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CHAPTER I

Introduction

1.1 Introduction and Motivation

Risk assessments have driven public health decisions in the United States since

1975, when the EPA completed its first risk assessment document [98]. By 1983, the

National Research Council had set up the formal risk assessment framework of hazard

identification, exposure assessment, dose response assessment, and risk characteri-

zation that is still in use today[23]. This system remains a dominant public policy

tool for evaluating public health concerns, informing regulatory and technological

decisions, and prioritizing research needs and funding.

Though useful, the process of risk assessment is by no means perfect. One of the

greatest hurdles with risk assessments is their ability to deal with variability. Stan-

dard quantitative risk assessment models generally use mean values for parameters,

without accounting for the variability that arises from uncertainty and heterogeneity

in these values. However, when parameter uncertainty is included, quantitative mi-

crobial risk assessment (QMRA) models have provided considerably more variable

ranges in their output [26], potentially reflecting true differences in risk. Neglecting

such variability in parameter inputs, therefore, may lead to erroneous decisions for

public health and risk management.

1
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When standard statistical tests of heterogeneity are used, they generally do not

account for specific study characteristics including differences in individuals, pop-

ulations, exposure characteristics, and methods [135]. Multiple computational and

methodological adjustments have been made to the risk assessment process in an

attempt to overcome this issue. Some have advocated use of Bayesian approaches.

While naturally encompassing uncertainty[78], these approaches are complex in their

interpretation, requiring an understanding of probabilistic representations of uncer-

tainty and the use of prior information. The EPA uses a much simpler system,

dealing with differences in exposure by requiring consideration of possible exposure

levels: central tendency and high end. The interpretation of this method is much

simpler, but may miss trends and dynamics that are not incorporated in only these

two values.

Risks that arise from the environment are inherently complex due to the inter-

play of biological, ecological, and social factors that result in a variety of exposure

and transmission scenarios. While risk assessment models of environmental risks

will always encompass a great deal of uncertainty, systematic, quantitative assess-

ment of heterogeneity can expose underlying variability arising from both natural

processes and methodological sources. This variability not only can affect overall

risk estimates, but also can result in disparate effects of an environmental hazard or

disease. Understanding both the sources and effects of underlying heterogeneity in

environmental risks allows for more accurate risk estimates while identifying those

populations that are most vulnerable

In this work, I demonstrate the importance of incorporating sources of hetero-

geneity in risk assessment, and provide a perspective on how this heterogeneity can

be integrated in a way that is tractable yet does not ignore important trends. This
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is done through the examination of three scenarios of environmentally acquired haz-

ards. 1) individual exposure estimates for dioxins, furans, and PCBs; 2) population

outbreak risk of norovirus; and 3) population infection risk of dengue.

Aim 1

Identify the effect of individual heterogeneity on the excretion rates of dioxins,

furans, and PCBs, and provide a method of half-life estimation that incorporates

individual characteristics.

Background and Significance

Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls

(PCBs) are lipophilic chemicals that can persist in the body for years [106]. An in-

dividuals body burden is a product of multiple years of exposure [94] and a lifetime

of varying elimination rates. Different congeners of dioxins, furans, and PCBs each

have different persistence in the human body, reflected in their different reported

half-lives. The apparent half-life, defined as the change in concentration in the body

over time, is the net result of elimination from the body, changes in body compo-

sition, and intake from the environment. For each congener, variation in half-life

exists both among individuals, and within the same individual over his or her life-

time. This variability can be partially attributed to personal characteristics including

age, body fat, smoking status, and breastfeeding. The factors that affect elimination

rates must be taken into account when predicting past exposures and body burdens

of these chemicals, and when comparing current serum congener profiles to exposure

media.
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Innovation

Although studies show an association between individual characteristics and the

pharmacokinetics of dioxins, furans, and PCBs in the human body, there is no stan-

dard method for determining a chemical′s half-life as a function of these factors.

The majority of half-life studies for dioxins, furans, and PCBs follow accidental or

occupational exposures, and no single study exists covering the lifespan of people

with varying physical characteristics. Despite summaries of pharmacokinetic data of

dioxins, furans [89], and PCBs [74], exposure and body burden estimation has been

hindered by the absence of a half-life range and value for each congener.

This study provides congener-specific reference half-life values for adults and in-

fants as well as a method to modify this value based on individual characteristics,

resulting in a method of individual half-life estimation. Based on a literature search,

values are defined that approximate the half-life for 29 PCDD, PCDF, and PCB

congeners in infants and adults. The relationships between half-life and individ-

ual characteristics are examined, and an equation is presented that uses the chosen

reference values to predict half-lives based on these individual characteristics.

Aim 2

Determine a realistic distribution of post infection norovirus shedding duration and

demonstrate how incorporation of heterogeneity in this parameter can affect estimates

of outbreak risk.

Background and Significance

Norovirus is the most common cause of epidemic gastroenteritis across all age

groups [31], responsible for >90% of viral gastroenteritis and about 50% of allcause

outbreaks worldwide [92]. In the United States, norovirus causes an estimated 71,000
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hospitalizations annually, costing nearly 500 million dollars per year [72]. These

infections typically occur during explosive and short-lived epidemics, followed by

inter-epidemic periods of prolonged weak transmission [11]. This epidemiological

pattern is due in part to its low infectious dose [123], high strain diversity, high

environmental stability, and lack of lasting immunity [38].

Another characteristic that affects norovirus epidemiological dynamics is long-

term asymptomatic viral shedding. A typical norovirus infection is self-limiting, with

the infectious period lasting a few weeks, but some individuals can shed norovirus

long past their symptomatic period [35, 99, 132]. These long-shedders may affect

epidemiological dynamics by acting like viral reservoirs, keeping the disease in the

population longer, potentially past the length of naturally acquired immunity. They

may also act as incubators, creating antigentically diverse variants of the virus that

may be sufficiently different from circulating strains to spark novel outbreaks.

A better understanding of the risk factors for persistent viral shedding can lead to

the a priori identification of long-shedding individuals, information that can be used

in norovirus outbreak interventions and prevention. More stringent guidelines for

those who work with these individuals, as well as interventions targeted at mitigating

the effect of potential long-shedders who do become infected, could reduce population

risk while protecting more sensitive populations from outbreak recurrence.

Innovation

The presence of a long-shedding group has been shown to impact outbreak dy-

namics and population outbreak risk in models of salmonella in cattle [63], but such

effects have not been shown in humans. Models of human norovirus transmission

often assume a fast rate of recovery. For example, of two recent models of nosoco-

mial norovirus transmission, one assumes an infectious period of less than 2 days
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[132], and the other a distribution from 1 to 8 days [65], though shedding has been

recorded for much longer. To date, we know of no norovirus transmission models

that incorporate long-shedding. Therefore, the effect of long-shedders on norovirus

transmission risk remains largely unknown.

In this work we create a more realistic empirical distribution of norovirus shedding

duration by extracting data from the literature. This more realistic distributions is

then used to inform a series of norovirus transmission models. We use these models to

examine how the presence of a long-shedding group affects population risk, including

the probability, outcome, and severity of norovirus transmission. We show that long-

shedders can increase these transmission outcomes and should therefore be included

when estimating norovirus risk.

Aim 3

Identify differences in dengue infection and show how these differences can be

partially explained by heterogeneity in rates of travel and road access.

Background and Signficance

Dengue stands as one of the greatest contemporary challenges to public health.

Its human and economic costs have increased dramatically over the last few decades

as it has spread around the world. The global expansion of its range and incidence

is reflected most strikingly in the Americas and the Caribbean, where urbanization,

insufficient political commitment, increased travel, and inadequate resources have

contributed to the re-emergence and increase of dengue. This has occurred in all of

the 19 countries previously certified to be free of its vector, Aedes aegypti [122]. In

2008, more than 900,000 cases of dengue and 25,000 cases of dengue haemorrhagic

fever (DHF) were reported in the Americas [91], and the geographical reach of dengue
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virus transmission now spreads from southern USA to Northern Argentina.

Dengue has generally been considered an urban disease, but is spreading to rural

areas in many countries. It is unknown what favors transmission in these settings [24].

Lack of spatial clustering supports the hypothesis that there is little autochthonous

transmission in rural areas [24]. This indicates that repeated introductions from

human migration and travel may be responsible for infections in these regions. Re-

gression studies have shown that migration was a predictor of the presence of dengue

IgG antibodies at baseline and subsequent seroconversion to dengue [24]. Previous

studies indicate a link between road access and increased risk of diarrhoeal disease

[29] and malaria [133], and dengue vector studies have found that mosquitoes are

distributed along roadways [28], demonstrating that road access may play a role in

its spread. The construction of a new road into a rural area in northern coastal

Ecuador provided an opportunity to undertake a natural experiment that analyzes

the effects that differences in road access have on dengue infection.

Innovation

Dengue IgG antibodies are thought to provide lifelong immunity to a particular

strain, theoretically remaining in the body for a lifetime. Cross-sectional analysis of

the presence of these antibodies provides data spanning over 50 years, and can be

used to understand dengue transmission over time. In 1996 a road was constructed

connecting the region to the coast and to the Andes, increasing migration rates and

travel. Age and location linked seroprevalence data can show how differences in road

access affect rates of infection over time.

In this work, we will use field collected longitudinal and cross-sectional serological

data to examine how heterogeneity in road access can affect dengue risk. Specifically,

we examine the effect of road access on dengue risk, and explore possible causes for



8

differences in infection distribution including changes in levels of travel to areas of

known high dengue transmission. By understanding how heterogeneity in road access

and travel is linked to differences in risk, we can both identify regions that are at

risk for dengue introduction, and inform appropriate scales for intervention.



CHAPTER II

Apparent Half-Lives of Dioxins, Furans, and PCBs as a
Function of Age, Body Fat, Smoking Status, and

Breastfeeding

2.1 Abstract

This study reviews the half-life data in the literature for the 29 dioxin, furan,

and PCB congeners named in the World Health Organization Toxic Equivalency

Factor scheme, with the aim of providing a reference value for the half-life of each

congener in the human body and a method of half-life estimation that accounts for

an individual’s personal characteristics. Data from more than 30 studies containing

congener-specific elimination rates were compared. Half-life data were extracted

and compiled into a summary table. A subset of these data was created based on

defined exclusionary criteria. Values for each congener are defined that approximate

the half-life in an infant and in an adult. A linear interpolation of these values is

used to examine the relationship between half-life and age, percent body fat, and

absolute body fat. Predictive equations were developed based on these relationships

and adjustments for individual characteristics. The half-life of dioxins in the body

can be predicted using a linear relationship with age that is adjusted for body fat,

smoking, and breastfeeding. An alternative method based on a linear relationship

between half-life and total body fat is suggested, but this approach requires further

9
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testing and validation with individual measurements.

2.2 Introduction

Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls

(PCBs) are lipophilic and can persist in the body for years [106]. An individual′s

body burden is a product of multiple years of exposure [94] and a lifetime of varying

elimination rates. Different congeners of dioxins, furans, and PCBs each have differ-

ent persistence in the human body, reflected in their different reported half-lives. The

apparent half-life, defined as the change in concentration in the body over time, is

the net result of elimination from the body, changes in body composition, and intake

from the environment. For each congener, variation in half-life exists both among in-

dividuals and within the same individual over his or her lifetime. This variability can

be partially attributed to personal characteristics including age, body fat, smoking

status, and breastfeeding. The factors that affect elimination rates must be taken

into account when predicting past exposures and body burdens of these chemicals,

and when comparing current serum congener profiles to exposure media.

2.2.1 Relationship with Age

The relationship between age and half-life is complex, as age is strongly associated

with other factors that affect half-life length (e.g., smoking status and percent body

fat). Age may have an independent effect through an age-related reduction in hepatic

elimination capacity [8], and as humans age they generally experience an increase in

and a redistribution of body fat as well as a relative change in organ sizes, causing a

redistribution of lipophilic chemicals that also greatly alters their rates of elimination

[131]. This relationship is further muddied by a strong cohort effect that is seen

in cross-sectional studies, caused by varying levels of persistent chemicals in the
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environment. During the 1960s and 1970s, environmental levels of dioxins were much

higher than they are today, leading to higher body burdens of the more persistent

congeners in older people, above the level expected from persistence alone [94].

In a study of German chemical workers, half-life length of numerous dioxins and

furans was positively associated with increasing age [32]. This is consistent with a

study on the Yusho and Yucheng cohorts of penta-, hexa-, and hepta-CDF half-lives

[68]. Studies on the Ranch Hand cohort show a slight negative association [137] or

no association [79], but this may be due to the narrow age range characterizing these

cohorts. Studies with child or infant subjects report significantly shorter half-life

values than studies with adult cohorts [59, 67, 68]. In children under 18 exposed

in the incident in Seveso, Italy, a strong association between half-life and age was

found, and children had significantly shorter half-lives than adults [52].

The rapid growth of neonates and children, especially in lipid stores, can result in

a dramatically reduced apparent half-life through dilution [20]. However, the effect of

dilution alone is not sufficient to create the observed reduction in apparent half-life;

it may also be due to a faster metabolism, an increased rate of fecal lipid excretion,

or a combination of these events [2, 54]. As children age, their rate of growth slows

and the effect of elimination on apparent half-life becomes more important than that

of dilution.

2.2.2 Relationship with Smoking Status

Smoking has been associated with lower levels of dioxins and dioxin-like com-

pounds. Active smokers have lower PCDD, PCDF, and PCB serum levels than

both non-smokers and passive smokers [16, 9], and levels of dioxin-like PCBs in

human milk are negatively related to the smoking habits of the mothers [127].

This is in agreement with Flesch-Janys et al. [32], who observed that the half-
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lives of some PCDD and PCDF congeners appeared to be dependent on smoking

status. A significantly faster decay was observed in smokers, with increases rang-

ing from 30% (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) to 100% (1,2,3,4,7,8-

Hexachlorodibenzo-p-dioxin (HxCDD)). Smoking induces the transcription of cy-

tochrome P450 (CYP) 1A2 and other enzymes responsible for the elimination of

dioxin and dioxin-like compounds, most likely through the activation of the Ah- re-

ceptor by polycyclic aromatic hydrocarbons in tobacco smoke [143]. The total effect

of smoking on half-life may be through this increased induction of dioxin degrading

enzymes, or through a combination of other physiological effects.

2.2.3 Relationship with Body Burden

Dioxins are known to up-regulate the enzymes responsible for their own elimi-

nation, meaning that high concentration could increase elimination rates. Modeled

and experimental data in rats show that at high exposures the induction of CYP1A2

is a more important factor for persistence in the body than differences in adipose

tissue distribution [30]. A concentration dependent biphasic elimination rate has

been identified in cases of acute poisoning [1], in the Seveso incident [8, 80], in chil-

dren [52], and in the Yusho and Yucheng rice oil poisonings [68, 101], where the rate

at high concentrations is much higher than that at lower concentrations. Human

data suggest that the serum concentration where this transition occurs is at 700 ppt

[52] for TCDD, and at 1000 - 3000 ppt for PCDFs [68]. These concentrations are

considerably higher than those measured in people exposed to present background

levels.
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2.2.4 Relationship with Body Fat

Dioxins, furans, and PCBs are highly lipophilic, and therefore partition preferen-

tially in adipose tissue and other body fat. High amounts of adipose tissue, estimated

by body mass index (BMI), are associated with higher serum levels of dioxins and

furans [22], where BMI = weight(kg)
height2(m)

. Because it acts as a reservoir for these chemi-

cals, increases in adipose tissue results in their storage rather than transportation to

excretory and metabolizing organs. Models based on rat data demonstrate a linear

relationship between increasing fat mass and half-life length at low body burdens,

with the impact of adipose tissue on half-life becoming less important at high body

burdens [30], due to the relationship with concentration described above.

The relationship between percent body fat and half-life is apparent throughout

the Ranch Hand study [82, 79, 81], but these studies did not find a significant rela-

tionship between half-life and short-term changes in percent body fat. These findings

are supported by the German occupational cohort, where a one percent increase in

percent body fat was associated with a decay rate decrease in the range of 0.0031

ng/kg/yr (1,2,3,6,7,8-HxCDD) to 0.0063 ng/kg/yr (1,2,3,4,6,7,8–hepta-chlorinated

dibenzo-p-dioxin (HpCDD)) for dioxins, and about 0.005 ng/kg/yr for furans [32].

This study did show an increased decay rate in workers with intermediate weight loss,

but in a limited number of people (n = 3). Half-life is moderately correlated with

both BMI and body fat mass in children, but longitudinal data from children are

difficult to interpret due to their fast growth and simultaneous age-related changes

[52].
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2.2.5 Relationship with Breastfeeding

For women, lactation can be the major route of elimination of many persistent

lipophilic chemicals [2, 108]. Twenty percent or more of the maternal body burden

of some persistent pollutants, such as PCBs, can be transferred during six months

of lactation [62, 87]. The reduction of half-life due to breastfeeding is both congener

specific and duration dependent. The amount of fat in breast milk varies over time,

affecting the partitioning of chemicals from the body [21]. Different congeners par-

tition differently into the breast milk from the blood [108, 107] and this distribution

is thought to be dependent on the molecular weight of the congener. Along with

molecule diameter and differences in lipophilicity, molecular weight may influence

membrane permeability, thus causing differences in distribution [136].

Although studies show an association between individual characteristics and the

pharmacokinetics of dioxins, furans, and PCBs in the human body, there is no stan-

dard method for determining a chemical′s half-life as a function of these factors.

The majority of half-life studies for dioxins, furans, and PCBs follow accidental or

occupational exposures, and no single study exists covering the lifespan of people

with varying physical characteristics. Despite summaries of pharmacokinetic data

of dioxins, furans [89], and PCBs [74], exposure and body burden estimation has

been hindered by the absence of a half-life range and value for each congener. This

study provides congener specific reference half-life values for adults and infants and

a method of half-life estimation based on individual characteristics. Based on a

literature search, values are defined that approximate the half-life for 29 selected

PCDD, PCDF, and PCB congeners in infants and adults. The relationships between
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half-life and individual characteristics are examined, and an equation is presented

that uses the chosen reference values to predict half-lives based on these individual

characteristics.

2.3 Methods

An extensive literature search was conducted for human half-life or decay values

for the 29 congeners of dioxins, furans, and dioxin-like PCBs included in the World

Health Organization 2005 Toxic Equivalency Factor (TEF) scheme [129]. Measured

or modeled half-life values for each congener and the age of the subject or mean age

of the cohort were recorded from over 30 studies (Tables 2.1, 2.2, and 2.3).

A subset of data was selected based on the following criteria: blood serum con-

centrations below <700 ppt total TEQ at the time of sampling, adult subjects, and

measurements that were not reported as inaccurate in later studies. Half-life values

that were calculated assuming steady state conditions were retained if less than 25

years, because this assumption is inappropriate for more persistent substances with

significantly higher historical levels. The mean and range of half-lives were calculated

for the retained subset to establish a representative set of half-lives for each congener

in a moderately exposed adult.

The adult reference values were selected to represent a 40 - 50 year-old with

blood dioxin concentrations in the range where the rate of elimination is driven by

fat levels. Sources that provided consistent data across congeners and that were

within the range of all measured data were preferentially chosen. Infant reference

values were chosen to represent an individual under two years old. When infant data

were not available, the adult reference value for the congener was multiplied by the

ratio of the length of the adult half-life over the infant half-life for TCDD. Half-life
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variation as a function of individual characteristics was examined. When the mean

age of the cohort was not explicitly provided, the mean age at the mid-point of

sampling was estimated. When percent body fat or total body fat data were not

available, the mean age-specific BMI reported in the NHANES 2003-2004 study [13]

was converted to percent body fat. For adults, the approach proposed by Deurenberg

et al. [25] was used:

PercentBodyFat = 1.20BMI + 0.23age− 10.8sex− 5.4

where sex corresponds to females = 0, and males = 1.

We used this approach in adults because, unlike the method developed by Knapik

et al. [57] that is used by Flesch-Janys et al. [32] and the Ranch Hand cohort

analysis [79, 137], it takes into account both age and sex. Studies have shown that if

age is not included in the conversion from BMI to percent body fat, it may seriously

underestimate percent body fat in older people [25, 45].

In children (ages 0 to 19), a series of age-based equations presented by Hattis et al.

[45] are used to predict percent body fat (pbf) for each age in months. Total body fat

was estimated by multiplying the average weight reported in the NHANES data for

a given age and sex by the calculated percent body fat [13]. Based on the apparent

relationships between half-life and these parameters, we propose a procedure of half-

life estimation that is a function of age, percent body fat, smoking status, and

breastfeeding.

2.4 Results and Discussion

2.4.1 Review of reported half-life values

A comprehensive report of half-life values for dioxins, furans, and PCBs is pre-

sented in Tables 2.1, 2.2, and 2.3. Studies that are listed more than once are those
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that report multiple half-life values, generally corresponding to measurements on

different individuals. Of the studies examined, one third are limited to TCDD:

five of these report on the Ranch Hand Cohort [79, 80, 81, 95, 137], three with

kinetic data based on the incident in Seveso, Italy [52, 80, 86], one on a poison-

ing incident in Austria [37], and two based on an adult male volunteer [96, 110].

There are sixteen different measurements based on the Yu-Cheng and Yusho cohorts

[17, 50, 67, 68, 102, 103, 101, 114]. Six studies report models or measurements based

on occupational exposures [10, 32, 100, 109, 130, 138]. Five studies have information

only on infants and children [40, 53, 54, 59, 67, 139], and two data sets are based

on general populations [89]. There were an average of 10 reported values for each

dioxin and furan congener, but only 4 for each PCB. There were no half-life data for

1,2,3,7,8,9-hexa-chlorinated dibenzofuran (HxCDF).

The ranges of the reported value subsets for adults are shown in Figure 2.1 (dioxins

and furans) and Figure 2.2 (PCBs), and the values are shown in Tables 2.1, 2.2, and

2.3. The comparison of reported half-life values reveals large variation across con-

geners. For example, the mean half-lives of octa-chlorinated dibenzofuran (OCDF),

tetra-chlorinated dibenzofuran (TCDF), and 1,2,3,7,8-pentachlorinated dibenzofu-

ran (PeCDF) are all less than three years, whereas the mean half-lives for some of

the HxCDD congeners are over a decade. The half-lives in the PCBs range from only

a few months (PCB 77) to a few decades (PCB 157), and one study reported a >100

-fold range in metabolic clearance rates between PCB congeners [9].

Within each congener, half-life values reported from the literature vary substan-

tially, typically by a factor 2-3, but up to a factor 35 within the subset. This variation

may be a result of different exposure concentrations or scenarios, differences in the

demographics of the considered cohort, or differences in the pharmacokinetic model
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Figure 2.1: Range of half-life values (in years) for dioxins and furans based on a subset of values
from the literature. Bars represent 25th, 50th, and 75th percentiles. Diamonds show the placement
of the reference values within this range, circles represent individuals that are not outliers, and
asterisks show outliers.

used in half-life calculation. Several studies reported on a single person or had very

small sample sizes, resulting in unstable mean values. For example, the 15.7-year

half-life reported in Flesch-Janys et al.[32] for 1,2,3,7,8-PeCDD becomes 11 years

when one worker close to background is excluded. Some of the variability in re-

ported half-life values can be explained through differences in physiological processes

among individuals and different congener properties. However, very short half-lives

(i.e. <1 year) are unlikely for the most frequently found congeners because of the

high exposures required to sustain measurable body burdens, and very long half-lives

(>10 years) may be artifacts of ongoing exposures [114].
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Figure 2.2: Range of half-life values (in years) for PCBs based on a subset of values from the
literature. Bars represent 25th, 50th, and 75th percentiles. Diamonds show the placement of the
reference values within this range and asterisks show outliers
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Most cohorts are composed of adult males exposed to high concentrations, though

measurements were sometimes carried out years after exposure. Half-life measure-

ments for persons at or near background levels, including those with no history of

substantial exposure or those who have returned to background levels after significant

exposure, may be confounded by the effect of probable continuous exposure to back-

ground levels of dioxins. Half-life measurements and the influence of other factors

(such as smoking and body fat) may be better evaluated when sampled from per-

sons with higher accidental exposures, after accounting for concentration-dependent

effects. Most of the studies report concentrations normalized by gram of lipid, and

assume a conserved equilibrium between dioxins and lipids across the body. The

suitability of this measurement to calculate the overall body burden depends on the

distribution of the congeners into adipose tissue. Though different congeners parti-

tion differently into different organs [49, 56], a correlation between levels in the blood

and levels in adipose tissue is supported [48].

2.4.2 Variation in half-life as a function of age

A positive association between age and half-life is observed Figure 2.3. Though

this may indicate a direct relationship between age and half-life, it also incorporates

the effect of other parameters, such as age related changes in percent body fat. The

influence of body fat, using BMI as a surrogate, is included in the displayed regres-

sions, which use the mean age-specific BMI reported for the 2003-2004 NHANES

study [13].

The points representing literature reported data in Figures 2.3 - 2.6 are generally

averages of a range of ages and a range of half-life values. These ranges, where

available, are presented in Tables 2.1 - 2.3. The non-linear variations seen at low

ages when we use the model proposed by Van der Molen et al. [130] are linked
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Figure 2.3: Half-Life of 2,3,7,8 TCDD in years as a function of age (in years). Van der Molen et
al. (Flesch-Janys) refers to the application of the model presented by Van der Molen et al. (2000)
to the Flesch-Janys et al. (1996) data as done by (Ogura 2004). The solid line represents the linear
interpolation between the infant and adult reference half-lives (slope and intercept given in Table
5). Literature reported data refers to values from the current literature and presented in Table 2.1.
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to modeled variations in body fat during adolescence, but are not confirmed by

experimental data.

The Kerger et al. 2006 data correspond to children with concentrations below 700

ppt [52] and support the hypothesis of a close to linear increase in half-life between

ages 0 to 35. The slopes calculated with this method were similar to slopes for adults

calculated with the method provided by Flesch-Janys et al. [32], spanning adults 30

to 80 years old. However, the equation proposed by Flesch-Janys et al. [32] may be

problematic above the age of 60 years old, as very small variations in the elimination

rate could lead to substantial divergence in half-live length, as observed in the case

of 1,2,3,7,8-PeCDD Figure 2.4.

Overall, we observed a nearly linear association between half-life and age, which

is most likely linked to the combined effects of growth-caused dilution at young ages

and an increase in body fat at older ages. However, this association does not account

for inter-individual variation at each age.

2.4.3 Variation of half-life with body fat

Percent body fat is a good predictor of half-lives in adults as shown for 2,3,7,8-

TCDD in Figure 2.5. This method is inappropriate for infants and children (identified

by oval in figure), due to drastic changes in percent body fat and short half-lives.

The discrepancy between percent body fat and half-lives observed at young ages

suggests the use of absolute body fat mass to account for the effect of fat over the

entire age range Figure 2.6. Total body fat was obtained by multiplying calculated

percent body fat by age-specific NHANES weight averages [13]. Further data collec-

tion is needed to confirm the validity of the relationship between body fat mass and

half-life.
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Figure 2.4: Half-life of 12378-PeCDD in years as a function of age in years. Van der Molen et
al. (Flesch-Janys) refers to the application of the model presented by Van der Molen et al. to
the Flesch-Janys et al. (1996) data (Ogura 2004). Literature reported data refers to values from
the current literature and presented in Table 2.1. The solid line represents the linear interpolation
between the infant and adult reference half-lives (slope and intercept given in Table 2.5). As shown
by the top line, the equation proposed by Flesch-Janys et al. may be problematic above the age of
60 years old, as very small variations in the elimination rate could lead to substantial divergence in
half-live length.



28

Figure 2.5: 2,3,7,8-TCDD Half-life (in years) as a function of percent body fat. Literature reported
data refers to values from the current literature and presented in Table 2.1. The oval shows the
area where the relationship of increased half-life with increased body fat does not hold. These
values represent young subjects. The squares show subjects whose half-lives were measured when
they had serum concentrations that were well above the level of increased induction of degradation
enzymes.
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Figure 2.6: 2,3,7,8-TCDD Half-life (in years) as a function of total body fat (in kg). Literature
reported data refers to values from the current literature and presented in Table 2.1. The two points
below the rest of the data (in square) represent subjects whose half-lives were measured when they
had serum concentrations well above the level of increased induction of degradation enzymes.
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2.4.4 Reference half-life values

The regression method used by Flesch-Janys et al. [32] was preferentially used for

adult reference half-life values because it covers multiple congeners in a consistent

way; incorporates information for percent body fat, sex, and smoking status; and

the resulting values are within the range of the other values in the literature. In the

case of TCDD, the single median value given by Flesch-Janys et al. [32] was used as

the reference value, because of its consistency with other reported data. For dioxin

and furan congeners not reported in the 1996 Flesch-Janys et al. study, the model

proposed by Van der Molen et al. [130] was used to determine a reference half-life,

using the median age and percent body fat from Flesch-Janys et al. (48.7 years,

21.9%, respectively). For 1,2,3,7,8,9-HxCDF, which had no available half-life data,

the reference half-life for 1,2,3,6,7,8-HxCDF was used.

Reference half-lives of PCB 77 and PCB 81 were based on measurements from sam-

ples of adipose tissue, while reference half-lives for the ten remaining PCB congeners

were determined based on measurements of blood [89]. These values correspond to

half-lives observed in the general Japanese population, assuming steady-state condi-

tions. Because of the large decrease in dioxin, furan, and PCB concentrations in the

environment in the last 30 years, the steady-state assumption is only appropriate for

congeners with half-lives that are significantly shorter than the time elapsed from

the peak in environmental concentrations; the half-lives of more persistent congeners

could be over estimated. Reference half-life values for infants were based on congener

specific values reported by Leung et al. [67] where available. These values are mod-

eled estimates based on earlier reported concentration data for PCDD and PCDF

congeners in breastfed infants [2, 3]. These reference values are based on existing

data, and better numbers may be available with the generation of new data. In some
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cases it may be appropriate to use the median values, which are also provided in

Table 2.5.

2.4.5 Methods for individual half-life calculation

Based on the relationships discussed above, two methods are proposed to predict

individualized apparent half-lives of dioxins, furans, and PCBs over a lifetime. We

specifically focus on half-lives resulting from moderate levels of exposure, comparable

to those resulting from the general exposure of the U.S. population. The use of a

simple multi-linear regression model to predict half-life as a function of age and BMI

or body fat is problematic because data for age and BMI coefficients are lacking

for several congeners, and as previously discussed, percent body fat is not a good

predictor of half-lives at young ages.

To overcome these limitations, the first method that we propose is a linear re-

lationship of half-lives with age. The slope (betaage) and the intercept (beta0(age))

coefficients were found by using a linear interpolation between the infant and adult

reference half-lives (given in table 2.5. Inter-individual variation in body composition

and smoking habits are accounted for with two multiplicative factors (equation 2.1).

The observed linear influence, supported by modeled results [30], of the percent body

fat at age = i, is incorporated in the calculation by multiplying the original equation

by the ratio of the individual percent body fat (pbfi) to the reference percent body

fat for that age (pbfref(agei)). The reference percent body fat was determined by

converting the age specific BMI values from the NHANES data to percent body fat

using the method proposed by Duerenberg et al. [25] and presented above. Similarly,

the effect of smoking is introduced through a unitless multiplicative smoking factor

(SFi). The ratios of the decay rate of smokers to non-smokers in Flesch-Janys et

al. [32] are used when available, ranging from 0.5 to 0.7, corresponding to a 50%
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to 30% reduction in half-life (Table 2.5). When not available, the geometric mean

of all available smoking factors was used, corresponding to a 35% reduction in half-

life. Gender differences are indirectly accounted for by the different percent body fat

values for males and females at each age. The predicted half-life (years) for an indi-

vidual, i, as a function of age, smoking status, and percent body fat i is calculated

using the empirical model formalized by equation 2.1.

(2.1) t1/2(agei, smoke, pbf)i = [β0age + βage(agei)](SFi)
pbfi

pbfref(agei)

This equation estimates half-lives for adults that are comparable to those obtained

with the approach proposed by Flesch-Janys et al. 1996 (See Appendix, Figure 1),

while extending its applicability to children and adults above 60 years old. A math-

ematical equation describing the additional rate of elimination due to breastfeeding

(equation 2.2) is based on the observed effect of breastfeeding in a cohort of German

women [136]. According to this study, a breastfeeding woman expels an estimated

8.76 kg of fat per year through lactation (qf [kg/day] 0.8 kg milk / day of average 3

% lipid), and partition coefficients between blood lipid and milk fat for each congener

(KBM , unitless) range from 0.5 to 4.3 (Table 2.5) [136]. ∆tbfed (unitless) represents

the fraction of the considered year during which the woman was actively breastfeed-

ing, and pbfi (%) and BWi (kg) are the woman′s percent body fat and body weight,

respectively.

(2.2) kbfed =
qf ∗∆tbfed

KBM(pbfi
100

)BWi

Assuming no interaction between breastfeeding and the other half-life determi-

nants, the overall predicted apparent half-life for a woman who is actively breast-
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feeding is obtained by adding the effect of elimination through breastfeeding to other

age, smoking, and body fat adjusted processes (equation 2.3 ).

(2.3) t1/2(total) = [
1

t1/2(age, smoke, pbf)
+
kbfed
ln(2)

]−1

This method predicts a half-life of 4.3 years for TCDD in a 30 year-old, non-

smoking woman with 30% body fat if she did not breastfeed that year, and a half-life

of 1.8 years if she breastfed for six months.

The alternative proposed strategy to model congener specific half-lives is based

on an observed apparently linear relationship (Figure 2.6) with absolute body fat

(kg), and is formalized in equation 2.4. The same correction for smoking status is

used as in the first approach (equation 2.1).

(2.4) t1/2(smokei, bfi) = [β0(bf) + βbf (βbfi)]SFi

There is insufficient data to test this equation, and this approach requires further

data collection and validation.

2.5 Discussion

Reported half-lives of dioxin and dioxin-like congeners in humans vary widely both

between and within different dioxin, furan, and PCB congeners. Age, a measure of

body fat, smoking habits, and breastfeeding status are strong determinants of the

elimination rates observed in humans. This study integrates these critical factors

into an empirical model that predicts the half-lives of the 29 WHO TEF scheme

congeners over a human lifespan. We support a method of half-life estimation that

is a function of age. A nearly linear relationship is shown between half-life and body
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fat, but further study and new data are required to evaluate the validity of any

estimation methods based on this approach.

Pharmacokinetic information is scarce for many PCB congeners, and many ex-

isting studies report on PCB mixtures rather than individual congeners. Further,

much of the existing data does not take into account the effect of ongoing expo-

sures to background levels. The half-life range and reference values may be refined

as more congener specific data becomes available. Pharmacokinetic studies across

multiple congeners, which take into consideration demographic factors, are neces-

sary to determine accurate elimination rates. Further study into the causes of inter-

and intra-individual elimination rate variability, such as the effect of genetic poly-

morphisms and sensitivity to known factors, would further refine half-life estimation

accuracy.

The equations described here represent a simple and relatively consistent approach

that can be used to determine individual apparent half-lives for numerous dioxin,

furan, and PCB congeners. Median and reference values are representative of average

behavior rather than extremes. These values cannot be used for highly exposed

persons for whom high TEQ will induce higher elimination. However, the proposed

method of half-life prediction can be used to relate past and present intake to serum

concentrations and is useful to understand the effect of demographic characteristics

on serum concentrations.



CHAPTER III

Heterogeneity in Norovirus Shedding Duration Affects
Community Risk

3.1 Abstract

Norovirus is a common cause of gastroenteritis in all ages. Typical infections cause

viral shedding periods of days to weeks, but some individuals can shed for months

or years. Most norovirus risk models do not include these long-shedding individuals,

and may therefore underestimate risk. We reviewed the literature for norovirus

shedding duration data and stratified these data into two distributions: regular-

shedding (mean 14 / 16 days) and long-shedding (mean: 105 / 136 days). These

distributions were used to inform a norovirus transmission model that predicts the

impact of long-shedders. Our transmission model predicts that this subpopulation

increases the outbreak potential (measured by the reproductive number) by 50-80%,

the probability of an outbreak by 33%, the severity of transmission (measured by the

number of cases) by 20%, and transmission duration by 100%. Characterizing and

understanding shedding duration heterogeneity can provide insights into community

transmission that can be useful in mitigating norovirus risk.

36
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3.2 Introduction

Norovirus is notorious for causing highly explosive epidemics in semi-closed en-

vironments, though it also creates significant disease through endemic community

transmission. As the most common cause of epidemic gastroenteritis across all age

groups [31], it is responsible for greater than 90% of viral gastroenteritis and about

50% of all cause outbreaks worldwide [92]. In the United States, norovirus infections

cause an estimated 71,000 hospitalizations annually, costing nearly $500 million per

year [72]. While not as well characterized as its role in outbreaks, its endemic role is

major; endemic incidence is estimated at around 5% per year for all ages and 20%

per year in children under five [73, 121].

A typical norovirus infection is self-limited, with the shedding period lasting a

few days to a few weeks. However, many individuals can shed noroviruses long

past symptom resolution [35, 99, 132], and some can shed for months or even years.

Asymptomatic shedding has been linked to transmission [90, 120], implying that in-

dividuals who shed the virus for long times may have a serious role in sustaining

community transmission after an outbreak. Infants are often in this long-shedding

group; an immature immune system or the presence of maternal antibodies (found

in about 75% of infants <6 months [84]) can lead to extremely long shedding peri-

ods. Similarly, immune-compromised individuals, who are unable to fully clear the

infection, may shed norovirus for months or even years [34, 46].

Despite these data indicating the presence of long-shedders, and the resultant

heterogeneity in shedding duration, current norovirus transmission models assume

short and homogeneously distributed durations of viral shedding. For example, of

two recent models of nosocomial norovirus transmission, one assumes an infectious
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shedding period of less than 2 days [132] and the other a distribution from 1 to 8 days

[65], while a recent household transmission model estimates an average infectious

period of 1.17 days [142]. These short infectiousness periods may be appropriate

in closed environments such as a house or hospital, where symptomatic individuals

shed a high magnitude of the virus and quickly exhausts a closely connected and

limited population, but they cannot capture the effects of long-shedders in sustaining

community transmission.

To better characterize the effect of long-shedding on norovirus risk, we review the

existing literature for empiric data on human norovirus shedding duration. These

data are used to estimate distributions of shedding duration that include realistic

heterogeneity. This information is then used to inform a norovirus transmission

model. Using this model, we demonstrate how the presence of a long-shedding group

affects risk outcomes including the number of infections, duration of transmission,

and probability of outbreaks.

3.3 Methods

3.3.1 Literature Review Search Strategy

We reviewed the literature for individual level human viral shedding duration

data through the electronic database Scopus by a keyword search using the terms

norovirus paired with shedding and/or excretion. These articles were supplemented

with sources identified from bibliographies of the resultant studies and with unpub-

lished data from known norovirus researchers.

We restricted the results to English language human studies containing individual-

level data that were acquired through the use of Polymerase Chain Reaction (PCR).

Studies that compare PCR with earlier techniques (electron microscopy and ELISA)

demonstrate substantial improvements in detection capabilities [4, 7], and thus more
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accurate estimates of viral shedding duration. The main concern with PCR is that it

does not distinguish between viable and non-viable viruses, and because noroviruses

are nonculturable, there is no way to determine the infectivity of those detected

through this method [69]. It is PCR detection data to estimate the duration of

infectiousness, based on three points: 1) norovirus studies demonstrate that passage

through a human host does not diminish infectivity [123], meaning that shed virues,

though not culturable remain viable. 2) Post-symptomatic shedding has been shown

to occur in very high concentrations [7, 126, 6], and 3) norovirus has an extremely

small minimum infectious dose [141] challenge studies have demonstrated infection

with 4.8 RT-PCR units [7], and the estimated average probability of infection for a

single norovirus particle is about 0.5 [123]. Even if some viral particles mutated to

have non-infectious capsids yet remained intact, only a few would need to remain to

cause infection

3.3.2 Literature Data Extraction

In the challenge studies, shedding duration was calculated from the first positive

stool sample to the last positive stool sample. For other types of studies (e.g. out-

break investigations), the date of the first positive stool sample was not known, so we

assume that viral shedding starts with the onset of symptoms and continues until the

last positive sample. If shedding lengths were reported in days after inoculation [7],

we subtracted the number of days to symptom onset to account for the incubation

period, and for consistency among the data sets. Though pre-symptomatic shedding

has been reported in less than 30% of the population [38], it is generally for less

than one day [7, 39, 66], and there is no indication that it would affect the different

shedding groups differently.

We used two methods to identify the long-shedder population, shown in table
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Regular Shedders Long Shedders
Operational >and Competent Compromised and/or <1
Functional ≤ 34 days > 34 days

Table 3.1: Criteria for data stratification

3.1. First, we examined the literature to identify individual characteristics poten-

tially related to long-shedding. We stratified the data into a long-shedding group

if an individual was identified in the original study as having one or more of these

characteristics (operational long-shedders). As a comparative method, we defined

long-shedders as those whose shedding durations exceeded a set maximum shedding

length, regardless of individual characteristics (functional long-shedders). We chose

the value of 34 days as this cut off, as it was the maximum duration in controlled

experiments using only healthy individuals (Moe, previously unpublished data (see

B.1, appendix)) [66, 113]).

We fit the data to multiple distributions. Using a likelihood ratio test we found

that both the lognormal and gamma distributions fit the data well, but we chose

gamma distributions based on biological plausibility [47], precedence [105]], and

because this distribution can be included in a deterministic model using multi-

compartmental waiting times when the shape parameter is >1 (explained in [142]).

The stratified data were fit to gamma distributions using the dgamma function in R

[97], which estimates parameters using maximum likelihood.

3.3.3 Model Design

The data from the review were used to parameterize two modified susceptible

(S), exposed (E), infectious (I), recovered (R) transmission models (SEIR models)

based on the schematic in figure 3.1 and the equations below. We first examine

a standard deterministic transmission model that includes a long-shedding group.

Second, we examine a stochastic, discrete-time version of the deterministic model.
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ILSL EL RL
γLεβS(IR+IL)

SR ER IR RR
γRεβS(IR+IL)(1-ρ)

ρ

Figure 3.1: Model schematic. S = Susceptible, E = Exposed, I = Infected, R = Recovered, R =
Regular-Shedding, L = Long-shedding. Parameters: β = transmission probability; ε = 1/incubation
period; γR = 1/regular-shedding infectious; γL = 1/long-shedder infectious period; ρ = fraction
that is long-shedding.

In both of these models, individuals may be in any of the following states, reflecting

the within-host stages of norovirus infection: susceptible (SRegular(R) or SLong(L)),

exposed/incubating (ER or EL), infectious/shedding (IR or IL), or recovered (RR or

RL).

3.3.4 Model Equations

(3.1)
δSR

δt
= −βSR(IL + IR)

(3.2)
δSL

δt
= −βSL(IL + IR)

(3.3)
δER

δt
= βSR(IL + IR)− εER

(3.4)
δEL

δt
= βSL(IL + IR)− εEL

(3.5)
δIR
δt

= εER − γRIR
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(3.6)
δIL
δt

= εEL − γLIL

(3.7)
δIR
δt

= γRIR

(3.8)
δIL
δt

= γLIL

For the deterministic model, vital dynamics such as host births and deaths are

excluded because of the relatively short time scale of the simulations. For the same

reason, we assume permanent immunity after recovery. We assume the absence of

competing strains and co-infection, and that host mixing is proportional. Infectious

states (IR and IL) are assumed to exert an equal force of norovirus infection due to

1) low infectious dose [123], 2) high levels of asymptomatic excretion [76, 90], and 3)

lack of correlation between virus titer in the first positive stool with shedding length

[126].

The population is split into two groups: a fixed proportion (ρ) is in the long-

shedding group, with the remainder (1 − ρ) in the regular-shedding group. When

time = 0, an infectious seed of one individual is in the regular exposed state (ER), and

the remainder are in the susceptible states (SR, SL). Susceptible individuals become

exposed (ER or EL) at an average per-infected rate of β, and transition into the

corresponding infectious/shedding state (IR or IL) at an average rate of ε, which is

assumed to be the same for both shedding groups. Individuals enter recovered states

(RR and RL) at rate γR for regular-shedders, and γL for long-shedders. Estimated

parameters used in these simulations are provided in table 3.2.
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We assess risk in the deterministic model by examining changes in the basic re-

production number (R0), which is a measure of the potential of a disease to spread in

a population. R0 is typically defined as the expected number of secondary infections

produced by a single index case in a completely susceptible population [5]. It can be

expressed as the product of the expected duration of the infectious period and the

rate at which secondary infections occur; in a standard SEIR model with a mean

infectious period of 1/γ and a transmission rate of β, R0 is given by 3.9.

(3.9) R0 =
β

γ

In our model, where multiple infectious phases are possible, R0 is the sum of

the expected number of secondary cases generated by an individual in each state,

weighted by the probability that the index case will occupy that state. For the model

presented here, R0 is a product of the transmission probability β and the expected

time an individual will spend in each of the infectious states IR and IL (1/γR and

1/γL) and the probability ρ of being in the long-shedding group (3.10).

(3.10) R0 = β(
(1− ρ)

γR
+

ρ

γL
)

We use a discrete-time stochastic model to examine probability, duration, and

severity of outbreaks, where individuals can be in the same disease states as presented

in the deterministic formulation above (SR, SL, ER, EL, IR, IL, RR, RL; Figure 3.1).

In this model, we assume a single population with a frequency-dependent contact

rate. The model is initialized with a population of size 10,000, with one infected

individual at time = 0 and the rest of the population in the susceptible states.

The total number of new infections Xt is drawn from a binomial distribution (St,

δt), where St is composed of both SR and SL individuals. The exposed period is

assumed to follow an exponential distribution with mean duration 1/γ. The regular-
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Parameter Definition (units) Mean
Valuea Rate
(1/days)

Gamma
parame-
ters

Source

β Transmission rate 0.075
ε 1/length of exposed period 0.76 [132]
γR(O) 1/regular infectious period

(Operational)
0.061
(1/16.4)
2.2, 7.4

Review

γL(O) 1/long infectious period (Oper-
ational)

0.009
(1/105.6)

0.8, 129.1 Review

γR(F) 1/regular infectious period
(Functional)

0.069
(1/14.5)

2.7, 5.3 Review

γL(F) 1/long infectious period (Func-
tional)

0.007(1/136.0) 0.7, 199.4 Review

ρ Fraction that is long-shedding 0.05 [44, 128]

Table 3.2: Parameter definitions and values used in simulations. aindicates value used when
parameter was not varied in simulation.

shedding and long-shedding infectious periods (1/γR and 1/γL) are assumed to follow

gamma distributions with parameters obtained by maximum likelihood estimation

using data collected from our literature review.

3.4 Results

3.4.1 Data Extraction

The literature search resulted in a total of 18 English language studies with

individual-level human norovirus molecular shedding duration data, listed in table

3.3 and we received two previously unpublished datasets (for unpublished data see

B.1, appendix).

Shedding duration ranged from 2 to 898 days across all studies (N = 168 individu-

als) with total mean and median values of 49 days and 19 days, respectively. Much of

the variability in this dataset is explained by stratification of the population on two

individual characteristics: compromised immunity and infancy. Sixty-two of the 168

individuals were labeled as immunocompromised and/or infants, thus considered to-

gether as operational long-shedders, while the remaining individuals were considered
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Operational
Regular-
Shedders

Operational
Long-
shedders

Funcitonal
Regular-
Shedders

Functional
Long-
Shedders

Total

N (individuals) 106 62 120 48 168
Range (days) 2-54 2-898 2-34 35-898 2-898
Median (days) 13 47.5 13 80 19
Data Mean (days) 16.4 105.6 14.5 136.3 49.3
Standard Deviation 11.7 155.3 8.5 165.0 103.7
Coefficient of Vari-
ation

71.3 147.1 58.4 121.1 210.3

Table 3.4: Duration summary from empirical review for operational and functional shedding cate-
gories.

operational regular-shedders. Mean shedding lengths between these groups differ by

about 90 days (Table 3.4). The immunocompromised group included a child with a

genetic disorder [36], transplant recipients [33, 64, 88, 112, 134], pediatric oncology

patients [75, 118], and one individual with multiple sustained norovirus infections

whose immune status was not evaluated, but was assumed to be immunocompro-

mised [55]. Infants were those individuals whose age was reported as <1 year in the

study. It is reasonable to expect differences in shedding length to vary by genotype

as well, because of different levels of immune response, but we did not have sufficient

data to examine this possibility.

Infants that were immunocompetent shed on average for 22.1 days, 1.3 times

longer than those in the regular-shedding group (immunocompetent and >1 year

old) who shed for a mean of 16.4 days. Regardless of age, immunocompromised

individuals shed on average >6 times longer than regular-shedders (139.1 days for

>1 year old and 106.6 days for infants). The observed effect of both compromised

immunity and infancy (90.2 days) is less than the expected additive joint effect (128.4

days). We tested for additivity using linear regression in R [97]; the p value for this

test was 0.01, prompting us to reject the additive effects model. This indicates that

either condition can cause long-shedding, but both together (being both an infant and
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immunocompromised) does not result in extremely long-shedding durations beyond

the effect of either condition alone.

We estimate the percentage of the United States population in the operational

long-shedding group, ρ (infants and/or immunocompromised), to be about 5%. The

number of infants born in the U.S. in 2007 was 4,317,119 [44] in a population of

304,059,724 [128], approximately 1.4% of the population. The number of immuno-

compromised individuals in the United States has been previously estimated to be

about 10 million individuals (3.6% of the U.S. population), a number that includes

organ transplant recipients, HIV infected individuals, and cancer patients [51].

This operational definition is useful for the a priori identification of high-risk

individuals and for understanding the causes underlying long-shedding, but was not

ideal for our analysis as many cases in our dataset are missing data on age or immune

status, and thus cannot be correctly classified using our operational criteria. Further,

some individuals who are labeled as immunocompromised, and therefore labeled as

long-shedders with our operational definition, actually shed for short durations. We

therefore also stratified the data based on actual shedding length (functional long-

shedders shed for >34 days). The mean of the two groups by the functional definition

differ by over 120 days (Table 3.4).

The fitted distribution for the unstratified data is highly variable (Figure 3.2).

When we stratify the data based on both of our defined shedding groups (func-

tional and operational), much of this variability remains in the long-shedding group

(coefficient of variation = 147.1 operational, 121.1 functional), while the regular-

shedding groups are more homogenous (coefficient of variation = 71.3 operational,

58.4 functional) (Table 3.4). Using the law of total variance, the variance of the

aggregated populations is 10826.2 for the operational definition and 20989.2 for the
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Figure 3.2: Shedding lengths and fitted gamma distributions of individual shedding duration data
from empirical review. Data are truncated at 200 days; figure does not include 7 individuals who
shed for >200 days (up to 898 days). Gray bars indicate operational long-shedders (infants and
immunocompromised individuals) and white bars indicate operational regular-shedders (immuno-
competent non-infants). The dotted line at 34 days delineates the cutoff point for the functional
definition. Dashed lines represent fitted gamma distributions for the operational definition (Regular-
shedder parameters = 2.2, 7.4, Long-shedder parameters = 0.8, 129.1) and solid lines are gamma
distributions fitted to the functionally defined populations, where regular-shedders <34 days, long-
shedders ≥ 34 days (Regular-shedder parameters = 2.7, 5.3, Long-shedder parameters = 0.7, 199.4).

functional definition. By dividing the variance of the means by the total variance, we

estimate that stratification into long-shedding and regular-shedding groups explains

35% (functional) to 37% (operational) of the total variance.

3.4.2 Deterministic Model Results

Changes in R0 determine whether an epidemic will occur as well as the subse-

quent course of transmission. If R0 ≤ 1 transmission will be limited to sporadic

secondary infections, and a major outbreak will not occur, whereas if R0 >1 an out-

break can result. In terms of long-shedding, factors that affect R0 include the mean

duration of shedding of this group (1/γL) and the proportion of the population that

is long-shedding (ρ). The effects of changes in these long-shedding related values are

independent of the transmission rate, β, meaning that resultant relative increases in

R0 are robust to scenarios of different transmission rates, including environmental or
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ρ = 0.05, estimated γL ρ = 0.05, estimated γL ∗ 2 ρ = 0.10, estimated γL
Functional Definition 1.3 1.6 1.5

Operational Definition 1.5 1.8 1.7

Table 3.5: Deterministic model results: Estimated fold increase inR0 with addition of long-shedders

symptomatic transmission.

Based on equations 3.9 and 3.10, and assuming ρ = 5%, the inclusion of a long-

shedding group (mean = 105.6 days (operational) and 136.3 days (functional)),

increases risk by increasing R0 (1.3 fold increase for the operational definition, 1.5

for functional). Because our value of ρ is estimated, we examined the effect of

its increase; if ρ grows to 10% of the population (e.g. increased survival rates for

those with compromised systems or increase in birth rate), the inclusion of the long-

shedding group results in a 1.5 fold (operational) or 1.7 fold increase (functional)

in R0 over a population without long-shedders. Likewise, a two-fold increase in

the mean shedding length of the long-shedding group (1/γL) results in a 1.6 fold

(operational) or 1.8 fold (functional) increase in the value of R0 (Table 3.5).

The importance of an increase in R0 depends on its original value as the number

of excess cases that result from an increase in R0 is highly dependent on β. For

example, if R0 is already quite high (such as within a home), then an outbreak

would already be likely to spread through a population and a 2-fold increase would

not have much effect. If R0 is below 1 is or very low, then this same increase can

mean the difference of an outbreak dying out or of it taking off in a population(see

Figure 1, Koopman and Longini [58] for further explanation). More research needs

to be done to determine the community transmission rate to fully understand the

effect of long-shedders on R0.
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3.4.3 Stochastic Model Results

Results from stochastic simulations demonstrate that the presence of long-shedders

increases the probability that an outbreak will occur while increasing the severity

and duration of transmission when disease does not die out. We examined changes in

the probability of high transmission events, where high transmission was defined as

>200 cases. Based on our simulation results, transmission above this level was sus-

tained long term, and below this level would die out. In the absence of long-shedders

(ρ = 0, i.e. the entire population draws shedding durations from the functional

regular-shedding distribution), there is a 23% chance that high transmission will oc-

cur in 1000 runs using our estimated parameters (in Table 3.2). If we allow 5% of the

population to draw from the functional long-shedding distribution, the probability of

high transmission increases to 31%. This effect is less evident using the operational

definition, where the probability of remains about 37% (Table 3.6).

As shown in Figure 3.3, including a long-shedding group by either definition in-

creases both the number of cases, and its duration of sustained transmission. With

the addition of long-shedders, the mean number of cases increases 145% (operational)

to 225% (functional) over a population with only regular-shedders (Table 3.6). The

duration of sustained transmission also increases, approximately doubling for both

definitions. Figure 3.3 also demonstrates that these outcomes are dependent on

our method of stratification. For example, the number of cases in the absence of

long-shedders is much higher using the operational definition (filled circles) than the

functional definition (open circles), due to the wider range and higher mean of this

subset.
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Figure 3.3: Transmission duration and number of cases using shedding length parameter values
from our empirical review (3.2). Only model runs resulting in high transmission (>200 cases) are
shown. Runs with both long-shedding and regular-shedding groups are represented by squares,
runs with only regular-shedders are represented by circles. Filled gray shapes indicate use of the
operational (a priori) definition and open shapes indicate use of the functional definition (>34
days) for long-shedders. Black lines show the mean and standard distribution for each scenario.

Probability of
High Transmis-
sion (%)

Mean cases /
Transmission
Event

Mean Duration
of Transmission
(days)

Operational / No long-shedders 36 4584 633
Operational / With long-shedders 38 6710 1199

Functional / No long-shedders 23 2939 756
Functional / With long-shedders 31 6630 1683

Table 3.6: Deterministic model results: Estimated fold increase inR0 with addition of long-shedders
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3.4.4 Sensitivity Analysis

Our estimates are based on an incomplete dataset of all true shedding times

(1/γL and 1/γR ) due to publication bias and the difficulty of obtaining data on

asymptomatic community infection. We therefore examined the sensitivity of our

outcomes to over a wide range of values for this parameter. The probability of

an high transmission increases by about 10% as the mean long-shedding duration

(1/γL) increases from 20 to 250, leveling off at maximum probability of 42% for

the operational definition and 34% for the functional definition when γL >100 days

(Figure 3.4). The higher probability in the operational definition is again attributed

to the wider range and higher shedding duration mean of the regular-shedding group,

which contains the bulk (95%) of the population.

The total number of infected individuals also increases with 1/γL, as shown in

Figure 3.5. In simulations in a population of 10,000 individuals, the maximum num-

ber of cases is about 8000 for both definitions (80% of the population), and remains

well above the average number of cases in the absence of long-shedders (46%, opera-

tional; 29%, functional). Transmission duration, measured as the last time at which

there is at least one infected individual in the population, increases as 1/γL increases

(Figure 3.6). The maximum expected duration of about 2000 days (about 5.5 years)

is reached when 1/γL = 200 days for both definitions. Again, this is much longer

than the average duration in the absences of long-shedders (633 days, operational;

756 days, functional).

3.5 Discussion

Heterogeneity in viral shedding duration has clear implications for norovirus trans-

mission dynamics, and should be included when estimating disease risks. In the case
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Figure 3.4: Sensitivity of outbreak probability to variable long-shedding duration (1/γL). Out-
breaks are defined by having greater than 200 cases. Dashed lines show probability for each def-
inition in the absence of long-shedders, and dotted lines represent the shedding duration of the
regular-shedding groups (γ = 16.4 days, and γ = 14.5 days). Open circles represent use of the oper-
ational definition, and filled gray circles represent use of the functional definition for stratification.
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Figure 3.5: Sensitivity of transmission severity to variable long-shedding duration (1/γL). Out-
breaks are defined by having greater than 200 cases. Dashed blue line shows average and standard
definition for 1000 runs with the functional definition, gray line shows average and standard devi-
ation for operational definition.
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Figure 3.6: Sensitivity of high transmission duration to variable long-shedding duration (1/γL).
High transmission is defined by having greater than 200 cases. End of transmission occurs when
there are no exposed or infected individuals remaining. Dotted lines show average duration for each
definition in the absence of long-shedders.
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of norovirus, estimates of short average shedding duration do not capture the po-

tential effects of long-shedding individuals in sustaining community transmission.

Our empirically derived characterization of norovirus shedding duration allows us to

model its impact on population-level norovirus risk. Our analysis indicates that in-

clusion of long-shedders results in a 1.5 to 1.8-fold increase in the basic reproduction

number R0, about a 20% increase in the number of cases, and approximately a 2-fold

increase in the duration that transmission is sustained in a population.

The simple model in this analysis demonstrates the importance of long-shedders in

a single population. It is the first step in understanding the effects of heterogeneity on

transmission dynamics, and we expect the results to become more profound with the

addition of more complicated and realistic structure. A logical next step would be the

inclusion of social structure or multiple populations. In a structured metapopulation

comprised of loosely connected groups, a pathogen must persist within its initial

group long enough to allow for migration into another one. This type of long-

shedder driven persistence may provide an explanation for the explosive but episodic

character of norovirus outbreaks: long-shedders may allow the virus to circulate at

low levels in the population until it either reaches an individual with a high contact

rate (e.g. a food handler), or a pocket of susceptible individuals, (e.g. an unexposed

school), resulting in a large new outbreak. A socially structured model could also

account for other transmission processes, including clustering of long-shedders in

health facilities and other high-risk zones.

The effect of long-shedders may also become more profound if we relax the as-

sumption of homotypic immunity. Immunity has been estimated to last 2-6 months

[77], but this is a highly debated topic [27]. When the duration of shedding (1/γL) is

greater than the duration of immunity, the long-shedding group can act as a reser-
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voir, allowing the infection to persist in a population and potentially re-seed periodic

epidemics, in a manner similar to herpes viruses and other pathogens with long-term

carriage, such as Salmonella typhi .

Because host immune pressure can impact calicivirus RNA evolution [88], long-

shedders may also impact the population ecology of noroviruses [41]. Since the amino

acids that mutate most frequently are those involved in immune evasion [71, 116],

escape mutants may emerge over the life of a single long-shedding infection. In

fact, the number of amino acid mutations arising over the course of a year within-

host is similar to the number distinguishing outbreak variants from each other [116].

Consequently, long-shedders represent a potential mechanism for introducing novel

variants into populations that have achieved herd immunity against the most recent

circulating strains.

Our parameter estimates are sensitive to differences in technique and study design

across studies (Table 3.3), including differences in fecal viral concentration, specimen

storage, RNA extraction efficiency, presence of fecal reverse transcriptase inhibitors,

and primer usage [93]. Many studies terminated sample collection while patients

were still shedding [7, 39, 88], resulting in right-censored data, and systematic un-

derestimates of actual shedding durations. Publication bias exists in the literature,

so that published studies may not reflect the true distribution in the population.

Future studies, with increasingly sensitive techniques, will provide more accurate

estimates of actual post-infection viral shedding duration.

3.5.1 Conclusions

We have demonstrated the importance of including an empirically validated repre-

sentation of between-host heterogeneity in norovirus natural history when assessing

population-level transmission risks. These results should be incorporated in models
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that include other potentially important sources of transmission heterogeneity such

heterogeneous contact networks, protective immunity, and strain competition. This

will facilitate the development of policies and interventions that can target the indi-

viduals who are both the most susceptible and the most likely to transmit disease.

As we deepen our understanding of the different types, degrees, and interactions of

heterogeneity in disease transmission systems, we can make more informed policy

decisions and recommendations and more effectively protect human health.



CHAPTER IV

Travel and the spread of dengue infection in rural Ecuador

4.1 Abstract

Over the last few decades dengue virus has both spread in range and increased

in its virulence [61]. Once a milder, urban-centered disease, dengue has moved into

peri-urban and rural areas and is now responsible for more serious disease, including

dengue shock syndrome and dengue hemorrhagic fever. The factors that put rural ar-

eas at risk for dengue virus introduction remain unclear, though travel, urbanization,

and lack of vector control programs appear to play a role.

In this work, we examine a rural region of coastal Ecuador undergoing severe

environmental change. Blood samples were collected from eight villages with varying

levels of accessibility within the region, and were analyzed using a novel ELISA assay.

We found that prevalence ranged from about 18% to 57%, with most villages between

25% to 35%. There was heterogeneity in antibody responses both between villages

at each time point, and within a particular village over time. We examined potential

factors that could lead to this heterogeneity, including age and rates of travel to

areas of high dengue transmission, but did not find an association with either of

these factors.

We found that there is an increase in travel to areas of high dengue transmission

59
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for villages with road access, but that this increase is not necessarily associated with

an increase in levels of infection. This lack of association may be due to confound-

ing through cohort demographics, or because of a threshold effect in travel. The

heterogeneity of infection rates through this region indicate that a village-focused

intervention strategy may be more efficient at reducing overall infection than one

directed at the household or regional level.

4.2 Introduction

Dengue is a class of four flaviviruses that are the cause of the most prevalent

arthropod-borne viral disease for humans, causing an estimated 50 - 100 million

infections worldwide every year [42]. Over the past 50 years the effect of dengue

has worsened; incidence has dramatically increased, and the viruses have evolved

rapidly with the more virulent genotypes expanding beyond their historic ranges

[61]. The global expansion of its range and incidence is reflected most strikingly in

the Americas and Caribbean, where urbanization, insufficient political commitment,

increased travel, and inadequate resources have contributed to the re-emergence and

increase of dengue in all 19 countries previously certified to be free of its vector,

Aedes aegypti [122]. Since the 1980s there has been a 4.5-fold increase in the number

of reported cases in the Americas alone [104]. In 2008, more than 900,000 cases of

dengue and 25,000 cases of dengue hemorrhagic fever (DHF) were reported in this

region [91].

In Ecuador, dengue was eliminated during the continent-wide PAHO vector erad-

ication campaign of the 1970s. After the collapse of the campaign, the re-emergence

of dengue was first reported in Ecuador in 1988 with a dengue virus (DENV) -1

epidemic, followed by DENV-2 in 1990, and DENV-4 in 1993. Fifteen years after
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dengue was first reintroduced, DENV-3 was identified, and all four strains continue

to circulate within the country, producing episodic yearly outbreaks and cyclic epi-

demics.

Dengue is often characterized as an urban disease [43], yet is spreading to rural

areas in many countries including Thailand [14, 119], Malaysia [15], India [60, 124],

and Vietnam [111]. It is unknown what favors transmission in these settings [24], but

one factor emerges as a potential determinant of rural transmission: human travel

patterns. Improved modes of transportation allow for migration of viremic subjects

from one place to another and may help spread dengue from urban into rural areas

[83]. In rural Amazonia, a lack of spatial clustering supported the hypothesis of

little autochthonous transmission in rural areas [24], indicating that the infections

in rural areas may be caused by repeated introductions from human migration and

travel. In fact, it has been shown that dengue is frequently imported into regions

with lower transmission through infective sparks from endemic cities [18] and that

migration was a predictor of the presence of dengue IgG antibodies at baseline and

subsequent seroconversion to dengue [24]. Previous studies indicate a link between

road access and increased risk of diarrheal disease [29] and malaria [133]. Along

with the increase in travel and migration that comes with road access, dengue vector

studies also indicate that mosquitoes are distributed along roadways [28], providing

two independent processes that link dengue infection to roadways. The construction

of a new road into a rural area in northern coastal Ecuador provides an opportunity

to undertake a natural experiment that analyzes the effects differences of road access

on dengue transmission.

In this study, we examine differences in dengue seropositivity in a rural region

of Ecuador that is undergoing severe environmental change. By measuring levels of
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anti-dengue IgG through serological analyzes, we are able to determine the extent

of transmission in this rural region and its relationship to road access and local

travel patterns. We hypothesize that heterogeneity in infection levels related to

variability in road access through variable routes of travel. Understanding the sources

of infections and the sources of the heterogeneity the distribution of these infections

is crucial for the development of intervention strategies to mitigate dengue infections,

to stop its spread into unaffected regions, and to identify those villages most at risk

for future outbreaks.

4.3 Methods

4.3.1 Study Area

In the northern Ecuadorian province of Esmeraldas, approximately 125 villages

(ranging in size from 20-800 inhabitants) lie along three rivers: the Ŕıo Cayapas, the

Ŕıo Santiago, and the Ŕıo Onzolé. These rivers flow toward the town of Borbón (1◦ 5′

18” North, 78◦ 59′ 20” West), a town that serves as the main population center of the

region (Figure 4.1). This area is undergoing intense environmental and social change

following the construction of a new highway along the coast connecting previously

remote villages to the outside world. In 1996, the Ecuadorian government began

construction of a road linking the southern Colombian border with the Ecuadorian

coast. Construction of the road was completed from Borbón westward to the coast

in 1996 and from Borbón eastward to the Andes in 2003. Secondary and tertiary

dirt roads off this two-lane asphalt highway are continually being built, mostly for

logging and mining, and the area is known as one of the world′s top ten deforestation

fronts [85, 117]. In the two cantons where these study villages are located, 55% of

the population self-identifies as ethnically Afro-Ecuadorian and 13% as Chachi, the

predominant indigenous group [125]; the rest identify as white or mestizo.
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Figure 4.1: A. Map of study region, circled area and zoom indicating study region (Google Maps),
B. Zoom of study region. Filled circles represent villages with road access, solid circles indicate
close river villages (no road access), dashed circles indicate remote river villages.

Unpublished data from the Ecuadorian Ministry of Health indicate that the great-

est number of cases between 1998 and 2009 occurred in 2000, with 22,958 reported

cases 22. In the province of Esmeraldas, where our study region lies, a peak of

680 dengue fever cases was reported in 2001. From January 2009 May 2010, it

recorded 49 cases (average 2.7/month), demonstrating strong seasonality, with in-

cidence peaking January through April [Ministry of Health Esmeraldas Province,

personal contact]. Each province is split into smaller zones or Areas. The study re-

gion lies in Area 7, which has seen an increase in the number of classic dengue cases

over the past few years, but has not yet reported cases of dengue hemmorhagic fever.

Dengue transmission is reported year round in this region since 2009, and the peak

transmission season does not closely match that of the rest of the province [Ministry

of Health Esmeraldas Province, personal contact].
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Road Access Close, No Road Access Remote
Highway Borbón,San August́ın - -
Rı́o Onzolé - Tangaré Santo Domingo
Rı́o Santiago - Rocafuerte Playa de Oro
Rı́o Santiago - Herradura San Miguel

Table 4.1: Designation of villages for sample collection

4.3.2 Study Design

A sample of 8 villages was selected a priori based on their geographic location rel-

ative to Borbón and their level of remoteness (Table 4.1). The village of Borbón and

another village along the highway (San August́ın) were selected as having road access.

Two villages lacking road access were selected from each of the three river basins:

one very remote, and one less remote. Remoteness was determined by estimating the

time and cost to travel from the village to Borbón, as detailed in Eisenberg, et. al.

(2006) [29]. All households within each village were recruited. In Borbón, we used

a previously selected random sample of 1000 househods [29]. Houses were mapped

and demographic information was obtained prior to the onset of this study.

4.3.3 Ethics statement

The study was approved by Institutional review board committees at the Univer-

sity of Michigan and the Universidad San Francisco de Quito. Consent was obtained

at both the village and household level. All studied households were part of a larger

epidemiologic study. Study participants were questioned regarding current febrile

illness during the study, and if positive, were seen by a physician.

4.3.4 Data collection

Field staff members visited each household to collect samples of blood after the

rainy seasons of 2008, 2009, and 2010. Participation in the study was proposed on

a voluntary basis, and verbal consent was obtained at each sampling. A structured
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Figure 4.2: Schematic of study design

questionnaire was administered at the house by trained local field staff in Spanish,

and approximately 4 drops of blood were collected through finger prick onto filter

paper (Whatman 903 Specimen collection paper). Samples were dried, individually

wrapped, and shipped at room temperature to the University of Michigan laboratory

where they were stored at -80C until analysis.

4.3.5 Laboratory analysis

Blood spots were analyzed for DENV IgG antibodies by means of direct ELISA

techniques. IgG antibodies are detectable after the first week of illness, rising dra-

matically over 2 weeks, after which they level off, but remain at detectible levels

[12]. We use natively purified DENV-2 NS5 as antigen to identify the presence of

anti-DENV antibodies. DENV NS5 is a non-structural protein that exhibits methyl-

transferase and RNA-dependent RNA polymerase activities, and is necessary for

DENV replication [70]. NS5 proteins have been shown to be immunogenic in induc-
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ing antibody responses [115], and NS5 proteins can be used to differentiate between

related flaviviruses and flavivirus infection [140], increasing the likelihood of a virus

specific response. The protocol for DENV-2 NS5 native purification can be found in

the supplementary material.

DENV seropositivity for each blood sample was determined using an IgG direct

ELISA, which was performed following standard procedures. Serum solution was

attained through eluting two 1/8-inch hole punches of dried blood overnight (4◦C)

in 350µl 5% nonfat dry milk (NFDM) in PBST (Phosphate buffered saline- Tween

0.5%). Briefly, half of each ninety-six well plate (Nunc-Immuno plates with polysorp

coating, Thermo Scientific) was coated with 50µl/well of 135µg/mL purified DENV-

2 NS5 antigen in PBS and the other half with PBS only. Plates were incubated

overnight (4◦C), after which they were washed 5 times with PBS and blocked with 300

µl/well 5% NFDM/PBS-T for 2 hours at 37◦C. Plates were washed 2 times in PBS-T

and 50µl/well of the eluted blood samples was added in duplicate antigen-positive and

control wells and incubated overnight at 4◦C. Afterwards, plates were washed 5 times

in PBS-T and 50µl/well of the Biotin-conjugated rabbit anti-human IgG secondary

antibody (1:20,000 dilution in 5% NFDM / PBS-T; Jackson Immunoresearch) was

added for 45 min at 37◦C. After washing 10 times in PBS-T, Streptavidin Alkaline

Phosphatase (1:2000 dilution in PBST) was added for 30 min at room temperature.

pNPP (Sigma Aldrich) substrate system in Tris buffer was used for detection.

The absorbance at OD405 was measured using a BMG labtech FLUOstar Omegaspec-

trophotometer. Each plate was read at a minimum of 2 time points, fifteen minutes

apart: at 15 and/or 30 minutes, 45 minutes, and/or 60 minutes. Each plate con-

tained negative and positive controls in duplicate and each sample was measured in

duplicate.
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4.3.6 Data Analysis

The duplicate non-NS5 antigen-coated wells were averaged and subtracted from

the average absorbance of the NS5 antigen-coated cells for each sample to account for

non-specific binding. This final net absorbance value was normalized to the negative

sample for that plate to allow for plate to plate comparisons. The final output is

therefore reported as fold-increase over negative, called the optical density ratio (OD

ratio). Plate to plate variation was minimized by using a positive control from an

individual with a documented past dengue infection on each plate. Plates where the

positive/negative ratio was more than 3 standard deviations from the mean were

re-run. Measurements were included only when the ODE value was above 0.4 and

below 2.9 to ensure that the measurement occurred in a region of linearity (not

in saturation). Data were double entered and corrected for data entry errors. All

statistical analyses were performed in R version 2.12.1 [97].

4.3.7 Cut-off Determination

We used our positive control to establish a cut-off of dengue seropositivity. The

mean OD ratio of all of the positive controls was 4.3. As a conservative cut-off, we

chose to use 2 standard deviations below this mean, giving us a cut-off value of 2.5.

This means that results that were 2.5 times above the negative value (OD ratio >2.5)

were considered positive.

4.4 Results

4.4.1 Sample Collection

The study population for all eight villages as determined by the 2009 census

included 5587 individuals. In Borbón, the largest village (N=4188), we sampled

between 4% - 12.5% of the population. In the smaller villages, sampling coverage
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Village Total
N

2008 2009 2010 Unique
Individu-
als

Longitudinal
Individu-
als

Borbón 4118 159 (3.8%) 124 (3.0%) 517 (12.5%) 720 5
Herradura 106 43 (40.6%) 54 (50.9%) 51 (48.11%) 78 24
Playa de Oro 251 149

(59.4%)
84 (33.5%) 203 (80.9%) 237 48

Rocafuerte 141 50 (35.5%) 88 (62.4%) 106 (75.2%) 157 23
San August́ın 333 152

(45.6%)
106
(31.8%)

129 (38.7%) 225 51

San Miguel 143 108
(75.5%)

110
(76.9%)

93 (65.0%) 181 44

Santo
Domingo

420 118
(28.1%)

191(45.5%) 240 (57.1%) 345 34

Tangaré 75 22 (29.3%) 33 (44.0%) 34 (45.3%) 63 4
Total 5587 801

(14.3%)
790
(14.1%)

1373
(24.6%)

2005 233

Table 4.2: Number and percent of population sampled in each sample session by village

ranged from 29% - 81% of the village population (Table 4.2).

A total of 2005 unique individuals were sampled in the region. Of the 2964 total

samples, about 32% (N = 959) are from the same individuals sampled at least twice

during the 3 year period. 233 individuals were sampled for all three sampling sessions,

providing a small subset of longitudinal data.

4.4.2 Antibody Levels

The distribution of OD ratios ranges from -1.8 to 40. The majority of all the OD

ratios falls between 0.5 and 5.5 (95% quantiles), as shown in figure 4.3 (mean = 2.49,

median = 2.10). Negative values are possible when the response in the background

wells (no antigen) is higher than the wells with antigen, indicating differences in

background only. The very high values shown as the right hand tail in 4.3 may be

due to recent secondary infection, as IgG antibodies to NS5 have been shown to rise

to high titers after secondary infection [19].

OD ratios are variable both within villages over time and between villages (Figure

4.4). In some villages (Borbón and Playa de Oro), there is a marked increase in
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Figure 4.3: Histogram of all ELISA results. Green line indicates the mean value for the positive
control for all plates, dotted lines are two standard deviations of this mean. The lower dotted line
at x = 2.5 is the cut off for seropositivity (all samples to the right of this line are positive).

Village 2008 2009 2010

Borbón 20.3 36.3 51.5
Herradura 32.6 26.4 37.2
Playa de Oro 25.7 20.2 41.1
Rocafuerte 17.8 56.0 27.3
San August́ın 30.8 20.4 31.4
San Miguel 52.5 29.9 31.5
Santo Domingo 56.8 24.7 35.9
Tangaré 28.6 33.3 29.4

Table 4.3: Percent of individuals seropositive by village and year

mean antibody response over time. This trend is followed, though less drastically,

by Herradura and San August́ın. Two villages, San Miguel and Santo Domingo have

their highest overall responses in 2008, while one village (Rocafuerte) has the highest

result in 2009. In the smallest village (Tangaré, n = 22 - 34), no change is noted.

A similar trend is observed for most villages when results are examined in terms of

our cut-off. As shown in table 4.3 percent seropositive ranges from 17.8 % to 60% in

this region, with the majority of the villages having between 25 to 35

Some of the variability within each village over time may be attributed to a

shifting cohort, as only a portion of the population is represented at every time
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Figure 4.4: Boxplot of sample ELISA results reported normalized to the negative sample (OD ra-
tio). Letters indicate village names and numbers indicate sample year (B=Borbón, H = Herradura,
PO = Playa de Oro, R = Rocafuerte, SA = San August́ın, SD = Santo Domingo, SM = San
Miguel, T = Tangaré). Figure does not include values <10 times the negative to show variation.
The green center line indicates the mean of all the positive samples the dotted lines represent 2
standard deviations from this mean.
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point. While we cannot ascertain temporal trends with only three time points, the

longitudinal data are useful for understanding within village variation, as shown in

figure 4.5. The majority of the individuals in the longitudinal subset did not change

serological status (transition from below to above the OD Ratio cut-off of 2.5 or vice

versa). In most villages, some individuals transitioned from negative to positive,

possibly indicating recent infection. In many of these same villages, however, a

similar number of individuals transitioned from positive to negative, indicating a

loss of antibody response. This loss could be explained by the drop in antibodies

post-infection, or by uncertainty in our assay. There is very little known about the

kinetics of NS5 IgG antibodies post infection, and these type of data will become

more valuable as this is better understood.

Inter-village differences can be seen through comparison of the cumulative distri-

butions of each village for 2010, the year for which we have the greatest number of

samples, as shown in 4.6. The further the curve is shifted to the right, the higher

the OD ratios are for that village. For 2010, no clear trend linking road access to

OD ratio is visible, as only 2 villages are significantly different at the 5% confidence

level, Playa de Oro and Borbón. One of these villages (Borbón) is along the roadway,

while Playa de Oro is remote. Statistical differences between the distributions are

shown by the Kolmogorov-Smirnov test. The KS-statistics and p values are given in

4.4. In 2010, the cumulative distribution of results for Borbón is different from all

villages except for Herradura and Playa de Oro, while Playa de Oro is statistically

different from all villages except Borbón, Herradura, and San Miguel.

The two statistically higher villages in Table 4.4 have higher OD ratios for 2010,

but this is not true across all time points, as shown in figure 4.4. These incredibly

high values during these time points may indicate a recent outbreak, but we do not
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Figure 4.5: Serological transitions for longitudinal samples between timepoints. The top chart
represents changes between the 2008 and 2009 sampling period and the lower chart represents
changes between the 2009 and 2010 timepoints. Dark bars indicate individuals that were previously
negative (OD ratio <2.5) but were positive at the next sampling period, while medium gray bars
are the opposite transition. Light gray bars indicate no change in serological status. Numbers at
the top of the bars indicate the number of individuals.
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Figure 4.6: Cumulative distribution function for 2010 by village. Solid lines indicate villages with
road access, dashed lines indicate those with no road access but close, and dotted lines indicate
remote villages. The dotted vertical lines indicate 2 standard deviations below the mean of the OD
ratios for all positive controls (x=2.5) and the mean of the positive controls (x=4.3).

have clinical evidence to support this.

4.4.3 Relationship with Age

The differences in OD ratios within villages at different times could be explained

by a difference in the ages of individuals sampled for each sampling session. If we

sampled the entire population at each time point,and IgG antibodies were persistent,

we would expect to see a general upward trend as more individuals become infected.

This trend could be masked, however, by an influx of new susceptible individuals,

namely unexposed children. There appears to be a similar trend between OD distri-

bution (Figure 4.4) and age distribution (Figure 4.7) for some villages. However, age

does not explain the overall increase for an individual OD ratio, as demonstrated in

figure 4.8. There appears to be no overall increase in OD ratio with an increase in

age, indicating that other factors must also play a role.
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Figure 4.7: Distribution of ages for each sampling session

Figure 4.8: Mean OD Ratio by age for entire population
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(a) Percentage reporting travel to an area of high known dengue transmission by sampling session and village

(b) Association of travel and OD ratio

Figure 4.9: Travel and dengue over time by village
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4.4.4 Relationship with Travel

Travel to areas of high dengue transmission could cause an increase in infection

as individuals can both become individually infected while away and can bring back

the disease to their villages causing further transmission. During the sampling, we

ascertained whether individuals had traveled to areas of known high dengue trans-

mission during the last year. Overall, 1212 respondents (41%) indicated some travel

to at least one of these areas. Travel rates ranges from 1.9% (San Miguel 2008) to

72.2% (San August́ın 2010). As shown in figure 4.9(b), we see that travel increases

over time for every village, with 2010 being having the highest rate of travel to areas

of known transmission.

We also see that villages with road access report generally higher levels of travel

than those without access (close and remote). However, no clear association is seen

between the mean OD ratio and the percentage travelled 4.9(a).

4.4.5 Discussion

Dengue virus has spread into rural northern Ecuador, infecting many individuals

in the area. We believe that its emergence could be linked to a new road that

provides access to this region and to areas of known dengue transmission. Our results

demonstrate clear heterogeneity between villages at during a particular year, and

within villages over our sampling period. This heterogeneity is not fully explained

by age differences or rates of travel, indicating a complex picture of transmission

in this area. Villages that have road access report higher rates of travel to regions

of high transmission, but these rates are not directly correlated with an increase in

higher antibody responses. Travel is increasing for the region as a whole, as every

year a greater percentage of individuals are travelling to areas of known high dengue
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transmission. It is quite possible that we would not see a relationship with this

travel, as there may be a threshold above which there is sufficient introduction into

the villages to sustain transmission or cause outbreaks.

We anticipated that this relationship would be confounded by age, as older indi-

viduals would have a longer time to become infected over their lifetime, and would

presumably have higher rates. We do not see such an association, however, as age

does not seem to be associated with higher values. This relationship could be demon-

strated by following a unique cohort over a longer period of time, and by better

understanding the kinetics of the NS5 IgG antibodies over time.

There are technical limitations with the assay that we used in this analysis. There

are many advantages in the usage of the ELISA, in that it is cheap, does not require

multiple paired specimens, and can be done with blood spots, rather than serum

which can be dried and easily transported. However, there is some uncertainty in

its response, which can be seen in the wide range of the OD ratio of our positive

control, which was used to control for plate to plate variation.

A second limitation is the short time frame of the sample collection. While we can

expect a general upward trend as dengue continues to circulate (or a plateau then

decrease if transmission is halted), we do not have sufficient time points to capture

any temporal trends. Further sample collection and analysis would elucidate any

temporal relationships and its continued spread.

We do not see marked differences between villages with road access and those

without. This indicates that at this scale, the road does not appear to have an

effect. One reason for this could be the great amount of mixing and travel within

the region. Our study only examined travel to areas of high dengue incidence, but

not travel within the region. Borbón is the major commercial hub of this region, and
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acts as a port for many of the goods and services in the area. The road villages may

act as a entrance point for the virus to travel up river; individuals from road villages

travel to centers of transmission, bringing the disease to the area, and individuals

from the various villages can pick up the virus in the major road villages. Finer

analysis of inter- and intra- regional travel patterns may make this process clearer.

This type of summary analysis is important in the determination of intervention

strategies. If we had seen high levels consistently in the road villages, or across a

single river basin, this would indicate usage of a targeted strategy on those areas.

Because we see such strong heterogeneity in the region between villages, a region

wide approach may not be an appropriate scale for intervention. For example, the

high antibody responses reported in Playa de Oro and Borbón in 2010 were not seen

in the other villages at that time. In this case, targeted interventions to these villages

may be the most cost-effective strategy for this region.



CHAPTER V

Conclusions and Future Directions

5.1 Conclusion

In this work we examine heterogeneity in environmental risk in three very different

scenarios. In all cases, we find that heterogeneity can affect quantitative measures of

risk. This heterogeneity can arise from many different factors or parameters, and can

have varying effects on final risk estimates. Heterogneity may not always affect final

risk estimates or health outcomes, and automatic inclusion into risk models may add

unecessary complexity. As shown in this work, however, many scenarios require the

use of more complex models that include heterogeneity to fully characterize risk and

to therefore develop appropriate policy and intervention strategies.

In the first scenario, we show that differences in individual characteristics can lead

to differences in excretion rates of persistent pollutants. Excretion rates and half-lives

are often modeled as a single value when assessing exposure, but we show that there

is a wide range of values reported for many congeners in the literature. Furthermore,

individual characteristics such as body fat, age, smoking, and breast feeding affect the

elimination of these pollutants. These factors result in heterogeneity in elimination

rates between different individuals as well as within an individual over his or her

lifetime.

80
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Elimination rates are used to estimate past exposure levels. Many of these chemi-

cals cause a variety of health effects in individuals, including some that arise decades

after exposure. By understanding individual elimination rates, and the range of po-

tential half-lives, health professionals can better predict the potential health risks for

an individual as well as the potential impact of occupational exposures and industrial

accidents. Furthermore, half-life data is necessary for source apportionment, used

to determine sources of exposure long after it has occurred by matching particular

mixtures in the blood to an emission ’fingerprint’. Because different congeners are

eliminated at different rates, the proportion of the congeners at the time of measure-

ment will be different that at the time of exposure. The estimation of the exposure

mixture, therefore is highly dependent on the elimination model that is used. Using

more accurate half-life estimations will lead to a better understanding of exposure

mixtures which can be used to understand past and present exposure pathways.

In the second chapter, we examine how heterogeneity affects risk at a population

level, rather than at an individual level. Infectious disease risk is very different than

chemical risk in that pathogens can both amplify in the body and can be spread

from individual to individual. When we account for differences in the length of

time that an individual sheds viral particles, by accounting for the long-shedders

in the population, we see increases in the severity and duration of transmission in

a community, and an increase in the probability that an outbreak will occur. This

heterogeneity in shedding length has not yet been included in models used to develop

policies in hospitals or for food handlers, and current policy may not be sufficient

to stop transmission in these scenarios. Individuals who are at risk for becoming

long shedders are often at greater risk for more severe disease outcomes. The a

priori identification of these individuals can both aid in their care and allow for



82

interventions to prevent the further spread of disease.

Norovirus is a complex disease, with a strong environmental component, and many

other sources of heterogeneity are likely important, including immunity and social

groups. For example, norovirus is thought to cause short term homotypic immunity.

If an individual continues to shed the virus for longer than this period of immunity,

then the disease can re-enter a population. Heterogeneity in social structure may

also have a large effect. Our model of one homogeneous population, while useful for

demonstrating the effect of long-shedders, is not realistic. If the population is split

into smaller groups with heterogeneous rates of mixing, long-shedders may prove to

be key in moving infection between two loosely connected groups. More realistic

models that include these and other sources of heterogeneity and their interactions

will likely lead to more accurate estimates of population norovirus risk.

Finally, we examine a scenario where population level heterogeneity affects a pop-

ulation level risk. As dengue spreads into rural areas, it is important to understand

what factors make a village more at risk for its emergence, including demographic

effects, travel, and road access. If we had seen high levels consistently in the road

villages, or across a single river basin, this would indicate usage of a targeted strategy

on those areas. Because we see such strong heterogeneity in the region between vil-

lages, a region wide approach may not be an appropriate scale for intervention. For

example, the high antibody responses reported in Playa de Oro and Borbón in 2010

were not seen in the other villages at that time. In this case, targeted interventions

to these villages may be the most cost-effective strategy for this region.

Many of the areas that are at risk for dengue are resource limited. As there is no

vaccine or treatment for dengue, intervention efforts are focused on vector control.

Vector control, while very effective, requires significant resource and community input



83

and coordination between different villages, government bodies, and organizations.

Therefore, it is important to understand the appropriate scale at which to intervene.

We show areas of heterogeneous prevalence in transmission in a rural region on a

village level. We examine its links to travel and age, but there are many other factors

that may be involved as well, including water storage methods, weather patterns, and

immunity. As these data are further studied, other sources of important variability

may emerge.

Heterogeneity in scenarios of environmental risk can substantially affect outcomes.

In this work we examine three very disparate scenarios in which heterogeneity clearly

affects risk estimates and health outcomes. As many risk models make assumptions of

homogeneity in their estimates, these effects are often missed. By understanding the

important underlying variability in these systems, and by using more appropriately

complex risk models, we can create more accurate risk estimates that can be used to

make more informative policy and intervention decisions for the protection of human

health.
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APPENDIX A

Preamble and Chapter II Supporting Materials
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Figure A.1: Comparison of proposed method of half-life prediction to regression presented by
Flesch-Janys et a. (1996) for various BMI percentiles
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APPENDIX B

Chapter III Supporting Materials

Chapter 3 Supplementary Material

Unpublished Data from Moe CL
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Study Individual Last Positive
sample day
post-challengea

a 1 7
a 2 8
a 3 20
a 4 7
a 5 7
a 6 7
a 7 6
a 8 6
a 9 7
a 10 7
a 11 4
a 12 6
a 13 4
a 14 7
a 15 8
a 16 8
a 17 8
a 18 8
a 19 16
a 20 7
a 21 21
a 22 14
b 1 21
b 2 8
b 3 6
b 4 3
b 5 1
b 6 4
b 7 4
b 8 5
b 9 8

Table B.1: Previously unpublished shedding data from two challenge studies conducted by Moe
CL. Study a was conducted from July 1994 to December 1998. A total of 75 people were inocu-
lated in these studies (22 became infected). Study b was conducted from October 2000 to March
2002. Samples were collected for a total of 21 days. Study a specimens were examined by RT-PCR
using NV-specific primers (NV51/NV3) located in the RNA-dependent RNA polymerase gene as
described previously (Lindesmith2003). Specimens from study b were tested by RT-PCR using
primers (SR33/SR48) located in the RNA-dependent RNA polymerase gene as described by (Lin-
desmith2005). aLast positive sample day post-challenge defined as the last day stool specimens
tested positive for Norovirus RNA as detected by RT-PCR following challenge. For example: if
a subject was challenged on 7/1/1995 and their last positive sample was on 7/11/1995 their last
positive sample post challenge would be Day 10.
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