

distribution of shape factors, p(γ), (Figure 3.4C black line), which is a function of the 

minimum and maximum possible values of γ for a given shape, γmin and γmax.  The two 

modes of p(γ) occur at γmin and γmax and correspond to orientations of the particle of θ = 0 

and θ = π/2.  Bimodal distributions of shape factors would lead to bimodal distributions 

of maximum ΔI values according to equation (3.1) and, therefore, would explain the 

broad, bimodal distributions of ΔI values due to IgG1 antibodies (Fig. 3.2D-F).  This 

effect may also explain the non-Normal distributions of ΔI values due to Fab fragments 

and GPI-AchE (Fig. 3.3E-F). 

 
Figure 3.4 | Possible values of shape 
factors and their probability 
distribution.  (A) Shape factor as a 
function of m when θ = 0 (solid curves) 
and when θ = π/2 (dashed curves) for 
prolates (blue curves) and oblates (red 
curves).  For a sphere, m equals 1, and the 
shape factor is 1.5 (grey line).  (B) Shape 
factor as a function of θ for prolates and 
oblates with a defined m. For a sphere, m 
equals 1, and the shape factor is 1.5 (grey 
line).  (C) Probability distribution of shape 
factors, p(γ), predicted by Golibersuch 
(black curve) and for proteins with a dipole 
moment pointed parallel to the longest axis 
of the protein (dashed curves).  For the 
different magnitudes of the dipole moment, 
the energy difference between θ = 0 and θ 
= π/2 is listed when the electric field equals 
2 × 106 V m-1.  Section 3-App.S3 describes 
the electrical shape factor in detail. 
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Table 3.1.  Comparison of the volume and length to diameter ratio, m = A/B, of proteins determined 
by analysis of resistive pulses, the values reported in literature, and the values estimated from the 
crystal structure of the protein.  

Protein Measured Λ 
(nm3) 

Literature Λ 
(nm3) 

Measured m Literature m 

IgG1 292±12 347±15(45) 0.30±0.05 0.2–0.5(57, 58) 

GPI-AchEa 
 

216±24 250b 0.53 or  
2.6 

2.9b 

Fab  160±8 125b 
140(69) 
170±31(16) 

0.65 or  
1.8 

1.7b 

1.8(70) 

Streptavidin 120±25c 94±18(16) 
105±3(71) 

1c 1.1b 

aValues were calculated from two experiments (Table 1-App.3). bValues were estimated from the crystal 
structures of the protein shown in Figure 1B.  c Since the distribution of ΔI values due to streptavidin 
translocations was unimodal and Normal, we assumed that streptavidin had a spherical shape, and therefore 
m = 1; to calculate the excluded volume of streptavidin, we solved equation (1) with γ set to a value of 1.5.  

 

 

Before attempting to describe the non-Normal distributions of ΔI values as a 

consequence of p(γ), we considered whether the three non-spherical proteins could 

sample various orientations, and therefore shape factors, in these experiments. We first 

examined whether the dipole moment of a protein may align completely in the large 

electric field in the nanopore (~ 106 V m-1).  Combining the potential energy, ΔU, of a 

dipole moment in an electric field and the Boltzmann distribution of energies while 

assuming that the dipole moment was pointed parallel to the longest axis of the protein, 

we expanded on Golibersuch’s probability distribution of shape factors to develop a p(γ) 

for proteins with dipole moments (Fig. 3.4C, Sections 3-App.S3 and 3-App.S6).  This 

simple model predicts a bimodal distribution of shape factors in these experiments when 

the dipole moment ranged from 0 to 1,500 Debyes.  Since the average dipole moment of 

proteins is approximately 550 Debyes (http://bioinfo.weizmann.ac.il/dipol/aves2.html), 

this model implies that most non-spherical proteins would not be biased by the electric 

field sufficiently to prevent their rotation.  This prediction is supported by our recent 

discovery of bimodal distributions of ΔI values from translocation of a single, pure 

protein (16) and subsequent observations made by Raillon et al. (26).  We next 

considered potential steric limitations on the orientations of the proteins in the nanopore.  

Fig. 3.1C shows the expected lipid anchoring locations on spheroids approximately the 
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shape of a Fab fragment, GPI-AchE (46), and an IgG antibody.  Since the chemical linker 

between the lipid head group and the ligand for the IgG1 and Fab fragments was 

approximately 1.5 nm in length, we expect the anchoring positions shown in Fig. 3.1C to 

permit rotation of the proteins in orientations that could generate the minimum and 

maximum shape factors.  Consequently, we propose that the underlying distribution of 

shape factors for non-spherical proteins explains the non-Normal distributions of ΔI 

values and enables the calculation of each protein’s volume and shape.       

 

3.3. Fitting distributions of ∆I values enables calculation of a protein’s 
shape and volume. 

 
To determine the excluded volume, Λ, and length to diameter ratio, m, of the 

proteins from the non-Normal distributions of maximum ΔI values, we first considered 

that γ is directly proportional to ΔI according to equation (3.1).  Consequently, γmin and 

γmax for a given shape correspond to the minimum and maximum ΔI values, ΔImin and ΔI 

max, of a given particle, where ΔImin is a function of γmin(m) and Λ, and ΔImax is a function 

of γmax(m) and Λ (Section 3-App.S4).  By determining ΔImin and ΔI max from the 

measured distributions of ΔI values, we can solve for the values of Λ and m of each non-

spherical protein.   

To describe the non-Normal distributions of ΔI values quantitatively based on the 

distribution of shape factors, p(γ), and to determine ΔImin and ΔI max, we converted the 

distribution of shape factors into a corresponding distribution of ΔI values, p(ΔIγ) 

(Section 3-App.S3). Complicating the analysis is the fact that p(ΔIγ) is convolved with 

experimental and analytical noise in determining individual ΔI values, which we describe 

as a Normal distribution, p(ΔIσ).  Thus, the empirical distributions of ΔI values, P(ΔI), 

should be described by the theoretical model ( ) ( ) ( )p I p I p Iγ σΔ = Δ ⊗ Δ , where ⊗  is the 

convolution operator (Fig. 5-App.3).  We fit this model to the empirical distributions of 

ΔI values using the Levenberg-Marquardt nonlinear-least-squares fitting algorithm in the 

software Origin Pro 8.  The procedure compared the experimental distribution of ΔI 

values, P(ΔI), to estimates of p(ΔI), and generated new values for the four fitting 

parameters ΔImin, ΔI max, ΔU, and σ after each iteration (56).  The black curves in Fig. 

3.2D-F and Fig. 3.3E-F show the resulting estimate of p(ΔI) and the red dashed curves 
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show the estimate of p(ΔIγ), which was bimodal with modes at ΔImin and ΔImax.  The 

estimates of p(ΔI) described the empirical distributions of ΔI values well (R2 > 0.92), and 

we confirmed by KS-tests that the differences between each empirical P(ΔI) and each 

estimated p(ΔI) were not statistically significant (p-values > 0.31).  Fig. 1-App.3 shows 

results from KS tests and compares plots of cumulative distributions of P(ΔI) and p(ΔI).  

Using the resulting estimates of ΔImin and ΔI max, we solved for the excluded volume of 

the proteins, Λ, and the length to diameter ratio, m, (Table 3.1).  The calculated values of 

Λ and m agree well with the expected values for all four proteins.  For instance, from the 

three experiments with the IgG1 antibodies, we calculated the excluded volume of an 

IgG1 to be 290 nm3
,
 281 nm3, and 305nm3 with an average of 292 ± 19 nm3, and the 

reported volume of IgG antibodies is 347 nm3 (45).  Corresponding values of m were 

0.35, 0.26, and 0.29 with an average of 0.30 ± 0.05 (a diameter to length ratio of 3.33); 

reported estimates of m when an antibody is approximated as an oblate shape range from 

0.2 to 0.5 (57, 58).  For the prolate-shaped Fab fragments and GPI-AchE, we found two 

solutions to the system of equations, indicating that either an oblate or prolate shaped 

protein could have generated these non-normal distributions of ΔI values (Fig. 6-App.3).  

In both cases, the value of m that corresponds to a prolate shape (m > 1) was close to the 

value we estimated from the crystal structure of the protein (Table 3.1), suggesting this 

solution was correct.  Fig. 3.1B shows the crystal structure of each protein next to the 

corresponding spheroid and illustrates the close agreement between the shape of the 

proteins calculated from the analysis presented here and the expected shape based on 

crystal structures. This result and the good fits of p(ΔI) to the empirical distributions of 

ΔI values demonstrates that non-Normal distributions of ΔI can be used to determine the 

volume and shape of proteins in solution.   

 As additional evidence that the orientation and shape of non-spherical proteins 

affects the distribution of ΔI values, we biased the orientation of IgG1 antibodies and 

GPI-AchE proteins in the nanopore by increasing the electric field (Fig. 7-App.3).  For 

both proteins, increasing the strength of the electric field skewed the distribution of ΔI 

values toward their respective ΔImin values (i.e. θ = π/2 for an oblate and θ = 0 for a 

prolate) and reduced the proportion of events with magnitudes close to the value ΔImax.  

Furthermore, the ratio between the number of events with magnitudes near ΔImax 
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compared to ΔImin declined exponentially with increasing electric field strength, 

suggesting that the potential energy of proteins in the orientation corresponding to ΔImin 

was lower than the energy of those in the orientation corresponding to ΔImax.  

Considering that the orientations of the two proteins were biased due to the energy of a 

dipole moment in an electric field, we fit these curves (Fig. S7-App.3) with a two-state 

Boltzmann model and estimated a dipole moment of 996 ± 32 Debyes for the IgG1 

antibody and 360 ± 30 Debyes for GPI-AchE.  These values for the dipole moment are in 

the expected range for the dipole moments of proteins.  Many factors could bias the 

alignment of the proteins and the accuracy of these values, however, including alignment 

of the slender proteins in the electric field gradient prior to entering the nanopore (59, 

60), entropic barriers affecting orientation inside the nanopore, and dipole moments that 

are not aligned perpendicular or parallel to the axis of symmetry of these non-spherical 

proteins. 

 

 3.4. ΔI values within individual translocation events reveal apparent 
rotational diffusion coefficients and dipole moments.  
 

So far, we have discussed distributions of maximum ΔI values; however, the ionic 

current signal during an individual translocation event (intra event-ΔI) can also reveal the 

shape and time-dependent orientation of a single protein in the nanopore.  For instance, 

Fig. 3.5 shows individual translocation events and distributions of intra event-ΔI values 

during three long translocation events of single IgG1 antibodies.  Again, the convolution 

model, ( ) ( ) ( )p I p I p Iγ σΔ = Δ ⊗ Δ , described the empirical distributions of ΔI values well 

and returned estimates of the excluded volume and the value of m (Λ = 300, 240, and 335 

nm3; m = 0.33, 0.23, and 0.44) that were similar to those determined earlier by analyzing 

distributions of the maximum ΔI values from thousands of events (Table 3.1).  

 Since γ is a function of the orientation of the proteins (Fig. 3.4B), we calculated 

θ(t) from a intra event ΔI signal due to a single IgG1 antibody, GPI-AchE, and Fab 

fragment protein and generated plots of the mean-squared-angular-displacement, 

<Δθ2(t)> (Fig. 3.6).  We fit these curves with a model based on the Langevin torque 



 104

equation in which we neglected inertia and included terms for the thermal driven torque 

(i.e. ~ kBT) viscous drag (i.e. ~ kBT/DR x dθ/dt), and electric-field induced restoring torque  

 

 
Figure 3.5 | Resistive pulses due to the 
translocation of IgG1 antibodies and 
histograms of intra event ΔI values (A-
C). Experiments were performed in there 
different nanopores as in Fig. 3.2, and the 
dotted blue lines indicate the values of 
ΔImin and ΔImax expected from fitting the 
convolution model to the distributions in 
Fig. 3.2D-F.  The current signal between 
the red dots was considered the intra 
event-ΔI signal.  Black curves show the 
solution of the convolution model, p(ΔI), 
after a non-linear least squares fitting 
procedure, and red dashed curves show 
the estimated distribution of ΔI values due 
to the distribution of shape factors, p(ΔIγ).   
 

 

 

 

 

 

due to the dipole moment  (i.e. ~ Eμ sin(θ)) (Section 3-App.S5) (61), where DR (rad2 s-1) 

is the rotational diffusion coefficient, E (V m-1) is the electric field, and μ  (Debyes) is 

the dipole moment of the protein.  This model describes the Brownian rotational motion 

about one axis of a particle in a harmonic energy well; it is analogous to translational 

motion of a Brownian, harmonically bound particle (62).  With DR and μ  as fitting 

parameters, this model described <Δθ2(t)> very well (R2 > 0.97) and returned values of 

the apparent rotational diffusion constant and dipole moment of:  for the IgG1 DR = 3,700 

(3000, 4500) rad s-2, μ  = 1,220 (1190, 1230) D; for GPI-AchE DR = 6,000 (5200, 7000) 

rad s-2, μ  = 730 (670, 790) D; and for Fab DR = 7,200 (6400, 7900) rad s-2, μ  = 1,749 

(1580, 1960) D.  The 95% confidence interval of the values is listed in the parenthesis.  

The resulting values of DR were in the expected range for lipid-anchored proteins; for 

instance, Axelrod reported that the rotational diffusion coefficient of membrane-
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associated, monomeric GPI-AchE is on the order of DR = 10,000 ± 4,000 rad2 s-1 (63).  

Moreover, the values of DR for the different proteins exhibit the expected trend of the 

smallest DR for the largest protein, IgG1 antibody, and the greatest DR for the smallest 

protein, Fab fragment.  The estimates of μ  ranged from ~700 to 2000 Debyes for the  

 

 

 
Figure 3.6 | Intra-event ΔI signals due to the translocation of a single IgG1 antibody (A), GPI-AchE 
(B), and Fab fragment (C) overlaid with the calculated orientation of the protein, θ(t).  Values of θ (t) 
were calculated based on the function γ(θ) (Section 3-App.S3) and using the values of ΔImin and ΔImax that 
are listed in Table 1.   The θ(t) signal enabled construction of mean squared angular displacement curves, 
<Δθ(τ)2>, and temporal autocorrelation curves.  In the <Δθ(τ)2> plots, blue lines indicate the 95% 
confidence interval of the mean;  red lines are the best-fit of the data with a model based on the Langevin 
torque equation (Section 3-App.S5).  We only fit the data with τ > 50 μs because the signal for τ < 50 μs 
was dominated by the electrical noise.  In the autocorrelation plots, red lines show an exponential decay 
with a characteristic time τC that is inversely proportional to the rotational diffusion constant, DR, and the 
effective rotational spring constant, kθ  , by τC = kBT/(DR x kθ) (66). Blue circles show temporal 
autocorrelation curves of the baseline current for comparison. 
 

three proteins, and were thus in the expected range given that the average dipole moment 

of proteins in the Weizmann database is 550 ± 420.  Additionally, the value of 730 

Debyes for the dipole moment of GPI-AchE that we determined with this method lies in 
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the expected range (700 to 1000 Debyes) of GPI-AchE’s highly conserved dipole 

moment (64, 65).  Moreover, the dipole moment that we determined for the IgG1 

antibody using this method was similar to the value we determined in the previous 

section using the two-state Boltzmann model (i.e. 1220 compared to 996 Debyes).  In 

additional support of this analysis, we generated temporal autocorrelation curves of θ(t) 

and determined the characteristic times, τC,  of their exponential decay (Fig. 3.6), where 

τC = kBT/(DR x kθ) and kθ  is an effective rotational spring constant approximated by Eμ  
(Section 3-App.S5) (66).  Using the values of DR, E , and μ  determined by fitting 

<Δθ2(t)> curves, we compared the predicted τC with the value of τC determined in the 

autocorrelation curves.  In the case of the IgG1 and GPI-AchE events (Fig. 3.6A and Fig. 

3.6B) the predicted and measured characteristic times were identical (e.g. for IgG 

antibody τC was 130 μs compared to the predicted value of 125 ± 20 μs and for GPI-

AchE τC was 101 μs compared to the predicted value of 100 ± 10μs).  In the case of the 

Fab fragment event (Fig. 3.6C), however, the measured characteristic time was a factor of 

~1.5 shorter than the expected value (e.g. τC was 29 μs compared to the predicted value of 

45 ± 5 μs).  This difference could be due to rotational diffusion of the Fab fragment about 

more than one axis (see Fig. 3.1C), or it could be due to the limited temporal resolution of 

the electronic amplifiers.  For instance, the autocorrelation curve in Fig. 3.6C for the Fab 

fragment approaches the curve due to electrical noise (blue points).  These results 

demonstrate that long translocation events can be used to resolve the rotation of 

individual non-spherical proteins and thus to determine effective rotational diffusion 

coefficients and dipole moments of proteins in the nanopore.  

 To obtain a more complete picture of how much time molecules spent in a given 

orientation in the nanopore, we generated histograms of intra event-ΔI values from all 

translocation events.  Interestingly, for the IgG1 protein, these distributions had more than 

the expected two modes and instead showed approximately five local maxima (Fig. 8-

App.3).  Given that the regions of an IgG antibody between the Fc domain and the two 

Fab fragments are very flexible (58, 67), these modes may correspond to dynamic 

fluctuations in the shape and conformation of IgG antibodies 
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3.5 Conclusion.   
 

The work presented here extends the capability of nanopores for distinguishing 

and characterizing proteins by adding the estimation of shape and volume of non-

spherical proteins to those properties of proteins that can already be determined in 

nanopores such as charge and affinity for a ligand.  Unlike the standard technique of 

determining a protein’s shape via small angle x-ray scattering, this method can be used to 

determine the native shape of single proteins or protein complexes in aqueous 

environments, with relatively simple equipment, and in only a few minutes.  This 

capability will aid structural and functional studies of proteins since for many proteins 

only fragments can be crystallized and knowing the general shape of proteins facilitates 

determining their structure. 

 Dynamic fluctuations in the orientations of proteins in the nanopore were 

reflected in the intra event ΔI signals, thereby, permitting calculation of the effective 

rotational diffusion coefficient and dipole moment of individual non-spherical proteins 

within the nanopore.  Additional studies of protein dynamics with this method will 

benefit from low-noise electronic amplifiers with improved time resolution such as those 

recently described by Rosenstein (67, 68).  Moreover, molecular dynamics and 

hydrodynamic modeling will likely advance the understanding of variations in the ΔI 

signals due to proteins and possibly due to fluctuations in their conformation. We expect 

the combination of these methods to enable direct and accurate observation of dynamic 

heterogeneities in protein structures, orientations, and dipole moment in situ without 

requiring chemical modification of the protein.  Finally, we anticipate that anchoring 

proteins to amine-reactive or thiol-reactive lipid head groups will be a strategy to extend 

this approach to a large number of proteins.   
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Chapter 3 Appendix 
 

3-App.Methods 
Materials.  All phospholipids were obtained from Avanti Polar Lipids.  

Streptavidin, monoclonal anti-biotin antibody (B7653), and GPI-anchored 

acetylcholinesterase purified from human erythrocytes (C0663) were purchased from 

Sigma Aldrich, Inc. and polyclonal anti-biotin Fab fragments (20938) from Rockland. 

Methods of nanopore-based sensing experiments. To sense proteins, we first 

formed a supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) lipids (Avanti Polar Lipids, Inc.) and a 0.15 mol% fraction of 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-capbiotinyl (biotin-PE) lipids on 

the silicon-nitride surface that contained a nanopore.  We described details of the bilayer 

formation in Yusko et al. (16).  The dimensions of all nanopores are shown in Fig. 5-

App.3. After measuring the expected baseline ionic current and confirming the absence of 

irregular noise, we added solutions containing the desired protein to the top solution 

compartment of the fluidic setup (2 M KCl with 10 mM HEPES pH 7.4) such that the 

final concentration of protein ranged from 5 pM to 10 nM. In sensing GPI-anchored 

acetylcholinesterase, we started recording resistive pulses after incubating the bilayer-

coated nanopore for 1 h with GPI-anchored acetylcholinesterase to allow time for the 

GPI-lipid anchor of the protein to insert into the fluid lipid bilayer coating.  We recorded 

resistive pulses at an applied potential difference of -0.1 V with the polarity referring to 

the top fluid compartment relative to the bottom fluid compartment, which was connected 

to ground.  We used Ag/AgCl pellet electrodes (Warner Instruments) to monitor ionic 

currents through electrolyte-filled nanopores with a patch-clamp amplifier (Axopatch 

200B, Molecular Devices Inc.) in voltage-clamp mode (i.e., at constant applied voltage). 

We set the analog low-pass filter of the amplifier to a cutoff frequency of 100 kHz. We 

used a digitizer (Digidata 1322) with a sampling frequency of 500 kHz in combination 

with a program written in LabView to acquire and store data (69).  To distinguish 

resistive pulses reliably from the electrical noise, we first filtered the data digitally with a 

Gaussian low-pass filter (fc =15 kHz) in MATLAB and then used a modified form of the 

custom written MATLAB routine described in Pedone et al. (70).  We calculated the 
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translocation time, td, as the width of individual resistive-pulse at half of their peak 

amplitude, also known as the full-width-half-maximum value (6, 16).  From this analysis 

we obtained the ΔI and td values for each resistive pulse, and we only analyzed ΔI values 

for resistive-pulses with td values greater than 50 μs, since resistive pulses with 

translocation times faster than 50 μs have attenuated ΔI values due to the low-pass filter 

(16, 70). 

 

3-App.S1.  Details regarding equation (3.1).   
The relationship between the magnitude of ΔI and the volume of a particle stems 

from Maxwell’s derivation (71), and it is shown in equation (1-App.3).(4, 29, 49, 72)    

( ) ( )22

4
0.8 0.8

M A M

P P P P PP P

d V dI S I S
I d l d d dl d

γγ
π ρ

⎛ ⎞ ⎛ ⎞ΛΔ Λ
= − ⇒ Δ = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

, (1-App.3) 

where γ is the electrical shape factor (26, 27, 43, 47, 49, 51), Λ (m3) is the excluded 

volume of the particle, lP (m) is the length of the pore, dP (m) is the diameter of the pore, 

ΔI (A) is the magnitude of the change in the current during translocation of a particle, I 

(A) is the baseline current, VA (V) is the applied voltage, and ρ (Ω m) is the resistivity of 

the electrolyte.  M

P

dS d
⎛ ⎞⎜ ⎟
⎝ ⎠

 is a correction factor applied when the diameter of the 

particle, dM, approaches the diameter of the pore, DP, (i.e. dM > 0.5 DP).(49, 72)  Under 

these conditions the electric field in the pore is additionally distorted between the particle 

and the pore walls resulting in a non-linear increase in the resistance with increasing 

particle volume (49, 72).  Qin et al. recently reviewed these correction factors and 

showed that the most accurate correction factor for all dM/dP ratios was developed by 

Smythe (42) and Deblois et al. (72), equation (2-App.3) (41):  

3
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1 0.8

M

P M

P

dS
D d

d

⎛ ⎞
=⎜ ⎟

⎛ ⎞⎝ ⎠ − ⎜ ⎟
⎝ ⎠

. (2-App.3) 

Note that in the majority of resistive-pulse sensing literature, particles and proteins have 

been considered spherical and consequently γ was set to a value of 1.5 and Λ was 

constrained to equal 31
6 Mdπ .  Substituting these values into equation (1-App.3) 
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simplifies it to the more commonly seen form in equation (3-App.3) (4, 29, 41, 43, 71, 

72): 

( ) ( )

3 3

22 0.8 4 0.8
M M A M M

P P P P PP P

d d V d dI S I S
I d l d d dl d

π
ρ

⎛ ⎞ ⎛ ⎞Δ
= − ⇒Δ = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

, (3-App.3) 

Since in this work we analyzed resistive-pulses due to the translocation of non-spherical 

proteins and we expected dM to be less than ½ dP, we set the correction factor to a value 

of 1 (4, 16, 29).  We used equation (1-App.3) and expressed the impeded flow of ions 

through the nanopore during protein translocation events as reductions in current, ΔI.   

 

3-App.S2.  Broad distributions of IgG1 antibodies were not due to 
impurities, dimers, or simultaneous translocations.   
 

To confirm that the distributions of ΔI values during experiments with 

monoclonal anti-biotin IgG1 antibodies were not affected by potential impurities in the 

solution, we performed two control experiments.  In one control experiment, we added an 

excess concentration of soluble biotin to the aqueous solution of an ongoing experiment 

(Fig. 2A-App.3) in order to inhibit competitively the binding of the IgG1 antibodies to the 

biotin-PE lipids on the surface (Fig. 2B-App.3).  Fifteen minutes after the addition of the 

soluble biotin we observed the frequency of resistive pulses decrease from 34 s-1 to   

1.3 s-1. In the second control experiment, we generated a lipid bilayer coated nanopore 

that did not contain biotin-PE lipids in the coating and therefore was not specific for the 

translocation of IgG1 antibodies (Fig. 2C-App.3).  In this experiment, the concentration of 

the IgG1 antibody was even higher (25 nM compared to 20 nM) than in the original 

experiment (Fig. 2A-App.3), and the frequency of translocation events was 2 s-1.  Since 

the frequency of events is proportional to concentration, we estimated that if the 

concentration of IgG1 in this control experiment was 20 nM, we would expect to observe 

an event frequency of approximately 1.6 s-1.    From these two control experiments, we 

estimated that during experiments with biotin-PE lipids in the bilayer coating only 3.8 to 

4.7 % of translocation events were due to IgG1 or other proteins not bound to biotin-PE 

lipids.  Furthermore, almost all of the translocation times calculated from resistive-pulses 

observed in control experiments (where binding to biotin-PE was not possible) were less 
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than 50 μs, and we did not include resistive-pulses with translocation times less than 50 

μs in the analysis of ΔI distributions because the amplitude would be attenuated due to 

electronic filtering (16, 69). Consequently, we concluded that the protein we detected in 

the purified solution of anti-biotin IgG1 antibodies was bound to biotin-PE lipids 

specifically.    We also concluded that the resistive-pulses were not due to Fab fragments 

of the IgG1 in solution because the translocation of Fab Fragments through the same 

nanopore resulted in resitive pulses with ΔI values less than those observed for the IgG1 

antibody (244-325 pA compared to 383-1085 pA, Table 1-App.3). 

Since IgG antibodies can occasionally form dimers (73), we performed dynamic 

light scattering (DLS) experiments to characterize the hydrodynamic diameter of the IgG1 

antibodies.  If dimers of IgG1 antibodies were present in solution and contributing to the 

bimodal distribution of ΔI values in Fig. 3, we would expect the dimers to be reflected in 

DLS experiments in a significant fraction because approximately ½ of the resistive pulses 

had ΔI values within the second bimodal peak of ΔI values.  Consequently, if dimers 

were present, we would expect to observe two peaks in the distributions of estimated 

hydrodynamic diameters of the particles (in this case proteins) in DLS experiments (73).  

Fig. 3-App.3 shows that we only observed one peak corresponding to a hydrodynamic 

diameter of 10.5 ± 2.0 nm.  This value is in good agreement with previously published 

hydrodynamic diameters of IgG antibodies of 10.9 -11.0 nm (73, 74). As additional 

evidence, we added urea to a concentration of 8 M to denature all proteins and 

disassociate potential aggregates.  Again we only observed one peak corresponding to a 

hydrodynamic diameter of 12.9 ± 2.7 nm (Fig. 3-App.3).  This hydrodynamic diameter is 

slightly larger because of the random-coil and ball-like structure of denatured IgG1 

antibodies compared to their native, oblate-shaped structures (73).   These results confirm 

that dimers of IgG1 antibodies were not responsible for the bimodal distribution of ΔI 

values. 

To rule out the possibility that the widely distributed ΔI values were due to two 

proteins passing through the nanopore simultaneously, we compared the frequency of 

translocation events with the translocation times for each protein (75).  In the case of 

streptavidin translocations, we observed approximately 45 translocation events per 

second and a most-probable translocation time of about 115 μs.  Consequently, on 
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average there was a 0.52% probability of a molecule occupying the nanopore at any time, 

and the probability of two streptavidin proteins occupying the nanopore at the same time 

would be 0.003%. In the case of the IgG1 translocation events, the maximum frequency 

we observed was approximately 30 events per second and a most probable translocation 

time of about 55 μs.  Consequently, on average there was a 0.16% probability of an IgG1 

protein occupying the nanopore at any time, and the probability of two IgG1 proteins 

occupying the nanopore at the same time would then be 0.0027%.  Even if the first 

translocation event of an IgG antibody would be exceptionally long lived (e.g. 1000 μs), 

the probability of a second antibody to enter the pore during that time would still only be 

around 3% at an average translocation frequency of 30 Hz.  This analysis neglects steric 

effects, which we expect would be significant given the size of an IgG1 antibody and the 

dimensions of the nanopores.  For GPI-anchored acetylcholinesterase the estimated 

probability of a two proteins being in the nanopore at the same time was 0.0036% and for 

Fab fragments it was 0.0016%.   

Even during the resistive-pulse sensing experiments with streptavidin in which we 

estimated the highest probability of observing a protein in the nanopore, we did not 

observe resistive-pulses with multiple current levels that might suggest the translocation 

of two proteins simultaneously.  Consequently, we conclude that the resistive pulses due 

to the IgG1, Fab fragments, and GPI-anchored acetylcholinesterase proteins were due to 

the translocation of one protein at a time. 

 

3-App.S3.  Electrical shape factor and distributions of shape factors.  
 

To relate the value of ΔI to the volume and shape of non-spherical proteins, we 

considered the possible values of the electrical shape factor, γ, with the condition that a 

protein may have an oblate, prolate or spherical shape.  Oblates and prolates have an axis 

of revolution (shown as the dashed blue line in Fig. 3.4) with length A and secondary 

axes with length B.  Golibersuch elegantly pointed out that equation (4-App.3) describes 

the electrical shape factor, γ, for these ellipsoids as a function of the angle between the 

axis of symmetry and the electric field, θ, (Fig. 3.4) (47, 48): 

( ) ( ) ( )2cosγ θ γ γ γ θ⊥ ⊥= + −  (4-App.3) 
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where γ
 
and γ ⊥  are the electrical shape factors when the axis of symmetry is parallel to 

the electric field (i.e. θ = 0, π, ...) and perpendicular to the electric field (i.e. θ = π/2, 3π/2, 

…), respectively.  Equation (4-App.3) implies that the shape factor for any orientation 

will range between the values of γ
 
and γ ⊥ .   These factors, γ

 
and γ ⊥ , are related to the 

well-described depolarization factors for ellipsoids, n and n⊥ , by equation (5-App.3) and 

are a function of the length to diameter ratio, m = A/B, of an ellipsoid (47, 51-53).   

1
1 n

γ =
−

and 
1

1 n
γ ⊥

⊥

=
−

 (5-App.3) 

where n
 
for a prolate spheroid with m = A/B > 1 is described by equation (6-App.3): 

( )2
2 2

1 ln 1 1
1 1

mn m m
m m

⎡ ⎤
= + − −⎢ ⎥− −⎣ ⎦

 (6-App.3) 

and n
 
for an oblate spheroid with m = A/B < 1 is described by equation (7-App.3): 

( )1
2 2

1 1 cos
1 1

mn m
m m

−⎡ ⎤
= −⎢ ⎥− −⎣ ⎦

 (7-App.3) 

and n⊥  = (1 - n )/2 (43, 47, 52). 

To derive the distribution of shape factors, we considered the simplest scenario 

that an ellipsoid protein rotates freely around the chemical linker with only one axis of 

rotation such that, by symmetry, values of θ ranged between 0 and π/2.  We also assumed 

that all angles of θ were equally likely when the maximum ΔI was measured.  According 

to Golibersuch, these assumptions enable using substitution of variables to write a 

probability distribution function for electrical shape factors p(γ) based on the probability 

of observing a certain orientation p(θ(γ)), where θ is a function of γ (e.g. equation (8-

App.3)):(47) 

( )( ) dp d p d
d
θγ γ θ γ γ
γ

= ⎡ ⎤⎣ ⎦
 

(8-App.3) 

Since by symmetry, the value of θ ranges between 0 and π/2 and we assumed that all 

angles of θ were equally likely, we solved for p(θ) by noting that the integral of a 

probability distribution function equals 1: 
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/2 /2

0 0

2 2( ) 1 ( )p d d p d d
π π

θ θ θ θ θ θ
π π

= = ⇒ =∫ ∫   (9-App.3) 

Combining equation (8-App.3) with (9-App.3), we obtained: 

 
12( ) dp d d

d
γγ γ γ

π θ

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (10-App.3) 

Differentiating equation (4-App.3) with respect to θ, i.e. d
d

γ
θ

, and combining the result 

with equation (10-App.3), we obtained a probability density function for the possible 

shape factors (47).  

( )( ) 1/2
1( )

2
p d dγ γ γ

π γ γ γ γ⊥

=
⎡ ⎤− −⎣ ⎦

 (11-App.3) 

Fig. 3.4C of the main chapter (black line) shows this probability density function 

(equation 11-App.3) is bimodal and symmetric with peaks at γ = γ
 

and γ ⊥ .  The 

bimodal character of this distribution reflects the fact that for small deviations in θ near 0 

and near π/2, there is little change in the value of the shape factor compared to deviations 

in θ around π/4 (Fig. 3.4B).  

 To expand on the theories developed by Golibersuch, we considered the possible 

probability distribution of shape factors if the orientation of the protein were biased by 

the electric field in the nanopore.  The electric field in the nanopore is on the order of 106 

V m-1
, and consequently, we expect the orientation of a protein to be biased by alignment 

of its dipole moment, μ  (Debye ≈ 3.33564×10−30 C m), in  the electric field, E ( V m-1).  

Taking into account the potential energy of a dipole in an electric field, μ θΔ = cos( )U E

, and using the Boltzmann distribution of energies, we derived equation (12-App.3; see 3-

App.S6).  Equation (12-App.3) describes a probability distribution function of shape 

factors for spheroid proteins when their orientation is biased by the dipole energy in an 

electric field.    
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( )( )

0.5
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1 1( ) exp
2

U
p d d

A KT

γ γ
γ γ

γ γ γ
π γ γ γ γ

⊥

⊥

⊥

⎡ ⎤⎛ ⎞−⎢ ⎥Δ ⎜ ⎟ ⎡ ⎤⎜ ⎟−⎢ ⎥⎝ ⎠ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎡ ⎤− −⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥
⎣ ⎦

   (12-App.3) 

In equation (12-App.3), A is a normalization constant described in Section 3-App.S6.  

Equation (12-App.3) assumes that the dipole moment is aligned with the axis of 

symmetry of the spheroid.  Fig. 3.4C of the main chapter demonstrates that for spheroid 

proteins with dipoles less than approximately 1,500 D, it is theoretically possible to 

observe a bimodal distribution of shape factors.  The average dipole moments of proteins 

is approximately 550 Debye (http://bioinfo.weizmann.ac.il/dipol/indexj.html), suggesting 

that many aspherical proteins may generate a skewed bimodal distribution of shape 

factors.  Additional factors may bias the orientation of proteins in the nanopore including 

steric effects, hydrodynamics, and interactions with the pore wall.  Therefore, equation 

(12-App.3) is an approximation of how the orientation, and therefore distribution of 

shape factors, of a protein with a dipole moment may be biased.  

Since the value of ΔI is directly proportional to the electrical shape factor, γ, 

according to equation (1-App.3), we can also express equation (12-App.3) in terms of ΔI.  

In this case, this probability distribution is the expected distribution of ΔI values due only 

to the possible values of the shape factor – it does not include effects such as 

experimental or analytical errors in determining ΔI values.  Since the modes of the 

distribution γmin and γmax correspond to either ΔImin or ΔImax (see next section), we can 

write equation (12-App.3) in terms of ΔI as: 

( )( )

0.5

max

min max
1/ 2

max min

1 1( ) exp
2

I IU
I I

p I d I d I
A KT I I I I

γ γ γ
π

⎡ ⎤⎛ ⎞Δ − Δ
⎢ ⎥Δ ⎜ ⎟ ⎡ ⎤Δ − Δ⎢ ⎥⎝ ⎠ ⎢ ⎥Δ Δ = Δ⎢ ⎥ ⎢ ⎥Δ − Δ Δ − Δ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎣ ⎦

   (13-App.3) 

 

3-App.S4.  Using ∆Imin and ∆Imax to solve for the volume and shape of 
proteins.  

 Given that the probability distribution of shape factors has modes at γ
 
and γ ⊥  

corresponding to either ΔImin or ΔImax values according to equation (1-App.3), we 
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expected that if the value of ΔImin and ΔImax could be determined quantitatively from the 

empirical distribution of ΔI values then the volume and shape of a protein could also be 

determined.  For example, the minimum shape factor for an oblate spheroid occurs at θ = 

π/2 and has a value of γ ⊥ (m) (equation 4-App.3).  Thus, according to equation (3.1), the 

minimum mode in the bimodal ΔI distribution, ΔImin, is a function of Λ and γ ⊥ (m), and 

the maximum mode in the bimodal ΔI distribution, ΔImax, is a function of Λ and γ (m).  

Since both γ
 
and γ ⊥  are solely a function of m, we developed the system of equations 

(13-App.3) and (14-App.3) in which the values of m and Λ are the only two unknowns 

and the values of ΔImin and ΔImax are determined from fitting the empirical distributions of 

ΔI with the convolution model.  By rearranging equation (3-App.3), we can write for 

oblate spheroids with m < 1: 

 ( )
( )
( )

min

max

( ),
if 1

( ),

m I
m m

m I

γ

γ
⊥Λ Δ⎧⎪Λ = <⎨

Λ Δ⎪⎩
, (13-App.3) 

and for prolate spheroids with m > 1:
  

( ) ( )
( )

min

max

( ),
if 1

( ),

m I
m m

m I

γ

γ ⊥

⎧Λ Δ⎪Λ = >⎨
Λ Δ⎪⎩

. (14-App.3) 

Since this system of equations has a piecewise dependence on the value of m, we 

substituted the determined values of ΔImin and ΔImax into equations (13-App.3) and (14-

App.3) and used MATLAB to solve the system numerically for the excluded volume of 

the protein, Λ and the value of m.   

 

3-App.S5.  Models for describing mean squared angular displacement and 
autocorrelation characteristic times. 

The fluctuations in the orientation of the nonspherical proteins while in the 

nanopore can be described by a Langevin torque equation, equation (15-App.3), which 

includes terms for the thermal driven torque, viscous drag torque, and electric-field 

induced restoring torque due to the dipole moment (61).  
2

2 sin( )R
d dI E
dt dt

θ θτ ς μ θ= − −

 

(15-App.3) 



 117

Where I is the rotational inertia, ζ (J Pa-1 s-1 m-1) is the rotational viscous friction 

coefficient, E  (V m-1) is the electric field, μ  (C m) is the dipole moment of the protein, 

and θ (rads) is the angle between the dipole moment and the electric field.  To solve this 

equation for the mean squared angular displacement, <Δθ2(τ)>, we first neglect the 

inertial term by setting it equal to zero and then linearize the equation by noting the small 

angle approximation of sin(θ) ≈θ . We then solve the equation for <Δθ2(τ)> by 

considering the statistical ensemble of thermal fluctuations and applying the equipartition 

theorem according to Russel et al. (61, 76).  Finally, by applying the Stokes-Einstein 

relationship, we can replace ζ with kBT/DR to arrive at equation (16-App.3).   

2 2( ) 1
R

B

E D
k TBk T e

E

τ μ

θ τ
μ

−⎡ ⎤
< Δ > = −⎢ ⎥

⎢ ⎥⎣ ⎦  

(16-App.3) 

We used equation 16-App.3 to fit the mean squared angular displacement curves in Fig. 

3.6 of the main text with the rotational diffusion coefficient, DR, and the dipole moment 

of the protein, μ , as fitting parameters.  This model describes the Brownian rotational 

motion about one axis of a particle in a harmonic energy well; it is analogous to 

translational motion of a Brownian, harmonically bound particle (62). 

 In order to predict the characteristic times, τC, for the exponential decay of the 

autocorrelation curves, we first note that τC is related to the rotation diffusion coefficient 

and the rotation spring constant, kθ, by equation 17-App.3 (66).  

B
C

R

k T
D kθ

τ =

 

(17-App.3) 

Second, we note that the energy well due to the dipole moment in the electric field is 

cos( )U Eμ θΔ = , and the energy well of a harmonic oscillator is 2
1
2

U kθθΔ = .   Since 

cos(θ) can be approximated by θ2/2, the effective rotational spring constant, kθ, is 

approximately equal to Eμ  (61).  

 

3-App.S6.  Derivation of a shape factor distribution that includes the dipole 
moment of proteins 
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To derive a probability distribution of shape factors that takes into account a bias 

for a specific orientation based on the dipole moment of a protein and the electric field, 

we used the Boltzmann distribution of energies: 

exp

exp

i
i

Bi

j
j

B

Ug k TN
UN g k T

−⎡ ⎤
⎢ ⎥⎣ ⎦=

−⎡ ⎤
⎢ ⎥⎣ ⎦

∑
  (18-App.3) 

where gi is the degeneracy factor or number of states that have the same energy level, Ui 

is the energy level of state i, Ni is the number of molecules with energy level i, N is the 

total number of molecules in the system, and kBT is the thermal energy. The denominator 

of equation (18-App.3) is the partition function, and we will label it Z.  Assuming that all 

of the energy affecting the orientation of the protein is in the form of the potential energy 

of a dipole in an electric field then gi is constant for all energy states and cancels out of 

equation (18-App.3).  The potential energy of a dipole in an electric field is:  

( )cosU E Eμ μ φΔ = • = −   (19-App.3) 

where E is the electric field, μ is the dipole moment, and φ is the angle between the 

moment and the electric field. Combining equations (18-App.3) and (19-App.3), the 

proportion of molecules at an angle, φ, is: 

( )cos1 exp
Z

N E
N KT

φ μ φ⎡ ⎤
= ⎢ ⎥

⎣ ⎦  
(20-App.3) 

and therefore the probability of observing an angle φ is: 

( )cosc exp
Z

E
p

KTφ

μ φ⎡ ⎤
= ⎢ ⎥

⎣ ⎦  
(21-App.3) 

 where c is a normalization constant. 

To express cos(φ) in terms of the electrical shape factor we first rearranged 

equation S4, which describes γ as a function of θ, to obtain:  

( )
0.5

cos γ γθ
γ γ

⊥

⊥

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠  

(22-App.3) 
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Considering a simple scenario in which the dipole moment is parallel with the axis of 

symmetry (i.e. φ = θ), we substitute equation (22-App.3) into equation (21-App.3) to 

obtain:
 
 

0.5

c exp
Z

E
p

KTθ

γ γμ
γ γ

⊥

⊥

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(23-App.3) 

Equation (23-App.3) expresses the probability of observing an angle θ as a function of 

the shape factor, p(θ(γ)).  As in the derivation by Golibersuch, we used substitution of 

variables to transform p(θ(γ)) into p(γ): 

[ ] [ ]
1

( ) d dp d p d p d
d d
θ γγ γ θ γ θ γ
γ θ

−
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

  (24-App.3) 

and differentiated equation (6-App.3) with respect to θ, d
d

γ
θ

.  Substituting this result into 

equation (24-App.3), we obtained equation (25-App.3): 
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⎣ ⎦

 

(25-App.3)  

To solve for the normalization constants, we integrated equation (25-App.3) and set it 

equal to 1 (i.e. ( ) 1p d
γ

γ

γ γ
⊥

=∫ ).  This procedure cancels out the partition function Z and 

yields:   
( )( )
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 (26-App.3) 

where A is described by:
  



 120

( )( )

0.5

1/2
1exp

2

E
A d

KT

γ

γ

γ γμ
γ γ

γ
π γ γ γ γ

⊥

⊥

⊥

⊥

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ ⎡ ⎤⎜ ⎟−⎢ ⎥⎝ ⎠ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎡ ⎤− −⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥
⎣ ⎦

∫

 

(27-App.3) 

Equation (27-App.3) is identical the equation (12-App.3).
 

If the dipole moment is perpendicular to the axis of symmetry, for instance as 

may be likely for an IgG antibody then  cos(φ) =  sin (θ).  Using equation (22-App.3) and 

the trigonometry identity, sin2(θ) = 1 – cos2(θ), we can then follow the same procedure as 

above to obtain: 
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(28-App.3) 

where  
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(29-App.3) 
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3-App.S7.  Chapter 3 appendix figures 
 

 
Figure 1-App.3 | Empirical cumulative distributions (grey curves) of ΔI values due to the 
translocation of non-spherical proteins compared to a best-fit Normal distribution (red curves) and 
the solution the convolution model, p(ΔI) ( black curves).  In each case, Kolmogorov Smirnov (KS) tests 
were used to determine if the empirical distribution was different than the Normal distribution and p(ΔI).  
Resulting p-values are shown in the figure panels.  In KS-tests, the null hypothesis is that the two 
distributions are the same, and therefore, a p-value ≤  0.05 indicates that the difference between two 
distributions is statistically significant at the α = 0.05 level.  For all of these non-spherical proteins, the 
distribution of ΔI values was different from a Normal distribution (pN < 0.002).  In contrast, the solution to 
the convolution model, p(ΔI), described the empirical distributions of ΔI values well (p p(ΔI) > 0.31).  
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Figure 2-App.3 | Detection of monoclonal anti-biotin IgG1 antibody with a bilayer-coated nanopore.  
(A) Current versus time trace showing resistive pulses due to translocation of IgG1 antibodies that were 
bound to biotin-PE lipids in the bilayer coating.  Resistive pulses occurred at a frequency of 34 s-1. (B) 
Current versus time trace recorded after the addition of excess biotin (10 μM) to the solution and containing 
a reduced frequency of resistive pulses (1.3 s-1). (C) Current versus time trace recorded using the same 
nanopore as A and B but with a bilayer coating that did not contain biotin-PE lipids.  Resistive-pulses 
occurred at a frequency of 2 s-1

.  The experiments were performed using nanopore 2 (Fig. 4-App.3).  (D) 
Hydrodynamic diameter of IgG1 antibodies determined from dynamic light scattering experiments. IgG1 
antibodies were at a concentration of 500 nM in aqueous solutions identical to the recording electrolyte (2 
M KCl and 10 mM HEPES at pH = 7.4) during the dynamic light scattering experiment.   Where indicated, 
8 M of urea was added to the solution in order to denature all proteins. The dynamic light scattering results 
are the combination of 5 runs, each 60 s in duration.  Results show the intensity-weighted calculation for 
the hydrodynamic diameter.  The instrument was a Brookhaven 90Plus Particle Sizer and used a 658 nm 
laser at an angle of 90º to the detector.  The absence of a second peak indicates that IgG1 antibodies did not 
form a significant number of dimers in 2 M KCl even at concentrations 500 fold greater than in the 
resistive-pulse sensing experiments.   
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Figure 3-App.3 | Histograms of the ΔI values due to the translocation of the IgG1 antibody (150 kDa) 
and GPI-anchored acetylcholinesterase (160 kDa) through the same nanopore. The experiments were 
performed using nanopore 3 (Fig. 4-App.3).  Though both distributions are bimodal, the relatively narrow 
distribution of ΔI values due to GPI-anchored acetylcholinesterase compared to that of the IgG1 antibody 
confirms that the large molecular weight of the IgG1 antibody was not the reason for broadly distributed ΔI 
values. The recording buffer contained 2.0 M KCl and 10 mM HEPES buffered at a pH of 7.4 ± 0.1, and 
currents were recorded at an applied potential difference of -0.1 V 
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Figure 4-App.3 | Transmission electron micrographs of the nanopores used in this work.  The 
brightest part in the center of each image depicts the shape and size of the nanopore and the surrounding 
circle with reduced brightness reflects the channel leading to the nanopore (16, 77).  All scale bars are 50 
nm.  Nanopores shown are pore 1(A), pore 2 (B), pore 3 (C), pore 4 (D), and pore 5 (E).  Using Image J, 
we measured the area of the nanopore (bright spot in the center) to determine the corresponding radius of a 
perfect circle with identical area, rP (nm), and we determined the length, lP (nm), of the nanopore from 
measurements of the electrical resistance of the nanopore (16).  The dimensions of the nanopores without 
the lipid bilayer coating were: for pore 1 rP = 16.1 and lP = 21.3; for pore 2 rP = 16.4 and lP = 17.3; for pore 
3 rP = 22.7 and lP = 16.2; for pore 4 rP = 9.6 and lP = 18.0; and for pore 5 rP = 16.0 and lP = 15.0. 
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Table 1-App.3.  Values of fitting parameters determined from fitting the convolution model to the 
empirical distributions of ΔI values (Figure 3.2 and 3.3) as well as the resulting calculations of 
protein volume, Λ, and shape parameter, m.   

 

 
  

Experiment ΔImin ΔImax σ ΔU R2 Λ m 
 (pA) (pA) (pA) kBT  nm3  

IgG1 Pore 1 320 685 69 0 0.99 290 0.35 

IgG1 Pore 2 383 1085 178 1.9 0.93 281 0.26 

IgG1 Pore 3 259 665 94 0.2 0.92 305 0.29 

Fab Fragment Pore 4 244 325 25 2.6 0.94 152 or 0.65 or 

      168 1.8 

GPI-acetylcholinesterase Pore 3 217 323 35 0 0.99 216 or 0.55 or 

      245 2.3 

GPI-acetylcholinesterase Pore 5 300 529 54 0.7 0.99 186 or 0.51 or 

       215 2.9 
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Figure 5-App.3 | Example convolution of the probability distribution of ΔI values one expects due to 
the distribution of shape factors, p(ΔIγ) (equation (13-App.3)), and the error in determining 
individual ΔI values, p(ΔIσ) (a Normal distribution function).  The solution to the convolution is the 
probability distribution of ΔI values one expects to observe, p(ΔI).  During the fitting procedure, p(ΔI) is 
compared to the empirical distribution of ΔI values, P(ΔI), and the Levenberg-Marquardt  non-linear least 
squares fitting algorithm in OriginPro 8 software generates new values for the fitting parameters ΔImin, 
ΔImax, ΔU, and σ, thereby creating new iterations of p(ΔIγ) and p(ΔIσ).  This processes repeats and in all 
cases the fits converged after approximately 100 to 200 iterations.    
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Figure 6-App.3 | Estimating the excluded volume as a function of m using ΔImin and ΔImax values 
illustrates that there are two solutions to equations (13-App.3) and (14-App.3) for prolate shaped 
proteins.  This figure shows this result graphically by plotting the estimated volume of GPI-anchored 
acetylcholinesterase as a function of m. The two red dots indicate the two solutions to the system of 
equations (m = 0.51, Λ = 186 nm3 and m = 2.9, Λ = 216 nm3).  In order to simplify the graph, we described 
the electrical shape factor with the notation γMAX or γMIN .  We used this notation because for prolates (m > 
1) γMAX = γ ⊥ and for oblates (m < 1) γMAX = γ

 

(see equations 13-App.3 and 14-App.3).  The opposite is 

true for γMIN . 
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Figure 7-App.3 | Probability distributions of ΔI due to GPI-acetylcholinesterase (A) and IgG1 
antibodies (B) obtained when applying different voltages across the nanopore.  The empirical 
probability distributions shown here were generated by creating a histogram with a bin-width of 1 pA  and 
smoothing the histogram using a moving average (span = 75 pA); distributions were then normalized such 
that the total area under the curves equaled 1.  To compare the distributions obtained during different 
applied voltages, the x-axis was normalized by dividing the ΔI value by the baseline current.  The 
proportion of events in orientation P2 or P1 was determined by taking the area under the curves at 
ΔImin/Ibaseline ± 0.025 and ΔImax/Ibaseline ± 0.025, respectively.  ΔImin and ΔImax for each protein were 
determined during the fitting procedure described in the main chapter and Fig. 5-App.3.  Interestingly, the 
ratio of events in P2 to P1 (P2 /P1 ) declines exponentially with increasing voltage, suggesting that the 
energy of each protein’s dipole moment in an electric field biases the orientation of the proteins in the 

nanopore.  Consequently, we fit the ratio P2 /P1 with a two-state Boltzmann model:  2 1/ B

E
k TP P e

μ−

= where 
E  is the electric field (i.e. V / (lP+1.6rP) ), μ is the dipole moment in Debyes ( 1 Debye ~ 3.336E-30 C m), 
and kBT is the thermal energy (4.11 × 10-21 J).  This procedure returned estimates of the dipole moments of 
the proteins of μ  = 360 ± 30 D for GPI-AchE and μ  = 996 ± 32 D for the monoclonal IgG1 antibodies.   
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Figure 8-App.3 | Histograms of all intra event ΔI values recorded during the translocation events of 
IgG1 antibodies, Fab fragments, GPI-anchored acetylcholinesterase, and streptavidin. (Note, these 
histograms reflect all measured values of ΔI and are not limited to the maximum ΔI values as in the 
analysis presented in the main text).  These distributions were not Normally distributed for IgG1 antibodies, 
GPI-anchored acetylcholinesterase, and Fab fragments.  The intra event-ΔI values due to streptavidin 
translocations, however, were Normally distributed.  For the IgG1 antibody, these distributions appeared to 
be multimodal with more than two modes (Figure 3.6A).  Given that the regions of an IgG antibody 
between the Fc domain and the two Fab fragments are very flexible,(58, 67) it is possible that these modes 
in the distribution of all intra event-ΔI values reveal dynamic fluctuations in the shape and conformation of 
antibodies as well as changes in their orientation relative to the electric field.  Some of the shapes that the 
IgG1 antibodies might sample may have been more spherical (67) than the crystal structure shown in Fig. 
3.1B implies.   
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Chapter 4 
 

Using Nanopores with Fluid Walls to Determine the Binding Affinity of 
Protein Ligand Interactions  

 

Here, we demonstrate the use of lipid-bilayer coated nanopores for determining 

the binding affinity between a protein and a ligand that is anchored to mobile lipids in the 

lipid coating.  This work shows that the frequency of resistive-pulses due to these 

proteins can be used to determine kinetic parameters of the binding interaction (e.g. the 

association rate constant, kon, and dissocation rate constant, koff) and equilibrium constants 

(e.g. the dissociation constant, Kd).  Thus, this chapter describes methods of obtaining 

parameters specific to protein-ligand interactions in addition to those parameters (e.g. 

size, charge, and shape) that can already be determined by the analysis of protein 

translocation events through bilayer-coated nanopores.  This capability is unique to 

nanopores with fluid walls in which the ligands are mobile in the fluid layer and is not 

possible with nanopores that are decorated with fixed, covalently attached ligand.   
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4.1 Introduction 
At some point in the life of every protein, the protein will bind to a small 

molecule or additional protein to influence cellular processes.  Consequently, numerous 

methods have been developed to detect association between ligands and proteins as well 

as to characterize the binding kinetics and affinity (1).  Most techniques are average-

based techniques in which the primary signal is the result of millions of binding 

interactions, and most techniques are limited to characterizing the binding interaction 

while other properties of the protein such as its size and charge are not determined during 

the analysis.  Here, we describe a single molecule technique that uses nanopores with 

fluid walls for determining kinetic rate constants and equilibrium affinity constants of 

proteins binding to ligand; the major advantage of this nanopore-based method is that the 

same experiments used to characterize the binding of a protein and ligand also 

characterize the size, charge, and shape of the protein (2-4).   

The most well-known methods of characterizing association and dissociation 

reactions of proteins (with ligand or other proteins) are isothermal titration calorimetry 

(5), surface plasmon resonance (6, 7), affinity capillary electrophoresis (ACE) (8, 9), and 

enzyme-linked immunosorbant assays (ELISA) (1, 10, 11).  All of these techniques, 

however, are generally limited to characterizing the binding reaction and provide little 

information on the properties of the binding protein.  ACE may be the exception in that 

the electrophoretic mobility of the analyte is typically obtained.  Several other 

biophysical techniques are capable of characterizing binding interactions while providing 

additional information.  For instance, dual polarization interferometry (12), fluorescence 

correlation spectroscopy (13, 14), and microscale thermophoresis (15-18) can all 

characterize binding interactions while determining the size of a protein.  Microscale 

thermophoresis has the additional capability of being able to determine the charge and 

size of the hydration shell of a protein.  While these techniques have proved extremely 

useful, they all share a limitation: since characterization of the binding parameters and 

additional properties of the binding-protein require measurement of millions of proteins, 

these techniques are not well suited for situations in which different proteins bind the 

same ligand. 
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Electrolyte-filled nanopores through an insulating membrane are an emerging 

technology for characterizing macromolecules such as proteins (19-30).  These single-

molecule experiments involve measuring the electric field-induced flow of ions through a 

single nanopore and the changes in this current (i.e. resistive pulses) when single protein 

passes through the nanopore.  Measuring the magnitude and duration of these transient 

changes in current ( ΔI and td) during the translocation of thousands of single proteins 

enables construction of distributions that can reveal dynamic heterogeneities in size (3, 

21, 29, 31-36), conformation (23, 37-39), and activity of biomolecules in situ (2, 25, 27, 

40-42).  For instance, Uram et al. demonstrated the use of pores for determining solid-

phase affinity constants based on increases in the volume of antigen-labeled beads upon 

binding of IgG antibodies (43).  More recently Wei et al. and Ding et al. developed 

nanopore-based methods in which ligand were immobilized in a nanopore, and they 

observed the association and dissociation of single proteins to the ligand, which enabled  

determination of kinetic parameters (i.e. kon and koff) as well as equilibrium affinity 

constants (i.e. Kd) (41, 44).  These types of nanopore-based methods benefit from an 

ability to determine the volume of the binding protein, and therefore, characterize the 

binding affinities of different proteins that bind the same ligand.  Additional nanopore-

based methods for characterizing activity-related properties of proteins can be found in 

these reviews (24, 25, 28, 40).   

Recently, we used nanopores coated with lipid bilayers that contained a fraction 

of ligand-presenting lipids to detect and characterize the volume, charge, and shape of 

proteins that bound to the lipid-anchored ligand (4, 40).  In those works proteins from 

solution bound to the mobile, lipid-anchored ligand in the supported lipid bilayer and 

were able to diffuse in two dimensions to the nanopore where they were 

electrophoretically driven through the pore (Fig. 4.1).  Here, we present a model to 

characterize this two-dimensional mass transport problem and describe the frequency of 

translocation events as a function of the binding affinity of proteins to the lipid-anchored 

ligand that are presented on the fluid bilayer surface.  We validated the model by 

measuring the frequency of translocation events as a function of the density of lipid-

anchored proteins on the bilayer surface and applied the model to determine the 
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equilibrium affinity constant of a monoclonal anti-biotin IgG1 antibody binding to biotin-

PE lipids.   

 

 

 
Figure 4.1 | Illustration of the cylindrical coordinate system and parameters used to describe the 
diffusion-limited frequency of translocation events of lipid-anchored proteins.  The radius of the 
nanopore, ro, is the boundary across which the flux of proteins is calculated.  The density of ligand on the 
surface is ΓL and the density of ligand bound proteins on the surface is ΓPL.  Their concentration is 
described in differential equation (4.5) as a function of the distance from the nanopore, r, and time, t.  The 
angle between that vector and the azimuth is φ.   
 

 

4.2 Model describing the flux of lipid-anchored proteins across the 
perimeter of a bilayer-coated nanopore 
 

Supported lipid bilayers are a fluid in which diffusion occurs in a two-

dimensional plane and flux occurs across a unit of length rather than through an area.  In 

this two-dimensional environment, the concentration of an analyte on the surface (i.e. 

lipid-anchored proteins) is expressed as a surface density, Γ (# m-2).   

To develop a model describing the frequency of the translocation events as a 

function of the surface density lipid-anchored proteins, we first consider that for diffusion 

in one direction, x, the flux of molecules across a line of length, l (m), is described by a 

modified form of Fick’s first law of diffusion: 

( , )
L

x tJ D
x

∂ Γ
= −

∂
, (4.1) 

where LJ  (# s-1 m-1) is the flux across a line and D (m2 s-1) is the diffusion coefficient of 

the molecules in the plane.  In this case, the change in the surface density of the molecule 

with time is given by a modified form of Fick’s second law of diffusion:  
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2

2

( , ) ( , )x t x tD
t x

∂ Γ ∂ Γ
=

∂ ∂
. (4.2) 

Equations (4.1) and (4.2) are differential equations describing the flux, 

concentration gradient, and changes in concentration as a function of time and position 

for the diffusion of surface-bound analytes in one dimension.  For a constant, direction-

independent diffusion coefficient, equation (4.3) describes the general formulation of 

Fick’s second law for any geometry (45): 

2D
t

∂ Γ
= ∇ Γ

∂
. (4.3) 

For the mass transfer of lipid-anchored proteins to the nanopore, we must consider 

diffusion in a two dimensional plane in which the random diffusion to the entrance of the 

nanopore is described by the flux of proteins across the perimeter of a circular pore.  This 

scenario is best modeled in cylindrical coordinates in which the only variables are the 

radius from the origin (i.e. the center of the pore), r (m), and an angle φ (rad) from the 

azimuth, Fig. 4.1.  The Laplacian operator for this geometry is (46): 
2 2

2
2 2 2

1 1
r r r r ϕ

∂ ∂ ∂⎛ ⎞⎛ ⎞∇ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
. (4.4) 

In these experiments, we assume the diffusion around the pore to be radially 

symmetric; thus, the third term in equation (4.4), 
2

2ϕ
∂

∂
, equals zero.  Combining 

equations (4.3) and (4.4) yields equation (4.5), which describes diffusion in a plane with 

the radius from the origin, r, and time, t, as the only parameters (45-47): 
2

2

( , ) ( , ) 1 ( , )r t r t r tD
t r r r

⎛ ⎞∂ Γ ∂ Γ ∂Γ
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

. (4.5) 

To use equations (4.1) and (4.5) for describing the flux of surface-bound analytes across 

the perimeter of the nanopore, we define three boundary conditions (45): 

0( , 0)r r t ∞Γ > = = Γ , (4.6) 

lim ( , )
r

r t ∞→∞
Γ = Γ ,  (4.7) 

0( , 0) 0r tΓ > = ,  (4.8) 
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where r0 (m) is the radius of the pore and ∞Γ (# m2) is the density of the analyte on the 

surface at a far distance from the nanopore.  The initial condition in equation (4.6) 

expresses the homogeneous distribution of analytes on the surface before the experiment 

starts (i.e. before an electric field is applied).  Equation (4.7) asserts that regions distant 

from the pore are not affected by the flux of analytes to the pore.  Equation (4.8) 

describes the experimental perturbation that occurs at t ≥  0.  In the context of these 

experiments, the experimental perturbation that occurs at t = 0 is the application of an 

electric field across the nanopore, and we assume that in this electric field, all charged 

proteins arriving at the boundary r0 are immediately driven electrophoretically through 

the pore to an infinite sink.  This last assumption is necessary for equation (4.8) to remain 

valid for large values of t.  

While describing the diffusion-limited current of cylindrical ultramicroelectrodes, 

Szabo et al. reported a numerical approximation to equations (4.5) – (4.8) that is valid 

within 1.3% (48).  Equation (4.9) shows the solution presented by Szabo et al. in terms of 

flux of molecules to the boundary, ro, and the surface densities of the analyte, Γ: 

2
0

40.05

0
2 2

0 0

2 1
4 4ln 5.2945 0.74393

Dt
r

L
D eJ
r Dt Dt

r r

π

π

−

∞

⎡ ⎤
⎢ ⎥

Γ ⎢ ⎥= +⎢ ⎥⎛ ⎞
⎢ ⎥+⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  (4.9) 

Note that time, t (s), remains in equation (4.9), and thus, this equation is time dependent.  

For long times the first term in the brackets approaches zero, and the second term in 

brackets dominates resulting in a quasi-steady state solution for the flux, JL(qss): 

( )

0 2
0

2
4ln

L qss
DJ

Dtr
r

∞Γ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (4.10) 

Thus for a density of lipid-anchored proteins, PLΓ ( # m-2), with a diffusion 

coefficient, D, the frequency of translocation events, fT (# s-1), through lipid-coated 

nanopores can be obtained by multiplying equation (4.10) by the perimeter of the 

nanopore, 2πr0, to obtain equation (4.11): 
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The surface density of the lipid-anchored proteins can be calculated from: 

PL LΓ = Γ Θ , (4.12) 

where LΓ (# m-2) is the total density of ligand on the surface and Θ (unitless) is the 

fraction of ligand bound to a protein.  Under equilibrium conditions, the Langmuir-

binding isotherm describes the fraction of ligand bound to a protein as a function of the 

concentration of unbound protein, [P] (mol L-1) and the dissociation constant Kd (mol L-1) 

(49, 50): 

[P]
[P]

PL

L DK
Γ

Θ ≡ =
Γ +

. (4.13) 

The binding isotherm in equation (4.13) assumes that the binding of proteins to 

ligands on the surface does not deplete the concentration of unbound protein in solution, 

and thus, that the total protein added, [Po], is approximately equal to the concentration of 

unbound protein in solution [P].  Resistive-pulse experiments, however, often take place 

with low concentrations of proteins (i.e. ~10 nM) and small reagent volumes (i.e. less 

than 100 uL), and thus, protein depletion likely occurs (i.e. [Po] ≠ [P]).  Equation (4.14) is 

the correct Langmuir binding isotherm for experimental conditions in which unbound 

proteins are depleted from solution by binding to a surface (49).  Here, we use equation 

(4.14) to describe the fraction of ligand that is bound to the protein. 
2 2 2 2 2[ ] [ ] 2 [ ] 2 [ ] [ ] 2[ ] [ ]

2[ ]
Surface Areatotal ligandwhere  is the ratio of

total protein [ ]Volume

d o o d d o d o o o o

o

L

V o

K P P K K P K P P P P
P

A P

α α α α
α

α

+ + − + + + − +
Θ =

Γ
=

  (4.14) 

In these experiments, we estimated the surface area to be 3.14 × 10-6 m2 (Section 4-

App.Methods) and the volume of electrolyte was always 100 × 10-9 m3.  Equation (4.13) 

and (4.14) also assume that the binding interaction is monovalent and that the binding of 

a protein to the lipid-present ligand does not block additional ligand.  Since in this work 

we employ densities of ligand on the surface that are a minimum of 6.6 times smaller 

than the cross-sectional area of the protein, this later assumption is reasonable.  Thus by 
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combining equation (4.12) with either equation (4.13) or (4.14), we obtain the quasi 

steady state equation (4.15) that describes the frequency of translocation events as a 

function of the equilibrium dissociation constant, Kd, between a protein and its lipid-

anchored ligand.  

L
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D t
r
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. (4.15) 

 

4.3 Validation of equation (4.15) 
 
 To validate the model shown in equation (4.15), we performed experiments with 

various densities of the ligand, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-

capbiotinyl (biotin-PE), in the lipid bilayer coating and an excess concentration of the 

biotin-binding protein streptavidin in solution.  Since streptavidin has a very high affinity 

for biotin (e.g. Kd ~ 10-15 M, (51)) and since streptavidin was present in solution at an 

excess concentration compared to the ligand, we expected all ligand to be bound to the 

protein at equilibrium (i.e. ΓL ≈ ΓPL).  Thus, under these particular conditions, the 

frequency of translocation events described by equation (4.15) will be a function of the 

radius of the nanopore, which we determined from TEM images; the diffusion coefficient 

of the lipids in the membrane, which we determined from FRAP experiments (Section 4-

App.S1); and the density of ligand available in the lipid bilayer coating, ΓL, which we 

control during preparation of the lipid bilayer (Section 4-App.Methods).  To perform 

these experiments, we first formed the lipid bilayer coating with mole fractions of the 

biotin-PE lipids ranging from 0.1 × 10-5 to 4.0 × 10-5 in a background of 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) lipids.  Since PC lipids have an average area 

per lipid of 68.3 Å2 (52), these mole fractions of biotin-PE correspond to ΓL ~1.46 × 1012 

m-2 to ~5.86 × 1013 m-2.  We then added a ~10,000 fold mole excess of streptavidin (i.e. 

100 nM) to the electrolyte on the top side of the chip (Fig 1.3B) and monitored the 

frequency of translocation events as a function of time (Fig. 4.2A).  Fig. 4.2A shows the 

expected result that the frequency of translocation events at equilibrium increased with 

the density of the ligand.  In order to determine the equilibrium frequency of 



 143

translocation events for each ligand density, we fit these curves with a pseudo-first-order 

rate equation (50): 

( )( ) 1 obsk t
PL PL equilibriumt e−⎡ ⎤Γ = Γ −⎣ ⎦  (4.16) 

where kobs (h-1) is the observed rate constant of the fit and described by: 

obs on L offk k k= Γ +  (4.17) 

 
Figure 4.2 | Frequency of translocation events 
due to streptavidin-biotin-PE complexes with 
different fractions of biotin-PE lipids in the 
bilayer coating as well as kinetic analysis of the 
binding interaction.  (A)  Frequency of 
translocation events as a function of time for 
different densities of biotin-PE lipids in the bilayer 
coating.  Plots were fit with equation (4.16) to 
estimate the equilibrium frequency of translocation 
events, where f(t) and fequilibrium replaced parameters 
ΓPL(t) and ΓPL(equilribrium), respectively.  (B)  Plot of 
the frequency or translocation events at equilibrium 
as determined from the best-fits in (A) as a 
function of the ligand density in the bilayer 
coating.  The black line indicates the expected 
frequency of translocation events based on the 
measured diffusion coefficient of biotin-PE lipids 
D = (1.14 ± 0.16) × 10-12 m2 s-1 (Section 4-
App.S1), the radius of the nanopore, ro = 7.2 × 10-9 
m, the density of ligand in the bilayer coating ΓL, 
and equation (4.15).  Blue dashed lines indicate the 
95% confidence interval given the errors in 
determining the diffusion coefficient of the lipids 
and the diameter of the nanopore.  (C)  Observed 
rate constant, kobs, from (A) as a function of the 
biotin-PE density in the bilayer coating.   
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and kon (m2 h-1) is the association rate constant and koff (h-1) is the dissociation rate 

constant.  Fig. 4.2B plots the equilibrium frequency of events as a function of the ligand 

density, ΓL, and compares it to the expected frequency of translocation events based on 

equation (4.15) with ΓPL = ΓL (black line).  The excellent agreement between the expected 

frequency of translocation events based on the measured diffusion coefficient of the 

lipids in the membrane and the measured frequency of translocation events confirms that 

the model in equation (4.15) accurately describes the two-dimensional mass transport 

processes of lipid-anchored proteins to the nanopore.   

To determine kinetic parameters of the binding interaction between streptavidin 

and biotin-PE, we plotted the value of kobs determined from the best-fits in Fig. 4.2A as a 

function of ΓL and fit these points with the linear model in equation (4.17) (Fig. 4.2C).  

As expected the value of kobs increased linearly with ligand density, and the slope of line 

returned an estimate of kon of 2.33 × 10-13 ± 0.2 × 10-13
 m2 h-1.  The y-intercept of the line 

returned the value of koff  equal to 1.0 ± 1.1 h-1.  Consequently, we estimated the 

equilibrium dissociation constant, Kd, for these pseudo-first order conditions by using the 

estimates of kon and koff returned from the fitting procedure, Kd = kon/koff = 4.3 × 1012 m-2 

or 7.1 × 10-12 mol m-2.  Note that this equilibrium dissociation constant has units of moles 

per m2
, since the parameter varied in this experiment was the ligand density, and thus Kd 

here characterizes the binding affinity between streptavidin in solution and a surface-

constrained biotin-PE lipid.  For comparison, the equilibrium dissociation constant of 

streptavidin to biotin in solution is reported to be ~10-15 M or ~10-12 mol m-3 (51).  The 

agreement between the expected affinity constant and the measured affinity constant 

provide additional evidence that this method of analyzing the frequency of the 

translocation is an accurate method for characterizing the binding interactions between 

proteins and a ligand.    
 Since equations (4.9)-(4.11) and (4.15) predict that the frequency of translocation 

events will decay to a quasi-steady state value after the electric field is first applied, we 

examined the frequency of streptavidin translocation events that we observed 

immediately after applying the electric field.  Fig. 4.3 illustrates the interesting result, that 

immediately after turning on the electric field we did not observe a decay in the 

frequency of translocation events as predicted by the model.  This result is likely due to 
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the incorrect assumption in the model that at t ≤  0, the surface density of the ligand-

bound protein, ΓPL(r), is homogenous (equation 4.6).  Since in these experiments, we 

added protein to the electrolyte on only one side of the chip, the lipid bilayer coating on 

the opposite side of the nanopore will not contain a significant fraction of ligand bound to 

streptavidin.  In other words, on the opposite side of the nanopore, the lipid bilayer 

coating has a ΓPL ~ 0.  Thus, even before the electric field is applied, a concentration 

gradient near the nanopore in the density of biotin-PE lipids bound streptavidin is 

established.  Fig. 4.3 also illustrates, however, that the quasi-steady state approximation 

(i.e. t > 300 s) predicts the measured frequencies of translocation events well.  This result, 

combined, with the good agreement between the expected and measured frequencies of 

translocation events shown in Fig. 4.2B validates that the model in equation (4.15) 

accurately describes the frequency of translocation events as a function of the density of 

lipid-anchored proteins, ΓPL. 

 

 

 
Figure 4.3 | Frequency of translocation events due to streptavidin bound to biotin-PE lipids 
immediately after applying the electric potential difference.  The red line is the predicted frequency of 
the translocation events as a function of time (i.e. not employing the quasi-steady state approximation) and 
the points show the measured frequency of translocation events as determined by counting the number of 
translocations during 5 s intervals.  The values for the parameters used to generate the red line were the 
same as in Fig. 4.2B with ΓL = 1.83 × 1013 m-2. 
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4.4 Affinity constant of a monoclonal anti-biotin IgG1 antibody binding to 
biotin-PE lipids. 
 
 To determine the affinity constants for monoclonal IgG1 antibodies binding to 

biotin-PE lipids, we coated a nanopore with a POPC lipid bilayer containing 0.0015 mol 

fraction (ΓL = 2.2 x 1015 m-2) of biotin-PE lipids and varied the concentration of the 

antibody in solution.  Fig. 4.4A shows the equilibrium frequency of translocation events 

as a function of protein concentration.  Since we expect the protein to be depleted from 

solution due to binding the biotin-PE lipids (i.e. [Po] ≠ [P]), we fit this data with the 

Langmuir binding isotherm described in equation (4.14) and the mass transport model in 

equation (4.15).  This procedure returned a value for the equilibrium dissociation 

constant, Kd, the only fitting parameter, of 1000 ± 33 nM.  This value for the micromolar 

affinity is at the high end within the expected range for antibody-ligand interactions (43, 

53).   

To determine the affinity constant of this monoclonal IgG antibody for biotin, we 

performed affinity capillary electrophoresis experiments (8, 9).  In these experiments, we 

varied the concentration of the ligand, biotin-5-fluorescein, and determined the fraction 

of unbound biotin-fluorescein at equilibrium.  Fig. 4.4B shows an example 

electropherogram with peaks corresponding to the standard Rhodamine B, IgG-biotin-

fluorescein complexes, and unbound biotin-fluorescein.  The area under each peak is 

proportional to the concentration of the particular analyte.  Consequently, to best estimate 

the area under the peak due to unbound biotin-fluorescein peak, we first subtracted the 

baseline signal and the signal due to the IgG-biotin-fluorescein peak (dashed red line) 

from the original signal (Fig. 4.4B top panel) and integrated the area under the biotin-

fluorescein peak relative to the baseline as exemplified in the bottom panel of Fig. 4.4B 

(Section 4-App.S2).  To determine the concentration of unbound biotin-fluorescein from 

the resulting area of the peaks, we generated a calibration curve using known 

concentrations of unbound biotin-fluorescein (Section 4-App.S2).  Since we know the 

total concentration of biotin-fluorescein, [Lo], in each solution, we calculated the fraction 

of IgG1 that was bound to biotin fluorescein, [PL]/[Po], by Θ = ([Lo] – [Lunbound]) / [Po] 

and plotted it against the total concentration of ligand added to the experiment, [Lo], (Fig. 
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4.4C).  A best-fit of this plot with equation (1-App.4), where Kd, was the only fitting 

parameter, returned a value of Kd of 165 ± 11 nM.  This value of Kd is 6.0-fold less than  

 
Figure 4.4 | Determination of the equilibrium 
dissociation constant, Kd, for the binding of 
monoclonal anti-biotin IgG1 antibodies to 
biotin-PE and biotin-fluorescein. (A) Frequency 
of translocation events due to IgG1 antibodies that 
are bound to biotin-PE lipids at equilibrium.  Points 
were fit with equation (4.14) and (4.15) with Kd as 
the only fitting parameter.  Values for other 
parameters were fixed at the following values: 
D = 1.4 × 10-12 m2 s-1, ΓL = 2.19 × 1015 m-2

, ro = 
11.7 × 10-9 m, surface area = 3.14  × 10-6 m2, 
volume = 100 × 10-9 m3, and t = 600 s.  (B) 
Electropherogram obtained during affinity 
capillary electrophoresis experiments in which 
fluorescence due to biotin-5-fluorescein was 
detected.  Each experiment contained 133 μM of 
the standard Rhodamine B, RhB, and 1.8 μM of the 
IgG1 antibody.  The electropherogram on the 
bottom shows an example trace in which the 
baseline signal and the signal due to the IgG1-
bound ligand (red dashed line) was subtracted in 
order to calculate the area under the peak due to the 
unbound biotin-fluorescein ligand.  (C) Fraction of 
IgG1 antibodies bound to biotin-fluorescein as a 
function of the ligand concentration and fit with 
equation (1-App.4), where Kd was the only fitting 
parameter.   
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the value calculated based on the frequency of translocation events due to IgG1 binding 

the biotin-PE lipid.  Note that in the affinity capillary electrophoresis experiments, biotin-

5-fluoresceins were in solution whereas biotin-PE lipids were part of the two-dimensional 

lipid bilayer surface.  This result agrees well with observations made by Pisarchick and 

Thompson under similar conditions with lipid-anchored ligands.  Pisarchick and 

Thompson compared the equilibrium association constant of anti-DNP Fab fragments 

binding to a lipid-anchored ligand, DNP-cap-DPPE (dinitrophenyl-

aminocaproyldipalmitoyl phosphatidylethanolamine), and the same Fab fragments to a 

similar ligand (DNP-glycine) in solution, and the authors observed a ~10 fold reduction 

in the association constant for the binding of the Fab fragments to the lipid-anchored 

ligand compared to the ligand in solution (54).  Pisarchick and Thompson concluded that 

steric hindrances significantly affected the equilibrium binding constants and suggest that 

the binding affinities of proteins to ligands at the lipid interface may be affected by the 

lipid composition and, therefore, interface properties of the bilayer surface (54, 55).  

Consequently, the 6.0-fold higher dissociation constant that we observed for binding of 

the anti-biotin IgG1 antibodies to biotin-PE lipids is in good agreement with the 

dissociation constant determined during affinity capillary electrophoresis. 

 

 

4.5 Conclusion 
 
This work presented and validated a model that describes the frequency of 

translocation events due to lipid-anchored proteins through lipid bilayer-coated 

nanopores.  The frequency of events was a function of the radius of the nanopore, the 

diffusion coefficient of the lipids, and the density of the lipid-anchored proteins in the 

bilayer coating.  This work also demonstrated the ability of these bilayer-coated 

nanopores to determine kinetic parameters and equilibrium affinity constants of binding 

interactions by monitoring the frequency of the translocation events over time and 

applying the Langmuir-binding isotherm.  We further validated the model by determining 

the affinity of a monoclonal IgG1 antibody binding to biotin-PE lipids and observing that 

this value compared well to the affinity that we determined by affinity capillary 

electrophoresis.  The strategy presented here should be applicable for determining kinetic 
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parameters and equilibrium affinity constants of various proteins when their ligands are 

lipid-anchored and incorporated into the bilayer coating at known concentrations.  Since 

lipids can be purchased with a variety of chemically active groups, covalently linking 

various ligands to lipids should be straightforward.  Additionally, this technique benefits 

from the ability to define precisely the density of ligands in the bilayer coating by varying 

the mole-fraction of ligand-presenting lipids in the liposome preparation.  This fact also 

enables control of the sensitivity of the system; for instance, only 0.5 pM of a protein 

with a Kd of 1000 nM for biotin-PE (the same affinity constant we measured for the IgG1 

antibody) would be required to observe ~1 translocation per second if the nanopore were 

coated with a lipid bilayer comprised only of biotin-PE lipids.  Finally, these 

translocation signals due to lipid anchored proteins can be used to determine the volume, 

charge, and shape of proteins.  Therefore, this technique expands on traditional methods 

of characterizing protein-ligand interactions by characterizing several additional 

properties of the protein in addition to the affinity of the protein-ligand interaction.   
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Chapter 4 Appendix 
 

4-App.Methods 
Liposome preparation and formation of supported lipid bilayers.  We formed 

supported lipid bilayers by fusion of small unilamellar vesicles (SUVs) (56-59).  We 

prepared these SUVs as described in Yusko et al. (2).  Briefly, we dissolved the desired 

lipids in 100 µL chloroform to a lipid concentration of 10 mM.  The main lipid 

component in each liposome preparation was 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC).  Where indicated we also added the ligand lipid 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-PE) at mole fractions 

of the total lipid composition of 0.1 x 10-5 up to 1.5 x 10-3.  Each liposome preparation 

also contained a 0.008 mol fraction of the fluorescently-labeled lipid, 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rh-PE), for 

measuring the fluidity of lipid bilayers by fluorescence recovery after photobleaching 

(FRAP, see Section 4-App.S1).  We evaporated the solvent under vacuum using a rotary 

evaporator to form a lipid film in a round bottom glass flask with a volume of 10 mL.  

We resuspended this lipid film in an aqueous solution containing 150 mM KCl and 10 

mM HEPES at pH 7.5 such that the lipid concentration was 2 mM.  Finally, we formed 

SUVs via tip sonication (Branson Sonifier 150) of the solution with a power of 3 – 4 W 

for ~ 10 min and stored these solutions at 4 °C for up to 4 days.  

To form the supported lipid bilayer on silicon nitride membranes, we filled the top 

compartment of the PDMS fluidic setup with 10 – 30 µL of the aqueous solution with the 

SUVs and the bottom compartment with a 150 mM KCl solution without liposomes.  

After 5-10 min, we removed excess SUVs by immersing the entire fluidic setup for 5 – 

10 min in a large (500 mL) beaker containing deionized water.  Before recordings, the 

fluidic compartments were filled with the desired electrolyte. 

Resistive-pulse experiments and detection and analysis of resistive-pulses. To 

sense proteins, we first formed a supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) lipids (Avanti Polar Lipids, Inc.) and the indicated 

mole fraction of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-capbiotinyl 

(biotin-PE) lipids on the silicon-nitride surface that contained a nanopore.  The top 

solution compartment was created by a polydimethylsiloxane (PDMS) stamp (Fig. 1.3B) 
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with a 2 mm diameter hole punched in the center.  Thus the surface area with available 

ligand was estimated as π × (0.001 m)2
 = 3.14 × 10-6 m2.  After measuring the expected 

baseline ionic current and confirming the absence of irregular noise, we added solutions 

containing the desired protein to the top solution compartment of the fluidic setup (2 M 

KCl with 10 mM HEPES pH 7.4).  For the experiments with streptavidin we added 

streptavidin to a final concentration of 100 nM in the top solution compartment, which 

was 100 μL in volume.  This concentration of streptavidin in 100 μL of electrolyte 

corresponded ~10,000 fold mole excess compared to the number of available ligand on 

the bilayer.  For the experiments with the monoclonal IgG1 anti-biotin antibody (Clone 

BN-34 from Sigma), we added IgG1 antibodies to a final concentration ranging from 0.1 

nM to 40 nM in 100 μL of electrolyte on the top side of the chip.   

We recorded resistive pulses at an applied potential difference of -0.1 V with the 

polarity referring to the top fluid compartment relative to the bottom fluid compartment, 

which was connected to ground.  We used Ag/AgCl pellet electrodes (Warner 

Instruments) to monitor ionic currents through electrolyte-filled nanopores with a patch-

clamp amplifier (Axopatch 200B, Molecular Devices Inc.) in voltage-clamp mode (i.e., at 

constant applied voltage). We set the analog low-pass filter of the amplifier to a cutoff 

frequency of 100 kHz. We used a digitizer (Digidata 1322) with a sampling frequency of 

500 kHz in combination with a program written in LabView to acquire and store 

data.(60)  To distinguish resistive pulses reliably from the electrical noise, we first 

filtered the data digitally with a Gaussian low-pass filter (fc =15 kHz) in MATLAB and 

then used a modified form of the custom written MATLAB routine described in Pedone 

et al. (2, 3, 61).  To determine the frequency of translocation events and estimate an error 

in that measurement at each concentration or time interval, we counted the number of 

translocation events in 6 to 7 sequential current recordings where each recording was 20 s 

in duration.   

 

4-App.S1 FRAP experiments to measure the diffusion coefficient of lipids 
We used epifluorescence microscopy and the fluorescence recovery after 

photobleaching (FRAP) method to determine the diffusion coefficient of lipids in the 

bilayer coating.  To visualize the lipid bilayer, we prepared all liposomes with 0.8 mol% 
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of lipids labeled with the fluorophore rhodamine B (1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)) (Rh-PE).  We used a Nikon 

E600FN upright microscope equipped with an Evolution MP (Media Cybernetics, 

Canada) camera and a 60× water-dipping objective (NA = 1.00) to image the bilayers (2).  

To determine the diffusion coefficient of the lipids in the bilayer, we preformed 

fluorescence recovery after photobleaching (FRAP) experiments (Fig. 1-App.4) (2, 62).  

We analyzed these images by calculating the difference between the mean fluorescence 

intensity of the photobleached spot and a second spot on the same bilayer that was not 

photobleached.  We normalized to the maximum difference between these two intensities 

and determined the diffusion coefficients by the equation, D (m2 × s-1) = 0.224 × ω2 

(nm)2/ t1/2 (µs), where ω is the radius of the bleached spot and t1/2 is the half time of the 

fluorescence recovery (63, 64).  We obtained the value of t1/2 from an exponential curve 

fit through the data (Fig. 1B-App.4).  On the chip used for detecting translocation events 

due to streptavidin, the diffusion coefficient for the bilayer containing primarily POPC 

lipids was 1.14 × 10-12 ± 0.16 × 10-12 m2 × s-1
 (this error is the standard error of the mean 

value from 5 FRAP experiments).  These values are close to the reported values of 

diffusion coefficients of supported bilayers, which range from 2 × 10-12 m2 s-1 to 5 × 10-12 

m2 s-1, and similar to the values we obtained previously of 1 × 10-12 m2 s-1to 1.5 × 10-12 

m2 s-1 (2, 55, 65). 
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Figure 1-App.4 | Fluorescence micrographs for determining bilayer fluidity by fluorescence recovery 
after photobleaching (FRAP) experiments.  (A) Epifluorescence micrographs indicating the recovery of 
fluorescence in a photobleached spot of the lipid bilayer on the Si-Si3N4 chip used to detect translocation 
events due to sterptavidin.  (B) Plot of mean intensity within the photobleached area versus time.  Images in 
(A) were both contrast enhanced to the same extent to increase clarity.  The scale bars correspond to 25 µm. 
 

 

4-App.S2 Calibration curve for affinity capillary electrophoresis 
experiments 

 
 In order to determine the concentration of unbound biotin-fluorescein in affinity 

capillary electrophoresis experiments, we used a CE instrument from Beckman equipped 

with fluorescence detection and constructed a calibration curve.  Fig. 1A-App.4 shows 

electropherograms, in which two different concentrations of biotin-fluorescein were 

injected into the capillary.  Since biotin-5-fluorescein has a net charge of approximately -

1 at pH 7.4, it migrates through the capillary slower than the zwitterionic, electrically 

neutral marker, Rhodamine B, and is detected several minutes later.  In each 

electropherogram we determined the area of the peak due to biotion-fluorescein and 

normalized it to the area of the peak due to the standard, RhB.  Fig. 2B-App.4 shows the 

resulting calibration curve that we used to calculate the concentration of unbound biotin-

fluorescein in the affinity experiments.  To detect binding of biotin-5-fluorescein and the 

anti-biotin IgG1 antibodies, we incubated the antibodies with the ligand prior to 

performing the CE experiment.  Fig. 4.4B in the main chapter shows the resulting 
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electropherograms in which biotin-5-fluorescein that is bound to the IgG antibody is 

detected at earlier times than the unbound biotin-5-fluorescein.   

 

 
Figure 2-App.4 | Affinity capillary electrophoresis 
data for constructing a calibration curve that 
relates the peak area due to biotin-fluorescein to 
the concentration of biotin-fluorescein.  (A) 
Electropherograms obtained with a CE instrument 
equipped with fluorescence excitation at 490 nm and 
detection at 540 nm.  The protein sample was prepared 
in PBS at pH 7.4 and included the zwitterionic 
fluorophore, rhodamine B (RhB), which served as the 
neutral fluorescent marker.  Note that the peak due to 
RhB has a small area because the excitation and 
emission spectra of RhB are not well aligned with the 
excitation and detection wavelengths of the 
instrument.  The two electropherograms contained 250 
nM and 500 nM of biotin-5-fluorescein, with a net 
charge of z = -1.  The capillary was a fused silica 
capillary with a total length of 30 cm and an internal 
diameter of 50 µm.  The length of the capillary to the 
detector was 20 cm and the total applied voltage was 
7.0 kV.  The temperature of the capillary was 
maintained at 28 °C   Note that the baseline of these 
electropherograms was not adjusted.  (B)  Calibration 
curve of the peak area due to biotin-fluorescein as a 
function of the concentration of biotin-fluorescein.  
The peak area was normalized to the area of the 
standard peak due to RhB to account for injection 
errors.  The resulting calibration curve was best 

described by 0.032[biotin-fluorescein]
808 [biotin-fluorescein]

y =
+

 with an 

R2 value of 0.999 and p-value less than 0.001.   
 

 

 To determine the affinity constant of the binding interaction from this data 

(i.e. Fig. 4.4B in the main chapter), we calculated the area under the peak due to unbound 

biotin-5-fluorescein.  Thus, the concentration of ligand bound to the IgG1 antibodies, 

[PL], is given by: [PL] = [Lo] – [Lunbound].  Since in these experiments we kept the total 

concentration of IgG1 antibodies constant at 1.8 μM  (i.e. [Po] = 1.8 μM) and we expect 

the unbound ligand to be depleted from solution, we fit the fraction of protein bound to a 

ligand with a depletion model, equation (1-App.4), (50).   
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=  (1-App.4) 

In these experiments, we varied the concentration of the biotin-5-fluorescein, [Ltotal], and 

kept [Po] constant.  We measured [PL], and thus, Kd, was the only fitting parameter in 

Fig. 4.4B.   
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Chapter 5 
 

Single Particle Characterization of Aβ Oligomers in Solution 

 

Determining the pathological role of amyloids in amyloid-associated diseases will 

require a method for determining the dynamic distributions in size and shape of amyloid 

oligomers with high resolution.  Here, we explored the potential of resistive-pulse sensing 

through lipid bilayer-coated nanopores to measure the size of individual amyloid-β 

oligomers directly in solution and without chemical modification.  This method classified 

individual amyloid-β aggregates as spherical oligomers, protofibrils, or mature fibers and 

made it possible to account for the large heterogeneity of amyloid-β aggregate sizes.  The 

approach revealed the distribution of protofibrillar lengths as well as the average cross-

sectional area of protofibrils and fibers. 
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5.1 Introduction 
Irregular aggregation of amyloidogenic proteins and peptides is associated with 

the pathophysiology of several diseases including Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease, and Type II diabetes mellitus (1-5).  These amyloid 

aggregates are associated with many cytotoxic effects (1).  The toxic form and pathogenic 

mechanisms of these aggregates, however, generally remain unclear (6, 7) in part because 

the size and shape of amyloid oligomers are typically heterogeneous and dynamic in 

solution.(8)  Consequently, the potential toxic effects of subpopulations of oligomers in 

these heterogeneous preparations are difficult to discern, since these subpopulations are 

often masked in ensemble measurement techniques (8, 9).  For example, Cabriolu et al. 

recently developed a computational model describing the size distribution of aggregates 

of amyloid-β, the peptide implicated with Alzheimer’s disease (10), and reported the 

occurrence of “magic” fibril sizes – preferred aggregate sizes that appear as peaks in the 

distribution (11, 12).  The authors could only qualitatively verify this result (13) because 

of a “lack of suitable experimental or simulation data for the size distribution of amyloid 

fibrils” (11).  Here, we make a first attempt to determine the size and shape distributions 

of unlabeled Aβ aggregates in solution by analyzing resistive current pulses from 

hundreds of single aggregates during their passage through an electrolyte-filled nanopore.  

We propose that resistive pulse sensing is an enabling technique for characterizing 

aggregated amyloidogenic peptides, since it is the only technique that measures single 

particles volumetrically and is, therefore, particularly well-suited for characterizing 

particles with irregular shapes (14). 

Increasing evidence indicates that certain sizes of Aβ oligomers, and possibly 

certain shapes of these oligomers, are more neurotoxic than others and, thus, play 

different roles in the pathology of Alzheimer’s disease (10, 15-21).  Aggregated forms of 

Aβ in the brain are thought to stem from an imbalance between the generation and 

clearance of Aβ monomers, which subsequently leads to their accumulation and 

aggregation (6, 22) to oligomers (15), protofibrils (17, 23), fibers (18), and amyloid 

plaques (6).  The size of Aβ oligomers range from the monomer molecular weight of 4.3 

kDa for the 40 amino acid peptide to ~ 43 kDa (24), whereas protofibrils have molecular 

weights greater than ~ 43 kDa and are approximately 5 nm in diameter and less than 
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~200 nm in length (24, 25).  Fibers result from the assembly of protofibrils and have an 

average diameter of approximately 7 - 10 nm and lengths up to several micrometers (25-

27), while senile plaques are dense meshes of Aβ fibers in the brain (6, 7). 

One reason why the pathogenic role of different Aβ aggregates in Alzheimer’s 

disease is not understood stems from conflicting reports and difficulties reproducing the 

exact conditions of previous experiments (6, 7, 21, 28).  Conducting assays with 

reproducible distributions of Aβ aggregates is challenging, since temperature, 

concentration, pH, solvent conditions, solvent history, agitation, and air-water interfaces 

strongly influence nucleation and aggregation rates and the distribution of aggregate 

shapes and sizes (24).  Consequently, methods for characterizing the distribution of 

aggregated species quickly, accurately, and in solution are needed to interpret functional 

studies as well as to determine the pathological role of amyloidogenic peptides in 

Alzheimer’s disease and other neurodegenerative disorders (10, 24, 29).   

 Several techniques are currently being used to characterize the aggregation and 

structure of Aβ aggregates.  Gel electrophoresis with native gels and SDS gels makes it 

possible to identify and separate low molecular weight Aβ aggregates; however, the 

technique can misrepresent the native aggregation state and can only accurately resolve 

low-molecular weight aggregates (i.e. less than decamers) (24, 29).  Size exclusion 

chromatography is considered the best non-SDS-based method for identifying and 

separating Aβ aggregates; although, it is a relatively low resolution method compared to 

SDS-PAGE (8, 29).  Electron microscopy and atomic force microscopy imaging 

techniques provide the highest quality information on the structure of Aβ aggregates; 

however, they require drying the sample and the results may be affected by biased 

adsorption of the aggregates to the TEM substrates (26, 27, 30, 31).  Light scattering 

techniques permit in situ measurements, but they are ill-suited for monitoring fibrillar 

objects and heterogeneous populations such as those found in solutions containing Aβ 

aggregates (24, 32).  Circular dichroism (23, 24), thioflavin T fluorescence assays (13), 

and surface enhanced Raman spectroscopy (33) monitor changes in the conformation of 

Aβ during aggregation but do not provide information on the size of aggregates (29).   

Recently, the first attempts to apply single-molecule techniques toward Aβ 

aggregation and toxicology studies emerged.  Knowles et al. combined the thioflavin T 
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assay with a microfluidic technique to follow amyloid aggregation from single-aggregate 

nuclei (34).  Schierle et al. used a super-resolution fluorescence imaging technique to 

image, in situ and in live cells, individual aggregates of Aβ with sizes greater than ~20 

nm (35).  The technique requires covalent modification of Aβ monomers with a 

fluorophore or the binding of fluorescently labeled antibodies to Aβ aggregates.  Wang et 

al. used the resistive-pulse sensing technique with the biological α-hemolysin pore to 

assess conformational changes in Aβ(1-42) aggregates that were induced by Congo red or 

β-cyclodextrin (two molecules with opposite effects on Aβ(1-42) aggregation) (36).  

Finally, Dukes et al., Schauerte et al., Ding et al. and Johnson et al. have used 

fluorescently labeled Aβ peptides combined with single-molecule fluorescence 

spectroscopy to measure the aggregation of single Aβ(1-40) peptides and the binding of 

single aggregates to model membranes and cell membranes (8, 9, 37, 38).  These 

techniques exemplify the search for single-molecule techniques capable of detecting 

individual aggregates of Aβ in situ in order to determine the heterogeneous size 

distribution of aggregates, their kinetics of assembly, and their pathogenic function (10). 

 With the same goal in mind, we recently demonstrated that lipid-coated, 

electrolyte-filled nanopores in a resistive-pulse sensing configuration could be used to 

detect Aβ fibers in solution without drying, chemically modifying, or labeling Aβ 

samples (39).  Resistive-pulse sensing (40-52)  is an attractive technique to characterize 

heterogeneous samples since the magnitudes of transient changes in ionic current, ΔI, are 

due to the translocation of individual particles through the nanopore (Fig. 5.1A) and are 

proportional to the volume of electrolyte excluded by the aggregate (39, 53, 54).  

Additionally, the duration of the resistive pulse, td, is related to the electrophoretic 

mobility of the aggregate, and the frequency of translocation events is related to the 

concentration of the particles (39, 55-57). 

Here, we extend the use of lipid-coated, synthetic nanopores from analyzing Aβ 

fibers to characterizing the smaller and clinically more relevant soluble Aβ oligomers.  

The lipid coating of the nanopore (Fig. 5.1A inset) is required for detection of Aβ 

aggregates, since synthetic nanopores without a fluid coating clogged due to adsorption 

of Aβ on the nanopore walls (see Section 5-App.S1) (39).  We show that resistive-pulse 

sensing with lipid-coated nanopores can be used to track the time-dependent aggregation 
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content and fibril formation with increasing aggregation time (Section 5-App.S3).  

Cytotoxicity assays confirmed that this preparation method resulted in aggregates that 

were biologically active and yielded similar toxicity characteristics to those reported in 

literature (Section 5-App.S3) (10, 61, 62). 

Fig. 5.1B shows recordings of the baseline current before and after adding Aβ(1-40) 

solutions that had been permitted to aggregate for one or three days.  Consistent with 

time-dependent aggregation, the current trace from the three-day sample shows resistive 

pulses with increased frequency and larger amplitude than the current trace from the one-

day sample.  Fig. 5.2A shows scatter plots of ΔI versus td values for translocation events 

with a ΔI value greater than 250 pA (5 times the standard deviation of the noise) and with 

a td value greater than 35 μs (the smallest td value we could measure accurately) (39, 63).  

As expected, the values of ΔI, and hence the sizes of aggregates, increased with 

increasing aggregation time.  Interestingly, the amplitude of ΔI values reached a 

maximum at ~ 5 nA, which was only 19% of the 26 nA baseline current magnitude, 

despite large variations in td values (Fig. 5.2B, cluster (iv)).  This result is consistent with 

translocation of cylindrical objects with similar diameters but varying lengths that are 

longer than the length of the nanopore, similar to the translocation of DNA strands of 

varying lengths (59, 64-67).  Protofibrils, which have lengths up to 200 nm, and fibers, 

which can reach lengths of several micrometers, have these characteristics:  both types of 

aggregates have nearly constant average diameters along their widely varying lengths 

(12, 25-27), and therefore, resistive pulses due to their translocation will have a 

maximum ΔI value and broadly distributed td values (12, 25). 
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Figure 5.2 | Scatter plots of ΔI values 
versus td values from the translocation of 
individual Aβ aggregates reveal clusters of 
translocation events due to spherical 
oligomers, protofibrils with lengths shorter 
than the length of the nanopore, 
protofibrils with lengths longer than the 
length of the nanopore, and mature fibers.  
(A) Scatter plots of ΔI(td) from aggregates of 
Aβ(1-40) that were analyzed after 0, 1, 2, and 3 
days of incubation. (B) Scatter plot of all data 
combined and color coded according to the 
results from statistical cluster analysis (68).  
Open and filled symbols show the results of 
the cluster classification based on the original 
data set.  Filled symbols indicate points that 
were classified in the same cluster in more 
than 90% bootstrap resamples (Section 5-
App.S4).  Yellow stars indicate the mean ΔI 
value and median td value based on the filled 
symbols in each cluster.   
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In order to distinguish among resistive pulses resulting from the translocation of 

spherical oligomers, protofibrils or fibers through the nanopore, we performed a cluster 

analysis on a data set from all resistive pulses (Fig. 5.2B) based on the ΔI value for each 

translocation event.  To perform the cluster analysis, we used the k-means algorithm in 

the open-source, statistics software R (http://www.R-project.org) and set the number of 

clusters to four, since we expected four clusters of ΔI versus td values that represented the 

translocation of: (i) spherical oligomers, (ii) cylindrical protofibrils with lengths shorter 

than the effective length of the nanopore, (iii) cylindrical protofibrils with lengths longer 

than the effective length of the nanopore, or (iv) fibers with a length longer than the 

effective length of the nanopore.  The open and filled symbols in Fig. 5.2B illustrate the 

resulting cluster assignment given to each recorded resistive pulse.  To test the robustness 

of this clustering procedure, we performed bootstrap resampling combined with k-means 

clustering to track the stability of the cluster classification for each point (69).  This 

analysis revealed that 82% of the measured ΔI values were classified into the same 

clusters at least 90% of the time.  We re-plotted these points as filled-colored points in 

Fig. 5.2B (Section 5-App.S4).   

Fig. 5.2B reveals that cluster (iv) contains resistive pulses with very long transit 

times (up to 200 ms) and ΔI values that converge to a maximum value of 4 to 5 nA.  This 

result would be expected for fibrils of varying lengths but relatively constant diameters.  

Cluster (iii) also contains pulses with long transit times (up to 60 ms) whose median is 

three times larger than the median transit time in cluster (ii).  In both, clusters (iii) and 

(iv), the range of td values is greatly distributed over 2 to 4 orders of magnitude and 

toward longer translocation times than those observed in clusters (i) or (ii).  Broad 

distributions of td values over a full order of magnitude can be expected due to the 

stochastic nature of molecular diffusion combined with biased motion by electrophoresis 

(67, 70).  Additional effects such as non-specific interactions between analytes and the 

pore walls with various frequencies and strengths can further increase the width of 

distributions of td such that they range several orders of magnitude even for the exact 

same analyte (45, 48).  In the work presented here, the broadly distributed lengths of 

aggregates have an additional effect on td values; for instance protofibrils can have 

lengths ranging from ~ 10 to 500 nm and fibers can have lengths ranging from less than 



 168

one micrometer to several micrometers.  The combination of large variations in length, 

stochastic elements of transit times through the pore, and potential for non-specific 

binding result in large variations in td values.  Despite these effects, several groups 

showed that median td values of molecules that are longer than the length of the pore 

increase with aggregate length (59, 64-66).  Indeed, the yellow stars in Fig. 5.2B show 

that median td values increased from cluster (ii) to cluster (iii) and cluster (iv), indicating 

the expected result that cluster (iv) contains longer aggregates than cluster (iii), which in 

turn contains longer aggregates than cluster (ii).  This result, the broadly distributed td 

values in clusters (iii) and (iv), and the convergent maximal ΔI values in cluster (iv) 

suggest that the resistive pulses in these two cluster originated from the translocation of 

protofibrils and fibers of various lengths with nearly constant diameters. 

To determine the size of Aβ(1-40)  aggregates in each cluster, we used the value of 

ΔI from each translocation event and considered two extreme cases yielding two different 

equations (39, 53, 70). Equation (5.1) describes the relationship between ΔI and the 

excluded volume, Λ (nm3), of spherical oligomers (71-74), whereas equation (5.2) 

describes the relationship between ΔI and the average cross-sectional area, AX (nm2), of 

aggregates with lengths longer than the effective length of the nanopore (67, 70). 
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In these equations, γ is a shape factor (with a value of 1.5 for globular spheres and a value 

of 1.0 for long cylinders that are aligned parallel to the electric field) (53, 54, 75-78), VA 

(V) is the applied electric potential difference, ρ (Ω m) is the resistivity of the electrolyte 

solution, lP (m) is the length of the nanopore, rP (m) is the radius of the nanopore, and lM 

(m) is the length of the protofibril or fiber.  The effective length of the cylindrical 

nanopore, leff, is defined by the term (lP + 1.6rP) in the denominator of equations (5.1) and 

(5.2), and it accounts for the extension of the electric field lines from the nanopore into 

the bulk solution (79). 
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Table 5.1.  Average values of ΔI, excluded volumes Λ, diameters of spherical Aβ(1-40) aggregates ØS, 
and cross-sectional areas AX as well the corresponding cylindrical diameter ØC of rod-shaped Aβ(1-40) 
aggregates in each cluster compared to equivalent values measured via TEM and values reported in 
literature. 

cluster 
<ΔI>  Λ ØS TEM valuesa literature value 

(min, max) (min, max) (min, max)   

pA nm3 nm nm nm 
(i): spherical 
oligomers 

383 
(250, 777) 

101 
(66b, 205) 

5.8 
(5.0, 7.3) ØS = 6.2 ± 1.2 ØS = 3–5 Ref. (80) 

(ii): protofibrils 
lM ≤  leff 

1177 
(787, 1874) 

403 
(244, 683) – ØC = 6.5 ± 2.0  ØC = 5 Ref. (23, 25)  

cluster <ΔI>  AX ØC TEM values literature value 
pA nm2 nm nm nm 

(iii): protofibrils 
lM > leff 

2668 
(1953, 3397) 

24.5 
(18, 31) 

5.6 
(4.8, 6.3) ØC = 6.4 ± 1.5  ØC = 5 Ref. (23, 25) 

(iv): fibers  
lM >> leff 

4340 
(3548, 9552) 

40 
(33, 88) 

7.1 
(6.4, 10.6) 

cW1 = 5.6 ± 0.8  
W2 = 11.5 ± 1.5 
AX ~ 51 ± 10 nm2  

W1 = 6.6 Ref. (26) 
W2 = 13.2 Ref. (26) 
AX = 30–90 nm2  

Ref. (26, 27, 31)  
aErrors shown in Table 1 are standard deviations.  bUsing the average molecular weight density of Aβ(1-40) 
aggregates of 0.81 kDa / nm3 (26, 81) and the molecular weight of an Aβ(1-40) monomer of 4.355 kDa, the 
smallest spherical oligomers detected in cluster (i), corresponding to a molecular volume of 250 nm3

, 
contained approximately 12 Aβ monomers.  Completing this same calculation, ΔI values in cluster (i) 
correspond to aggregates ranging from approximately 12 to 38 monomers, and ΔI values in cluster (ii) 
correspond to aggregates ranging from 55 to 156 monomers.  cW1 and W2 refer to the widths of twisting 
Aβ(1-40) fibers when the fibers are twisted or crossing over themselves, W1, or when the fibers are lying flat, 
W2,  on the TEM grid (Fig. 5.3) (26). 
 

 

Table 5.1 lists the mean value of ΔI and the range of ΔI values that we measured for each 

cluster as well as the values for the excluded volume that we calculated using equation 

(5.1) for cluster (i) and the values for the cross-sectional areas that we calculated using 

equation (2) for clusters (iii) and (iv).  Using bootstrap resampling statistics (82, 83), we 

confirmed that the differences among these four mean ΔI values is statistically significant 

at the α = 0.05 level, and we present confidence intervals for the mean values in Section 

5-App.S4.  Table 5.1 also compares the sizes of Aβ(1-40)  aggregates determined by 

resistive-pulse analysis with those determined by TEM from the same samples (Fig. 5.3) 

as well as with literature values.  For instance, the mean ΔI of the resistive pulses in 

cluster (i) corresponds to a spherical diameter of 5.8 nm (with a range of 5 – 7.3 nm), and 

we measured by TEM that the smallest spherical aggregates had an average diameter of 
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6.2 ± 1.2 nm (N = 18) (Fig. 5.3A).  Similarly, the mean ΔI of the resistive pulses in 

cluster (iii) due to protofibrils with lM > leff corresponds to a cylindrical diameter of 5.6 

nm (with a range of 4.8 to 6.3 nm).  In TEM micrographs, we observed protofibrils with 

an average diameter of 6.4 ± 1.5 nm (N = 117) and with lengths ranging from ~ 6 nm to 

350 nm (Fig. 5.3B & 5.3C); the reported diameter of protofibrils in literature is ~ 5 nm 

(23, 25).  Finally, the mean ΔI of resistive pulses in cluster (iv) due to fibers corresponds 

to a cross-sectional-area of 40 nm2 (with a range of 33 nm2 to 88 nm2). From the TEM 

micrographs, we estimated the cross-sectional area of Aβ(1-40) fibers to be 51 ± 10 nm2 (N 

= 27) based on the two visible widths of the twisting fibers of 5.6 ± 0.8 nm and 11.5 ± 1.5 

nm (Fig. 5.3A:Day 3 and Fig. 5.3D).  The literature values of the cross-sectional areas of 

amyloid fibers range from 30 nm2 to 90 nm2 (26, 27, 31).  For these three forms of Aβ(1-

40) aggregates, the general agreement among the sizes determined from resistive-pulse 

analysis with those determined by TEM analysis and those reported in literature 

demonstrates that resistive-pulse analysis makes it possible to characterize Aβ oligomers, 

protofibrils, and fibers in solution.  This agreement also indicates that the cluster analysis 

in Fig. 5.2 produced reasonable assignments for the majority of the resistive pulses.  For 

instance, based on values from TEM analysis, the ratio between the cross-sectional area 

of fibrils and protofibrils is 1.58 ± 0.8 (84).  According to equation 5.2 we expect that the 

ratio between the mean ΔI value from the translocation of Aβ fibrils in cluster (iv) and 

the mean ΔI value from the translocation of Aβ protofibrils in cluster (iii) to have this 

same value, if the cluster assignment was accurate and if the Aβ aggregates in clusters 

(iii) and (iv) were longer than the length of the pore.  Indeed, the ratio of the mean ΔI 

values between clusters (iv) and (iii) was 1.63 ± 0.3 and, therefore, not statistically 

different from the expected value of 1.58.  We discuss additional evidence for the 

accuracy of the cluster analysis in Section 5-App. S3 and provide results from the 

bootstrap resampling statistics in Section 5-App.S4. 
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Figure 5.3 | Transmission electron microscopy (TEM) analysis of the size of Aβ(1-40) aggregates.  (A) 
Micrographs showing aggregates with increasing size after incubation in water for 0, 1, 2 and 3 days.  (B) 
& (C) Histograms of the diameters (B) and lengths (C) of all aggregates that were not mature fibers.  Inset 
in (C). Proportion of aggregates with lengths longer than 10 nm and 45 nm.  (D) Boxplots characterizing 
mature fibers after three days of aggregation.  The fibers were characterized by their apparent widths when 
lying flat W2 (red arrows in A) on the TEM grid and when twisted or crossing over themselves W1 (blue 
arrows in A) on the TEM grid (26).  The box represents the range between the 1st and 3rd quartiles, the 
dashed line represents the median, the dot is the mean, and the whiskers extend to the range of the data 
(minimum and maximum values) except for one outlier, which is plotted as “x”. 
 
 

In order to estimate the excluded volume, Λ, of the protofibrils with lM < leff from 

the resistive pulses in cluster (ii), we made two assumptions.  First, protofibrils pass 

through the nanopore with their long-axis aligned parallel to the electric field resulting in 

a relatively constant shape factor that can be approximated from the shape factor of a 

prolate aligned parallel to an electric field, llγ .  This alignment is predicted because 

aggregates approaching the nanopore from the bulk solution experience a strong 

converging electric field gradient (55, 75-77, 85-87).  Ai and Qian recently modeled the 

dynamics of nanorods (1 nm x 10 nm) approaching a nanopore under similar conditions 
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to those reported here and demonstrated that rods will completely align with their length 

axis parallel to the electric field prior to entering the nanopore (88).  Furthermore, the 

distribution of translocation times in cluster (ii) was narrower than the distribution in 

cluster (i) (Fig. 5.2B).  This result suggests reduced diffusive spreading due to accelerated 

motion through the pore as a result of reduced viscous drag on aggregates in cluster (ii) 

compared to those in cluster (i) (see Section 5-App.S6 for distributions of td values in 

clusters i and ii) (67, 70).  Indeed, prolate spheroids moving parallel to their long axis 

experience less viscous drag than a spherical particle of similar volume (89).  These 

effects combined with the strong electrophoretic force on an Aβ aggregate due to the net 

negative charge of each monomer of approximately -3 at pH 7.0 (19, 90) and the high 

electric field in the nanopore (VA/leff = 4.5 x 106 V m-1) likely orient protofibril aggregates 

with their long axis parallel to the electric field in the nanopore.  The second assumption, 

based on results by Kellermayer et al., was that the elongation of Aβ protofibrils occurs 

at a constant average diameter, ØC, for lengths greater than 6.5 nm (12).  We confirmed 

the validity of this assumption by TEM analysis of the samples used here (see Fig. 5.3 

and Section 5-App.S7).  Consequently, the excluded volume of these protofibrils could 

be described by the equation of a cylinder, Λ = ¼ π ØC
2lM, and a system of equations that 

includes the shape factor llγ  as a function of the length of the aggregate, lM, and ΔI as a 

function of llγ  and lM.  We summarized the details of these equations, the resulting shape 

factors, and results of this analysis in Section 5-App.S8.  Solving this system of equations 

while using the values of ΔI from the resistive pulses in cluster (ii) and the average 

diameter of protofibrils (ØC = 5.6 nm, Table 5.1), this analysis returned shape factors for 

each translocation event that ranged from llγ  = 1.06 to 1.25 (average llγ  = 1.15) and 

excluded volumes that ranged from 244 nm3 to 683 nm3 (Table 5.1).  

As a first attempt at examining the peaks in the distribution of Aβ(1-40)  sizes 

reported by Cabriolu et al., we determined the lengths of the protofibrils in clusters (i) 

and (ii) by using the equations described in Section 5-App.S8.  From the resulting data, 

we generated an empirical cumulative distribution (Fig. 5.4 Inset) of protofibril lengths in 

these two clusters (91).  In order to test if this cumulative distribution of protofibril 

lengths was multimodal, we fit it with a trimodal Gaussian cumulative distribution 
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function (trimodal CDF) and confirmed via a Kolmogorov Smirnov test that the 

differences between the two distributions were not statistically significant (p = 0.28).  

This result indicates that the trimodal CDF described the empirical distribution very well.  

In contrast, differences between the empirical cumulative distributions and best curve fits 

to CDFs for the normal, lognormal, extreme value, exponential, or Poisson distributions 

were all statistically significant (p = 0, p = 3.2E-8, p = 0.001, p = 0.0007, p = 2E-27, 

respectively), indicating that these unimodal distributions did not fit the data well. 

 

 

 
Figure 5.4 | Distributions of estimated lengths of Aβ(1-40) protofibrils in clusters (i) and (ii).  The blue 
dotted lines in the probability density function (PDF) indicate the location of local maxima in the size 
distributions of Aβ(1-40) predicted by Cabriolu et al. (11).  The trimodal Gaussian distribution was derived 
from fitting the empirical cumulative distribution shown as black symbols in the inset followed by 
differentiating the fit to the cumulative distribution.  Inset: Empirical cumulative distribution of protofibril 
lengths (black points) and fit with a trimodal Gaussian cumulative distribution function (red curve).  
Bootstrap resampling and refitting procedures revealed that the mean and 95% confidence interval for the 
means of each peak in the PDF were located at lengths of 6.1 (6.06 – 6.13) nm, 7.4 (7.22 – 7.51) nm, and 
10.3 (10.16 – 10.40) nm. 
 
 

To test the robustness of the analysis of the data in Fig. 5.4, we used bootstrap 

resampling followed by k-means clustering and protofibril length estimation.  In each 

resampling iteration, we generated an empirical cumulative distribution and fit it with the 

trimodal CDF.  In each case the fitting procedure returned similar values for the three 

modes of the distributions as well as the standard deviations (Fig. 5.4).   

For comparison, the dotted blue lines in Fig. 5.4 indicate the lengths of 

protofibrils at which Cabriolu et al. observed peaks in the distribution of sizes; these 

lengths are 6.6, 13.2, and 19.2 nm (11).  Kellermayer et al. reported segmented growth of 
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Aβ protofibrils generated by the 25-35 amino acid portion of Aβ(1-40) that led to 

protofibril lengths of 6.5, 13.3, 23.2, 32.5, and 40 nm (12, 92).  These reports together 

with the observation of multimodal distribution in Fig. 5.4, suggest that protofibrils of 

Aβ(1-40) occur in solution with certain preferred lengths corresponding to local minima in 

the work for fibril formation as reported by Cabriolu et al. and Kellermayer et al.  

Since nanopore-based resistive pulse sensing detects single aggregates, the 

frequency of translocation events is proportional to the concentration of the aggregates in 

solution (73, 93-95).  Therefore, monitoring the frequency and magnitude of resistive 

pulses due to Aβ aggregates has the potential to reveal information on the kinetics of 

aggregation.  The frequency of events is, however, also a function of aggregate diffusion 

to the pore, and hence, the size and shape of the aggregates.  Consequently, a direct 

comparison between frequencies observed in different clusters is not possible.  For 

instance, for identical concentrations of Aβ fibers and small Aβ oligomers, the frequency 

of fiber translocations would be significantly lower than the frequency of oligomer 

translocations due to the reduced diffusion constant of large fibers compared to 

oligomers.  Additionally, for long protofibrils and fibers, the frequency of events may be 

affected by steric and entropic effects that influence “threading” of these rod-like species 

into the nanopore (70, 96, 97).  With these limitations in mind, Fig. 5.5 shows the 

frequency of translocation events as a function of the aggregation time within each 

cluster separately.  Assuming that the diffusion constant and barriers to entering the 

nanopore are similar for all aggregates within a cluster, these four plots provide an 

indication of the changes in the concentration of aggregates in each cluster.  For instance, 

Fig. 5.5 reveals that the frequency of events due to the translocation of large, mature 

fibers in cluster (iv) increased over three days while the frequency of events due to small 

spherical oligomers in cluster (i) decreased as expected for time-dependent aggregation 

of Aβ (98).  Fig 5.5 also shows that the frequency of translocation events of short 

protofibrils in cluster (ii) remained relatively constant within the error of the 

measurement.  This result is consistent with an intermediate species in a nucleation-

dependent process that has reached a steady-state concentration.  Combined with the 

decreasing frequencies observed in cluster (i) and with the increasing frequencies 

observed in clusters (iii) and (iv), it suggests that the number of aggregates growing large 
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enough to move into cluster (ii) from cluster (i) was approximately equal to the number 

of aggregates growing large enough to move from cluster (ii) into cluster (iii) during the 

three-day aggregation process examined in this work. 

 

 

 
Figure 5.5 | Frequency of translocation events organized by cluster classification reveals time-
dependent aggregation.  Mean values and standard deviations were calculated by counting the number of 
translocation events within a given cluster classification during several recordings totaling 40 – 100 s in 
duration. 
 
 
5.3 Conclusions 
 We report the use of nanopores with fluid walls for detecting and characterizing 

size distributions of unlabeled aggregates of Aβ(1-40) in situ. These distributions were 

obtained by measuring hundreds of single aggregates, making it possible to characterize 

the large range of Aβ aggregate sizes and shapes.  The results from this analysis agree 

well with those from TEM analysis of the same Aβ preparations and with literature 

values.  Several challenges remain, however, including accurately applying the shape 

factor, γ, to estimate the distribution of protofibril lengths in clusters (i) and (ii).  To 

improve this analysis it would be helpful to account for possible rotation of short 

protofibrils with a low aspect ratio while they move through the confining pore as well as 

the corresponding electric field lines around the molecule (78).  Another challenge 

involves the time and size resolution of the technique; currently, Aβ aggregates smaller 
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than dodecamers could not be included in the analysis due to resolution limits in ΔI 

values and td values.  Reducing the translocation speed of Aβ(1-40) aggregates should 

improve the determination of ΔI values, reduce the ΔI threshold, and ensure that all td 

values can be determined accurately.  Inclusion of lipids in the bilayer coating that 

preferentially interact with aggregated forms of Aβ such as phosphatidylserine (99) or the 

ganglioside GM1 (100, 101) may be one strategy.   Another challenge is that the high 

ionic strength of the recording electrolyte accelerates the aggregation of Aβ (see Section 

5-App.S2 and 5-App.S9).  Nanopores with smaller dimensions than the pore used here 

combined with techniques to increase translocation times may ultimately enable the use 

of electrolyte solutions with physiologic ionic strength in these assays.   

Despite these challenges, we show that nanopore-based resistive pulse recordings 

made it possible to characterize the size and shape of unlabeled aggregates of disease-

relevant amyloids in solution.  The particular strength of nanopore sensing lies in its 

ability to characterize a large number of individual aggregates.  This capability for single 

particle analysis is required to characterize Aβ aggregates with a wide-ranging, dynamic 

heterogeneity in size and shape as well as to correlate cytotoxicity and pathogenic 

mechanisms with aggregate sizes and shapes (10). 
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Chapter 5 Appendix 
5-App.Methods 

Preparation of Aβ aggregates. We received Aβ(1-40) peptides in powder form 

from GL Biochem (Shanghai) Ltd with a purity above 98% as determined by HPLC. To 

remove aggregates of Aβ(1-40) and solubilize Aβ(1-40) in predominantly monomeric form 

(see Figure 3-App.5), we dissolved the powder in hexafluoroisopropanol (HFIP) to a 

concentration of 1 mM of Aβ(1-40) (28).  After 24 h incubation in HFIP, we diluted this 

solution with cold (4 °C) deionized water at a 2:1 (v/v) ratio (H2O:HFIP). We then 

rapidly aliquoted the solution, immediately froze it in a liquid nitrogen bath, and 

lyophilized the frozen aliquots for two days.  This procedure removes all HFIP to 

amounts that are below detectable levels of fluorine-NMR (Section 5-App.S2).  To start 

the aggregation process of Aβ(1-40) peptides, we dissolved the lyophilized powder in 

deionized water to a concentration of 1 mg × mL-1. We incubated these samples in 0.5 

mL closed siliconized plastic microcentrifuge tubes (Fisherbrand Low-Retention 

Siliconized Tubes)  on a temperature-controlled shaker (Thermomixer, Eppendorf) set to 

750 rpm at a temperature of 22 °C for zero, one, two and three days.   

Nanopore-based sensing experiments. To detect aggregates of Aβ(1-40), we first 

formed a supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) lipids (Avanti Polar Lipids, Inc.) on a nanopore that was 28 nm 

in diameter and had a length of 18 nm, resulting in a coated diameter of approximately 18 

nm and coated length of 28 nm (39).  We described details of the bilayer formation in 

Yusko et al. (39).  We added solutions containing Aβ(1-40) to the top solution 

compartment of the fluidic setup (2 M KCl with 10 mM HEPES pH 7.4) such that the 

final concentration of Aβ(1-40) ranged from 0.007 to 0.025 mg × mL-1. We recorded 

resistive pulses at an applied potential difference of -0.2 V with the polarity referring to 

the top fluid compartment relative to the bottom fluid compartment, which was connected 

to ground.  Recordings were completed within 10 to 15 minutes of adding Aβ(1-40).   

We used Ag/AgCl pellet electrodes (Warner Instruments) to monitor ionic 

currents through electrolyte-filled nanopores with a patch-clamp amplifier (Axopatch 

200B, Molecular Devices Inc.) in voltage-clamp mode (i.e., at constant applied voltage). 

We set the analog low-pass filter of the amplifier to a cutoff frequency of 100 kHz.  We 
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used a digitizer (Digidata 1322) with a sampling frequency of 500 kHz in combination 

with a program written in LabView to acquire and store data (102).  To distinguish 

resistive pulses reliably from the electrical noise, we first filtered the data digitally with a 

Gaussian low-pass filter (fc =15 kHz) in MATLAB and then used a modified form of the 

custom written MATLAB routine described in Pedone  et al. (63).  We modified the 

MATLAB routine to calculate the translocation time, td, as the width of individual 

resistive-pulse at half of their peak amplitude, also known as the full-width-half-

maximum value (39, 70).  From this analysis we obtained the ΔI and td values for each 

resistive pulse.   

Preparation of transmission electron microcopy samples.  We prepared 

samples for transmission electron microscopy (TEM) analysis using a negative staining 

method and glow-discharged, carbon-coated copper grids (Electron Microscopy Sciences, 

Cat no: FCF-200-Cu). We applied 5 μL of each Aβ sample (1 mg × mL-1), which had 

been permitted to aggregate in pure water for zero, one, two, or three days, to the glow-

discharged carbon coated copper grid.  After 2 min, we wicked the fluid off the grids with 

filter paper and washed the grids with a 5 μL drop of deionized water for 1 min.  After 

wicking off the fluid again, we applied a 5-μL drop of 2% uranyl acetate for 1 min, 

wicked off the excess fluid on the grids, and allowed the grids to dry.   
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5-App.S1. Nanopores without a fluid, lipid coating clog due to adsorption of 
Aβ 
 

 

 
Figure 1-App.5 | Nanopores without a fluid, lipid coating clogged after adding Aβ(1-40).  Plot of eight 
concatenated, 20 sec, current versus time traces. The time gap between current traces is not to scale.  The 
elapsed time between adding Aβ(1-40) (0.025 mg x mL-1 in the top solution compartment) and the last 
current trace is 231 s, and the average time interval between recordings was 15 s.  Before adding Aβ(1-40), 
the current was  -52 nA, and after adding Aβ(1-40) the current decreased to ~ -25 nA.  The gradual decrease 
of the current was due to adsorption of Aβ on the nanopore walls while the stepwise changes in current 
presumably indicate the adsorption and desorption of large aggregates.  Note that after a few seconds, 
reliable analysis of Aβ aggregates cannot be performed, and after two minutes, no more resistive-pulses can 
be observed.  This experiment proceeded under identical conditions to those reported in the main chapter 
with the exception that the nanopore was not coated with a lipid bilayer.  The Aβ(1-40) sample had been 
permitted to aggregate in pure water for ~ 3 h prior to the experiment. The applied electric potential 
difference was -0.2 V. 
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Figure 2-App.5 | Nanopores with a fluid lipid coating do not clog after adding Aβ(1-40) thereby 
permitting characterization of aggregates.  Plot of four concatenated current traces that are 
each 20 s in duration.  The time gap between current traces is not to scale.  The elapsed 
time between adding Aβ(1-40) (0.0125 mg x mL-1 in the top solution compartment) and the 
last current trace is 180 s.  This Aβ(1-40) sample had been permitted to aggregate in pure 
water for one day prior to the experiment. Bilayer-coated nanopores remain usable for 
sensing resistive-pulses of Aβ aggregates for at least 1.5 h (39). 
 
 
5-App.S2. Gel electrophoresis experiments  

To confirm that the Aβ preparation used in this work (Section 5-App.Methods) 

yields starting solutions containing mostly monomeric forms of Aβ as well as to confirm 

that the Aβ peptides in this preparation aggregated over time, we performed gel 

electrophoresis experiments followed by Western blotting.  We compared three samples 

of Aβ: i) solutions of Aβ(1-40) prepared directly from the powders provided by suppliers, 

ii) solutions of Aβ(1-40) after treatment with HFIP, subsequent lyophilyzation and 

rehydration, and iii) solutions of these HFIP-treated samples after rehydration and 

aggregation for zero to three days (39).  Prior to performing the electrophoresis, we 

aliquoted 0.5 μL of 1 mg × mL-1 Aβ(1-40)  (in pure water) into 38 μL of pure water or into 

38 μL of 2 M KCl, resulting in an Aβ(1-40) concentration of 0.13 mg mL-1 – the same 

concentration used in the nanopore-based characterization.  In order to prevent 

rearrangements during electrophoretic separation, we immediately cross-linked these 
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Aβ(1-40) samples by adding 4 μL of 0.688% (v/v) glutaraldehyde in water.  After 10 – 20 

min at room temperature, we stopped the cross-linking reaction by adding 45 μL of 200 

mM Tris buffer.  We aliqouted 10 μL of these samples into 20 μL of Native Sample 

Buffer (Bio-Rad: 62.5 mM Tris-HCl pH 6.8, 40% glycerol, 0.01% Bromophenol Blue), 

which we modified to also contain 10% (v/v) sodium dodecyl sulfate (SDS) and 0.02 M 

β-mercaptoethanol.  To resolve aggregates of Aβ(1-40) of different molecular weights, we 

used a polyacrylamide gel: 16.5% Tris-Tricine Ready Gel (Bio-Rad) in Tris-Tricine 

buffer or a 7.5% Tris-HCl Ready Gel (Bio-Rad) in Tris-Glycine Buffer following 

standard electrophoresis protocols (103).  After running the gels, we transferred proteins 

to a polyvinylidene fluoride (PVDF) membrane (PerkinElmer Life Science) and blocked 

the membrane for 1 h with TBS buffer containing 5% (w/v) nonfat dry milk and 0.063% 

(w/v) Tween-20. We incubated the membrane with a primary antibody against Aβ(1-40) 

(6E10 from Covance) for 1.5 h. An IgG anti-goat antibody conjugated to horseradish 

peroxidase served as the secondary antibody and was incubated with the membrane for 1 

h.  We developed the membrane onto film using enhanced chemiluminescence (ECL, 

PerkinElmer Life Sciences).  Fig. 3-App.5 shows the results of these gel electrophoresis 

experiments. 

Fig. 3A-App.5 confirms that the solubilization procedure with HFIP followed by 

lyophilyzation generates aqueous solutions containing mostly monomeric aggregates of 

Aβ(1-40) as well as some dimeric and trimeric aggregates that are thought to be in rapid 

equilibrium with the monomeric form (24).  We confirmed by Fluorine-NMR that after 

the two day lyophilization procedure, the solution does not contain detectable amounts of 

residual HFIP (Fig. 4-App.5).  Fig. 3B-App.5 shows the presence of increasingly larger 

aggregates after one, two, or three days of aggregation time.  Fig. 3B-App.5 and 3C-

App.5 also show the accelerated aggregation of Aβ(1-40) in the presence of 2 M KCl for ~ 

20 min (the shortest possible time for the gel electrophoresis procedure).  Regardless of 

this accelerated aggregation, time-dependent aggregation to higher molecular weight 

aggregates is apparent by the increasingly darker bands in the wells, where fibers are 

retained, over time.  Additionally, Fig. 3C-App.5 highlights that in the 50 – 250 kDa 

aggregates increasingly larger aggregates develop between 1 and 3 days of aggregation, 

eventually resulting in a relatively darker, larger band in the well on Day 3 compared to 
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Days 1 and 2.  This result is important since 50 kDa is approximately the minimum 

molecular weight of protofibrils and marks the beginning of the transition from spherical 

oligomers into cylindrical protofibrils (24).  We confirmed by TEM analysis that the 

increased aggregation rate due to the high ionic strength did not affect the morphology of 

the fibrils (Section 5-App.S9). 
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Figure 3-App.5 | SDS-PAGE/Western Blot results showing Aβ(1-40) aggregates in the initial 
preparation and after aggregation.  (A) Aggregates of Aβ(1-40) in the samples from GL = GL Biochem 
and BP = Biopeptide Inc. before and after treatment with HFIP followed by lyophilization. In this work, we 
used Aβ (1-40) supplied by GL Biochem (Shanghai). (B) & (C) Aggregates of Aβ (1-40) after incubation times 
in aqueous solutions of zero, one, two, and three days. 
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Figure 4-App.5 | 19F-NMR spectroscopy of HFIP in CD3OD (left) and Aβ1-40 sample that was 
incubated with HFIP and then lyophilized for two days as described in Section 5-App.Methods 
(right).  19F resonance of HFIP gave a doublet at -77.8 ppm, while the peak was absent after Aβ was 
lyophilized in HFIP for 48 h. 
 
 
5-App.S3. Additional characterization of Aβ preparations by ThT 
fluorescence assays, circular dichroism spectroscopy and cytotoxicity 
assays.  
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Figure 5-App.5 | Aggregation of A β (1-40) over time, determined by relative intensity of ThT 
fluorescence (black), and the relative β -sheet content as determined from circular dichroism spectra 
(red).  Aggregation of Aβ species is associated with an increase in ThT fluorescence and β-sheet content 
(10, 13, 23, 90).  The solid curves are fits of ThT fluorescence intensity or β-sheet content (y) as a function 

of time (t) to a sigmoidal function, 2
1

1

AA
1 exp o

y
t t

t

= −
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 , where A1, A2, t0, t1 are fitting parameters.  

Each point represents an average value from 5-20 experiments for ThT binding assays and from 3-5 
experiments for CD experiments.   
 
�
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�
Figure 6-App.5 | Cell viability of human neuroblastoma SH-SY5Y cells after a 24 h exposure to 
serum-free media containing aggregates of Aβ that were prepared as described in the methods for 
various aggregation times.  The total concentration of Aβ was 20 μM.  Cell viability (in %) was measured 
by MTT assays and averaged over 5 to 15 independent experiments. The curve is the best fit to the data 
with a standard exponential decay function.  The results are in agreement with previous reports (18, 23, 61). 
 
 
5-App.S4. Bootstrap resampling statistics of the clustering procedure. 

To test the robustness of the clustering procedure, we performed bootstrap 

resampling (83), in which we resampled the original data set with replacement 1000 

times.  For each resampling iteration, we used the k-means algorithm in R (http://www.R-

project.org) to classify individual points as belonging to one of four clusters.  Similar 

bootstrap resampling techniques combined with cluster analysis are commonly performed 

in phylogenetics and gene chip experiments in order to comment on the stability of the 

clusters and provide statistical measures (69, 104).  By keeping track of the cluster 

classification of each point during the 1000 iterations, we were also able to estimate the 

expected mean ΔI value of each cluster and estimate a 95% confidence interval for the 

mean values.   For each ΔI value, Fig. 7-App.5 plots the probability that a point was 

classified into a given cluster.  During the 1000 iterations, each point was either classified 

into one or two clusters; a point was never classified into more than two clusters.  This 

procedure revealed that the clustering process was stable and robust: 82% of the 

measured ΔI values were classified into the same cluster in at least 900 of the 1000 (90%) 

resampling iterations (i.e. the points above the F = 0.90 line in Fig. 7-App.5).  In each 
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resampling and re-clustering iteration, we also calculated the mean value of each cluster.  

Fig. 7-App.5 shows the distribution of these mean values as histograms and shows that 

during the resampling methods the mean values of each cluster were well separated and 

consistent.  From this result, we estimated a mean ΔI value and 95% confidence interval 

for cluster (i) of 373 (333 – 394) pA, for cluster (ii) of 1037 (623 – 1321) pA, for cluster 

(iii) of 2447 (1470 – 2930), and for cluster (iv) of 4262 (3496 – 4814) pA.  This result 

indicates that differences between mean values are statistically significant at the α = 0.05 

level.  These mean values are less than 8% different from those shown in Table 5.1 of the 

main chapter, because Table 5.1 lists the mean value of ΔI that we calculated based on 

the cluster analysis of the original data set (i.e. before resampling).   

 

 
Figure 7-App.5 | Bootstrap resampling and re-clustering iterations reveal the stability of the clusters 
and the distributions of their mean ΔI values.  Points in the plot show individual ΔI values and the 
corresponding fraction of iterations that the respective point was classified into the same cluster.  The bars 
make up a normalized histogram showing the distribution of mean values of ΔI for each cluster during each 
bootstrap iteration.  The dashed black line indicates the threshold at which a ΔI value was classified into the 
same cluster in 90% of the sampling iterations; 82% of all points are above this line and were thus 
classified consistently in at least 900 of the 1000 total sampling iterations.   
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5-App.S5. Aβ aggregate sizes determined by nanopore-based 
characterization compared to sizes determined by TEM.  

 

To cross-examine our assumptions and results from the cluster analysis, we 

applied equation (5.2) to ΔI values from cluster (i) to estimate a cross-sectional area of 

aggregates in this cluster, and we applied equation (1) to ΔI values from clusters (iii) and 

(iv) to estimate the excluded volumes of these aggregates; this analysis ignores the 

requirement for lM < Leff for equation (5.1) and lM > Leff for equation (5.2).  Finally, we 

searched the TEM images (Fig. 5.3 in the main chapter and Section 5-App.S9) for 

aggregates with the sizes predicted by this analysis and did not find aggregates in the 

TEM images with these sizes or shapes.  For instance, if we incorrectly apply equation 

(5.2) to the data in cluster (i) (i.e. if we enforce that aggregates in cluster (i) have lM > 

leff), we obtain cylindrical diameters of 3.5 nm.  We did not observe elongated aggregates 

of Aβ(1-40) with diameters this small in the TEM images, suggesting that aggregates 

classified in cluster (i) should indeed be approximated as spherical oligomers with 

equation (5.1) in the main chapter in agreement with the approach that we used.  

Similarly, if we incorrectly assume that the requirement of lM < lP for equation (5.1) was 

satisfied by the Aβ aggregates represented in clusters (iii) and (iv), we obtained spherical 

diameters of 11 nm and 13 nm, respectively.  We typically did not observe spherical 

aggregates of Aβ(1-40)  with diameters greater than 11 nm in the TEM images (i.e. only 3 

out of 347 observed aggregates had spherical diameters of 11 nm or larger), suggesting 

that the aggregates represented in cluster (iii) are indeed protofibrils and that the 

aggregates represented in cluster (iv) are indeed fibers longer than the effective length of 

the nanopore, again in agreement with the approach we used in the main chapter. 

These results show that the cluster assignment of translocation events by 

statistical cluster analysis of ΔI and td values of each event yielded diameters and lengths 

of Aβ aggregates that are consistent with observations by TEM.  
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5-App.S6. Distributions of td values in clusters (i) and (ii) 
 

 
Figure 8-App.5 | Histogram of translocation times of Aβ aggregates that were classified into clusters 
(i) and (ii).  The width of the bins in the histogram is 10 μs, and the first bin starts at 35 μs since that was 
the minimum translocation time that could be determined accurately (63).  As a result, the complete 
distribution of translocation times could not be obtained.  Using a Kolmogorov-Smirnov test, the difference 
between the two distributions of td values is statistically significantly, p = 0.028.  
 

Discussion about the results in Fig. 8-App.5.  The observation that almost all 

translocation events in cluster (ii) had a td value between 35 μs and 45 μs compared to the 

more distributed td values in cluster (i) suggests that the aggregates in cluster (ii) had 

increased electrophoretic mobility (67, 70).  The resulting shorter time for translocation 

through the pore minimized time-dependent diffusional spreading and, therefore, led to a 

narrower distribution of td values compared to events in cluster (i).   The reasons for this 

increased electrophoretic mobility of events in cluster (ii) could be decreased interactions 

with the lipid bilayer coating (39) or an orientation of the aggregate in the nanopore that 

reduces viscous drag, such as a prolate or cylinder moving with its long axis parallel to 

the direction of movement (89).  As a third possibility, this result could be due to an 

increasing charge per aggregate from addition of charged monomers to the growing 

aggregate, if electrostatic charge regulation is neglected and, we assume spherical 

aggregates.  With the latter two assumptions, the mathematical relationship between the 

most-probable translocation time, diffusion constant, charge, and molecular weight 

involves equations (1-App.5) – (3-App.5): 
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where, z is the net charge valence of the aggregate, N is the number of monomers in the 

aggregate, D (m2 s-1) is the diffusion constant of the aggregate, M.W. (kDa) is the 

molecular weight of the aggregate (i.e. here 4.3 kDa × N), kB (J K-1) is Boltzmann’s 

constant, T (K) is the temperature, η (Pa s) is the viscosity of the solution, Av is 

Avagadro’s number, ρ (kDa m-3) is the molecular weight density of amino acids in a 

protein, lP (nm) is the length of the nanopore, e  (C) is the elementary charge of an 

electron, and VP (V) is the voltage drop across the nanopore.   The factor of -3/4.3kDa in 

equation (1-App.5) is included to account for the expected net charge per Aβ(1-40) 

monomer of -3 and the molecular weight of a monomer of 4.3 kDa (19, 90).  By 

combining equations (1-App.5) – (3-App.5), we solved for td as a function of the number 

of monomers in the aggregate , VP,  and a constant c to yield equation (4-App.5): 

= 2/3d
P

ct
N V  (4-App.5) 

Fig. 9-App.5 shows a plot of equation (4-App.5) and illustrates the trend in most-

probable translocation times for aggregates with increasing molecular weight, assuming a 

constant charge to mass ratio, a constant applied voltage, a spherical aggregate, and an 

aggregate with a length less than the length of the nanopore.  This analysis shows that 

increasing the number of monomers in a low-molecular weight aggregate could 

conceivably increase the electrophoretic force more than the viscous drag force, resulting 

in decreased translocation times that are more narrowly distributed (67, 70) as the 

aggregates molecular weight, and hence charge, increases.   This analysis does not apply 

to aggregates in clusters (iii) or (iv), since those aggregates have lengths longer than the 

length of the nanopore.  
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Figure 9-App.5 | Predicted trend in the most-probable translocation time for aggregates with 
constant charge per molecular weight ratio while neglecting electrostatic charge regulation and 
assuming a spherical aggregate.  This plot is not valid for molecules with varying lengths that are longer 
than the length of the nanopore.  
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5-App.S7. Protofibril diameters as a function of their length determined by 
TEM analysis. 
 

 
Figure 10-App.5 | Diameter of protofibrils with various lengths (A) and diameter of individual 
protofibrils at various positions throughout the length of the aggregate as seen in TEM micrographs 
(B).  (A) Mean diameter of protofibrils with various total lengths, lM, for protofibrils grouped into bins with 
lengths ranging from 5 nm to greater than 100 nm.  Error bars are standard error of the mean.  (B) The 
diameter of seven aggregates measured at five different locations within the length of the aggregate.  Note 
that the diameter remains relatively constant throughout the length of the individual aggregate suggesting 
that the shape of these protofibrils resembles that of a cylinder more than that of a prolate.  Additionally, 
the difference among population means at each position along an aggregate are not significantly significant 
at the α = 0.05 level.  
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5-App.S8. Estimation of protofibril lengths 
To generate histograms of the lengths of aggregates 

in clusters (i) and (ii) of the main chapter (Fig. 5.3), we 

expected that these aggregates were protofibrils elongating 

with a constant diameter (12) and hence had an area-

equivalent cylindrical diameter, ØC, of 4.4 nm (Table 5.1 in 

the main chapter).  We also expected the aggregates in 

cluster (i) to be free to rotate in three dimensions, while the 

protofibrils in cluster (ii) would be oriented with their 

length, lM, parallel to the length of the nanopore and hence 

electric field (55, 85, 88).  We defined the excluded 

volume of an aggregate and the shape factor of an 

aggregate as a function of its length and solved a system of equations for γ and lM based 

on the ΔI value of each translocation event. 

Since TEM analysis (Section 5-App.S5) and data in the literature (12) show that 

the diameter of protofibrils is constant and independent of length, we defined their 

excluded volume as the volume of a perfect cylinder: 

1
4 c Mlπ θΛ =

 (5-App.5) 

Substituting equation 5-App.5 into equation (5.1) of the main chapter yields ΔI as a 

function of γ and lM: 
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γ π θγ
ρ

Δ = <
+

 (6-App.5)
 

To estimate a shape factor for this analysis, we used equations derived by 

Fricke(53, 105) that describe the shape factor of spheroidal prolate particles.  A prolate 

can be described by three dimensions of lengths, a, b, and c (Fig. 11-App.5).  For a 

perfectly ellipsoidal (spheroidal) prolate, b = c, and in Cartesian coordinates it is 

described by x2/c2 + y2/b2 +z2/a2 = 1.  Equations yielding the same shape factor, but 

through a different derivation processes that can be extended to non-symmetric spheroids, 

can be found in reports by Golibersuch, Deblois et al., and Osborn (75-77, 106).  

Figure 11-App.5 | 

Prolate. 
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According to Fricke, when the longest axis, a, is parallel to the electric field, the shape 

factor, γII, is: 

( )
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1 1
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−
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⎢ ⎥= −
⎢ ⎥− −⎣ ⎦
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Where m = a/b = a/c and is greater than 1.  Since we define the diameter of the 

aggregates in this section as ØC = 5.6 nm, we set m = lM / ØC and rewrite equation 7-

App.5: 
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For the aggregates in cluster (i), which we assume can rotate in three dimensions, we 

need to calculate an average shape factor.  By considering the shape factor of a prolate 

with its axis a perpendicular to the electric field: 

2
2 1

γ
γ

γ⊥ =
− , (9-App.5) 

the average shape factor for a prolate free to rotate about all axes is (77, 89): 

1 2
3 3AVGγ γ γ ⊥= +

.  (10-App.5) 

Finally we solved equations (6-App.5) and (8-App.5)–(10-App.5) using 

MATLAB to obtain values of γ and lM for each aggregate in clusters (i) and (ii) based on 

its ΔI value. The lengths obtained for the aggregates are shown in an empirical 

cumulative distribution and a histogram in Fig. 5.4 of the main chapter.  The values of 

AVGγ  in cluster (i) ranged from 1.5 to 1.57 with an average of 1.52, and in cluster (ii), 

values of γ  ranged from 1.06 to 1.25 with an average of 1.15. Note that the value of 

AVGγ  for cluster (i) correspond to an aligned prolate with aγ  of 1.25, which is equal to 

the maximum shape factor observed for the aligned protofibrils in cluster (ii) and that 

AVGγ  is nearly identical to the shape factor of 1.5 commonly used for spherical objects 

(i.e. the shape factor we used to calculate the excluded volume for cluster (i) in Table 5.1 

of the main chapter).    



 194

Since the density of observations at 6.1 nm in Fig. 5.4 of the main chapter is high, 

features of the length distribution beyond ~12-13 nm may be obscured.  To overcome this 

limitation, we also explored empirical cumulative distributions generated only from 

events classified into cluster (ii) (Fig. 12-App.2).  As in the main chapter, we fit the 

empirical cumulative distribution with a multimodal Gaussian cumulative distribution 

function (CDF) and confirmed via a Kolmogorov-Smirnov test that the difference 

between the empirical distribution and the theoretical CDF were not statistically 

significant (p = 0.9917).  The empirical distribution and resulting fit to a multimodal 

CDF, suggest the occurrence of preferred fibril sizes; however, the difference between 

this empirical distribution and an exponential distribution function was not statistically 

significant (p = 0.51, Fig. 12-App.5).  Therefore, although the multimodal fit described 

the distribution in Fig. 12-App.5 most closely, we could not assign statistical significance 

to this fit.  The multimodal fit to data only in cluster (ii) is therefore only suggestive.     

 

 
Figure 12-App.5 | Distribution of aggregate lengths in cluster (ii).  (A) Empirical distribution of lengths 
(black circles) fit with a multimodal-Gaussian cumulative distribution function (CDF) (red curve).  The 
multimodal CDF returned 4 modes with values of 11.0, 15.5, 18.9, and 23.6 nm.  A Kolmogorov-Smirnov 
test confirmed that the difference between the resulting theoretical CDF and the empirical distribution was 
not statistically significant (p = 0.9917).  The difference between the empirical distribution and an 
exponential distribution function was, however, also not significantly different from an exponential 
distribution (black dashed line, p = 0.51) while it was significantly different from the normal, extreme 
value, and Poisson distributions (p = 4E-48, p = 0.001, and p = 0.035). (B)  Distribution of lengths shown 
as a histogram.  The red line shows the probability density function (PDF) obtained from the derivative of 
the theoretical multimodal CDF from the fit in panel A.  
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 We would like to point out one important limitation to the analysis presented 

previously in this section.  The calculation of lengths involved defining the geometry of 

aggregates in clusters (i) and (ii) as cylindrical (since TEM images revealed that the 

diameter of many aggregates remained constant independent of length, Section 5-

App.S5) while applying the shape factor for a prolate.  An alternative approach is to 

define the shapes and volumes of the aggregates as spheroidal prolates rather than 

cylinders. The excluded volume of a perfect spheroidal prolate is:  

2

4
3

or using the parameter symbols in this work 
1
6 c M

b c a

l

π

π θ

Λ =

Λ =
 (11-App.5) 

Solving the system of equations (5-App.5, 6-App.5, and 8-App.5 – 10-App.5) 

described above, in which equation (11-App.5) replaces (5-App.5), yields the distribution 

of lengths shown in Fig. 13-App.5.  The value of AVGγ  for the aggregates in cluster (i) 

ranged from 1.56 – 1.64 with an average value of 1.59, and for the aggregates in cluster 

(ii) γ  ranged from 1.02 to 1.07 with an average value of 1.04. Note that the lengths in 

this distribution are ~1.5 times the lengths shown in Fig.5.4 of the main chapter.  This 

result is a consequence of the fact that for a prolate and cylinder with the same volume, 

the prolate will have a length 1.5 times that of the length of the cylinder. The best method 

probably lies between estimating the volumes of aggregates based on the shape of a 

cylinder and the shape of a prolate.  
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Figure 13-App.5 | Distribution of aggregate lengths in clusters (i) and (ii) when defining their shape 
and volume as prolate spheroids.  (A) Empirical distribution of lengths fit with a multimodal-Gaussian 
CDF.  The multimodal CDF returned 4 modes with values of 10.8, 13.1, 18, and 22.1 nm.  A Kolmogorov-
Smirnov test confirmed that the resulting theoretical CDF was not significantly different from the empirical 
distribution (p = 0.9917).  The empirical distribution was significantly different from the normal, 
exponential, extreme value, and Poisson distributions (p = 0, p = 0.004, p = 0.001, and p = 2.2E-32), 
indicating that the multimodal fit best described the data.  (B)  Distribution of lengths shown as a 
histogram.  The red line is the derivative of the theoretical CDF from the fit in panel A.  
 
 

To summarize this section, we estimated the lengths of aggregates in clusters (i) 

and (ii) by solving a system of equations including γ(lM) and ΔI(γ, lM).  The resulting 

lengths and shape factors were dependent on whether the volume of the aggregate was 

constrained to a cylindrical shape or a prolate spheroid shape.  Regardless, this technique 

reveals the distributions of protofibril length in solution and suggests that the 

distributions of lengths could have local maxima as predicted by Cabriolu et al. (11). 

 

5-App.S9. Preparation of transmission electron microcopy samples 
To examine the morphology of aggregates formed in 2 M KCl, we performed a 

slightly different procedure. We diluted the 1 mg × mL-1 sample of Aβ(1-40) to a 

concentration of 0.05 mg/mL in 2 M KCl.  We immediately mixed this solution using a 

vortex shaker and applied 5 μL of the sample to the glow-discharged carbon coated grids.   

After 10 min, we wicked off the fluid on the grids with filter paper and washed the grids 

three times with 5 μL deionized water (1 min each time).  After wicking off the fluid 

again, we applied a 5-μL drop of 2% uranyl acetate for 1 min, wicked off the excess fluid 
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on the grids, and allowed the grids to dry.  We examined the images of negatively stained 

Aβ structures using a JEOL 3011 high resolution electron microscope (Jeol Ltd., Tokyo, 

Japan). 

Fig. 14A-App.5 shows several TEM images of Aβ(1-40) aggregates that were first 

prepared in pure water like all samples in this work and then exposed to 2 M KCl for 10 

min.  We analyzed the dimensions of the aggregates in the same manner as Fig. 5.3 in the 

main chapter.  For all parameters, the morphology of aggregates that were exposed to 2 

M KCl for 10 min, as in the resistive-pulse sensing experiment, was the same as the 

morphology of aggregates prepared only in pure water (Fig. 5.).  Table 1-App.5. 

summarizes the characterized parameters.  For instance, the diameter of protofibrils and 

fibers were nearly identical between the two preparations.  The range of lengths of the 

protofibrils were similar between the two treatment methods; however, the probability of 

observing long protofibrils was slightly higher in samples exposed to 2 M KCl (i.e. P(lM 

> 45 nm) on Day 1-2 of ~ 0.3 - 0.4) compared to the samples that were not exposed to 

KCl (i.e. P(lM > 45 nm) on Day 1-2 of ~ 0.15 - 0.2) (Fig. 5.3C inset in the main chapter 

and Fig. 14C-App.5 inset).  This suggests that brief incubation in solutions with high 

ionic strengths accelerates the time-dependent aggregation of Aβ such that the number of 

Aβ aggregates increases, which enables the formation of protofibrils with longer lengths 

than those produced in solutions in low ionic strengths.  
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Figure 14-App.5 | Analysis of the size of Aβ(1-40) aggregates seen in micrographs taken with a 
transmission electron microscope.  (A) Micrographs showing aggregates with increasing size after 
incubation in pure water for 0, 1, 2 and 3 days.  (B) & (C)  Histograms of the diameters (B) and lengths (C) 
of all aggregates that were not mature fibers.  Inset in C. the proportion of aggregates with lengths longer 
than 10 nm and 45 nm, the effective length of the nanopore, as a function of aggregation time.  (D) 
Boxplots characterizing the mature fibers that formed after three days of aggregation.  The fibers were 
characterized by their apparent widths when lying flat (blue arrows in A) on the TEM grid and when 
twisted or crossing over itself (red arrows in A) on the TEM grid (26).  The box represents the range 
between the 1st and 3rd quartiles, the dashed line represents the median, the dot is the mean, and the 
whiskers extend to the range of the data (minimum and maximum values).   
 

 
Table 1-App.5.  Morphology of Aβ(1-40) aggregates exposed only to pure water and aggregates that 
were exposed to 2 M KCl for 10 min.  Errors are standard deviations from the mean value.  All 
values are not statistically different between the two treatment methods at the α = 0.05 level; the p-
values are shown in the last row of the table.  

Treatment Spherical Ø  Protofibril Ø Fiber 
x-over W1 

Fiber 
flat W2 

Distance between 
 x-overs 

 nm nm nm nm nm 

Pure Water 6.2 ± 1.2 
N = 18 

6.3 ± 1.5 
N = 117 

5.6 ± 0.8 
N = 27 

11.5 ± 1.5 
N = 27 

97 ± 27 
N = 27 

10 min 
exposure to 

2M KCl 

7.2 ± 1.5 
N = 32 

6.5 ± 1.1 
N = 178 

5.4 ± 1.0 
N = 7 

12.7 ± 2.3 
N = 7 

80 ± 9 
N = 6 

 p = 0.65 p = 0.91 p = 0.91 p = 0.71 p = 0.77 
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Chapter 6 
 

Determining the Activity of Membrane-Active Enzymes with Lipid-
Coated Nanopores 

 

Many lipids in cell membranes serve as chemical messengers in signaling 

pathways that affect cell proliferation, vesicle trafficking, and meiosis.  Enzymes that 

process lipids in membranes regulate the formation of these lipid messengers, and 

irregular activity of these membrane-active enzymes is associated with a range of 

diseases including cancer.  Here, we demonstrate the use of nanopores fabricated in 

silicon nitride for monitoring the activity of these enzymes in situ.  In this method, a 

supported lipid bilayer formed on the silicon nitride coats the nanopore and results in a 

pore-shaped lipid membrane.  Since most enzyme-catalyzed reactions on phospholipids 

change the net charge of the lipid substrate, the activity of these enzymes can change the 

surface charge on the walls of the bilayer-coated nanopore, and consequently, the 

concentration of ions in the pore.  Hence, this work monitors a change in the conductance 

of bilayer-coated nanopores to report the activity of membrane-active enzymes. This 

method is advantageous since the supported lipid bilayer coating is relatively robust 

compared to suspended planar lipid bilayers and since the reaction proceeds on native 

lipid bilayers without the presence of detergents.  In addition, the method does not require 

labeled substrates or secondary enzyme reactions. 
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5.1 Introduction 
Various lipids in cell membranes serve as chemical messengers that are involved 

in regulating proliferation, meiosis, secretion, and intracellular signaling (1-4).  Cells 

employ enzymes to regulate these lipids, including phospholipases that catalyze the 

hydrolysis of specific ester bonds in phospholipids (i.e. phospholipase D, PLD, and 

phospholipase C, PLC), kinases (i.e. diacylglycerol kinase and phosphatidylinositol-3-

kinase, PI3K), and phosphatases (i.e. phosphate and tensin homolog protein, PTEN).  

Anomalous function of these membrane-active enzymes is implicated in inflammation, 

myocardial disease, and cancer (1-4).  For instance, PI3K and PTEN are the two most 

frequently mutated proteins in cancer and are being explored as therapeutic targets for 

tissue regeneration and preventing cancer (4, 5).  Overactive PLD is also thought to be 

associated with cancer since in vivo PLD hydrolyzes phosphatidylcholine lipids (PC) into 

phosphatidic acid lipids (PA) (Fig. 6.1A), and PA is rapidly converted to diacylglyercol 

(DAG), a common signaling molecule involved in cell growth (3, 6-8).  Due to the role of 

membrane-active enzymes in diseases and their potential value as therapeutic targets, 

assays capable of rapidly and quantitatively assessing their activity in situ, in real time, 

and without requiring labels would be useful (9).  Realizing assays with these capabilities 

is difficult, however, because the substrates of membrane-active enzymes are typically 

the hydrophilic head groups of membrane-associated amphiphilic lipids that expose only 

their hydrophilic head groups to the aqueous solution (10-12).  These enzymes can 

therefore be classified as interfacial enzymes (13).  Established assays for monitoring the 

activity of interfacial enzymes measure the absorbance, fluorescence, or radioactivity of 

the enzymatic products, and consequently, often require labeled substrates (3, 10, 14).  

Other methods employ a secondary enzyme reaction, in which the sensitivity of the assay 

may be limited by the experimental conditions required for the activity of both enzymes 

(1, 15).  More recently, liquid crystals formed from lipids were used to indicate the 

presence of active phospholipases by observing changes in the optical properties of the 

liquid crystal (16-18). 

Recently, we described a rapid, label-free, and quantitative method for monitoring 

membrane-active enzymes in situ (9).  This method used the single-channel conductance 

of the pore-forming peptide gramicidin A (gA) in free standing planar lipid bilayers to 
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report the activity of PLD and PLC based on an enzyme-induced change in the charge of 

the lipid head groups in a bilayer (9).  In solutions with low ionic-strength, changes in the 

surface charge of a lipid bilayer also change the local concentration of ions near the 

bilayer, which in turn affects the single-channel conductance of gA pores in the bilayer 

(9, 19-21).  Since gA must be imbedded in a free standing lipid bilayer to measure the 

flux of ions through individual gA pores, this method is susceptible to the mechanical and 

thermodynamic instability of planar lipid bilayer experiments (22).  

Here, we demonstrate the use of synthetic nanopores that are fabricated in 

chemically and mechanically robust silicon nitride membranes for monitoring the activity 

of membrane-active enzymes.  The method involves coating the silicon nitride window 

and the walls of a nanopore in this window with a supported lipid bilayer (Fig. 6.1B) 

(23).  The resulting bilayer-coated nanopore used a synthetic nanopore rather than a 

fragile biological pore, thereby solving the problem of limited mechanical stability of free 

standing bilayers by supporting the bilayers on a solid substrate. Enzymatic modification 

of the charge of the lipid headgroups close to, and inside of, the nanopore changed the 

concentration of counter ions in the pore and led to a measurable change in the 

conductance of the nanopore (Fig. 6.1C).   

We demonstrate this method by monitoring the activity of phospholipase D.  In 

this case, PLD-mediated hydrolysis of zwitterionic PC lipids to negatively charged PA 

lipids resulted in the accumulation of PA lipids in the lipid coating of the nanopores, and 

an increase in the net negative surface charge on the nanopore walls.  Consequently, the 

local concentration of cations in the pore increased, and ultimately, led to a measurable 

change in the conductance of the nanopore in solutions with low ionic strength.  Fig. 6.1 

illustrates this concept for PLD-activity in bilayer-coated nanopores.   

 



 208

Figure 6.1 |  Schematic of PLD-mediated 
hydrolysis of phosphatidyl choline lipids and 
illustration of a synthetic, bilayer-coated 
nanopore for monitoring the activity of 
phospholipase D. (A) PLD catalyzes the 
hydrolysis of zwitterionic and electrically neutral 
phosphatidyl choline lipids (PC), generating a 
soluble product, choline, and a negatively charged 
lipid product, phosphatidic acid (PA).  (B) To 
scale drawing of a nanopore in a silicon nitride 
substrate (grey) that supports a lipid bilayer 
comprised of electrically neutral PC lipids (yellow 
and black) and an interstitial water layer (blue).  
(C)  Schematic of the accumulation of negatively 
charged PA lipids (red) in the lipid bilayer as a 
consequence of the activity of PLD on PC lipids.  
The accumulation of negatively charged PA lipids 
in the bilayer is associated with the accumulation 
of positively charged counter ions (blue) near the 
bilayer and inside the nanopore, leading to a 
measurable increase in the ionic current through 
the nanopore.   
 

 

 

 

 

 

 

 

 

 

 

While biological pores embedded in lipid bilayers have been used to monitor the 

activity of enzymes (9, 24-27), the work presented here is among the first reports on 

using synthetic nanopores for monitoring the activity of enzymes (28) and is the first time 

synthetic nanopores have been used to determine the activity of enzymes quantitatively.  

Many studies have employed mesoporous substrates to characterize the activity of 

enzymes in confined volumes, but in most cases the nanopores themselves were not used 

as a part of the sensing element (29-31).  Recently, Mubarak et al., created a hydrogen 

peroxide sensor by covalently decorating the inner walls of a single synthetic nanopore 
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with horseradish peroxidase (HRP) (28).  In the work by Mubarak et al. the ionic current 

through the nanopore changed in response to the HRP-catalyzed redox reaction between 

hydrogen peroxide and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate), in the 

presence of  hydrogen peroxide at concentrations greater than 10 nM.  In contrast to that 

work, the technique presented here uses a lipid-coated nanopore, in which the lipids in 

the coating are the substrate for the enzyme, while monitoring the change in current 

through the pore over time to characterize quantitatively and in situ the activity of the 

membrane-active enzyme Phospholipase D.  

 

6.2 Experimental section 
We fabricated nanopores in a free-standing silicon nitride membrane, which was 

supported by a silicon chip, as described previously (32, 33).  For each chip, the silicon 

nitride membrane had a total thickness of 275 ± 15 nm and initially contained one 

cylindrical channel with a diameter of 100 ± 15 nm (32, 33).  One end of the channel was 

partially closed with the ion-beam sculpting technique to generate a nanopore, and we 

determined from transmission electron microscopy micrographs that the four cylindrical 

nanopores used in this work had diameters of 22 – 32 nm and lengths of 14 – 20 nm 

(dimensions before formation of a lipid bilayer coating).  For a schematic of these chips 

see Yusko et al. (34) or Section 2-App.S1.  For all experiments, we mounted the silicon 

chip between two pieces of cured polydimethylsiloxane such that fluidic channels 

connected to the nanopore Fig. 1.3B (35-37). 

We formed the lipid bilayer coating on the silicon nitride membranes via vesicle 

fusion and verified the formation of a fluid supported lipid bilayer by fluorescence 

recovery after photobleaching experiments in addition to measurements of the electrical 

resistance of the nanopore (23, 38-40).  We prepared the vesicles from 1,2-diphytanoyl-

sn-glycero-3-phosphocholine (DiPhyPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine lipids (POPC) as described previously (23).  When indicated, these 

vesicles also contained 1,2-dioleoyl-sn-glycero-3-phosphate (PA).  Since Ca2+ is required 

for the activity of PLD and since the method presented here is sensitive to the ionic 

strength of the solution, we used a recording electrolyte containing 0.75 mM CaCl2 with 

pH ~7.0 for all experiments (9, 15).  To determine the conductance of the pores, we 
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recorded ionic currents through the pores at various applied electric potential differences 

between ± 0.3 V using a patch-clamp amplifier (AxoPatch 200B, Molecular Devices).  

We averaged the current at each potential difference for 10 s and determined the 

conductance of each nanopore from the current-voltage relationship as a function of the 

mole fraction of PA lipids, XPA, in the bilayer coating.    

We received PLD isolated from cabbage (EC 3.1.4.4, Sigma Aldrich) as a 

lyophilized powder and dissolved it to a final activity of 500 units mL-1 in a solution 

containing 0.75 mM CaCl2, 0.25 mM KCl, and 1 mM PIPES buffer with a pH of 7.0 ± 

0.1. We aliquoted and stored this solution at -80 °C. According to Sigma Aldrich, 1 unit 

of PLD liberates 1.0 µmol of choline from L-R-phosphatidylcholine (egg yolk) per hour 

at a pH of 5.6 and a temperature of 30 °C. The specific activity of this enzyme according 

to Sigma Aldrich was approximately 1,670 units per milligram of protein. To report the 

concentration of PLD in molar concentration units, we assumed a pure enzyme and used 

a molecular weight for PLD of 92 kDa to calculate that a concentration of 6.5 nM 

corresponds to an activity of 1 unit mL-1 (9, 41).  During experiments with PLD, we 

added PLD to the solution on one side of the chip such that the final enzyme 

concentration ranged from 24 – 95 nM. We measured the ionic current through the pore 

over time while switching the applied voltage between  ± 0.1 V every ~ 20 – 30 s, and we 

calculated the resulting conductance of the pore as a function of time. 

 

6.3 Results and discussion 
In order to determine the activity of PLD on PC lipids in situ, we determined the 

ionic conductance of bilayer-coated nanopores as a function of the mole fraction of PA 

lipids (the lipid product of the PLD-catalyzed reaction) in the bilayer coating.  We 

formed these different bilayer coatings by incorporating increasing mole fractions of PA 

lipids, XPA, in liposome preparations containing primarily DiPhyPC lipids or POPC 

lipids, followed by spreading of these liposomes on the silicon nitride chips.  Fig. 6.2A 

shows that the ionic conductance of bilayer-coated nanopores increased with increasing 

XPA in the DiPhyPC supported bilayer.  Assuming the packing density of PA lipids in the 

bilayer is similar to that of DiPhyPC lipids, the surface charge on the walls of the 

nanopore increases in a linear fashion with increasing XPA (42).  Consequently, we 
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expected to observe a linear increase in the ionic conductance of bilayer-coated 

nanopores with increasing XPA (42).  Fig. 6.2A confirmed this expectation and shows a 

linear increase in the conductance, κ (Ω-1), of the nanopore with increasing XPA.  This 

result demonstrates the possibility to monitor changes in the ionic current or conductance 

through a calibrated bilayer-coated nanopore for calculating the amount of XPA in a lipid 

bilayer in situ.   

 

Figure 6.2 |  Increase in the conductance 
of bilayer-coated nanopores as a function 
of the mole fraction of PA lipids (XPA). 
(A)  Increase in the conductance of a 
bilayer-coated nanopore, Δκ, coated with a 
DiPhyPC bilayer containing increasing XPA.  
The conductance was calculated from the 
inverse of the slopes in the current-voltage 
plots (inset) when the supported lipid 
bilayer contained 0% ( ), 10% ( ), 20% (

), and 40% ( ) PA lipids.  (B). Δκ of a 
bilayer-coated nanopore that was coated 
with a POPC bilayer containing increasing 
XPA. The κ was calculated from the inverse 
of the slopes in the current-voltage plots 
(inset) when the supported lipid bilayer 
contained 0% ( ), 30% ( ), and 40% ( ) 
PA lipids.   In both plots, the conductance 
was normalized to the conductance of the 
pore when the bilayer coating contained 0 
% PA lipids, yielding (A)

1510%PAXκΔ = × with a standard error in 
the slope of ± 80 % and (B) 

482%PAXκΔ = ×  with a standard error in 
the slope of ± 2 %. 

 

 

 

During formation of the bilayer coating from liposomes of DiPhyPC lipids, we 

had difficulty washing un-fused liposomes from the surface, and the nanopores frequently 

clogged during the bilayer formation processes.  To avoid these problems, we explored 

generating bilayer-coated nanopores from spreading liposomes containing POPC lipids 

instead of DiPhyPC lipids.  Liposomes formed from POPC lipids washed away easier and 
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resulted in fewer clogged pores than when we used the DiPhyPC lipids; consequently, we 

used liposomes formed from POPC lipids in the remainder of this work.  Figure 2B 

shows the ionic conductance as a function of XPA when the bilayer coating contained 

primarily POPC lipids.  This plot provides a second example of the expected linear 

increase in the conductance of a bilayer-coated nanopore with increasing XPA and serves 

as a calibration curve for calculating the amount of XPA in a lipid bilayer, in situ, in 

response to PLD activity.   

To monitor the activity of PLD, we formed a supported lipid bilayer from pure POPC 

lipids on the chip.  After determining the initial conductance values, we added PLD to the 

electrolyte solution on one side of the chip such that the final concentration was 48 nM 

and monitored the conductance of the pore over time (Fig. 6.3A).  The conductance of the 

nanopore increased after the addition of PLD due to hydrolysis of PC lipids, the 

subsequent accumulation of PA lipids in the supported lipid bilayer, and the concomitant 

accumulation of cations near the surface of the lipid bilayer within the nanopore.  To 

calculate XPA in the bilayer as a function of time after adding PLD, we used the 

calibration method depicted in Fig. 6.2 and shown in equation (6.1):  

 

PA

PA

X
d

dX

κ
κ
Δ

=
⎛ ⎞⎜ ⎟
⎝ ⎠

, (6.1) 

where κΔ (%) is the increase in the conductance and 
PA

d
dX

κ (% × XPA
-1) is the 

percentage increase in conductance as a function of XPA (e.g. the slope of the curves 

shown in Fig. 6.2).  For the three pores used to measure the activity of PLD, 
PA

d
dX

κ was 

368 ± 6 %, 455 ± 14 %, and 482 ± 2 %.  Using equation (6.1), we calculated XPA from the 

increase in conductance after addition of PLD and plotted it as a function of time (Fig. 

6.3A).   To confirm that the increase in the conductance through each nanopore was due 

to the activity of PLD, we performed a control experiment with thermally denatured PLD 

obtained by incubating PLD in solution at 90 °C for 1 h.  Upon adding 50 nM of this 

denatured PLD to the electrolyte solution, we observed no increase in the conductance of 

the pore (Section 6-App.S1).  This result proves that the increase in the conductance of 
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the pore upon the addition of PLD was due to PLD-mediated hydrolysis of PC lipids to 

PA lipids and not due to the presence of possible contaminants in the enzyme solution.   

Since the hydrolysis of PC lipids by PLD activity occurs on the two-dimensional 

surface of the bilayer and the presence of PA lipids in the membrane increases PLD 

activity (9, 15, 43), we recently developed a kinetic model to describe the production of 

PA lipids over time, XPA(t), by the activity of PLD (Section 6-App.S2).  This model is 

shown in equation (6.2) and is based on a kinetic description for catalysis on a surface 

developed by Verger et al. and includes terms to describe the increased activity of PLD 

with the formation of PA lipids in the bilayer (so-called product activation) (43, 44).   

( )
1 m O Eo

O
PA Q X C t

XX t
eα −=

+   (6.2) 

Xo (unitless) is the mole fraction of the product produced at equilibrium; α is an 

integration constant (unitless); Qm (nM-1 min-1) is an interfacial quality constant that 

includes an interfacial Michaelis-Menton constant, the catalytic rate constant; and the 

affinity of the enzyme for the surface (Section 6-App.S2); and CEo (M) is the total 

concentration of the enzyme.  The interfacial quality constant Qm takes into account 

physochemical properties of the interface as they pertain to the overall activity of the 

enzyme; for instance, a higher value of Qm would indicate a faster overall reaction 

velocity for a given enzyme and interface compared to a lower value of Qm (44, 45). 

To explore the possibility of measuring the activity of PLD quantitatively, we 

monitored the conductance of bilayer-coated nanopores after adding several 

concentrations of PLD and fit the XPA(t) curves with equation (6.2).  Fig. 6.3A shows the 

generation of PA lipids over time for two different concentrations of PLD and the 

resulting fits of equation (6.1) the data with Xo, Qm, and α as fitting parameters.  Each fit 

returned similar values for the interfacial quality constant, Qm, of 0.072, 0.13, 0.047, and 

0.061 (mean = 0.078, standard deviation = 0.036).  We obtained a similar value of Qm = 

0.079 ± 0.015 nM-1 min-1 by fitting all of the data simultaneously in Fig 6.3B, where the 

x-axis was scaled by [PLD] × time.  This value is in excellent agreement with the value 

of Qm of 0.05 nM-1 min-1 that we reported for studies using lipid membranes composed of 

PC lipids that spanned micropores and used the conductance of gA as a reporter of XPA. 

(43).  The difference between the value we measured with this technique and gA-based 
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technique is not statistically significant (p-value = 0.15).  Moreover, the value of Qm ~ of 

0.08 nM-1 min-1 that we determined here is close the value reported for the activity of 

phospholipase A in a different system of 0.003 nM-1 min-1 (44, 45).  This result 

demonstrates the quantitative ability of this robust-membrane system for characterizing 

the activity of membrane active enzymes without labels and relatively simple equipment.   

Fig. 6.3A shows two interesting and non-intuitive results, however.  The first 

result is that the mole fraction of PA lipids does not approach 1.0 at equilibrium; rather it 

reached a value of Xo ~ 0.18 ± 0.03.  The second puzzling result is that the highest 

concentration of PLD did not generate the highest mole fraction of PA lipids.  These two 

results may be related and may indicate the sequestration of PLD enzyme from PC lipids.  

For instance, PA lipids are known to form lipid domains composed primarily of PA lipids 

in the presence of Ca++ (15), and since, PLD has a higher affinity for negatively charged 

membranes than for neutral membranes (15), the presence of PA-rich domains could 

sequester PLD from PC lipids, thereby reducing the reaction velocity.  Moreover, 

according to the Adair equation (46), PLD can also catalyze the reverse reaction of PC 

lipids to PA lipids under certain conditions, and in these PA-rich domains the local 

concentration of PA lipids would be high while the local concentration of PC lipids 

would be low, thereby creating conditions more favorable toward the reverse reaction.  

We note, however, that an alternative interpretation of the Xo parameter, independent of 

an enzyme sequestration model, would be that the value of Xo represents the maximum 

density of lipid product that the lipid bilayer would support (9, 45).   
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Figure 6.3 | Mole fraction of PA in the 
supported lipid bilayer, XPA, as a function of 
time after addition of PLD  (A) Time-dependent 
change in XPA nanopores coated with supported 
lipid bilayers of PC lipids after the addition of 48 
nM ( ) and 95 nM ( ) PLD.  Data was with 
equation (6.2).  (B) Data from all experiments 
with concentrations of PLD ranging from 24 nM 
to 95 nM plotted against an x-axis scaled by 
[PLD] × time. 
 

 

 

 

 

 

 

 

 

 

 

6.4 Conclusion  
The method presented here builds on a previously reported assay for monitoring 

the activity of membrane-active enzymes and demonstrates the first time solid-state 

nanopores have been used to monitor the activity of an enzyme.  Here, we combined 

solid-state nanopores fabricated in silicon nitride with supported lipid bilayers to form 

pore-shaped membranes. These supported lipid membranes are more robust to 

thermodynamic and mechanical instabilities compared to the planar lipid bilayers used 

previously.  Consequently, this work addresses a primary limitation of gA-based sensing 

of membrane-active enzymes.  Furthermore, the method presented measures the steady-

state ionic current through the nanopore over tens of seconds and does not require 

electronics with fast time resolution. Thus, it requires relatively simple electronics and, as 

a result, could potentially be incorporated into commercial devices for rapidly detecting 

and quantifying the activity of membrane-active enzymes.  Finally, since this method 

takes advantage of a change in the net charge of a lipid upon an enzymatic reaction it 

should be applicable for detecting the activity of a wide range of membrane-active 
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enzymes.  For example, all of the enzymes mentioned at the beginning of this work will 

yield a lipid product with a net charge different from the initial lipid substrate. 

This work also presented the non-obvious result that higher enzyme 

concentrations did not necessarily generate more product due the possibility of product 

activation followed by product inhibition.  Thus, a thorough and quantitative 

investigation of the interfacial kinetics is required to understand the activity of PLD and 

possibly develop models to describe the unique kinetic behavoir of membrane-active 

enzymes.   
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( )
2

* *

S EoP

d
M M S

p

k Cd
k Adt K K
k V

ΓΓ
=

+ + Γ
  (1-App.6) 

ΓP (# m-2) is the density of the product created on the surface, k2 (min-1) is the catalytic 

rate constant, Γs (# m-2) is the density of the available substrate on the surface, CEo (# m-3) 

is the total concentration of enzyme, KM
*

 (# m-2) is the interfacial Michaelis-Menten 

constants (i.e. KM
* = (k2 + k-1) / k1 and k1 is the association rate constant for the enzyme-

substrate complex and k-1 is the corresponding dissociation rate constant) , kp (m min-1) is 

the adsorption rate constant to the surface, kd (min-1) is the desorption rate constant from 

the surface, A (m-2) is the surface area at the water-bilayer interface, and V (m-3) is the 

volume of the aqueous phase.   

 Assuming that the surface area to volume ratios is negligible that the fraction of 

enzymes able to penetrate into the bilayer is small, we can ignore the second term in the 

denominator to write equation (2-App.6) (44): 

2

*

S EoP
m S Eo

d
M

p

k Cd Q Ckdt K
k

ΓΓ
= = Γ   (2-App.6) 

In equation (2-App.6) we introduced the parameter, Qm, which is the interfacial quality 

constant and equal to 2

* d
M

p

k
kK
k

.  

The models shown in (1-App.6 and 2-App.6), however, do not account for the increased 

activity of PLD enzymes in the presence of negative charged lipids such as PA.  

Therefore, we developed a simple model to account for this product activation (43): 

( )P
m o P P Eo

d Q C
dt
Γ

= Γ −Γ Γ  (3-App.6) 

where Γo (# m-2) is the total available substrate in the lipid bilayer and Γo = Γs+Γp.  We 

can rewrite equation (3-App.6) in terms of mole faction of lipids by assuming that the 

average area per lipid is not affected by the formation of the product lipid (i.e. a different 

mole fraction of XPC vs. XPA).  Equation (6.1) in the main chapter shows the integrated 

solution to equation (3-App.6) based on these assumptions and the work outlined by 

Majd et al. (43). 
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Chapter 7 
 

Concluding Remarks and Suggestions 
 
The work presented in this thesis introduced the concept of nanopores with fluid 

walls and demonstrated their enabling properties for characterizing proteins and peptides.  

We realized these fluid walls by taking advantage of the self-assembly of lipids to form a 

supported lipid bilayer coating on the synthetic surfaces of the nanopore and surrounding 

substrate.  These multifunctional, fluid coatings addressed in some way all of the major 

challenges that were preventing further development of nanopore-based devices for 

protein characterization (Chapter 2) and enabled new nanopore-based assays.  For 

instance, Chapter 2 demonstrated the first time a nanopore was capable of determining 

the charge of a protein (by measuring thousands of translocation events); Chapter 3 

demonstrated the first time that the shape of proteins were quantitatively determined with 

nanopores, and the first time the dipole moment and rotational diffusion coefficient could 

be determined by observing a single non-spherical protein in the pore; Chapter 4 

demonstrated that the affinity of a protein for a lipid-anchored ligand could be 

determined in the same experiments used for determining the size, charge, and shape of 

proteins (Chapters 2 and 3); Chapter 5 took advantage of the non-fouling, fluid coating to 

characterize disease-relevant aggregates of amyloid-β peptide; and finally, Chapter 6 

demonstrated the ability of lipid-bilayer coated nanopores to monitor and quantify the 

activity of membrane-active enzymes.  Consequently, the aggregate of this work 

demonstrates that the addition of fluid walls to nanopores is a very promising tool for 

simple, portable, single-molecule assays and biophysical characterization of proteins. 

The studies presented in this thesis provide an exciting glimpse into the future of 

nanopore-based sensors.  For instance, these studies suggest it will be possible to achieve 

high-throughput, simultaneous, and multi-parameter characterization of single proteins in 
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complex biological solutions.  This capability would be an amazing advancement because 

by measuring multiple biophysical properties of one protein at a time, thousands of 

different proteins might be characterized and identified directly from biological solutions 

without complex instruments or chemical modification of the proteins.  In order to 

achieve this goal, however, several challenges need to be addressed.  In the next sections, 

I will describe these challenges and possible solutions as well as speculate on potential 

embodiments of nanopore-based sensors for characterizing multi-parameters by 

measuring a single protein. 

 

7.1 General strategies to improve the nanopore-with-fluid-walls platform 
This platform needs to evolve into a general assay in which many different sizes 

and types of proteins can be characterized.  In this work we limited our analysis to 

proteins that bound to a commercially available lipid (biotin-PE), and we used a protein, 

GPI-acetylcholinesterase, that self-associated with the fluid lipid bilayer coating via its 

GPI moiety.  In order to broaden the detection and characterization capabilities that this 

assay provides, we must develop a general method for attaching proteins or ligands to 

lipid anchors in the bilayer coating.  Since lipids can be purchased with a variety of 

chemically reactive groups, methods for covalently linking proteins via their cysteine 

residues or amine groups should be relatively straightforward.  For instance, hetero-bi-

functional cross-linkers with a NHS-ester moiety and a maleimide moiety, which are 

commonly available from companies such as Pierce, could be used to link the amine 

group of a protein (via the NHS-ester) to thiolated lipids (via the maleimide moiety) in 

the bilayer coating.  For assays aimed at determining the affinity of a protein-ligand 

interaction or detecting a specific protein-ligand interaction, similar methods could be 

employed to link the desired ligand specifically to certain lipids in the bilayer coating 

(e.g. lipids exposing primary amine, thiol, or carboxyl groups to the aqueous solution).  

This procedure could be performed on-chip, perhaps in parallel, or on the liposomes used 

to form the bilayer coating.  This level of flexibility is a major advantage of the fluid-

bilayer coating that should permit this assay to become a general method for 

characterizing most proteins.   
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For instance, if proteins could be held in the nanopore for long times (i.e. 500 μs or 

longer), the electrical signal could be filtered at lower frequencies and, thereby, enable 

detection of smaller proteins compared to the same experiment where the signal is 

filtered at a higher frequency.  While increasing the residence time of proteins in the 

nanopore is a simple concept to suggest; achieving this goal in practice has proved 

difficult because many strategies to reduce the translocation speed of proteins also 

reduced the mobility of ions and therefore the signal required to detect proteins (6-8).  

The fluid-coating concept that we developed in this work opened a unique pathway 

toward selectively reducing the mobility of the protein while not affecting the mobility of 

the ions.  With this concept in mind there a few strategies one could envision to reduce 

the transit speed further of lipid-anchored proteins.  First, increasing the viscosity of the 

bilayer coating by incorporating long-chain lipids or small molecules such as cholesterol 

would reduce the transit speed of lipid-anchored proteins.  Second, linking the proteins of 

interest or ligand of interest to multiple lipids would selectively reduce the mobility of 

that lipid-anchored protein in the bilayer coating while not affecting the net viscosity of 

the fluid bilayer coating.  These two strategies, however, suffer from the fact that the 

frequency of translocation events depends on the mobility of the lipid-anchored proteins 

in the bilayer (Chapter 4), and thus, these two strategies would reduce the frequency of 

translocation events to a prohibitively low frequency (e.g. 1 per min or less).  To 

overcome this limitation, a third strategy would be to achieve a locally high viscosity of 

the bilayer coating at a defined location inside the nanopore.  Figure 7.3 illustrates this 

concept where the locally high viscosity is achieved by covalent attachment of long-chain 

acyl groups to a gold layer within the nanopore structure prior to forming the lipid bilayer 

coating by vesicle fusion.  This structure serves to create a region where the fluid lipid 

coating is a monolayer and, therefore, has a mobility that is approximately an order of 

magnitude lower compared to a lipid bilayer structure.  Moreover, one could imagine 

developing chemically modified hydrophobic molecules that would respond to an electric 

field by becoming extended in a polarized state and flexible in an unpolarized state.  By 

linking these to the gold layer and applying an electric potential difference to the gold 

layer, these imaginative but not entirely unrealistic molecules might enable switchable 

and perhaps tunable mobility of a lipid-anchored protein while in the nanopore (9).   
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Figure 7.3 | Concept of a nanopore with fluid walls designed to increase the residence time of lipid-
anchored proteins in the pore while not reducing the frequency of translocation events.  (A) Original 
concept of a nanopore with fluid walls in a cross-sectional view of half the nanopore.  The translocation 
speed and frequency of translocation events are both related to the viscosity of the bilayer coating.  A high 
viscosity increases the residence time but reduces the frequency of events.  (B) Concept of a nanopore with 
fluid walls where a region of the fluid coating has significantly increased viscosity (cross-sectional view of 
half the nanopore).  In the example, this structure is achieved by sandwiching a gold layer between two 
silicon nitride layers (similar structures have been fabricated in (10-12)).  The gold is modified covalently 
with a self-assembled monolayer of hydrophobic acyl chains (red lines).  The fluid lipid layer in this region 
(green semi-oval) would form a monolayer with significantly reduce mobility compared to the surrounding 
bilayer structure.  This structure would create a situation where the frequency of the translocation events is 
similar to that of (A), but the residence time of the lipid-anchored protein in the pore would be significantly 
increased.  
 
 
 In this work, there are two specific instances in which increased residence time 

would significantly improve the assay.  The first instance is in the detection and 

characterization of amyloid-β aggregates.  As stated in the conclusion of Chapter 5, 

ideally this assay could be used to characterize aggregates as small as trimers and detect 

the addition of invidiaul monomers to aggregates of amyloid-β.  For instance, we 

estimated that in the experiments performed in Chapter 5, addition of an individual 

monomer would decrease the current through the pore an additional ~20 pA.  If the 

residence time of individual aggregates in the pore were sufficiently long, time-averaged 

currents should afford this level of resolution.  The second instance in which long 

residence times of the proteins would have a great impact is in determining the shape of 

proteins and their conformational changes.  We demonstrated in Chapter 3 that when 

non-sperhical proteins resided in the nanopore for longer than ~400 μs we were able to 

determine the size, shape, dipole moment, and rotational diffusion coefficient from a 

single protein.  This capability would be ideal to characterize, and therefore identify, 



227 
 

proteins from a complex mixture based on measuring multiple properties of a single 

protein, one protein at a time.  Consequently, if we could increase the residence time of 

the non-spherical proteins albeit under conditions where they still rotate, we would 

increase the accuracy for determining the volume, shape, dipole moment, and rotational 

diffusion coefficient from a single protein.  Moreover, we presented evidence in Chapter 

3 that suggests the ΔI value can also reflect conformational changes in flexible proteins 

such as an IgG1 antibody.  For instance, the histogram of all intraevent ΔI values in Fig. 

7.4A shows several local maxima, which we hypothesize correspond to the different 

conformations that an IgG1 antibody can assume (Fig. 7.4B).  Fig. 7.4A was generated 

from thousands of translocation events; if a similar histogram could be generated by 

monitoring the current while a single antibody remained in the pore for a long time, it 

would provide strong evidence that these local maxima correspond to conformational 

changes.   

 

 
Figure 7.4 | Intraevent ΔI values due to IgG1 antibody translocation events have several local maxima 
(A) and illustration of the multiple conformations of an IgG antibody (B).  (B) was adopted from (13). 
 

 

7.2 Proposed embodiments of the nanopores-with-fluid-walls platform for 
simultaneous, multi-parameter characterization of individual proteins.  
 
 In order to determine what proteins are present in a biological fluid, an ideal 

method would be able to characterize and identify proteins based on their biophysical 

properties.  The classical method of identifying the presence of proteins in a complex 

mixture is to perform two-dimensional gel electrophoresis in which each type of protein 

is separated by size and isoelectric point followed by the difficult technique of mass 

A B 
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spectrometry on each spot (Fig. 7.5A) (Note: this is an ensemble method requiring 

micrograms of proteins) (14). The comparable single molecule technique would ideally 

be capable of measuring multiple biophysical properties of a single protein 

simultaneously such that as thousands of different proteins are characterized each protein 

can be distinguished.  In this thesis, we demonstrated that this capability is truly a 

possibility by determining the dipole moment, size, and shape of individual non-spherical 

proteins.  Consequently, one could envision this capability as a three-dimensional protein 

characterization (Fig. 7.5B).  These same nanopore-based assays can also determine the 

rotational diffusion coefficient of non-spherical proteins; however, this value should be 

related to the size and shape in the absence of protein-specific interactions with the fluid 

coating.  Further work would be required to determine if the rotational diffusion 

coefficient could be considered a fourth dimension for protein characterization in these 

types of nanopore-based assays. 

 

 
Figure 7.5 | Conceptual comparison of a two-dimensional protein characterization obtained by two-
dimensional gel electrophoresis and a three-dimensional protein characterization of proteins 
obtained by nanopore-based single-molecule techniques. (A) Two-dimensional gel electrophoresis 
involves separating micrograms quantities of protein by their size and isoelectric point followed by a 
staining method in order to visualize the spots where there are proteins.  (B) A nanopore-based assay with 
fluid walls that can measure three parameters from non-spherical proteins, however, enables a three-
dimensional characterization of the proteins in solution; a hypothetical result is illustrated graphically 
where the “spots” indicate values of dipole moments, shapes, and sizes of the proteins as determined by 
measuring these properties from individual proteins as they passed through the nanopore. 
 

 In Chapters 3 and 4, we demonstrated that the charge and affinity for a ligand of a 

protein can be determined by measuring thousands of translocation events due to that 
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protein.  Thus a single nanopore in use with many different of lipid-anchored proteins in 

the lipid coating would not enable determination of the charge or affinity of that protein 

since many different proteins would contribute to the signal.  To overcome this limitation 

and thus, add these two parameters to the four discussed above, one could imagine an 

array of individually addressable nanopores with different sizes and with different ligand 

in the bilayer coating.  Each nanopore in this case would be specific to a protein of 

interest and the translocation events from a particular pore would allow characterization 

of the size, charge, shape, and affinity for a ligand of that protein.  This high-throughput 

array of nanopores is certainly reasonable considering that Oxford Nanopore 

Technologies has developed commercial devices with as many as 8,000 individually 

addressable nanopores and over 500 on-chip amplifiers (15).  Such an array of nanopores 

would then be able to characterize and identify proteins based on four biophysical 

parameters (volume, shape, charge, and affinity), and for non-spherical, two additional 

parameters of dipole moment and rotational diffusion coefficient could also be 

determined. 

 

7.3 Conclusion 
 In conclusion, this thesis has demonstrated the utility of nanopores with fluid 

walls for performing single molecule assays and biophysical characterization of proteins 

and peptides.  We demonstrated that this platform has the potential to characterize 

multiple properties of a single protein while it resides in the nanopore.  Nanopore-based 

assays have proven amenable to miniaturization due to their low-power requirements and 

silicon-based fabrication platform.  Consequently, we suspect that with general 

improvements to the fluid-wall technology, nanofabrication methods, and parallelization 

of this technique; nanopore-based assays with fluid walls will be well-suited for 

simultaneous, multi-parameter characterization and identification of many proteins in 

complex biological mixtures.  This capability will aid the search for biomarkers and the 

construction of personal proteomic databases. 
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Appendix 

 

A.1 Equivalent Circuit Model and Electrical Noise  

 Figure A.1 shows the structure of the nanopores used in this work and the 

corresponding equivalent circuit model.  From this circuit model, we calculated the 

expected electrical noise in the system as a function of the signal bandwidth of the 

electrical recordings.  In this work, the bandwidth is approximately equal to the cut-off 

frequency, fc (Hz), of a low-pass filter that we digitally applied after the current 

recordings; we typically applied a low-pass digital filter with cut-off frequency of fdf = 15 

kHz.  The maximum bandwidth of recordings with these nanopores, however, was 

limited by the bandwidth of the head-stage amplifier of fhs = 57 kHz (1).  Equations A.1 – 

A.6 describe well-known sources of electrical noise in the system, and Table A.1 lists 

typical values for the parameters in these equations that describe the noise.  Equation A.6 

lists the total noise expected in these experiments; however, silicon chips that are coated 

with silicon nitride can exhibit a strong noise at low frequencies that follows a 1/f 

behavior, IF (1-4).  The most reported, and perhaps the best, strategies to reduce the total 

noise in these experiments due to 1/f noise and stray capacitance involve minimizing the 

area of the silicon nitride that is contact with solution by coating the chip with a thick 

layer (i.e. greater than 1 µm) of PDMS or applying short high voltage pulses across the 

pores (4, 5). Additionally, the fluid-bilayer coating adds additional noise at frequencies 

below ~2 kHz (Figure A.2) (6). Consequently, the total noise of a nanopore and therefore, 

its expected performance as a resistive-pulse sensor, is currently best determined 

experimentally by obtaining a power-spectrum of the electrical signal (Figure A.2) and 

integrating from 0 to fc.  From this experimental observation, the RMS-noise of the 

nanopore under the desired experimental conditions can be obtained, and therefore, the 

expected detection limits of the nanopore can be determined (Appendix B).   
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Figure A.1 | Close up cross sectional view of the nanopores used in this work and the equivalent, 

simplified circuit diagram.  (A) Shows a close-up cross-sectional view of a typical nanopore chip.  (B) 

Shows a simplified equivalent circuit model.  For the equations below we considered the stray capacitances 

due to the bilayer and silicon nitride area that was in contact with the aqueous solution in the top solution 

compartment (5).  This area was limited by the size of the hole punch used to create the fluid well and was 

~ π × (0.001 m)
2
. 

 

Intrinsic bandwidth of the pore, equation A.1 (1): 

1

2
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e m

f
R Cπ

≤  (A.1) 

Noise due to the amplifier, equation A.2: 

2 2 2 31 1
1 32

4 4
2

3

B c c
A fet c n tot c

f f

ak Tc f c f
I eI c f e c C f

R R
π

 
= + + +  

 
 (A.2) 

Thermal noise or Johnson noise, equation A.3: 
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Noise due to dielectric materials, equation A.4: 

2

24 cD B m cI k TDC fπ=  (A.4) 

Shot noise may also play a role, equation A.5:  

2
c a

S

tot

ef V
I

R
=
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Total noise, equation A.6:  
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Table A.1.  Parameters affecting the noise and their typical values in this work.  

Parameter Equation Typical value Details 

fc 2 2 2

1

pore hs df
f f f

− − −+ +
 

14.5-15 kHz  Effective cutoff 

frequency 

Re  ~250 - 500 Ω  Electrolyte 

resistance to pore 

Rp 2

p

p

l

r

ρ

π
 

~1-2 MΩ Chapter 2 

Ra 
4 pr

ρ
 ~1 MΩ Chapter 2 

Rac 
4 cr

ρ
 ~1 MΩ Chapter 2 

Rtot Rp+2Ra+Rc+Rca ~3 - 5 MΩ Chapter 2 

Cb 
-2 20.02 Fm 0.001mπ×  63 nF 

Capacitance of the 

bilayer in contact 

with solution. 

CSiN4 
( )

2
0.001o r

d

ε ε π
 where εr ~7 101 pF 

Capacitance of the 

silicon nitride 

layer. 

Cm 

4

1

2 1
~

b SiN
C C

−

 
+  

 
 ~100 pF Total capacitance 

of the chip. 

Cwire + Camp  
β = 1; 30 pF  

β =0.1; 98 pF 
Uram et al. (1) 

Ctot Cchip+Cwire+Camp 
β = 1; 130 pF  

β =0.1; 198 pF 
 

c1  1.04 

Correction 

coefficients for 

filtering (1) 

c2  1.3 

Correction 

coefficients for 

filtering (1) 

c3  1.9 

Correction 

coefficients for 

filtering (1) 

a  ~1.9 
Extra noise in the 

system (1) 

Ifet  0.2 pA 
Gate leakage 

current (1) 

Rf  
β = 1; 500 MΩ 

β =0.1; 50 MΩ 

Feedback resistor 

in the amplifier 

en  3-4 nV Hz
-1/2

 
Voltage noise 

density (1, 2) 

D  ~0.001- 0.01 
Dielectric loss 

tangent (1, 7) 
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Figure A.2 | Comparison of the noise in nanopores before and after a lipid bilayer coating.  (A) Power 

spectral densities of the electrical noise in a nanopore with and without and lipid bilayer coating.  The 

spectra were taken using an electrolyte of 2 M KCl, 10 mM HEPES (pH = 7.4, ρ = 0.046 Ω m) and at an 

applied voltage of 0.1 V.  The nanopore had an rp = 15 nm and an lp = 15 nm without the bilayer coating.  

(B) Theoretical RMS noise compared to the actual RMS noise.  Total RMS noise was predicted from 

equation A.6.  The experimental RMS noise was obtained by taking the integral of power spectral densities 

in (A).   

 

The disagreement between the theoretical noise and the experimentally observed 

noise in uncoated nanopores could be due to a number of factors that we briefly highlight 

here (Figure A.2).  For the uncoated nanopores, the experimentally determined noise 

appears to first deviate from the predicted noise at a frequency of ~2.5 kHz.  In the range 

of ~100 – 10 kHz, the noise is dominated by energy dissipation in non-ideal dielectric 

materials and thermal noise of the pore and measurement electronics (2).  At frequencies 

greater than 10 kHz, noise due to the interaction of the amplifier’s voltage noise (i.e. en) 

with the total capacitance of the system increases and may become dominant (2).  The 

strong difference between the theoretical noise and the noise determined in experiment 

thus seems to stem from stray capacitance in the system and the presence of non-ideal 

dielectric materials.  Minimizing the contribution of these two parameters should improve 

the noise of these experiments and lead to decreased detection limits.  Figure A.2 also 

shows the expected result  that bilayer coated nanopores exhibit a significant (i.e. ~15-20 

pA RMS) noise with 1/f behavior due to low-frequency fluctuations of the bilayer coating 

(6). 
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 Another possible reason for the high electrical noise observed in experiments 

compared to the theoretical predications may be that the equivalent circuit model is 

inaccurate.  For instance, in estimating the intrinsic bandwidth of the nanopore device 

typically only the electrolyte resistance to the pore structure is considered to be in series 

with the capacitance of the chip, and the access resistance to the nanometer opening of 

the pore is often neglected (1).  One might think that the access resistance to the pore 

should also be considered to be in series with the capacitance of the chip; however, if that 

were an accurate model, the intrinsic bandwidth of the nanopore would be ~1 kHz, and 

we know that the actual bandwidth is actually much higher than the 57 kHz bandwidth of 

the head-stage amplifier (Equation A.1).  This discrepancy and the complicated structure 

of the nanopores suggest that the simple equivalent circuit model in Figure A.1 is not 

entirely accurate, but provides a good first approximation to the minimum noise one 

might expect in these experiments. 

 

A.2 Governing Equations 

This section lists the equations that describe these nanopore-based resistive-pulse 

sensing experiments as a function of experimental conditions, the properties of the 

bilayer coating, and the properties of the protein of interest.  These equations are listed 

below and have been combined in a MATLAB program in order to plot certain 

parameters of interest against multiple variables. 

 

Change in current as a function of particle volume and shape (Chapters 2, 3, and 5): 

( ) ( )
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Detection limit for spherical and slender particles: 

Spherical particles:
( )
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P P RMS noise
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Slender particles where 1γ → : 
( )

2

small-limit

0.8 5
P P RMS noise

A

l d I

V

ρ −+
Λ =  (A.10) 

Electrical shape factor (Chapter 3 and 5): 
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where n
�

 

for a prolate spheroid with m = A/B > 1 is: 
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and n
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for an oblate spheroid with m = A/B < 1 is: 
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and n⊥
 = (1 - n

�
)/2 

Distribution of translocation times and average translocation time (Chapter 2): 
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Frequency of translocation events (Chapter 4): 
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 for a known density of lipid-anchored protein.  (A.16) 
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for the binding of a protein to a lipid-anchored ligand where (A.17) 
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[P]
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L DK

Γ
Θ ≡ =

Γ +
 

(A.18) 

To account for depletion of the protein from solution (i.e. [P] ≠ [Po]) use equation A.19: 
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(A.19) 

For all equations, if a lipid bilayer coating is used replace, with 2 2p p b wl l l l+ + , and 

replace with 2 2 ( / 2)p p b w p pd d l l r d− − = , where lb is the thickness of the lipid bilayer 

and lw is the thickness of the interstitial water layer (see Chapter 2).   
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A.3 Plots of significant parameters: 

 

Figure A.3 | MATLAB graphical user interface with typical values for all parameters entered as an 

example.  These values were used to construct the plots below unless the corresponding parameters 

are varied on the x and y axis.  
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Figure A.4 | Detection limit as a function of the resistivity of the solution (corresponding roughly to 2 

M to 0.2 M KCl) and cutoff frequency. 

 

 
Figure A.5 | Detection limit as a function of the uncoated length and radius of the nanopore.  This 

plot assumes a bilayer coating will be added (see Figure B.1). 
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Figure A.6 | Average translocation time as a function of the diffusion coefficient of the protein-ligand 

complex in the bilayer coating and the net charge of the protein.  The plot becomes independent of 

charge at the mean-squared-diffusion time for a protein to pass through a pore of length lp.  
 

 

Figure A.7  | Average translocation time as a function of the applied voltage and the net charge of the 

protein.  The plot becomes independent of charge and voltage at the mean-squared-diffusion time for 

a protein to pass through a pore of length lp.  



241 

 

 

 

Figure A.8 | Frequency of translocation events at equilibrium as a function of the diffusion coefficient 

of the protein-lipid complex and the mole fraction of lipid-anchored ligand.   
 

 

Figure A.9 | Frequency of translocation events at equilibrium as a function of the concentration of 

the protein and the mole fraction of lipid-anchored ligand.   
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Figure A.10 | Frequency of translocation events at equilibrium as a function of the equilibrium 

dissociation constant and the mole fraction of lipid-anchored ligand.   
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