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Chapter I 

1                                            Introduction 

 

1.1 Proteomics and phosphoproteomics, and bioinformatics challenges  

Proteomics is defined as the large-scale study of all the proteins in an organism, 

primarily focusing on their sequences (including splice variants), structures, localizations, 

abundances, post-translational modifications, and biomolecular interactions [1–6], with 

the goal of understanding protein functions and providing basic datasets for Systems 

Biology. Phosphoproteomics is one branch of proteomics, in which researchers focus on 

the proteins which contain the post-translational modification called phosphorylation. 

Phosphoproteomics is a very active area of research, since phosphorylation plays an 

ubiquitous and important role in controlling biological processes [4,7–13] and as such, 

directly impacts the functional state of proteins. Dysregulation of these processes as a 

result of lesions in signal transduction pathways is a major factor in the emergence of 

many diseases, including cancers, diabetes, and cardiovascular diseases.  

In the past decade, proteomics quantification strategies have evolved from 

classical gel-based methods to mass spectrometry (MS)-based methods, which have 

enabled high-throughput global studies of proteomes, including phosphoproteomes 

[7,11,14–17]. The avalanche of proteomics data has brought about great challenges in 

bioinformatics analysis, including (1) statistical experimental design, in order to avoid 

experimental bias and optimize quantification efficiency [4,18]; (2) protein/peptide 

identification and quantification, including the topics of data reduction, abundance 

estimation and normalization, false discovery rate control, and so on [15,19–23]; (3) 
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post-identification analysis, in order to identify the characteristics of the peptides and 

understand protein functions; (4) dealing with the missing value issue which is haunting 

proteomics.  

Efficient and accurate protein/peptide identification and quantification is crucial 

for proteomics and has been an ongoing focus in computational and statistical 

researches in proteomics. Different algorithms and software packages, such as 

MaxQuant [24], ProteinProphet [25], IDPicker [26], and many commercial products have 

been developed to fulfill this task for various experimental platforms.  

In post-identification analysis, some common machine learning methods have 

been used, such as hierarchical clustering or k-means clustering to categorize 

homogeneous protein/peptide profiles into groups [4,16], which is followed by 

functional analysis based on Gene Ontology [27], KEGG pathways [28] and other 

functional terms. Identified proteins can also be mapped to known pathway networks, 

such as KEGG pathways, to be visualized in a functional context [16]. Due to the 

instrumental sampling limitations, incomplete measurement and small overlap between 

runs is a common issue haunting proteome data [1,14] and these issues are exacerbated 

by the high cost of data acquisition. I need to at least partially compensate for these 

issues through effective data analysis which could provide a more objective analysis of 

data than the informed but subjective approaches currently common for interpretation 

of incomplete datasets.  

Due to the sampling limitation and resolution of mass spectrometers, tandem 

mass spectra of complex mixtures results in poor overlap of protein/peptides identified 

among samples [14,29]. Possible technical solution is to carry out a relatively large 

number of replicate experiments, however, it is time consuming and often economically 

impractical for large-scale projects. For this reason, a significant number of missing 

values exist in these datasets, which can obscure bioinformatics analysis. In this thesis 

(specifically Chapter 2), we develop methods to partially compensate for the missing 

data issue. Our approach tolerate missing values and take use of all the available values. 
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It has been proven evident to pick out significantly enriched functions, and identify a 

number of reliable candidate proteins for further validation.  

1.2 Aims of the dissertation 

1.2.1 Aims and hypothesis 

Proteomics and phosphoproteomics are the major subjects of this thesis research.  

Their datasets have some similar features but also some significant differences. The 

general objective of my dissertation has been to develop and apply statistical, 

mathematical and computational methods to analyze and interpret proteome and 

phosphoproteome data focusing on post-identification analysis. While conventional 

cluster analysis and functional enrichment analysis are useful tools, a more integrative 

and extensive analysis is necessary to fully utilize the data for knowledge discovery. Our 

long term goal is to not only mapping identified proteins to known pathways, but to also 

infer new knowledge of those biological networks that can form the basis of further 

experiments. The specific outcomes of my thesis work are to (1) reveal the 

characteristics and structures of biological networks, such as signaling networks and 

kinetic networks, (2) discover predictive biomarkers, such as differentially 

phosphorylated proteins, and (3) find the relationships of changes in protein expression 

and protein modification to their cellular functions. Our hypothesis is that biological 

network models can be learned from the data, and a physiologically accurate network 

model can reflect in silico the regulation mechanism of the real biological network. We 

expect these models to suggest directions for further experimental studies. 

1.2.2 Outline 

This thesis contains five chapters.  

Chapter 1, the Introduction, provides background introduction on proteomics and 

phosphoproteomics, and states the aims and focus of this thesis. Since biological 

network discovery is a major component in this thesis, Chapter 1 also gives a review of 

the general methods for network discovery. Not all of the methods described have been 
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successfully applied in proteomics. Their applications, advantages and disadvantages are 

summarized. 

Chapter 2 presents a new comprehensive quantitative analysis pipeline for 

systematic network discovery from equilibrium-state interventional phosphorylation 

data. The purpose is to identify key proteins in specific pathways, discovering protein-

protein relationships, and infer components of the signaling network that can be further 

investigated in experiments. We have also made an effort to partially compensate for 

the missing value issue which is a major problem in the field. We were able to 

successfully apply our pipeline to a series of interventional experiments identifying 

phosphorylation events underlying the transition from budding growth to filamentous 

growth in Saccharomyces cerevisiae strains. 

Apart from investigating equilibrium-state proteomics data, I have also turned my 

attention to time-course biochemical data and we expect the methods developed and 

applied to be applicable to time-course phosphoproteome analyses in future studies. 

Time-course data is a richer source of information compared to equilibrium-state data 

and a broader range of tools can be applied to these datasets. My time-course studies 

are covered in Chapters 3 and 4. 

Chapter 3 presents a computational method which integrates mathematical 

modeling of biochemical networks (e.g. using differential equations) with statistical 

methods (e.g. penalized regression) to infer kinetic network structure and fit reaction 

parameters from time-course data. It maintains the three-component framework of the 

previous MIKANA (Method to Infer Kinetics And Network Architecture) [30], which 

consists of optimization, parameter fitting and design matrix generation and made 

improvement or extension to each component. Non-negative LASSO and non-linear 

parameter fitting are applied instead of pure linear methods, and the design matrix 

generation algorithm is improved as well to enhance the structure prediction and 

parameter fitting, and allow the algorithm to now tackle networks with oscillatory 

behaviors.  
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Chapter 4 presents a Bayesian method integrated with time-delay detection to 

infer signaling networks from time-course data, such as the phosphorylation dynamics 

data in response to specific stimuli. The method was designed to fully utilize the “delay 

effect” between upstream and downstream proteins in time-course data, which 

facilitates discovery of causal influences. Examples are given to demonstrate the 

application and demonstrate its validity. 

Chapter 5 summarizes the projects, and gives perspectives of future research 

directions and broader applications. 

1.3 Proteomics experiments and data types 

1.3.1 Mass spectrometry-based quantification approaches: labeling versus label-free 

Mass spectrometry has been an indispensable tool for protein/peptide 

identification and quantification due to its high-throughput nature, sensitivity and 

increasing accuracy [1,4,31]. Multiple alternative strategies have been extensively 

reviewed [1,14,19], and the “bottom-up” shotgun approach of liquid chromatography 

coupled with tandem mass spectrometry (LC-MS/MS) of tryptic digests is the most 

commonly used approach (as illustrated in Figure 1.1). The input for the experiment is a 

mixture of proteins which is usually derived from a cell lysate. First, the proteins are 

digested into peptides, for example by trypsin. The peptides are then separated by 

liquid chromatography and analyzed by tandem mass spectrometry. Proteins and 

peptides are identified and quantified from the MS/MS spectra, and the information can 

be used as input for downstream analysis (i.e. post-identification analysis).    

Using this experimental schema, there are two approaches to quantification: 

stable isotope labeling approaches and label-free approaches. Each has strengths and 

weaknesses. In stable isotope labeling approaches, the isotopes are introduced into 

proteins or peptides (1) metabolically, e.g. SILAC (Stable Isotope Labeling with Amino 

acids in Cell culture) [32,33], (2) chemically, e.g. iTRAQ (Isobaric Tags for Relative and 

Absolute Quantitation) [34,35], (3) enzymatically [36], or (4) by spiked synthetic peptide 

standards [14,37].  Labeling approaches enable within-run comparison of multiple 
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samples (differentially labeled), and improve quantification precision [1]. SILAC is 

generally considered the method with highest accuracy [16]. Compared to labeling 

approaches, label-free approaches are less accurate and thus less sensitive to changes in 

phosphorylation. However, they are still widely used in global proteomics, because they 

have no cost of labeling reagents, no time-consuming steps of labeling, and no limit for 

the number of samples to be directly compared. They can also provide more analytical 

depth (i.e. detect more proteins/peptides in an experiment) and higher dynamic range 

of quantification [14,38].  Recently, a targeted workflow has emerged, which relies on 

the prior information to select specific peptides and methods for measurement [39]. It is 

also referred to as selected reaction monitoring (SRM) or multiple reaction monitoring 

(MRM). It is designed to overcome the limits of dynamic range, and is highly specific and 

sensitive. SRM can be conducted with either labeling or label-free approaches [1]. 

 

 

Figure 1.1 Schema of shotgun LC-MS/MS experiment. 

Proteins Peptides Mass spectrometer 

MS spectra 

MS/MS spectra 

Protein/peptide 
identification & 
quantification, 
downstream analysis 
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1.3.2 Equilibrium-state data versus time-course data 

Because of the high expense of running mass spectrometry experiments, most 

large-scale proteomics studies measure equilibrium-state data [11,12], e.g. abundance 

measurement of proteins extracted from cell culture in equilibrium state. However, 

proteome dynamics data, e.g. measurement of protein abundance changing over time, 

are expected to directly reveal the kinetics, and will be more informative than 

equilibrium-state data to uncover the molecular interactions. Several groups have 

studied proteome dynamics with 4 – 5  time points [17,35,40–42]. More appropriately 

sampled data points are expected to improve the inference from dynamic data. 

1.4 Signaling networks and phosphoproteomes 

Signal transduction in biology refers to all the processes in which cells transfer 

information to create a response, such as physiological changes in response to 

environmental stimuli, or morphological changes in cell cycle. The most widely studied 

signaling pathways involve phosphorylation cascades, which dynamically target key 

components of gene expression, metabolism, and other key functional proteins 

mediated by kinases and phosphatases. Phosphorylation/dephosphorylation directly 

affects protein functions (e.g., activation or deactivation, localization, and binding 

properties). It allows rapid responses by cells to environmental changes (e.g. by 

modification of metabolic enzymes) and also plays a role in defining new cell states. For 

many proteins, the phosphorylation state is closer to their cellular functions than their 

expression level. Thus, monitoring the phosphoproteome and its changes under 

different conditions, and even over time, complements protein expression levels and 

leads to a better understanding of cell physiological states. 

1.5 Categories of general methods used for network discovery 

Network discovery is an important focus of my thesis studies. Here I present a 

review of general methods used in biological network discovery, laying particular 

emphasis on existing or potential applications in proteomics data analysis. Various 

methods can be applied to comparative samples, such as multiple experimental 
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conditions in equilibrium-state studies (as in Chapter 2), and multiple time points in 

time-course studies (as in Chapter 3 and 4). Some methods are designed especially for 

time-course data. Besides, methods based on sequence information have also been 

developed. Graph theory methods can be further applied to analyze the molecular 

interaction networks derived from the above methods. 

1.5.1 Methods for comparative samples 

 Clustering methods 1.5.1.1

Conventional clustering methods, such as hierarchical clustering methods, k-

means and k-medoids algorithms [43], are among the most widely used unsupervised 

machine learning methods applied in both genomics and proteomics data analysis. 

Suppose we have comparative samples, clustering can be performed on two different 

dimensions: (1) along genes or proteins/peptides: genes or proteins/peptides are 

clustered into sub-groups sharing homogeneous quantitative profiles, which imply co-

expression or co-regulation; (2) along samples: samples can be clustered into sub-

groups, such as sub-classes of a disease, different stages of a disease, or sub-classes of 

environmental factors. The clusters along genes or proteins can be input for functional 

enrichment analysis. Furthermore, they can provide naive information about the 

network, containing core components comprised of tightly clustered genes or proteins. 

Each core component corresponds to some common biological functions, and might be 

closely connected, direct or indirect, in the network. Principal component analysis 

[44,45] might be an alternative for presenting relationships between 

genes/proteins/peptides and samples, subject to the usual concerns regarding 

interpretation, such as information loss. 

In the study of nucleolar proteome dynamics [41], hierarchical clustering was 

adopted to categorize the proteins using fold-change data over time. It successfully 

identified the two groups of proteins strongly recruited to or depleted from an organelle. 

In the global study of phosphorylation dynamics of HeLa cells after epidermal growth 

factor stimulation [17], Olsen and co-workers clustered the time-course data of 
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regulated phosphopeptides using the fuzzy c-means algorithm [46]. It is a soft clustering 

method suitable for the case where clusters frequently overlap.  

In Chapter 2 (manuscript in revision Towards Systematic Discovery of Signaling 

Networks in Budding Yeast Filamentous Growth Stress Response Using Interventional 

Phosphorylation Data), we focus on equilibrium-state data of comparative samples from 

different kinase-mutants. Peptides were clustered based on their phosphorylation 

changes over multiple samples. Due to lots of scattered peptides which were not stably 

clustered using conventional methods, we used a tight clustering method [47] to directly 

identify the most informative and stable clusters. Cellular functions were found to be 

enriched in top tight clusters.  

 Correlation network 1.5.1.2

Imamura and co-workers [48] picked Olsen’s time-course data [17], and 

performed follow-up analysis to discover signal transduction networks. In the step of 

constructing the phosphorylation dynamic-based network, they calculated the 

correlation between each pair of phosphopeptides, and connected the strongly 

correlated pairs to build a correlation network. This is the general way of building the 

skeleton of correlation network. In Chapter 2, we generated a correlation network of 

phosphopeptides using the phosphorylation fold-change data over multiple kinase-

mutants. A protein correlation network was then traced back from the peptides. 

Proteins with positive correlation have similar phosphorylation change patterns over 

comparative samples; while proteins with negative correlation have opposing 

phosphorylation change patterns.  

A correlation network actually has relevance with the clustering results, if the 

correlation coefficient is used as the similarity metric for clustering. Tightly clustered 

proteins usually have high correlations between each other. Note that correlation 

networks have no directionality. 

Instead of building only one correlation network in a study, Hendrickx and co-

workers [49] built multiple correlation networks of metabolites under different 

experimental conditions (one correlation network per condition), based on the time-
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course profiles of metabolite concentrations. They monitored the reversal of 

correlations between conditions, and compared them with known pathways to generate 

a list of possible regulation mechanisms.  

 Bayesian network learning 1.5.1.3

The Bayesian network framework has been widely applied in inferring gene 

networks from expression profiles. A Bayesian network is a probabilistic directed acyclic 

graphical (DAG) model, which represents the conditional dependencies between 

variables, i.e. the molecules of interest. It has the advantage of learning from noisy and 

incomplete data, as well as combining prior knowledge with data and inferring causal 

relationships. The theory has been thoroughly reviewed [50,51]. Based on the basic 

framework, extensions have been developed to apply Bayesian networks to realistic 

biological data. Cooper and Yoo [52] initially developed the method of learning with 

interventions which has been used to handle gene mutations [53]. Pe’er and co-workers 

[53] extended this method to further identify significant sub-networks of genes. Instead 

of using non-informative priors, Djebbari and Quackenbush [54] made an effort to 

include preliminary networks obtained from literature and/or protein-protein 

interaction data into the prior, to train a Bayesian network from microarray data. Shah 

and co-workers [55] introduced mechanistic Bayesian networks to integrate observed 

gene expression data with known pathway topologies in order to identify downstream 

targets. 

Besides the application in genomics, Sachs and co-workers [56] applied it to 

modeling signaling pathways from multiparameter single-cell data. In Chapter 2, we 

obtained an equilibrium-state SILAC dataset with 8 kinase mutants as interventions. We 

applied a special Bayesian network, i.e. causal Bayesian network, for causal relationship 

discovery: an edge in the network only indicates a causal influence and activation or 

inactivation must be read out from phosphorylation profiles. Because of the common 

missing value issue in proteomics, the inferences from the network have to be made 

cautiously. To my knowledge, not many other Bayesian network applications have been 

reported in mass spectrometry (MS)-based proteomics studies. In equilibrium-state 
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studies, the reason might be the lack of replicate samples or comparative interventional 

conditions. In time-course studies, the reason might be insufficiency of time points. 

1.5.2 Network discovery for time-course data 

 Differential equations 1.5.2.1

Differential equations have long been used for mathematical modeling of kinetic 

networks from time-course data [57,58]. Examples include modeling of cell cycle [59], 

signal transduction [60], and even details of specific regulation by phosphorylation [61]. 

For many cases, differential equation models are constructed based on sufficient prior 

information, including potential molecules involved in the network, and how they might 

interact with each other. The reaction parameters can be fitted from data. Differential 

equation models play a role in mimicking real biological networks, and help explain 

observed phenomena [62]. The recently reported MIKANA (Method to Infer Kinetics and 

Network Architecture) algorithm [30,63] is a pioneer method which predicts the 

network structure in terms of differential equations, and estimates corresponding 

kinetic parameters as well. Chapter 3 will present MIKANA Ver. 2, including new 

extensions and improvements to the MIKANA algorithm. 

 Boolean network and fuzzy logic network modeling 1.5.2.2

A Boolean network is a discrete-state network, in which all the variables (nodes) 

have binary values determined by other variables in the same network. When the 

network structure is complex comprising a lot of nodes, Boolean networks appear to be 

neat and tractable, compared to the differential equation model having large numbers 

of kinetic constants and parameters. It can also integrate qualitative and noisy data [64].  

A fuzzy logic network is similar to a Boolean network. The only difference is that 

the membership function mapping a variable to 0 - 1 no longer has a crisp boundary, but 

rather follows a sigmoidal curve (or other curves), and the variables can be mapped to 

non-integer values between 0 and 1 [65]. We can consider a Boolean network as a 

special case of fuzzy logic networks, when the membership functions’ boundaries are 

crisp.  
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In Boolean and fuzzy logic network modeling, the initial network, including nodes 

and linkages between nodes, is constructed based on sufficient prior information. For 

Boolean network, the membership functions are fixed. For general fuzzy logic networks, 

the shape of membership functions can be updated automatically from data [65]. 

Boolean and fuzzy logic networks can incorporate different molecules (proteins, DNAs, 

metabolites, etc.), and it is more feasible than differential equation models when the 

ranges of kinetic parameters are unknown. While reflecting realistic biomedical 

networks, this approach can also suggest model alterations corresponding to better 

explanations of mechanisms, which can guide further experimental testing and 

validation. 

For applications of Boolean network models, see the reviews [66,67]. Aldridge 

and co-workers [64] used a fuzzy logic network to systematically model the kinase 

pathway crosstalks in TNF/EGF/insulin-induced signaling. Their model perfectly 

recapitulated the features in the data, and produced predictions of regulation 

operations in the pathway.  

 Time series analysis 1.5.2.3

Time series analysis, having overlap with signal processing, has been widely used 

in financial, social-economic, meteorological studies and engineering applications. Time 

series analysis quantifies the features and variations of time-course data. It helps 

summarize the past and predict the future [68]. Some techniques in time series analysis, 

such as Granger causality, have been applied to analyze biological time-course data to 

infer interactions. Examples include inferring gene regulation from microarray data,  

inferring signal delivery on distributed sites in a hemisphere, and so on [69,70]. The 

Granger causality approach requires relatively large number of time points. It might be 

applicable to proteome data when we can obtain a sufficient number of time points. 

1.5.3 Sequence motif-based methods 

Besides the relative and absolute abundance information, peptide sequence 

information can also be utilized to extract enriched sequence motifs. In eukaryotic 

proteins, phosphorylation only occurs on serine, threonine, tyrosine and histidine 
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residues, although phosphohistidine is unstable to isolation. The sequence patterns 

(sequence motifs) common among multiple peptides can be summarized. In 

phosphorylation studies, sequence motifs can help identify the kinase-substrate binding 

domain and provide insights into how the upstream kinases regulates the proteome [16]. 

But in isolation, they provide little or no predictive value on the status of a single 

phosphorylation site in a particular cell/physiological state without experimental 

support. A recent algorithm NetworKIN [71] has been developed to predict in vivo  

kinase-substrate relationships based on motif information of kinases and 

phosphoproteins. Sequence information is powerful to match kinases and their 

substrates; however, it might also identify false positive protein pairs having matching 

sequences but no functional interactions. Combining sequence information with 

interventional phosphorylation responses or phosphorylation dynamics might help 

lower the false discovery rate. 

1.5.4 Graph theory methods for summarizing and comparing network attributes 

All the above methods are used for inferring network characteristics and 

structure. For whatever network we generated, directed or non-directed, we can 

summarize the network attributes, such as network motifs [72], node degrees [73], and 

shortest path lengths [74]. The distributions of network attributes represent the nature 

of the network, and provide measures to compare different networks. 

We can extract small, repeated sub-graphs from the entire network. A sub-graph 

is a significant pattern, called a network motif, if it has significantly higher frequency in 

the network compared to a random network [72]. Imamura and co-workers [48] 

generated a correlation network of peptides based on time-course data, then applied 

network motif analysis to the non-directed network. Distribution of other graph theory-

based measures, such as node degrees and shortest path lengths, were inspected as 

well to describe the network and compare it with known network topology.  

In Chapter 2, we analyze the equilibrium-state data of phosphorylation level 

changes induced by kinase mutations. Part of our analyses is the correlation network 

analysis. Our correlation network of phosphoproteins is generated based on 
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phosphorylation responses over multiple mutants. The proteins with high degrees of 

connectivity are predicted as hub proteins involved in the network. Samples of the hub 

proteins are then used for causal Bayesian network structure learning to identify the 

causal influences between them.  

Similar analysis can be applied to various networks, including genome, proteome 

and transcriptome networks, and might provide insight into the relationships between 

different molecular levels. 

1.5.5 Summary of review 

Various methods can be applied to both equilibrium-state and/or time-course 

data for network discovery. Clustering methods and correlation network analysis are 

among the simplest and most widely used methods for revealing some nature of 

networks. In order to infer connections between nodes and even directed causal 

influences, more sophisticated network modeling methods can be applied, including 

Bayesian network structure learning, Boolean network modeling and so on. Clustering 

methods, correlation network analysis and Bayesian network structure learning require 

multiple comparative samples. Bayesian network learning has been widely used in 

microarray analysis; however, its application in proteomics has not been as wide. One of 

the reasons might be the much fewer comparative samples available in proteome 

studies due to high experimental expenses. Differential equations have long been used 

in kinetic modeling. The method benefits from a large number of time points. Boolean 

network and fuzzy network modeling are mainly used in the metabolomics community. 

They require a fair amount of prior information of the network structure. Time-series 

analysis brought from engineering can also be applied in analyzing biological time-

course data. The methods making use of sequence information do not rely on 

comparative samples. They identify the sequence motifs among multiple peptides and 

identify the relationship between motifs.  

Besides the main categories of methods mentioned above, other methods have 

also been proposed to analyze biological data. Albert et al. [75] proposed a method to 

infer signaling network from indirect experimental evidence. Specifically, observed 
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causal relationships are represented as paths in a network, and then combinational 

optimization is used to find the sparsest network structure fitting the experimental 

observations. Yeung et al. [76] used singular value decomposition and robust regression 

to reconstruct connectivity topology of large sparse networks.  

When a molecular interaction network is generated using the above methods, 

graph theory methods can be further applied to the network attributes, which present 

the nature of network and facilitate network comparison.  
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Chapter II 

2 Towards Systematic Discovery of Signaling Networks in 

Budding Yeast Filamentous Growth Stress Response Using 

Interventional Phosphorylation Data 

 

2.1 Abstract 

Reversible phosphorylation is one of the major mechanisms of signal 

transduction. Phosphorylation signaling networks are critical regulators of cell growth 

and development, but to date few such networks have been delineated extensively. 

Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling 

the large-scale determination of relative phosphorylation levels. However, 

phosphoproteomics differs from classical proteomics by a more extensive sampling 

limitation due to the limited number of detectable sites per protein. Here, we propose a 

comprehensive quantitative analysis pipeline customized for phosphoproteome data 

from interventional experiments for identifying key proteins in specific pathways, 

discovering the protein-protein interactions and inferring the signaling network. We 

made an effort to partially compensate the missing value issue haunting proteomics 

studies as well. For developing our pipeline, we used mass spectrometry-based SILAC 

(Stable Isotope Labeling with Amino acids in Cell culture) data with interventional 

experiments in the form of kinase-inactivating mutations. The major building blocks of 

the pipeline include phosphopeptide meta-analysis, correlation network analysis and 

Bayesian method-based causal relationship discovery. We were able to successfully 

apply our pipeline to a series of interventional experiments identifying phosphorylation 
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events underlying the transition to a filamentous growth form in Saccharomyces 

cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub 

proteins from correlations analysis (Pbi2p and Hsp42p are identified by both analyses). 

Nine of them have direct or indirect evidence of involvement in filamentous growth. All 

of these proteins are involved in stress responses. In addition, five of our predicted 

novel proteins,  Nth1p, Pbi2p, Pdr12p, Rcn2p and Pbp1p, have been tested by 

interventional phenotypic experiments; and all of them present differential invasive 

growth, providing validation of our approach in this system. Our pipeline was able to 

infer the phosphoprotein interaction networks, which suggested potential proteins that 

can be intervened in future studies. The new comprehensive pipeline presents an 

effective systematic way for discovering signaling networks using interventional 

phosphoproteome data, and we anticipate the methodology to be applicable as well to 

other interventional studies via different experiment platforms. 

2.2 Introduction 

Cells exchange and receive information from the environment through signaling 

pathways, which are crucial for cells to maintain normal functions and properly respond 

to stress and stimuli. Dysregulation of these processes is a major factor in the 

emergence of many diseases, including cancers, diabetes, and cardiovascular disease. 

Reversible phosphorylation is one of the major forms of signal transduction and can 

affect protein function and gene expression [7–13]. Investigations into phosphorylation 

provide insight into signaling pathways by providing the target sites of phosphorylation 

and the quantitative changes in phosphorylation level in response to genetic or 

environmental perturbations. Effective, sensitive identification of candidate proteins for 

further studies remains a challenge in the face of experimental limitations of current 

technologies which have a high cost component, provide incomplete coverage of the 

phosphoproteome, and have sampling limitations which affect replicate runs.  

Large-scale phosphoproteomics studies on a number of organisms have been 

carried out using mass spectrometry (MS)-based approaches (reviewed in [77–79]). 

These include two recent global phosphoproteomic studies of the budding yeast 
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(Saccharomyces cerevisiae) [11,12]. In the study carried out by Bodenmiller at al. [11], 

protein kinases and phosphatases were systematically perturbed through gene 

deletions. The system-wide responses to the perturbations were measured by label-free 

MS-based quantification, and the results evaluated to determine their contributions to 

understanding the relationships between these signal transduction proteins and cell 

pathways. Another global interaction study focused on kinase and phosphatase 

interactions [12] by capturing protein-protein interactions by affinity capture-

immunoblot and identifying the isolated protein complexes by mass spectrometry. 

These two global studies both adopted label-free, cost-effective quantitative 

approaches. However, label-free methods typically increase variance relative to isotope 

enrichment methods [14]. For the purpose of this study, we have used isotope labeled 

SILAC (Stable Isotope Labeling with Amino acids in Cell culture) method [32,33] to 

increase sensitivity to change.  

The general scope of this manuscript is the description of a comprehensive 

pipeline, incorporating statistical and mathematical methods, for investigating and 

evaluating the quantitative phosphoproteome data, identification of candidate proteins 

and processes to be pursued in subsequent molecular biology and genetic studies. The 

phosphoproteome data utilized in this analysis was obtained from interventional 

experiments of a subset of yeast kinases. Eight yeast kinases, Ksp1p, Kss1p, Sks1p, 

Ste20p, Snf1p, Tpk2p, Elm1p and Fus3p, that were identified as components of budding 

yeast filamentous growth response [28,80–82] were mutated (inactivated alleles) 

individually as genetic interventions. Each of these kinases exhibits a filamentous 

growth deletion phenotype, with the deletion of KSP1, KSS1, SKS1, STE20, SNF1, and 

TPK2 yielding a loss of filamentous growth and the deletion of ELM1 and FUS3 yielding 

enhanced filamentation. Classic studies have identified key kinase-based signaling 

networks that regulate the filamentous growth transition. In particular, yeast 

filamentous growth is regulated by mitogen-activated protein kinase (MAPK) and 

protein kinase A (PKA) pathways [80,83,84] as well as being impacted by other signaling 

pathways. MAPK pathways are evolutionarily conserved across phyla and consist of 
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three-kinase cascades serving central roles in signal transduction in eukaryotic cells [85]. 

A graphical illustration of currently recognized budding yeast filamentous growth 

pathways, integrating information from authoritative pathway databases and reviews, is 

shown in Figure 2.1. The phosphoproteome data for this study was obtained by SILAC 

approach, and we used the Mascot search engine [86] followed by MaxQuant software 

[24] to identify and quantify peptides and proteins. We obtained phosphorylation level 

changes from the MaxQuant analysis for mutants versus wild type control for the 

comprehensive quantitative analyses. 

The broad focus of the filamentous growth kinase networks in particular has 

made it difficult to tease out important kinase targets (direct or indirect). Bioinformatics 

methods provide a promising avenue with which local kinase signaling relationships can 

be identified. While traditional cluster analysess associated with functional enrichment 

analysis are useful tools, their performance might be affected by the missing value issue. 

We need to deal with it in order to obtain reliable clusters and enriched functions. 

Furthermore, a more integrative and extensive analysis is necessary to find new 

components of the pathways, uncover relationships between the pathway components, 

and to elaborate the signaling network structure. Thus we propose this comprehensive 

quantitative analysis pipeline customized for SILAC data, and partially compensate the 

missing value issue. The major building blocks include phosphopeptide meta-analysis, 

correlation network analysis, causal relationship discovery, and validation by literature 

mining. We have successfully applied the pipeline to analyze our current yeast data. 

Candidate proteins predicted to contribute to the filamentous growth response were 

selected by phosphopeptide meta-analysis and correlation network analysis. Causal 

relationship discovery was performed on candidate proteins identified from our analysis 

and validated proteins from the literature. The inferred causal relationships, along with 

the interactions inferred from phosphorylation changes in response to individual 

mutants, have suggested potential proteins that can be further intervened and studied 

in the future.  

 



   
 

20 
 

 

Figure 2.1 Graphical illustration of the filamentous growth pathway in budding yeast from 

previous studies. 

The ellipses        are proteins; the rectangles        are genes; and the triangles       are metabolites. The 
linkage between shapes:       indicates stimulation,         indicates inhibition, and          indicates association. 
The information were extracted from Science Signaling Database of Cell Signaling [80] and KEGG database 
[28]. The white ellipses are five of the eight kinases selected to be mutated in our experiments. 
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2.3 Materials and Methods 

2.3.1 Mass spectrometry data 

Tandem mass spectrometry data were generated from a series of triplex SILAC 

[32,87,88] experiments of kinase-dead mutant (KD) strains versus the wild type (WT) 

haploid filamentous yeast Y825 strain. Different Lys and Arg isotope forms were used to 

label the three samples in a triplex SILAC experiment: light (Lys0/Arg0) for WT control 

sample, medium (Lys4/Arg6) and heavy (Lys8/Arg10) for two different mutant samples. 

We then obtained peptide phosphorylation fold changes in medium versus control and 

heavy versus control samples.  

Eight yeast kinases, KSP1, KSS1, SKS1, STE20, SNF1, TPK2, ELM1 and FUS3, all 

known to be involved in filamentous growth [28,80,81], were chosen to be mutated 

(inactivated alleles) individually to cultivate mutant cell cultures. All strains were 

auxotrophic for Lys and Arg, and were grown on defined medium supplemented with 

the appropriate isotopic forms of Lys and Arg. The cultures were grown to log phase, 

and treated with 1% (vol/vol) butanol to induce filamentous growth [81]. The treated 

samples were incubated for another 16 hours to obtain enough proteins for mass 

spectrometry analysis. The final O.D. at 600nm reached a high value usually between 1.0 

and 1.5. Cells were harvested by centrifugation and lysed in the presence of protease 

and phosphatase inhibitors. Protein levels were determined by the Bradford protein 

assay and the proteins from the triplex labeling were then pooled, and were digested by 

trypsin. The digest was separated into fractions using strong cation-exchange (SCX) 

fractionation, followed by selective enrichment of phosphorylated peptides using 

titanium dioxide [89,90] and then analyzed by LC-MS/MS using a Thermo Fisher Orbitrap 

XL mass spectrometer. Peptides were identified using MaxQuant software [24] following 

the Mascot search engine [86], and filtered requiring peptide identification FDR < 1%. 

The method for calculating peptide identification FDR based on concatenated databases 

was described by Cox J and Mann M [24]. A total of 3,312 phosphopeptides 

representing 1,063 proteins were identified. Among those, 73 unique phosphopeptides 

representing 66 common proteins were commonly identified in all the 8 kinase-dead 
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mutants; while, 882 phosphopeptides representing 486 proteins were common to at 

least half of the kinase-dead mutants. These summary numbers are listed in Table 2.1.  

 

Table 2.1 Summary of the dataset.  

Summary Number of 

phosphopeptides 

Number of proteins 

Identifications in the whole dataset 3,312 1,063 

Identifications common among all 8 kinase-
dead mutants (KDs) 

73 66 

Identifications common among 4 - 8 KDs 882 486 

Identifications that are significant in at least 1 
KD 

863 452 

Globally significant differential 
phosphorylation sites 

28 
(5 from complete 

measurements – high-
confidence) 

26 
(5 from complete 

measurements – high-
confidence; 17 have inner 
connections supported by 

STRING[91,92]) 

High-confidence hub proteins identified from 
the stringent correlation network 

- 19 

Proteins known to be involved in filamentous 
growth from literature mining, and detected 
in our dataset 

- 20 
(15 of them are significant 

in at least 1 KD) 

 

2.3.2 Post-identification analyses 

 Phosphopeptide meta-analysis 2.3.2.1

In the meta-analysis, we contrast and combine the results from different KD-

versus-WT experiments, so that to find the correlations between kinase-dead mutants, 

categorize peptide phosphorylation patterns over experiments, and identify 

differentially phosphorylated peptides. 

 

Overview of the influences inferred from kinase-dead mutations 

The relative phosphorylation level obtained for each phosphopeptide is 

represented as a ratio for each of the 8 kinase-dead mutants (KD) versus wild type (WT) 

under filamentous growth conditions. Two examples of phosphopeptides identified in 

all 8 kinase-dead mutants are shown in Table 2.2. The ratio lists of all the identified 

phosphopeptides are aligned to constitute a ratio matrix. The quantity measuring 
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statistical significance of each ratio, i.e., the significance B value, was calculated with 

MaxQuant [24]. The ratios shown in Table 2.2 were extracted before filtering by 

statistical significance. 

 

Table 2.2 Ratio lists for two representative phosphopeptides from the ratio matrix. 

  Phosphorylation 
fold-change 

 
Phosphopeptide 

 
Sks1-KD 

vs. WT 

 
Ste20-KD 

vs. WT 

 
Snf1-KD 

vs. WT 

 
Tpk2-KD 

vs. WT 

 
Elm1-KD 

vs. WT 

 
Fus3-KD 

vs. WT 

 
Kss1-KD 

vs. WT 

 
Ksp1-KD 

vs. WT 

ADDEEDLS(ph)DENI
QPELR 

0.72 0.71 0.70 0.52 1.0 0.88 0.83 0.86 

ADGTGEAQVDNS(p
h)PTTESNSR 

2.3 3.7 2.1 2.2 0.33 0.58 0.75 0.69 

Phosphorylation level of each phosphopeptide is represented in a list of ratios. We used the peptide ratios provided 

by the MaxQuant output, which have been normalized for each LC-MS/MS run [24]. The significance B values 

provided by MaxQuant are not shown here. For the cluster analysis, if a phosphopeptide is detected multiple times 

under the same KD-versus-WT condition, the median of all its ratios are taken. S(ph) or T(ph) indicates that the 

specific amino acid, serine or threonine, is phosphorylated, respectively.  

 

For the purpose of evaluating similar or reciprocal effects on phosphorylation 

changes in response to different kinase mutations, we generated a correlation heatmap 

of the kinase-dead mutants (see Figure 2.2), which is presented as Spearman 

correlations between pairs of mutants. In order to avoid the strong correlation 

dominated by the majority of peptides whose phosphorylation do not change 

significantly, only the peptides having at least 2-fold changes in both mutants were used 

for calculation. Positive or negative correlations can be interpreted as similar or 

reciprocal effects on phosphorylation induced by different kinase mutations.   
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Figure 2.2 Correlation heat map of the kinase-dead mutants (log2 ratios adopted).  

The hierarchical clustering tree using Spearman correlation as the similarity metric is drawn along the left 

side of the heatmap.  

 

Clustering phosphopeptides 

Our goal of this cluster analysis is to find the groups of phosphopeptides sharing 

similar phosphorylation change patterns, which are likely to be involved in similar 

functional pathways. The phosphopeptides commonly identified in 4 - 8 KD-versus-WT 

conditions were selected, and the missing values were imputed (on log2 scale) using 5-
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nearest neighbor averaging [93,94]. The imputed dataset was analyzed using the tight 

clustering method [47], which sequentially identified the most informative, tight and 

stable clusters from the data, without enforcing all peptides to be clustered.  

We also attempted several traditional clustering methods, such as hierarchical 

clustering methods [95] and PAM (Partitioning Around Medoids) method [43]. 

Traditional methods enforce all peptides to be clustered.  However, due to lots of 

scattered peptides which only loosely match to the patterns, it is problematic to 

estimate the number of clusters and the clustering results were not satisfactory. While 

the tight clustering method is more suitable for data with scatter peptides. It 

advantageously identifies the tight clusters in the decreasing order of stability, and the 

selection of the number of clusters is less crucial [47].   

Note that the cluster analysis was performed at peptide level rather than protein 

level, because many proteins contain multiple phosphorylation domains whose 

responses may correlate or not, depending on the function of phosphorylation at those 

sites and the physiological conditions examined. Proteins can be traced back from the 

peptides. 

 

 Functional annotation within each tight cluster 

The functional terms were annotated for the proteins in top tight clusters to 

survey functional enrichment. The Functional Annotation Tool on DAVID v6.7 [96,97] 

was used to facilitate annotation.  

 

 Identification of differential phosphorylation in each mutant 

 The phosphopeptides that change phosphorylation level significantly in each 

individual KD-versus-WT experiment were selected by the significance B value < 0.05.  

 

 Identification of globally significant differential phosphorylation 

The kinases selected to be dead mutated are all known to be involved in 

filamentous growth. The proteins which have globally significant responses in the 
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mutants versus WT controls are potential components involved in filamentous growth 

or expression products of the gene targets. Detecting globally differentially 

phosphorylated peptides combining the results from all the KD-versus-WT experiments 

is a multiple testing problem [98]. Due to the missing data issue common in proteome 

data, it is too stringent and impractical to require a candidate to be completely 

significant in all the experiments. Thus, we relax the requirement, and use less stringent 

methods which can still identify the candidates having global significance. We extended 

the Fisher's combined probability test [99] to allow missing values, and it was applied to 

solve the multiple testing problem.  

In the framework of Fisher’s method, the two-tailed p-value    for an individual 

significance test in a KD-versus-WT experiment is calculated as twice the significance B 

value. In our dataset,            corresponding to the 8 KD-versus-WT conditions, 

and the total number of individual tests,    . The test statistic      ∑        
 
    

follows a chi-square distribution with    degrees of freedom. Thus, the p-value for the 

test statistic    can be determined, which is the combined p-value for all 8 individual 

tests. Each identified phosphopeptide has a combined p-value as a measure of global 

significance. The extension of Fisher’s method: for each phosphopeptide, its combined 

p-value was calculated from all of its available significance B values. All the non-missing 

values were retained for calculating the combined p-value, rather than excluding the 

incomplete data from the dataset. The FDR of multiple testing is controlled using the 

Benjamini-Hochberg procedure [100].  

We also adapted an adaptively weighted statistic-based method (missing values 

not allowed) [101], which was initially developed for detecting differential gene 

expression,  for detecting differential phosphorylation from our common peptides 

appearing in all KDs. The globally significant phosphorylation sites detected by these 

two methods were generally consistent. 

 Correlation network analysis 2.3.2.2

A correlation network of all the 73 common phosphopeptides with complete 

measurements was generated based on their phosphorylation changes under all 8 KD-
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versus-WT conditions. The Pearson correlation coefficient between each pair of distinct 

phosphopeptides was calculated. Strong correlations meet the following criterion: p-

value of the Pearson’s correlation test < 0.05, and a stringent requirement of |Pearson 

correlation coefficient| ≥ 0.9. The protein identifications can be traced back from the 

phosphopeptides.  

The correlation network among proteins is an undirected network. Degrees of 

connectivity for each protein in the network can provide an assessment of importance 

of the protein. The higher the degree, the more frequently the protein is involved in 

interactivities with other proteins in the network. From this measurement, we predict 

core-components in the correlation network.  

 Literature mining 2.3.2.3

In addition to the candidate proteins predicted by global differential 

phosphorylation and the core-components identified from the correlation network, we 

also retrieved a list of proteins reported as known or potential components involved in 

filamentous growth from literature as well as authoritative databases, such as SGD 

[102,103], BIOGRID [104] and Science Signaling Database of Cell Signaling [80]. Note 

that people have usually used different terms to refer to filamentous growth in haploid 

cells; “filamentous growth”, “filamentation” might all refer to the same biological 

process. In SGD database, we search both key words for Descriptions and GO Biological 

Process terms associated with the proteins.  

 Causal Bayesian network modeling 2.3.2.4

The correlation network is intuitive; however, it is not directed, and direction 

information for networks is quite useful for interpretation. For this reason we went 

beyond correlation analysis to causal Bayesian network modeling. Because different 

phosphopeptides from the same protein do not definitely change phosphorylation level 

in the same direction, the network modeling must be performed on peptide level, and 

then traced back to their parent proteins. 
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Data preprocessing  

If a phosphopeptide was detected more than once in a specific mutant, the 

median of the fold-changes was taken as a representative of the response in this mutant. 

The phosphorylation fold-changes of peptides were discretized into three states based 

on the 2-fold change criterion [50]: if the ratio is smaller than 0.5, the state is 

categorized into under-phosphorylation; if the ratio is greater than 2, the state is 

categorized into over-phosphorylation; otherwise, the state is categorized into baseline. 

This discretization criterion worked effectively for this dataset. 

 

Causal relationship discovery 

A causal Bayesian network is a Bayesian network in which a directed edge is 

interpreted as a causal influence from the parent node to the child node [105,106]. In 

our study, each protein (represented by unique phosphopeptides) is considered as one 

node in the network, and a directed edge starting from the node of protein X pointing to 

the node of protein Y represents a causal influence of protein X on Y. Disregarding 

confounding influences, there are three simple model structures between two proteins 

X and Y: (1) X has causal influence on Y; (2) the opposite; (3) no causal relationship 

between X and Y. Note that the directed edge only indicates the direction of causal 

influence, but do not tell whether the influence is activation or inhibition. 

Non-informative prior distribution of the model structures is used. For given 

data  , and prior knowledge,  , we want to find the model structure,  , that has the 

highest posterior probability,    |    . According to Bayes' theorem,    |     

   |    . While all the nodes have been discretized in Data preprocessing, assuming 

the causal mechanisms are local and independent, and the prior distribution of the 

parameters associated with each node is Dirichlet, the marginal likelihood    |     

can be obtained by the Bayesian Dirichlet equivalent (BDe) metric [52,105,107,108]. For 

the mixture of observational and interventional data, only the passively observed cases 

are counted in the BDe metric calculation [52,105]. The structure with the highest 

posterior probability is assigned to the corresponding pair of proteins.  
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The analyses were implemented in R v2.15.1 and MATLAB R2012a. The causal 

Bayesian network structure learning was performed in MATLAB using BNT (Bayes Net 

Toolbox for MATLAB) v1.0.7 [109]. Cytoscape v2.8.3 [110,111] was used for network 

visualization. 

2.4 Results 

2.4.1 Workflow 

An overview of the analytical workflow is shown in Figure 2.3. Following peptide 

identification and quantification, the comprehensive post-identification analyses 

performed consisted of phosphopeptide meta-analysis, correlation network analysis, 

and literature mining, followed by causal relationship discovery to infer signaling 

network characteristics. The inferred protein-protein relationships involving hub 

proteins were backed up by literature, and suggested potential proteins to be 

intervened in the future studies of yeast filamentous growth pathways. Details of the 

methodologies are described in Materials and Methods. Table 2.1 lists several 

important summary numbers of this dataset. 

2.4.2 Similar or reciprocal effects induced by kinase-dead mutations 

The relationships of the eight kinase mutants and their effects on global 

phosphorylation patterns were subjected to correlation analysis (see Overview of the 

influences inferred from kinase-dead mutations in Materials and Methods). The results 

were visualized in a correlation heatmap (Figure 2.2). The negative correlation between 

kinase mutants of SKS1 and ELM1 are apparent from Figure 2.2 as are the similarities 

between some of the mutants (e.g., SNF1 and TPK2). SKS1 mutants inhibit filamentous 

growth and ELM1 promotes it, while SNF1 and TPK2 have similar phenotypes. The 

general correlations between kinases are consistent with their filamentous growth 

phenotypes and reinforce the identification of core target proteins.  
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Figure 2.3 Summary flow chart of the analytical workflow. 
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We must be cautious when interpreting the correlations for evaluating partially 

multiplexed data, such as in triplex SILAC experiments where two kinase mutant 

samples and a control sample were analyzed in the same MS run. The identification and 

quantification of phosphopeptides in all the samples in a triplex experiment tended to 

be tied, because a peptide quantified for one sample should also be quantifiable for the 

other two samples. The overlap within a triplex run should be 100% but the overlap 

between runs will be lower due to instrument sampling limitations. A high number of 

replicates may contribute to minimize missing data, and compensate the possible bias 

brought by tied identification and quantification. 

2.4.3 Phosphopeptide clusters based on phosphorylation changes 

A total of 882 phosphopeptides representing 486 proteins were commonly 

identified in 4 – 8 kinase-dead mutants (KD). After the missing values being imputed, the 

tight clustering method [47] was used to assign those phosphopeptides into groups, and 

identify the most informative, tight and stable clusters (see Clustering phosphopeptides 

in Materials and Methods). The results are illustrated in Figure 2.4. The assignment of 

proteins and peptides in the top 8 tight clusters is provided in Table 2.3. We also 

surveyed enriched functions in the tight clusters (Table 2.3), in terms of functional 

categories, Gene Ontology, pathways and proteins Domains [27,28,96,97]. In summary, 

similar phosphorylation change patterns over multiple mutants (compared to wild type) 

tends to suggest involvement in similar biological functions. Enriched functional terms 

include nucleotide phosphate-binding domains, ribosome biogenesis, fructose and 

mannose metabolism, and glycolysis. Differential carbohydrate metabolism is consistent 

with the invasive nutrition forage observed under environmental stresses leading to 

filamentous growth. 
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Table 2.3 Top 8 tight clusters and functional enrichment.  

Cluster Proteins (traced back from 
phosphopeptides) 

Enriched terms 

1 YRO2, BUG1, VPS74, HXK1, PIL1, FBP26, 
PTK2, NPA3, BIR1, MYO3, UTP14, ARE2, 
DBP5, RUD3 

Nucleotide phosphate-binding region:ATP 
(P-value=6.54E-04, Benjamini=3.4E-2) ** 
Nucleotide-binding  
(P-value=1.8E-3, Benjamini=4.2E-2) ** 
ATP-binding  
(P-value=6.0E-3, Benjamini=9.3E-2) * 

2 VMA2, SEC31, GLY1, PEA2, VTC2, KEM1, 
UFD1, TIF4631, BCY1, SPA2, MFT1, NEW1, 
KRE6 

- 

3 NUP60, SLA1, STU1, YCL020W, VBA4, 
HOM2, YDR365W-B, VPS74, PSP1, CHD1, 
NUP145, SPT6, HSE1, ABF1, MEH1, CKI1, 
YLR413W, SPT5, HRB1, LCB4, CAF20, MRL1 

Endosome  
(P-value=1.6E-3, Benjamini=6.6E-2) * 
RNA polymerase II transcription elongation 
factor activity 
(P-value=1.4E-3, Benjamini=9.6E-2) * 
Transcription elongation regulator activity 
(P-value=2.8E-3, Benjamini=9.9E-2) * 

4 FAP7, ITR1, LSB3, LEU1, FLC3, SPT6, 
YGR125W, CRP1, KEL1, LCB3, YBT1, BDF1, 
YMR031C, DDR48, YMR295C, GPD2, ZEO1, 
CAF20, SNF2 

- 

5 PIN4, CYC8, BUD3, LYS20, CDC34, MAK21, 
BFR2, SUM1, GLY1, NUP145, PRP43, SPT6, 
ENP2, YOR1, SSZ1, NUP2, YLR345W, SUB1, 
ESC1, BDP1, DCP2, RPC31, SLA2, NOP8, 
ALE1, MSB1, SNU66 

Nucleus  
(P-value=1.0E-4, Benjamini=3.4E-3) *** 
Nuclear lumen  
(P-value=3.4E-4, Benjamini=2.7E-2) ** 
 

6 SIF2, PPH22, VAC8, HSP12, RTF1, RSC30, 
TRA1, LCB3, NAP1, SIC1, RPN13, YMR196W, 
MRE11, MCK1, LEM3, FPK1, LSP1 

- 

7 IST2, AIM3, RPC53, YDR186C, ECM32, MIG1, 
HXK2, VHS2, RNR2, UTR1, FBA1, EAP1, 
YLR257W, PFK2, PFK2, ACC1, YOR052C 

Fructose and mannose metabolism 
(P-value=3.0E-3, Benjamini=3.9E-2) ** 
Glycolysis  
(P-value=1.6E-3, Benjamini=4.3E-2) ** 
Glycolysis / gluconeogenesis  
(P-value=9.8E-3, Benjamini=6.2E-2) * 

8 AKL1, IST2, MAK5, FEN1, LHP1, RPC53, 
SAS10, SHS1, MAK21, DOP1, GCD6, GUK1, 
CHO1, PDA1, LEU1, NOP7, SPT6, TFG1, 
HXT1, AIM21, URA2, CDC11, MAK11, VPS13, 
CBF5, VTA1, CRN1, YMR031C, EFR3, ADE4, 
NOP12, MAM3, CAF20, PEX25, TIF5 

Ribosome biogenesis 
(P-value=1.0E-4, Benjamini=5.0E-3) *** 

Functional enrichment P-value and Benjamini-Hochberg corrected p-value (Benjamini) were calculated 
with DAVID Functional Annotation Tool [96,97]. They are given in the brackets following corresponding 
terms. 
* Benjamini < 0.1, ** Benjamini < 0.05, *** Benjamini < 0.01. 
 All the clusters are highly enriched in the term “phosphoprotein” (not listed above). 

 



   
 

33 
 

 

Figure 2.4 Top clusters selected by tight clustering. 

The phosphopeptides commonly identified in 4 – 8 KD-versus-WT conditions were used. After missing 
value being imputed, the tight cluster method [47] was used to pick out the top tightest and stablest 
clusters. R package tightClust was used, adopting the suggested parameters. R code: 
tight.clust(data.impute, target, k.min=15, random.seed=12345), the value of target is 5, 8 and 10, 
respectively, for A, B and C. The columns of a map correspond to SKS1-KD, STE20-KD, SNF1-KD, TPK2-KD, 
ELM1-KD, FUS3-KD, KSS1-KD and KSP1-KD. The rows correspond to phosphopeptides. 
A -  Top 5 tight clusters were sequentially selected, and plotted on the top. The order of stability 
decreases from the top down. Scattered peptides were not clustered.  B -  Top 8 tight clusters 
sequentially selected. C -  Top 10 tight clusters sequentially selected. 
 

 

A  Top 5 tight clusters              B  Top 8 tight clusters            C  Top 10 tight clusters 
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We found several different sites on the same protein share similar 

phosphorylation change patterns, thus end up appearing in the same cluster. For 

example, “_KGS(ph)FTTELSCR_” (position: 520) and “_RSS(ph)YISDTLINHQMPDAR_” 

(position: 238/239) on Psp1p in Cluster 3. It is possible that those phosphorylation sites 

are co-regulated by the same biological process. They might be closely located in 

protein tertiary structure and phosphorylated by the same enzyme. Another example is 

two adjacent phosphorylation sites, “_DQDQSSPKVEVTS(ph)EDEK_” (position: 495) and 

“_VEVT(ph)SEDEKELESAAYDHAEPVQPEDAPQDIANDELK_” (position: 494) on  Leu1p in 

Cluster 4. Both of these two sites were identified in a WT/SNF1/TPK2 experiment, where 

the serine (S) at position 495 in the former has phosphorylation probability 0.999 

(reported by MaxQuant), while the threonine (T) at position 494 in the latter has 

phosphorylation probability 0.962. These two sites might be competing and alternative. 

The dominancy of either site might be affected by protein cellular localization. 

On the other hand, we also found the same protein, such as Spt6p, to be 

clustered in multiple functional groups. Those different sites do not necessarily change 

phosphorylation in a similar pattern, since they might be regulated by different 

biological processes. All the above observations are worth further investigation. 

2.4.4 Identification of differential phosphorylation in each mutant 

A total of 863 unique phosphopeptides representing 452 proteins were 

identified to have significant phosphorylation changes in at least one kinase-dead 

mutant. We can then infer the downstream proteins regulated by the kinases. The 

inferred regulation might be direct or indirect. A total of 1588 significant kinase-

phosphopeptide regulation pairs were identified (Dataset S2). Sixty-one pairs of them 

directly contain the components in the known pathway map (Figure 2.1). We 

incorporated these proteins and generated an extended pathway map (Figure 2.5). 
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Figure 2.5 Extended filamentous pathway map. 
The extended filamentous growth pathway map integrating the known knowledge (Figure 2.1) and the regulation 
inferred from significant differential phosphorylation in individual KDs. The inferred regulation might be direct or 
indirect.  
The ellipses are proteins; the rectangles are DNAs; and the triangles are metabolites. The linkage between shapes:         
indicates stimulation,         indicates inhibition, and           indicates association. Solid lines indicate physical interactions, 
while dashed lines indicate changes in phosphorylation. 

 

2.4.5 Phosphopeptides with globally significant phosphorylation changes 

A total of 28 phosphopeptides representing 26 proteins from the entire dataset 

were found to have globally significant phosphorylation changes. These candidates were 

picked out without using prior knowledge. The Fisher’s probability test [99] was 

extended to allow missing values (see Materials and Methods), and it was used for 

detecting global significance. Each selected phosphopeptide satisfies the criterion: the 

combined p-value < 0.05, q-value < 0.05 for controlling false discovery rate (FDR) [100], 

and the significance B value < 0.05 in at least 4 out of 8 kinase-dead mutant (KD) versus 

wild type (WT) conditions. The combined p-value is a measure of global significance, 
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while the significance B value [24] is a measure of significance in an individual 

experiment. Five of the globally significant phosphopeptides, Nth1p, Hsp42p, Pbi2p, 

Rcn2p and Pdr12p, came with complete measurements (Table 2.4). We consider them 

have high-confidence. Another adaptively weighted statistic [101] was applied to all 

complete measurements for validation. Adopting the same selection criterion as above, 

Nth1p, Pbi2p, Rcn2p and Pdr12 were again identified as globally significant. 

Retrospective and prospective evidence has been found to support some of our 

predictions. 

 

Table 2.4 Globally significant phosphopeptides selected from the complete measurements 

(high-confidence).  

ENSEMBL 
ID [112] 

Standard 
name 

Name descriptiona Modified sequence Stress response 

YDR001C NTH1 Neutral 
trehalase;Alpha,alpha-
trehalase;Alpha,alpha-
trehalose 
glucohydrolase 

_RGS(ph)EDDTYSSSQGNR_ Nth1p is a multiple stress 
responsive protein 
[113,114].  

YNL015W PBI2 Protease B inhibitors 2 
and 1;Proteinase 
inhibitor I(B)2 

_HNDVIENVEEDKEVHT(ph)N_  Pbi2 gene deletion leads to 
decreased resistance to 
hyperosmotic stress . [115]. 

YOR220W RCN2 Regulator of 
calcineurin 2;Weak 
suppressor of PAT1 ts 
protein 1 

_NKPLLSINT(ph)DPGVTGVDSSSL
NK_ 

Rcn2p is Induced in response 
to DNA-damaging agent 
methyl methanesulphonate 
[116]. 

YPL058C PDR12 ATP-dependent 
permease PDR12 

_HLSNILS(ph)NEEGIER_  Pdr12 is strongly induced by 
weak acid stress [117] and is 
a target of the transcription 
factor War1p [118] which 
elicits weak organic acid 
stress adaptation through 
active efflux [119,120]. 

YDR171W HSP42 Heat shock protein 42 _KS(ph)S(ph)SFAHLQAPSPIPDPL
QVSKPETR_ 

Protein expression is 
induced by stresses such as 
heat shock, salt shock and 
starvation [121].  

a Annotated with MaxQuant 

 

Nth1p is a key enzyme in the trehalose pathway which plays a crucial role in 

glucose homeostasis and stress responses [113,122] and is a substrate phosphorylated 

for both Tpk1p and Tpk2p [123]. The NTH1 gene also has been reported to have genetic 

interactions with the TPK1 and TPK2 genes [124]. It has been reported to physically 
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interact with the kinase Sks1p [7] and with Bmh1p [125]. The above direct interactors of 

Nth1p, i.e., Tpk1p, Tpk2p, Sks1p and Bmh1p, are all known to play roles in filamentous 

growth [81,126–130]. The Rcn2p protein was also reported to physically interact with 

Bmh1p [125], which associates with the Ste20p protein involved in filamentous growth 

[130,131]. Bmh1p may also interact with Tpk1p [132–134]. Thus, Nth1p and Rcn2p have 

been closely associated with a number of proteins known to be involved in filamentous 

growth. Hsp42p has physical association with Fus3p [125], and its expression is induced 

under starvation [121]. The remaining two proteins in Table 2.4 have not yet been 

closely linked to filamentous growth but play roles in other stress responses and 

represent new leads.  

We also searched the STRING database [91,92] to investigate the inner 

connections between the 26 globally significant proteins (shown in Figure 2.6). STRING 

assigns the confidence of protein-protein interactions integrating high-throughput 

experiments, genetic context, co-expression and other previous knowledge. In Figure 

2.6, 17 proteins, including Nth1p, Hsp42p, Rcn2p, Pbi2p, Hsp26p, Bfr1p, YGR250C 

protein, Leu1p, Lys20p, Cdc19p, Fol2p, Pil1p, Abp1p, Cdc11p, Shs1p, YLR413W protein 

and Pxr1p, have direct or indirect connections. It presents a closely inter-connected sub-

network embodying Nth1p, Pbi2p, Rcn2p, Hsp42, YGR250C protein and Hsp26p. 

2.4.6 Correlation network analysis 

All possible pairs among the 73 common phosphopeptides with complete 

measurement were tested using the Pearson correlation. A total of 45 strongly 

correlated phosphopeptide pairs were identified, each satisfying the following criteria: 

the correlation test p-value < 0.05, and the stringent requirement of |Pearson 

correlation coefficient| ≥ 0.9. Detailed information on the 45 pairs of phosphopeptides 

is provided in Dataset S4. Twenty-seven of the pairs have positive correlations, while 18 

pairs have negative correlations. A stringent protein correlation network containing 35 

proteins (Figure 2.7) was generated by connecting the strongly correlated peptide pairs 

and then tracing the peptides back to their parent proteins. 
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A Confidence view 

 B Evidence view 

 

Figure 2.6 STRING reported inner connections of the globally significant proteins. 

The network was generated using STRING v9.0 [91,92] using the default parameters with median 

confidence. A – Confidence view. The thicker the edge it, the more confidence the interaction is. B – 

Evidence view. Different colors of the edges indicate different evidence types.  
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Figure 2.7 Stringent correlation network of phosphoprotein pairs. 

Red lines indicate positive correlations, while black lines indicate negative correlations. The larger the 

node size, the greater the degree of connectivity. 

 

Identifying core-components in the correlation network 

In the protein correlation network, proteins with the highest degrees of 

connectivity are considered core components in the network. The 19 proteins having 

degrees greater than 1 (protein self-connection ignored) in the stringent protein 

correlation network were predicted to be core components of the network. Detailed 

descriptions and evidence of the proteins are summarized in Table 2.5. Kem1p, Spa2p 

and Spt6p have been reported to be directly involved in filamentous growth in previous 

literature. Six other proteins, Are2p, Dcp2p, Hsp42p, Ssd1p, Sum1p and Ufd1p, have 

reported evidence in terms of genetic and/or physical interactions with known 

components of filamentous growth. The remaining proteins have been implicated in 

various stress responses, including the unfolded protein response (e.g., sensitivity to 
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tunicamycin), osmotic shock, and thermal shock, but not previously linked to 

filamentous growth. Our predictions, Pbi2p and Pbp1p, have never been reported as 

involved in filamentous growth, however, they are validated by our experiments (see 

Experimental validation in Results). The invasive growth assay of haploid strains (under 

1% butanol treatment, which would induce filamentous growth in wild type strains) 

shows that the deletion of PBI2 results in decreased invasive growth. In diploid strains, 

PBP1 deletion strain does not form filamentous growth under nitrogen. The results 

indicate that Pbi2p and Pbp1p are involved in filamentous growth, as well as stress 

response.  

Gpd2p and Lys21p are two self-connected proteins. The self-connection was 

built up by two distinct phosphorylation sites on the protein. Gpd2p have not been 

related to filamentous growth in Saccharomyces cerevisiae. Its homolog Gpd2p in 

Candida albicans, is involved in core stress response, and is induced upon pseudohyphal 

growth [42–49].  

 

Table 2.5 Phosphoproteins having degrees of connectivity greater than 1 in the stringent 

correlation network. 

Index Standard 
name 

Degree of 
connectivity 

Evidence of involvement in 
filamentous growth 

Remarks Stress response 

1 SEC21 6 - In the stringent 
correlation network, SEC1 
correlated with KEM1 
(known involved in 
filamentous growth), and 
ARE2 (indirect evidence of 
involvement). 

SEC21 
overexpression 
leads to decreased 
rapamycin 
resistance. [135]. 
Sec21p mutants 
have reduced 
resistance to 
tunicamycin 
decreased [136]. 

2 ABF1 5 - In the stringent 
correlation network, ABF1 
correlated with SPT6 
(known involved in 
filamentous growth), and 
PBP1 (validated by our 
experiment). 

Implicated in 
oxidative stress 
[137].  Abf1p 
mutants exhibit 
decreased 
sensitivity to 
tunicamycin [137].  

3 ARE2 5 Are2p has positive physical 
interactions with Fus3p, 
Tpk1p and Ste20p [7]. 

Several other proteins 
involved in sterol 
biosynthesis or response 
are differentially 
phosphorylated in the 
kinase-dead mutants 

 Are2p is linked to 
cell wall 
construction and 
plays a key role in 
sterol biosynthesis 
whose regulation 



   
 

41 
 

(YML008C, YHR073W, 
YKL140W) 

is important in 
specific stress 
responses 
[138,139].  

4 DCP2 5  (1) Dcp2p has physical 
interactions with Spt6p 
[140] and Kem1p [140–
142], both are involved in 
filamentous growth. (2) 
Dcp2p is a phosphorylation 
substrate of Ste20p [143].  

In the stringent 
correlation network, DCP2 
is highly correlated with 
SUM1 (positive) and ARE2 
(negative). 

Dcp2p is involved 
in stress granule 
assembly [143].  

5 KEM1  
(Alias 
XRN1 ) 
 

5 Kem1p plays a direct role in 
yeast filamentous growth, 
affecting FLO11 
transcription [144]. 

 KEM1 deletion has 
increased 
sensitivity to 
hyperosmotic 
stress [145]. 

6 NUP145 5 - In the stringent 
correlation network, 
NUP145 is highly 
correlated with SPT6 
(known involved in 
filamentous growth) and 
HSP42(indirect evidence). 

NUP145 deletion 
has decreased 
resistance to 
sodium arsenite 
[146]. Reduced 
functioning of 
Nup145p causes 
the strain to also 
have decreased 
resistance to 
tunicamycin [136]. 

7 SPA2 5 When SPA2 is disrupted, 
filamentous growth 
decreases [147]. Refer to 
SGD. 

 Required for 
recovery from 
osmotic stress 
[148].  

8 CHO1 4 -   

9 GLY1 4 - In the stringent 
correlation network, GLY1 
has positive correlation 
with KEM1 and SPA2, 
both known to be 
involved in filamentous 
growth. 

The GLY1 deletion 
strain has 
decreased 
resistance to 
hyperosmotic 
stress [115].  

10 HSP42 4 Hsp42p has physical 
association with Fus3p 
[125]. 

 Protein expression 
is induced by 
stresses such as 
heat shock, salt 
shock and 
starvation [121], 
which might also 
contribute to the 
phosphorylation 
level change that 
we detected. 

11 PWP1 4 - In the stringent 
correlation network, 
PWP1 has positive 
correlation with SPT6. 

Pwp1p mutants 
have decreased 
resistance to 
tunicamycin [136]. 

12 PUF6 3 -  The PUF6 deletion 
strain has 
decreased 
resistance to 
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multiple chemical 
stresses 
[103,149,150] and 
is more sensitive 
to both cold [151] 
and heat [152].   

13 SPT6 3  (1) Filamentous growth 
decreases when SPT6 is 
disrupted [147]. Refer to 
SGD. (2) SPT6 has a genetic 
interaction with RAS2 [153] 
which regulates 
filamentous growth [154]. 
(3) Spt6p has physical 
interaction with Kss1p [7]. 

 Spt6p is involved 
in regulation of 
transcription from 
RNA polymerase II 
promoter in 
response to stress 
[155].  

14 SSD1 3  (1) Ssd1p has physical 
interactions with Ste20p [7] 
and Kem1p [156]. (2) SSD1 
has positive genetic 
interaction with KEM1 
[157], and negative genetic 
interaction with STE50 
[158], known to be 
involved in filamentous 
growth [159]. (3) SSD1 also 
has negative genetic 
interaction with ILM1 
[160]. Ilm1p is required for 
slowed DNA synthesis-
induced filamentous 
growth [161,162]. (4) 
Overexpression of the SSD1 
homologue, ropy, in N. 
crassa has been shown to 
suppress mutations of 
POD6 and COT1 which play 
essential roles in hyphal tip 
extension [163], a process 
required for filamentous 
growth.   

 Required for 
thermotolerance 
[164] and migrates 
to stress granules 
[165]. 
 
 

15 SUM1 3 SUM1 has a negative 
genetic interaction with 
ELM1 and TPK3 [166]. 
 

In the stringent 
correlation network, 
SUM1 has positive 
correlation with SPA2 and 
KEM1, both known to be 
involved in filamentous 
growth.  

Involved in 
osmotic stress 
[167]. Predicted to 
be involved in 
stress response 
[168].  

16 NUP2 2 - In the stringent 
correlation network, 
NUP2 are positively 
correlated PBP1(predicted 
and validated by our 
experiment).  

Nup2p is involved 
in mRNA export 
from nucleus in 
response to heat 
stress [169]. When 
Nup2 is deleted, 
the strain has 
decreased 
resistance to 
bortezomib [170] 
and arsenite(3-) 
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[171]. 

17 PBI2 2 -  PBI2 deletion has 
decreased 
resistance to 
hperosmotic stress 
[115] and multiple 
chemicals 
[103,149,172].  

18 PBP1 2 Pbp1p has not been 
reported related to 
filamentous growth. 
However, our experiment 
has validated that PBP1 
mutant strain does not 
have filamentous growth 
under 1% butanol 
treatment, which will 
induce filamentous growth 
in WT strain. 

 Pbp1p is involved 
in stress granule 
assembly [173]. 
PBP1 mutant has 
decreased 
resistance to 
stress. 

19 UFD1 2 UFD1 has a negative 
genetic interaction with 
KEM1 [174]. 

In the stringent 
correlation network, 
UPD1 has positive 
correlation with KEM1 
and SPA2, both known to 
be involved in filamentous 
growth. 

Involved in ER and 
heat stress 
responses 
[175,176]. 

 

2.4.7 Literature mining 

In addition to the candidate proteins predicted from our dataset, we retrieved 

from the literature and authoritative databases [28,80–82,102,103] a list of proteins 

involved in filamentous growth. A total of 69 unique proteins, not all being 

phosphoproteins, were extracted, and 20 of them have been detected in our 

phosphoproteome dataset. Among those, 15 proteins, including Bcy1p, Cdc28p, Cyr1p, 

Dig1p, Dig2p, Flo8p, Kem1p, Ras2p, Sfl1p, Snf1p, Spa2p, Ste20p, Ste50p, Tpk3 and 

Tpm1p, showed significant phosphorylation changes in at least one kinase-dead mutant, 

and are displayed in our extended pathway map (Figure 2.5). 

2.4.8 Causal Bayesian network 

  The interactions retrieved from the differentially phosphorylated proteins in 

individual kinase-dead mutants (the dashed edges in Figure 2.5) did not make use of 

phosphorylation change pattern over different kinase-dead mutants, and the protein 

pairs must contain a mutated kinase. In contrast, the correlation network is a network of 

the common peptides, taking into account the protein responses in all the kinase-dead 
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mutants, and the correlated protein pairs do not necessarily contain the mutated 

kinases. Note that this network is not directed and more information may be gleaned 

from a causal analysis. We implemented causal relationship discovery to detect the 

direction of influences between proteins with the understanding that the relationships 

may be direct or indirect. A total of 46 unique proteins were selected to construct the 

network. All of them are listed in Table 2.6.  

 

Table 2.6 Focus proteins used for causal relationship discovery. 

Mutated kinases Globally significant  
(high-confidence) 

Hub proteins 
(high-confidence) 

From literature mining and  
detected in our dataset 

KSP1 NTH1 SEC21 BCY1 

KSS1 PBI2 ABF1 BMH1 

SKS1 RCN2 ARE2 BUD2 

STE20 PDR12 DCP2 CDC28 

SNF1 HSP42 KEM1  CYR1 

TPK2  NUP145 DIG1 

ELM1  SPA2 DIG2 

FUS3  CHO1 FLO8 

  GLY1 GPR1 

  HSP42 KEM1 

  PWP1 NRG1 

  PUF6 PEA2 

  SPT6 RAS2 

  SSD1 SFL1 

  SUM1 SNF1 

  NUP2 SPA2 

  PBI2 STE20 

  PBP1 STE50 

  UFD1 TPK3 

   TPM1 

 

Bayesian network modeling identified causal influences for 22 protein pairs (44 

phosphopeptide pairs), satisfying the posterior probability of the relationship greater 

than 0.5. The network comprising all the causal relationships is presented in Figure 2.8. 

Among those, only 6 protein pairs have the posterior probability higher than 0.7. The 

other protein pairs do not have high probability since the samples available for training 
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the model is limited due to the missing data issue caused by instrument limitation. The 

arrows in Figure 2.8 only indicate the existence of causal influence, but do not specify 

whether the influence is activation or inhibition. The causal relationship discovered 

might be between proteins that are not immediately adjacent in pathways so the 

relationship could be quite indirect.  

Through another inspection of the phosphorylation change patterns of the 

peptide pairs detected with relatively strong causal influences (posterior probability 

higher than 0.7), we observed that: Ste20p has opposing phosphorylation changes 

compared to Are2p, Pdr12p and Sec21p; two phosphopeptides (the same amino acid 

sequence but different phosphorylation sites) on Hsp42p present opposing 

phosphorylation changes compared to Ste20p; and Pbp1p presents consistent 

phosphorylation change compared to Ste20p. With caution we predict that the 

opposing pattern implicates an inhibitive influence of Are2p, Pdr12p and Sec21p to 

Ste20p; and similarly, inhibition of Hsp42p to Ste20p; while Pbp1p shed activating 

influence to Ste20p. Again, we emphasize that the influence might be quite indirect and 

even be influenced by multiple pathways.  
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Figure 2.8 Causal Bayesian network.  

Each edge →→→ indicates a potential causal influence between proteins, which might be a direct or 

indirect influence. It does not distinguish activation and inhibition. The thicker the edge, the higher the 

posterior probability. 

2.4.9 Experimental validation 

Five predicted novel high-confidence proteins, Nth1p, Pbi2p, Pdr12p, Rcn2p and 

Pbp1, have been tested in invasive growth assays.  

Mutant strains compared to WT haploid 

Gene deletion strains were compared with Y825 wild type strains (WT haploid) 

under 1% butanol treatment, which will induce filamentous growth in Y825. Invasive 

growth assays were done by plate-washing. The plate after wash is shown in Figure 2.9A. 

From our results, the deletion of PBI2 results in decreased invasive growth, while 

deletion of NTH1, PDR12, and RCN2 results in increased invasive growth. In haploid 

yeast, filamentous growth refers to invasive growth, which allows cells to grow 

penetrating the medium [177].  
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Mutant strain compared to WT diploid 

In addition, in experiments of diploid strains, PBP1 deletion strain does not show 

filamentous growth under nitrogen stress, while wild type diploid strain (WT diploid)  

forms filamentous growth (Figure 2.9B).  

 

A   

 

B   

     pbp1Δ          WT diploid 

   

Figure 2.9 Phenotypic result of five deletion strains and wild type strains.   

A - Mutant strains compared to WT haploid, B - Mutant strain compared to WT diploid. 

In summary, all of the deletions result in differential filamentous growth compared 

to wild type controls, which means they are involved in filamentous growth. The results 

have validated our approach to identification of candidate proteins in this biological 

system from phosphoproteomics data alone. 

2.5 Discussion 

In this study, we demonstrate that interventional phosphoproteome studies can 

provide new insight into signaling pathways involved in biological processes, such as 

yeast filamentous growth. In order to increase sensitivity to smaller changes in 

phosphorylation relative to previous yeast global phosphoproteome studies [11,12], we 

used SILAC, an isotope labeling approach. Isotope labeling approaches are generally 

more accurate relative to label-free approaches [14], but require greater resources to 
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implement, resulting in trade-offs between precision and missing data due to sampling 

limitations. We proposed and developed a comprehensive computational and statistical 

analysis pipeline for the post-identification studies of phosphoproteome data. The 

analyses are aimed at discovering candidate components of significant pathways 

involved in filamentous growth as well as the potential targets of the pathways, and to 

provide more information on the signaling network structure by monitoring changes in 

phosphorylation in response to mutational interventions. We applied the pipeline to 

analyze our interim yeast phosphoproteome datasets and a total of 882 unique 

phosphopeptides representing 486 proteins were identified as significantly influenced 

by at least one out of 8 kinase-dead mutants. Twenty-eight unique phosphopeptides 

having globally significant phosphorylation were identified from the whole dataset 

among which 5 peptides representing 5 proteins, Nth1p, Pbi2p, Rcn2p, Pdr12p and 

Hsp42p, were identified as high-confidence candidates. Nineteen candidate proteins 

with relatively high degrees of connectivity were selected in the stringent correlation 

network. Among the high-confidence candidate proteins, 3 proteins have been reported 

to be directly involved in filamentous growth and another 6 proteins were also 

supported, in terms of genetic and physical interactions with known components 

involved in filamentous growth. The remaining proteins have been implicated in various 

other stress responses and may play roles in filamentous growth or may be secondary 

stress responders. Pbp1p is one of our novel predictions, and it has been validated to be 

involved in filamentous growth by our mutational phenotypic experiments. Causal 

relationship discovery was further performed on the candidates and validated proteins. 

The inferred causal relationships, along with the interactions inferred from 

phosphorylation changes in response to individual mutants, form phosphoprotein 

interaction networks, which suggested potential proteins to be intervened in future 

studies.  

Each of the kinases mutated in this study had previously been implicated in 

filamentous growth. Many of these kinases are known to also affect pathways that are 

not involved directly in filamentous growth. However, the proteins which change 
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phosphorylation level in response to multiple mutants are reasonable candidates 

involved in filamentous growth. The sensitivity of such detection is constrained by the 

degree of overlap between pathways, the coverage of pathways by the mutants, and 

the extent of missing data issue. Upstream components of isolated pathways may be 

missed, while downstream core components are more likely to be identified. 

A remaining challenge for quantitative phosphoproteome analysis arises from 

the sampling limitations and resolution of mass spectrometers [14]. This feature of 

tandem mass spectra of complex mixtures results in poor overlap of peptides identified 

among samples unless a relatively large number of replicate experiments are carried out 

(which is time consuming and often economically impractical for large-scale projects). 

For this reason, a significant number of missing values exist in these datasets which can 

obscure potential candidates for further validation studies. We developed methods to 

partially compensate for missing data issue. In the phosphopeptide meta-analysis, an 

extension of Fisher's combined probability test was made to relax the restrictions of 

complete measurements. The causal network modeling component was also developed 

to allow missing values without excluding the incomplete measurements. We also 

performed cluster analysis of phosphopeptides. Instead of adopting traditional 

clustering methods, we directly identified the most stable clusters using missing value-

imputed data. Our approach was able to pick out significantly enriched functions, and 

identify a number of reliable candidate proteins for further validation.  

This analysis pipeline has been developed to study the yeast filamentous growth 

pathways; however, the methodology is not limited to yeast or this biological process. It 

can be applied to other complex organisms to facilitate investigation into various 

biological processes. We anticipate the methodology to be applicable as well to other 

interventional studies via different experiment platforms. 
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Chapter III 

3                 Inferring Kinetic Networks and Parameters  

from Time-course Data 

 

3.1 Introduction 

Apart from investigating equilibrium-state proteomics data, I have also made an 

effort to study the methods for analyzing time-course biochemical data. Time-course 

data is a richer source of information compared to equilibrium-state data and a broader 

range of tools can be applied to these datasets.  

Time-course data measuring concentrations of chemical species can be used to 

investigate the kinetics of reactions whether those species are small molecule 

metabolites or phosphoproteins. Time-course data is more information-rich than 

equilibrium-state data. For instance, transient behaviors and oscillations can be 

detected by time-course data, but might not be detected by equilibrium-state data. It is 

also possible to take advantage of the time dimension and the implicit relationships 

between time points.  Studies utilizing time-course data are carried out on different 

experimental platforms, such as nuclear magnetic resonance (NMR) [178], microarrays 

[179], and mass spectrometry (MS)-based proteomics experiments [17]. However, the 

task of reconstructing biochemical networks from time-course data is challenging, 

because of the large amount of potential combinatorial interactions between chemical 

species, and potentially unknown parameters related to those interactions. Several 

approaches have been proposed to solve this challenge. Yeung et al. [76] used singular 

value decomposition and robust regression to reconstruct connectivity topology of large 

sparse gene networks. They only consider the gene network dynamics near steady state. 
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Ross and co-workers [180,181] proposed a method for determining causal connectivities 

of species, based on the systematic response due to a pulse change of one species. 

Fromentin et al. [182] presented a hybrid model mixing delay parameters and an 

ordered pattern of concentration peaks to infer networks. Feng and co-workers [69,70] 

applied the Granger causality approach to infer interactions between species in the 

frequency domain. Schnell’s team [30,63,183] developed MIKANA (Method to Infer 

Kinetics And Network Architecture) Ver. 1, a computational tool with a user interface, 

which not only infers network topology of reactions, but also estimates the kinetic 

parameters. Its major components include pseudo-linear model generation, model 

selection, and parameter fitting, which altogether serve as a tool for the reconstruction 

of reaction mechanisms from time-course data. In this chapter I present an improved 

version of this tool, MIKANA Ver. 2. It maintains the three-component framework of 

MIKANA, and makes improvements and extensions to each component. 

3.1.1 The MIKANA framework 

The MIKANA framework is shown in Figure 3.1. MIKANA considers only 

elementary reactions which, when combined, can create complex reaction mechanisms. 

An elementary reaction is a single step reaction, in which one or more chemical species 

react directly to form products without intermediates; and it has a single transition state 

[184]. Given time-course data as input, the elementary reaction generator identifies the 

species and generates a set of all the possible realistic elementary reactions between 

them (up to predefined and customized restrictions). MIKANA supports exclusion of 

specific reactions from the set if specified. The elementary reactions will be expressed 

using differential equations, whose terms are filled into a model design matrix. The 

derivative vector generator generates the concatenated velocity vector for all species 

over time. Then a pseudo-linear model can be constructed using the model design 

matrix and the concatenated velocity vector. The initial full model contains all the 

possible elementary reactions. The subsequent step is the iterative procedure to select 

the optimal subset of elementary reactions and estimate their kinetic parameters, i.e. 

rate constants. When an optimal subset is determined, the ODE (ordinary differential 
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equation) generator generates corresponding differential equations. Fitted data can be 

simulated from the ODEs. Results can be outputted and plotted. 

The elementary reaction generator of MIKANA Ver. 1 can support most realistic 

zero-order to second-order elementary reactions. It uses the general-to-specific method 

[30,63] to select the optimal reduced model, that is, it starts from the full model, and 

shrinks the model size by one iteratively, until the cost function is optimized. Srividhya 

et al. [63] verified its superior performance relative to the specific-to-general approach, 

which starts from single-reaction models and increases the model size by one iteratively 

until the cost function is optimized. MIKANA Ver. 1 performs model parameter fitting 

using linear least square method.  

3.1.2 Motivation of improvements 

 Autocatalytic reactions and third-order reactions  3.1.2.1

MIKANA Ver. 1 has performed well on simple non-oscillatory models presented 

in [30] fitting zero-order to second-order reactions, which contains 0 to 2 reactant 

molecules (stoichiometry). However, for the models containing oscillations or other 

behavior contributed by autocatalytic reactions, it does not fit well. The following is an 

example with two species.  

Example 1 – A simple oscillatory model 

This model system contains two species    and   . They are involved in a 

second-order autocatalytic reaction, and have mass exchange with external 

environment. The reactions are schemed as: 

  
→  , 

  

  
→,                                                                        

     

  
→    . 

When the rate constants        ,         ,        , the system shows damped 

oscillation. I simulated the data as input with initial values [1, 1] in time range [0, 50]. 

MIKANA Ver. 1 can detect the reactions; however, the fitted curve deviates from the 

input (Figure 3.2), with predictions  ̂        ,  ̂          and  ̂        .    
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Figure 3.1 Algorithm framework. 
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Prediction of reactions containing more species will be more challenging. In 

order to obtain better prediction, I improve the design matrix in MIKANA Ver. 2 to 

better support autocatalytic reactions (see Pseudo-linear model generation in 

Materials and Methods). Besides, known elementary reactions contain no more than 

three reactant molecules [185–187]. Several forms of third-order elementary reactions 

are also realistic. Thus in MIKANA Ver. 2, I extend the design matrix to support them as 

well. 

 

 

Figure 3.2 Input/Output plot for the simple oscillatory model, fitted by MIKANA Ver. 1. 

Dots indicate input data, solid lines indicate fitted curves.  
The Initial reaction set contains all the zero-order to second-order reactions supported by MIKANA Ver. 1. 
Empirical information criterion is used for model selection.  

 

 Model selection and parameter fitting 3.1.2.2

As illustrated in Figure 3.1, the model selection and parameter fitting are 

coupled in an iterative procedure. MIKANA Ver. 1 adopts the general-to-specific 

approach to perform model selection [30,63]. All the possible elementary reactions are 

considered in the initial model, and then the model is reduced by discarding reactions 

iteratively, until the defined cost function is minimized. This approach outperforms the 
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specific-to-general approach, which starts from a single elementary reaction then 

increases model size until stop criterion is met [63]. MIKANA Ver. 1 uses linear non-

negative least square algorithm [188] to estimate the rate constants. Since each 

iterative step is performed based on the result of its previous step (called stepwise 

subset selection), the algorithm might be trapped in local optima. The computing time 

will grow exponentially with the number of species [183].  

In MIKANA Ver. 2, I seek an alternative optimization solution, which does not trap 

in local optima, and does not turn computationally intractable when the number of 

species grows large. My new solution was inspired by the Lasso [189], which uses L1-

norm penalized regression, and directly assigns less contributing coefficients to 0 hence 

gives interpretable parsimonious models (see Model selection and parameter fitting in 

Materials and methods). I add non-negative coefficient constraint to the Lasso. The 

non-negative Lasso is also a convex optimization problem thus any local optimum is also 

a global optimum. The computing time of non-negative Lasso is determined by the 

number of values the penalty tuning parameter takes, and does not grow exponentially 

with the number of species. Non-negative Lasso is used to select the optimal subset of 

reactions. Non-linear non-negative least square regression is used to fit the rate 

constants of the reduced models. It can be applied to both linear and nonlinear fitting, 

and has better performance than linear least square method, especially for fitting 

oscillatory behaviors.  

Besides, in order to reduce the influence of large noise, MIKANA Ver. 2 provides 

an option to smooth the input data and rule out outliers using robust spline smoothing 

[190]. The feature updates I have carried out are summarized in Table 3.1.  
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Table 3.1 Feature updates of MIKANA. 

Algorithm component MIKANA Ver. 1 MIKANA Ver. 2 

Design matrix generation 

 

Support zero-order, first-

order and second-order 

elementary reactions, 

excluding autocatalytic 

reactions. 

Further support third-

order elementary 

reactions, including 

autocatalytic reactions.  

Model selection 
General-to-specific method 

[30,63] 

Non-negative Lasso 

Parameter fitting 

Non-negative linear least 

square 

Non-negative non-linear 

least square (LMF 

method [191,192] 

implemented) 

Noise tolerance (optional) None Spline smoothing 

 

3.2 Materials and Methods 

The MIKANA framework is illustrated in Figure 3.1. The most important 

components in the algorithm are: (1) pseudo-linear model generation, (2) model 

selection through optimization method, and (3) parameter fitting.  

The kinetic network topology can be constructed by elementary reactions 

between species. The problem of identifying the reactions fitting the data can be 

transformed into a regression or optimization problem. In simple words, from the time-

course data a pseudo-linear model is posed, 

     , 

in which    is the model design matrix generated from differential equations,   is the 

concatenated velocity vector, and   is the vector of rate constants.   and   are directly 

known from the data, and   is the vector of rate constant that we want to estimate. The 

goal is to select an interpretable reduced model which minimizes the cost function and 
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fit rate constants to a reduced model. The methodology applied in MIKANA Ver. 2 is 

described in detail below.  

3.2.1 Pseudo-linear model generation 

Non-autocatalytic reactions 

Let’s first consider the following elementary reaction: 

       
  
→        ,                                                           

in which    is the non-negative rate constant for reaction  ;   ,   ,    and    are the 

number of molecules of the reactant species  ,  , and product species  ,  .. By the 

number of molecules, we mean the molecularity of the species. In the case of law of 

mass action, it can be identical to the stoichiometry. Then the reaction rate can be 

calculated: 

           
 
    

 
              , 

where     and     are the concentrations of   and  . Since     and     depend on time, 

            also depends on time. For time point   , it can be written as   (  ). Then 

the velocities of  ,  ,   and   in reaction   at time point    are 

          (  )     
   , 

                  
   , 

          (  )     
   , 

          (  )     
   . 

In MIKANA Ver. 1, for a species  , an element of the model design matrix    
  is 

defined as   
         . In this model,   

  has unit magnitude with either positive or 

negative sign:   
    , if species   is a product; and   

    , if species   is a reactant. 

This model works perfect for non-autocatalytic reactions. However, it ignores the case in 

which at least one of the product species is also a reactant, which happens in 

autocatalytic reactions. In MIKANA Ver. 2, I define a modified version of of    
 , so that it 

can support both non-autocatalytic reactions and autocatalytic reactions (see 

immediately below).  
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General elementary reactions 

In MIKANA Ver. 2, for a species  , I define an element of the model design matrix 

as    
    

       , in which   
  equals the number of molecules of product   minus the 

number of molecules of reactant   in reaction  . For non-autocatalytic reactions, the 

element defined in MIKANA Ver. 2 is equal to the one defined in MIKANA Ver. 1. 

Let’s consider the following general elementary reaction in           that can 

represent any reactions supported by MIKANA, 

      
         

         
         

  
  
→      

        
        

        
  . 

            

I have   
       

        
 ,   

       
        

 ,   
       

        
 , and   

  

     
        

 . 

Assume reaction   (       ) is any elementary reaction in          . Each 

species is measured at   time points. For a species   (indexed      ), the velocity at 

time point    (       ) contributed by reaction   is  

  
         

       (  )     
    .                                          

Therefore, the total velocity of species   at time point    for all reactions is 

    

  
|    

 ∑   
   (  )     

 
    [   

          
       ] [

  

 
  

].  

The block of model design matrix of species   for all   reactions and all   time points is 

   [

  
          

       
   

  
          

       
]

   

; 

and the corresponding velocity vector is 

   [

    

  
|    

 
    

  
|    

]

   

. 

The full pseudo-linear model for all species, all reactions and all time points can 

be written as follows: 



   
 

59 
 

[
  

 
  

]

    

[
  

 
  

]

   

 [
  

 
  

]

    

,                                          

where [
  

 
  

]

    

 is the full model design matrix  , [
  

 
  

]

    

 is the concatenated 

velocity vector  , and [
  

 
  

]

   

 is the rate constant vector   I want estimate. With 

random noise  , the model in           is written as   

      .                                                                

Supported elementary reactions  

MIKANA Ver. 1 supports most of zero-order, first-order and second-order 

reactions, excluding autocatalytic reactions. MIKANA Ver. 2 has been extended to 

support third-order reactions, and autocatalytic reactions. The forms of reactions 

supported by MIKANA Ver. 2 are listed in Table 3.2. 

Autocatalytic reactions are an essential part of several  nonlinear dynamics 

models , such as the Brusselator [193,194] and Oregonator [195]. Several examples of 

the newly supported reactions, including third-order reactions, are as follows: 

     →      :     
     →            [196]; 

     →   :       →      [197];  

     →    is a reaction in the Brusselator autocatalytic model [195,198];  

     →    :     →     , in which   is inert gas such as    or    

[185]. 
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Table 3.2 Forms of elementary reactions supported by MIKANA Ver. 2. 

Reaction order 

Elementary reactions 

1 reactant species ( ) 2 reactant species (  and  ) 

Zero order →     

First order 

  → 

  →    

  →    

  →       

  →       

  →       

 

Second order 

  →    

  →    

  →       

  →       

  →       

  →       

  →       

     →    

     →    

     →    

     →    

     →       

     →       

     →       

Third order 

      →    

     →    

     →       

 ,  ,   and   each represents a species. An equation in the table only represents a scheme of reactions. 
For instance,    →         and    →         correspond to the same reaction scheme “  →
     ”, but they have different stoichiometry. 
When we have more than two species in the input data, all the possible combinations between the 
species are considered to create the initial full set of elementary reactions. 
→    is a reaction from external source.   → is a reaction to external sink. 
The reaction schemes highlighted in red are newly supported or improved by MIKANA Ver. 2.  
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Figure 3.3 Scheme of MIKANA Ver. 2 for model selection and parameter fitting. 

  is the tuning parameter defined in          . It is tuned to have increasing values from 0.01 to 0.1 with 
step 0.01 (unless otherwise stated). For each   value, one reduced model is selected by the non-negative 
Lasso. Then LMF method is performed to estimate the model’s rate constants. For the reduced models, 
information criterion (empirical, Bayesian, or Akaike) is calculated balancing the 5-fold cross-validation 
mean square error and the excessive number of reactions. It is used to choose the final optimal reduced 
model. 

Algorithm: Non-negative Lasso 

Standardized data 

Result: Reduced model 
(subset of reactions) 

Change tuning 
parameter  𝜆 

 

Algorithm: LMF non-linear least square 
with non-negative constraints 

Result: Rate constants (𝑘𝑖’s) 
of optimal reactions 

Calculate the 
information criterion 

Choose the optimal reduced model 
and rate constants with the 

smallest information criterion 
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3.2.2 Model selection and parameter fitting 

 The scheme 3.2.2.1

MIKANA Ver. 2 applies the non-negative Lasso for model reduction. It uses L1-

norm penalized regression, and directly assigns less contributing coefficients to 0 hence 

gives interpretable reduced models. The non-negative Lasso solves a convex 

optimization problem thus any local optimum is also a global optimum. I apply the 

Levenberg-Marquardt-Fletcher (LMF) algorithm [191,192], a nonlinear least square 

method to fit the rate constants of the reduced models. The scheme of model selection 

and parameter fitting in MIKANA Ver. 2 is shown in Figure 3.3.  

 The non-negative Lasso for model reduction 3.2.2.2

Suppose after data standardization,    (        ) are the elements of  ,      

is the element at the  -th row and  -th column in  . Letting  ̂  [
 ̂ 

 
 ̂ 

]

   

,  the non-

negative Lasso estimate  ̂ is defined by 

 ̂        {∑ (   ∑        )
   

   } subject to ∑      , and      for all 

 ,            

where   is the tuning parameter. Consider the case when    , the estimation 

illustration of non-negative Lasso is shown in Figure 3.4. The constraint region is the 

triangle. The elliptical contours center at the ordinary least square estimates. The non-

negative solution is the first place that the contours touch the triangle. The solutions at 

the acute angles of the triangle will give a zero   ,         . Reactions with zero rate 

constants will be discarded in the reduced models.  

For the convenience of programming, the above expression           can be re-

written in the form: 

 ̂        {∑ (   ∑        )
 
  ∑    

  
        ∑           }, 
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where    is the tuning parameter.     is the indicator function: if     ,           

 ; otherwise,            .      is a predefined large constant, such as    , 

penalizing negative    values. I adopt this form in MIKANA Ver. 2. The non-negative 

Lasso problem is a regularized minimization problem. I solve it using the Dual 

Augmented Lagrangian (DAL) algorithm [199] for computing efficiency.  

 

Figure 3.4 Estimation illustration of non-negative Lasso when    . 

 

 Parameter fitting 3.2.2.3

The full pseudo-linear model           is always transformed from nonlinear 

systems, which contain differential equations higher than first order. Both linear and 

non-linear least square methods can be used to fit the parameters. The Levenberg-

Marquardt-Fletcher (LMF) algorithm [191,192] is among the standard nonlinear least 

square routines in practice, which can fit both linear and non-linear systems. It has 

improved fitting than linear methods on oscillatory systems. 

 

 

𝑘̂ 

𝑘  

𝑘  
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3.2.3 Noise tolerance 

When the input data contains noise, the derivative of the time-course curve might 

become discontinuous; even deviate much from underlying true model. In order to 

avoid the influence of large noise, I provide an option to smooth the input data and rule 

out outliers using robust spline smoothing [190] before model selection and parameter 

fitting. 

3.3 Results  

Here I present five examples to evaluate algorithm performance, both the 

improvements and limitations. Example 1 is the simple oscillatory model I mentioned in 

the introduction. Example 2 - 3 are the same examples used for assessing MIKANA Ver. 

1 [30]. Example 5 is a second-order model containing autocatalytic degradation. 

Example 6 is a third-order model.   

MIKANA has two parameters for customizing the supported elementary reactions 

included in the initial set of reactions: 

(1) Reaction mode: 

Option 1 – Backbone mode: It only supports reactions in the form of 

   →    , in which A and B are species, and    and    are the number 

of molecules. 

Option 2 – General mode: No restriction.  

(2) Molecularity per species: 

Option 1 – Unimolecular: The maximum number of molecules per species 

is 1; and it supports up to second-order reactions. 

Option 2 – Bimolecular: The maximum number of molecules per species 

is 2; and it only supports up to second-order reactions.  

Option 3 – Termolecular: The maximum number of molecules per species 

is 3. It supports all the reactions in the above two options, and further 

supports third-order reactions. 
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 In order to assess the performance of network structure prediction, we compare 

the predicted structure with the underlying true structure using sensitivity and 

specificity of edge predictions, when the network prediction is stably achieved (such as 

Example 1 - 3). These measures are defined as (# means “number of”) 

            
                                       

                             
, 

             

                                                                                      

                                                                   

                             ), 

They supplement the comparison of elementary reactions and differential equations. 

3.3.1 Example 1 – The simple oscillatory model 

The model system is schemed as           (see Example 1 in Introduction). 

Figure 3.2 shows the result generated by MIKANA Ver. 1 with General mode and 

Bimolecular per species. Empirical information criterion is used for model selection. 

Adopting the same settings, I performed MIKANA Ver. 2 on the same data, and the 

Input/Output plot is shown in Figure 3.5. It predicts exactly correct reactions, thus both 

the sensitivity and specificity of edge predictions are 100%. Additionally, the estimates 

of rate constants are  ̂        ,  ̂          and  ̂      18, which are very close 

to the true parameter values.  

 

Figure 3.5 Input/Output plot for the simple oscillatory model, fitted by MIKANA Ver. 2. 

Dots indicate input data, solid lines indicate fitted curves. Settings: General mode, Biomolecular per 
species. Empirical information criterion is used for model selection.  
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3.3.2 Example 2 – Michaelis-Menten mechanism 

A typical Michaelis-Menten mechanism of enzyme action [200] is represented 

schematically as  

   
  

 
   

 
  
→   , 

in which   is the enzyme,   is the substrate,   is the enzyme-substrate complex, and   

is the product.   ,     and    are the rate constants. The example input data was 

provided in [30], with   =0.068 mM-1min-1,    =0.0136 mM-1min-1 and   =0.0068 mM-

1min-1 [201], and 10% noise. I performed network prediction using MIKANA Ver. 1 and 

Ver. 2 respectively, adopting settings suggested by [30]: General mode and 

Unimolecularity per species.  

 Figure 3.6 includes the results of MIKANA Ver. 1. The best prediction without 

prior information is obtained using Akaike information criterion. If we have prior 

information that the reactions in the schemes  →   and  → do not exist in the 

mechanism, excluding them from the initial elementary set enables MIKANA Ver. 1 to 

correctly predict all the reactions and get good fitting, shown in Figure 3.6B. 

Figure 3.7 contains the results of MIKANA Ver. 2. Whether incorporating the 

prior information or not does not affect the predictions here. Using either Akaike or 

Bayesian information criterion, MIKANA Ver. 2 predicts correct reactions and obtains 

good fitting. Both the sensitivity and specificity of edge predictions are 100%. 
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A 

 

Without prior information; 

Akaike information criterion 

B 

With prior information: 

excluding →   and  →; 

Akaike/Bayesian information criterion  

→ E 

E → 

C → S 

C → E 

+ P 

S + E → 

C 

 

k1=0.0478 

k2=0.0066 

C → S + E 

C → E + P 

S + E → C 

 

k1=0.0478 

k-

1=0.0082 

k2=0.0066 

 

 
Figure 3.6 Results of Example 2 - Michaelis-Menten mechanism, obtained using MIKANA Ver. 

1. 

A – Best result without prior information. B – Best result with prior information (excluding →   and  →).  
Settings: General mode and Unimolecular per species. Predicted reactions and Input (dots)/Output (lines) 
plots are provided. Predicted reactions are listed by the side of plots, and the correctly predicted ones are 
underlined. For the correctly predicted reactions, the rate constants are provided, unit omitted. 

 

 

 

C → S + E 
C → E + P 
S + E → C 

 
k1=0.0478 
k-1=0.0082 

   k2=0.0066 

 
 
Figure 3.7 Results of Example 2 - Michaelis-Menten mechanism, obtained using MIKANA Ver. 

2. 

Settings: General mode and Unimolecular per species. Using either Akaike or Bayesian information 
criterion, with or without prior information, the reactions can all be correctly predicted and the results are 
the same. Predicted reactions, rate constants and Input (dots)/Output (lines) plots are provided.  
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3.3.3 Example 3 – The Lactococcus lactis glycolytic pathway 

The Lactococcus lactis glycolytic pathway has been studied experimentally 

[178,202]. We used the data from nuclear magnetic resonance experiments [178], 

containing 7 species measured at 25 time points over 15.75 minutes. The 7 species are 

glucose (coded as X1), glucose-6-phosphate (G6P) (X2), fructose-1,6-biphosphate (FBP) 

(X3), 3-phosphoglyceric acid (3-PGA) (X4), phosphoenolpyruvate (PEP) (X5), pyruvate (X6) 

and lactate (X7). A simplified topology of the glycolytic pathways is shown in Figure 3.8. 

Glucose (X1) is converted into several intermediate products sequentially, and finally 

turns into lactate (X7). PEP (X5) also contributes to the conversion of glucose into G6P 

[63]. Pyruvate kinase (PK) catalyzes the transformation from PEP to pyruvate. Lactate 

dehydrogenase (LDH) performs the terminal conversion from pyruvate to lactate [203]. 

High concentration of FBP (X3) activates PK and LDH, directing the pathway towards 

producing lactate [204]. Additionally, the free metabolite inorganic phosphate (Pi) is an 

inhibitor of PK [178,202]. In the network containing 7 nodes, consider directed edges 

and edges from/to environment, there are    
    49 possible edges. The underlying 

true structure shown in Figure 3.8 contains 12 edges. 

The same dataset is analyzed using MIKANA Ver. 1 and Ver. 2, considering 

Backbone mode and Bimolecular per species to catch the backbone of the interactions 

and regulations; empirical information criterion is used. The results are shown in Figure 

3.9 and Figure 3.10. Overall the predicted topologies are similar. MIKANA Ver. 1 

predicted 15 interactions (arrows in the topology figure), and 6 of them are consistent 

with known topology shown in Figure 3.8.   
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Figure 3.8 A simplified topology of the Lactococcus lactis glycolytic pathway. 

The information comes from Srividhya et al. [63], Neves at al. [178], Hoefnagel et al. [202] and Ramos et 
al. [204] All the species coded from X1 – X7 in the ellipses have time-course measurements from  Neves at 
al. [178] Other species, including dihydroxy acetone phosphoate (DHAP), glyceraldehyde-3-phosphate 
(Ga3P), pyruvate kinase (PK), inorganic phosphate (Pi) and  lactate dehydrogenase (LDH) were not 
measured in the experiment. Solid lines indicate reactions, while dotted lines indicate activation (+) or 
inhibition (-). 
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For the result of MIKANA Ver. 1,  

            
 

  
    , 

            
           

     
    . 

 
MIKANA Ver. 2 predicted 17 interactions, and 8 of them are consistent with 

known topology. For the result of MIKANA Ver. 2, 

            
 

  
    , 

            
            

      
    . 

Therefore, for this example, MIKANA Ver. 2 improves the sensitivity and 

maintains specificity at the same value. 

MIKANA Ver. 1 correctly captures the conversions of G6P to FBP (i.e. X2 → X3) 

and 3-PGA to PEP (X3 → X4), as well as the depletion of PEP (X5). It predicted that G6P is 

produced by glucose (X1 → X2), but missed the contribution of PEP (X5). Pyruvate (X6) is 

another product from this step, and it was predicted as X1 → X6. The regulation of FBP to 

LDH is captured as X3 → X7. MIKANA Ver. 2 correctly predicted the above information as 

well. It further identifies the contribution of PEP to G6P productions (X5 → X2); and the 

conversion of PEP to pyruvate (X5 → X6). 
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A          MIKANA Ver. 1 B          MIKANA Ver. 2 

 

 

 

Figure 3.9 Predicted network topology for the Lactococcus lactis glycolytic pathway.  

Settings: Backbone mode, Bimolecular per species; Information criterion: empirical. The number of molecules are disregarded. A – Topology predicted by 

MIKANA Ver. 1. B – Topology predicted by the MIKANA Ver. 2. Red lines are consistent with known topology shown in Figure 3.8.  
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A          MIKANA Ver. 1 B          MIKANA Ver. 2 

 

 

Figure 3.10 Input/Output plots for the Lactococcus lactis glycolytic pathway.  

Settings: Backbone mode, Bimolecularity per species; Information criterion: empirical. Dots indicate input data, solid lines indicate fitted curves.  
A – Output predicted by MIKANA Ver. 1. B – Output predicted by MIKANA Ver. 2. 

 



   

73 
 

3.3.4 Example 4 – Autocatalytic degradation 

This second-order system containing autocatalytic degradation is schemed as 

below: 

   

  
→       , 

   

  
→        , 

  

  
→   , 

        
  

 
  

   , 

  

  
→   , 

  

  
→, 

  

  
→, 

  

  
→. 

I generated the input data with rate constants     ,     ,       ,    

   ,     ,       ,        ,         and         ; initial values all 1. Besides, 

normally distributed random noise is added, whose standard deviation is 10% of the 

range of each species. The theoretical time-course curves (without noise) and noisy 

curves are shown in Figure 3.11A and B. I also apply the option of smoothing the noisy 

data (see Noise tolerance in Materials and methods). Smoothed curves are shown in 

Figure 3.11C. 

The results of running MIKANA Ver. 1 and Ver. 2 are shown in Figure 3.12. 

Neither version can fully recover the reactions in the true model. They only detect no 

more than three reactions, but accompanied with more redundant reactions not in the 

model. The fitting of MIKANA Ver. 1 deviates. There tends to be over-fitting, although 

the curve seems fitted well in MIKANA Ver. 2. The noise worsens MIKANA’s fitting 

performance. 
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Figure 3.11 Time-course curves for Example 6. 

A – Theoretical curves without noise. B – Curves with 10% noise. C –Noisy curves after smoothing. The 

dots are the noisy data with 10% noise. The lines are the smoothed curves.  
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MIKANA Ver. 1, Noisy data 

 

 

MIKANA Ver. 2, Noisy data 

 

 

  

MIKANA Ver. 1, Smoothed data 

 

 

MIKANA Ver. 2, Smoothed data 

 

 

Figure 3.12 Influence of noise to MIKANA. 

Settings: General mode and Bimolecular per species; Information criterion: Bayesian. 

 

3.3.5 Example 5 – The standard mitogen model 

Tyson and Light [205] presented a modification of the Brusselator model 

[193,194]: 

 
  
→    

   
  
→                                                                 

    
  
→     

 
  
→ . 
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It can display limit cycle oscillations depending on the destabilizing self-limiting 

autocatalytic third-order reaction,     →   . When              ,     is 

fixed and    →  ,     and      present limit cycles, which give interpretation of the 

standard mitogen model, helping understanding the cell division control [205,206]. I 

want a model without concentration constraints     and    . Thus I re-write the model 

as          : 

  
→    

 
  
→    ,                                                                 

    
  
→     

 
  
→ . 

Let           ,             , and        , then species  ,  ,   and   in 

          will have the same time-course behavior as in           , as shown in Figure 

3.13., as. The input data of four species was simulated in time range [0, 60] with zero 

initial concentrations. 

 

 

Figure 3.13 The theoretical time-course curves of    ,    ,     and     in the standard mitogen 

model. 
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This model contains third-order reactions, which is among the extensions that 

can be generated in the initial set of reactions by MIKANA Ver. 2. I perform MIKANA Ver. 

2 on the dataset simulated from          . Settings: General mode and Termolecular 

per species, and empirical information criterion is used for model selection. I increase 

the parameter   from 0.01 by step 0.01 until an empty model is reached. Then a really 

sparse reduced model is selected as the optimal. The predicted reactions are 

→    , 

   →    , 

   →    , 

   →    , 

   →          , 

         →     , 

         →    . 

Among those, three reactions (highlighted in red) are in the true model schemed as 

         . Predicted differential equations: 

X' = + 0.5233 - 0.2980*X^1*Y^1 - 0.3672*Y^2*X^1 

Y' = - 0.8121*Y^1 + 0.2980*X^1*Y^1 - 0.0529*Y^2 + 0.3672*Y^2*X^1 

D' = 0  

E' = + 0.7836*Y^1 + 0.0529*Y^2 

 

The Input/Output plot and fitting of first and second derivatives are shown in 

Figure 3.14. Both the first and second derivatives are fitted well, which means the 

pseudo-linear model has been fitted well. MIKANA reports the errors of first derivatives 

are                ,                ,                , and              

  . However, the time-course curves are still not fitted well. Take the curve of   for 

example, its concentration is frequently oscillating. Except those sharp turning points on 

the curve, the fitted curve has the same derivatives as the input.  
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A           B 

C  

Figure 3.14 Result of Example 5 – the standard mitogen model, obtained by MIKANA Ver. 2. 

A – Input(dots)/Output(lines) plot. B – First derivatives of input data (up) and fitted data (down). C – Second derivatives of input data (*) and fitted data (⃝–). 
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3.4 Discussion  

In this chapter, I present MIKANA Ver. 2, an improved version of MIKANA. It is 

a general method for inferring kinetic reactions and fitting parameters. The design 

matrix generator is improved to support autocatalytic reactions and third-order 

elementary reactions. It applies non-negative Lasso for model reduction and non-

linear LMF algorithm for parameter fitting. Non-negative Lasso is optimized towards 

global optima, and its computing time does not grow exponentially with the number 

of species. Non-linear LMF algorithm outperforms linear least square regression, 

especially for oscillatory systems. LMF is more suitable for our overdetermined 

systems, where there are more equations than unknown parameters.  Besides, the 

smoothing method is provided as an option to preprocess input data so that to avoid 

the influence of large noise. MIKANA Ver. 2 has improved performance on simple 

models, but the reconstruction of complex non-linear models is still not successful. 

MIKANA Ver. 2 can often generate a model which fits the data, but the over-fitting 

issue is haunting. Limitations of MIKANA are discussed below. Possible solutions for 

these issues are also posed for future studies.   

 

Challenges of fitting higher-order oscillatory systems 

Predicting the topology of higher-order oscillatory systems is challenging. 

Example 5 is an example. Even though both first derivatives and second derivatives 

have been fitted well, the time-course curves do not fit well. The pseudo-linear 

model is fitted to obtain the precise prediction of first derivatives. When the 

oscillatory curve and a straight line have the same derivatives except several sparse 

turning points, they are almost indistinguishable to the fitting method. More 

sampling points around the turning points might increase their influence on 

parameter fitting, thus help distinguishing the two curves. Alternative methods other 

than pseudo-linear model fitting, such as genetic algorithm, might be used to grow 

the possible set of reactions from single reactions.   
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Challenges of fitting complex systems 

When the number of species and the order of reactions raises, the number of 

possible elementary reactions increases dramatically. Example 5 contains four 

species, and all possible elementary reactions up to third order are considered. A 

total of 314 reactions are included in the initial set of Example 5. MIKANA tends to 

predict a model containing more reactions than the true model, and the result might 

be over-fitted. Besides, different sets of reactions with specific range of parameters 

might degenerate to display very similar behavior in data collection time period. 

They are almost indistinguishable. 

It is hard to predict a model exactly the same as the unique underlying true 

model for complex systems.  Instead of providing only a single final predicted model, 

we might provide a set of highly possible models. With prior information, some 

models of the set will be selected as optimal. 

Conflicting reactions have not been avoided in MIKANA predicted models. We 

might categorize reactions into conflicting groups. All the members in a group 

cannot appear in the same reaction system. At most one member from a group can 

be picked to build a model. Generating models without conflicting reactions will 

improve the model prediction.  

 

Collinearity in design matrix 

The pseudo-linear model           is prone to collinearity issues, where 

the explanatory variables (the columns in the design matrix) are not 

independent, and might have linear relationships. This collinearality might 

influence prediction precision and stability. Possible solutions include principal 

component regression, partial least square regression and so on [207], which 

worth investigation.   

 

Prediction leverage of coefficients (rate constants) 

 We say a coefficient has higher prediction leverage if its change has more 

impact on the change of dependent variable(s). In model selection, our goal is to 

keep the coefficients that have large prediction leverage, and discard those having 

small prediction leverage. It is possible that some small rate constants tend to be 
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discarded from the model, but it does not means that they definitely have low 

prediction leverage. We standardize the data before model selection to reduce the 

influence of coefficient magnitude. 
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Chapter IV 

4 Systematic Discovery of Signaling Networks Using 

Phosphorylation Dynamics Data 

 

4.1 Introduction  

This chapter is another attempt to discover network structures from time-

course data, with applications in signal transductions. The novelty of the method 

presented in this chapter is the combination of Bayesian structure learning with 

time-delay detection.  

Signal transduction is the process in which cells pass information between 

each other, and transduce extracellular signals to trigger intracellular responses. 

Defects and dysfunctions of signaling cascades can affect cell survival and cause 

diseases. Protein phosphorylation events are the most extensively studied of the 

signaling processes and in human cells, more than 500 different kinases are thought 

to be regulating signal transduction [208]. There are at least 107 genes in human 

genome code tyrosine phosphatases [209]. Phosphorylation and dephosphorylation 

of specific amino acid residues in target proteins plays an important role in these 

processes [210]. Proteins may be multiply phosphorylated within a small physical 

domain and may contain more than one phosphorylation domain, each having 

different or related functions.  A single domain may be the target of several different 

kinases, and multiple phosphorylation events may be required to affect protein 

function. 

The role of phosphorylation in cell physiology is discussed in more detail in 

Chapters 1 and 2 of my thesis, and here is a brief summary. Protein phosphorylation 

has been extensively studied throughout the past couple of decades. Initially, studies 
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were low-throughput, mainly focused on specific molecules in specific pathways. 

More recently, in vitro assays and protein chip arrays were developed which enables 

high-throughput system-wide studies; however, the kinase specificity in vitro and in 

vivo are often not the same [17]. The emergence of mass spectrometry (MS)-based 

approaches has enabled high-throughput large-scale studies of in vivo 

phosphoproteomics. Various MS-based methods, whether measuring dynamics or 

equilibrium-state, labeled or label-free, have been widely used for experimental 

research [7,11,17].   

 In this study, I focus on phosphorylation dynamics data, which are usually 

generated by labeled or label-free MS-based technologies, presenting abundance (or 

spectral count) changes of phosphopeptides over time due to certain stimuli. 

Towards the discovery of signaling networks, existing methods for MS time-course 

data include the Pearson correlation and clustering-based methods [48], the 

maximum entropy principle-based approach [211], NetworKIN which augments 

motif-based predictions with context for kinases and phosphoproteins [71] and so on. 

Here, I propose a Bayesian approach integrated with time delay detection to fully 

utilize the time delay between proteins in response to a stimulus to discover the 

causal relationship between proteins. The time-delay pattern might be easily missed 

by correlation coefficient-based cluster analysis. Phosphorylation dynamics also 

contain other information not included in this framework, such as peptide sequences, 

kinase/phosphatase motifs, localization, and even physicochemical characteristics.  

This method is not a perfect one taking all these features into account, but I focus on 

taking full advantage of the temporal information, and the approach can be a 

complementary analysis strategy in combination with other methods. Integrating 

multiple types of information is a challenge, and is worth investigation. Subsequent 

graph-theory-based analysis can be applied to the signaling network reconstructed 

with all the detected relationships to characterize network attributes.  

 In the Results, I evaluate the performance and stability of the approach on 

three simulated time-course datasets, including (1) a demonstration model 

containing two proteins with time-delay pattern, (2) the three-tiered cascade in 

MAPK (mitogen-activated protein kinase) pathway, and (3) EFGR (epidermal growth 

factor receptor)-mediated signal transduction. The latter two datasets are simulated 
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from ordinary differential equation (ODE) models which have been approved by 

previous experiments. In the demonstration model, I evaluate the results of my 

approach compared with correlation analysis. I sought to identify the critical number 

of time points, at and above which the approach can obtain higher confidence 

network structures. Although my approach is developed for phosphorylation 

dynamics data, it can be readily applied to other biological networks, which display 

time-delay patterns.  

4.2 Materials and Methods 

I propose an approach for detecting relationships between species, such as 

phosphorylated proteins, utilizing time delay patterns between the time-course 

profiles of different chemical species. The workflow is shown in Figure 4.1. I define 

the term causal relationship between species A and B, meaning there is an influence 

between the two species: A and B might be co-regulated, or A regulates B (A→B), or 

vice versa (B→A). The influence might be direct or indirect. I first use pairwise causal 

relationship discovery (based on causal Bayesian network structure learning) to 

identify the pairs of species having causal relationships. If the direction of a 

relationship is determined, either A→B or B→A, I further identify whether the 

relationship is up-regulation or down-regulation. If a causal relationship is detected, 

but the direction is not determined, I perform time delay detection to decide the 

direction. Subsequently, I determine whether the relationship is an up- or down-

regulation. All the relationships can be connected to reconstruct the network 

structure. Since my method uses a Bayesian method (for causal relationship 

discovery) integrated with time delay detection (to help determine the direction of 

relationships), I call the method BTD (Bayesian + Time Delay detection).  

4.2.1 Pairwise causal relationship discovery 

The relative phosphorylation abundance is first discretized into three states – 

low, medium and high. In Simulation 1 - the demonatration model, I use the 2-fold 

change criterion [50] for simplification. In the other two simulations of signal 

transductions, I calculate the mean and standard deviation of relative 

phosphorylation abundance for each species. The log (logarithm) fold-change lower 

than the mean minus 1 standard deviation is set as low; the log fold-change higher 
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than the mean plus 1 standard deviation is set as high; otherwise it is set as medium. 

The causal relationship discovery is performed on the discretized data. 

 

 

Figure 4.1 Workflow of BTD for reconstructing network structure from dynamics data. 
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The method of causal relationship discovery has been described in detail in 

Chapter 2. Instead of having different mutant conditions as in Chapter 2, here I have 

different time points. Phosphorylation abundance measurements at different time 

points for the same pair of species are used for causal Bayesian network structure 

learning. I only consider three possible structures of causal relationships between 

two species A and B: A→B, B→A or no causal relationship between A and B. The 

posterior probability of a structure is proportional to the Bayesian Dirichlet 

equivalent [105,107]. The structure with largest posterior probability is assigned as 

the relationship between species. In the case that A→B and B→A have the same 

probability and the sum of their probabilities is close to 1, I apply the time delay 

detection to help choose one from A→B and B→A.   

4.2.2 Time delay detection 

I detect the first extreme value that each time-course profile reaches in 

response to stimuli. The time-delay between extreme values is used to represent the 

time-delay between species. The species that reaches the extreme value earlier is 

inferred to be more upstream in a pathway.  

Based on the second derivative at the extreme point, I can determine 

whether it is a maximum or minimum. If in a relationship A→B, both species reach a 

maximum (or both minimum), the relationship is inferred as up-regulation. If one 

reaches a maximum and the other reaches a minimum, the relationship is inferred as 

down-regulation. The regulation might be direct or indirect. 

4.3 Results 

To evaluate the performance of my approach, I simulate three datasets. The 

first dataset (Simulation 1) is generated from an artificial two-protein model, which 

is a toy model for demonstrating the key points of why I propose my approach. 

However, the case used is likely too simple to represent real biological dynamics. 

Thus, I move on to other representative models intended to more closely resemble 

real biological systems. I first analyze the three-tiered cascade in MAPK (mitogen-

activated protein kinase) pathway (Simulation 2). Then I extend the analysis to a 

more complex model, epidermal growth factor receptor (EGFR)-mediated signal 

transduction, containing more protein complexes and intermediates (Simulation 3). 
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4.3.1 Simulation 1: A demonstration model of two proteins 

Up-regulation case   

Suppose I have two interacting proteins, A and B; and A up-regulates B. I 

assume protein A responses instantly after stimulation, which occurs at time    . 

The time-course data of both proteins are collected simultaneously. The shape of 

their time courses       and       are simulated in proportion to the Gamma density 

functions, so that they roughly resemble some experimental curves of 

phosphorylation dynamics [7].    follows a            density function timed by 

30, while   is just a shifted and scaled   :  

{
                    

  

       
   

 

 

          (        )             
                    

in which,   is the time (min);    and    are functions of  ;        and   are pre-

assigned constants which can be tuned.        is the time delay of protein B after 

protein A.   is the scale of response magnitude of protein B compared with protein 

A. Figure 4.2A shows an example when          and    . For simplification, I 

only vary   in a mild range, so that the maxima of     and    are in (2, 5), when the 

2-fold change criterion [50] is valid for identifying significant fold-changes.  

Set         as the underlying true model, I compare BTD (Bayesian + Time 

Delay detection) and the Pearson correlation on the performance of identifying the 

truth. Let    , I change        from integers 0 to 19. In each of the 20 time delay 

conditions, I collect data from     to 40 by step size 0.1, thus the number of 

sample points is 401 per condition. The comparison result is shown in Figure 4.2B. 

The BTD is always able to detect the true relationship, by assigning it a probability 

equal to 1. By contrast, Pearson correlation can detect the true relationship only 

when the time delay is small. When         , Pearson correlation coefficient falls 

below 0.76. It even assigns a strong negative correlation when the time delay 

approaches 19, opposing the true relationship that protein A up-regulates protein B.  
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Figure 4.2 Comparison of BTD (Bayesian + Time Delay detection) with Pearson correlation, 

detecting up-regulation with time delay.  

A B 

C D 

E F Noise added, Gaussian(mean=0,  variance=0.1) 
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A - An example of the assumed underlying true models, with    ,          (min). The blue line is 

the curve of protein A, while the red dash line is the curve of protein B. B - Set    , and        

increases from integers 0 to 19 (min). The number of sample points is 401, from 0 to 40 (min) by step 

size 0.1 (min). The blue line is the probability assigned by BTD to the true model. It remains 1, 

invariant with       . The red dash line is the Pearson correlation coefficient of the two 401-element 

vectors of proteins A and B, in the time range [0, 40]. The Pearson correlation coefficient decreases 

while        increases. C - An example of the assumed underlying true models, with    , 

         (min). The legends are the same as in plot A. D - Set    , and all the other settings are 

the same as in plot B. E, F - Add Gaussian white noise with mean 0 and variance 0.1. The comparison 

is carried out again. 

 

I further perform comparisons while varying   in a range ensuring the 

maxima of    and    between 2 and 5, and keeping the other settings unchanged. 

The comparisons always favor BTD over applying Pearson correlation alone on 

detecting up-regulation relationships having time delay. The result of     is 

shown in Figure 4.2C and D. After adding independent Gaussian white noise with 

mean 0 and variance 0.1, the comparison is carried out again. The conclusion does 

not change (Figure 4.2E and F). (Negative fold-changes might be obtained after 

introducing random noise. For BTD, the negatives are considered as zeros. For 

Pearson correlation,    or    are shifted on the vertical axis to make them non-

negative. It does not change the Pearson correlation coefficient between    and   .) 

 

Down-regulation case   

Suppose protein A down-regulates protein B, and their time- course curves 

follow the equations below: 

{
                    

  

       
   

 

 

            (        )                   
                  

I also carry out multiple comparisons of BTD and Pearson correlation, by changing   

and adding white noise into the model.   is a constant assigned to keep    in a 

reasonable magnitude range. One example is shown in Figure 4.3A and B, in which 

     , and independent Gaussian white noise with mean 0 and variance 0.1 is 

added. Again, 401 time points are sampled from time 0 to 40 (min) by step size 0.1 

(min). I obtain the same conclusion as in the up-regulation case that BTD performs 
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perfectly for detecting the true down-regulation relationships; it assigns a constant 

probability 1 to the truth. Pearson correlation only works when the time delay is 

small, where it assigns a strong negative correlation between the two proteins. 

When the time delay increases, it starts to assign a positive correlation coefficient 

which is against the underlying truth.  

Too much noise will hide the information implicit in the data. When the 

standard deviation of the Gaussian white noise increases to 1 (comparing Figure 4.3C 

and A), both BTD and Pearson correlation do not work well. As shown in Figure 4.3D, 

among the 20 time-delay conditions (               ), BTD detects the down-

regulation relationship with probability higher than 0.8 in 7 conditions; while, 

Pearson correlation barely detects it in only 1 condition, i.e.         , where the 

Pearson correlation coefficient is smaller than -0.5.  

 

Random case   

To evaluate the false-discovery rate, I simulate two random series of data for 

proteins A and B. They are generated as random numbers from a               

distribution and the values are shifted along the vertical axis by 2, ensuring a 

reasonable range (Figure 4.4A). There is no assumed relationship between the two 

random series. The simulation is repeated 1000 times and in each repeat, 401 

sample points are taken from 0 to 40 (min) by step size 0.1 (min). 

BTD can assign a probability to the existence of a causal relationship, as 

indicated by the blue line in Figure 4.4B. Throughout all the 1000 repeats, the 

probability almost remains at a low value close to 0 except one outlier. It has a 95% 

quantile-based confidence interval (0, 0.0104), and specificity = 99.9%. Pearson 

correlation coefficient is also calculated, as indicated by the red dash line in Figure 

4.4B, with a 95% quantile-based confidence interval (-0.0939, 0.0965), and specificity 

= 100%. The confidence intervals are constructed using Monte Carlo methods. The 

results obtained from both BTD and Pearson correlation are consistent. Based on the 

probabilities assigned by BTD, there is no significant causal relationship between 

proteins A and B. No strong correlation are detected between A and B based on 

Pearson correlation coefficient.  
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Figure 4.3 Comparison of BTD (Bayesian + Time Delay detection) with Pearson correlation, 

detecting down-regulation with time delay.  

A - An example of the assumed underlying true models, with      ,          (min). White 

Gaussian noise with mean 0 and variance 0.1 is added. The blue line is the curve of protein A; while 

the red dash line is the curve of srotein B. B - Set      , and        increases from integers 0 to 19 

(min). The number of sample points is 401, from 0 to 40 (min) by step size 0.1 (min). The blue line is 

the probability assigned by BTD to the true model. It remains 1, invariant with       . The red dash 

line is the Pearson correlation coefficient of the two 401-element vectors of proteins A and B, in the 

time range [0, 40]. The Pearson correlation coefficient increases while        increases. C, D - Increase 

the variance of Gaussian white noise to 1. The comparison is carried out again.  
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Figure 4.4 Comparison of BTD (Bayesian + Time Delay detection) with Pearson correlation, 

on random data, repeat 1000 times.  
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A - Two series of random data for proteins A and B are generated from                . The 

simulation is performed 1000 times. One repeat is shown. The blue line is the curve of protein A; 

while the red dash line is the curve of protein B. B - The number of sample points is 401, from 0 to 40 

(min) by step size 0.1 (min). The blue line is the probability assigned by BTD to the existance of a 

causal relationship between proteins A and B. The red dash line is the Pearson correlation coefficient 

of the two 401-element vectors of proteins A and B. The horizontal axis is the index of repeats, from 1 

to 1000. 

 

Sensitivity and specificity   

I evaluate the performance of both BTD and Pearson correlation depending 

on the time range and the number of data points. For calculating sensitivity and 

specificity, suppose the positive means protein A up-regulates protein B, and the 

data are generated from        , with     and                . The negative 

is defined as protein A and protein B having no relationship, and the data are 

generated as totally random numbers from                . In real mass 

spectrometry experiments, the choice of time range for collecting data depends on 

whether the transient response or the long-term response is of interest. I take two 

time ranges, 0-20 (min) and 0-40 (min), and tune the sampling interval, i.e. the step 

size. 

The results for detecting positives are shown in Table 4.1 and Figure 4.5A. 

The time range 0-40 (min) with step size 0.1 (min) can ensure the BTD will detect all 

the up-regulation relationships without misidentification. When the step size 

increases, the sensitivity of BTD decreases as expected. In the smaller time range 0-

20 (min), BTD can obtain 30% ~ 95% sensitivity. Although Pearson correlation 

achieves a 100% sensitivity in 0~40(min) range when there are 3 time points, the 3-

time-point setting is improper (see Figure 4.6). There is a high probability that I can 

obtain two random series with strong Pearson correlation. (In reality, consensus 

time-course curves averaged from replicate experiments might compensate for this 

issue.) Using the significance cut-off values adopted in Table 4.2, the probability is 

higher than 0.5. In summary, compared with Pearson correlation, BTD is still superior 

on sensitivity. More sampling points on longer time ranges do not ensure Pearson 

correlation to have a higher sensitivity; contrarily, the result might be even worse 
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with more misidentifications, such as assigning a strong negative correlation to an 

up-regulation model. 

The results for detecting negatives are shown in Table 4.2 and Figure 4.5B. 

The data are generated totally randomly from                . For each setting, 

the simulation is repeated 1000 times. The specificity only relies on the number of 

time points. While the number of time points decreases, the specificity of both 

approaches decreases. As shown in Figure 4.5B, the Pearson correlation has a little 

higher specificity than BTD in the gross, except for the improper 3 time-point setting 

(Table 4.2). With 14 time points, BTD reaches specificity greater than 90%. Twenty 

time points is enough for both approaches to reach high specificity greater than 95%. 

 

 

Figure 4.5 Sensitivity and specificity, relying on the number of time points.  

A - Sensitivity. Data for plotting comes from Table 4.1. The time range is set as 0~40 (min). B - 

Specificity. The time-course data of the two proteins are all generated from                . 

The simulation is repeated 1000 times for each number of time points increasing from 3 to 500. 
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Figure 4.6 Three-time-point settings in the up-regulation case and the random case.  

A - protein A up-regulates protein B.    ,         , 3 time points. B - Sensitivity of BTD and 

Pearson correlation on detecting up-regulation as true positive. The data are sample at 3 time points: 

0, 20 and 40 (min). C, D - Two random 3-time-point series are generated from                . 
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Table 4.1 Test the performance of BTD and Pearson correlation on detecting the assumed up-regulation relationshipa. 

Time range 
(min) 

Step size 
(min) 

Number of 
data points 

Assigned by BTD  
(out of 20 time-delay conditions) 

Assigned by Pearson correlation  
(out of 20 time-delay conditions) 

Up-regulationb 
(sensitivity)

 
Down-regulationc No significant 

relationshipd 
Up-regulatione 
(sensitivity) 

Down-regulationf Not correlated  

0~40 0.1 401 20 (100%) g 0 0 5 (25%) 3 (15%) 12 (60%) 

0~40 1 41 16 (80%) 0 4 (20%) 5 (25%) 2 (10%) 13 (65%) 
0~40 5 9 10 (50%) 0 10 (50%) 5 (25%) 0 15 (75%) 
0~40 10 5 7 (35%) 0 13 (65%) 9 (45%) 0 11 (55%) 
0~40 20 3h 11(55%) 0 9 (45%) 20 (100%) 0 0 
0~20 0.1 201 19 (95%) 0 1 (5%) 3 (15%) 8 (40%) 9 (45%) 
0~20 1 21 6 (30%) 0 14 (70%) 3 (15%) 6 (30%) 11 (55%) 
0~20 5 5 10 (50%) 0 10 (50%) 5 (25%) 0 15 (75%) 
0~20 10 3 10 (50%) 0 10 (50%) 9 (45%) 0 11 (55%) 
a  The assumed truth is determined by equations (1), with    .                 corresponds to 20 time-delay conditions. 
b,c The total probability of up- and down-regulation is greater than 0.6. The direction of either up- or down-regulation is determined by whether the first 
extrema of the pair are both local maxima (or minimA - or not. 
d The total probability of up- and down-regulation is smaller than 0.6. 
e It satisfies Pearson correlation coefficient > 0.6.  
f It satisfies Pearson correlation coefficient < -0.6. 
g The percentiles are provided in the brackets. 
h Improper setting.  
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Table 4.2 Test the performance of BTD and Pearson correlation on random dataa.  

Number of 
data 
points 

Assigned by BTD  Assigned by Pearson correlation  

95% CI
b
 of (probability of 

causal relationship) 
P1=Percentage of 
(probability of 
causal 
relationship > 0.5) 

Specificity 
i.e. 1-P1 

95% CI
c
 of Pearson 

correlation coefficient 
P2=Percentage of 
(Pearson 
correlation 
coefficient > 0.6) 

P3=Percentage of 
(Pearson 
correlation 
coefficient < -0.6) 

Specificity 
i.e. 1-P2-P3 

3 0.42857 0.88235 0.548 0.452 -0.9976 0.99617 0.303 0.299 0.398 

4 0.15789 0.94937 0.717 0.283 -0.95476 0.95587 0.202 0.201 0.597 

5 0.29183 0.78097 0.897 0.103 -0.88313 0.88785 0.145 0.137 0.718 
6 0.10297 0.95842 0.429 0.571 -0.83414 0.79731 0.103 0.109 0.788 

7 0.22697 0.89155 0.339 0.661 -0.77946 0.75473 0.075 0.083 0.842 

8 0.091668 0.91072 0.269 0.731 -0.70062 0.66896 0.056 0.058 0.886 

9 0.07884 0.77034 0.371 0.629 -0.69614 0.67197 0.049 0.055 0.896 

10 0.076611 0.88538 0.167 0.833 -0.61841 0.6282 0.036 0.033 0.931 

11 0.067683 0.9048 0.231 0.769 -0.59369 0.59664 0.024 0.024 0.952 

12 0.050019 0.88936 0.13 0.87 -0.59125 0.58081 0.018 0.021 0.961 

13 0.061804 0.87924 0.203 0.797 -0.56221 0.57432 0.018 0.012 0.97 

14 0.059366 0.87111 0.093 0.907 -0.54818 0.51903 0.011 0.015 0.974 

15 0.055939 0.82548 0.049 0.951 -0.47838 0.47955 0.005 0.004 0.991 

16 0.036966 0.67571 0.047 0.953 -0.49545 0.48621 0.006 0.007 0.987 

17 0.025204 0.78212 0.054 0.946 -0.44601 0.4592 0.002 0.003 0.995 

18 0.049685 0.88935 0.082 0.918 -0.45796 0.49352 0.002 0.005 0.993 

19 0.020282 0.64439 0.057 0.943 -0.44223 0.4589 0.003 0.004 0.993 

20 0.017038 0.6097 0.041 0.959 -0.46005 0.42189 0.003 0.002 0.995 

21 0.017264 0.7115 0.044 0.956 -0.41698 0.43623 0.004 0.002 0.994 

22 0.011694 0.65702 0.034 0.966 -0.43103 0.43122 0.001 0.004 0.995 

23 0.010686 0.67288 0.035 0.965 -0.41797 0.41085 0.003 0.001 0.996 
24 0.011273 0.58448 0.032 0.968 -0.39153 0.39027 0.001 0.001 0.998 

25 0.011716 0.60351 0.035 0.965 -0.38695 0.37794 0 0.004 0.996 
a  The time-course data of the two proteins are all generated from                . The simulation is repeated 1000 times for each setting. 
b,c 95% quantile-based confidence interval. They are constructed using Monte Carlo methods. The number in the left column is the lower bound, while the number in the 
right column is the upper bound.  
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In conclusion, BTD beats Pearson correlation on the aspect of sensitivity. On the 

aspect of specificity, BTD does not perform as well as Pearson correlation; however, 

when the number of time points is relatively large, say over 20, their performance can 

be close.  

 

Choice of time range and sampling interval  

 

Figure 4.7 Choice of time range and sampling interval. 

A – Slow response, B – Fast response. Both are on the same time scale from 0 to T. Blue lines indicate 
sampling time points. The proper time range for collecting data and sampling intervals are not the same 
for slow and fast reponses. 
 

 

For signal transduction, early events may be quite fast (1-5 minutes), while later 

steps in the response may be slower (many minutes to hours). In biological experiments, 

the time ranges are always chosen to match the research focus (illustrated in Figure 4.7). 

There is no fixed setting for the choice of time range and sampling interval. For slow 

responses, the time range is chosen to be longer, and the sampling interval wider; while 
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for fast responses, the time range is chosen to be shorter, and the sampling interval 

narrower. The time range for collecting data should cover the response curve for the 

entire biological process under study and the sampling interval should support enough 

resolution to present the characteristics of the curves. 

4.3.2 Simulation 2: The three-tiered cascade in MAPK pathway 

 The MAPK (mitogen-activated protein kinase) pathway is a commonly used 

paradigm for signal transduction, and it has been extensively studied. It is highly 

conserved from yeast to human and plays a central role in many crucial cellular 

processes, such as proliferation and differentiation [212]. A typical structure of the 

three-tiered cascade is described by Hornberg et al. [213]. It involves three kinases in 

succession (RAF-MEK-MAPK) forming interconnected cycles; in each cycle, a kinase 

phosphorylates a substrate, and a phosphatase dephosphorylates the substrate [213]. 

The cascade can be activated by various extracellular stimuli, including epidermal 

growth factor (EGF) via the epidermal growth factor receptor (EGFR). I use the model on 

JWS Online Cellular Systems Modeling Database [214] to simulate the concentrations of 

species in the cascade, including of RAF, MEK and MAPK and their phosphorylated forms, 

as well as the active and inactive EGF receptors. The simulated curves are shown in 

Figure 4.8A. Note that the phosphorylation dynamics obtained following the common 

experimental procedure [7] is not the concentration of species, but the concentration 

fold-change of the phosphorylated species after stimulation (   ) versus control 

(   ). Thus I calculate the fold-change, and the curves in 0-40 min having 11 time 

points and 41 time points respectively are shown in Figure 4.8B and C.  

Before performing BTD, the fold-changes need to be discretized into three states 

– low, medium and high. Instead of using the simple 2-fold change criterion adopted in 

Simulation 1, the discretization is performed based on the sample mean and standard 

deviation of the log (logarithm) fold-changes (see Materials and Methods).  

The 41-point case works perfectly to detect the underlying truth: RAF up-

regulates MEK, and meanwhile MEK up-regulates MAPK. Both the sensitivity and 

specificity (as defined in Chapter 3) are 100%.  
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The 11-time-point case can tell that MAPK is the last protein in the cascade, and 

RAF and MEK have correlation; however, it cannot differentiate the role of RAF and 

MAPK, because this information is lost in the sparsely sampled data (see Figure 4.8B). 

Considering all the direct causal influences between proteins, the sensitivity is 50% and 

the specificity is 75%. 
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Figure 4.8  Time-course curves generated from the simplified MAPK pathway model.  

RAF, MEK and MAPK are coded as x1, x2 and x3, respectively; while their corresponding activated forms 

are coded as x1p, x2p and x3p, respectively. The active and inactive EGF receptors are coded as R and Rin, 

respectively. A - Concentrations change over time after the EGF stimulation at time = 0. At time = 0, the 

sample is considered as untreated control. The raw data are generated on the platform of JWS Online 
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Cellular Systems Modelling Database [214], which contains the Hornberg mathematical model [213]. 

Simulation settings: Start time = 0, End time = 40; Steady-state analysis: steady state; Metabolic control 

analysis: Control coefficients. Time = 0 is when the EGF is added into the system, and R’s concentration 

increases to 0.5 instantly. B - Fold-change curves, EGF-treated versus control. 11 time points taken at 

closest points to 0, 4, 8, 12, …,40 (units). C - EGF-treated-versus-control fold-change curves, 41 time points 

taken at closest points to 0, 1, 2, 3, …, 40 (units). The control is set when time = 0. In plot B and C, the fold-

changes are calculated as EGF-treated-versus-control concentration ratios of x1p, x2p, and x3p at each 

selected time point.  

 

4.3.3 Simulation 3: Epidermal growth factor receptor (EGFR)-mediated signal 

transduction 

EGFR-mediated signal transduction plays a crucial role in controlling 

fundamental cellular functions. The pathway is often hyperactivated in cancer cells and 

is considered a promising target for cancer therapy [215–219]. Mathematical models 

have been developed to describe the mechanism in great detail [219–222]. I use the 

extensive Wolf model with feed-forward inhibition via transient activated RAS-GAP 

proteins [219] to generate in silico time course data of protein concentrations. This 

model consists of 61 reactions, which describe the complex processes including receptor 

activation, receptor-adaptor complex formation, the phospholipase C-γ (PLCγ) cycle, the 

RAS cycle, and the MAPK cascade. The concentrations of all the species in the model, 

including the complexes and intermediates, are calculated using JWS Online [214]. 

Parameters and initial values are the same as mentioned in [219], except [R2P]0 = [R-

PLP]0 = [R-ShP]0 = [Rafa]0 = [MEKP]0 = [MEKPP]0 = [ERKP]0 = [ERKPP]0 = 0.01 to ensure 

non-zero concentrations of phosphorylated proteins as control (see the equations for 

calculating total phosphorylated proteins immediately below). 

Only six proteins in the model have single and/or double phosphorylated forms, 

and their concentrations can be calculated as below. The species in the square brackets 

are the protein complexes and intermediates defined in Wolf model [219]. 

 Total phosphorylated EGFR = 2×([R2P] + [R-PL] + [R-PLP] + [R-GAP] + [R-G] 

+ [R-G-S] + [R-Sh] + [R-ShP] + [R-ShP-G] + [R-ShP-G-S] + [R-Sh-G-S-Ras-GDP] 

+ [R-Sh-G-S-Ras] + [R-Sh-G-S-Ras-GTP] + [R-G-S-Ras-GDP] + [R-G-S-Ras] 
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+ [R-G-S-Ras-GTP] + [R-GAP-Ras-GTP]); 

 Total phosphorylated PLCγ = [R-PLP] + [PLCγP]+ [PLCgPI]; 

 Total phosphorylated SHC = [R-ShP] + [R-ShP-G] + [R-ShP-G-S] + [ShP]  

+ [ShP-G]+ [ShP-G-S] + [R-Sh-G-S-Ras-GDP] + [R-Sh-G-S-Ras]  

+ [R-Sh-G-S-Ras-GTP]; 

 Total activated RAF = [Rafa] + [Rafa-Pase1] + [MEK-Rafa] + [MEKP-Rafa]; 

 Total single phosphorylated MEK = [MEKP] + [MEKP-Rafa] + [MEKP-Pase2]; 

 Total double phosphorylated MEK = [MEKPP] + [ERK-MEKPP] + [ERKP-MEKPP] + 

[MEKPP-Pase2]; 

 Total single phosphorylated ERK = [ERKP] + [ERKP-MEKPP] + [ERKP-Pase3]; 

 Total double phosphorylated ERK = [ERKPP] + [ERKPP-Pase3]. 

 

Following the principle of the common experimental procedure [7] (also adopted 

in Simulation 2), I calculate the dynamics of the above phosphorylated forms. The 

simulated phosphorylation dynamics is shown in Figure 4.9. 

 

Figure 4.9 Phosphorylation dynamics simulated for EGFR-mediated signal transduction. 
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 Twelve pairs of the phosphorylated species have been assigned the probability 

of causal influence > 0.999. No directional causal influence is determined by causal 

relationship discovery. Thus time delay detection is applied to these pairs to determine 

the possible direction of the causal influence and up-/down-regulation. The result is 

shown in Figure 4.10. Each species in the figure is the total concentration of a 

phosphorylated form, including those involved in complexes with other proteins. It is a 

very much simplified pathway without all those intermediate species. In the complex full 

pathway model [219], EGFR is activated by phosphorylation. Phosphorylated EGFR and 

SHC form a complex, which promotes phosphorylation of SHC. Phosphorylated EGFR 

also forms a complex with PLCγ, then PLCγ will be phosphorylated. pMEK is downstream 

of pSHC. The influence between them is not direct. Double phosphorylated MEK 

promotes phosphorylation of ERK. The parameters and initial values of the ODE model 

used for generating input data might affect the direction of influences I observe. We did 

not calculate the sensitivity or specificity for this complex example, because the nodes 

in the predicted network are total concentrations, and they are not the same entities as 

in the Jana model [219].  

4.4 Discussion  

I evaluated BTD on three simulated datasets, generated respectively from an 

artificial two-protein model, and two ordinary differential equation (ODE) models of 

signal transductions. In Simulation 1, I demonstrated the advantage of BTD over 

traditionally used correlation analysis in terms of detecting regulations when time delay 

exists. I sought to identify the critical number of time points, at and above which the 

approach can obtain high confidence network structure. In Simulation 2, BTD performs 

well in reconstructing the simple three-tiered cascade. More sample points improves 

the reconstruction. In Simulation 3, the phosphorylated proteins are found to be closely 

related. Directions of causal influences are determined by time delay detection. 

However, I have to be cautious while explaining up- and down- regulation. The dynamics 

of the total concentration of a phosphorylated protein might not be the same as the 
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dynamics of its addends. The current time delay detection can be applied to oscillatory 

dynamics, still requiring the stimulus occurring at    . More sophisticated methods 

other than detecting first extremes might be applied to improve delay pattern detection 

[223,224]. 

 

   

Figure 4.10 Predicted network of EGFR-mediated signal transduction. 
pEGFR: total phosphorylated EGFR, pSHC: total phosphorylated SHC, pRLCg: total phosphorylated RLCγ, 
pRAF: total phosphorylated single phosphorylated RAF, pMEL: total single phosphorylated MEK, ppMEK: 
total double phosphorylated MEK, pERK: total single phosphorylated ERK.  

 

The BTD method is a new approach for reconstructing networks, including 

signaling networks, from dynamics data. In BTD, I integrate causal relationship discovery 

with time-delay pattern detection to identify relationships between species, such as 

phosphoproteins. I first identify the protein pairs having causal relationships and 

determine the direction of influence; then assign up-regulation or down-regulation to 

the protein pairs. Inferred relationships can be connected to reconstruct networks. In 

real biological experiments, the data on intermediate species in a pathway might not be 
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collected. The predicted relationships might be direct or indirect, thus further 

interventional experiments will usually be needed to distinguish them. Reconstructing 

signaling networks from phosphorylation dynamics remains challenging. Despite the 

high experimental cost, more time points will improve the performance, especially for 

fast changing dynamics.  
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                                                                       Chapter V 

5                                Conclusion and Future Work 

 

Reconstructing biochemical networks from data is challenging, because of the 

large amount of potential combinational interactions between species, unknown 

parameters related to those interactions, and multiple potential states. I have made an 

effort to address a part of this challenge for both equilibrium-state data and dynamic 

data. My work contains methodology development, methodology evaluation by 

simulation, and their applications to large-scale datasets. Discovery of networks, such as 

signaling networks, protein-protein interaction networks and kinetic networks, is the 

overall goal of my studies. In this thesis, Chapter 2 describes a quantitative analysis 

pipeline for equilibrium-state phosphoproteomics data with mutational interventions; 

Chapter 3 presents a general method for analyzing time-course kinetics data, using a 

differential equation-based method; and Chapter 4 concentrates on dynamic 

phosphoproteomics and applies a Bayesian method integrated with time delay 

detection to analyze the time-course data.  

 

In Chapter 2, I presented a novel comprehensive analysis pipeline, incorporating 

statistical and mathematical methods, for investigating and evaluating quantitative 

phosphoproteome data, identifying key proteins in specific pathways, discovering the 

protein-protein interactions and inferring the signaling network. Recent statistical 

research in proteomics concentrates on protein and peptide identification, while I 

focused on post-identification analysis of the data. I demonstrated that going far 

beyond conventional methods such as clustering and functional enrichment which are 

applied in most phosphoproteomics studies yields real benefits in identification of new 
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leads for network components and enables further experimental studies. 

Furthermore, I developed the pipeline to partially compensate the missing value issue 

haunting proteomics studies, without excluding the incomplete measurements which 

also contain information. 

The major building blocks of the pipeline include phosphopeptide meta-analysis, 

correlation network analysis and Bayesian method-based causal relationship discovery. I 

have successfully applied the pipeline to a series of interventional experiments 

identifying phosphorylation events underlying the transition to filamentous growth in 

Saccharomyces cerevisiae strains. Five of the predicted proteins have been prospectively 

tested by interventional phenotypic experiments and all of them exhibit differential 

invasive growth, validating my approach. 

The pipeline provides an objective analysis of incomplete phosphoproteomics data 

and has practical applications for discovering signaling networks using interventional 

phosphoproteome data. I anticipate the methodology to be applicable as well to other 

interventional studies via different experiment platforms. 

 

In Chapter 3, I present a computational method MIKANA Ver. 2, an improved 

version of MIKANA Ver. 1, for network reconstruction from time-course data. It 

integrates mathematical modeling of biochemical networks with statistical methods to 

infer kinetic reactions and estimate reaction parameters from data. MIKANA Ver. 1 is a 

pioneer work that predicts the optimal set of reactions from a large number of possible 

reactions, and predicts the reaction parameters as well. The MIKANA framework has 

three-components, pseudo-linear model generation, optimization and parameter fitting, 

which altogether serve as a tool for network reconstruction without previous knowledge 

about the reaction mechanism. I have made improvements and extensions to each 

MIKANA component.  

The pseudo-linear model generator has been improved to support autocatalytic 

reactions and third-order reactions. Non-negative Lasso is used for model selection 

targeting global optima, instead of the previously used stepwise model selection 



   
 

109 
 

method, which might be trapped in local optima. It is coupled with LMF [191,192] non-

linear parameter fitting  that can be applied to both oscillatory and linear systems, and 

is more suitable for overdetermined systems, where there are more equations than 

unknown parameters. Spline smoothing [190] is provided as an option for filtering out 

noise from input data, which also improves curve fitting. The prediction precision and 

stability has been improved on simple models, including second-order oscillatory 

models. Although MIKANA Ver. 2 improves some of the deficiencies of the currently 

available algorithm, it still has limitations. I present a thorough assessment and 

discussions of the advantages and limitations of the improved method, and propose 

possible solutions to overcome the latter. 

One of the limitations is that, degeneration of complex systems causes different 

differential equation systems to have similar behavior in some range of parameters. 

These systems are indistinguishable to our algorithm without prior information. The 

reverse engineering task of reconstructing networks (represented by differential 

equations) from data might give another system as the solution, which degenerates to 

have almost the same behavior. In the future, instead of presenting only one 

reconstructed system (supported by MIKANA Ver. 1 and Ver. 2), a set of systems all 

having perfect fitting might be presented. Sufficient prior information might help to 

choose the most appropriate one in specific conditions.   

Predicting the topology of higher-order oscillatory systems is challenging. The 

pseudo-linear model is designed to fit the coefficients to precisely predict first 

derivatives of the concentration. When the oscillatory curve of concentration has the 

same derivatives with a straight line except several sparse turning points, they are 

almost indistinguishable to the fitting method. Alternative methods other than pseudo-

linear model fitting, such as genetic algorithm, might be used to grow the possible set of 

reactions from single reactions.   

The pseudo-linear model is prone to collinearity issues, where the explanatory 

variables (the columns in the design matrix) are not independent, and might have linear 
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relationships. Possible solutions include principal component regression, partial least 

square regression and so on [207], which worth investigation.   

 

In Chapter 4, I presented a method called BTD (Bayesian + Time Delay detection), 

a Bayesian method integrated with time delay detection to infer signaling networks 

from time-course data, such as phosphorylation dynamics data, in response to specific 

stimuli. The method was designed to fully utilize the “time delay” between upstream 

and downstream proteins in time-course data, which facilitates discovery of causal 

influences.  

In the BTD workflow, I first identify the protein pairs having causal relationships 

and determine the direction of influence; then assign up-regulation or down-regulation 

to the protein pairs. Inferred relationships can be connected to reconstruct networks. 

Although my approach is developed aiming at phosphorylation dynamics data, it can be 

readily applied to other biological networks which display time-delay patterns.  

I evaluated the performance and stability of my approach on simulated datasets. 

The approach is able to detect regulations with time delays which are ignored or 

wrongly identified using only correlation coefficient. I also sought to define the critical 

number of time points at and above which the approach can obtain higher confidence 

network structures. The method works well on my simple models (Simulation 1 & 2). For 

complex models with intermediates that are unable to measure (Simulation 3), the total 

concentrations of phosphorylated forms are calculated by summing up all intermediates. 

These total concentrations are used to reconstruct a simplified approximate structure. 

The predicted network structure of total phosphorylated forms in Simulation 3 can be 

partially explained by biological knowledge. 

In real biological experiments, the intermediates in a pathway might be missed in 

the datasets. The predicted relationships might be direct or indirect, thus further 

interventional experiments are needed to distinguish them. Despite the high 

experimental cost, more time points will improve the performance, especially for fast 

changing dynamics.  
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The current time delay detection can be applied to oscillatory dynamics, still 

requiring the stimulus occurring at    . More sophisticated methods might also be 

developed and applied to improve delay pattern detection. Time series analysis and 

signal processing techniques provide a resource of tools that I can investigate in future 

studies. 

 

In summary, I have developed and applied methods for analyzing large-scale 

phosphoproteomics data, and also performed mathematical modeling and reaction 

reconstruction for smaller-scale kinetics. The pipeline presented in Chapter 2 for 

analyzing large-scale interventional equilibrium-state phosphorylation data has been 

validated by experiments, future applications are anticipated for the newly developed 

pipeline. Chapter 3 presented my efforts to reconstruct kinetic networks from time-

course data. Both improvements and limitations are thoroughly evaluated. Possible 

solutions have been proposed to reduce limitations and improve the performance of the 

algorithm. Chapter 4 presented a new method integrating a Bayesian method with time 

delay detection to identify upstream-downstream relationships between proteins, with 

a special focus on phosphorylation dynamics. More sophisticated methods for time 

delay detection might improve the performance of network prediction. All of these 

studies have benefited me by providing a better understanding of biological and 

chemical networks, which helps to elucidate the regulation of biological processes, such 

as signaling pathways.  
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